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Preface

This synthesis and collection of papers is submitted for the degree of Philosophiae Doctor in

oceanography at the Geophysical Institute, University of Bergen. This work was carried out

at the Nansen Environmental and Remote Sensing Center, in the Mohn Sverdrup department.

An iceberg forecasting system for the Barents Sea is developed and evaluated. The system is

used to improve our understanding and potential predictability of iceberg drift in the area. The

thesis consists of an introduction, where the motivations, objectives and results are presented,

and three papers that build on each other, listed below:

Paper I Parameterization of an iceberg drift model in the Barents

Sea, Keghouche, I., Bertino, L. and Lisæter, K. A.,
Journal of Atmospheric and Oceanic Technology, 2009,

26(10), 2216-2227

Paper II Modeling dynamics and thermodynamics of icebergs in

the Barents Sea from 1987 to 2005, Keghouche I.,
Counillon, F. and Bertino, L., Journal of Geophysical
Research, revised and re-submitted

Paper III Adaptive estimation of iceberg parameters using the En-

semble Kalman Filter, Keghouche I., Counillon, F. and
Bertino, L., to be submitted
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Introduction

The World Meteorological Organisation sea ice nomenclature defines an iceberg as a massive

piece of ice of varying shape, protruding more than 5 m above sea-level, which may be afloat

or aground. It has broken away from a glacier or an ice shelf1, which is a process known as

iceberg calving. This process involves the propagation of fractures which can be triggered by

ice stresses, tides, waves, bottom melting and ablation. The calving rate is controlled by the

glacier speed, the geometric changes at the terminus region and submarine melting (Rignot

et al., 2010; Straneo et al., 2010; Van der Veen, 2002).

The shape and size of the icebergs is determined by formation or deterioration processes. They

are subdivided into different categories (see Figure 1 and Table 1).

The drift of icebergs is influenced mainly by ocean currents, winds, the Coriolis force, waves,

sea ice (concentration and drift) and bathymetry (by grounding). The acceleration of water

entrained in the turbulent wake of the iceberg also has a small influence (Sodhi and El-Tahan,

1980; Smith, 1993). Atmospheric and oceanic forces act on the areas above and below the

water line, respectively. Form drag forces act on the vertical plane and surface drag forces

act on the horizontal plane of the iceberg. In general, form drag forces dominate surface drag

forces. The surface drag forces become the dominant forces if the horizontal surface drag area

exceeds about 250 times the sail area of the iceberg (Smith and Banke, 1983). This may occur

for ice islands or huge tabular icebergs. Sea ice, if sufficiently packed with strong internal ice

stresses, may lock the iceberg and the iceberg then drifts only with the sea ice (Lichey and

Hellmer, 2001). Generally, during its drift, the iceberg undergoes strong modification through

ablation and melting, depending on the season and the region. The wave erosion, calving of

overhanging slabs, lateral melting, basal melting and melting due to solar radiation are the most

important iceberg deterioration processes (Kubat et al., 2007).

Iceberg dynamics and thermodynamics are of great interest because they potentially represent

1Floating glacier of large dimensions extending beyond the coastline.

Descriptive name Freeboard height (m) Length (m)

Growler < 5 < 5

Bergy Bit 1 - 5 5 - 15

Small Berg 5 - 15 15 - 60

Medium Berg 16 - 45 61 - 120

Large Berg 46 - 75 121 - 200

Very Large Berg > 75 > 200

Table 1: Iceberg size classification used by the International Ice Patrol.
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Figure 1: Iceberg shape classification used by the International Ice Patrol. The first seven

iceberg pictures are taken from the Canadian Ice Service website (http://www.ec.gc.ca/

glaces-ice/default.asp?lang=En&n=40E178A1-1, the ice island picture credit goes to

Dan Crosbie).

severe marine hazards and impact the ecosystem (Teixidó et al., 2007), the geology (Freiwald

et al., 1999) and the hydrography of the world’s oceans (Heinrich, 1988; Jansen et al., 2007;

Wiersma and Jongma, 2009). They can be dangerous through a collision or via scouring2 of the

ocean floor. The latter process damages deep sea life (Gerdes et al., 2003), offshore installations

and reshapes the sea bed (Barnes and Lien, 1988). Icebergs are also a source for marine life:

inland ice collects materials during its advance towards the coast. Hence, while melting in the

ocean, icebergs provide nutrients for the ocean’s euphotic zone (Lichey and Hellmer, 2001).

