
Diagram Predicate Framework

A Formal Approach to MDE

ADRIAN RUTLE

Diagram Predicate Framework

A Formal Approach to MDE

ADRIAN RUTLE

Dissertation for the degree of philosophiae doctor (PhD)
at the University of Bergen

September, 2010

ISBN 978-82-308-1650-9
University of Bergen, Norway, 2010-09-02 (print version 2010-12-10).
All text, illustrations and photos © 2010 Adrian Rutle.
Printed by AIT.

Prepared with LATEX and set in times with program code in txtt.

To my parents
and

to Liva

Scientific Environment

The research presented in this dissertation has been conducted at the Department
of Computer Engineering, Bergen University College, in cooperation with the

Programming Theory Group of the Department of Informatics at the University of
Bergen.

vi

Contents

Preface ix

1 Introduction to MDE 3
1.1 Introduction . 3
1.2 Concepts in MDE . 4
1.3 Diagrammatic Modelling . 5
1.4 Metamodelling . 7
1.5 Constraints . 12
1.6 Model Transformation . 15
1.7 Model Management . 22

2 Introduction to Diagrammatic Modelling 25
2.1 Introduction . 25
2.2 Diagrammatic Modelling by Graphs 26
2.3 From Graphs to Diagrammatic Specifications 28

3 Diagrammatic Modelling in DPF 31
3.1 Introduction . 31
3.2 Signatures . 31

3.2.1 Semantics of Predicates 32
3.3 Diagrammatic Specifications . 35

3.3.1 Syntax of Specifications 35
3.3.2 Semantics of Specifications 37

3.4 Relations between Specifications 41
3.4.1 Translation of Typed Graphs 41
3.4.2 Specification Morphisms 42
3.4.3 Specification Entailment 44

4 Metamodelling in DPF 47
4.1 Introduction . 47
4.2 Conformance Relation . 48
4.3 Modelling Formalisms . 52

4.3.1 Object-Oriented Modelling Formalism 55
Hierarchical Relations 56

vii

CONTENTS

Containment Relation 58
4.3.2 Relational Modelling Formalism 62

4.4 Universal Constraints . 64
4.4.1 Universal Constraints for Object-Oriented Modelling For-

malism . 66
4.4.2 Universal Constraints for Relational Modelling Formalism 66
4.4.3 Specification Entailment as Universal Constraint 67

5 Constraint-Aware Model Transformation 71
5.1 Introduction . 71
5.2 Relating Modelling Formalisms 73
5.3 Joined Modelling Formalism . 80
5.4 Constraint-Aware Transformation Rules 82
5.5 Application of Model Transformation 89

6 Version Control in MDE 97
6.1 Introduction . 97
6.2 A Copy-Modify-Merge Scenario in MDE 98
6.3 Calculation and Representation of Differences 99
6.4 Merging . 103

7 Discussion 109
7.1 Related Work . 109

7.1.1 (Meta)modelling . 109
7.1.2 Model Transformation 111
7.1.3 Version Control of Models 116

7.2 Further Work . 118
7.2.1 Tool Support . 119

7.3 Conclusion . 120

A Appendix 123
A.1 Pullback and Pushout . 123

A.1.1 Pullback . 123
A.1.2 Pushout . 124

A.2 More Transformation Cases . 126

References 129

viii

Preface

Finally! I have looked forward to this moment for more than six months. A PhD
student who kindly gave me the LATEX sources, styles, etc for her thesis, wrote
something about PhD dissertations not being read by so many people, and ex-
pressed her frustration about that, since the amount of time spent in writing a docu-
ment like this deserves some readers. I could not agree more, therefore, I keep this
modified version of her preface – and frustration – here.

The past four years of my life have gone to write down the content of this
document. Many late nights (and late mornings) and several weekends had to be
devoted to make this document as perfect as it is. I should admit that these years
have also been very rewarding, interesting and fun. So if you have received a nice,
printed copy of this thesis and you are actually going to read it, I hope you will
enjoy it and find it interesting. Otherwise, I hope you appreciate it, and that it will
look good on your bookshelf.

Bergen, 2010-08-31

ACKNOWLEDGEMENTS

It was impossible to write this first sentence without mentioning the names Uwe
Wolter and Yngve Lamo, my supervisors who have dedicated years of their life to
support me in this journey. They deserve much of the credit for this PhD disserta-
tion. They have been available in weekdays and weekends, and supported me when
we got papers accepted and when we got papers rejected, and when I drove right,
wrong, right, left, or straight forward (to Keflavik). I thank them for being excellent
mentors, and for all the nice memories, all the good knowledge they have taught
me, as well as all the interesting discussions we have had – even though some of
them were (mis?)understood as fighting by other people at the HIB canteen.

Who else to thank if not Alessandro Rossini. Although sometimes I think his
formalisation of everything has traumatised me, I am in deep gratitude for all the
support I have got from him. He has been a brilliant colleague, an excellent friend
and a perfect travel companion. He has taught me things which I could never learn
from anyone else.

Thanks to my family for showing patience, support and understanding during
this period, my parents, my sister, my brothers, Kari and Kristoffer.

ix

PREFACE

I spent most of my spare time with my dearest friends Christer, Thorbjørn, Kent
Inge, Dag Viggo and Jana. Thanks to Christer and Thorbjørn for all the wonderful
weekends and all the less wonderful Brann matches we have experienced together.
Thanks to Dag Viggo and Kent Inge for all the good concerts, the long discussions
about music, and the important things they have taught me, especially about Trap-
pist beers. Thanks to Jana for patiently and faithfully waiting for me all this time,
despite everything else I had to do to finish this dissertation.

I also thank the rock climbing group and the alpine group for many wonder-
ful days together at the climbing walls, and the skiing slopes, especially, Camilla
Hosfeld Diesen, who introduced me to rock climbing. Also, Henning Klafstad and
Harald Moen, for good advices and late night discussions, also Marianne Math-
iesen, Anette Olene Fristad, Liv Kjelleberg, Annicka Langeland, Karin Berg and
Siv (princess) Birgitta Systad for being at the other end of the rope.

Many thanks to all others who have been involved in this project, Zinovy Diskin
for good conversations and suggestions on the research direction, Gabriele Taentzer
for teaching me graph transformations, Florian Mantz for, yes, many interesting
discussions and good friendship both when I was abroad and now, the Master stu-
dents Ørjan Hatland, Stian Skjerveggen, Øyvind Bech and Dag Viggo Lokøen. And
all others who have reviewed this thesis and given comments.

Special thanks also to colleagues with whom I have shared office and my lunch
breaks, Yi Wang, Hege Erdal, Piotr Kazmiercak and Sami Taktak.

I have been so lucky to be part of two Universities and two research groups,
I have got the best from both sides, both when it comes to good colleagues, and
when it comes to travel money. I would like to thank the Department of Computer
Engineering at Bergen University College, and Department of Informatics at the
University of Bergen for supporting me during my PhD period. Special thanks also
to the DISTECH project members, especially Thomas Ågotnes and Lars Michael
Kristensen. Thanks to Terje Kristensen, for always being a good listener and an
excellent adviser. Thanks also to Ida Holen, for being very helpful and always
making the bureaucratic matters easy for me, and Dag Hovland, for several “quiet”
lunch breaks at the HIB canteen. At last but not the least, thanks to Anya Helene
Bagge for giving me this beautiful LATEX style, and for her inspiration in writing
this preface and acknowledgement.

Thanks, finally, to my opponents Gabriele Taentzer and Øystein Haugen, for all
the time they have spent reviewing this work – it is much appreciated; and to Marc
Bezem for leading the committee. Thanks to those who reviewed my papers and
this thesis, especially Barbara Joan Blair for excellent feedback on my language. I
am also thankful to all the anonymous reviewers who pointed out flaws, possible
improvements and suggested new directions in my work. This also goes for the
feedback on the conference paper presentations.

x

xi

PREFACE

xii

ABSTRACT

Model-driven engineering (MDE) is a software engineering discipline which
promotes models as first-class entities. It represents a shift of paradigm in soft-
ware development, from being code-centric to become model-centric. MDE
is an attempt to organise modelling, metamodelling and model transformation
in a well-structured engineering methodology. This thesis is all about formali-
sation of MDE-concepts in a diagrammatic specification formalism which we
call Diagram Predicate Framework (DPF). DPF provides a formal diagram-
matic approach to (meta)modelling and model transformation based on cate-
gory theory. It is a generic graph-based specification framework that tends to
adapt first-order logic and categorical logic to software engineering needs.

This thesis is based on a sequence of publications and it is the intended
purpose of this thesis to consolidate the present state of development regarding
DPF. Some of the foundation for DPF was already under construction before
this work was initiated. The main contributions of this thesis are:

• An introduction to formal diagrammatic modelling and diagrammatic
constraints

• A comparison of some of the state-of-the-art modelling languages, tech-
niques and frameworks to DPF

• A neat, diagrammatic formalisation of the metamodelling hierarchy as
proposed by the Object Management Group

• A formal approach to model transformations and to constraint-awareness
in model transformation

• A formalisation of the fundamental concepts and processes of version
control in the context of MDE

This thesis is organised as follows. The first chapter is dedicated to in-
troduce MDE, its technological basis and challenges, and to motivate the for-
malisation approach presented in this thesis. This introduction is meant as a
guide for newcomers to MDE, especially for theoreticians. The main part of
the thesis details DPF and its formal background. This part is more theoret-
ically oriented, and is meant to elucidate the formal foundation of the DPF
framework for software engineers. More precisely, DPF is presented as a for-
mal approach to (meta)modelling, model transformation and version control.
The last chapter is dedicated to a discussion of related work, further work and
concluding remarks.

The content of this thesis is neither purely theoretical nor purely practical;
rather it seeks to bridge the gap between these worlds. It provides a formal ap-
proach to diagrammatic modelling, model transformation and version control
motivated and illustrated by practical examples. We introduce only the the-
oretical elements which are necessary to investigate, formalise, and to solve
the practical problems. More precisely, we explicitly define the formal con-
cepts and constructions needed in order to understand the thesis, such as graph,
graph homomorphism, categories, pullback and pushout.

1

CHAPTER 1
Introduction to Model-Driven

Engineering

In this chapter model-driven engineering (MDE) will be introduced along with a
discussion regarding some of its main concepts, techniques and standards. In ad-
dition, an outline of challenges related to the state-of-the-art of MDE will be pre-
sented.

1.1 Introduction

Since the beginning of computer science, developing high-quality software at low
cost has been a continuous vision. This has boosted several shifts of programming
paradigms, e.g. machine code to assembler programming and imperative to object-
oriented programming. In every shift of paradigm, raising the abstraction level of EVOLUTION OF

PROGRAMMINGprogramming languages and technologies has proved to be beneficial to increase
productivity. One of the latest steps in this direction has led to the usage of models
and modelling languages in software development processes.

Initially, models were adopted in software development processes for sketching
the architectural design or documenting an existing implementation. In contrast,
the latest trend in software engineering regards models as first-class entities of the
development process. These models are used to automatically generate (parts of) MODEL-DRIVEN

ENGINEERINGsoftware systems by means of model-to-model and model-to-code transformations.
This trend has led to a branch of software engineering which promotes modelling as
the main activity of software development and pursues the shift of paradigm from
code-centric to model-centric. In the literature, this branch is referred to as model-
driven engineering (MDE), model-driven development (MDD) and model-driven
software development (MDSD). In this thesis, we use the term MDE.

The advantages of MDE are many. MDE enhances productivity and quality
by automating repetitive, error-prone and time-consuming tasks. Moreover, MDE

3

1. INTRODUCTION TO MDE

improves communication by exploiting abstraction and domain-specificity which
can target different audiences. In addition, it facilitates the separation of business
logic from application technologies. Computing infrastructures are continuouslyADVANTAGES OF

MDES expanding in every dimension in response to business needs and technological de-
velopment. By adopting MDE, business logic and application technologies can
evolve independently of each other and organisations are able to integrate existing
systems with those being built in the future [93].

The reference industrial implementation of MDE is the model-driven architec-
ture (MDA), which was initiated by the Object Management Group (OMG) [84]
late in 2000 [47; 68; 85; 93]. The basic ideas of MDA are closely related [17] toMDA
generative programming, software factories [53], domain-specific modelling lan-
guages [73], etc. MDA is based on multiple standards, including the Unified Mod-
eling Language (UML) [91], the Meta-Object Facility (MOF) [87] and XML Meta-
data Interchange (XMI) [89].

1.2 Concepts in MDE

In this section, central concepts in MDE will be introduced and explained, starting
with the very concept of model.

The word model has different meanings in different contexts. In the CambridgeMEANING OF
MODEL Dictionaries Online [25], one of the definitions of the word model is “a represen-

tation of something, either as a physical object which is usually smaller than the
real object, or as a simple description of the object which might be used in calcula-
tions”. This definition corresponds to the way models are used in most engineering
disciplines. In software engineering, a model is an abstraction in the sense that
it may not represent all aspects and properties of the real system [17; 102], but
only those which are relevant in the given context. Models are used to tackle the
complexity of software by enabling developers to reason about and to deal with a
software system at a higher level of abstraction.

In contrast, in formal specifications such as formal logic and universal algebra,
a system is represented by a specification, i.e. a set of logical formulae. A modelMODELS IN

FORMAL
SPECIFICATIONS

of such a specification consists of a mathematical structure that satisfies these for-
mulae. Thus, formal specifications correspond to models in terms of software mod-
elling. Examples of formal specification techniques are the Z notation [7; 64; 129],
the Vienna Development Method’s Specification Language (VDM-SL) [62; 65] and
the Abstract Machine Notation (AMN) of the B-Method [61; 116]. In this thesis,
we interpret the word model from the software engineering perspective.

In software engineering, models are often diagrammatic. The word diagram
has also different meanings in different contexts. In Dictionary.com [9], one ofDIAGRAMS
the definitions of the word diagram is “a drawing or plan that outlines and ex-
plains the parts, operation, etc., of something”; e.g. chart diagrams and cake
diagrams. In software engineering, the same word denotes structures which are
based on graphs, i.e. a collection of nodes together with a collection of arrows
between nodes. Graphs are a well-known, well-understood and frequently used

4

1.3. Diagrammatic Modelling

�
�

�
�Model

describes
��

prescribes

���
�

�
	Original

represented by����

������

Figure 1.1: A model may describe or prescribe an original

means to represent structural or behavioural properties of a software system [41];
e.g. Entity-Relationship (ER) diagrams [27]. In contrast, in mathematics a diagram
has a precise meaning as it denotes a graph homomorphism from a shape graph
into a graph [45]. In this thesis, we interpret the word diagram from the software
engineering perspective.

Since graph-based structures are often visualised in a natural way, visual and di-
agrammatic modelling are often treated as synonyms. In this thesis, we distinguish VISUAL VS

DIAGRAMMATICclearly between visualisation and diagrammatic syntax and focus on precise syntax
(and semantics) of diagrammatic models independent of their visualisation. By vi-
sualisation we mean rendering a model perceptible and intuitive for humans, while
by diagrammatic modelling we mean techniques targeting graph-based structures.
Although it is feasible to visualise graph-based structures, it may be a challenging
task, and sometimes even impossible, to find appropriate and intuitive visualisa-
tions for all aspects of diagrammatic models.

A general categorisation of models is whether they describe or prescribe orig-
inals, or both. A descriptive model is used to describe an existing original, e.g. a DESCRIPTIVE VS

PRESCRIPTIVEmap of a real city with streets, buildings, etc. On the contrary, a prescriptive model
captures aspects of an original which is to be built, e.g. a blueprint of a building.
In software engineering, models may be both prescriptive and descriptive: models
are used to represent relevant aspects of a real system, and later on used to drive the
implementation of the real system based on these models.

There are also a variety of names used for modelled artefacts, such as real
system, original, subject under study (SUS), etc. [17; 18; 50; 59; 91; 111]. In ORIGINALS
this thesis, we use the term original to denote everything that might be subject to
modelling.

1.3 Diagrammatic Modelling

Diagrammatic models have already been around in software engineering for some
decades; e.g. Flowcharts (Seventies) for the description of behavioural properties of
software systems; Petrinets (Eighties) for the representation of discrete distributed
systems; ER diagrams (Eighties) for the conceptual representation of data struc-
tures, UML diagrams (Nineties) for the representation of structural and behavioural

5

1. INTRODUCTION TO MDE

Table 1.1: Advantages of diagrammatic modelling

Property Advantage Achieved by
Documentation
and communi-
cation

Facilitating intuitiveness Visual models

Abstraction Independence of the implementa-
tion platform

Abstract models and model
transformations

Validation and
verification

Revealing errors and flaws before
the system is implemented

Formal models and model
checking

properties of software systems. Diagrammatic models have become popular be-DIAGRAMMATIC
MODELLING cause they facilitate the conception of (aspects of) a software system at a high level

of abstraction while programming languages do not. Some of the advantages of
diagrammatic modelling are summarised in Table 1.1.

Another factor which has helped in popularisation of diagrammatic modelling
is the conceptual two-dimensionality of the modelled universes; e.g. nodes andCONCEPTUAL

TWO-
DIMENSIONALITY

edges, Classes and Associations, Entities and Relations, States and Transitions,
Objects and Links, etc [38]. Each of these conceptual models may be represented
by graphs or graph-based structures.

Several modelling languages have emerged in the last years as attempts to facil-
itate MDE. In the state-of-the-art of MDE, models are often specified by means of
the UML. UML consists of a set of languages which are used to describe or specifyUML
various aspects of software systems; such as system structure in class diagrams,
system behaviour in activity and use-case diagrams, etc. The next example illus-
trates usage of UML class diagrams to specify the structure of a software system.
Example 1 (A UML Class Diagram) Assume that we want to specify an infor-
mation system for the management of employees and departments in which the
following set of requirements are satisfied at any state of the system:

1. An employee must work for at least one department.

2. A department may have zero or many employees.
Fig. 1.2 shows a UML class diagram which expresses the requirements above.

Note that a UML class diagram consists primarily of a graph with nodes represent-
ing classes (or concepts) and edges representing associations (or relations) between
classes. ♦

The model in Example 1 may be used as documentation or as communica-
tion basis between developers and stakeholders. However, in the context of MDE,

Figure 1.2: A UML class diagram for management of employees and departments

6

1.4. Metamodelling

Figure 1.3: A UML object diagram for the software system in Fig 1.2

models are also used as starting points for driving the implementation of software
systems. One of the main goals of MDE is to automate this step. As a consequence,
the semantics of each model element needs to be agreed upon and defined formally.
One approach is to define the semantics of a model as the set of its instances; i.e. INSTANCE
by all structures that satisfy the requirements specified by the model. In UML,
instances of a model are represented by informal snapshots (illustrations) of the
running system which the model specifies. The UML models used to define these
snapshots are called UML object diagrams.
Example 2 (A UML Object Diagram) Recall Example 1. If we assume that a
Java program is developed based on the UML class diagram, then the snapshots
will represent the Java objects in memory. Fig. 1.3 shows a UML object diagram
which represents some runtime Java objects and their relations. Note that a UML
object diagram consists primarily of a graph with nodes representing objects and
edges representing links between objects. ♦

1.4 Metamodelling

We may define the term metamodelling as “the act and science of engineering meta-
models” [50]. However, the precise definition of metamodel is abundantly debated METAMODEL
in the literature (see [10; 17; 50; 59; 71; 72; 111] for a comprehensive discussion).
Conceptually, the prefix meta- suggests that modelling has occurred twice, which is
reflected in the definition “[a metamodel is] a model of models” [85]. Technically, a
metamodel specifies the abstract syntax of a modelling language. The abstract syn-
tax defines the set of modelling concepts, their attributes and their relationships, as
well as the rules for combining these concepts to specify valid models [91]. That
is, models which are specified by a modelling language should conform to the cor-
responding metamodel of the language. This means that a metamodel restricts the
set of its instances in the same way a model restricts its instances, which is reflected
in the definition “a model is an instance of a metamodel” [91].

Recall that in Example 1 we stated that UML class diagrams consist primarily
of classes and associations between classes. The specification of these types, i.e.
classes and associations, is done in the metamodel of UML class diagrams. More-
over, the metamodel defines rules for how to combine classses and associations in

7

1. INTRODUCTION TO MDE

Figure 1.4: A simplified metamodel for UML class diagram

order to define (syntactically) correct class diagrams. The next example illustrates
this.
Example 3 (A Simplified Metamodel for UML Class Diagrams) Fig. 1.4a shows
a simplified metamodel for UML class diagrams. Some dashed, gray arrows are
used to indicate the relation between the UML class diagram and the metamodel.

♦

Metamodels, in turn, are specified by means of metamodelling languages. Meta-
models which are specified by a metamodelling language are regarded as models
which conform to the corresponding metamodel of the language. A metamodellingMETAMODELLING

LANGUAGES language is just a modelling language that is used for specifying models which,
in turn, serve as the corresponding metamodels of other modelling languages (see
Fig. 1.5). Following this line of reasoning, it is possible to identify a generic pat-
tern which leads to a (meta)modelling hierarchy in which models at each level are

. . .

�

�

Modelling
language

�
�

�
�Model

metamodel of

corresp.��

conforms to

��

�

�

Modelling
language

�
�

�
�Model

metamodel of

corresp.��

conforms to

��

specified by

����������������

. . .
�
�

�
�Model

metamodel of

corresp.��

conforms to

��

specified by
���������������

Figure 1.5: Generic pattern: modelling languages and (meta)models

8

1.4. Metamodelling

M3

�

�

Metamodelling
language

�
�

�
�Meta-metamodel

metamodel of

corresp.��

conforms to
��

specified by
		

M2

�

�

Modelling
Language

�
�

�
�Metamodel

metamodel of

corresp.��

conforms to

��

specified by

������������������

M1
�
�

�
�Model

conforms to

��

specified by

���������������

M0
�
�

�
	Original

represented by

��

Figure 1.6: OMG’s 4-layered hierarchy illustrating (meta)modelling languages and
their corresponding metamodels

specified by a modelling language at the level above and conform to the corre-
sponding metamodel of the language. Hence, a model at a certain level conforms
to a metamodel at the level above and acts as a metamodel for models at the level
below. Hypothetically, this pattern may continue ad infinitum. In practice, meta-
modelling hierarchies stop usually with a reflexive modelling language, which is a
modelling language able to define its own metamodel. Besides this, any hierarchy
will eventually reach a fixed-point.

In MDE, models are often specified by means of UML. The metamodel of UML
is in turn specified by means of the MOF, which is a metamodelling and metadata
repository standard developed by the OMG. According to the OMG’s vision of OMG’

4-LAYERED
HIERARCHY

MDE, models, modelling languages and metamodelling languages are organised in
four levels M0 − M3 in the so-called OMG’s 4-layered hierarchy [18; 91]. The
characterisation of each level of the OMG’s 4-layered hierarchy and the relations
between them has been abundantly debated in the literature (see [10; 17; 18; 50; 59;
71; 72; 111] for a comprehensive discussion). A complete treatment of this topic is
beyond the scope of this thesis. The most agreed-upon interpretation of the OMG’s
4-layered hierarchy is summarised as follows (see Fig. 1.6 and 1.7): TERMINOLOGY

• Level M0 contains originals, e.g. the person “Adrian Rutle” in the real world

• Level M1 contains models, e.g. a UML class diagram and a snapshot (illus-
tration) of its instances

• Level M2 contains metamodels, e.g. the UML metamodel

• Level M3 contains the meta-metamodel MOF

9

1. INTRODUCTION TO MDE

M3
�
�

�
�MOF

conforms to
��

M2
�
�

�
�UML

conforms to

��

M1

�

�

�

�

UML class
diagram

Employee

conforms to

����������� �

�

�

�

UML object
diagram

Adrian Rutle

conforms to

�����������

M0
�
�

�
�“Adrian Rutle”

represented by
��

Figure 1.7: OMG’s 4-layered hierarchy by examples

• An original at level M0 is represented by a model at level M1

• A model at level M1 conforms to a metamodel at level M2

• A metamodel at level M2 conforms to the meta-metamodel MOF at level M3

• MOF conforms to itself
In OMG’s 4-layered hierarchy, UML object diagrams and UML class diagrams

are located at the same level M1 although UML object diagrams can be regarded
as models which conform to UML class diagrams. At the same time, since UML
object diagrams are at level M1, they are regarded as models which conform to the
UML metamodel (see Fig. 1.7). These two flavours of conformance, i.e. betweenLINGUISTIC AND

ONTOLOGICAL adjacent levels and within one level, are referred to as linguistic and ontological
conformance, respectively [10; 71; 72] (see Fig. 1.8). In this thesis, we follow
the same levelling pattern as in Fig. 1.5; i.e. models at each level conform to a
model at the level above. Hence we will use two different levels for a model and its
instances [71; 86].

One of the main challenges related to the OMG’s metamodelling hierarchy is
that a formalisation of the relation between modelling languages and metamodels,
as well as a formalisation of the conformance between models and metamodels, is
not included in the OMG standards. This is despite the fact that many researchers
in the field claim that unless a complete formalisation of these relations is given,
the potentials of MDE may not be fully unfolded (see [14; 17; 21; 34; 96; 106]
for further references). In this thesis, we formally define and distinguish betweenTYPED BY VS

CONFORMS TO two levels of conformance relations: typed by and conforms to; where “conforms

10

1.4. Metamodelling

M2 Class Instance-
Specification

type

instance

M1 Employee

linguistic

��

Adrian Rutle

linguistic
��

ontological��

Figure 1.8: Linguistic and ontological conformance; adopted from [71]

�
�

�
	

EMF-Model
Editor

�
�

�
�Metamodel

metamodel of

corresp.��

instance of
��

specified by
		

�
�

�
�Instance Editor

�
�

�
�Model

metamodel of

corresp.��

instance of

��

specified by

��������������

�
�

�
�Instance

instance of

��

specified by

															

Figure 1.9: EMF’s hierarchy

to” is a stronger relation and includes “typed by”. These relations will be used
between models at any two adjacent levels. Details of these relations are given in
Section 4.2.

Being an industrial standard, MOF is used as a basis for several other tech-
nologies and frameworks, such as the Eclipse Modeling Framework (EMF) [39], EMF
initially developed by IBM and currently maintained as part of the Eclipse project.
EMF models are used to specify structural data models and by default the frame-
work may be used to generate Java code for the system which the model speci-
fies. There is a one-to-one correspondence between the metamodel of EMF, called
Ecore, and a subset of MOF, called Essential MOF (EMOF). Ecore is basically MOF-BASED

MODELLING
LANGUAGES

the same as EMOF. Henceforth the term MOF-based modelling languages will be
used to denote UML, EMF and other languages and frameworks which are based
on MOF.

According to EMF, the metamodelling hierarchy is organised in a 3-layered
hierarchy (see Fig. 1.9). From top to bottom, these layers are called metamodel,
model and instance. In contrast to OMG’s hierarchy, the instance level in EMF EMF’S

METAMODELLING
HIERARCHY

is clearly distinguished from the model level. Being inspired by object-oriented
modelling, especially Java, the relations between models in the hierarchy are called
instance of.

11

1. INTRODUCTION TO MDE

1.5 Constraints

MOF-based modelling languages allow the specification of simple constraints such
as multiplicity and uniqueness constraints, hereafter called structural constraints.
These constraints are usually specified by properties of classes in the correspond-
ing metamodel of the modelling language. For instance, the requirement “An em-
ployee must work for at least one department” in the UML model from Example 1
was forced by a multiplicity constraint which uses the properties lower and upper of
the class Property of the UML metamodel (see Fig. 1.10a). Instances of the UML
model should satisfy this multiplicity constraint. However, these structural con-
straints may not be sufficient to specify complex system requirements. Hence, tex-
tual constraint languages such as the Object Constraint Language (OCL) [88] are
usually used to define complex constraints, hereafter called attached constraints.
Example 4 illustrates this.
Example 4 (Revisiting the UML Class Diagram) Building on Example 1, we re-
fine the requirements to illustrate the usage of constraint languages to express con-
straints which are not expressible by UML itself. In Fig. 1.2, we showed a UML
class diagram of an information system for the management of employees and de-
partments. Now in addition to the requirements in Example 1, we also require the
following:

3. A project may involve zero or many employees.

4. A project must be controlled by at least one department.

5. An employee involved in a project must work in the controlling department.
The requirements 3 and 4 are specified by means of UML syntax itself. How-

ever, forcing the fifth requirement can only be achieved by using an attached OCL
constraint (see Fig. 1.10b), for example:

context Project
inv rule5: self.department.employees->
includesAll(self.employees)

♦

Remark 1 A completely diagrammatic representation of the model in Fig. 1.2 is
described in the Sections 2.2 and 3.3.

We may classify constraints in MOF-based modelling languages based on two
factors: their origin, i.e. where they come from; and their effect, i.e. what they
constrain. Considering the origin, constraints may come from the modelling lan-CONSTRAINT

CLASSIFICATION guage itself, i.e. structural constraints; or from additional constraint languages, e.g.
attached OCL constraints. Structural constraints include also typing constraints
defined by the metamodel of the modelling language. These are constraints re-
stricting which types of elements the models can contain and how these elements
can be related to each other, e.g. according to the simplified metamodel of UML

12

1.5. Constraints

Figure 1.10: Constraints in MOF-based modelling languages: (a) structural con-
straints in UML (b) attached OCL constraint

. . .

affect

.

affect
�����

���
���

���
��

. . .

�
�

�
	SCn+1

added to ��

origin��������

����

affect
����

���
���

���
��

�
�

�
	Mn+1

�
�

�
	ACn+1

attached to��

origin

��

affect
�����

���
���

���
�

�

�

Constraint
Language

�
�

�
�SCn

added to ��

origin��������

����

affect

�
�

�
�Mn

�
�

�
�ACn

attached to��

origin�����

�����

affect
�����

���
���

���
�

�

�

Constraint
Language

. . .

origin���������

����

.

origin

��

Figure 1.11: Constraints in metamodelling

13

1. INTRODUCTION TO MDE

presented in Fig. 1.10a, we may have classes, associations and properties in a UML
class diagram. Considering the effect, we have constraints which should be satis-
fied by models defined by the modelling language; and constraints which should
be satisfied by instances of these models. Thus, for a modelling language with its
metamodel at level Mn+1 we may identify these three kinds of constraints (see
Fig. 1.11).

• SCn: Structural constraints which are added to models at level Mn. The
origin of these constraints is the modelling language which has its corre-
sponding metamodel at level Mn+1. The effect of these constraints is that
they should be satisfied by models at level Mn−1.

• ACn: Attached constraints which are added to models at level Mn. The
origins of these constraints are external languages such as OCL. The effect
of these constraints is that they should be satisfied by models at level Mn−1.

• SCn+1, ACn+1: Structural and attached constraints which are added to mod-
els at level Mn+1. The origin of these constraints is either the modelling lan-
guage which has its corresponding metamodel at level Mn+2, or an external
language such as OCL. The effect of these constraints is that they should be
satisfied by models at level Mn.

Mixing MOF-based modelling languages with OCL is just a special case of
a general pattern where diagrammatic modelling languages use textual languages
to define constraints that are difficult to express by their own syntax and seman-
tics. While this solution is to some extent accepted among software developers,
we propose in this thesis a completely diagrammatic approach for specifying and
reasoning about structural models for the following reasons:

Firstly, the fact that OCL constraints are term-based expressions while models
specified by means of MOF-based modelling languages are graph-based structures
makes automatic reasoning about these models challenging. As an example, con-
sider the UML class diagram in Fig 4: checking the state of the system against the
model will involve two steps: firstly, checking the structure and some of the con-
straints in UML; secondly, checking the rest of the constraints by an OCL engine.
Moreover, any modification in the structure of the UML class diagram must be re-
flected in the OCL constraints, which are related to the modified structure. This
requires the definition of automatic synchronisation of OCL constraints for arbi-
trary model modifications. However, the identification of classes of modifications,
for which an automatic synchronisation of OCL constraints is possible, requires
complex machinery to be implemented by tool vendors and may not be possible at
all [79].
Example 5 (Constraint Synchronisation Challenge) Building on Example 4, we
refine the requirements to illustrate how a modification of the UML class diagram
will affect the attached OCL constraint. We modify the fourth requirement from
Example 4 to the following:

4a. A group must belong to exactly one department.