Additionally, they leave sediments and stones on the sea floor that can be used as paleo-climate

indicators (Alvarez-Solas et al., 2010; Heinrich, 1988). Finally, they are a source of fresh

water for the world’s oceans that may impact the ocean circulation (Jansen et al., 2007). When

icebergs calve from land into the sea, they furthermore have an impact on the global sea level.

West Antarctica and Greenland have experienced recent mass loss acceleration. Since 2003,

their contribution to the global annual sea level rise (3.3±0.4 mm) has nearly doubled and

2Plough marks made by icebergs keels as they pass over sea beds.
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represents almost 30% of the total rise (Nicholls and Cazenave, 2010).

Icebergs in the world’s oceans

Southern Ocean
The major source of icebergs from the Southern Ocean are the ice shelves that make up to 44%

of the Antarctic coastline (Barnes and Lien, 1988). Icebergs from Antarctica are often relatively

big tabular icebergs (see Figure 1) with a surface area of several tens of squared kilometres and

several hundred meters thick.

They represent about 2000 Gt of glacial ice released each year in the Southern Ocean. It is

about four times bigger than the fresh water flux due to basal melting beneath the ice shelves

(Jacobs et al., 1992; Jansen et al., 2007). Hence, icebergs may influence the ocean circulation

by affecting deep water formation. During their melting, they stabilize the weakly stratified

water column. Fresh waters released from deep iceberg bases enhance heat transfer and up-

well nutrient-rich waters from below the pycnocline to the surface (Jenkins, 1999; Lichey and

Hellmer, 2001). In the late seventies, the potential freshwater source from Antarctic icebergs

interested scientists, engineers and entrepreneurs. Two international conferences3 were held to

investigate the feasibility of transporting Antarctic icebergs towards arid regions such as Aus-

tralia, California or Saudi Arabia. This controversial idea did not materialize but fortunately

initiated iceberg modeling studies.

Antarctic icebergs also have a non-negligible impact on waves. A wave forecast model needs

to include iceberg distributions to limit the errors in the Southern Ocean. Indeed, Ardhuin et al.

(2010) show that iceberg distribution, after wind and sea ice, is an essential component for

wave forecast.

Icebergs drifting northward are hazardous for ships off the Cape Horn. They may also be a

threat for research and tourist ships operating in Antarctic waters. Their implication in the

Southern Ocean circulation and the danger that they represent motivated the development of

detection techniques that aim to become systematic.

Antarctic iceberg observations are available through ship or aircraft reconnaissance, GPS buoys

(Schodlok et al., 2006) and satellite observations. The National Ice Center (NIC; Washington

D.C., USA) systematically tracks icebergs longer than 18.5 km. More recently, Silva and Bigg

(2005) presented a method to identify and track icebergs that are only 200 m long using the

Synthetic Aperture Radar (SAR). Finally, (Tournadre et al., 2008) demonstrated the capability

of radar altimetry to detect icebergs less than 1 km in size. The recent launch of Cryosat 2 by

the European Space Agency is expected to strengthen this latter approach.

North Atlantic and Arctic oceans
Icebergs are common in Arctic waters, along the Baffin Bay, the Labrador Coast, and on the

Grand Banks of Newfoundland. Icebergs found in the North Atlantic mainly originate from

the western and eastern Greenland glaciers. Icebergs found in the “central” Arctic such as in

the Beaufort Sea come from Arctic ice shelves. The biggest Arctic ice shelves are located on

3Iceberg Utilization for Fresh Water Production, Weather Modification and Other Application, 1977; Confer-

ence on use of icebergs, 1980.

3



Ellesmere Island. Finally icebergs found on the eurasian side of the Arctic come from glaciers

located on islands surrounding the Barents Sea. Their initial size varies from growler size (see

Table 1) to icebergs 1 km long and over 200 m high. Ice islands can be found in the Beaufort

Sea Gyre. Note that on 5 August 2010, a huge ice island, with an area of 270 km2, detached

from Petermann floating ice shelf, north east of Greenland. It is the biggest calving event in the

Arctic in nearly 50 years. The Greenland ice sheet is the most important source of icebergs in

the northern hemisphere. Its estimated iceberg calving rate is about 200-400 Gt per year (Reeh,

1994; Bigg, Grant R., 1999; Rignot and Kanagaratnam, 2006).

Icebergs near the Atlantic shipping lanes are of greatest concern. International cooperative ac-

tions for safety started after the RMS TITANIC collided with an iceberg south of the Grand

Banks on 15 April 1912, causing the death of more than 1500 people. Since then, the Interna-

tional Ice Patrol (IIP, http://www.uscg-iip.org/cms/) was established. Each year, the IIP

reports the position of icebergs and estimates their probable courses. Today, satellite images

from RADARSAT-2, reconnaissance flights and ships, and an iceberg forecast model are used

to define the southern limit of the iceberg area and to track individual icebergs over the Grand

Banks. The iceberg forecast model (Kubat et al., 2005) is developed by the Canadian Ice Ser-

vice (CIS).

Another area where human activities are expected to increase is the Barents Sea. As this is the

focus area of the thesis, its case is presented in more details in the next section.

Scope of the thesis

In recent years, the high north and in particular the Barents Sea has become an important

strategic area for Norway. Its policy is intended to protect the environment, assure safety and

promote the developments of sustainable exploitation and management of ocean resources,

such as the oil and gas industry and fisheries. One of the world’s largest natural gas fields,

Shtokman Gaz Condensate Field (SGCF), lies south east of the Barents Sea (Figure 2). Pipeline

gas production might start in 2016 and will intensify ship traffic. The potential collision with

an iceberg represents the highest risk for floating platforms and ground installations, not to

mention the additional difficulties associated with the cold environment, such as the presence

of sea ice and intense ice frost. For these reasons, there is a need for an adequate iceberg

monitoring and forecasting system for the region.

The Barents Sea

Barents Sea icebergs evolve in a region with irregular topography and complicated ocean, sea

ice and wind conditions that are challenging to forecast. In the following, an overview of the

local iceberg characteristics precedes a description of the climatic context on seasonal and in-

terannual time scales.

The main source of icebergs in the Barents Sea is the Svalbard Archipelago and especially the

Austfonna ice cap (Dowdeswell et al., 2008). The Franz Josef Land glaciers and in partic-

ular the Renown Glacier on Wilczek Land (Kubyshkin et al., 2006) are among the secondary

sources. A smaller contribution of icebergs migrates from glaciers of the northern tip of Novaya

Zemlya (Figure 2). Observational campaigns under the Ice Data Acquisition Program (Spring,
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Figure 2: Locations of the different sources of icebergs (filled blue circles) and the main ocean

currents. Light and dark blue contour lines are the isobaths at 100 and 200 m respectively.

The location of the Shtockman Gaz Condensate Field is identified with the red symbol and

abbreviation.

1994, IDAP) from 1988 to 1993 reported that their average and maximum size above the sea

surface was: 91 m length× 64 m width× 15 m height and 320 m× 279 m× 40 m, respectively.

Although a great proportion are grounded or melt close to their calving area, icebergs were

found as far south as 67.2◦N during the summer of 1929 (Abramov and Tunik, 1996) and more

recently close to the SGCF, south east of the Barents Sea in May 2003 (Zubakin et al., 2004).

The Barents Sea is a shallow shelf sea, with connections to the Norwegian Sea to the west and

the Kara Sea to the east. It is only 230 m deep on average, with deeper trenches up to ∼500 m

deep and shallow banks of ∼100 m deep (Figure 2). Shallow areas such as the Great Bank and

Central Bank influence the current patterns. Water mass modification and dense water forma-

tion occurs also in shallow areas. For instance, dense water formation by cooling and freezing

is most effective on the shelves, Storfjorden and Novaya Zemlya bank (Vinje and Kvambekk,

1991).

The ocean currents distribution is dominated by the presence of Atlantic Water (AW) and the

Polar Water (PW). Their junction defines the location of the Barents Sea Polar Front: the dom-

inant large scale feature of the central Barents Sea. The warm and saline AW, coming from the

Norwegian Sea, splits into several branches while crossing the western boundary of the Barents

Sea. One branch continues northward entering the Arctic Ocean west of Svalbard as the West

Spitsbergen Current while another branch enters the Barents Sea as the North Cape Current
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(Figure 2). The North Cape Current continues eastward or north-eastward while bifurcating

into smaller branches. The position of the Polar Front is closely tied to the topography on the

southern flank of Svalbard Bank and the width of the North Cape Current (Johannessen and

Foster, 1978; Ingvaldsen, 2005). The latter is strongly modified by cooling, mixing and freez-

ing during winter before entering the Arctic Ocean. In addition to its seasonal variability, its

interannual variability is pronounced (Ingvaldsen et al., 2004; Furevik, 2001). The Persey and

the East Spitsbergen Currents transport cold PW from Arctic origin southward into the Barents

Sea (Pfirman et al., 1994). Tides in that region are among the strongest tides of the entire Arctic

Ocean (Kowalik and Proshutinsky, 1993), and play an important role by contributing to the non

uniform transformation of water masses. Maximum tidal amplitudes occur close to Spitsberg-

banken, Bear Island, Hopen Island and in the White Sea (Kowalik and Proshutinsky, 1995).