4b. A project must be assigned to at least one group.

14

1.6. Model Transformation

Figure 1.12: Adding the class Group to the UML class diagram will lead to a broken
path in the attached OCL constraint

Modifying the UML class diagram by adding the class Group will lead to a bro-
ken path in the attached OCL constraint. Fig. 1.12 shows the updated version of
the UML class diagram from Fig. 1.10. ♦

Secondly, in order to obey the “everything is a model” vision of MDE [17], it is
desirable to have both structure and constraints in the same diagrammatic, model-
centric format. This enables models to serve their purpose “to tackle the complexity
of software by enabling developers to reason about and deal with a real system at
a higher level of abstraction” [102]. Recall again the model in Example 4. Since
some of the semantics of the model is hidden in the OCL code, the model develop-
ment process may become complex and error-prone in the long run. In particular,
domain experts may have difficulties in understanding the OCL code – something
which may force the developers to use the list of requirements in a natural language
instead of the OCL rules and in turn may lead to misunderstandings [22].

One of the main goals of this thesis is to propose a fully diagrammatic formali-
sation of OMG’s metamodelling hierarchy. This formalisation gave rise to the de-
velopment of the Diagram Predicate Framework (DPF). Among the main features
of DPF is the integration of structural and attached constraints in diagrammatic
specifications. These constraints are defined by means of predicates which belong
to a predefined signature. In this way, constraints are defined diagrammatically,
and treated uniformly. While the framework is explained in detail in the remain-
der of this thesis, Fig. 1.13 gives an informal overview on how specifications and
signatures are related to the OMG-world.

1.6 Model Transformation

Model transformation is one of the key techniques in MDE which is used to auto-
mate several model-related activities such as code generation, refactoring, optimi-

15

1. INTRODUCTION TO MDE

Figure 1.13: Constraints in MOF-based modelling languages and DPF: (a) struc-
tural constraints in UML (b) attached OCL constraint (c) integration of constraints
in diagrammatic specifications

sation, language translation etc. [112]. Model transformations have many applica-
tions in MDE. Some of these applications are listed here:APPLICATIONS

• Implementation: generation of code from models.

• Refinement: enrichment of software models with details.

• Refactoring: changing software’s structure without changing behaviour.

• Translation: translation of software from one language to another.

• Adaptation: changing software to conform to new specifications.

• Evolution: describing relations between different versions of the same model.

• Migration: changing software from one programming language or one frame-
work to another.

• Integration: integration of two or more software models into one.
A general definition of model transformation is given in [68] and further gen-

eralised in [81] as follows: A transformation is the automatic generation of targetCONCEPTS
models from source models, according to a transformation definition. A transfor-
mation definition is a set of transformation rules that together describe how a model
in the source language can be transformed into a model in the target language. A
transformation rule is a description of how one or more constructs in the source
language can be transformed into one or more constructs in the target language.

Model transformations are carried out automatically by tools in transformation
processes. Each transformation process is described by a transformation definition,
which in turn is written in a transformation definition language; hereafter referred

16

1.6. Model Transformation

�
�

�
	

Transformation
definition

source

�� ���
���

���
�

���
���

���
�

target

��

Transformation
engine

��

�
�

�
	

Source
metamodel

�
�

�
	

Target
metamodel

Mn+1

�
�

�
	

Model
transformation

source

�� ���
���

���
��

���
���

���
�� target

���
���

���
���

�

���
���

���
��

�
�

�
�Source model

conforms to

��

�
�

�
	Target model

conforms to

��

Mn

Figure 1.14: Model transformation overview

to only as transformation languages. The tool which is used for the execution of
model transformations is called a transformation engine.

Given a metamodelling hierarchy, model transformations are defined at a cer-
tain level and executed at the level below. Thus for transforming models at level
Mn, the transformation rules are defined at level Mn+1 (see Fig. 1.14). Hence,
while writing a transformation definition, the transformation definition language
needs to know about the types of the model elements which are to be transformed.
The next example illustrates this.
Example 6 (Sample Transformation of UML Class Diagram to EMF) Fig. 1.15
shows a simplified transformation definition which describes the transformation of
UML class diagrams to EMF models. The transformation definition contains a rule
which transforms each Class to an EClass and a rule which transforms each (bi-
nary) Association to a pair of EReferences which are opposite of each other
(expressed by the eOpposite relation between EReferences). The model el-
ements mentioned in the rules, such as Class and EClass, exist in the UML
and Ecore metamodels, respectively. Given a source UML class diagram (bottom
left of Fig. 1.15), the transformation engine will search for all model elements of
type Class and create a corresponding model element of type EClass in the
target model. More precisely, the model element Department which is typed
by Class in the source model is transformed to a model element Department
which is typed by EClass in the target model. The same will be done for the
second rule. ♦

Several classifications of model transformations are given in [31; 81]. A first
classification is based on whether the transformation is used to transform between CLASSIFICATION

17

1. INTRODUCTION TO MDE

Figure 1.15: Transformation of a UML class diagram to an EMF model

models specified by one modelling language, called homogeneous transformation,
or between models specified by different modelling languages, called heteroge-
neous transformation. A second classification is based on whether the target model
is created from scratch, called out-place, or the source model is modified in order to
obtain the target model, called in-place. The former class of transformations is suit-
able for model refactoring and optimisation [19; 78], while the latter is suitable for
model translation and migration. A third classification is based on the underlying
technique which is used to carry out the transformations, e.g. logic programming,
functional programming, graph transformation, etc. A fourth classification is based
on which properties of the models are preserved by the model transformation; e.g.
the structure, behaviour or semantics of the model.

These classifications are orthogonal to each other, e.g. both homogeneous and
heterogeneous model transformations may be carried out in-place or out-place, by
using logic programming or graph transformation, etc.

Mechanisms used for model transformations may be either declarative such
as functional programming, logic programming and graph transformation; or im-
perative/operational such as QVT Operational Mappings. Among the features ofDECLARATIVE VS

IMPERATIVE
APPROACHES

declarative approaches one can mention the following. Firstly, they are theoret-
ically good and well-founded. Secondly, they support bidirectionality. Thirdly,
they are compact and maintainable since they hide procedural information. Finally,
they enjoy a simpler semantic model since order of execution, traversal of source
models, as well as generation of target models are implicit. However, operational
approaches may increase efficiency through incrementally updating models. More-
over, they facilitate control over the order of execution by providing sequences,
selections and iterations.

As examples of model transformation approaches we may mention relational,
graph-transformation-based and hybrid approaches [31]. The relational approach
is a declarative approach in which the main concepts are mathematical relations

18

1.6. Model Transformation

and mapping rules based on set-theory. Relations between element types from RELATIONAL
APPROACHthe source and target models are stated in mathematical relations, which are spec-

ified by constraints. This approach has the advantage of a good balance between
declarative expressiveness, flexibility (rule scheduling) and simplicity [31]. Among
proposals which follow this approach are [2; 26; 90; 120].

The graph-transformation-based approach is also a declarative approach in-
spired by the theoretical work on graph transformations between typed, directed
graphs [41]. In this approach, the models to be transformed are graphs. Graph GRAPH

TRANSFORMATION
APPROACH

transformation rules define patterns in the source graph that will be transformed to
patterns in the target graph. This approach is powerful, declarative, visual, formal
and allow for composition; though it has some problems with scalability, tool sup-
port and incompatibility of various approaches [31; 81]. Among tools which adopt
this approach are AGG, AToM3, VIATRA2, GReAT [13; 33; 124].

Hybrid approaches, where different concepts and paradigms are applied de-
pending on the application domain, seem to be more useful. In the hybrid ap-
proach, users can combine the expressive power of graph-based transformations HYBRID

APPROACHwith the flexibility of the relational approach to design their transformation defini-
tions. Among tools and proposals which follow this approach are [4; 11; 90].

In [81], the authors identify a set of quality requirements which any model
transformation tool or language must meet, such as usability, usefulness, scalabil-
ity etc. Moreover, they identify some success criteria which should be used to FEATURES OF

TRANSFORMATION
LANGUAGES

evaluate these languages and tools. Among these criteria are reuse and customisa-
tion of transformation definitions, guarantee of syntactic and semantic correctness
of transformation definitions, etc. Furthermore, in [68; 81; 93] some of the features
which transformation languages should provide are summarised as follows.

• CRUD: Create, Read, Update and Delete transformation definitions.

• Traceability: it should be possible to trace target model constructs back to
their counterpart construct(s) in the source model.

• Incremental consistency: changes in the target model, for example hand-
written code, must persist in spite of re-transformation.

• Bidirectionality: the source model can be generated from the target model by
application of the inverse of the transformation.

• Rule scheduling: transformation rules can be applied in a user-defined se-
quence.

• Guarantee of syntactic and semantic correctness: enabling users to answer
whether given a well-formed input model the output model is also well-
formed, whether the output have an expected property, etc.

• Compose and decompose transformations.

• Test, validate and verify transformations.
Design and specification of transformation definition languages is a relatively

new field in software engineering. OMG’s initial request for proposals in 2002

19

1. INTRODUCTION TO MDE

�
�

�
�Relations

RelationsToCore
Transformation

��

�

�

Operational
Mappings

extends
��

extends
������������� �

�
�
�Black Box

extends
��

extends
�����

���
���

���
�

�
�

�
�Core

Figure 1.16: QVT Overview; adopted from [90]

on Query/View/Transformation (QVT) was the first call for a standardisation of
transformation definition languages. A large number of tools (for example; AGG,
GReAT, AToM3, VIATRA, ATL, QVTP etc, see [31; 74; 81] for a comprehensive
list of tools) have been proposed in reply to the OMG’s request. However, many of
those proposals were already forced by practical needs independent of the OMG’s
request.

QVT is an OMG standard proposed for describing transformation definitions [90].
MOF 2.0 is used to define the abstract syntax of QVT, and OCL is used for query-
ing the models and implementing the transformations. QVT is composed of threeQVT
languages: Relations, Core and Operational Mappings (see Fig. 1.16). The first
two are declarative languages and the third is imperative. Relations language is at
a higher level of abstraction than the Core language. The semantics of Relations
language is described as a transformation into the Core language, a transformation
that may be defined in the Relations language itself [66]. The semantics of the
Core language is given in a semi-formal set-theoretical notation [90]. The Rela-
tions language defines transformations as a set of relations (each containing a set
of patterns) among models.

The Operational Mappings language and the Black Box implementation extend
the Relations and Core languages and are mechanisms intended to define transfor-
mations that are difficult to express in the Relations language. Traceability links
are handled automatically by the Relations and Operational Mappings languages,
while these links must be handled manually in the Core language [90]. Rules in the
Relations and Core languages are multidirectional, while they are unidirectional in
the Operational Mappings. The Black Box implementation provides a mechanism
for the execution of algorithms and for the reuse of code and libraries written in
arbitrary languages.

Recall the discussion about constraints in metamodelling in Section 1.5. When
it comes to model transformations, the way constraints are specified in MOF-based

20

1.6. Model Transformation
�
�

�
�Transformation Rule

defined over
��

?

��

applied to

 �

�
�

�
�Metamodel

�
�

�
�OCL

�
�

�
	

Structural
Constraints

added to ��

origin�������

!���

�
�

�
�Model

conforms to

��

�
�

�
	

Attached
Constraints

attached to��

origin

��

Figure 1.17: Transformation rules are defined over the metamodel of the language;
these rules are able to describe transformation of structural constraints but they are
unable to describe the transformation of attached constraints (see Fig. 1.11)

modelling languages may introduce a challenge related to their transformation. CONSTRAINTS IN
MODEL

TRANSFORMATION
While existing model transformation techniques take into account structural con-
straints, they often ignore the attached constraints [79; 95; 107]. This is because
model transformation rules are defined over elements of the metamodels corre-
sponding to the modelling languages, while attached constraints are specified by a
different language (see Fig. 1.17). The following example illustrates this.
Example 7 (Constraint Transformation Challenge) Building upon Examples 4
and 6. Suppose that we want to apply the transformation rules to the class Project
and the associations connected to it. Since the transformation rules are defined over
the metamodel elements, and since the attached OCL constraint is not provided by
these metamodels, transforming this constraint automatically will not be possible
by these rules. More precisely, the attached OCL constraint in Fig. 1.10b cannot be
transformed automatically by the transformation rules in Fig. 1.15. Moreover, it is
not possible to define a rule which transforms arbitrary OCL constraints. ♦

This challenge is closely related to the fact that the conformance relation be-
tween models and metamodels is not formally defined for MOF-based modelling
languages [34; 96], especially when OCL constraints are involved [21]. As men-
tioned, the DPF based approach to metamodelling addresses this issue by integrat-
ing structural and attached constraints in diagrammatic specifications. In order to
handle these constraints, this metamodelling approach is supplemented by a for-
mal approach to constraint-aware model transformation detailed in Chapter 5. This
approach can be regarded as a further development or extension of graph transfor-
mation systems in the sense that it can be used to transform the structure of models
as well as attached constraints. Thus it offers more sophisticated means to describe,
control and execute model transformations.

21

1. INTRODUCTION TO MDE

1.7 Model Management

As mentioned, models are the first-class artefacts of the software development pro-
cess in MDE. These models are typically developed by distributed environments
consisting of teams at different organisations and locations. These teams usually
build multiple overlapping models which represent different aspects of the same
systems. In addition, these teams may work on different versions of the same mod-
els. Model management is concerned with describing the relations between these
models and providing systematic techniques to manipulate these relations as well
as the models themselves [23].

Various aspects of model management include how to identify and how to re-
fine the relationships between independently-developed models, how to combine
models with respect to relations between them, how to ensure consistency between
models originating from different sources and how to propagate changes made on
one model to other models related to it [23]. One of the techniques used to support
model management activities is version control of models. Version control is usedVERSION

CONTROL during software evolution to keep track of different versions of software artefacts
produced over time.

In general, there are two main approaches on which major version control tech-
nologies are based: lock-modify-unlock and copy-modify-merge [30]. In the lock-
modify-unlock approach, the software artefacts are stored in a repository which
allows only one developer to work on a particular artefact at a time. This approachLOCK-MODIFY-

UNLOCK is workable if the developers know who is planning to do what at any given time
and can communicate with each other quickly. However, if the development group
is too large or distributed, dealing with locking issues may become problematic.

In the copy-modify-merge approach, each developer accesses a repository and
creates a personal working copy – a snapshot of the repository’s files and directo-
ries. Then, the developers modify their working copies simultaneously and inde-COPY-MODIFY-

MERGE pendently. Finally, the local modifications are merged together into the repository.
The version control system (VCS) assists in the merging by detecting conflicting
modifications. When a conflict is detected, the system requires manual intervention
by the developers.

Traditional VCSs such as Subversion facilitate efficient concurrent develop-
ment of source code by using the copy-modify-merge approach. Unfortunately,
these VCSs focus on the management of text-based files, such as source code.
Thus, the difference calculation, merging of modifications and conflict detection
are based on a per-line textual comparison. Since the structure of models is graph-
based rather than text- or tree-based, the existing techniques are not suitable for
MDE.

Recent research has led to a number of findings in model evolution. The inter-
ested reader may consult [76] for difference calculation, [28] for difference repre-
sentation, [82] for conflict detection and [80] for a survey on software merging, to
cite a few. However, some of the proposed solutions are not formalised enough to
enable automatic reasoning about model evolution. For example, operations such as

22

1.7. Model Management

change or update are given different and ambiguous semantics in different works.
Moreover, the terminology used in these solutions is not precise, e.g. terms add,
create and insert are often used to refer to the same operations. Furthermore, the
approach to version control (e.g. copy-modify-merge) is not formalised explicitly
and concepts such as synchronisation and commit are only defined semi-formally.

To follow the success of code-based version control, the copy-modify-merge
approach should be adopted in MDE also. This would require formal techniques
which target graph-based structures. As a first step, we introduce in this thesis
a formalisation of the copy-modify-merge approach for models. This formali-
sation supplements the metamodelling and model transformation approaches of
DPF [101; 105].

23

CHAPTER 2
Introduction to Diagrammatic

Modelling

As an introduction to diagrammatic modelling, we start this part by introducing
graphs and related concepts. We shortly review how directed multi-graphs may be
used as a first approximation to represent (meta)models in OMG’s metamodelling
hierarchy. The chapter ends by a gentle introduction to the DPF based approach to
diagrammatic modelling.

2.1 Introduction

In software engineering, diagrammatic models are graph-based structures where
different kinds of graphs, e.g. simple graphs, directed graphs, directed multi-
graphs, attributed graphs, hypergraphs, bipartite graphs, etc., may be used as a basis
for these models. A graph is a mathematical structure consisting of a collection of
nodes and a collection of edges between these nodes. Graphs and graph homomor-
phisms are used to represent many concepts in the thesis. For this reason, we start
this chapter by defining some graph related concepts and the category Graph.

Definition 1 (Graph) A graph G = (G0, G1, srcG, trgG) is given by a collection
G0 of nodes, a collection G1 of arrows and two maps srcG, trgG : G1 → G0
assigning the source and target to each arrow, respectively. We write f : X → Y
to indicate that src(f) = X and trg(f) = Y .

Definition 2 (Subgraph) A graph G = (G0, G1, srcG, trgG) is subgraph of a
graph H = (H0, H1, srcH , trgH), written G � H , iff G0 ⊆ H0, G1 ⊆ H1 and
srcG(f) = srcH(f), trgG(f) = trgH(f), for all f ∈ G1.

Definition 3 (Graph Homomorphism) A graph homomorphism ϕ : G → H is
a pair of maps ϕ0 : G0 → H0, ϕ1 : G1 → H1 which preserve the sources and

25

2. INTRODUCTION TO DIAGRAMMATIC MODELLING

targets; i.e. for each arrow f : X → Y in G we have ϕ1(f) : ϕ0(X) → ϕ0(Y) in
H .

Remark 2 (Inclusion Graph Homomorphism) G � H iff the inclusion maps
inc0 : G0 ↪→ H0, inc1 : G1 ↪→ H1 define a graph homomorphism inc : G ↪→ H .

After defining graphs and graph homomorphisms, it is natural to consider all
graphs and graph homomorphisms as a whole. The most convenient concept for
this purpose is the concept of a category [15; 45].

Definition 4 (Category of Graphs) The category Graph has graphs as objects
and its morphisms are graph homomorphisms.

The composition ϕ; ψ : G → K of two graph homomorphisms ϕ : G →
H and ψ : H → K is defined component-wise ϕ; ψ = (ϕ0, ϕ1); (ψ0, ψ1) :=
(ϕ0; ψ0, ϕ1; ψ1). The identity graph homomorphisms idG : G → G are also de-
fined component-wise idG = (idG0 , idG1). This ensures that the composition of
graph homomorphisms is associative and that identity graph homomorphisms are
identities with respect to composition. By Graph0 we denote the collection of all
objects in this category; i.e. the collection of all graphs.

2.2 Diagrammatic Modelling by Graphs

In our graph-based formalisation of metamodelling, models are represented by
directed multi-graphs. Moreover, the conformance relation between models and
metamodels is represented by a typing morphism; that is, a graph homomorphism
which assigns a type, i.e. an element of the metamodel, to each element of theTYPING
model. A model is said to be typed by a metamodel if there is a typing morphism
from the model to the metamodel.

Definition 5 (Type Graph and Typing Morphism) A type graph is a distinguished
graph TG = (TG0, TG1, srcT G, trgT G). A typed graph (G, ι) which is typed by
TG is a graph G together with a graph homomorphism ι : G → TG. The homo-
morphism ι is called a typing morphism.

Definition 6 (Typed Graph Homomorphism) Given a type graph TG, a typed
graph homomorphism φ : (G, ιG) → (H, ιH) is a graph homomorphism ι : G →
H such that ιG = φ; ιH .

TG

=

G

ιG
" �������� φ #! H

ιH
$"��������

When using graphs to represent models, nodes and arrows of the graphs have
to be interpreted in a way which is appropriate for the corresponding modelling
environment [106]. For structural object-oriented models, for example, it is ap-SEMANTICS

26

2.2. Diagrammatic Modelling by Graphs

propriate to interpret nodes as sets and arrows X
f−→ Y as multi-valued functions

f : X → ℘(Y). The powerset ℘(Y) of Y is the set of all subsets of Y , i.e.
℘(Y) = {K | K ⊆ Y }. Moreover, the composition of two multi-valued functions
f : X → ℘(Y), g : Y → ℘(Z) is defined by (f ; g)(x) :=

⋃{g(y) | y ∈ f(x)}.
The reason for this choice of interpretation is that in object-oriented structural mod-
elling each object may be related to a set of other objects. On the other hand, for
relational data models it is appropriate to interpret nodes as sets and arrows as
single-valued functions. This is because each data-row in a relational table may be
related to exactly one data-row of another (or the same) table.

The semantics of nodes and arrows of a graph can be formally defined in either
indexed or fibred way [38; 128]. In the indexed version, the semantics of a graph INDEXED

SEMANTICSis given by all graph homomorphisms sem : G → U from the graph G into a
category U, e.g. Set (sets as objects and functions as morphisms) or Mult (sets as
objects and multi-valued functions as morphisms as described above).

In the fibred version, the semantics of a graph G is given by the set of its in-
stances (I, ι) where ι : I → G is a graph homomorphism. A node X in G is FIBRED

SEMANTICSinterpreted by ι as the set of ι−1(X) of nodes in I; and an arrow X
f−→ Y in G

represents a multi-valued function ι−1(f) from ι−1(X) to ℘(ι−1(Y)), where for
any nodes x and y in I we have y ∈ ι−1(f)(x) if and only if there is an arrow
g : x → y in I with ι(g) = f . f represents a total (and single-valued) function if
for each node x in I there is exactly one y and one g : x → y in I with ι(g) = f .

Software engineers prefer the fibred semantics because it reflects the confor-
mance relation between models and metamodels as described in the metamodelling
hierarchy. In contrast, mathematicians prefer the indexed semantics. Fortunately,
the switch between these two semantics is possible where the Grothendieck con-
struction, as described in [128] for graphs, transfers indexed into fibred semantics.

The following example revisits Example 4, and explains how the graph-based
formalisation of the metamodelling hierarchy works in practice. This example is
kept intentionally simple, retaining only the details which are relevant for our dis-
cussion. The requirements are relaxed compared to the original ones in Example 4;
we will treat all the requirements in Section 3.3.
Example 8 (Diagrammatic Modelling by Graphs) Let us consider an information
system for the management of employees and projects. At any state of the system
the following requirements should be satisfied:

1. An employee may work for zero or many departments.
2. A department may have zero or many employees.
3. A project may involve zero or many employees.
4. A project may be controlled by zero or many departments.
Fig. 2.1a shows a graph G3 representing a generic meta-metamodel. Fig. 2.1b

shows a graph G2 representing a metamodel for the specification of structural
object-oriented models. Fig. 2.1c shows a graph G1 representing a structural object-
oriented model specifying the requirements above. In these graphs, nodes and ar-
rows are interpreted as sets and multi-valued functions. Fig. 2.1d shows a graph G0
representing an instance of the model G1.

27

2. INTRODUCTION TO DIAGRAMMATIC MODELLING

Figure 2.1: A sample metamodelling hierarchy using the graph-based formalisation

The graph G3 is typed by itself (reflexive). That is, it satisfies the restriction
that nodes and arrows may only be of type Node and Arrow, respectively. Moreover,
the graph G2 is typed by G3. That is, it satisfies the restriction that nodes and ar-
rows may only be of type Node and Arrow, respectively, e.g. the node Class is of
type Node and the arrow Reference is of type Arrow. Furthermore, the graph G1 is
typed by G2. That is, it satisfies the restriction that nodes and arrows may only be
of type Class and Reference, respectively, e.g. the nodes Employee and Department
are of type Class and the arrows connecting them are of type Reference. Similarly,
the instance G0 is typed by G1. In Fig. 2.1, some of the typing morphisms are
denoted by gray, dashed arrows between the levels in the hierarchy. ♦

2.3 From Graphs to Diagrammatic Specifications

Although the usage of graphs for the representation of model structures is a success
story, an enhancement of the formal basis is needed to:

• Express well-formed diagrammatic constraints which go beyond the struc-
tural constraints that are formalised as graph constraints [41; 118].

28

2.3. From Graphs to Diagrammatic Specifications

• Formalise the relations between models at adjacent levels of the metamod-
elling hierarchy. This relationship is expressed by the concepts of type- and
typed graphs in graph theory [41], which does not capture the type of con-
straints mentioned above.

A natural choice for an enhancement of graph theory is category theory, and
in particular the sketch formalism, which can be used to define semantics of dia-
grams, thus of diagrammatic models. In the categorical sketch formalism, models CATEGORICAL

SKETCHESare represented as graphs, and model properties are expressed by universal proper-
ties such as; limit, colimit, and commutativity constraints [15; 45]. This approach
has the benefit of being generic and at a high level of abstraction, but it turns models
into a complex categorical structure with several auxiliary objects [38].

The proposed formalisation approach in this thesis is the Diagram Predicate
Framework (DPF) [101; 104–107], which is a generalisation and adaptation of the
categorical sketch formalism, where user-defined diagrammatic predicate signa- GENERALISED

SKETCHEStures represent the constructs of modelling languages in a more direct and adequate
way. In particular, DPF is an extension of the Generalised Sketches [77] formal-
ism originally developed by Diskin et al. in [34; 35; 37]. DPF aims to combine
mathematical rigour – which is necessary to enable automatic reasoning – with
diagrammatic modelling.

DPF is a generic graph-based specification framework that tends to adapt first-
order logic and categorical logic to software engineering needs. DPF is generic in DPF
the sense that it supports any of kind of graph structures (see [38] for the general
case). However, the variant of DPF which we employ in this thesis is based on
directed multi-graphs.

DPF provides a formal, diagrammatic approach to metamodelling, in which
models at any level are formalised as diagrammatic specifications. Each diagram-
matic specification consists of an underlying graph together with a set of dia-
grammatic constraints. Moreover, modelling languages are formalised as mod- DPF CONCEPTS
elling formalisms. Each modelling formalism consists of a corresponding meta-
specification, which specifies the types allowed by the language, and a diagram-
matic predicate signature, which collects the set of predicates used to add con-
straints to specifications specified by the modelling formalism. Furthermore, the
conformance relation between a specification at any level and a specification at the
level directly above it is formalised as a graph homomorphism between the under-
lying graphs of the specifications which satisfies the constraints that are added to
the upper level specification. In addition, the conformance relation is strengthened
by the concept of universal constraints. These constraints are connected to a cer-
tain modelling formalism and are used to express overall requirements that each
specification specified by the modelling formalism should satisfy.

29

CHAPTER 3
Diagrammatic Modelling in DPF

This chapter explains the formal foundation of DPF and its usage in the formalisa-
tion of diagrammatic modelling.

3.1 Introduction

In Example 8 of Section 2.2, the structural object-oriented model is compliant with
the initial requirements. However, in most practical cases these requirements might
not be sufficient. For instance, we may add the requirement “an employee involved
in a project must work in the controlling department”, as done in Example 4. This
additional requirement can not be forced easily by means of graphs and typing mor-
phisms alone. To cope with this, DPF provides a more sophisticated formalisation
of diagrammatic modelling.

In DPF, independent from their position in the metamodelling hierarchy, mod-
els are represented by diagrammatic specifications. A diagrammatic specification
S = (S, CS : Σ) consists of an underlying graph S together with a set of atomic
constraints CS . The graph represents the structure of the model, and predicates
from a predefined diagrammatic predicate signature Σ are used to add constraints
to this structure. With regard to the classification of constraints in Section 1.5, the
atomic constraints added to a specification at level n of a metamodelling hierarchy
may represent both structural constraints, SCn, and additional constraints, ACn. In
the sequel, the concepts of signatures, constraints and specifications are explained.

3.2 Signatures

A signature in DPF consists of a collection of diagrammatic predicates. During
modelling in DPF, these predicates are used to add constraints on the underlying
structure of specifications. Each predicate has a name, a shape, a visualisation (if

31

3. DIAGRAMMATIC MODELLING IN DPF

possible) and a semantic interpretation. Which kind of predicates are included in a
signature, and which semantics these predicates have, are dependent on the mod-
elling environment in which the signature is used. For example, a signature used
for constraining relational database models will contain primary key and foreign
key predicates.

Definition 7 (Signature) A (diagrammatic predicate) signature Σ = (P Σ , αΣ)
consists of a collection of predicate symbols P Σ with a map αΣ that assigns a
graph to each predicate symbol p ∈ P Σ . αΣ(p) is called the arity of the predicate
symbol p.

Table 3.1 shows a sample signature Σ2 = (P Σ2 , αΣ2)1. The first column of the
table shows the names of the predicates. The second and the third columns show the
arities of predicates and a possible visualisation of the corresponding constraints,
respectively. In the fourth column, the semantic interpretation of each predicate is
specified. For readability reasons, the semantic interpretation is presented in a set-
theoretical indexed manner where arrows are interpreted as multi-valued functions.
The predicates in Table 3.1 are generalisations, or general patterns, for constraints
that are used in structural object-oriented modelling; e.g. [mult,(m,n)] for
multiplicity constraints in UML class diagrams.

Remark 3 (Predicate Names) Some of the predicate names in Σ2 in Table 3.1
refer to unique predicates, e.g. [surjective], while some others refer to a
family of predicates, e.g. [mult(n,m)] and [jointly-surjective_2].
In the case of [mult(n,m)], the predicate is parameterised by the integers n
and m, which represent the lower and upper bounds, respectively, of the car-
dinality of the function which is constrained by this predicate. In the case of
[jointly-surjective_2], the integer 2 serves as a parameter which de-
fines the number of arrows in the arity of the predicate.

3.2.1 SEMANTICS OF PREDICATES

In DPF, semantics of predicates is defined in a fibred manner. That is, the semantics
of a predicate p is given by the set of its instances ι : O → α(p) where each ι is a
graph homomorphism into the arity of the predicate.

There are different ways to define semantics of predicates.
• In Table 3.1, we have used the mathematical language of set theory to define

the semantic interpretation of predicates.

• In categorical sketches [15], where the signature is restricted to limit, colimit
and commutativity predicates, the semantics of these predicates is mathe-
matically “pre-defined” for any category according to the universal nature of
these special predicates.