Meteorological conditions of the Barents Sea are dominated by cyclones formed in the North

Atlantic, which transport heat and moisture from lower latitudes towards the Barents Sea. In

winter, close to the polar front, polar lows form with typical wind speeds reaching storm force

in a short time. East Siberian Cyclones generate favorable conditions for strong northerly wind

anomalies in the Kara and Barents Sea region (Sorteberg and Kvingedal, 2006). In summer the

pressure gradients are weaker and the wind direction is more variable.

A large part of sea ice in the Barents Sea is formed locally, generally starting in Septem-

ber/October. It is affected by the salinity of the sea water, topography, wind, currents, sea state

conditions, air temperature and the heat flux. The most active places of sea ice formation are

on the shelves such as Storfjorden, southeast of Spitsbergen, Novaya Zemlya bank and Franz

Josef Land. The annual cycle of the sea ice extent is characterized by a minimum in September

and a maximum in April with large interannual variability (Sorteberg and Kvingedal, 2006).

Objectives
The main objective of this thesis is to implement and validate an advanced iceberg drift model

for the Barents Sea and use the system to determine characteristics of iceberg distribution on

seasonal and interannual time scales. The specific objectives are to:

• Implement an iceberg-sea ice-ocean nested model for the the Barents Sea.

• Analyze and characterize the limitations of the system

• Provide a simulated climatology of iceberg characteristics in the Barents Sea to comple-

ment and extend sparse observations from oceanographic fields campaigns, ice recon-

naissance flights and satellite observations in the region.

• Find mechanisms controlling the seasonal and interannual variability of iceberg extension

and particularly the extreme southernmost extension.

• Improve the predictive skills of the model system by using an advanced data assimilation

method in a step towards an operational iceberg drift model for the region.

Methods
Several modeling studies hindcast the drift of icebergs using forcing fields derived from ob-

servations (Smith and Banke, 1983; Kubat et al., 2005). Observations of ocean currents and
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iceberg characteristics in the Barents Sea are largely insufficient to represent their complex

dynamics. The lack of data motivated for the set-up of a coupled ice-ocean model to force

the iceberg drift model. An ensemble is used to simulate the non-linear properties of iceberg

trajectories.

Iceberg model

The dynamics of the iceberg module implemented in this thesis are based on the iceberg drift

model introduced by Smith and Banke (1983) and further developed by Lichey and Hellmer

(2001).

Dynamics

The iceberg acceleration is proportional to the forces from the atmosphere (FAT), the water drag

(FW), the Coriolis force (FC), the force due to the sea surface slope (FSS) and the force due to

interaction with the sea ice cover (FSI):

M
du
dt
= FAT + FW + FC + FSS + FSI, (1)

where M is the iceberg mass and u is the iceberg velocity. The atmospheric force is

FAT =

[
1

2
(ρacaAva) + (ρacdaAha)

]
|va − u|(va − u). (2)

The oceanic force FW is defined by the same quadratic drag law as FAT for each ocean model

layer through the depth of the iceberg,

FW =

n∑
k=1

[
1

2
(ρwcwAvw(k))|vw(k) − u|(vw(k) − u)

]
+ (ρwcdwAhw(n))|vw(n) − u|(vw(n) − u). (3)

In Equations 2 and 3, va(resp. vw(k)) is the air (resp. oceanic) velocity. The index k is the

ocean layer number and n is the number of ocean layers in contact with the iceberg. The term

Ava (resp. Avw(k)) is the vertical cross section area in the air (resp. water). The air and water

densities are ρa and ρw respectively, ca and cw are the form drag coefficients, cda and cdw are the

skin drag coefficients set to 0.0022 and 0.0055 respectively, the same values as used in the sea

ice model. Aha (resp. Ahw(n)) is the horizontal area of the iceberg in contact with the air (resp.

ocean layer n). The wind is assumed to be constant with height above sea level. However, the

ocean currents vary with depth as given by the ocean model. Note that the form drag coefficients

ca and cw are commonly introduced in the drag forces to account for errors in the estimated area

of the vertical plane in contact with the ocean currents and the atmosphere. In addition those

parameters include errors in the forcing and the parameterizations. Here, the acceleration of

water entrained in the turbulent wake of the iceberg is assumed to be only depending on the

mass and is therefore included through an adjustment of the form drags. The effect of wind

waves is also included implicitly in the atmospheric forcing through an adjustment of the air

form drag coefficient (Paper I & II).

The third force acting on the iceberg is the Coriolis force,

FC = 2MΩ(sin φ)k × u, (4)
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where Ω is the angular velocity of the Earth, φ is the latitude, k is the unit vector perpendicular

to the Earth’s surface and u the iceberg velocity. The force due to the sea surface slope is,

FS S = −Mg sinα, (5)

where g is the acceleration due to the gravity and α the tilt of the sea surface slope estimated

from the modeled sea surface height. The force due to interaction with sea ice depends non-

linearly on the sea ice concentration f , the sea ice strength P, a threshold Ps above which the

iceberg moves entirely with the sea ice, and the relative velocity of the iceberg with the sea ice:

FSI =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if f ≤ 15%,

−(FAT + FW + FC + FSS) + dvsi

dt if f ≥ 90% and P ≥ Ps,
1
2
(ρsicsiAsi)|vsi − u|(vsi − u) otherwise,

(6)

where csi is the sea ice coefficient of resistance set to one, Asi is the product of ice thickness by

the iceberg width. The sea ice strength P is a measure of the resistance of sea ice. It is defined

by the standard formulation from Hibler (1979),

P = P∗h exp(−C(1 − f )), (7)

where h is the sea ice thickness. The empirical constants P∗ and C are set to 20000 N m−2 and

20. This formulation makes the ice strength strongly dependent on the sea ice concentration,

while also allowing the ice to strengthen as the thickness h increases.

Boundary conditions and stability criterion

When an iceberg hits the bottom, it remains stationary until it has either melted sufficiently to

drift off or it is transported toward a deeper region by forces stronger than the frictional force.

Based on experimental studies defining friction coefficients of a large ice block on a sand or

gravel beach from Barker and Timco (2003), we used a static friction coefficient of 0.5 for

grounded icebergs. When an iceberg is in a transition mode, moving from a deep region to a

region shallower than its immersed part, we used a friction coefficient of 0.35.

The icebergs are allowed to roll over, following the Weeks and Mellor (1978) stability criterion.

Note that an iceberg is removed if any of its dimensions above the sea surface are less than 1 m.

Melting parameterizations

Among the mechanisms involved in the deterioration of icebergs, we consider only the most

important ones: wave erosion, which is the primary source of melting (White et al. (1980) and

Bigg et al. (1997)), lateral melting, and basal melting.

Wave erosion Vwave parameterization is taken from Gladstone and Bigg (2001), who incorpo-

rated a dependency on the sea-surface temperature (SST) and the sea-ice concentration (m/day):

Vwave = [
1

6
(Tw(1) + 2)]S s[

1

2
(1 + cos( f 3π))], (8)

where Tw(1) is the SST, f is the sea-ice concentration, and S s is the sea state derived from the

wind speed. Thus, the wave erosion is damped in presence of sea ice.
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Lateral melting Vlateral is based on the parameterization of Kubat et al. (2007) over the iceberg

draft. The empirical estimate of lateral melt rate (m/day) is:

Vlateral =

n∑
k=1

[
7.62 × 10−3(ΔT (k)) + 1.29 × 10−3(ΔT (k))2

]
, (9)

where ΔT (k) is the difference between the sea-water temperature and the freezing-point tem-

perature at the kth layer interface. The iceberg draft crosses the layers 1 to n of the ocean

model. The estimation of the basal turbulent melting rate Vbasal (in m/day) follows Weeks and

Campbell (1973):

Vbasal = 0.58|vw(n) − u|0.8 × Tw(n) − T (n)

L0.2
(10)

where vw(n) is the water velocity at the iceberg base and u, the iceberg velocity. L is the iceberg

length, and T (n) is the iceberg basal temperature. Similar to what it is done for sea-ice model

basal-melting parameterizations, T (n) is the local freezing-point temperature at the iceberg base

and Tw(n) is the local water temperature at the iceberg base.

Note that thermodynamics are considered only in in Paper II and Paper III.