1We use the subscript 2 for this signature since later it will be used at level M2 of the metamodelling
hierarchy

32

3.2. Signatures

Table 3.1: A sample signature Σ2

p αΣ2(p) Proposed vis. Semantic Interpretation

[mult(n,m)] 1
f #! 2 X

f
[n..m]

#! Y ∀x ∈ X : m ≤ |f(x)| ≤
n, with 0 ≤ m ≤ n and
n ≥ 1

[irreflexive] 1 f%#
X

f
[irr] ��

∀x ∈ X : x � f(x)

[injective] 1
f #! 2 X

f
[inj]

#! Y ∀x, x′ ∈ X : f(x) = f(x′)
implies x = x′

[non-
overlapping]

1
f #! 2 X

f
[nov]

#! Y ∀x, x′ ∈ X : f(x) ∩
f(x′) � ∅ implies x = x′

[surjective] 1
f #! 2 X

f
[surj]

#! Y f(X) = Y

[jointly-
surjective_2]

1
f #! 2

3

g

�� X
f #! Y

Z

g

��
[js]

f(X) ∪ g(Z) = Y

[inverse] 1
f

�$
2

g

�� X

f
��

Y
g

��[inv] ∀x ∈ X , ∀y ∈ Y : y ∈
f(x) iff x ∈ g(y)

[composition] 1
f #!

h &%�
��

��
��

2
g

��
3

X
f #!

h
[comp] &%�

��
��

��
Y

g
��

Z

∀x ∈ X : h(x) =⋃{g(y) | y ∈ f(x)}

[image-
inclusion]

1
f

��

g

�� 2 X

f

g
��[�]

'&
Y ∀x ∈ X : f(x) ⊆ g(x)

33

3. DIAGRAMMATIC MODELLING IN DPF

• In modelling tools, one can rely on a less descriptive but more algorithmic
way to define the semantics of predicates, e.g. by implementing a validator
for each predicate.

However, in order to analyse and formalise diagrammatic modelling, it is not
necessary to decide for one of the above mentioned possibilities; it is sufficient to
know that any of these possibilities defines “valid instances of predicates”.

Definition 8 (Semantics of Predicates) A semantic interpretation [[..]]Σ of a sig-
nature Σ = (P Σ , αΣ) is given by a mapping that assigns to each p ∈ P Σ a set
[[p]]Σ of graph homomorphisms ι : O → αΣ(p) called valid instances of p, where
O may vary over all graphs. We assume that [[p]]Σ is closed under isomorphisms.

For a predicate p, we will write [[p]] instead of [[p]]Σ if the signature Σ is obvious
from the context.
Example 9 (Semantics of Predicates) We consider the predicates [surjective],

[injective] and [nonoverlapping] all with arity 1
f #! 2 from Ta-

ble 3.1. Let the following be graph homomorphisms:

ι1 :

⎛
⎜⎜⎝

a1 #! b1

a2 #! b2

⎞
⎟⎟⎠ −→ (1 f #! 2)

ι2 :

⎛
⎜⎜⎝

a1 #! b1

a2

('��������
#! b2

⎞
⎟⎟⎠ −→ (1 f #! 2)

The graph homomorphisms ι1, ι2 represent multi-valued functions e1, e2 : {a1,
a2} → ℘({b1, b2}), respectively, where ℘({b1, b2}) = {∅, {b1}, {b2}, {b1, b2}},
with e1(a1) = e2(a1) = {b1}, e1(a2) = {b2} and e2(a2) = {b1, b2}. We have
ι1, ι2 ∈ [[surjective]], ι1, ι2 ∈ [[injective]] and ι1 ∈ [[non − overlapping]], but
ι2 � [[non − overlapping]]. ♦

Remark 4 (Relations between Predicates) During the design of a signature, the
designer declares a set of predicates and defines arities, visualisations and seman-
tic interpretations for predicates. It may be desired, in addition, to define relations
between these predicates. Defining these relations can be seen as defining prop-
erties of the semantic interpretation of these predicates. For example in the sig-
nature in Table 3.1, an instance of the predicate [non-overlapping] is also
an instance of (or satisfies) the predicate [injective]. This kind of relation
is called predicate dependency in [38; 127]. Considering predicate dependencies
will turn a signature Σ into a pair (P Σ , αΣ) where P Σ is a graph (or a cate-
gory) of predicate symbols, and where αΣ is a graph homomorphism (or a functor)

34

3.3. Diagrammatic Specifications

αΣ : P Σ → Graphop. Hence, a predicate dependency has the form p r q with
the arities αΣ(r) : αΣ(q) → αΣ(p) and for any semantic interpretation [[..]]Σ it
is required that any valid instance of p can be turned, by a pullback construction,
into a valid instance of q. In this thesis, we generalise and formalise this kind of
relation as specification entailment in Section 3.4.3.

3.3 Diagrammatic Specifications

As mentioned, in DPF models are represented by (diagrammatic) specifications. In
this section we define the syntax and semantics of specifications.

3.3.1 SYNTAX OF SPECIFICATIONS

The syntax of specifications reflects the graph-based nature of models; that is, it
consists primarily of a graph. Parts of this graph are marked with atomic con-
straints2. These constraints represent properties which instances of specifications
should satisfy.

Definition 9 (Atomic Constraint) Given a signature Σ = (P Σ , αΣ), an atomic
constraint (p, δ) added to a graph S is given by a predicate symbol p and a graph
homomorphism δ : αΣ(p) → S.

Definition 10 (Specification) Given a signature Σ = (P Σ , αΣ), a (diagrammatic)
specification S = (S, CS : Σ) is given by a graph S and a set CS of atomic con-
straints (p, δ) on S with p ∈ P Σ .

The following example explains how the DPF based approach to diagrammatic
modelling works in practice.
Example 10 (Diagrammatic Modelling in DPF) Building on Examples 4 and 8,
let us refine the requirements 1 and 2 of the information system for the management
of employees and projects as follows:

1’. An employee must work for at least one department.

2. A department may have zero or many employees.

3. A project may involve zero or many employees.

4’. A project must be controlled by at least one department.

5. An employee involved in a project must work in the controlling depart-
ment.

Fig. 3.1a shows a specification S = (S, CS : Σ2) representing a structural
object-oriented model corresponding to the requirements above. Moreover, the
underlying graph S of S is shown in Fig. 3.1b, which is exactly the same as the
graph G1 in Fig. 2.1c. The constraints added to the underlying graph show some

2The concept of atomic constraints corresponds to the concept of diagrams in category theory [15].

35

3. DIAGRAMMATIC MODELLING IN DPF

Figure 3.1: A sample specification S = (S, CS:Σ2) and its underlying graph S

of the extension which DPF contributes to modelling by plain graphs presented in
Section 2.2.

We present how two of the above mentioned requirements are forced in S by
means of atomic constraints. These atomic constraints are formulated by predicates
from the signature Σ2 in Table 3.1. The requirement “an employee must work for
at least one department” is forced in S by the predicate [mult(1,∞)] on the
arrow empDeps; that is by the atomic constraint ([mult(1,∞)], δ1) (see Ta-
ble 3.2 for the complete list of atomic constraints). Furthermore, the requirement
“an employee involved in a project must work in the controlling department” is
forced in S by the predicates [composition] and [image-inclusion] on
the arrows proEmps’ and proEmps, with proEmps′ := proDeps; depEmps, i.e.
the composition of the arrow proDeps with depEmps. ♦

The requirements in Example 10 were specified in a model by mixing UML and
OCL syntax as shown in Example 4 of Section 1.3. Both structural constraints andINTEGRATION OF

CONSTRAINTS the attached OCL constraint are integrated in the specification shown in Fig 3.1a
by using predicates from the signature Σ2 (see also Fig. 1.13). That is, instead of
using OCL or another language to add constraints to the models, in DPF we create
or extend a signature with predicates according to the needs.

Remark 5 (Named Boxes) Note that the rectangular boxes around the model el-
ements in the specification S in Fig. 3.1a come from the typing of these elements.
This is just a convention adopted from UML and other diagrammatic languages
which represent concepts as named rectangular boxes. Typing of model elements
will be discussed in Section 4.2; and the notations for typing in Remark 16.

Remark 6 (OCL Constraints in DPF) Note that OCL-constraints which can be
seen as properties of sets, functions or collections of sets and functions as a whole,
can be specified in DPF. In order to cover all OCL-constraints, we need to extend
DPF with “diagram operations”; i.e. operations which are used to show derived
information [36]. This extension is out of the scope of this thesis.

36

3.3. Diagrammatic Specifications

Table 3.2: The set CS of constraints

(p, δ) αΣ2(p) δ(αΣ2(p))

([mult(1,∞)], δ1) 1
f #! 2 Employee

empDeps #! Department

([surjective], δ2) 1
f #! 2 Department

depEmps #! Employee

([mult(1,∞)], δ3) 1
f #! 2 Project

proDeps #! Department

([composition],
δ4)

1
f #!

h &%�
��

��
��

2
g

��
3

Project

proEmps′
)(���

����
����

���
proDeps #! Department

depEmps

��
Employee

([image-
inclusion], δ5)

1
f

��

g

�� 2 Project

proEmps
*)

proEmps′
+* Employee

([inverse], δ6) 1
f

��
2

g

�� Employee

empDeps
,+
Department

depEmps

-,

3.3.2 SEMANTICS OF SPECIFICATIONS

In this thesis, we describe semantics of specifications in a fibred manner. That
is, the semantics of a specification S = (S, CS : Σ) is given by the set of its
instances (I, ι). An instance (I, ι) of S is a graph I together with a typing graph
homomorphism ι : I → S which satisfies the constraints CS .

To check that a constraint is satisfied in a given instance of S, it is enough to in-
spect only the part of S which is affected by the constraint. This kind of “restriction
to a subpart” is described by the pullback construction [15; 45], a generalisation of
the inverse image construction (see Appendix A.1.1).

Definition 11 (Instance of Specification) Given a specification S = (S, CS:Σ),
an instance (I, ι) of S is a graph I together with a graph homomorphism ι : I → S
such that for each constraint (p, δ) ∈ CS we have ι∗ ∈ [[p]], where ι∗ : O∗ →
αΣ(p) is given by the following pullback diagram

αΣ(p)
δ

#! S

O∗
δ∗

#!

ι∗
��

P B

I

ι

��

We use (I, ι) � p to denote ι∗ ∈ [[p]] and (I, ι) � CS if (I, ι) � p for all
(p, δ) ∈ CS .

37

3. DIAGRAMMATIC MODELLING IN DPF

Figure 3.2: A sample specification S = (S, CS : Σ2) and a possible instance
(I, ι); the dashed, red arrow represents an arrow which would violate the constraint
([image-inclusion], δ5)

The following example builds on Example 10 and explains the usage of Defini-
tion 11 to check whether a given graph is an instance of a specification.
Example 11 (A Sample Specification) Fig. 3.2 shows the specification S from
Fig. 3.1a in Example 10 together with an instance ι : I → S of S. In this specifi-
cation, nodes and arrows are interpreted as sets and multi-valued functions. More-
over, some of the typing morphisms from I to S are shown as dashed, gray arrows.

In addition to the typing restrictions, the graph I satisfies the set of atomic
constraints CS (see Table 3.2). To verify that (I, ι) is indeed an instance of S, we
need to construct the pullback for each constraint (p, δ) in CS . In this example,
we validate three of these constraints: ([mult(1,∞)], δ1), ([composition],
δ4) and ([image-inclusion], δ5), but, we show the pullback only for the first
one since the technique is similar.

First, we look at the constraint ([mult(1,∞)], δ1). The pullback of

α([mult(1,∞)]) δ1−→ S
ι←− I will be α([mult(1,∞)]) ι∗

←− O∗ δ∗
1−→ I,

where ι∗ : O∗ → α([mult(1,∞)]) is as in Fig. 3.3. The graph homomorphism
ι∗ is a valid instance of the predicate [mult(1,∞)] since the semantics of the
constraint which is set by the predicate is not violated. The constraint, which holds
in this case, is that

∀emp ∈ ι−1(Employee)∃dep ∈ ι−1(Department) : dep ∈ ι−1(empDeps)(emp)

Moreover, we consider the composition constraint ([composition], δ4).
Note that this constraint is special in the sense that it indicates derived information
which is used later by the constraint ([image-inclusion], δ5). To which

38

3.3. Diagrammatic Specifications

Figure 3.3: The specification S and its instance from Fig.3.2 together with the

pullback α([mult(1,∞)]) ι∗
←− O∗ δ∗

1−→ I of α([mult(1,∞)]) δ1−→ S
ι←− I

Figure 3.4: The instance I from Figs. 3.2 and 3.3 together with the arrows
ι−1(proEmps′) shown as dashed, blue arrows

extent derived information is stored or represented explicitly in instances depends
on the context; e.g. derived information may be stored explicitly if its calculation is
time-consuming. In this example, the arrows ι−1(proEmps′) are omitted in I, but
shown as dashed, blue arrows in Fig. 3.4 for explanation purposes. Getting back to
the main topic of the example, we can check that this constraint is not violated by
verifying that

ι−1(proEmps′) = ι−1(proDeps); ι−1(depEmps)

Finally, we will look at the subset constraint ([image-inclusion], δ5).
We can check that this constraint is not violated by verifying that

∀pro ∈ ι−1(Project) : ι−1(proEmps)(pro) ⊆ ι−1(proEmps′)(pro)

Intuitively, if the graph I contained an arrow connecting the nodes Distech and
Alessandro (shown as a red, dotted arrow in Fig. 3.2b), it would not be a valid

39

3. DIAGRAMMATIC MODELLING IN DPF

instance of S since it would violate the constraint formulated by the [image-in-
clusion] predicate. This arrow represents the information “the employee Alessan-
dro is involved in the project Distech”, but, according to requirement 5 “the em-
ployee Alessandro can not be involved in the project Distech because he does not
work for the controlling department DCE-HiB”. ♦

Remark 7 (Instance of Specification vs Instance of Graph) Note that the graph
G0 in Fig. 2.1d resembles the graph I in Fig. 3.2b. The graph G0 is a valid instance
of the graph G1 since there exists a typing graph homomorphism from G0 to G1.
However, although one could find a graph homomorphism from G0 to S, the graph
G0 does not satisfy all the constraints CS . Some of these constraints, which are
not satisfied by G0 in Fig. 2.1d, are:

• the constraint ([image-inclusion], δ5) is not satisfied since the node
“Alessandro” is the target of an arrow from “Distech” while there is no path
from “Distech” to “Alessandro” via a node which is typed by Department.

• the constraint ([inverse], δ6) is not satisfied since the node “DI-UiB”
has an outgoing arrow to the node “Alessandro” while there is no arrow
going in the other direction.

It is important to note that there is an implicit relation between the constraints
of a specification: for any specification (S, CS:Σ), due to Definition 11 there is anIMPLICIT

CONJUNCTION implicit conjunctive connection between the constraints in {(p1, δ1), . . . , (pn, δn)} ∈
CS . The following example illustrates this.
Example 12 (Conjunction of Constraints) For the specification (S, CS : Σ) in
Fig. 3.5a, we have ([injective], δ) and ([surjective], δ) on the same ar-
row f. Two graphs which satisfy the atomic constraints CS are shown in Fig. 3.5b
and 3.5c. These graphs are valid instances since the arrows ι−1(f) represent both
injective and surjective functions according to the definitions in Table 3.1. More-
over, two graphs which do not satisfy the atomic constraints CS are shown in
Fig. 3.5d and 3.5e. These graphs are invalid instances since the arrows ι−1(f) in
(d) do not represent surjective functions; and in (e) they do not represent injective
functions. ♦

Next, for a given specification S, the category of instances of S is defined as
follows.

Definition 12 (Category of Instances) For any specification S = (S, CS : Σ),
we obtain a category Inst(S) with objects all instances (I, ι) of S and morphisms
between instances φ : (I, ι) → (I ′, ι′) are graph homomorphisms φ : I → I ′ such
that φ; ι′ = ι.

S

=

I

ι

.-������� φ #! I ′

ι′
/.�������

40

3.4. Relations between Specifications

(a) Sample specification S

• #! •

• #! •

• #! •
(b) I1: Injective
and surjective

• #!

0/�
��

��
��

•

• •

• #! •
(c) I2: Injective
and surjective

• #! •

• •

• #! •
(d) I3: Not sur-
jective

• #!

0/�
��

��
��

•

• #!

('������� •

• #! •
(e) I4: Not in-
jective

Figure 3.5: A sample specification S together with four graphs of which two sat-
isfying the atomic constraints CS and two not satisfying these constraints

Moreover, Inst(S) is a full subcategory of Inst(S) where Inst(S) = (Graph ↓ S)
is the comma category of all graphs typed by S [15]. That is, we have an inclusion
functor incS : Inst(S) → Inst(S).

3.4 Relations between Specifications

This section discusses how relations between specifications are defined, and what
features and properties these relations possess. We give a stepwise definition of
these relations: first between the underlying graphs of specifications; second, spec-
ification morphisms; and finally, specification entailment.

3.4.1 TRANSLATION OF TYPED GRAPHS

Since the underlying structure of specifications are graphs, the first kind of relations
we may describe between specifications are graph homomorphisms between the
underlying graphs of specifications. These graph homomorphisms will induce a
translation of instances of graphs; i.e. they induce a change of typing.

Proposition 1 (Translation of Instances of Graphs) Each graph homomorphism
φ : S → S′ induces a functor φ• : Inst(S) → Inst(S′) with φ•(I, ι) = (I, ι; φ)
for all (I, ι) ∈ Inst(S)

41

3. DIAGRAMMATIC MODELLING IN DPF

S
φ #! S′

I

ι

��

ι;φ

!�������������������

Inst(S) φ• #! Inst(S′)

Furthermore, each graph homomorphism φ : S → S′ induces a functor φ• :
Inst(S′) → Inst(S) with φ•(I ′, ι′) given by construction of pullbacks

S
φ #! S′

I∗
ι

′∗

��

P B

φ∗
#! I ′

ι
′
��

Inst(S) Inst(S′)φ•
��

Proof. The proof of φ• is given by the composition ι; φ of graph homomorphisms.
The proof of φ• is given by pullback in category Graph as shown in [38]. ♦

3.4.2 SPECIFICATION MORPHISMS

Another relation between specifications in DPF is represented by specification mor-
phisms. These specification morphisms are graph homomorphisms – between the
underlying graphs of specifications – which preserve atomic constraints.

Definition 13 (Specification Morphism) Given two specifications S = (S, CS :
Σ) and S′ = (S′ , CS′ : Σ), a specification morphism φ : S → S′ is a graph
homomorphism φ : S → S′ such that (p, δ) ∈ CS implies (p, δ; φ) ∈ CS′

.

αΣ(p) δ #!

δ;φ
=

10
S

φ #! S′

Remark 8 (Inclusion Specification Morphism) A specification S is a subspeci-
fication of a specification S′ , written S � S′ , iff S is a subgraph of S′ and the
inclusion graph homomorphism inc : S ↪→ S′ defines a specification morphism
inc : S ↪→ S′ .

A closer look at Definition 13 shows that it is implicitly based on a translation
of specifications induced by graph homomorphisms.

42

3.4. Relations between Specifications

Remark 9 (Graph Homomorphism and Constraints) Any graph homomorphism
φ : S → S′ induces a constraint translation. That is, for any specification
S = (S, CS : Σ) we obtain a specification φ(S) = (S′ , Cφ(S):Σ) with Cφ(S) =
φ(CS) = {(p, δ; φ) | (p, δ) ∈ CS}

αΣ(p) δ #!

δ;φ
=

S

φ #! S′

The condition for specification morphisms can now be reformulated as follows:
a specification morphism φ : S → S′ is a graph homomorphism φ : S → S′ such
that φ(S) � S′ . That is, Cφ(S) = φ(CS) ⊆ CS′

.
Having defined specifications and specification morphisms, the category of

specifications is defined as follows.

Definition 14 (Category of Specifications) For any signature Σ, we obtain a cat-
egory Spec(Σ) of all specifications S = (S, CS : Σ) and all specification mor-
phisms. The associativity of graph homomorphism composition ensures that the
composition of two specification morphisms becomes a specification morphism as
well. It ensures also that the composition of specification morphisms is associative.
Furthermore, the identity graph homomorphisms idS : S → S define identity spec-
ification morphisms idS : S → S, which are neutral with respect to composition.

Proposition 2 (Specification Morphisms and Category of Instances) For any spec-
ification morphism φ : S → S′ , we have φ•(Inst(S′)) ⊆ Inst(S), that is, the
functor φ• : Inst(S′) → Inst(S) restricts to a functor φ• : Inst(S′) → Inst(S)

S

φ

��

Inst(S) Inst(S)� ��� S

φ

��
S′ Inst(S′)

φ•

��
=

Inst(S′)

φ•

��

� ��� S′

Proof. As shown in [38], the proof follows from the result that the composition of
two pullbacks is again a pullback [15] and from our assumption that [[p]] is closed
under isomorphisms (see Definition 8).

αΣ(p) δ #!

δ;φ

10
S

φ #! S′ αΣ(p)
δ;φ #! S′

O
δ∗

#!

ι∗
��

P B

δ∗;φ∗

��I
φ∗

#!

ι

��

P B

I ′

ι′

��

O

ι∗
��

P B

δ∗;φ∗
#! I ′

ι′

��

♦

43

3. DIAGRAMMATIC MODELLING IN DPF

3.4.3 SPECIFICATION ENTAILMENT

A third kind of relations between specifications is entailment. A specification en-
tailment has the structure Premise Conclusion, where both premise and con-
clusion are specifications with the same underlying graph. We use specification
entailments to express properties of predicates (see Remark 4).

Definition 15 (Specification Entailment) A specification entailment L R is
given by two specifications L = (L, CL : Σ) and R = (R, CR : Σ) with the
same underlying graph L = R called the context graph.

L � R

α (p1)

δp1 ������
�����

�����
�����

�����
. . . α (pn)

δpn

10�
��

��
��

��
� α (q1)

δq1

21���
��
��
��

. . . α (qm)

δqm
�������

�����
�����

�����
����

L = R

Specification entailments are devoted to describe or to require properties of the
semantic interpretation of predicates. A specification entailment is valid if and only
if all instances of the premise are also instances of the conclusion.

Definition 16 (Semantic Interpretation and Specification Entailment) A speci-
fication entailment L R with L = (L, CL:Σ) and R = (R, CR:Σ) is valid for
a semantic interpretation of predicates [[..]]Σ iff Inst(L) ⊆ Inst(R).

Remark 10 (Unique Context for an Entailment) It is not necessary to consider
different contexts within one specification entailment. That is, given L = (L, CL :
Σ) and R = (R, CR : Σ) and a graph homomorphism φ : R → L, we obtain a
specification entailment L φ(R) and the two conditions Inst(L) ⊆ Inst(φ(R))
and φ•(Inst(L)) ⊆ Inst(R) are equivalent due to the composition properties of
pullbacks.

Example 13 (Specification Entailment) Fig. 3.6 shows a specification entailment
L R with

L = (L, CL = {([mult(1,∞)], δ1), ([inverse], δ2)} : Σ)
R = (R, CR = {([surjective], δ3)} : Σ)

L = R = X

f
��

Y
g

��

and the following assignments:
δ1(1) = X δ1(2) = Y δ1(f) = f
δ2(1) = X δ2(2) = Y δ2(f) = f δ2(g) = g
δ3(1) = X δ3(2) = Y δ3(g) = g

44

3.4. Relations between Specifications

Figure 3.6: A sample specification entailment L R

The predicates [mult(1,∞)], [inverse] and [surjective] come
from the signature Σ2 in Table 3.1. We can easily show that the semantic interpre-
tation given in Table 3.1 satisfies Inst(L) ⊆ Inst(R) as follows:

Since ∀x ∈ X : |f(x)| ≥ 1, we have that ∀x ∈ X : ∃y ∈ Y : y ∈ f(x). And
since ∀x ∈ X and ∀y ∈ Y : x ∈ g(y) iff y ∈ f(x) we have that ∀x ∈ X∃y ∈ Y :
x ∈ g(y) which leads to ∀x ∈ X :

⋃{g(y)} = X , i.e. g is surjective. ♦

Remark 11 (Specification Entailment vs Predicate Dependencies) As mentioned
in Remark 4, the relation between predicates are described as predicate dependen-
cies in [38; 127]. A predicate dependency p r q with the arities α(r) : α(q) →
α(p) can be represented by a specification entailment L R where

L = (L = α(p), CL = {(p, idα (p))} : Σ)
R = (R = α(p), CR = {(q, α(r))} : Σ).

As mentioned, each specification entailment is defined over a given context.
Once a specification entailment is defined, the context can be embedded into other
specifications by means of specification morphisms. As it will be clear in Sec-
tion 4.4, this embedding can be used to formulate “universal constraints” on speci-
fications.

Proposition 3 (Embedding) For any specification entailment L R, with L =
(L, CL : Σ) and R = (R, CR : Σ), and any specification morphism φ : L →
S, with S = (S, CS : Σ), we obtain an induced specification entailment S
(S ∪ φ(R)). For a given semantic interpretation [[..]]Σ, the induced entailment
S (S ∪ φ(R)) is valid as long as L R is valid.

L

φ

��

�
R

φ

��
S

�
S ∪ φ(R)

45

3. DIAGRAMMATIC MODELLING IN DPF

Figure 3.7: A sample specification entailment S (S ∪ φ(R))

Proof.

We have to show Inst(S) ⊆ Inst(S ∪ φ(R)).
Since Inst(S ∪ φ(R)) = Inst(S) ∩ Inst(φ(R)),
the inclusion Inst(S) ⊆ Inst(S ∪ φ(R))
is equivalent to Inst(S) ⊆ Inst(φ(R)).
Due to Remark 10, Inst(S) ⊆ Inst(φ(R))
is equivalent to φ•(Inst(S)) ⊆ Inst(R).
This inclusion follows from the assumptions
by Proposition 2 φ•(Inst(L)) ⊆ Inst(L)
and Definition 16 Inst(L) ⊆ Inst(R)

♦

Example 14 (Embedded Entailment) Building on Examples 13 and 10, Fig. 3.7
shows a specification entailment S (S∪φ(R)) which is given by the embedding
φ : L → S of the specification entailment in Example 13 into the specification S
from Example 10. ♦

46

CHAPTER 4
Metamodelling in DPF

So far, we have formalised the concepts model and instances of a model in terms
of DPF. In this chapter, we use these concepts to formalise the relation between
models in a metamodelling hierarchy. In addition, we discuss the usage of DPF in
the formalisation of MOF-based modelling languages.

4.1 Introduction

In the context of MDE, metamodelling is the de facto standard technique used to de-
fine the abstract syntax of modelling languages. Any model which is defined by the
modelling language should conform to the language’s corresponding metamodel;
or put another way, all models which conform to the corresponding metamodel are
considered syntactic correct models defined by the modelling language.

In Chapter 3, we formalised the concepts model and instances of a model by
defining the syntax and the semantics of diagrammatic specifications, respectively.
Considering the case in which the instances of a model are also models, i.e. relating
these concepts to a metamodelling hierarchy, the syntax of a model is treated as a
semantic entity which is specified and constrained by another model at a higher
level of the hierarchy. In terms of DPF, metamodelling refers to this recursive shift
from syntax to semantics.

As a first step, we look at the relation between models and metamodels. In order
to be more generic, we consider the relation between models located at any two ad-
jacent levels of a metamodelling hierarchy. We call this relation for conformance.
Afterwards, we show how modelling languages are formalised as modelling for-
malisms in DPF, and how metamodels and modelling formalisms are related.

47

4. METAMODELLING IN DPF

4.2 Conformance Relation

This section deals with the DPF based formalisation of the conformance relation
between models in a metamodelling hierarchy (see Fig.1.5). In DPF, we use speci-
fications to represent models at any level of a metamodelling hierarchy. Moreover,
we distinguish between two types of conformance relations: typed by and conforms
to. A specification Sn at level n is typed by a specification Sn+1 at level n + 1 ifTYPED BY VS

CONFORMS TO there exists a typing morphism ιSn : Sn → Sn+1 between the underlying graphs
of the specifications. This corresponds to the relation between a model and its
metamodel in the graph-based formalisation of the metamodelling hierarchy (see
Section 2.2). In contrast, a specification Sn at level n is said to conform to a spec-
ification Sn+1 at level n + 1 if there exists a typing morphism ιSn : Sn → Sn+1
such that (Sn, ιSn) is an instance of Sn+1 [106]. That is, in addition to the exis-
tence of the typing morphism ιSn , the constraints CSn+1 are satisfied by (Sn, ιSn).

A typed specification may be typed by any graph, i.e. not only the underlying
graph of another specification. A specification typed by a graph G is a structureTYPED

SPECIFICATION which consists of an underlying graph that is typed by G, together with a set of
typed atomic constraints. Typed atomic constraints are formulated with help of
typed signatures. The “untyped” versions of signatures, atomic constraints and
specifications are already defined in Chapter 3. The typed versions are defined as
follows.

Definition 17 (Typed Signature) A signature typed by a graph G is a signature
Σ = (P Σ , αΣ) together with a map τΣ assigning to each predicate p ∈ P Σ a
graph homomorphism τΣ(p) : αΣ(p) → G. τΣ(p) is called the typing of p. We
use Σ�G or ((P Σ , αΣ)�τΣ G) to denote a signature Σ typed by G.

αΣ(p)
τΣ (p) #! G Σ τΣ

#! G

Example 15 (Typed Signature) Fig. 4.1a shows a part of the signature Σ2 from
Table 3.1 as a typed signature. The typing graph G chosen for this purpose is shown
in Fig. 4.1b. The column Typing τΣ2(p) of the signature represents the possible
types for the predicates. According to the typing, the predicate [mult(n,m)]
may be used to add constraints to arrows which are typed by any of the arrows A
or R, as shown in the Typing column. Moreover, the predicate [irreflexive]
may only be used to add constraints to model elements which are typed by the loop
structure with the node C and the arrow R. ♦

Remark 12 (Predicate Names and Typing) Recall the observation in Remark 3
about predicate names. Some of the predicate names in Σ2 in Table 3.1 refer to
unique predicates, while some others refer to a family of predicates. For typed
signatures, these names will have yet another dimension based on the typing map.
For example, the predicate [mult(n,m)] in Fig. 4.1a may be added to arrows of
type A or R.

48

4.2. Conformance Relation

p αΣ2(p) Typing τΣ2(p)

[mult(n,m)] 1
f #! 2 1:C

f :R #! 2:C

1:C
f :A #! 2:D

[irref-
lexive]

1

f

%#
1:C

f :R
��

[inverse] 1
f

�$
2

g

�� 1:C

f :R
��

2:C

g:R

(a) Typed signature

C
A #!

R
32

D

(b) The type graph

Figure 4.1: A sample typed signature Σ2�G and the type graph G

Definition 18 (Typed Atomic Constraint) Given a typed signature ((P Σ , αΣ)�τΣ

G), a typed atomic constraint (p, δ) added to a typed graph (S, ιS) with ιS : S →
G is given by a predicate symbol p and a graph homomorphism δ : αΣ(p) → S
such that δ; ιS = τΣ(p).

αΣ(p)

δ
��

���
���

���
��

τΣ (p) #! G

=

S

ιS

��

Definition 19 (Typed Specification) Given a graph G and a typed signature Σ�
G, a specification typed by the graph G is a specification S = (S, CS:Σ) together
with a typing graph homomorphism ιS : S → G assigning to each element of
S a type in G such that ∀(p, δ) ∈ CS : δ; ιS = τΣ(p). We write S� G or
((S, CS:Σ)�ιS G) to denote a specification S typed by G.

αΣ(p)
τΣ (p) #!

δ
��

���
���

���
��

G Σ τΣ
#!

CS

��
 G

=

S

ιS

��
=

S

ιS

��

Remark 13 (Semantics of Typed Specifications) The semantics of the typed ver-
sions of predicates and specifications is defined in the same way as for the corre-
sponding untyped versions. This is because, whether a specification is typed by a
graph will only affect the relation between the specification and the graph, not the
instances of the specification.

49

4. METAMODELLING IN DPF

Now we can define conformant specifications as typed specifications which
satisfy the constraints of another specification. In the following definition, we useCONFORMANT

SPECIFICATION the indices 1, 2 and 3 in order to reflect the levels in the metamodelling hierarchy.