Wind forcing

The iceberg-ice-ocean system is forced by wind fields from the 40-year European Centre for

Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) data (Uppala et al., 2005)

for Paper I and Paper II with 1.125◦ grid cell resolution. For Paper III, the atmospheric parame-

ters were taken from ERA-Interim, given on a 0.5◦ grid-cell resolution (Simmons et al., 2007).

Ocean and sea ice forcing

During the Global Ocean Data Assimilation Experiment (Dombrowsky et al., 2009, GODAE),

ocean and sea ice forecasts over the North Atlantic and the Arctic Ocean were produced by the

TOPAZ system (Bertino and Lisæter, 2008). Hence, the approach used here was to set-up a

nested configuration of the Nansen/Mohn Sverdrup Center version of the Hybrid Coordinate

Ocean Model (Bleck, 2002, HYCOM), where TOPAZ gives boundary conditions to a high res-

olution model (Barents model) covering the Barents and Kara Seas. The sea ice dynamics are

based on the elastic-viscous-plastic rheology from Hunke and Dukowicz (1997). Thermody-

namic fluxes over open water, ice-covered water and snow-covered ice are given in Drange and

Simonsen (1996).

HYCOM has been tested on coastal and shelf ocean areas and found to reproduce the currents,

salinities and temperatures well (Winther and Evensen, 2006). The Barents model has a 5 km

horizontal grid cell resolution, 22 vertical hybrid layers and includes tides. The local Rossby

radius of deformation is about 3 km (Løyning, 2001). As the model resolution is not sufficient

to resolve mesoscale activity in the region, residual currents are underestimated. Nevertheless,

the model has encouraging skills as shown in the KARBIAC project with a similar version

(Bertino et al., 2007). For each study, the ocean sea ice model is forced by the same wind

forcing as the iceberg model.
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Validation data

For calibration and validation of iceberg drift, we used a dataset deployed during IDAP experi-

ment (Spring, 1994). Icebergs from which information on their initial size was missing as well

as those grounded during most of their recorded drift were excluded. Finally, we focused on

data from 1990 where the time-averaged influence of the atmosphere and the ocean currents

seemed to be the strongest, and thus most appropriate for model parameterization.

Data assimilation method

The data assimilation method used in this thesis is the Ensemble Kalman Filter (Evensen, 2009,

EnKF). It is based on a Monte Carlo technique where error statistics are calculated from an

ensemble of model states. It provides a spatial and temporal varying error covariance matrix

which evolves according to model dynamics. It also allows for multivariate updates, and thus

for the estimation of non-observed model parameters.

Summaries of papers

Paper I: Parameterization of an iceberg drift model in the Barents Sea

Paper I addresses the problem of parameter estimation to limit the errors in an ice-ocean-iceberg

drift model for the Barents Sea. The system is forced by the ERA40 atmospheric reanalysis

data from ECMWF and ocean and sea ice variables are from a nested configuration of HYCOM

described in the previous section. The parameterization is tested and validated using four ob-

served iceberg trajectories northwest of the Barents Sea from April to July 1990 (Spring, 1994).

The model accuracy relies mainly on the quality of its forcing and the knowledge of the initial

iceberg form and mass.

In the first part of the study, a measure of the sensitivity of the model to uncertainties in the

mass of the iceberg and the forcing is given by jointly varying the iceberg mass and the form

drag coefficients. As the iceberg mass increases, the optimal form drag coefficients increase

linearly. A balance between the drag forces and the Coriolis force explains this behavior. It

suggest that an optimal trajectory can be obtained by perturbing only the ocean and atmospheric

form drags. The ratio between the optimal oceanic and atmospheric form drag coefficients is

similar in all experiments, although there are large uncertainties on the iceberg geometries and

errors in the forcing.

The second part of the study focuses on the impact of sea ice parameterization for the iceberg

drift. Following Lichey and Hellmer (2001), there is a threshold value for the sea ice concen-

tration and the sea ice strength from which the iceberg is moving entirely with the sea ice. We

perturbed the threshold value of the sea ice strength, but the sea ice conditions East of Svalbard

in winter 1990 were such that they exhibit no sensitivity.

Using optimal parameter values, the average distance from observation is: less than 20 km after

two months of drift for the northernmost icebergs and less than 25 km after the first month and

increasing rapidly to over 70 km thereafter for the two southernmost icebergs.

10



ERRATUM on Paper I publication

The Equation 6 presents a typographic error. The atmospheric force is written as FA while it

should be FAT.

The estimated iceberg masses are 10 times bigger than the values specified in the Table 1.