Definition 20 (Conformant Specification) Let S2 = (S2, CS2 :Σ3) be a speci-
fication with Σ3 = (P Σ3 , αΣ3), and Σ2�S2 = ((P Σ2 , αΣ2) �τΣ2 S2) a signa-
ture. A typed specification S1 = ((S1, CS1 : Σ2) �ιS1 S2) conforms to S2 iff
(S1, ιS1) ∈ Inst(S2). We write S1�S2 or ((S1, CS1 : Σ2)�ιS1 S2) to denote a
specification S1 conformant to S2.

Σ3
CS2

43!
!

!
!

Σ2
τΣ2 #!

CS1 43!
!

!
! S2

S1

ιS1

��

Recall that we defined specification morphisms as relations between the un-
typed version of specifications (see Definition 13). Now we generalise this defini-
tion for the typed version of specifications.

Definition 21 (Typed Specification Morphism) Given a graph G and a typed sig-
nature Σ � G, a typed specification morphism between two typed specifications
φ : ((S, CS : Σ) �ιS G) → ((S′ , CS′ : Σ) �ιS′ G) is a specification morphism
φ : (S, CS:Σ) → (S′ , CS′ :Σ) such that φ; ιS′ = ιS .

G

=

S

ιS
('������� φ #! S′

ιS′54�������

Having defined the concepts of typed specification and typed specification mor-
phism, the category of typed specifications is defined as follows.

Definition 22 (Category of Typed Specifications) For any graph G and any typed
signature Σ�G we obtain the category TSpec(Σ�G) of all typed specifications
((S, CS:Σ)�ιS G) and all typed specification morphisms φ : S�G → S′�G.

Moreover, according to the definitions of (typed) specifications and (typed)
specification morphisms, there exists a functor UG : TSpec(Σ�G) → Spec(Σ)
with UG((S, CS : Σ) �ιS G) = (S, CS : Σ) for all specifications S typed by G,
and with UG(φ) = φ : (S, CS : Σ) → (S′ , CS′ : Σ) for all typed specification
morphisms φ : ((S, CS:Σ)�ιS G) → ((S′ , CS′ :Σ)�ιS′ G).

TSpec(Σ�G) UG
#! Spec(Σ)

50

4.2. Conformance Relation

Analogously, having defined the concepts of conformant specification and typed
specification morphism, the category of conformant specifications is defined as fol-
lows.

Definition 23 (Category of Conformant Specifications) For any specification S2
= (S2, CS2:Σ3) and any signature Σ2�S2 we obtain a category CSpec(Σ2�S2)
of all conformant specifications ((S1, CS1 : Σ2)�ιS1 S2) and all typed specifica-
tion morphisms φ : S1�S2 → S′

1�S2.
Moreover, CSpec(Σ2�S2) is a full subcategory of TSpec(Σ2�S2). That

is, we have an inclusion functor incS2 : CSpec(Σ2�S2) → TSpec(Σ2�S2).
Putting this together with Definition 22, we obtain the following diagram

CSpec(Σ2�S2) incS2 #!

incS2 ;US2 �"""
""""

""""
""""

""
TSpec(Σ2�S2)

US2

��

=

Spec(Σ)

The objects in the category of typed specifications TSpec(Σ2�S2) are specifi-
cations S1 which are typed by S2. That is, we have S1 ∈ Inst(S2). Analogously,
the objects in the category of conformant specifications CSpec(Σ2�S2) are spec-
ifications S1 which conform to S2. That is, we have S1 ∈ Inst(S2). Putting this
together with Definition 12, we obtain the following remark.

Remark 14 (Categories TSpec(Σ2�S2), CSpec(Σ2�S2), Inst(S2), Inst(S2))
Given the inclusion functor incS : Inst(S) → Inst(S) from Definition 12 and the
inclusion functor incS2 : CSpec(Σ2�S2) → TSpec(Σ2�S2) from Definition 23,
we obtain the following diagram

CSpec(Σ2�S2) incS2 #!

instS2

��

TSpec(Σ2�S2)

instS2

��
Inst(S2)

incS2
#!

=

Inst(S2)

Recall that we defined specification entailments as relations between the un-
typed version of specifications (see Definition 15). Now we generalise this defini-
tion for the typed version of specifications.

Definition 24 (Typed Specification Entailment) Given a graph G and a signa-
ture Σ�G, a typed specification entailment L�G R�G is given by two typed
specifications L�G = ((L, CL : Σ) �ιL G) and R�G = ((R, CR : Σ) �ιR G)
with the same context graph L = R.

51

4. METAMODELLING IN DPF

L�G � R�G

α (p1)

δp1 ������
�����

�����
�����

�����
�� . . . α (pn)

δpn

10�
��

��
��

��
� α (q1)

δq1

21���
��
��
��

. . . α (qm)

δqm
�������

�����
�����

�����
�����

�

L = R

ιL=ιR

��
G

Figure 4.2: Typed specification entailment

Figure 4.3: Modelling formalism (Σ2�S2,S2, Σ3) together with a specification
((S1, CS1:Σ2)�ιS1 S2)

4.3 Modelling Formalisms

In DPF, each modelling language is formalised as a modelling formalism (Σ2�
S2,S2, Σ3). The corresponding metamodel of the modelling language is repre-
sented by the specification S2 which has its constraints formulated by predicates
from the signature Σ3. The atomic constraining constructs which are available for
the users of the modelling language are located in the typed signature Σ2 � S2.
Fig. 4.3 shows a modelling formalism and its alignment with the metamodelling
hierarchy from OMG. In addition, the figure shows the relation between the mod-
elling formalism and a specification S1 specified by the formalism.

Definition 25 (Modelling Formalism) A modelling formalism (Σ2�S2,S2, Σ3)
is given by two signatures Σ2 = ((P Σ2 , αΣ2)�τΣ2 S2) and Σ3 = (P Σ3 , αΣ3) and
a specification S2 = (S2, CS2: Σ3) which is called the corresponding metamodel
of the modelling formalism.

Remark 15 (Modelling Formalisms and the Metamodelling Hierarchy) We have
chosen the indexes 1,2 and 3 in order to reflect OMG’s metamodelling hierarchy

52

4.3. Modelling Formalisms

Figure 4.4: Modelling formalisms and the metamodelling hierarchy

and create an intuitive alignment as shown in Fig. 4.3. However, modelling for-
malisms may be used to represent modelling languages at any level of the hierarchy,
as demonstrated in Fig. 4.4.

In a modelling formalism (Σ2�S2,S2, Σ3), predicates from the signature Σ3
are used to add atomic constraints to the metamodel S2. This corresponds to
metamodel definition. These constraints should be satisfied by all specifications
((S1, CS1 : Σ2) �ιS1 S2). With regard to the classification of constraints in Sec-
tion 1.5, these atomic constraints may represent both structural constraints SC3 and
additional constraints AC3.

Moreover, predicates from the signature Σ2�S2 are used to add constraints to
typed and conformant specifications; i.e. ((S1, CS1: Σ2)�ιS1 S2) and ((S1, CS1:
Σ2) �ιS1 S2), respectively. This corresponds to model definition. These con-
straints should be satisfied by instances of these specifications. With regard to the
classification of constraints in Section 1.5, these atomic constraints may represent
both structural constraints SC2 and additional constraints AC2.

Any of the signatures in a modelling formalism may be empty. However, if both
signatures are empty; that is (∅, S2, ∅), the modelling formalism will only be able to
specify the underlying graphs of specifications, without constraints added to them.
This resembles the graph-based formalisation of the metamodelling hierarchy as
discussed in Section 2.2.

In theory, a metamodelling hierarchy may have an infinite number of levels [87].
However, in practise, this hierarchy has a natural end point. The model at the top REFLEXIVE

METAMODELlevel is usually a reflexive metamodel. The reflexive metamodel corresponds to a
reflexive modelling language able to define its own metamodel. Reflexive meta-
model and reflexive modelling formalism are defined as follows (see Fig. 4.5).

53

4. METAMODELLING IN DPF

Figure 4.5: A reflexive modelling formalism (Σ3,S3, Σ3) together with a specifi-
cation ((S2, CS2:Σ3)�ιS2 S3)

Figure 4.6: A reflexive modelling formalism (Σ3,S3, Σ3) specifying its own meta-
model ((S3, CS3:Σ3)�ιS3 S3)

Definition 26 (Reflexive Metamodel) A specification S is reflexive if there exists
a graph homomorphism ιS : S → S such that S = ((S, CS:Σ)�ιS S); i.e. such
that S conforms to itself.

Definition 27 (Reflexive Modelling Formalism) A reflexive modelling formalism
(Σ3,S3, Σ3) is given by a signature Σ3 = ((P Σ3 , αΣ3)�τΣ3 S3) and a reflexive
metamodel S3 = ((S3, CS3:Σ3)�ιS3 S3).

For a reflexive modelling formalism (Σ3,S3, Σ3), the same signature Σ3 may
be used both to add constraints to the reflexive metamodel S3 and to add constraints
to specifications S2 specified by (Σ3,S3, Σ3). In fact, Σ3 may appear in two forms
to play these two roles: as a typed signature Σ3�S3 and as an untyped signature
Σ3 (see Fig. 4.6).

As mentioned in the introduction, we use a running example to illustrate our
approach to model transformation. The example presents transformation of a struc-
tural object-oriented model to a relational data model. In the following, we present
the two modelling formalisms which are used to specify these kinds of models.

54

4.3. Modelling Formalisms

4.3.1 OBJECT-ORIENTED MODELLING FORMALISM

Building upon Examples 8 and 10, a modelling language for specifying structural
object-oriented models is represented by a modelling formalism (Σ2�S2,S2, Σ3)
as shown in the shaded area of Fig. 4.7. Details of an untyped version of the sig-
nature Σ2 are shown in Table 3.1, while parts of its typed version are shown in
Fig 4.1a. The types chosen for the signature in Fig. 4.1b correspond to the (first let-
ters of the) types in the metamodel S2 in Fig. 4.7b; i.e. (C)lass, (R)eference,(A)ttribute
and (D)ataType.

The signature Σ3 in Fig. 4.7 is not used and hence left empty since there is no
need to add atomic constraints to the metamodel S2. The metamodel S2 declares
some basic concepts in object-oriented modelling; such as Class, Reference, At-
tribute and DataType. We have chosen this subset of concepts based on the basic
concepts which are chosen for explaining Ecore in [115]. A sample specification
S1 = ((S1, CS1 : Σ2)�ιS1 S2) is also shown in Fig. 4.7c in order to demonstrate
the usage of the predicates of Σ2 and the typing morphism ιS1 : S1 → S2. This
specification was also shown in Fig. 3.1a.

Remark 16 (Typing Notation) We write Employee:Class to denote the typing map
ιS1(Employee) = Class. As seen from S1 in Fig. 4.7c, we may also write
Employee if the typing is obvious from the context. With regard to arrows, we

use empDeps:Ref to denote ιS1(empDeps) = Reference. Likewise, we may also
write empDeps if the typing is obvious from the context.

For the sake of completeness, the reflexive modelling formalism (Σ3,S3, Σ3)
is also shown in the figure. Later, we will compare this modelling formalism with
the modelling formalism used for specifying the metamodel of relational data mod-
els.

Note that since (Σ2�S2,S2, Σ3) is used for specification of structural object-
oriented models, the nodes and arrows in the arities of predicates in Σ2�S2 are SEMANTICS OF

NODES AND
ARROWS

interpreted as sets and multi-valued functions, respectively. For the same reason,
the nodes and arrows in the underlying graphs of specifications which are specified
by (Σ2 � S2,S2, Σ3) are interpreted as sets and multi-valued functions, respec-
tively.

Remark 17 (Modelling Formalism vs Graph-based Formalisation) We can com-
pare the stack of modelling formalisms in Fig. 4.7 to the metamodelling hier-
archy of OMG in Fig. 1.6 and the graph-based formalisation of the hierarchy
shown in Fig. 2.1. Fig. 4.7a shows a specification S3 representing a generic meta-
metamodel. Fig. 4.7b shows a specification S2 representing a metamodel for the
specification of structural object-oriented models. Fig. 4.7c shows a sample speci-
fication S1 = (S1, CS1:Σ2) which represents the same structural object-oriented
model shown in Example 10. In these specifications, nodes and arrows are inter-
preted as sets and multi-valued functions. Moreover, the underlying graphs S3, S2
and S1 of these specifications are exactly the same as the graphs G3, G2 and G1

55

4. METAMODELLING IN DPF

Figure 4.7: A modelling formalism (Σ2�S2,S2, Σ3) together with the reflexive
modelling formalism (Σ3,S3, Σ3) and a sample specification ((S1, CS1:Σ2)�ιS1

S2); not all constraints and typing morphisms are explicitly shown

in Fig. 2.1, respectively. Furthermore, for the lowest level M0 in Fig. 2.1, Fig. 3.2
showed a graph I representing an instance of the model S1.

Similar to the graph-based formalisation of the metamodelling hierarchy in
Example 8, S3 is typed by itself (reflexive), S2 is typed by S3, S1 is typed by S2
and I is typed by S1. In addition to the typing relations between the underlying
graphs of the specifications, constraints added at any level is required to be satisfied
by the underlying graphs of specifications at the level below.

Hierarchical Relations

Most object-oriented modelling languages contain a special construct to express
hierarchical relations of the kind inheritance [118]. This relation is used to provide
a hierarchy in object-oriented models and is especially useful considering reuse and
structuring. It is inspired by the inheritance feature of object-oriented programming
languages. This feature is all about factoring out the commonality of a collection
of similar types and putting them in a new type; then members of the collection
inherit these common parts from the new type [110]. In UML, this relation is
called generalisation [91], while in EMF it is called eSuperType [115]. In this
thesis, inheritance relations are represented by inheritance arrows and the way we
define and visualise these arrows is inspired by EMF.

When a class X ′ inherits from a class X , X ′ gets access to all attributes and
references from X by composing the inheritance arrow with the attributes and ref-
erences arrows, respectively (see Fig. 4.8). In this relation, the class X is called

56

4.3. Modelling Formalisms

Y:Class X:Class
a:Attr #!r:Ref�� Z:DataType

X’:Class

inheritance

��

a:Attr

[comp]
65�
�
�
�
� r:Ref

[comp]
���

�
�

�
�

Figure 4.8: The subclass X ′ inherits all attributes and references from the super-
class X

Figure 4.9: The modified modelling formalism (Σ2�S2,S2, Σ3) from Fig. 4.7;
the metamodel S2 is extended with Inheritance arrow type

the superclass while the class X ′ is called the subclass. Moreover, the inheritance
relation is transitive; that is, if a class X ′′ inherits from X ′, then X ′′ inherits also
from X . Furthermore, the inheritance relation can not be circular; that is, the class
X can not inherit from itself or its subclasses.

In order to express inheritance in the object-oriented modelling formalism in
Fig. 4.7, we extend the metamodel S2 with an arrow type Inheritance from Class to
Class, as shown in Fig 4.9a. In addition, we add the predicate [irreflexive],
shown originally in Table 3.1, to the signature Σ3. This predicate is used to add the
constraint ([irreflexive], δ) to the arrow Inheritance. This constraint forbids
circularity of arrows which are typed by Inheritance.

Inheritance arrows X ′ i−→ X will be visualised as X’:Class
i � ** X:Class

(see Fig 4.9b).
Example 16 (Inheritance) For the modelling formalism (Σ2 � S2,S2, Σ3) in
Fig 4.9a, Fig 4.9b shows a modified version of the typed specification ((S1, CS1 :

57

4. METAMODELLING IN DPF

Figure 4.10: A typed specification entailment L�S2 R�S2 related to inheritance
arrows

Σ2)�ιS1 S2) in Fig. 4.7c with an inheritance arrow Employee
i−→ Person. ♦

Remark 18 (Inheritance and Typed Specification Entailment) From an inheri-
tance arrow we can entail that the arrow is injective, total and single-valued1. That
is, for the modelling formalism in Fig. 4.9a, we have the following typed specifica-
tion entailment L�S2 R�S2, shown in Fig. 4.10:

CL = ∅
CR = {([injective], δ),

([mult(1,1)], δ)}
L = R = X’:Class

i � ** X:Class

That is, we have the typing maps:

ιL(X) = ιL(X ′) = ιR(X)
= ιR(X ′) = Class

ιL(c) = ιR(c) = Inheritance

Containment Relation

In object-oriented structural models, it is sometimes desirable to specify that the
existence of instances of a class are dependent on instances of other classes. This
is useful when modelling the life cycle of the instances. In UML, this relation
is called composition [91], while in EMF it is called containment [115]. In this
thesis, containment relations are represented by containment arrows and the way
we define and visualise these arrows is inspired by EMF.

1Note that according to the semantic interpretation [[..]]Σ2 of Σ2 from Table 3.1, if an arrow is
injective and single-valued, it is also non-overlapping.

58

4.3. Modelling Formalisms

X:Class
container of #! Y:Class

x1:X #!

)(���
���

���
���

���
� y1:Y

x2:X // #! y2:Y

Figure 4.11: Instances of the class Y can be contained in only one instance of X

Table 4.1: Additions to the signature Σ2 to enable definition of properties related
to containment arrows

p αΣ2(p) Proposed vis. Semantic interpret.

[disjoint-
image]

1
f #! 2

3

g

�� X
f #! Y

Z

g

��
[di]

f(X) ∩ g(Z) = ∅

When a class X is said to have a containment relation to a class Y , instances of
Y do only exist if they are related to some instances of X . In this relation, the class
X is called the container while the class Y is called the contained class. Moreover,
an instance of Y cannot be related to more than one instance of X (see Fig. 4.11).
Although it is possible to to have two or more containment relations from one or
more classes to the same class Y , an instance of Y is allowed to be related to only
one of the instances of the container classes.

In order to express this kind of containment in the object-oriented modelling
formalism in Fig. 4.9, we extend the metamodel S2 with an arrow type Containment
from Class to Class, as shown in Fig 4.12a. In addition, we add the predicate
[disjoint-image], shown in Table 4.1, to the signature Σ2. The correspond-
ing constraint of this predicate is used to forbid that an insatnce of a class has two
containers.

Containment arrows X
c−→ Y will be visualised as X:Class �� 76 c #! Y:Class .

Example 17 (Containment) For the modelling formalism (Σ2 � S2,S2, Σ3) in
Fig 4.12a, Fig 4.12b shows a modified version of the typed specification ((S1, CS1:
Σ2)�ιS1 S2) in Fig. 4.9c with a containment arrow Faculty

c−→ Department. ♦

Remark 19 (Containment and Typed Specification Entailment) From a contain-
ment arrow we can entail that the arrow is non-overlapping. If there is only one

59

4. METAMODELLING IN DPF

Figure 4.12: The modified modelling formalism (Σ2�S2,S2, Σ3) from Fig. 4.9;
the metamodel S2 is extended with Containment arrow type

containment arrow into a class, we can entail that the containment arrow is also
surjective. Moreover, if there are exactly two containment arrows into the same
class, we can entail that the arrows together are jointly-surjective and have dis-
joint images. The latter ensures that each instance of the target class has exactly
one container. That is, for the modelling formalism in Fig. 4.12a, we have the
following typed specification entailments, shown in Fig. 4.13, Fig. 4.14 and 4.15,
respectively:

1. L�S2 1 R�S2 with:

CL = ∅
CR = {([non-overlapping], δ)}

L = R = X:Class �� 76 c #! Y:Class

That is, we have the typing maps:

ιL(X) = ιL(Y) = ιR(X)
= ιR(Y) = Class

ιL(c) = ιR(c) = Containment

2. L�S2 2 R�S2 with:

CL = ∅
CR = {([surjective], δ)}

L = R = X:Class �� 76 c #! Y:Class

That is, we have the typing maps:

60

4.3. Modelling Formalisms

Figure 4.13: A typed specification entailment L�S2 1 R�S2 related to every
arrow typed by Containment

Figure 4.14: A typed specification entailment L�S2 2 R�S2 which applies only
for the case of exactly one arrow typed by Containment

ιL(X) = ιL(Y) = ιR(X)
= ιR(Y) = Class

ιL(c) = ιR(c) = Containment

3. L�S2 3 R�S2 with

CL = ∅
CR = {([disjoint-image], δ),

([jointly-surjective_2], δ)}
L = R = X:Class �� 76 c1 #! Y:Class Z:Class#!87c2��

That is, we have the typing maps:

ιL(X) = ιL(Y) = ιL(Z) = ιR(X) =
ιR(Y) = ιR(Z) = Class

ιL(c1) = ιL(c2) = ιR(c1) = ιR(c2) = Containment

Note that if we have n containment arrows with the same target class, we can
entail that each two of these arrows have disjoint-images. In addition, we can entail
jointly-surjective_n on the n arrows together.

61

4. METAMODELLING IN DPF

Figure 4.15: A typed specification entailment L�S2 3 R�S2 which applies only
in the case of exactly two arrows typed by Containment

4.3.2 RELATIONAL MODELLING FORMALISM

In DPF, a modelling language for specifying relational data models is represented
by a modelling formalism (Θ2�T2,T2, Θ3) as shown in the shaded area of Fig. 4.16.
The signature Θ2�T2 is shown in 4.2, while the signature Θ3 consists of the pred-
icate [mult(n,m)]. The predicates in Table 4.2 are generalisations, or general
patterns, for constraints that are used in relational data modelling.

The metamodel T2 declares some basic concepts in relational data modelling;
such as Table, Column and DataType. A sample specification T1 = ((T1, CT1 :
Θ2)�ιT1 T2) is also shown in Fig. 4.16c in order to demonstrate the usage of the
predicates of Θ2�T2 and the typing morphism ιT1 : T1 → T2. It will be clear
later that this specification corresponds to the object-oriented specification which
was shown in Fig. 3.1a.

Note that since (Θ2 � T2,T2, Θ3) is used for specification of relational data
models, the nodes and arrows in the arities of predicates in Θ2 are interpreted asSEMANTICS OF

NODES AND
ARROWS

sets and (single-valued) functions, respectively. For the same reason, the nodes
and arrows in the underlying graph of specifications which are specified by (Θ2�
T2,T2, Θ3) are interpreted as sets and (single-valued) functions, respectively.

The reflexive modelling formalism (Θ3,T3, Θ3) is shown on top of Fig. 4.16.
It is noticeable that this modelling formalism is similar to the one used to specify
the metamodel S2. In particular, the metamodels S3 and T3 are identical. This
follows the same strategy of OMG in which the top most modelling language in the
hierarchy – MOF – is unified in order to facilitate exchange and transformation of
models.

62

4.3. Modelling Formalisms

Table 4.2: The signature Θ2�T2

p αΘ2(p) Proposed vis. and
typing

Semantic interpret.

[total] 1
f #! 2 X:Table • f #! Y:DT ∀x ∈ X : f(x) is de-

fined

[injective] 1
f #! 2 X:Table

f #! Y:DT ∀x, x′ ∈ X : f(x) =
f(x′) implies x = x′

[primary-
key]

1
f #! 2 X:Table

f

[pk]
#! Y:DT f is [total] and

[injective]

[foreign-
key]

1
f #! 2

3

g

�� X:Table
f #! Y:DT

Z:Table

g

��
[fk] ��

f(X) ⊆ g(Z) and g is
[primary-key]

[image-
equal]

1
f #! 2

3

g

�� X:Table
f #! Y:DT

Z:Table

g

��
[ie]

f(X) = g(Z)

[jointly-
injective]

1
f #!

g

��

2

3

X:Table
f #!

g

��
[ji]

Y:DT

Z:DT

∀x, x′ ∈ X : f(x) =
f(x′) and g(x) =
g(x′) implies x = x′

[rcomp] 1
f1 #!

f2

��

2

3 4

g1

��

g2

��
5

g′
#!

f ′

��

6

XY:Table
f1 #!

f2

��

Y:DT

X:DT ZY:Table

g2

��

g1

��

XZ:Table
g′

#!

f′

��

Z:DT

[rcomp]

XZ = {(x, z) | ∃y ∈
Y : (x, y) ∈ XY ∧
(z, y) ∈ ZY }

63

4. METAMODELLING IN DPF

Figure 4.16: A modelling formalism (Θ2�T2,T2, Θ3) together with the reflexive
modelling formalism (Θ3,T3, Θ3) and a sample specification ((T1, CT1:Θ2)�ιT1

T2); not all constraints and typing morphisms are explicitly shown

4.4 Universal Constraints

So far we have discussed two concepts for constraining specifications: existence of
a typing morphism to the metamodel of the modelling formalism and satisfaction
of the atomic constraints which are added to the metamodel. These concepts are
used to define the conformance relation between specifications and the metamodel
of the modelling formalism. In addition to the conformance requirement, there
are other constraints concerning the overall structure of specifications defined by a
modelling formalism. An example is if one wants to formulate that in EMF models
“every model must have a root class” and “every class in a model must have the root
class as its container, directly or transitively”. We call constraints which have an
overall impact on specifications for universal constraints. As the name “universal
constraint” suggests, it is universally quantified over elements (nodes, arrows and
constraints) of a specification. In addition, each universal constraint should hold
for all specifications which are specified by the modelling formalism.

Universal constraints can be defined both for (untyped) specifications, typed
specifications and conformant specifications. However, in the following we define
these constraints for the case of typed specifications since according to Defini-
tions 22 and 23 the definitions can be applied to untyped and conformant specifica-
tions also.

Definition 28 (Universal Constraint) Given a signature Σ�G = ((P Σ , αΣ)�τΣ

G), a universal constraint is a typed specification morphism c : L�G → R�G
with L�G = ((L, CL:Σ)�ιL G) and R�G = ((R, CR:Σ)�ιR G).

64

4.4. Universal Constraints

The universal constraints related to a modelling formalism (Σ2�S2,S2, Σ3)
explicate requirements which have to be satisfied by all specifications S1�S2 and
S1�S2; i.e. all specifications that can be specified by the modelling formalism.
The satisfaction of a universal constraint by a specification is defined as follows.

Definition 29 (Satisfaction of Universal Constraints) A typed specification S�
G = ((S, CS:Σ)�ιS G) satisfies a universal constraint c : L�G → R�G iff for
any typed specification morphism m : L�G → S�G there is a typed specification
morphism n : R�G → S�G such that c; n = m.

G

S

ιS

��

L
c #!

m

('�������

ιL

��

=

R

n

/.�������

ιR

��

We call L�G and R�G input and output patterns of the constraint c, respec-
tively; and we call m and n matches of the patterns L�G and R�G in S�G,
respectively.

Some examples of universal constraints are presented Sections 4.4.1 and 4.4.2.

Remark 20 (Universal Constraints and Transformation Rules) Each universal
constraint c : L�G → R�G may be understood as a transformation rule (see
Definition 36) in the sense that, given a typed specification S�G = ((S, CS :
Σ) �ιS G), if there is a match m : L�G → S�G, then a match n : R�G →
S�G will be created such that c; n = m. This can be used to derive information
which is left implicit in specifications.

Remark 21 (Universal Constraints vs Graph Constraints) The concept of uni-
versal constraints is a generalisation of the concept of graph constraints which is
detailed in [41; 118]. It is a generalisation in the sense that a universal constraint
c : L → R with empty sets CL and CR can be seen as a (typed) graph con-
straint [41]. In [77], a variant of universal constraints, which is without typing, is
called “sketch axioms” or “sketch entailment”. In this variant, a full hierarchy is
proposed for these axioms with graph constraints on the lowest level.

The universal constraints we have discussed so far have a positive nature; that
is, they require the existence of some property. However, in some cases it is easier
to think of and to define negative universal constraints; for example, in relational
data models “every table must have exactly one primary key column”. This sort of
constraint can be expressed by negative universal constraints (NUC).

65

4. METAMODELLING IN DPF

Definition 30 (Negative Universal Constraints) Given a typed signature Σ�G =
((P Σ , αΣ) �τΣ G), a negative universal constraint is a typed specification mor-
phism n : L�G → N�G with L�G = ((L, CL : Σ) �ιL G) and N�G =
((N, CN:Σ)�ιN G).

Analogous to (positive) universal constraints, the satisfaction of a NUC by a
specification is defined as follows.

Definition 31 (Satisfaction of Negative Universal Constraints) A typed specifi-
cation S� G = ((S, CS : Σ) �ιS G) satisfies a negative universal constraint
n : L � G → N � G iff for any injective typed specification morphism m :
L�G → S�G there does not exist an injective typed specification morphism
q : N�G → S�G such that n; q = m.

G

S

ιS

��

L
n #!

m

('�������

ιL

��

�

N

q
54��������

ιN

��

Next, we show some examples of universal constraints for the two modelling
formalisms which we defined in Sections 4.3.1 and 4.3.2.

4.4.1 UNIVERSAL CONSTRAINTS FOR OBJECT-ORIENTED MODELLING

FORMALISM

Universal constraints related to object-oriented structural modelling are mostly re-
lated to requirements that hierarchical and containment relations should satisfy. In
order to express the properties of hierarchical and containment relations, we add
the universal constraints shown in Table 4.3 to the modelling formalism (Σ2 �
S2,S2, Σ3) from Section 4.3.1. These constraints are defined as typed specifica-
tion morphisms c : L�S2 → R�S2 with L�S2 = ((L, CL : Σ2) �ιL S2) and
R�S2 = ((R, CR:Σ2)�ιR S2).

The constraint c1 in Table 4.3 describe that inheritance arrows are transitive.
Combining c1 with the irreflexivity constraint on the arrow type Inheritance in
Fig. 4.9 will ensure that specifications do not contain circular inheritance relations.
The universal constraints c2, c3 express the property of inheritance arrows which
we mentioned in Section 4.3.1. That is, a class 4:Class which inherits from another
class 1:Class will have access to all of the references and attributes of 1:Class.

4.4.2 UNIVERSAL CONSTRAINTS FOR RELATIONAL MODELLING FOR-
MALISM

For the modelling formalism (Θ2�T2,T2, Θ3) in Section 4.3.2, some of the univer-
sal constraints which have to be satisfied by any specification T1 in TSpec(Θ2�T2)

66

4.4. Universal Constraints

Table 4.3: Some universal constraints for object-oriented structural models

L�S2 R�S2
c1: Inheritances are transitive

5:Class

1:Class
2 � ** 3:Class

4

#98
5:Class

1:Class
2 � **

6

$ �9%%%%%%%%
3:Class

4

#98

c2: Inheritance leads to inheritance of references

1:Class
2:Ref #! 3:Class

4:Class

5

#98
1:Class

2:Ref #! 3:Class

4:Class

5

#98

5;2:Ref

[comp]
::%%%%%%%%%

c3: Inheritance leads to inheritance of attributes

1:Class
2:Attr #! 3:Class

4:Class

5

#98
1:Class

2:Attr #! 3:Class

4:Class

5

#98

5;2:Attr

[comp]
::%%%%%%%%%

are shown in Table 4.4. These constraints are defined as typed specification mor-
phisms c : L � T2 → R � T2 with L � T2 = ((L, CL : Θ2) �ιL T2) and
R�T2 = ((R, CR : Θ2) �ιR T2). Note that we only show mappings for nodes
and arrows whose names do not match; the others are omitted.

There are some differences between the universal constraints in Table 4.4. While
the constraints c1 and c3 require the existence of some structures in T1, the other
two constraints prohibit some structures. The constraint c2 is a uniqueness con-
dition. It ensures that each table has at most one primary key column. If a table
would have two different primary key columns we can find a match m of the input
pattern with m(2) � m(4). But then we can not find a match n of the output pattern
such that m = c2; n. The constraint c4 works analogously. Since the constraints c2
and c4 have a negative nature, we can also define them as the NUCs n1 and n2 in
Table 4.5, respectively.