Paper II: Modeling dynamics and thermodynamics of icebergs in the Bar-
ents Sea from 1987 to 2005

A modeling study of iceberg drift characteristics in the Barents and Kara Seas based on a 19-

year simulation is presented. In addition to the dynamics presented in Paper I, the effects of

wave erosion, basal melting and lateral melting are included. An additional frictional term is

also introduced in order to better simulate iceberg grounding, and the iceberg is allowed to roll

over if it becomes unstable. Based on the estimates of iceberg production given by Dowdeswell

et al. (2002), Hagen et al. (2003), Kubyshkin et al. (2006) and Dowdeswell et al. (2008), we

define 11 calving sites representing the iceberg production per region. Initial iceberg sizes are

generated randomly with a log-normal distribution following statistics on iceberg length width

and height obtained during the 1988-1993 IDAP campaign (Spring, 1994). Seasonal variabil-

ity of the calving rate is neglected despite indications of increased release from June through

September (Kubyshkin et al., 2006), allowing an independent evaluation of the seasonal influ-

ence of the ocean currents, wind and sea ice on the iceberg characteristics and drift. Every day,

icebergs are released according to a Poisson process, guarantying the independence of each

calving event and a control on the average rate. The simulation starts in July 1985 and ends in

December 2005. The first 1.5 years of the simulation are not used to allow sufficient time for

the model to spin up.

Satistics of iceberg characteristics as a function of their origin are investigated. Maps of iceberg

density and grounding locations complement sparse existing oceanographic and aerial field

survey campaigns. Model results compare qualitatively well to the observations (Abramov and

Tunik, 1996) and suggest preferential pathways and extensions from simulated calving sources.

For example, icebergs originating from Franz Josef Land have the largest spread over the do-

main.

Moreover the simulations show a seasonal cycle of the southernmost extent of the icebergs,

even though the seasonality of the calving was not considered. Icebergs released in summer

have the largest spreading. Hence, we suspect that introducing seasonal variability in the calv-

ing rate would intensify this latter pattern.

The interannual variability of the iceberg spread is analysed jointly with the iceberg extent. The

latter shows a strong interannual variability. It is found that atmospheric forcing drives the ex-

tension of iceberg similarly to the sea ice extent (Sorteberg and Kvingedal, 2006). Anomalous

northerly winds enhance the southward iceberg extension. They also produce a positive but

delayed impact on the iceberg extent by limiting the inflow of Atlantic Water into the Barents

Sea therefore reducing the heat content the following year and increasing the mean age of ice-

bergs and thus their potential extension. This demonstrates that the thermodynamics also play

an important role.

Finally, confidence in the system is reinforced as the model reproduces the observed extreme

iceberg extension event, southeast of the Barents Sea in May 2003.
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Paper III: Adaptive estimation of iceberg parameters using the Ensemble
Kalman Filter

Paper I showed the ability of the model to reproduce iceberg drifts successfully, using optimal

form drag coefficients. However, the model error grows in time due to inherent errors in the

forcing, initial conditions and model parameterization. In this paper, we attempt to limit the

error growth by correcting the icebergs position once per day using data assimilation. Such

problem is non linear and requires advanced statistical methods.

In addition we intend to improve on the limitations regarding the estimate of the form drag co-

efficients in Paper I. First, the optimal values were estimated by minimizing the distance over

the whole trajectory, although these parameters are expected to evolve with time due to the

change in the shape of the iceberg. Second, the method employed was a classical Monte-Carlo

approach with a regular sampling of initial parameters, which is computationally costly. The

Ensemble Kalman Filter is an efficient data assimilation method based on Monte-Carlo that

allows for multivariate update. Thus, the method corrects the position and gives the possibility

to estimate non-observed parameters at a given time.

The system is composed of the iceberg drift model used in Paper II but the atmospheric forc-

ing is updated to ERA-interim, the latest reanalysis product from ECMWF with 0.5◦ resolu-

tion. Observed trajectories of four icebergs from 1990, registered during the IDAP campaign

(Spring, 1994), were assimilated in the model. The two northernmost simulated trajectories

have a precision of 15 km and the two southernmost ones have a precision better than 25 km

over the two months of drift. An analysis of the estimated form drag coefficients allows us to

identify whether the shape was correct and when the forcing fields were failing.

Conclusions
This thesis has shown that a coupled ocean-sea ice-iceberg drift model system is able to describe

physical processes, icebergs characteristics and trajectories in the Barents Sea. Its limitations

were emphasized and the following conclusions are obtained:

• The proposed nested configuration has reasonably good prediction skills through the op-

timization of the iceberg mass and the ocean and atmospheric form drag coefficients. The

best members reproduce observed iceberg trajectories for at least one month of drift with

a precision better than 25 km.

• A 19 years simulation of iceberg trajectories in the Barents Sea complement and extend

iceberg information from satellites and oceanographic and aerial field campaigns. Po-

tential grounding location and preferential pathways from each of the principal calving

sources are suggested.

• There is a seasonal variation of iceberg density in the Barents Sea, although the calving

rate was set to be constant throughout the year.

• The interannual variability of the iceberg extent is strong and highly correlated with the

sea ice area. This variability can be explained by two main mechanisms:

12



– Northerly winds are the principal factor enhancing iceberg extent: higher than nor-

mal atmospheric mean sea level pressure over Svalbard region favors large iceberg

extent.

– Northerly winds also have a positive but delayed impact on the iceberg extent that

shows the importance of the thermodynamics. They limit the inflow of Atlantic Wa-

ter into the Barents Sea and therefore reduces the heat content during the following

year, increasing the mean age of icebergs and thus their potential extension.

• The model is able to reproduce the extreme southernmost coverage of icebergs south east

of the Barents Sea observed in May 2003.

• Part of the model errors can be compensated for by using the Ensemble Kalman Filter

towards a pre-operational system for the region. It is shown that data assimilation clearly

improves the prediction and has the advantage to give an estimation unknown model

parameters.

• From the latter, we can also deduct information on the error in the iceberg mass and the

forcing fields.

Outlook
The primary results have shown encouraging skills for the prediction of iceberg drift in the

Barents Sea. The Barents Sea model is part of the operational TOPAZ system. The latter has

undergone a significant upgrade in 2010, especially in the sea ice model formulation and in

the data assimilation setup. It led to improvements both in the North Atlantic and in the high

resolution Fram Strait model. In particular, the sea ice front is better described, and the heat

balance is better represented. One can expect a better prediction in the Barents Sea model with

a similar upgrade. Hence, those improvements are expected to be significant, especially for the

thermodynamic part of the iceberg model.

In addition the latest version of the HYCOM model performs approximately twice as fast as the

former one. It implies that running the model configuration with double resolution (∼2.5 km,

i.e. eddy permitting) can be achieved at a four times the computational cost of the current model

version. This model upgrade would impact the iceberg dynamics. Running an eddy resolving

model operationally (∼ 750 m horizontal grid cell resolution) is today still out of reach for such

a large domain.

Forecasting capabilities can be improved by including data assimilation in the ocean model.

EnKF is advised for assimilation of sea ice concentration (Lisæter et al., 2003), but too costly

to be applied in a regional model. Nevertheless, sea surface temperature could be assimilated

using Ensemble Optimal Interpolation, a method that has yielded good results in regional mod-

els (Evensen, 2003), and is computationally less expensive.

The effect of waves can be important on icebergs. In the current model implementation, the

wave drag is included implicitly through the atmospheric drag force. The Barents Sea is a small

and relatively closed basin. It is unclear how important swells are compared to the wind sea.

Nevertheless, separating wave drag from atmospheric form drag may give more precision in

the sources of errors and would help to give a more precise parameterization. Some icebergs

are large enough to feel ocean swell since the swell wavelength is on the order of the iceberg
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lateral dimensions (∼100-300 m). It is a point to consider in future studies, which would in-

volve wave input from a wave model. With realistic wave information, the wave erosion could

include calving process as suggested by Kubat et al. (2007).

Despite the model improvement, the forcing fields are not perfect. An approach to complement

information from the forcing fields is to perturb them randomly. Such a perturbation would

account for errors in the wind and ocean current direction as well as intensity. It would be

easier to relate the evolution of the form drag parameters to the change in the iceberg shape.

A more advanced but computationally more costly approach is to use forcing from an ensemble

run: for example, ensemble runs from the TOPAZ and ECMWF systems into a high resolution

Ensemble Barents Sea system. The TOPAZ system provides a 10 days forecast of ocean and

sea ice parameters using ECMWF 10 days forecast of atmospheric fields for the North Atlantic

and Arctic Ocean. Hence, based on the approach described in Paper III, it is possible to provide

a forecasting system of iceberg trajectory 10 days ahead.

Figure 3: Iceberg north of Kangerlussuaq fjord. Håkon Mosby cruise, September 2007.
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