4.4.3 SPECIFICATION ENTAILMENT AS UNIVERSAL CONSTRAINT

Specification entailments, especially the typed version (see Definitions 15 and 24),
are closely related to universal constraints (see Fig.4.17). Each typed specification
entailment L�G R�G gives rise to a corresponding universal constraint c :
L�G → R�G with an identity graph homomorphism idL : L → R. Hence,
the underlying graphs L and R are identical, while the atomic constraints CR =
CL ∪ CR .

67

4. METAMODELLING IN DPF

Table 4.4: Some universal constraints for relational data models

L�T2 R�T2
c1: Every table must have a primary key column

1:Table 1:Table
[pk]

2:Col #! 3:DataType

c2: Every table must have exactly one primary key column

1:Table
[pk]

2:Col #!

[pk]
4:Col

10&
&&

&&
&&

&&
3:DataType

5:DataType

1:Table
[pk]

2:Col #! 3:DataType

c2 : 2, 4 �→ 2
c2 : 3, 5 �→ 3

c3: A foreign key column should only refer to a primary key column

1:Table
2:Col #! 3:DataType 5:Table

4:Col��

[fk]

;; 1:Table
[pk]

2:Col #! 3:DataType 5:Table
4:Col��

[fk]

;;

c4: A foreign key column should only refer to exactly one primary key column

1:Table
[pk]

2:Col #! 3:DataType 5:Table
4:Col��

[fk]

;;

6:Table
[pk]

7:Col #! 8:DataType

[fk]�<

1:Table
[pk]

2:Col #! 3:DataType 5:Table
4:Col��

[fk]

;;

c4 : 6 �→ 1
c4 : 7 �→ 2
c4 : 8 �→ 3

Table 4.5: Some negative universal constraints for relational data models

L�T2 N�T2
n1: Every table must have exactly one primary key column

1:Table
[pk]

2:Col #! 3:DataType 1:Table
[pk]

2:Col #!

[pk]
4:Col

10&
&&

&&
&&

&&
3:DataType

5:DataType

n2: A foreign key column should only refer to exactly one primary key column

1:Table
[pk]

2:Col #! 3:DataType 5:Table
4:Col��

[fk]

;; 1:Table
[pk]

2:Col #! 3:DataType 5:Table
4:Col��

[fk]

;;

6:Table
[pk]

7:Col #! 8:DataType

[fk]�<

68

4.4. Universal Constraints

L�G � R�G

α (p1)

δp1

<=''
''
''
''
''
''
''
''

... α (pn)

δpn

=���
��
��
��
��
��
��
��
��
��
��

α (p1)

δp1
)(���

����
����

����
���

. . . α (pn)

δpn

��

α (q1)

δq1

��

. . . α (qm)

δqm

>>((((
((((

((((
((((

((

L
idL #!

ιL

�?)
))

))
))

))
R

ιR

?�**
**
**
**
*

G

Figure 4.17: A typed specification entailment gives rise to a universal constraint

Example 18 (Specification Entailments and Universal Constraints) Table 4.6
shows the universal constraints c1, c2, c3 and c4. The universal constraints c1, c2
and c4 correspond to the specification entailments in Fig. 3.6, Fig. 4.10 and Fig. 4.15,
respectively. Moreover, c3 corresponds to both entailments in Figs. 4.13 and 4.14 ♦

Recall that specification entailments are used to describe (or to require) proper-
ties of the semantic interpretation of predicates (see Remark 4 and Section 3.4.3).
In contrast, universal constraints describe (or require) specific overall structures in
specifications. A specification satisfies a universal constraint, corresponding to a
certain specification entailment, if the corresponding semantic properties are fully
syntactically presented in the specification.

Remark 22 (Revisiting Constraint Classification) In Section 1.5 we proposed a
classification of constraints based on their origins and their affect, and organised
them into the following categories: structural and attached constraints SCn+1, ACn+1
which affect models at level Mn; and structural and attached constraints SCn, ACn

which affect models at level Mn−1. In this regard, given a modelling formalism
(Σn+1�Sn+1,Sn+1, Σn+2), the constraints ACn+1 and SCn+1 are covered by

• the typing restrictions defined by Sn+1,
• the atomic constraints CSn+1 , and
• the universal constraints r : L�Sn+1 → R�Sn+1.

Likewise, given a specification ((Sn, CSn : Σn+1) �ιSn Sn+1) at level Mn, the
constraints ACn and SCn are covered by

• the typing restrictions defined by Sn, and
• the atomic constraints CSn .

69

4. METAMODELLING IN DPF

Table 4.6: The universal constraints c1, c2, c3 and c4 corresponding to the specifi-
cation entailments in Fig. 3.6, Fig. 4.10, (Fig. 4.13 and 4.14) and Fig. 4.15, respec-
tively

L�S2 R�S2
c1: [mult(1,∞)] and [inverse] entail [surjective]

1:Class

2:Ref [1..∞]
 �

4:Class

3:Ref

@@

•
[inv]

•
1:Class

2:Ref [1..∞]
 �

4:Class

3:Ref[surj]

@@

•
[inv]

•

c2: Inheritance entails [injective] and [mult(1,1)]

1:Class
2 � ** 3:Class 1:Class

[inj] [1..1]

2 � ** 3:Class

c3: Containment entails [surjective] and [non-overlapping]

1:Class �� 76 2 #! 3:Class 1:Class �� 76
[surj] [nov]

2 #! 3:Class

c4: Two containments entail [disjoint-image] and [jointly-surjective_2]

1:Class �� 76 2 #! 3:Class

4:Class
��
AA 5

��
1:Class �� 76 2 #! 3:Class

4:Class
��
AA 5

��
•[di]

[js]

•

70

CHAPTER 5
Constraint-Aware Model

Transformation

In the previous chapters, we formalised (meta)models as diagrammatic specifica-
tions and (meta)modelling languages as modelling formalisms. In this formalisa-
tion, we integrated structural and attached constraints in diagrammatic specifica-
tions. In constraint-aware model transformation, these constraints are taken into
consideration both during definition and during application of model transforma-
tions. In this chapter, constraint-aware model transformation is discussed as an
approach to model transformation in MDE.

5.1 Introduction

In the DPF based formalisation of MOF-based modelling languages, structural con-
straints and attached constraints are integrated in diagrammatic specifications. In
more details, models are formalised as diagrammatic specifications which con-
sist of an underlying graph together with a set of atomic constraints (see Chap-
ter 3). Moreover, modelling languages are formalised as modelling formalisms
(Σ2�S2,S2, Σ3). The specification S2 represents the metamodel of the language;
the signature Σ3 contains predicates which are used to add constraints to the meta-
model S2; while the typed signature Σ2�S2 contains predicates which are used to
add constraints to specifications S1 that are specified by the modelling formalism.
The specifications S1 need to conform to S2; i.e. they need to satisfy all typing and
atomic constraints which are specified by S2. In addition to these constraints, one
may also define universal constraints which have to be satisfied by all specifications
S1 that are specified by the modelling formalism (see Chapter 4).

In the DPF based approach to model transformation, these constraints are taken
into account by introducing the concept of “constraint-aware model transforma-

71

5. CONSTRAINT-AWARE MODEL TRANSFORMATION

Figure 5.1: Overview of the DPF based approach to model transformation

tion” [107; 108]. Constraint-aware model transformation is a technique which sup-
ports specifying constraints in input and output patterns and uses these constraints
to control

• which structure to create in the target specification and;

• which constraints to add to the created structure.
In this respect, it can be considered as an enhancement of the formal framework of
graph transformations [41] in the sense that it can be used to transform the struc-
ture of models as well as constraints. That is, it offers more fine-grained means to
describe, control and execute model transformations. Similar to graph transforma-
tions, the DPF based approach may be used to solve different transformation tasks.
However, in this thesis the approach is demonstrated by a heterogeneous, out-place
model transformation.

Recall that a model transformation consists of the automatic generation of target
models from source models, according to a transformation definition [31; 81; 126].
Thus, model transformation consists basically of two tasks: definition of transfor-
mations, and, application of these transformations.

Recall also that source and target models may be specified by the same mod-
elling language or by different modelling languages. In order to cover the gen-
eral case, we consider here the transformation between models defined by different
modelling languages. In this regard, the definition task is performed in two steps.
The first step consists of relating the source and the target modelling languages to
each other; that is, constructing an appropriate joined modelling language. An ap-
propriate joined modelling language is a language which can be used to define both
the source and the target models (see Fig. 5.1). The second step consists of using
the joined modelling language to define model transformation rules. The defini-
tion task is usually performed only once for each pair of modelling languages, and
reused during the application task.

The application task is performed in three steps. The first step consists of con-
verting each source model to an intermediate model; i.e. a model which is defined

72

5.2. Relating Modelling Formalisms

S2
join #! J2 T2

join��

S1
conversion #!

��

J1

��

projection #! T1

��

Figure 5.2: Join, conversion and projection

by the joined modelling language. In the second step, the transformation rules are
applied iteratively to the intermediate models. In the third step, target models will
be projected out from the final intermediate models.

In DPF terms, the definition task of constraint-aware model transformation is
carried out as follows (see Fig. 5.2):

1. Define an appropriate joined modelling formalism (Γ2�J2, J2, Γ3) together
with morphisms from the source (Σ2�S2,S2, Σ3) and target (Θ2�T2,T2, Θ3)
modelling formalisms into (Γ2�J2, J2, Γ3).

2. Define (non-deleting) transformation rules as typed specification morphisms
r : L�J2 → R�J2.

Given a conformant source specification S1�S2, the application task is per-
formed as follows:

1. Convert S1�S2 to a typed specification J1�J2.

2. Apply the transformation rules iteratively to J1�J2, and obtain a conformant
specification J′

1�J2.

3. Project out a conformant target specification T1�T2 from J′
1�J2.

A running example is used to illustrate constraint-aware model transformations.
It presents a transformation of a structural object-oriented model to a relational data
model. The modelling formalisms used to define these models are introduced in
Sections 4.3.1 and 4.3.2. In this example, the syntax used for the definition of the
transformation rules is the same as the syntax used to specify the models themselves
(see [12; 24; 55; 56] for references to and arguments for the usage of this kind of
“concrete syntax” for the definition of model transformation rules).

5.2 Relating Modelling Formalisms

The first step of the definition task, as mentioned, is based on morphisms between
modelling formalisms. Since both the source and the target modelling formalisms
will be related to the joined modelling formalism in the same way, we describe
the morphism between modelling formalisms in a generic way; i.e. from (Σ2�
S2,S2, Σ3) to (Σ′

2 � S′
2,S′

2, Σ′
3). A modelling formalism morphism should

satisfy the following properties:

73

5. CONSTRAINT-AWARE MODEL TRANSFORMATION

Σ3
CS2

43!
!

!
! Σ′

3
CS′2

BB�
�
�
�

Σ2
τΣ2

#! S2 S′
2 Σ′

2
τΣ′2

��

Figure 5.3: Two unrelated modelling formalisms

• It should enable the conversion of any conformant specification ((S1, CS1 :
Σ2)�ιS1 S2) to a typed specification ((S′

1, CS′
1:Σ′

2)�ιS′1 S′
2). That is, it

should define a conversion functor from CSpec(Σ2�S2) to TSpec(Σ′
2�S′

2).

• It should enable the projection of a conformant specification ((S1, CS1 :
Σ2) �ιS1 S2) from any conformant specification ((S′

1, CS′
1 : Σ′

2) �ιS′1

S′
2). That is, it should define a projection functor from CSpec(Σ′

2�S′
2)

to CSpec(Σ2�S2)
Recall that a modelling formalism (Σ2 � S2,S2, Σ3) consists of a signature

Σ3 = (P Σ3 , αΣ3), a metamodel S2 = (S2, CS2 : Σ3) and a typed signature Σ2�
S2 = ((P Σ2 , αΣ2) �τΣ2 S2). Hence, in order to relate modelling formalisms
(Σ2�S2,S2, Σ3) and (Σ′

2�S′
2,S′

2, Σ′
3) (see Fig. 5.3), we need to define

1. a signature morphism from Σ3 to Σ′
3,

2. a specification morphism from S2 to S′
2, and

3. a typed signature morphism from Σ2�S2 to Σ′
2�S′

2.
First, we define signature morphisms (see Fig. 5.4).

Definition 32 (Signature Morphism) Given signatures Σ3 = (P Σ3 , αΣ3) and Σ′
3

= (P Σ′
3 , αΣ′

3), a signature morphism σ3 : Σ3 → Σ′
3 is a mapping σ3 : P Σ3 →

P Σ′
3 such that for any p ∈ P Σ3 it holds that αΣ3(p) = αΣ′

3(σ3(p)).
A semantically compatible signature morphism is a signature morphism where

[[σ3(p)]]Σ′
3 ⊆ [[p]]Σ3 .

Each signature morphism σ3 : Σ3 → Σ′
3 gives rise to a functor σ∗

3 between the
corresponding categories of specifications Spec(Σ3) and Spec(Σ′

3).

Proposition 4 (Signature Morphism and Translation Functor) Given signatures
Σ3 = (P Σ3 , αΣ3) and Σ′

3 = (P Σ′
3 , αΣ′

3), a signature morphism σ3 : Σ3 → Σ′
3

induces a functor σ∗
3 : Spec(Σ3) → Spec(Σ′

3) between the corresponding cate-
gories of specifications. That is,

given a specification S2 = (S2, CS2:Σ3) in Spec(Σ3),
we define σ∗

3(S2) = (S2, σ∗
3(CS2):Σ′

3) in Spec(Σ′
3)

where σ∗
3(CS2) = {(σ3(p), δ) | (p, δ) ∈ CS2}.

74

5.2. Relating Modelling Formalisms

Σ3

CS2

43�
�

�
�

σ3 #! Σ′
3

σ∗
3 (CS2)
�<+ + + + + + + + + + +

CS′2

BB,
,
,
,

Σ2
τΣ2

#! S2 σ∗
3(S2) φ2 #! S′

2 Σ′
2

τΣ′2

��

Figure 5.4: Signature morphism and heterogeneous specification morphism

Σ3
σ3 #! Σ′

3

αΣ3(p)

δ *)

αΣ′
3(σ3(p))

δCCS2

=

for any specification morphism ψ : S2 → P2 in Spec(Σ3)
we get a specification morphism σ∗

3(ψ) := ψ : σ∗
3(S2) → σ∗

3(P2) in Spec(Σ′
3).

Proof. We have to validate that σ∗
3(ψ) preserves constraints. This is ensured by the

following:

(σ3(p), δ) ∈ σ∗
3(CS2) ⇔ (p, δ) ∈ CS2 (Definition of σ∗

3(CS2))

⇒ (p, δ; ψ) ∈ CP2 (ψ : S2 → P2 is
specification morphism)

⇔ (σ3(p), δ; ψ) ∈ σ∗
3(CP2) (Definition of σ∗

3(CP2))

♦

Now considering specification morphism from S2 to S′
2. For the modelling

formalisms (Σ2�S2,S2, Σ3), (Σ′
2�S′

2,S′
2, Σ′

3), a signature morphism σ3 :
Σ3 → Σ′

3 allows us to define a heterogeneous specification morphism between
the metamodels S2 and S′

2 (see Fig. 5.4). Since these two specifications belong
to two different categories, i.e. Spec(Σ3) and Spec(Σ′

3), respectively, the mor-
phism (φ2, σ3) : S2 → S′

2 is defined in two steps. Firstly, the induced functor
σ∗

3 maps the specification S2 to a specification σ∗
3(S2) in Spec(Σ′

3). Then, a
(homogeneous) specification morphism φ2 (see Definition 13) is defined between
σ∗

3(S2) and S′
2.

Definition 33 (Heterogeneous Specification Morphism) Given two specifications
S2 = (S2, CS2 : Σ3) and S′

2 = (S′
2, CS′

2 : Σ′
3), a heterogeneous specification

75

5. CONSTRAINT-AWARE MODEL TRANSFORMATION

Σ2

CS1

DD-
-

-
-

-
-

- τΣ2
#!

σ2

 �
S2

φ2
#! S′

2 Σ′
2

C(σ2,φ2)∗(S1)

��� � � � � � � � � � � � �τΣ′2

��

S1

ιS1

��

(σ2, φ2)∗(S1)

ι(σ2,φ2)∗(S1)

::�������������������

Figure 5.5: Typed signature morphism

morphism (φ2, σ3) : S2 → S′
2 is given by a signature morphism σ3 : Σ3 → Σ′

3
together with a specification morphism φ2 : σ∗

3(S2) → S′
2

Σ3
σ3 #! Σ′

3

Spec(Σ3)
σ∗

3 #! Spec(Σ′
3)

S2
� #!

∈
��

σ∗
3(S2) φ2 #!

∈

��

S′
2

∈����

65����

After defining morphisms between the signatures Σ3 and Σ′
3 and the specifi-

cations S2 and S′
2, the next step is to define a typed signature morphism between

the typed signatures Σ2�S2 and Σ′
2�S′

2 (see Fig. 5.5).

Definition 34 (Typed Signature Morphism) Given typed signatures Σ2 � S2 =
((P Σ2 , αΣ2) �τΣ2 S2) and Σ′

2�S′
2 = ((P Σ′

2 , αΣ′
2) �τΣ′2 S′

2), a typed signa-
ture morphism (σ2, φ2) : Σ2�S2 → Σ′

2�S′
2 is given by a signature morphism

σ2 : Σ2 → Σ′
2 together with a graph homomorphism φ2 : S2 → S′

2 such that
τΣ2(p); φ2 = τΣ′

2(σ2(p)) for all p ∈ P Σ2 .
A typed signature morphism (σ2, φ2) is semantically compatible if σ2 is seman-

tically compatible.

Σ2
σ2 #! Σ′

2

αΣ2 (p)
τΣ2 (p)

#! S2
φ2

#!
=

S′
2 αΣ′

2(σ2(p))
τΣ′2 (σ2(p))

��

Similar to (untyped) signature morphisms, each typed signature morphism (σ2, φ2) :
Σ2�S2 → Σ′

2�S′
2 gives rise to a functor (σ2, φ2)∗ between the corresponding

categories of typed specifications TSpec(Σ2�S2) and TSpec(Σ′
2�S′

2).

76

5.2. Relating Modelling Formalisms

Proposition 5 (Typed Signature Morphism and Translation Functor) Given ty-
ped signatures Σ2�S2 and Σ′

2�S′
2, a typed signature morphism (σ2, φ2) : Σ2�

S2 → Σ′
2�S′

2 induces a functor (σ2, φ2)∗ : TSpec(Σ2�S2) → TSpec(Σ′
2�S′

2)
between the corresponding categories of typed specifications. That is,

given a typed specification ((S1, CS1:Σ2)�ιS1 S2) in TSpec(Σ2�S2),
we define (σ2, φ2)∗((S1, CS1:Σ2)�ιS1 S2) =

((S1, (σ2, φ2)∗(CS1):Σ′
2)�ιS1 ;φ2S

′
2)

in TSpec(Σ′
2�S′

2)
where (σ2, φ2)∗(CS1) = {(σ2(p), δ) | (p, δ) ∈ CS1}.

Σ2
σ2 #! Σ′

2

αΣ2(p)
τΣ2 (p)

#!

δ 7E

S2
φ2

#!
=

S′
2 αΣ′

2(σ2(p))

δE7

τΣ′2 (σ2(p))
��

=

S1

ιS1

/.�������� ιS1 ;φ

FF........
= =

for any typed specification morphism
ψ : ((S1, CS1:Σ2)�ιS1 S2) → ((P1, CP1:Σ2)�ιP1 S2) in TSpec(Σ2�S2),
we get a specification morphism
(σ2, φ2)∗(ψ) := ψ : ((S2, (σ2, φ2)∗(CS1):Σ′

2)�ιS1 ;φ2S
′
2) →

((P1, (σ2, φ2)∗(CP1):Σ′
2)�ιP1 ;φ2S

′
2) in TSpec(Σ′

2�S′
2).

Proof. In addition to the proof of Proposition 4, we have to validate that (σ2, φ2)∗(CS1)
is compatible with typing, that is, ∀(σ2(p), δ) ∈ (σ2, φ2)∗(CS1) : δ; (ιS1 ; φ2) =
τΣ′

2(σ2(p)). This is ensured by the following:

δ; (ιS1 ; φ2) = τΣ2(p); φ2 (CS1 is type compatible)

= τΣ′
2(σ2(p)) (φ2 is type compatible)

We can validate that (σ2, φ2)∗(ψ) preserves constraints in the same way as in
Proposition 4. It remains only to validate that (σ2, φ2)∗(ψ) is also compatible with
typing. This is ensured by definition; i.e. ψ; ιP1 = ιS1 implies ψ; (ιP1 ; φ2) =
ιS1 ; φ2. ♦

Immediately from Propositions 2, 4 and 5 we obtain the following corollary.

Corollary 1 Given a semantically compatible signature morphism σ3 : Σ3 → Σ′
3,

for any specification S2 = (S2, CS2:Σ3) in Spec(Σ3), we have Inst(σ∗
3(S2)) ⊆

Inst(S2).

77

5. CONSTRAINT-AWARE MODEL TRANSFORMATION

Similarly, given a semantically compatible typed signature morphism (σ2, φ2) :
(Σ2 � S2) → (Σ′

2 � S′
2), for any typed specification S1 � S2 = ((S1, CS1 :

Σ2)�ιS1 S2) in TSpec(Σ2�S2), we have Inst((σ2, φ2)∗(S1�S2)) ⊆ Inst(S1�S2).

Remark 23 (Commutative Functors) Based on Definition 22 (see Section 4.2)
and Propositions 4 and 5, we obtain the following commutative functors between
categories of (typed) specifications.

TSpec(Σ2�S2) US2 #!

(σ2,φ2)∗

��
=

Spec(Σ2)

σ∗
2

��
TSpec(Σ′

2�S′
2) US′2 #! Spec(Σ′

2)

Proposition 6 (Signature Morphism and Category of Instances) Given a sem-
antically compatible signature morphism σ3 : Σ3 → Σ′

3, a heterogeneous spec-
ification morphism (φ2, σ3) : S2 → S′

2 with S2 = (S2, CS2 : Σ3) and S′
2 =

(S′
2, CS′

2:Σ′
3) induces a forgetful functor (φ2, σ3)• : Inst(S′

2) → Inst(S2).

Proof. Follows from Proposition 2 and Corollary 1. That is,

(φ2, σ3)• : Inst(S′
2) → Inst(σ∗

3(S2)) ⊆ Inst(S2)

♦

We are now able to define morphisms between modelling formalisms in such
a way that the requirements ensuring the conversion and projection steps in our
approach are fulfilled.

Definition 35 (Modelling Formalism Morphism) Given modelling formalisms
(Σ2 � S2,S2, Σ3) and (Σ′

2 � S′
2,S′

2, Σ′
3), a modelling formalism morphism

(σ3, φ2, σ2) : (Σ2�S2,S2, Σ3) → (Σ′
2�S′

2,S′
2, Σ′

3) is given by:
• a semantically compatible signature morphism σ3 : Σ3 → Σ′

3 and

• a graph homomorphism φ2 : S2 → S′
2 such that

– (σ2, φ2) : Σ2�S2 → Σ′
2�S′

2 is a typed signature morphism and
– (φ2, σ3) : S2 → S′

2 is a heterogeneous specification morphism.

The conversion step is ensured by the existence of a conversion functor.

Proposition 7 (Conversion Functor) Given modelling formalisms (Σ2�S2,S2,
Σ3) and (Σ′

2�S′
2,S′

2, Σ′
3), a typed signature morphism (σ2, φ2) : Σ2�S2 →

Σ′
2�S′

2 provides a conversion functor

CSpec(Σ2�S2)
(σ2,φ2)∗

#! TSpec(Σ′
2�S′

2)

For any conformant specification ((S1, CS1:Σ2)�ιS1 S2) we define a typed spec-
ification (σ2, φ2)∗((S1, CS1:Σ2)�ιS1 S2) = ((S′

1, CS′
1:Σ′

2)�ιS′1 S′
2).

78

5.2. Relating Modelling Formalisms

Proof. Follows immediately from Proposition 5 and the inclusion CSpec(Σ2�S2) ⊆
TSpec(Σ2�S2) in Definition 23. ♦

Also, the projection step is ensured by the existence of a functor.

Proposition 8 (Projection Functor) Given modelling formalisms (Σ2�S2,S2, Σ3)
and (Σ′

2�S′
2,S′

2, Σ′
3), a modelling formalism morphism (σ3, φ2, σ2) : (Σ2�

S2,S2, Σ3) → (Σ′
2�S′

2,S′
2, Σ′

3) provides a projection functor

CSpec(Σ′
2�S′

2)
(σ3,φ2,σ2)•

#! CSpec(Σ2�S2)

For any conformant specification ((S′
1, CS′

1 : Σ′
2) �ιS′1 S′

2) we define a con-
formant specification (σ3, φ2, σ2)•((S′

1, CS′
1 : Σ′

2) �ιS′1 S′
2) = ((S1, CS1 :

Σ2)�ιS1 S2).

Proof. The underlying graph S1 together with the graph homomorphism ιS1 :
S1 → S2 are constructed by a pullback of S2

φ2−→ S′
2

ιS′1←−− S′
1. Proposition 6

ensures (S1, ιS1) ∈ Inst(S2).

Σ3
CS2

43!
!

!
!

σ3 #! Σ′
3

CS′2

BB�
�
�
�

Σ2

CS1

GG-
-

-
-

-
-

- τΣ2
#!

σ2

��
S2

φ2
#! S′

2 Σ′
2

CS′1

HH/
/
/
/
/
/
/τΣ′2

��

S1

ιS1

��

φ1
#! S′

1

ιS′1

��

It remains to construct the set CS1 of constraints. For any p ∈ P Σ2 and any
constraint (σ2(p), δ′) ∈ CS′

1 we construct a constraint (p, δ) ∈ CS1 as follows

Σ2
σ2 #! Σ′

2

αΣ2(p)

δ
��

���
���

���
�� τΣ2 (p)

#! S2
φ2 #!

P.B.

=

S′
2 αΣ′

2(σ2(p))

δ′
II���

���
���

���
��τΣ′2 (σ(p))

��

S1

ιS1

��

φ1
#!

=

S′
1

ιS′1

��

=

79

5. CONSTRAINT-AWARE MODEL TRANSFORMATION

Due to the definition of typed signature morphisms we have αΣ2(p) = αΣ′
2(σ2(p))

and τΣ2(p); φ2 = τΣ′
2(σ2(p)). Since CS′

1 is type compatible we obtain, in such
a way, τΣ2(p); φ2 = δ′; ιS′

1 thus exists, due to the universal property of the pull-
back, a unique δ : αΣ2(p) → S1 such that δ; φ1 = δ′ and δ; ιS1 = τΣ2(p). The
second equation means that the constructed constraint (p, δ) ∈ CS1 is also type
compatible. ♦

5.3 Joined Modelling Formalism

We have explained how modelling formalism morphisms are defined and which
properties these morphisms should possess. In this section, we explain the first step
of the definition task; i.e. how a joined modelling formalism and the corresponding
morphisms may be defined in practice. A possible way to obtain a joined modelling
formalism is to construct the disjoint union of the components of the source and
target modelling formalisms and to add additional auxiliary components to this
disjoint union as shown in [107]. In this case, the morphisms from the source and
target modelling formalisms to the joined modelling formalism are given by the
injections which we obtain according to the disjoint union construction.

Roughly speaking, given the source (Σ2 � S2,S2, Σ3) and the target (Θ2 �
T2,T2, Θ3) modelling formalisms (see Fig. 5.6a and Fig. 5.6c, respectively), a
joined modelling formalism (Γ2�J2, J2, Γ3) is defined by the disjoint union con-
struction (see Fig. 5.6b). In more detail, the source and target metamodels are
joined together to J2 := S2 � K2 � T2, and the source and target signatures are
joined together to Γ2�J2 := Σ2�S2 � Θ2�T2 and Γ3 := Σ3 � Ξ3 � Θ3, where
� denotes the disjoint union operation (see Example 19). In J2, the component K2
represents the correspondence between S2 and T2. In most cases, the elements in
K2 will be arrows connecting nodes in S2 and T2. However, in some cases it may
be convenient to also have auxiliary nodes in K2 and arrows connecting these nodes
with elements in S2 and/or T2. In Γ3, the component Ξ3 contains predicates which
are used to add constraints, and thus additional requirements, to J2. That is, K2 is
not a specification independently, similarly, Ξ3 is not a signature independently.

In practise, the definitions of K2 and Ξ3 are often done manually by transfor-
mation designers during the definition task of model transformation. This is the
essential and creative part which normally cannot be performed fully automatically
unless the source and target modelling formalisms are very similar.
Example 19 (Joined Modelling Formalism) Recall Sections 4.3.1 and 4.3.2 in
which we introduced the source modelling formalism (Σ2�S2,S2, Σ3) for speci-
fying structural object-oriented models and the target modelling formalism (Θ2�
T2,T2, Θ3) for specifying relational data models. Fig. 5.7 shows a joined mod-
elling formalism (Γ2�J2, J2, Γ3). Moreover, Table 5.1 shows the component Ξ3
of Γ3. Note that the node DataType in S2 and T2 is renamed to DataTypes and
DataTypet in J2 by the disjoint union operation. ♦

80

5.3. Joined Modelling Formalism

Figure 5.6: Source, target and joined modelling formalisms

Figure 5.7: A joined modelling formalism for structural object-oriented models and
relational data models

81

5. CONSTRAINT-AWARE MODEL TRANSFORMATION

Table 5.1: A sample signature Ξ3

p αΞ3(p) Proposed vis. Semantic Interpret.

[commu-
tative]

1
f #!

g

��

2
g′

��
3

f ′
#! 4

X
f #!

g
��

[=]

Y

g′

��
Z

f′
#! Æ

∀x ∈ X :
g′(f(x)) = f ′(g(x))

[bijective] 1
f #! 2 X

f
[bij]

#! Y f is [mult(1,1)],
[injective] and
[surjective]

Remark 24 (Universal Constraints in Joined Modelling Formalisms) The uni-
versal constraints from the source modelling formalism will be checked to validate
source specifications. Moreover, after the projection of target models, the universal
constraints of the target modelling formalism will be checked to validate the tar-
get specifications. The universal constraints of the target modelling formalism may
also be translated to the joined modelling formalism by the conversion functor (see
Proposition 7) and applied as transformation rules (see Remark 20).

5.4 Constraint-Aware Transformation Rules

The second step in the definition task of model transformation consists of the def-
inition of constraint-aware transformation rules. These rules are defined as typed
specification morphisms; that is, the input and output patterns are typed specifi-
cations. Moreover, we use none-deleting (or monotonic) transformation rules in
our approach. As a consequence, in each transformation rule the input pattern is
included in the output pattern.

Definition 36 (Transformation Rule) Given a modelling formalism (Σ2�S2,S2,
Σ3), a transformation rule is a typed specification morphism r : L�S2 ↪→ R�S2
between the input and output patterns L�S2 and R�S2, with r being an inclusion.

S2

=

L

ιL

JJ********
� � r #! R

ιR

KK000000000

L�S2
� � r #! R�S2

82

5.4. Constraint-Aware Transformation Rules

Recall that a model transformation definition consists of a set of transformation
rules and its application consists of the iterative application of these rules. In our ap-
proach, given a modelling formalism (Σ2�S2,S2, Σ3), the application of a trans-
formation rule is given by a pushout construction in the category TSpec(Σ2�S2)
(see Proposition 11 in Appendix A.1.2).

Definition 37 (Application of Transformation Rule) Let (Σ2�S2,S2, Σ3) be a
modelling formalism, S1�S2 a typed specification, and r : L�S2 ↪→ R�S2 a
transformation rule. An application 〈r, m〉 of r via a match m : L�S2 → S1�S2,
where m is a typed specification morphism, is given by a pushout of S1�S2

m←−
L�S2

r−→ R�S2 in TSpec(Σ2�S2)

L�S2

m

��

� � r #! R�S2

m∗

��
S1�S2

� � 〈r,m〉 #! S∗
1�S2

P O

Note that in constraint-aware transformation rules, the output patterns are not
only dependent on the structure of the input patterns, but also on the constraints.
That is, the input patterns L1 and L2 of two rules r1 : L1 → R1 and r2 : L2 → R2
may have the same underlying graphs L1 = L2, however, depending on differences
between CL1 and CL2 , the output patterns R1 and R2, and especially the underly-
ing graphs R1 and R2, may be different. This makes constraint-aware transforma-
tion rules more fine-grained and expressive in the sense that one can consider more
transformation cases based on constraints. This feature of expressiveness comes in
addition to the capability of transforming constraints.

Recall that the modelling formalisms in our running example, defined in Sec-
tions 4.3.1 and 4.3.2, are designed for multi-valued and single-valued semantic
environments, respectively. In order to define transformation rules between models
specified by these formalisms, one needs to determine how functions and predi-
cates from a multi-valued semantic environment are represented in a single-valued
environment. We discuss now the representation of multi-valued functions, as well
as the composition and image-inclusion of these functions in a single-valued mod-
elling environment. In Example 20, the representation of multi-valued functions is
reflected in rules r4, r5 and r6; while composition and image-inclusion are reflected
in rule r7.

For a multi-valued function f : X → Y , the graph of f is defined by gr(f) =
{(x, y)|y ∈ f(x)}. The set of tuples gr(f) together with the projections π1, π2 and
the predicate [jointly-injective] represent the multi-valued function f in
a single-valued environment (see Fig. 5.8).

For two multi-valued functions f : X → Y and g : Y → Z, the composition
f ; g is defined as (f ; g)(x) = g(f(x)) = {z ∈ Z | ∃y ∈ Y : y ∈ f(x) ∧ z ∈
g(y)}. This is indicated by the predicate [composition] in Fig. 5.9a. In a
single-valued environment, this composition is obtained in two steps. In the first

83

5. CONSTRAINT-AWARE MODEL TRANSFORMATION

X
f #! Y

(a) Multi-valued function

X
f #!######## Y

gr(f)
π1

KK)))))))) π2

JJ11111111

[ji]

(b) Its representation in a single-
valued environment

Figure 5.8: Representation of multi-valued function in a single-valued environment

X
f #!

f ;g

[comp]

Y
g #! Z

(a) Composition in multi-valued environment

X
f #!###########

f ;g

 �+ � 2 3 4 5 6 # 7 8 9 : ; � <
Y

g #!########### Z

gr(f)
π2

��������������π1

KK))))))))

gr(g)
π4

" 11111111π3

��

gr(f) �� gr(g)
π6

��==========
π5

��>>>>>>>>>>

P rX,Z [surj]
��

P.B.

gr(f ; g)

LL MM

[ji]

(b) Its representation in a single-valued environment

Figure 5.9: Representation of composition of multi-valued functions in a single-
valued environment

step, we use the pullback construction gr(f) �� gr(g) = {(x, y, z) | (x, y) ∈
gr(f) ∧ (y, z) ∈ gr(g)}. In the second step, we use surjective-jointly-injective
factorisation gr(f ; g) = PrX,Z(gr(f) �� gr(g)) = {(x, z) | ∃y ∈ Y : (x, y) ∈
gr(f) ∧ (y, z) ∈ gr(g)} (see Fig. 5.9b). The predicate [rcomp] in the signature
Θ2 (see Table 4.2) can be seen as an abbreviation of the pullback construction
followed by the surjective-jointly-injective factorisation.

84

5.4. Constraint-Aware Transformation Rules

X

f

)(

g

NN[�]
OO Y

(a) Image-inclusion in multi-valued
environment

gr(f)
π2

�??
??

??
??

?
π1

?�11
11
11
11

inj

��

X [comp][comp] Y

gr(g)
π4

JJ11111111π3

KK))))))))

(b) Its representation in a single-
valued environment

Figure 5.10: Representation of image-inclusion on multi-valued functions in a
single-valued environment

Table 5.2: Rules r1 and r2 for the transformation of structural object-oriented mod-
els to relational data models

L�J2 R�J2
Rule r1. Class to table

1:Class 1:Class #!### 1:Table
1:Col

[pk] #! Int:DTt

Rule r2. Attribute to column

1:Class

1:Attr

��

#!### 1:Table
1:Col

[pk] #! Int:DTt

1:DTs

1:Class

1:Attr

��

#!### 1:Table
1:Col

[pk] #!

2:Col

��

Int:DTt

1:DTs #!### 1:DTt

Now we consider image-inclusion. For the multi-valued version, if we have
f : X → Y and g : X → Y , then f � g means ∀x ∈ X : f(x) ⊆ g(x). In a
single-valued environment, this will be represented as the function inj : gr(f) →
gr(g) together with the predicates [injective] and [composition], with
the meaning that (x, y) ∈ gr(f) implies (x, y) ∈ gr(g) (see Fig. 5.10). Note that
for readability reasons the arrows f and g are omitted in Fig 5.10b.
Example 20 (Definition of Transformation Rules) Building upon Example 19,
Tables 5.2 and 5.3 shows some of the transformation rules which are needed to
transform structural object-oriented models to relational data models. Moreover,
Table 5.4 shows some transformation rules which enable transformation of more
complex constraints such as requirement 5 in Example 10. These rules are typed
by the joined metamodel J2 shown in Fig. 5.7 (see also Appendix A.2 for a longer
list of transformation rules).

In rule r1, each class is transformed to a corresponding table. In rule r2, for
each attribute a column is created. The rules r3 and r4 are used to transform bidi-

85

5. CONSTRAINT-AWARE MODEL TRANSFORMATION

rectional references (or a pair of inverse functions) between two classes to foreign
keys between two tables. Notice that the difference between the input patterns of
the rules r3 and r4 is the constraints forced by the predicates [injective] and
[mult(0,1)] on the arrows 1:Ref and 2:Ref, respectively. This constraint affects
the way in which a match of the input pattern is transformed to a match of the output
pattern. More precisely, since in r3 each 2:Class is related to at most one 1:Class, a
foreign key column 3:Col will be created which will refer to 1:Col. However, in r4
each 2:Class may be related to many 1:Class and vice versa. Therefore, a link table
3:Table is created with two foreign key columns 3:Col and 4:Col.

As seen from Table 5.3, applying rule r5 will have the same effect as applying
rule r4. The difference between the input patterns is that in r4 both classes 1:Class
and 2:Class have access to each other, while in r5 only 1:Class “knows about” (or
has access to) 2:Class. In contrast, in the output patterns of both rules, the link table
3:Table has access to both of the corresponding tables 1:Table and 2:Table.

The rule r6 resembles r3 and r4, however, the main difference is the constraints
which are forced by the predicates [surjective] and [mult(1,∞)] on the
arrows 1:Ref and 2:Ref, respectively. According to these constraints, each 2:Class
must be related to at least one 1:Class. This is reflected in the output pattern by the
predicate [image-equal] on the arrows 2:Col and 4:Col.

In rule r7, the constraints which are forced by the predicates [composition]
and [image-inclusion] on the arrows 1;2:Ref and 3:Ref are mapped to [rcomp],
[injective] and [total]. More precisely, the link tables 4:Table, 5:Table
and 6:Table with their [jointlyinjective] and [foreign-key] predi-
cates correspond to the references 1:Ref, 2:Ref and 3:Ref, respectively, according to
rule r5. Moreover, the join table 7:Table and its [rcomp] predicate correspond to
the reference 1;2:Ref and the [composition] predicate. Furthermore, the pred-
icates [total] and [injective] on the arrow from 6:Table to 7:Table corre-
spond to the [image-inclusion] predicate on the references 3:Ref and 1;2:Ref.

♦

86

5.4. Constraint-Aware Transformation Rules

Table 5.3: Rules r3, r4, r5 and r6 for the transformation of structural object-
oriented models to relational data models

L�J2 R�J2
Rule r3. Many-to-one references to foreign key

1:Class

[inj]

1:Ref

PP

#!### 1:Table
1:Col

[pk] #! Int:DTt

2:Class

[0..1]

2:Ref

QQ

#!### 2:Table
2:Col

[pk] #!

[inv]

Int:DTt

1:Class

[inj]

1:Ref

PP

#!### 1:Table
[pk]

1:Col
#! Int:DTt

2:Class

[0..1]

2:Ref

QQ

#!### 2:Table
2:Col

[pk] #!

3:Col

RR@@@@@@@@@@@@@@
Int:DTt

[inv]

[fk]

.-

Rule r4. Many-to-many references to link table and foreign keys

1:Class

1:Ref

SS

#!### 1:Table
1:Col

[pk] #! Int:DTt

2:Class #!###

2:Ref

TT

2:Table
2:Col

[pk] #!

[inv]

Int:DTt

1:Class

1:Ref

SS

#!### 1:Table
[pk]

1:Col
#! Int:DTt

3:Table
•

3:Col

��

•
4:Col

��
2:Class #!###

2:Ref

TT

2:Table
[pk]

2:Col
#! Int:DTt

[inv]
[fk]

UU

[fk]

��

[ji]

Rule r5. Many-to-many reference to link table and foreign keys

1:Class

1:Ref

��

#!### 1:Table
1:Col

[pk] #! Int:DTt

2:Class #!### 2:Table
2:Col

[pk] #! Int:DTt

1:Class

1:Ref

��

#!### 1:Table
[pk]

1:Col
#! Int:DTt

3:Table
•

3:Col

��

•
4:Col

��
2:Class #!### 2:Table

[pk]

2:Col
#! Int:DTt

[fk]

UU

[fk]

��

[ji]

Rule r6. [inverse] and [surjective] to
[foreign-key], [image-equal], [total] and [jointly-injective]

1:Class

1:Ref

[surj]

SS

#!### 1:Table
1:Col

[pk] #! Int:DTt

2:Class #!###

[1..∞]

2:Ref

TT

2:Table
2:Col

[pk] #!

[inv]

Int:DTt

1:Class

1:Ref

[surj]

SS

#!### 1:Table
[pk]

1:Col
#! Int:DTt

3:Table
•

3:Col

��

•
4:Col

��
2:Class #!###

[1..∞]

2:Ref

TT

2:Table
[pk]

2:Col
#! Int:DTt

[inv]
[fk]

UU

[fk]

�� [ie]

[ji]

87

5. CONSTRAINT-AWARE MODEL TRANSFORMATION

Ta
bl

e
5.

4:
R

ul
e

r 7
fo

rt
he

tr
an

sf
or

m
at

io
n

of
st

ru
ct

ur
al

ob
je

ct
-o

ri
en

te
d

m
od

el
s

to
re

la
tio

na
ld

at
a

m
od

el
s

L
�

J
2

R
�

J
2

R
ul

e
r 7

.
[
c
o
m
p
o
s
i
t
i
o
n
]

an
d
[
i
m
a
g
e
-
i
n
c
l
u
s
i
o
n
]

to
[
r
c
o
m
p
]

,[
i
n
j
e
c
t
i
v
e
]

an
d
[
t
o
t
a
l
]

1:
C

la
ss

1;
2:

R
ef

[c
om

p]

VV

3:
R

ef

WW1:
R

ef ��

#!#
#

#
1:

Ta
bl

e
[p

k]

1:
C

ol
#! I

nt
:D

Tt

4:
Ta

bl
e

•4:
C

ol

�� • 5:
C

ol
��

6:
Ta

bl
e

•

8:
C

ol A A
A

XX A A
A A
A A

•

9:
C

ol
>>

2:
C

la
ss

2:
R

ef ��

#!#
#

#
2:

Ta
bl

e
2:

C
ol

[p
k]

#! I
nt

:D
Tt

[fk
]

UU [fk
]

��
•

[�
]
#!

[ji
]

5:
Ta

bl
e

•6:
C

ol

�� • 7:
C

ol

��
3:

C
la

ss
#!#

#
#

3:
Ta

bl
e

3:
C

ol[p
k]

#! I
nt

:D
Tt

[fk
]

UU [fk
]

��[ji
]

[fk
]

II

[fk
]

��

[ji
]

1:
C

la
ss

1;
2:

R
ef

[c
om

p]

VV

3:
R

ef

WW1:
R

ef ��

#!#
#

#
1:

Ta
bl

e
[p

k]

1:
C

ol
#! I

nt
:D

Tt

4:
Ta

bl
e

•4:
C

ol

�� • 5:
C

ol
��

6:
Ta

bl
e

•

8:
C

ol A A
A

XX A A
A A
A A

•

9:
C

ol
>>

• h
[in

j]

��
2:

C
la

ss

2:
R

ef ��

#!#
#

#
2:

Ta
bl

e
2:

C
ol

[p
k]

#! I
nt

:D
Tt

7:
Ta

bl
e

u

A A

XX A A
A A
A A
A

v

%%

=�%%
%%
%%
%

[fk
]

UU [fk
]

��
•

[�
]
#!

[ji
]

[rc
om

p]

5:
Ta

bl
e

•6:
C

ol

�� • 7:
C

ol

��
3:

C
la

ss
#!#

#
#

3:
Ta

bl
e

3:
C

ol[p
k]

#! I
nt

:D
Tt

[fk
]

UU [fk
]

��[ji
]

[fk
]

II

[fk
]

��

[ji
]

88

5.5. Application of Model Transformation

5.5 Application of Model Transformation

In this section, we discuss the application task of model transformation. That is,
for the following source, target and joined modelling formalisms as well as the
morphisms between them,

(Σ2�S2,S2, Σ3)
(σ2,φ2,σ3) #! (Γ2�J2, J2, Γ3) (Θ2�T2,T2, Θ3)

(ψ2,μ2,ψ3)��

we outline the procedure for transforming a source specification S1 � S2 to a
target model T1�T2. We explain the procedure later by applying it to our running
example.

1. Conversion of the source specification. The source specification S1 �S2
is converted to an intermediate specification J1 � J2. This conversion is
given by the conversion functor according to Proposition 7 which leads to
J1�J2 = (σ2, φ2)∗(S1�S2).

2. Iterative application of the transformation rules. Upon the application of a
rule r : L�J2 ↪→ R�J2, for a match of the input pattern L�J2 in J1�J2,
the specification J1�J2 will be extended by an appropriate copy of the new
elements in R�J2, i.e. by those elements in R�J2 that are not already in
L�J2. This step is repeated as long as there are rules which are applicable
and the intermediate specification is not conformant to the joined metamodel.

3. Obtaining the target model. Once a conformant specification J′
1�J2 is con-

structed and there are no more applicable transformation rules, the projec-
tion functor (see Proposition 8) ensures that we can construct a specification
T1�T2 = (ψ2, μ2, ψ3)•(J′

1�J2) which can be considered the target model.

Remark 25 (Cases During Rule Application) The transformation rules are ap-
plied iteratively to the intermediate specification J1 � J2. While applying these
rules, depending on whether there are still rules which are applicable and whether
the intermediate specification is conformant to the joined metamodel, we encounter
one of the following states:

• There are still rules which are applicable, and the intermediate specification
is not conformant to the joined metamodel. In this case, we continue applying
the rules.

• No more rules are applicable and the intermediate specification is confor-
mant to the joined metamodel. This is the desired case in which we stop
applying the rules and project out the target model.

• No more rules are applicable, but the constructed specification is not con-
formant to the joined metamodel. This may mean that the rules are not com-
plete; i.e. the rules do not cover all possible cases in the source models.
Alternatively, this may mean that the joined metamodel is not satisfiable.

• There are still rules which are applicable, but the specification is already
conformant. This may mean that the joined metamodel is underspecified, or
loosely specified.

89

5. CONSTRAINT-AWARE MODEL TRANSFORMATION

• There are always some rules which are applicable. This may mean that the
rules are non-terminating, e.g. because the NACs are not defined properly
(see below).

Model transformations need to possess certain properties in order to be useful.
Among these properties is functional behaviour [41]. If there are no restrictions on
the application of rules, functional behaviour can be achieved if the set of transfor-
mation rules is terminating and locally confluent. The former means that we alwaysFUNCTIONAL

BEHAVIOUR come to a point where there are no more rules applicable. The latter means that if
two different transformation rules are applied to the same source specification, the
two results can be transformed further, leading finally to isomorphic specifications.
Another way to achieve functional behaviour is to control the application of rules
in an appropriate way. In this section, we shortly outline some strategies or mech-
anisms for controlling the application of constraint-aware transformation rules in
order to achieve functional behaviour. These strategies consist of negative applica-
tion conditions (NAC) and layering of rules [41].

In general, an arbitrary set of transformation rules may be non-terminating.
However, if each rule deletes one or more model elements in each application via a
match, then the rule will be applicable only once via that particular match, leading
to termination. Since our rules are non-deleting rules, we need to require that theNEGATIVE

APPLICATION
CONDITION

output pattern of each rule defines always a NAC for the rule itself. This is to force
that a rule is applied only once via a certain match.

Definition 38 (Negative Application Condition) Given a modelling formalism
(Σ2�S2,S2, Σ3) and a transformation rule r : L�S2 ↪→ R�S2, a negative
application condition for r is a typed specification morphism n : L�S2 → N�S2.

Each transformation rule r may be accompanied with a set NAC(r) of NACs.
Based on the existence of a match for the input pattern of the rule, and the none-
existence of matches for the rule’s NACs, the application of the rule can be con-
trolled as defined in the following.

Definition 39 (Application of Transformation Rules with NACs) Let (Σ2�S2,S2, Σ3)
be a modelling formalism, S1�S2 a typed specification, and r : L�S2 ↪→ R�S2 a
transformation rule with a set of negative application conditions NAC(r) = {ni :
L�S2 → Ni �S2} with i ∈ I for some index set I . The rule r is applicable
via a match m : L�S2 → S1 �S2 if there does not exist any injective match
qi : Ni�S2 → S1�S2 such that m = ni; qi.

Ni�S2

qi ����
���

���
���

��
L�S2

m

��

� � r #!ni�� R�S2

S1�S2

�

90

5.5. Application of Model Transformation

Remark 26 (NACs and NUCs) Negative application conditions are related to neg-
ative universal constraints from Definition 30. In particular, each negative univer-
sal constraint may be understood as a negative application condition in the sense
that, given a transformation rule r : L�S2 ↪→ R�S2, a NAC n : L�S2 → N�S2
in NAC(r), and a specification S1�S2, if there is a match m : L�S2 → S1�S2,
then there should not exist a match q : N�S2 → S1�S2 such that n; q = m.

There are two kinds of non-determinism during application of transformation
rules. Firstly, there may be more than one rule which is applicable at the same
time. Secondly, for a given rule, there may be more than one match in the source
model. A strategy which can be used to achieve some degree of determinism –
which together with the termination strategy will lead to functional behaviour – is
layering of the rules. In this strategy, one defines a set of numbered layers and LAYERING RULES
assigns each rule to a layer based on the order of its application. In this way,
the rules at each layer are applied before applying rules from the layers below.
Through the combination of layering and NACs, we will obtain a hierarchy of rules
as illustrated in Example 21.
Example 21 (Controlling Rule Application) Recall Example 20. We may use the
following NACs and a layering of the rules:

• l0 : Rules r1, r2.

• l1 : Rules r3, r4, r5, r6. The input patterns of the rules r3, r6 are NACs for
the rules r4, r5; while the input pattern of the rule r4 is a NAC for rule r5.

• l2 : Rule r7.
This means that the rules r1, r2 will be applied as long as possible. Then, the

rules r3, r6 are applied as long as possible. Afterwards, the rule r4, followed by r5
and r7. Fig. 5.11a shows the hierarchy which is induced by the strategy above. In
the figure, an arrow rx → ry between two rules rx, ry denotes that the input pattern
of rx is a NAC for ry . ♦

Remark 27 (Guarantee of Functional Behaviour) Since the rules in Example 20
are not exhaustive, i.e. they do not consider every possible case, we will not prove
that in general the strategy in Example 21 will guarantee functional behaviour.
However, the strategy holds for the object-oriented specification in Fig. 4.7c, which
is used as a starting point for the transformation. Note also that this configu-
ration of layering and NACs shown in the example is not unique; that is, one
may define other layers and NACs to achieve functional behaviour (see for ex-
ample Fig. 5.11b).

Example 22 (Sample Model Transformation) Recall the source (Σ2�S2,S2, Σ3),
target (Θ2�T2,T2, Θ3) and joined (Γ2�J2, J2, Γ3) modelling formalisms intro-
duced in Sections 4.3.1, 4.3.2 and 5.3, respectively. In this example, we use our
transformation procedure to apply the model transformation which consists of the
rules from Tables 5.2, 5.3 and 5.4 to the source model ((S1, CS1:Σ2)�ιS1 S2) in
Fig. 4.7c.

91

5. CONSTRAINT-AWARE MODEL TRANSFORMATION

(a) Using NACs and layering (b) Using only layering

Figure 5.11: Possible strategies for controlling application of the rules in Ta-
bles 5.2, 5.3 and 5.4

Figure 5.12: The specification J1�J2 before rule applications

Fig. 5.12b shows the specification J1�J2 after the conversion step; that is, it
shows the first intermediate model before application of the transformation rules.
Note that the only difference between S1�S2 in Fig. 4.7 and J1�J2 in Fig. 5.12b
is that S1 is typed by the specification S2 while J1 is typed by the specification
J2.

Fig. 5.13 shows an intermediate specification which is created by applying the
transformation rules r1, r5 and r6 in Tables 5.2 and 5.3 to the specification in
Fig. 5.12b. The effect of applying the rules r1 and r5 are hopefully obvious from
the figure. The rule r6 is applied to the arrows empDeps and depEmps, and the pred-
icates [inverse] and [surjective] are transformed to [foreign-key],
[image-equal], [total] and [jointly-injective] on the arrows con-
necting the nodes TEmployee, TEmpDep and TDepartment to Int in Fig. 5.13. The

92

5.5. Application of Model Transformation

Figure 5.13: The specification J1�J2 resulting from the application of the trans-
formation rules r1, r5 and r6 from the Tables 5.2 and 5.3

predicate [image-equal] is used to force that for any row in the table TEm-
ployee there is a corresponding row in the table TEmpDep.

Fig. 5.14c shows the relational data model, right after the projection step, which
is created by applying the transformation rules r1, r5, r6 and r7. More precisely,
this specification is obtained by applying r1 three times, r5 three times, r6 one
time, and r7 one time. Note that the rule r7 is applied to the arrows proEmps
and proEmps’, and the predicates [composition] and [image-inclusion]
are transformed to [rcomp], [injective] and [total] on the arrows con-
nected to the node TProEmp’. Recall that arrows in (Θ2�T2,T2, Θ3) are interpreted
as (single-valued) functions (see Section 4.3.2). Hence, we do not need to add con-
straints to force (single-valued) functions in Fig. 5.14c. However, we use the pred-
icate [total] from Θ2�T2 (see Table 4.2) to add constraints which force total
functions whenever necessary, for example columns for which a value is required.

♦

Remark 28 (Queries in Data Models) For the sake of comparison, we show in
Fig. 5.14 a 4-layered metamodelling hierarchy for relational data models. In Fig. 5.14d,
we have included the M0-level which corresponds to the instance in Fig 3.2b. In
Fig. 5.14d, we have represented the link tables as tuples. Note that the predicates

93

5. CONSTRAINT-AWARE MODEL TRANSFORMATION

Figure 5.14: The hierarchy of the target modelling formalism (Θ2�T2,T2, Θ3)
along with (Θ3,T3, Θ3); note that the signatures are not shown

94

5.5. Application of Model Transformation

[rcomp], [injective] and [total], the node TProEmp’, and the arrows
connected to it in T1, may be seen as queries or triggers in SQL. That is, in SQL
this structure may not be present in the actual database scheme. However, it may
be represented as one or another mechanism which will check that the database is
in a valid state, i.e. satisfies these constraints, after each update.

Remark 29 (Cases of Model Transformation) Recall the classifications of model
transformations into homogeneous and heterogeneous on one hand, and into in-
place and out-place on the other hand (see Section 1.6). Recall also that these clas-
sifications are orthogonal to each other; that is, a homogeneous model transforma-
tion may be carried out in-place or out-place, likewise, a heterogeneous model
transformation may be carried out in-place or out-place. In this view, we identify
the following interesting cases for the joined modelling formalism and its relations
to the source and target modelling formalisms:

(Σ2�S2,S2, Σ3)
(σ2,φ2,σ3) #!

(Σ2�S2,S2, Σ3)
�

(Ξ2�K2,K2, Ξ3)
�

(Θ2�T2,T2, Θ3)

(Θ2�T2,T2, Θ3)
(μ2,ψ2,μ3)��

In case of out-place model transformations, the transformation rules are spec-
ified such that no model elements in R \ L are typed by the source metamodel.
That is, ιR\L � φ2(S2). This is necessary to ensure that the transformation will
happen out-place, i.e. the original source model is not touched by the model trans-
formation.

In case of heterogeneous, out-place transformations, i.e. the general case which
we have detailed in this thesis, the source and target modelling formalisms are
different. In case of homogeneous, out-place model transformations, the source
and target modelling formalisms are the same.

In case of in-place model transformations, our approach supports the case
where model transformations only extend the source models; i.e. the case where
no deleting rules are necessary. Hence heterogeneous, in-place transformations
cannot be covered by the our approach since this kind of transformations requires
deleting rules.

In case of homogeneous, in-place transformations, the source and target mod-
elling formalisms are the same. Moreover, an appropriate joined modelling for-
malism may be constructed as follows:

(Σ2�S2,S2, Σ3)
(σ2,φ2,σ3) #!

(Σ2�S2,S2, Σ3)
�

(Ξ2�K2,K2, Ξ3)

95

CHAPTER 6
Version Control in MDE

Like other software artefacts, models undergo a complex evolution during their life
cycles. Version control is a key technique which enable developers to tackle this
complexity. This chapter provides a formalisation of the fundamental concepts and
processes of version control in the context of MDE.

6.1 Introduction

The main usage of version control systems (VCSs) consists of enabling users to
modify artefacts concurrently, and integrate these modifications as seamless as pos-
sible. Thus, a VCS should be able to calculate what has been modified in artefacts
at any given time. This feature is called difference calculation. In order to integrate
these modifications, the VCS should also be able to detect whether two concurrent
modifications of the same artefact are in conflict with each other or not. This feature
is called conflict detection. If conflicts are detected, manual user intervention will
be required to resolve the conflicts, otherwise the modifications will be integrated.
The integration process is called merging.

Traditional VCSs used in software engineering are based on the copy-modify-
merge approach. This approach is not fully exploited in MDE since current main-
stream implementations lack model orientation. In this chapter, we introduce a for-
malisation of the fundamental concepts of the copy-modify-merge approach based
on DPF. The main idea of this approach is to use common models to record un-
modified model elements and use these common models in difference calculation.
These modifications are represented in a difference model in which modifications
are annotated by means of predicates from a signature. This signature is specif-
ically designed for this purpose; that is, it consists of predicates such as [add],
[delete], etc. Two concurrent modifications are given by two difference models
which can be merged and analysed for conflict detection. The merging process is
based on a pushout construction, and (custom) rules are used to detect conflicts.

97

6. VERSION CONTROL IN MDE

The usage of signatures for annotation purposes is different from the usage we
have discussed in the previous chapters. In Chapter 3, we used predicates from
signatures to add constraints to specifications. These predicates had semantic in-
terpretations and affected what could be considered an instance of a specification.
In Chapter 5, we used the constraints in declaring model transformation rules and
in controlling the application of these rules. In this chapter we use signatures to
also annotate modifications in difference models. For example, we may annotate
an arrow or a node as added or deleted.

In the remainder of this chapter, all models are diagrammatic specifications
as defined in Section 3.3. We assume that these specifications are defined by the
object-oriented modelling formalism in Section 4.3.1. However, since the tech-
niques can be used independent on the metamodelling levels, we assume that spec-
ifications are untyped and are of the form (S, CS:Σ); that is, we drop all subscripts
which denote the metamodelling levels.

In this thesis, we only introduce the main concepts and the fundamental pro-
cesses of the approach which is detailed in [101; 105]. These concepts and pro-
cesses include:

• calculation of differences

• representation of differences

• merging of differences and conflict detection
We start with an example which explains a copy-modify-merge scenario.

6.2 A Copy-Modify-Merge Scenario in MDE

In this section, we illustrate a usual scenario of concurrent development in MDE,
in which an ideal copy-modify-merge VCS is adopted. In this scenario, each de-
veloper accesses a repository and creates a personal working copy – a snapshot of
the repository’s models. Then, the developers modify their working copies simul-
taneously and independently. Finally, the working copies are merged together in
the repository. The VCS assists with the merging by detecting conflicting modi-
fications. When a conflict is detected, the system requires manual intervention by
the developer.
Example 23 (A VCS Scenario) This example is kept intentionally simple, retain-
ing only the details which are relevant for our discussion. Suppose that two soft-
ware developers, Alice and Bob, are working on the development of an information
system for universities using a copy-modify-merge VCS. This scenario is depicted
in Fig. 6.1.

Alice starts with the model S (see Fig. 6.1a). She deletes the arrows pUnivs
and uPhds (see Fig. 6.1b) and adds a node Project together with the arrows
pProjs, proPhds, proUniv and uProjs.

Bob modifies S concurrently. He considers other types of students, e.g. Post-
doc, teaching assistant, etc; therefore, he deletes the PhDStud node and refactors

98

6.3. Calculation and Representation of Differences

Figure 6.1: The models S, T1 and T2

the model by adding two nodes, Enrolment and Type, together with the arrows
eStud, eUniv and eType (see Fig. 6.1c).

Merging the modifications done by Alice and Bob will lead to conflicts. This
is because Alice has added some arrows to/from the node PhDStud which Bob
has deleted. The resolution of this conflict requires manual intervention by the
developers.

♦

6.3 Calculation and Representation of Differences

VCSs rely on the identification of commonalities between (versions of) artefacts,
which is necessary to compute their differences. For example, a solution to the
longest common subsequence problem [60] is typically implemented in differenc-
ing algorithms for text-based files. In DPF, we introduce a different approach to the
identification of common elements. Model elements which are not changed dur-
ing an evolution step are recorded in common models; i.e. models which represent

99

6. VERSION CONTROL IN MDE

Figure 6.2: The common model C1 of the models S and T1

the commonalities between two subsequent versions of a model. These models are
regarded as meta-information about evolution steps.
Example 24 (Common Model) Building on Example 23, Fig. 6.2a shows the com-
mon model C1 for the models S and T1.

♦

As mentioned, the identification of commonalities is necessary in order to cal-
culate the differences between artefacts. The calculation and representation of dif-
ferences focuses on identifying the modifications which have taken place in each
evolution step. In this thesis, we classify modifications as indicated in Table 6.1.
These are just a subset of the modifications presented in [101; 105]. This clas-
sification is performed on the level of structural models, meaning that we do not
take into account operations; i.e. methods or functions. Nor this approach does
detect and represent modifications in layout or visualisation since the syntax and
the semantics of a structural model is not affected by these changes.

In order to calculate the difference between two subsequent versions of a model,
we need to know which modifications have taken place. Identifying these modifica-
tions requires analysis of the old and the new versions of the model, together with
their common model. For example, all the nodes and arrows which are present in
the new model, but not in the common model, are identified as added. Similarly,

100

6.3. Calculation and Representation of Differences

Table 6.1: Classification of modifications

Name Definition Alternative terms
add a node/arrow is added to the un-

derlying graph of a model
create, insert

delete a node/arrow is deleted from the
underlying graph of a model

remove

Table 6.2: The signature Δ

ΠΔ αΔ Proposed visual. Alternative visual.
[add]n 1 X

[A]
X

[add]a 1 x #! 2 X
[A]f #! Y X

f #! Y

[delete]n 1 X
[D]

X

[delete]a 1 x #! 2 X
[D]f #! Y X

f #! Y

[conflict]n 1 X
[C]

X

[conflict]a 1 x #! 2 X
[C]f #! Y X

f #! Y

all the nodes and arrows which are present in the old model, but not in the common
model, are identified as deleted. This means that in order to calculate the differ-
ence we need to distinguish between common elements, elements from the old
version and elements from the new version. This capacity is one of the properties
of the pushout construction in category Spec(Σ) (see Appendix A.1.2). Hence,
we adopt pushout construction to calculate differences between models. In particu-
lar, pushout constructs a model where all common, added and deleted elements are
present at the same time.

The output of this calculation is then presented in a difference model. In order to
show the modifications, an appropriate language is needed. Due to the graph-based
nature of models, the language must be diagrammatic and must make it possible
to identify modifications as added and deleted. In DPF, we define a signature Δ
for the representation of model differences. The signature Δ = (P Δ , αΔ) con-
sists of the predicates [add], [delete] and [conflict] (see Table 6.2).
These predicates are used to present the information “added” and “deleted” locally
in the difference model. More precisely, the difference models will be annotated
by predicates from Δ in addition to predicates from Σ. The predicates [add]
and [delete] each has two arities: 1 and 1 x #! 2 . That is, each of these
predicates can be used to annotate both nodes and arrows. Note that the predicate
[conflict] is not used in difference models of two subsequent models; it will
be used to annotate conflicting modifications in merge models (see Section 6.4).

101

6. VERSION CONTROL IN MDE

C

s�
��
�

YY��
�

P O

t
��

��

0/�
���

S

s∗
��

�

0/�
��

T

t∗�
��

YY��
�

P
� � #! D

Figure 6.3: The difference model D for the models S and T

Remark 30 (Multiple Visualisations) We define two visualisations for the Δ pred-
icates. The default visualisation is compatible with black and white printing and
the predicates are used to annotate the model elements in difference models. Al-
though this visualisation enables the representation of differences, an alternative
visualisation based on colour-coding is proposed. We believe that this colouring
technique makes it easier to understand modifications. We have adopted both visu-
alisations so that the examples are intuitive as well as compatible with black and
white printing.

To summarise, given two models S and T together with their common model
C, we calculate and represent their difference model D in two steps: firstly, we
construct a pushout P; secondly, we use a set of rules to add annotations to the
resultant pushout object (see Fig. 6.3). The rules are defined in such a way that
model elements which are added will be annotated with the predicate [add], and
model elements which are deleted will be annotated with the predicate [delete].
In more detail, assuming that T is newer than S, all model elements T \ t(C) will
be labelled as added in D; and all model elements S \ s(C) will be labelled as
deleted in D. We define difference models as follows (see Fig. 6.3):

Definition 40 (Difference Model) Given a common model C of models S and T,
the difference model is a specification D = (D, CD: Σ ∪ Δ) which is constructed
in the following two steps:

• construction of P together with the specification morphisms s∗ : S → P
and t∗ : T → P by pushout in category Spec(Σ ∪ Δ), in accordance with
Proposition 10

• obtaining D from P by applying the following rules (see Table 6.3):
For each node X ∈ (T0 \ t0(C0)): ([add]n, δ) ∈ CD

where δ(α([add]n)) = X
For each arrow f ∈ (T1 \ t1(C1)): ([add]a, δ) ∈ CD

where δ(α([add]a)) = f
For each node X ∈ (S0 \ s0(C0)): ([delete]n, δ) ∈ CD

where δ(α([delete]n)) = X
For each arrow f ∈ (S1 \ s1(C1)): ([delete]a, δ) ∈ CD

where δ(α([delete]a)) = f

102

6.4. Merging

Table 6.3: Summary of rules for annotating difference model D

In pushout object P In D

For each node X ∈ (T0 \ t0(C0))

X X
[A]

For each arrow f ∈ (T1 \ t1(C1))

X
f #! Y X

[A]f #! Y

For each node X ∈ (S0 \ s0(C0))

X X
[D]

For each arrow f ∈ (S1 \ s1(C1))

X
f #! Y X

[D]f #! Y

Remark 31 (Annotation of Constraints) In the definition of difference model, we
have that CD := CP∪{(p, δ)|p ∈ P Δ}; however, we annotate only the underlying
graph D with predicates from Δ. The possibility to extend the technique in order
to also annotate the constraints CP is a subject to future work.

Example 25 (Difference Model) Building on Example 23, Fig. 6.4d shows a
pushout object P constructed for the models C1, S and T1. Moreover, Fig. 6.4e
shows the difference model D1 after applying the rules in Table 6.3 to the model
in Fig. 6.4d. The node Project and the arrows connected to it have been added
to the model T1. These added elements are annotated as added; i.e. annotated
with the predicate [add] from Δ in the difference model D. This predicate is
visualised as [A] in the proposed visualisation, or by green colouring in the alter-
native visualisation of Δ. Moreover, the arrows pUnivs and uPhds have been
deleted from the model S. These deleted elements are annotated with the predicate
[delete] from Δ in the difference model D. This predicate is visualised as [D]
in the proposed visualisation, or by red colouring in the alternative visualisation of
Δ.

♦

6.4 Merging

We have shown the calculation and representation of differences between two mod-
els. Now, given two difference models which are calculated based on modifications
done to the same model, we want to check whether these modifications can be
seamlessly merged together. More precisely, given two difference models D1 and
D2, representing two concurrent modifications of the model S, we calculate and
represent merge of differences in a model M in two steps: firstly, we construct a
pushout I; secondly, we apply rules to the resultant pushout object (see Fig. 6.5).

103

6. VERSION CONTROL IN MDE

Figure 6.4: An example difference model D1 for the models S and T1

104

6.4. Merging

C1

43!
!!

!!
!!

!

ZZ,,
,,
,,
,,

C2

ZZ..
..
..
..

43B
BB

BB
BB

B

T1

43B
BB

BB
BB

B S

d1
..
.

ZZ..
. d2

!!
!

43!
!!

P O

T2

ZZ,,
,,
,,
,,

D1

d∗
1

!!!

43!
!!

D2

d∗
2
...

ZZ..
.

I #! M

Figure 6.5: The merge of differences M of the two difference models D1 and D2

These rules are defined such that model elements which are in conflict according
to the conflict detection rules will be annotated with [conflict], and model
elements which are annotated with [delete] will be deleted.

By pushout construction, the sets of constraints (and annotations) CD1 and
CD2 are merged together into CI . While some of the annotations are identified
(i.e. determined to be identical) by pushout construction (see Remark 32 in Ap-
pendix A.1.2), some model elements may be annotated by two predicates from Δ.
Each pair of annotations in CI must be analysed to detect conflicting modifica-
tions; i.e. to decide on whether adding annotations ([conflict], δ) ∈ CI or
not. In order to perform this analysis, we will define a set of rules in Definition 41
which are applied to I. These rules contain all possible combinations of annota-
tions (p, δ) ∈ CI . This is justified as follows:

– It is impossible to annotate the same model element in I with [add] twice,
or with [add] and [delete] together. This is because we consider added
elements to be distinct even if they have the same names, and only elements
which are identified in a common model will be treated as identical.

– It is impossible to annotate the same model element in I with [delete]
twice. This is because they will be identified by the pushout construction.

We define merge of differences as follows (see Fig. 6.6).

Definition 41 (Merge of Differences) Given a model S and two difference mod-
els D1 and D2, the merge of differences is a specification M = (M, CM : Σ ∪ Δ)
which is constructed in the following two steps:

• construction of I together with the specification morphisms d∗
1 : D1 → I

and d∗
2 : D2 → I by pushout in category Spec(Σ), in accordance with

Proposition 10

• obtaining M from I by applying the following rules (see Table 6.4): For
each node X ∈ I0, each arrow f ∈ I1, and each pair of constraints
(p, δ; d∗

1), (q, ρ; d∗
2) ∈ CI such that:

105

6. VERSION CONTROL IN MDE

Table 6.4: The rules applied to the pushout object I in order to obtain merge of
differences M

In pushout object I In M

Source of an added arrow is deleted

X Y
[D][A]f�� X Y

[C][D][C][A]f��

Target of an added arrow is deleted

X
[A]f #! Y

[D]
X

[C][A]f #! Y
[C][D]

S

d1
..
.

ZZ..
. d2

!!
!

43!
!!

P OD1

d∗
1

!!!

43!
!!

D2

d∗
2
...

ZZ..
.

I #! M

Figure 6.6: The merge of differences M

X = (δ; d∗
1)(α(p)) = src((ρ; d∗

2)(α(q))) = src(f)
or X = (δ; d∗

1)(α(p)) = trg((ρ; d∗
2)(α(q))) = trg(f)

or X = (ρ; d∗
2)(α(q)) = src((δ; d∗

1)(α(p))) = src(f)
or X = (ρ; d∗

2)(α(q)) = trg((δ; d∗
1)(α(p))) = trg(f)

we have
1. ([add]a, δ; d∗

1), ([delete]n, ρ; d∗
2) ∈ CI

implies ([add]a, δ; d∗
1), ([delete]n, ρ; d∗

2),
([conflict]a, δ; d∗

1), ([conflict]n, ρ; d∗
2) ∈ CM

2. ([delete]n, δ; d∗
1), ([add]a, ρ; d∗

2) ∈ CI

implies ([delete]n, δ; d∗
1), ([add]a, ρ; d∗

2),
([conflict]n, δ; d∗

1), ([conflict]a, ρ; d∗
2) ∈ CM

Should the merge of differences M contain a constraint ([conflict], δ), it
is said to be in a state of conflict which has to be resolved manually by the devel-
oper. Although conflicts are context-dependent, we have recognised one situation
in which syntactic conflicts will arise: the concurrent modification in which arrows
are added from/to a node which has been deleted. This is just a subset of the con-
flicts presented in [101; 105]. In addition, other rules for the detection of custom
conflicting modifications can be defined.

However, if there are no conflicts, a synchronised model will be created which
includes modifications from both D1 and D2. Creation of this model is done by

106

6.4. Merging

deleting the nodes and arrows from M which are annotated with the predicate
[delete]. In addition, the remaining annotations (representing added elements)
will be deleted, yielding a specification which has only constraints from the signa-
ture Σ.
Example 26 Merge of Differences Building on Example 23, Fig. 6.7c shows the
pushout object constructed for the difference models D1 and D2, while Fig. 6.7d
shows the merge of differences M after applying the rules from Definition 41.
After applying the rules and detecting the conflicts, the merging process stops and
manual intervention by the users will be required to resolve the conflicts. That is,
the structure in Fig. 6.7e will not be created since it contains dangling edges.

Note that the node PhDStud and the arrows pProjs and proPhds are an-
notated with [delete], [add] and [add], respectively. In M these nodes and
arrows are additionally annotated with [conflict] in accordance with the rules
in Definition 41. Moreover, the arrows pUnivs and uPhds are annotated with the
predicate [delete] in both D1 and D2, however, since the two corresponding an-
notations are identified by pushout construction, there is only one [delete] on
these arrows in the pushout object in Fig. 6.7c.

♦

107

6. VERSION CONTROL IN MDE

Figure 6.7: An example of merge of differences M

108

CHAPTER 7
Discussion

This chapter presents approaches and techniques which we consider relevant to the
approach detailed in this thesis. The chapter presents also some open issues and
further work regarding the current state of DPF. Finally, a summary of the main
points of the thesis along with some concluding remarks are given.

7.1 Related Work

This thesis has dealt with a formalisation approach to (meta)modelling, model
transformation and version control of models. Other approaches, techniques and
tools related to the topic of this thesis are presented in this section.

7.1.1 (META)MODELLING

Lately, diagrammatic modelling and formalisation of metamodelling have been ex-
tensively discussed in the literature. Here we present some of the approaches to the
specification of models, metamodels and constraints, as well as the formalisation
of MOF-based modelling languages.

Attributed graphs are often used in modelling, metamodelling and model trans-
formation [40; 41]. For example, the well-known graph transformation framework
Attributed Graph Grammar (AGG) uses attributed graphs to represent (meta)models. ATTRIBUTED

GRAPHSAn attributed graph is a graph with node and edge attribution; that is, it consists of a
graph together with a set of attribute nodes, e.g. String, Integer, “Person”,
123, etc. Assigning attributes to the nodes of the graph is done by creating edges
from the nodes to attribute nodes. The assignment of edge attributes can be done in
the same way, however, in this case the graph must allow edges from edges to at-
tribute nodes. This kind of graph is called E-graph in [40; 41]. In attributed graphs,
node and edge attributions are used to describe properties of nodes and edges. The
typical visualisation of node and edge attributions is quite similar to UML models.

109

7. DISCUSSION

This, along with its formal underpinning, have facilitated the adoption of attributed
graphs both in practically oriented and theoretically oriented software modelling
and model transformation frameworks.

The work in [21; 99] uses algebraic specification to give formal semantics to
MOF. In [21] MOF-based metamodels are considered to be graphs with attributedALGEBRAIC

SPECIFICATIONS objects as nodes and references as arrows. These graphs are represented by spec-
ifications in Membership Equational Logic (MEL), i.e. the logical power of MEL
is essentially used to define the concept of a finite (multi)set at different places
and levels. This formal semantics is made executable by using the Maude lan-
guage [122], which directly supports MEL specifications. In this formalisation,
metamodels are seen to play several roles: as data, as type or as theory; these roles
are formally expressed by metamodel definition, model type, and metamodel re-
alisation, respectively. In [99] a metamodelling framework, which is also based
on Maude, is presented. In this framework, graphs are represented as terms by
taking advantage of the underlying term matching algorithm modulo associativity
and commutativity. The ability of Maude to execute the specifications allows the
implementation of some key operations on models, such as model subtyping, type
inference, and metric evaluation.

The work in [96] exploits the higher-order nature of constructive type theory to
uniformly treat the syntax of models, metamodels as well as the MOF model itself.CONSTRUCTIVE

TYPE THEORY Models are formalised as terms (token models) and can also be represented as types
(type models) by means of a reflection mechanism. This formalisation ensures that
correct typing corresponds to provably correct models and metamodels.

Easik (Entity Attribute Sketch Implementation Kit) is a Java based graphi-
cal environment for database design, database implementation and data manipu-
lation [63; 121]. Easik implements the Sketch Data Model (SkDM) as an enhance-EASIK
ment of the Entity-Relationship Attribute (ERA) design paradigm. The SkDM is
a data model related to the ERA model, using the category-theoretic concept of
Sketch [63]. The enhancement provides simple and precise expressiveness of con-
straints, which automatically enforces constraints in models. The visual design of
Easik is cleaner since there are fewer graphical element types than in ERA.

The interface of Easik enables users to create, in a diagrammatic fashion, a
database design of entities, attributes and constraints. The design can be exported
to a database schema in SQL that enforces the diagrammatic constraints. Easik
supports connection to some common database management systems such as Post-
greSQL and MySQL. With a connection available, it enables data entry and data
manipulation via its visual interface. In addition, an overview canvass allows sev-
eral databases to be edited simultaneously, and provides a simple mechanism for
views. Furthermore, Easik provides some reasoning about dependencies or rela-
tions between constraints.

Epsilon (Extensible Platform of Integrated Languages for mOdel maNagement)
is a family of consistent and interoperable task-specific programming languages
which can be used to interact with EMF models [44]. In addition to the core lan-EPSILON
guage Epsilon Object Language (EOL) – an imperative language that combines the

110

7.1. Related Work

procedural style of Javascript with OCL’s querying capabilities – Epsilon provides
several task specific languages for performing code generation, model transforma-
tion, model validation, model comparison, etc. One of these task specific languages
is Epsilon Validation Language (EVL). EVL extends OCL conceptually (as op-
posed to technically) to provide a number of features such as support for constraint
dependency management and access to multiple models conforming to different
metamodels.

In addition to the languages above, Epsilon provides a mature tool support
for management of Ecore-based models. For example, EuGENia: a front-end
for Graphical Modeling Framework (GMF) [51]; Exeed: an enhanced version of
the built-in EMF reflective tree-based editor; ModeLink: an editor consisting of
side-by-side EMF tree-based editors which is convenient for establishing (weav-
ing) links between models; etc.

Visual OCL (VOCL) [125] is an effort to define a graphical visualisation for
OCL. It extends the syntax of UML and is used to define constraints on UML
models. VOCL allows developers to put models together with constraints with- VISUAL OCL
out leaving the graphical level of abstraction. VOCL does not extend the formal
semantics of OCL. It only visualises constraints which are specifiable in OCL.

Alloy [5] is a structural modelling language which is capable of expressing
complex structural constraints and behaviour. Model analysis in Alloy is based on ALLOY
the usage of first order logic to translate specifications into boolean expressions
which are automatically evaluated by a boolean satisfiability problem (SAT) solver.
Then for a given logical formula F , Alloy attempts to find a model which satisfies
F . Alloy models are checked by using the Alloy analyser which attempts to find
counterexamples within a limited scope which violates the constraints of the sys-
tem. Even though Alloy cannot prove the system’s consistency in an infinite scope,
the user receives immediate feedback about the system’s consistency.

The Fujaba (From UML to Java And Back Again) Tool Suite is an open source
CASE tool supporting MDE and re-engineering [48]. It provides a formal, graph- FUJABA
ical, object-oriented software system specification language consisting of UML
class diagrams and story diagrams. Story diagrams are specialised activity dia-
grams based on graph transformations that facilitate the specification of complex
application-specific object structures [75]. Fujaba facilitates Java code generation
based on a formal specification of systems structure and behaviour. In addition,
Fujaba is an extensible tool framework supporting plugin development. Several
Fujaba plug-ins are available providing support for, among others, modelling and
metamodelling with MOF; model transformations specified by TGGs; as well as re-
verse engineering of source code through creating UML class diagrams, detecting
design patterns, idioms, anti patterns, etc.

7.1.2 MODEL TRANSFORMATION

Many of the model transformation approaches of today are based on graph trans-
formations due to the graph-based nature of models. In this section, an outline

111

7. DISCUSSION

of these approaches and other relevant approaches is given. Since the transforma-
tion approach detailed in this thesis is also closely related to graph transformations,
this section starts with an introduction of the main concepts of graph transforma-
tions [40; 41; 58; 103].

Graph transformation is used as the formal foundation for several model trans-
formation approaches and tools, e.g. PROGRES [97] AGG [119], VIATRA2 [124],GRAPH

TRANSFORMATION etc. The notion of graph transformation comprises the concepts of graph grammars
and graph rewriting, and its main idea is rule-based modification of graphs. In
graph transformation, models are typically represented by typed (attributed) graphs
and metamodels by (attributed) type graphs. Moreover, the conformance relation
between models and metamodels is given by typing graph homomorphisms.

One of the main approaches of graph grammar and graph transformation is the
algebraic approach, which is based on pushout constructions. This approach may
be further divided into double pushout (DPO) and single pushout (SPO).

In the DPO approach, a graph production has the form p = (L l←− K
r−→ R),

where L and R are the LHS and the RHS graphs, respectively, K is the common
interface (graph) of L and R, and l, r are injective graph homomorphisms. More-DOUBLE PUSHOUT

over, given a host (or source) graph G, a direct graph transformation G
p,m=⇒ H with

a production p and a match m : L → G is given by two pushout constructions in
the category Graph

L

m

��
P O1

K
l�� r #!

k

��
P O2

R

n

��
G D

f
��

g
#! H

By constructing a pushout complement PO1, all elements of L \ K which are
matched by m will be deleted from G. The remaining structure of G; i.e. after
deleting L \ K from G, will result in the context graph D. By a second pushout
construction PO2, all elements of R \ K will be glued together with D to obtain
H . That is, R and D are glued together via K, written R +K D, to obtain H .

Since a direct graph transformation G
p,m=⇒ H may lead to dangling edges in H ,

a gluing condition has to be satisfied in the first step (PO1). The gluing condition
requires that L+K D = G; i.e. no dangling edges exist in D. If the gluing condition
is not satisfied, p is identified as not applicable via the match m.

In the SPO approach, a graph production p may be interpreted as a partial graph
morphism. In this case, a direct graph transformation G

p,m=⇒ H will be given by aSINGLE PUSHOUT
pushout in the category PGraph, which is the category of graphs and partial graph
morphisms. Taking pushout in PGraph means to delete dangling edges in H .

Independent on which of the approaches is used, a direct graph transformation
G

p,m=⇒ H represents a one-step transformation from G to H . This step is carried
out if p is applicable. In addition to the applicability condition, sometimes it isNEGATIVE

APPLICATION
CONDITION

desirable to specify the cases in which a direct graph transformation should not
be applied. This feature is represented by negative application conditions (NAC).

112

7.1. Related Work

Given a production p, a negative application condition for p is given by a graph
homomorphism n : L → N . For a given source graph G, a match m : L → G
satisfies n if there does not exist an injective morphism q : N → G such that
m = n; q

N

q
43�

��
��

��

�

L
n��

m
YY��
��
��
�

G

A graph transformation-based approach which is frequently used in the field of
model transformation is Triple Graph Grammar (TGG) [42; 70; 109], e.g. TGG TRIPLE GRAPH

GRAMMARcomprises the underlying foundation for model to model transformation in the Fu-
jaba [48] and in other QVT-like approaches such as [32; 54; 69]. Since the transfor-
mation approach detailed in this thesis is also related to triple graph grammars, we
introduce the main concepts of this transformation approach in this section. This
introduction is adopted from [42; 70]

A triple graph TrG = (SG
sg←− CG

tg−→ TG) consists of a source graph
SG and a target graph TG that are related via a correspondence graph CG and
two graph homomorphisms sg, tg from the correspondence graph to the source and
target graphs, respectively. In this way, the source and target graphs are joined into a
single structure thus providing a basis for consistent co-evolution of the graphs [42].
The use of correspondence graphs allows to relate a node (arrow) in the source
graph with a node (arrow) in the target graph and to constrain these relations by
means of constraint languages such as OCL [117].

Triple rules are declarative descriptions for building the source, target and cor-
respondence graphs simultaneously. In order to achieve a transformation step, op- OPERATIONAL

RULESerational graph rewriting rules have to be derived from these declarative rules.
Since filtering or deletion of structure can be done by projection, the generated op-
erational transformation rules can be restricted to monotonic rules [42; 70]; that is,
the LHS of the rule is included in the RHS thus it may only add structure. These
operational rules may be used for forward or backward transformations; i.e. they
can be used to facilitate bidirectional model transformations [42].

As mentioned, the DPF based approach to model transformation is closely re-
lated to the formal framework of graph transformation, especially TGGs. In this
regard, it extends graph transformations by adding support for transformation of
constraints which come additional to the graph structure of the models. Similar to
TGG, in DPF a joined metamodel is used to describe relations between the source
and target metamodels. However, one difference is that we can define and con-
strain, in a diagrammatic way, arbitrary complex relations between source and tar-
get metamodel elements. Another difference is that the three graphs comprising
triple graphs are represented by a single graph – the underlying graph of the joined
(meta)model.

AGG is a rule based visual tool which supports the algebraic approach to graph
transformation [119]. AGG may be used as a transformation engine in Java appli- AGG

113

7. DISCUSSION

cations which use graph transformation methods. Among analysis techniques used
in AGG are critical pair analysis and consistency checking, facilitating validation
of graph transformations. In addition, rule layering is used to control application of
transformation rules. Furthermore, negative application conditions can be specified
to express requirements for non-existence of substructures. In AGG, graphs may
be attributed by Java objects and types in addition to basic data types. Another
feature of AGG is that transformation rules may be attributed by Java expressions
which are evaluated during rule applications. In addition, rules may have attribute
conditions being boolean Java expressions.

Graph productions (or graph transformation rules) are presented differently in
different tools. In PROGRESS [97] and AGG [119], the LHS and RHS of a rule
are shown in a separated style; i.e. in two graphs. The common interface graphRULE

VISUALISATION K, which represents preserved elements and exist in both LHS and RHS, is usually
represented by numbering the nodes and edges of LHS and RHS. More precisely,
numbers are used to identify model elements, and a node or edge which is to be
preserved will have the same identifier-number in both LHS and RHS of the rule.
In contrast, in Fujaba [48] and Henshin [8; 120], a collapsed, compact style is used
to visually present rules. In this style, one graph is shown with annotations that
depict which elements will be preserved, added and deleted by applying the rule.

Pattern-based model-to-model transformation is an algebraic, bidirectional and
relational approach to model transformation [32]. This approach is based on triplePATTERN-BASED

TRANSFORMATION patterns which express allowed and forbidden relations between two models, where
the models are triple graphs [42; 70; 109]. Triple patterns can be seen as graph
constraints for triple graphs, which specify both negative and positive constraints.
Pattern-based specifications are compiled to operational TGG rules, which perform
forward and backward model transformations. In [57], the approach is extended by
attribute-handling mechanisms. In particular, attribute computations and conditions
are integrated in triple patterns. In [94], correctness, completeness and termination
properties of pattern-based model-to-model transformation are analysed. In partic-
ular, the authors show that it is possible to prove that the compilation mechanism
generates graph grammars that are terminating. In addition, they analyse correct-
ness of the compilation of pattern-based specification into operational rules. They
also show completeness in the sense that models which are considered relevant can
be built by the generated operational rules.

The Visual Modeling and Transformation System (VMTS) is an n-layer meta-
modelling environment which supports editing models according to their meta-
models and allows specifying OCL constraints [74]. VMTS provides a graphVMTS
transformation-based approach to model transformations in which models are for-
malised as directed, labelled graphs. Moreover, OCL constraints are used to control
the execution of transformations. The input and output patterns of transformation
rules use metamodel elements; meaning that an instantiation of the input pattern
must be found in the source graph instead of an isomorphic subgraph of the pat-
tern. These patterns are guarded by pre- and post-conditions. Before the execution
of each transformation rule, the pre-conditions are checked and used to narrow

114

7.1. Related Work

down the set of matches. After execution of each rule, the post-conditions are
checked against the output of the rule. In this way, if a rule executes successfully it
can be asserted that the transformation has resulted in the expected output.

The transformation and simulation tool AToM3 (A Tool for Multi-formalism
and Meta-Modelling) is a tool for multi-paradigm modelling [1; 33]. The two ATOM3
main tasks of AToM3 are metamodelling and model transformation. In AToM3,
both formalisms and models are described as graphs. For each formalism, a visual
modelling tool can be generated from a meta-specification which is specified in
ER-formalism. This tool is used to visually manipulate models defined by the for-
malism. Some of the metamodels currently available are: Entity-Relationship, De-
terministic Finite state Automata, Non-Deterministic Finite state Automata, Petri
Nets, etc. Moreover, graph rewriting is used to perform model transformations.
Thus the transformation definitions are expressed as graph grammar models. Typ-
ical applications of AToM3 in the field of model transformation include model
simplification, code generation, as well as behaviour-preserving transformations
between models defined by different formalisms.

An approach to the analysis of graph transformation rules based on an inter-
mediate OCL representation is presented in [24]. The semantics of rules together USING OCL
with their properties (such as rule applicability, conflict or independence) are trans-
formed into OCL expressions. While these OCL expressions are combined with
structural- and attached OCL constraints during the analysis process, the attached
OCL constraints are not shown to be transformed. Another approach proposed
in [46] employs transformation rules to preserve the semantics of UML/OCL class
diagrams when using refactoring rule moveAttribute.

The concrete syntax-based graph transformation framework (CGT) is another
graph transformation-based approach to model transformation developed in [55],
and compared to AGG and ATL in [56]. The main idea of this approach is that it CGT
employs a concrete syntax for definition of model transformation rules. That is, in-
stead of using the concrete syntax of the modelling languages involved in the model
transformation, as done in several other approaches, one can define transformation
rules employing the same syntax used for definition of the models themselves. In
addition, this approach offers a collection operator which is used for matching and
transformation of collections of similar subgraphs.

The Graph Rewrite And Transformation (GReAT) is a graph transformation-
based framework that supports specification of complex model transformations [13;
52; 83]. Transformation rules are specified using a visual tool. Rule application is GREAT
controlled by explicitly specifying them in a sequence. In addition, test rules are
used to change the control flow of rule application [75]. A test rule consists only
of an LHS graph and if it is applicable, the next rule in the sequence is executed.
In GReAT, the domains of transformation are specified by means of UML and
OCL. The complexity of matching is reduced by specification of an initial context
for matching. GReAT facilitates composition of source and target metamodels by
defining temporary vertex and edge types that can span across multiple domains.
This is used to define larger heterogeneous domains by combining different do-
mains together. This feature plays an important role in verifying transformations.

115

7. DISCUSSION

PROGRES is a visual programming language which has a graph-oriented data
model and a graphical syntax for its most important language constructs [97]. ItPROGRESS
can be seen as a hybrid transformation approach facilitating declarative and im-
perative definitions of rules. In PROGRES, application of transformation rules are
controlled by means of rule sequencing and constructs for rule firing. Like GReAT,
PROGRES have test rules construction used to change control flow during rule ex-
ecution [75]. Moreover, transformation rules in PROGRES can be used in either a
deterministic or a non-deterministic manner.

The Fujaba Tool Suite supports model transformation based on TGGs [48]. AsFUJABA
mentioned, in Fujaba story diagrams are used to express systems behaviour. In
model transformation by Fujaba, these story diagrams are used to define complex
control structures for rule applications.

The VIATRA2 (VIsual Automated model TRAnsformations) framework aims
at providing support for the entire life-cycle of engineering model transformations,
including the specification, design, execution, validation and maintenance of trans-
formations within and between various modelling languages and domains [123;
124]. The transformation language provided by VIATRA2 is based on graph trans-VIATRA2
formations and Abstract State Machines (ASM). The latter is used to define control
flow for the application of transformation rules. Moreover, the transformation lan-
guage supports both declarative and imperative styles of rule definitions. VIATRA2
provides also a high performance transformation engine supporting incremental
model transformations.

The ATLAS Transformation Language (ATL) was developed in response to the
OMG’s QVT Request For Proposal (RFP) [66; 67]. ATL is currently available asATL
an open source project under the Eclipse Modeling subproject. ATL is sometimes
described as the “QVT of today” [20] and provides an implementation of a transfor-
mation definition language. The ATL framework consists of a transformation lan-
guage, a virtual machine, and an IDE for writing transformation definitions. ATL
is a hybrid language – both declarative and imperative. Like QVT, OCL is used to
execute the transformations and MOF and Ecore are employed at the meta-level.
In fact, an extended version of OCL is used to enable multi-model transformations.
In ATL, traceability links are handled automatically. ATL also supports rule inher-
itance and polymorphic rule references [66].

7.1.3 VERSION CONTROL OF MODELS

The literature on model evolution is abundant. Firstly, there is the issue of model
differencing; DSMDiff [76] and EMF Compare [43] are two model differencing
tools which are based on a similar technique. Difference calculation is divided
in two phases. The first focuses on model mappings, where all the elements of
the two input models are compared using measures like signature matching and
structural similarity. The second phase determines model differences, detecting all
the additions, deletions and changes. The great benefit of this approach is that it is
general, but this is at the price of being resource greedy.

116

7.1. Related Work

Compared to this approach, our calculation of model differences should require
less resources since an explicit representation of commonalities between models
is recorded and stored in common models. This avoids the need for structural
similarity comparisons.

Secondly, there is the issue of how to represent differences among models that
conform to an arbitrary metamodel. Typical approaches represent model differ-
ences as follows:

– As models which conform to a difference metamodel. The difference meta-
model can be generic [98], or obtained by an automated transformation [28].
These models are in general minimalistic (i.e. only the necessary information
to represent the difference is presented), transformative (i.e. each difference
model induces a transformation), compositional (i.e. difference models can
be composed sequentially or in parallel) and typically symmetric (i.e. the
inverse of a given difference representation can be computed).

– As a model which is the union of the two compared models, with the mod-
ified elements highlighted by colours, tags, or symbols [92]. The adoption
of this technique is typically beneficial for the designer, since the rationale
of the modifications is easily readable. However, these benefits apply only
if the base models are not large and not too many updates apply to the same
elements, since the difference model resorts to both base models to denote
the differences.

– As a sequence of atomic actions specifying how the initial model has been
procedurally modified [3]. While this technique has the great advantage of
being efficient, difference representation is neither readable nor intuitive. In
addition, edit scripts do not follow the “everything is a model vision” [17].
They are suitable for internal representations but quite ineffective for docu-
menting modifications in MDE environments.

According to this classification, our representation of model differences falls
into the second category. We represent differences by showing the union of the two
compared models and tag the modified elements with predicates (which are also
highlighted by colours to enhance readability).

Thirdly, there is research focusing on identifying the types of structural and
semantic conflicts that can occur in distributed development. In [82] a predefined
set of a priori conflicts is identified, on the basis that it is not possible to pro-
vide a generic technique for conflict detection with arbitrary accuracy. However,
in [29] the authors propose a domain specific modelling language for the defini-
tion of weaving models which represent custom conflicting patterns. Moreover, it
is possible to describe the resolution criteria through OCL expressions. Currently,
our formalisation enables the detection of only syntactic conflicts.

A fourth strand of research focuses on the problem of heterogeneous synchro-
nisation. In [6] the authors propose a tutorial which aims at exploring the design
space of heterogeneous synchronisation. The term heterogeneous synchronisers
is used by the authors to denote procedures that automate – fully or in part – the

117

7. DISCUSSION

synchronisation process for (software) artefacts which are expressed in different
languages. Various approaches to synchronisation of heterogeneous software arte-
facts are analysed and compared. In particular, the tutorial covers both the simpler
synchronisation scenarios where some artefacts are never edited directly but are
re-generated from other artefacts, and the more complex scenarios where several
artefacts that can be modified directly need to be synchronised.

7.2 Further Work

As any other research, the content of this thesis is under continuous development.
This section is dedicated to present further work and open ends which we are aware
of at the present state of DPF. Some of the issues presented here are theoretically
oriented, while others are implementation related issues.

When it comes to the definition of diagrammatic predicate signatures, we have
encountered several examples in which diagram operations [36] were necessary to
describe queries over specifications and to specify derived information. Especially,DIAGRAM

OPERATIONS operations are necessary in order to fully cover OCL constraints. It is also worth
a while that for the definition of the semantics of operations, i.e. the meaning of
operations on the instance level, the so called Van Kampen square plays a central
role. Extending the formal foundation of DPF with support for diagram operations
will increase its flexibility and will widen its application areas.

Development of logic and reasoning systems for DPF makes the framework
more ready for real-life practical usage. A fully fledged logic which includesLOGIC
diagram operations, and goes beyond specification entailment and universal con-
straints, will enable users to reason about properties of specifications and to detect
faults in specifications, such as inconsistencies, contradictions and unsatisfiablil-
ity by instances. In this regard, further work may consider the following dimen-
sions. Firstly, definition of further deduction rules for specification entailments –
one deduction rule given in this thesis is described in Proposition 3. Secondly,
definition of further logical connectives between constraints – one connective de-
fined in this thesis is conjunction. Thirdly, encountering operations in specification
entailments. Finally, studying the preservation and/or reflection of specification
entailments along modelling formalism morphisms.

Another subject for formalisation, regarding (meta)modelling, would be the re-
lation between the so-called concrete and abstract syntax of modelling languages.ABSTRACT AND

CONCRETE
SYNTAX

In most modelling languages, arrows (or associations, links, relations, etc.) at the
model level are represented by nodes at the meta-level. In DPF, modelling for-
malisms are equipped with a visual syntax in which arrows are represented as ar-
rows at all levels of a metamodelling hierarchy. While the syntax used in the exam-
ples of this thesis resembles a concrete syntax representation of models, a formal
clarification of this syntax would give added value to the framework.

As obvious from Section 7.1.2, the DPF based approach to model transfor-
mation is closely related to the formal framework of graph transformations. The
plethora of formal results regarding graph transformations may be extended to DPF.HLR CATEGORY

118

7.2. Further Work

This may require proving that the category of diagrammatic specification Spec(Σ)
is an Adhesive High-Level Replacement (HLR) category.

The DPF based approach to model transformation facilitates the specification
of constraint-aware transformation rules. This feature of DPF takes into account UNIVERSAL

CONSTRAINTSatomic constraints from the source side, and uses these constraints to decide how
the target side is created. Bringing universal constraints into this picture, along
with their roles both during the definition and during the application tasks of model
transformations, is left for future work.

In this thesis, the application of transformation rules were controlled by means
of layering and negative application conditions. As presented in the related work RULE

SCHEDULINGsection, there are other mechanisms which can be applied to control rule applica-
tions in a way that guarantees functional behaviour of model transformations. The
development and implementation of such mechanisms in DPF will increase the
usefulness and the usability of the framework.

In order to facilitate various cases of model modifications, such as refactor-
ing of models, it is desirable to add support for in-place model transformations in
DPF. This requires support for rules with deletion capabilities. Moreover, higher OTHER DESIRED

FEATURESorder transformations – model transformations which have model transformations
as input and output – as well as description and characterisation of bidirectional
transformations are interesting subjects which both the theoretical foundation and
the implementation of DPF should encounter in the future. Furthermore, it will
be beneficial to support a collection operator for definition of transformation rules
with variable input patterns, as done in [55] for graph transformation.

In the formalisation of aspects of version control presented in this thesis, dif-
ference models and merge models were annotated by means of predicates. These ANNOTATION OF

CONSTRAINTSannotations were used on the underlying graphs of specifications. One way to ex-
tend this approach is to add support for also annotating constraints, in addition to
the underlying graphs.

The rules used for conflict detection in this thesis check only for syntactic con-
flicts caused by concurrent modifications of the same model elements. Adding SEMANTIC

CONFLICTSsupport for detection of semantic conflicts – such as conflicts caused by violating
of metamodel constraints – will increase the robustness of the approach.

We expect that the principles of DPF will ease the definition of domain specific
modelling languages (DSML). An application domain for which we have already
designed a modelling formalism is the specification of data validation constraints
at model level [100]. Other application domains which we plan to apply the DPF DPF AND DSMLS
based approach to specification of DSMLs are GRID computing [113] and meta-
model evolution [49]. These applications will be part of the FormGrid and DIS-
TECH projects [114].

7.2.1 TOOL SUPPORT

An important step in the popularisation of MDE is the development of techniques
and tools that support development of models, metamodels and model transforma-
tions, which are both precise and intuitive. We have already initiated the design

119

7. DISCUSSION

and development of a tool environment based on DPF. This tool, which is still inMODELLING TOOL
its early stages of development, is implemented as a set of Eclipse plugins and will
be available as an open source project at the DPF project web site [16]. The DPF
based tool realises the main ideas of DPF, in which modelling formalisms consist
of a diagrammatic predicate signature together with a metamodel. Each modelling
formalism will be equipped with a palette for creation and modification of models
conforming to the corresponding metamodel of the formalism. The palette will be
derived from the metamodel and the signature, e.g. a button for each type in the
metamodel, and a button for each predicate in the signature.

Moreover, the tool will facilitate metamodelling in the following way. When
a model is specified in the DPF based tool, it can be used as the metamodel of
another modelling formalism. Furthermore, the tool facilitates definition of sig-METAMODELLING

SUPPORT natures which can be combined with metamodels to define modelling formalisms.
Hence, based on a signature and a metamodel, another (meta)modelling tool will
be generated. This tool can serve the same purpose, namely, create and modify
models and signatures, which may in turn be used as the building blocks for other
modelling formalisms. We expect that this principle of DPF will ease the definition
of domain specific modelling languages.

The conformance relation between models and the corresponding metamodel
of the formalism will be implemented as a graph homomorphism respecting theCONFORMANCE
constraints added to the metamodel.

Support for specification of universal constraints, and logic for reasoning about
the constraint types mentioned in this thesis will be added gradually. In additionOTHER FEATURES
to the (meta)modelling capabilities of the tool, an implementation of the main con-
cepts of constraint-aware model transformations and version control of models is
planned. Both extensions will be initiated when the (meta)modelling part nears
completion.

7.3 Conclusion

DPF is a generalisation and adaptation of the categorical sketch formalism, where
user-defined diagrammatic predicate signatures represent the constructs of mod-
elling languages. In particular, DPF is an extension of the Generalised SketchesFORMAL BASIS
formalism and it aims to combine mathematical rigour with diagrammatic mod-
elling.

DPF provides a formal, diagrammatic approach to metamodelling, in which
models at any level are formalised as diagrammatic specifications. Each diagram-
matic specification consists of an underlying graph together with a set of diagram-
matic constraints. Moreover, modelling languages are formalised as modelling for-(META)MODELLING

CONCEPTS malisms. Each modelling formalism consists of a corresponding meta-specification
– which specifies the types allowed by the language – and a diagrammatic predicate
signature – which collects the set of predicates used to add constraints to specifica-
tions specified by the modelling formalism. Furthermore, the conformance relation
between a specification at any level, and a specification at the level directly above it,

120

7.3. Conclusion

is formalised as a graph homomorphism between the underlying graphs of the spec-
ifications satisfying the constraints that are added to the upper level specification.
In addition, the conformance relation is strengthened by the concept of universal
constraints. These constraints are connected to a certain modelling formalism and
are used to express overall requirements that each specification specified by the
modelling formalism should satisfy.

DPF provides also a formal approach to the definition of constraint-aware model
transformation which is applied to language translation in this thesis. This is pos-
sible due to the diagrammatic formalisation the metamodelling hierarchy in which
attached constraints are integrated in modelling formalisms, facilitating a uniform
transformation of these constraints.

The DPF based approach to model transformation is divided into two tasks:
definition task and application task. The definition task is further divided into two TRANSFORMATION

APPROACHsteps. Firstly, the source and target modelling languages are joined together; i.e.
a joined metamodel is defined. Secondly, the transformation rules are declared as
input and output patterns which are typed by the joined metamodel. The input
and output patterns of the transformation rules are specifications; and the mor-
phisms between input and output patterns as well as their matches are formalised
as constraint- and type preserving specification morphisms. Hence, constraints can
be added to the input patterns, and these constraints can be used to control which
structure to create in the target model and which constraints to add to the created
structure.

The application task is performed as follows. Firstly, the source model is con-
verted to an intermediate model which is typed by the joined metamodel. Next,
the transformation rules are iteratively applied to the intermediate model. Finally,
the target model is obtained by projection. The approach exploits existing machin-
ery from category theory for the application of transformation rules and for the
projection of target models.

DPF provides also a formal approach to version control of models. In this VERSION
CONTROLapproach, calculation of differences and the process of merging are formalised as

pushout constructions. Moreover, differences between models are represented by
means of a diagrammatic predicate signature specially designed for this purpose.
In addition, conflict detection is performed based on rules which detect syntactic
conflicts.

DPF is a general and open framework – still under development and with poten-
tial applications in many areas of software engineering and computer science. This
thesis focused on DPF as a formal foundation for MDE. The intention of writing
a monograph was to consolidate and present the current state of the development
regarding DPF, especially by showing the characteristics of DPF through examples.

There are many aspects and dimensions in the foundation and application of
MDE. From these dimensions, we have merely managed to cover and investigate
the following:

• Diagrammatic specifications, both typed and untyped versions.

• Definition of domain specific modelling languages.

121

7. DISCUSSION

• Metamodelling hierarchy.

• Specification entailment and Universal constraints.

• Outplace model transformations.

• Version control.
Nevertheless, we hope that we have convinced the reader that DPF has a promis-

ing potential to support the foundation and the further development of MDE.

122

APPENDIX A
This Appendix contains definitions of some categorical constructions we have used
in the thesis. In addition, it presents a list of transformation rules for transformation
of structural object-oriented models to relational data models.

A.1 Pullback and Pushout

Bearing in mind that the construction of limits and colimits in the category Graph is
based on the corresponding component-wise constructions in the category Set [41],
it is possible to extend limit and colimit construction for graphs to the correspond-
ing construction for (typed) specifications.

A.1.1 PULLBACK

In this thesis, pullback constructions were used in the definitions of concepts such
as instances of specifications and the projection step during the application task of
model transformations. In fact, the pullback constructions we have used are for the
underlying graphs of the specifications.

For the general pullback construction of graphs, we refer to [41]. Here, we
describe a special case, namely the generalised inverse image construction, that we
have used in our examples.

Proposition 9 (Inverse Image of Graphs) Given the graphs B, C, D, an arbitrary
graph homomorphism m : C → D and an injective graph homomorphism n :
B → D, we can construct a subgraph A of C together with a graph homomor-
phism m∗ : A → B and an inclusion graph homomorphism inc : A ↪→ C such
that the resulting diagram is commutative and a pullback in Graph.

123

APPENDIX A. APPENDIX

A � �

inc

[[�
��

��
��

�
m∗

BB��
��
��
��

B

n
[[�

��
��

��
� PB C

m
BB��
��
��
��

D

Proof. The graph A is defined as follows:

Ai := {x ∈ Ci | ∃y ∈ Bi with mi(x) = ni(y)}, i = 0, 1
srcA(f) := srcC(f) for all f ∈ A1

trgA(f) := trgC(f) for all f ∈ A1

The homomorphism property of m and n ensures that we indeed obtain a sub-
graph A of C. Moreover, there is for any xi ∈ Ai, with i = 0, 1, exactly one
y ∈ Bi with mi(x) = ni(y) since the map ni : Bi → Di is injective. This allows
us to define m∗

i : Ai → Bi by assigning to any x ∈ Ai this unique y ∈ Bi with
mi(x) = ni(y). Moreover, the homomorphism property of m and n ensure that m∗

becomes a graph homomorphism as well, and the commutativity m∗; n = inc; m
is immediately given by the definition of m∗. ♦

A.1.2 PUSHOUT

The general pushout construction for graphs [41] can be extended straightforwardly
to the construction of general pushouts for untyped and typed specifications. How-
ever, in this thesis we have used only some special cases of the pushout construction
and we will now present these special cases in more detail.

In Section 6.3, the calculation of differences and the process of merging were
formalised as pushout constructions for injective specification morphisms. In Sec-
tion 5.4, the application of non-deleting transformation rules was formalised as
pushout construction for spans of typed specifications and typed specification mor-
phisms, with one of the legs being inclusion. Both of these cases can be covered by
pushout of spans of one injective and one arbitrary specification morphism.

In the following, we show this pushout construction first for untyped specifi-
cations. Then we extend the construction, in the standard way [41], to the typed
version. Note that we adopt the dot-notation from object-oriented programming to
describe the disjoint union of sets.

Proposition 10 (Pushout in Spec(Σ)) Given specifications A,B,C, an injective
specification morphism n : A → C, and an arbitrary specification morphism m :
A → B, we can construct a specification D, an inclusion specification morphism
n∗ : B → D and a specification morphism m∗ : C → D, such that the resulting
diagram is commutative and a pushout in Spec(Σ).

124

A.1. Pullback and Pushout

A

n

43!
!!

!!
!!

!
m

BB,,
,,
,,
,,

B � �

n∗
[[B

BB
BB

BB
B PO C

m∗
ZZ..
..
..
..

D

Proof. First, we construct the pushout for the underlying graphs and graph homo-
morphisms: The graph D is defined as follows:

Di := Bi ∪ {C.x | x ∈ Ci, x � ni(Ai)}, i = 0, 1

srcD(f) :=

⎧⎨
⎩

srcB(f), if f ∈ B1
m0(srcC(f)), if f ∈ C1, srcC(f) ∈ n0(A0)
srcC(f), if f ∈ C1, srcC(f) � n0(A0)

trgD(f) is defined analogously

The inclusion n∗ : B ↪→ D is given by construction and the graph homomorphism
m∗ : C → D is defined by the following, for i = 0, 1:

m∗
i (x) :=

{
mi(x), if x ∈ ni(Ai)
C.x, if x � ni(Ai)

Second, we define the set of constraints CD by

CD := CB ∪ {(q, σ; m∗) | (q, σ) ∈ CC}

and obtain, finally, a pushout in Spec(Σ�G). ♦

Remark 32 (Identification of Constraints) Two constraints (p, δ) ∈ CB and (p, σ) ∈
CC such that δ; m∗ = σ; n∗ are mapped to the same constraint (p, δ; m∗) =
(p, σ; n∗) ∈ CD . Especially, we obtain for all constraints (r, γ) ∈ CA just one
constraint (r, γ; n; m∗) = (r, γ; m; n∗) ∈ CD .

Proposition 11 (Pushout in Spec(Σ�G)) Given a graph G and typed specifica-
tions A�G,B�G,C�G, an arbitrary typed specification morphism m : A�G →
B�G and an injective typed specification morphism n : A�G → C�G, we can
construct a typed specification D�G, an inclusion typed specification morphism

125

APPENDIX A. APPENDIX

n∗ : B�G ↪→ D�G and a typed specification morphism m∗ : C�G → D�G,
such that the resulting diagram is commutative and a pushout in Spec(Σ�G).

A�G

n

�$0
00

00
00

00
m

=�%%
%%
%%
%%
%

(A, ιA)
n

10�
��

��
��

��
m

21���
��
��
��

B�G� 	

n∗
�$A

AA
AA

AA
AA

P.O. C�G

m∗
=�CC
CC
CC
CC
C

(B, ιB)
 �

n∗
10�

��
��

��
��

P.O. (C, ιC)

m∗
21���

��
��
��

D�G (D, ιD)

A

n

[[�
��

��
��

�
m

BB��
��
��
��

B � �

n∗
[[�

��
��

��
�

ιB

�$

P.O. C

m∗
BB��
��
��
��

ιC

=�

D

ιD

��
G

Proof. The construction in Proposition 10 provides a pushout in Spec(Σ). We
only need to show how the construction extends to typing:

By assumption we have m; ιB = ιA = n; ιB thus the pushout property pro-
vides us a unique graph homomorphism ιD : D → G such that n∗; ιD = ιB and
m∗; ιD = ιC . ιD is given by, for i = 0, 1:

ιD
i (x) :=

{
ιB(x), if x ∈ Bi

ιC(x), if x ∈ Ci, x � ni(Ai)

The two equations for ιD mean that n∗ and m∗, respectively, are compatible with
typing and we obtain, in such a way, a pushout in the category SpecΣ�G. ♦

A.2 More Transformation Cases

In this section, we show a list of transformation rules for the transformation object-
oriented structural models to relational data models. These rules are defined for
pairs of classes which are connected by single references of by pairs of inverse ref-
erences. For readability reasons, the rules are expressed in an abbreviated fashion

126

A.2. More Transformation Cases

which, in fact, show the results of applying the rules, e.g. the first rule in Table A.1
corresponds to the rule r5 in Table 5.3.

In Table A.1, the names of the nodes indicate the mappings between the LHS
and RHS of the rules. Moreover, we have omitted the names and types of arrows in
LHS and RHS of the rules since it is obvious that they are of types Reference and
Column, respectively.

Note also that on the object-oriented side, the constraints ([surjective], δ)
and ([non-overlapping], δ) are entailed from the corresponding multiplicity
constraints. These constraints are written in blue.

Table A.1: List of transformation rules

No OO RDM

1. 1:Class #! 2:Class Int:DT 3:Table•�� • #! Int:DT

1:Table

[pk]

��

2:Table

[pk]

��

[fk]

[fk]
NN

[ji]

2. 1:Class
[0..1] #! 2:Class 1:Table #! Int:DT 2:Table

[pk]
��

[fk]

\\

3. 1:Class
[1..∞] #! 2:Class Int:DT 3:Table•�� • #! Int:DT

1:Table

[pk]

��

2:Table

[pk]

��

[fk][ie]

[fk]
NN

[ji]

4. 1:Class
[1..1] #! 2:Class 1:Table • #! Int:DT 2:Table

[pk]
��

[fk]

\\

5. 1:Class [inv]
*)

2:Class-, Int:DT 3:Table•�� • #! Int:DT

1:Table

[pk]

��

2:Table

[pk]

��

[fk]

[fk]
NN

[ji]

6. 1:Class

[0..1]

[inv]
*)

2:Class

[nov]
-, 1:Table #! Int:DT 2:Table

[pk]
��

[fk]

\\

127

APPENDIX A. APPENDIX

Table A.1: List of transformation rules

No OO RDM

7. 1:Class

[1..∞]

[inv]
*)

2:Class

[surj]
-, Int:DT 3:Table•�� • #! Int:DT

1:Table

[pk]

��

2:Table

[pk]

��

[fk][ie]

[fk]
NN

[ji]

8. 1:Class

[1..1]

[inv]
*)

2:Class

[surj][nov]

-, 1:Table • #! Int:DT 2:Table
[pk]

��

[fk]

\\

9. 1:Class

[nov][0..1]

[inv]
*)

2:Class

[0..1][nov]

-, 1:Table
[inj]

#! Int:DT 2:Table
[pk]

��

[fk]

\\

10. 1:Class

[nov][1..∞]

[inv]
*)

2:Class

[0..1]rj

-, 1:Table
[pk]

#! Int:DT 2:Table��

[fk] [ie]

]]

11. 1:Class

[nov][1..1]

[inv]
*)

2:Class

[0..1][surj][nov]

-, 1:Table •
[inj]

#! Int:DT 2:Table
[pk]

��

[fk]

\\

12. 1:Class

[surj][1..∞]

[inv]
*)

2:Class

[1..∞][surj]

-, Int:DT 3:Table•�� • #! Int:DT

1:Table

[pk]

��

2:Table

[pk]

��

[fk][ie]

[fk][ie]
NN

[ji]

13. 1:Class

[surj][1..1]

[inv]
*)

2:Class

[1..∞][surj][nov]

-, 1:Table • #! Int:DT 2:Table
[pk]

��

[fk] [ie]

\\

14. 1:Class

[nov][surj][1..1]

[inv]
*)

2:Class

[1..1][surj][nov]

-, 1:Table
[pk]

#! Int:DT 2:Table•
[inj]

��

[fk] [ie]

]]

128

References

[1] A Tool for Multi-formalism and Meta-Modelling. Project Web Site.
http://atom3.cs.mcgill.ca/.

[2] D. H. Akehurst and S. Kent. A Relational Approach to Defining
Transformations in a Metamodel. In UML, pages 243–258, 2002.

[3] M. Alanen and I. Porres. Difference and Union of Models. In P. Stevens,
J. Whittle, and G. Booch, editors, UML 2003: 6th International Conference
on The Unified Modeling Language, Modeling Languages and
Applications, volume 2863 of LNCS, pages 2–17. Springer, 2003. ISBN
3-540-20243-9.

[4] Alcatel, Softeam, THALES, TNI-Valiosys, and Codagen. OpenQVT
Revised Submission to the MOF 2.0 QVT RFP, August 2003.
http://www.omg.org/cgi-bin/doc?ad/2003-08-05.

[5] Alloy. Project Web Site. http://alloy.mit.edu/community/.

[6] M. Antkiewicz and K. Czarnecki. Design Space of Heterogeneous
Synchronization. In R. Lämmel, J. Visser, and J. Saraiva, editors, GTTSE
2007: Generative and Transformational Techniques in Software
Engineering II, International Summer School, volume 5235 of LNCS, pages
3–46. Springer, 2008. ISBN 978-3-540-88642-6. doi:
10.1007/978-3-540-88643-3_1.

[7] Antoni Diller. Z: An Introduction to Formal Methods. Wiley, 1994. ISBN
0471939730.

[8] T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer. Henshin:
Advanced Concepts and tools for In-Place EMF Model Transformation. In
MoDELS 2010: 13th International Conference on Model Driven
Engineering Languages and Systems, volume 6394 of LNCS, pages
121–135. Springer, 2010.

[9] Ask.com. Dictionary.com. http://dictionary.reference.com.

129

REFERENCES

[10] C. Atkinson and T. Kühne. Model-Driven Development: A Metamodeling
Foundation. IEEE Software, 20(5):36–41, 2003. doi:
10.1109/MS.2003.1231149.

[11] Atlas Transformation Language. User Guide.
http://wiki.eclipse.org/ATL/User_Guide.

[12] T. Baar and J. Whittle. On the Usage of Concrete Syntax in Model
Transformation Rules. In I. Virbitskaite and A. Voronkov, editors, PSI
2006: 6th International Andrei Ershov Memorial Conference on
Perspectives of Systems Informatics, volume 4378 of LNCS, pages 84–97.
Springer, 2007. ISBN 978-3-540-70880-3. doi:
10.1007/978-3-540-70881-0_10.

[13] D. Balasubramanian, A. Narayanan, C. P. van Buskirk, and G. Karsai. The
Graph Rewriting and Transformation Language: GReAT. ECEASST, 1,
2006.

[14] S. V. Balen, R. V. D. Straeten, and T. Mens, editors. ChaMDE 2008: 1st

International Workshop on Challenges in Model-Driven Software
Engineering, September 2008.

[15] M. Barr and C. Wells. Category Theory for Computing Science (2nd

Edition). Prentice Hall International Ltd., Hertfordshire, UK, 1995. ISBN
0-13-323809-1.

[16] Bergen University College and University of Bergen. Diagram Predicate
Framework (DPF). http://dpf.hib.no/.

[17] J. Bézivin. On the unification power of models. Software and System
Modeling, 4(2):171–188, 2005. doi: 10.1007/s10270-005-0079-0.

[18] J. Bézivin and O. Gerbé. Towards a Precise Definition of the OMG/MDA
Framework. In ASE 2001: 16th IEEE International Conference on
Automated Software Engineering, pages 273–280, 2001. ISBN
0-7695-1426-X. doi: 10.1109/ASE.2001.989813.

[19] E. Biermann, K. Ehrig, C. Köhler, G. Kuhns, G. Taentzer, and E. Weiss.
EMF Model Refactoring based on Graph Transformation Concepts.
ECEASST, 3, 2006.

[20] M. Bohlen. QVT and multi metamodel transformations in MDA. Technical
report, February 2006.

[21] A. Boronat and J. Meseguer. Algebraic Semantics of OCL-Constrained
Metamodel Specifications. In M. Oriol and B. Meyer, editors, TOOLS
Europe 2009: 47th International Conference on Objects, Components,
Models and Patterns, volume 33 of LNBIP, pages 96–115. Springer, 2009.
ISBN 978-3-642-02571-6. doi: 10.1007/978-3-642-02571-6_7.

130

References

[22] P. Bottoni, M. Koch, F. Parisi-Presicce, and G. Taentzer. A Visualization of
OCL Using Collaborations. In UML 2001: 4th International Conference on
The Unified Modeling Language, Modeling Languages and Applications,
volume 2185 of LNCS, pages 257–271. Springer, 2001. ISBN
3-540-42667-1.

[23] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and
M. Sabetzadeh. A Manifesto for Model Merging. In GaMMa ’06:
Proceedings of the 2006 international workshop on Global integrated
model management, pages 5–12, New York, NY, USA, 2006. ACM. ISBN
1-59593-410-3. doi: 10.1145/1138304.1138307.

[24] J. Cabot, R. Clarisó, E. Guerra, and J. de Lara. Analysing Graph
Transformation Rules through OCL. In A. Vallecillo, J. Gray, and
A. Pierantonio, editors, ICMT 2008: 1st International Conference on
Model Transformation, volume 5063 of LNCS, pages 229–244. Springer,
2008. ISBN 978-3-540-69926-2. doi: 10.1007/978-3-540-69927-9_16.

[25] Cambridge. Dictionaries Online.
http://dictionary.cambridge.org.

[26] CBOP, DSTC, and IBM. Joint Revised Submission to the MOF 2.0 QVT
RFP, August 2003.
http://www.omg.org/cgi-bin/doc?ad/2003-08-03.

[27] P. P.-S. Chen. The entity-relationship model—toward a unified view of
data. ACM Trans. Database Syst., 1(1):9–36, 1976. ISSN 0362-5915. doi:
10.1145/320434.320440.

[28] A. Cicchetti, D. Di Ruscio, and A. Pierantonio. A Metamodel Independent
Approach to Difference Representation. Journal of Object Technology, 6(9,
Special Issue on TOOLS Europe 2007):165–185, October 2007.

[29] A. Cicchetti, D. Di Ruscio, and A. Pierantonio. Managing Model Conflicts
in Distributed Development. In K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl,
and M. Völter, editors, MoDELS 2008: 11th International Conference on
Model Driven Engineering Languages and Systems, volume 5301 of LNCS,
pages 311–325, Berlin, Heidelberg, 2008. Springer. ISBN
978-3-540-87874-2. doi: 10.1007/978-3-540-87875-9_23.

[30] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato. Version Control
with Subversion (2nd Edition). O’Reilly Media, October 2008. ISBN
0596510330.

[31] K. Czarnecki and S. Helsen. Classification of Model Transformation
Approaches. In OOPSLA 2003: 2nd Workshop on Generative Techniques in
the Context of MDA, 2003.

131

REFERENCES

[32] J. de Lara and E. Guerra. Pattern-Based Model-to-Model Transformation.
In ICGT 2008: 4th International Conference on Graph Transformations,
volume 5214 of LNCS, pages 426–441. Springer, 2008. doi:
10.1007/978-3-540-87405-8_29.

[33] J. de Lara and G. Taentzer. Automated Model Transformation and Its
Validation Using AToM 3 and AGG. In Diagrams, volume 2980 of LNCS,
pages 182–198. Springer, 2004. ISBN 978-3-540-21268-3. doi:
10.1007/b95854.

[34] Z. Diskin. Practical foundations of business system specifications, chapter
Mathematics of UML: Making the Odysseys of UML less dramatic, pages
145–178. Kluwer Academic Publishers, 2003.

[35] Z. Diskin and J. Dingel. Mappings, Maps and Tables: Towards Formal
Semantics for Associations in UML2. In O. Nierstrasz, J. Whittle, D. Harel,
and G. Reggio, editors, MoDELS 2006: 9th International Conference on
Model Driven Engineering Languages and Systems, volume 4199 of LNCS,
pages 230–244. Springer, 2006. ISBN 3-540-45772-0. doi:
10.1007/11880240_17.

[36] Z. Diskin and B. Kadish. Variable set semantics for keyed generalized
sketches: formal semantics for object identity and abstract syntax for
conceptual modeling. Data Knowl. Eng., 47(1):1–59, 2003. doi:
10.1016/S0169-023X(03)00047-8.

[37] Z. Diskin and B. Kadish. Generic Model Management. In Encyclopedia of
Database Technologies and Applications, pages 258–265. Idea Group,
2005. ISBN 1-59140-560-2.

[38] Z. Diskin and U. Wolter. A Diagrammatic Logic for Object-Oriented Visual
Modeling. In ACCAT 2007: 2nd Workshop on Applied and Computational
Category Theory, volume 203/6 of ENTCS, pages 19–41, Amsterdam, The
Netherlands, 2008. Elsevier Science Publishers B. V. doi:
10.1016/j.entcs.2008.10.041.

[39] Eclipse Modeling Framework. Project Web Site.
http://www.eclipse.org/emf/.

[40] H. Ehrig, U. Prange, and G. Taentzer. Fundamental Theory for Typed
Attributed Graph Transformation. In H. Ehrig, G. Engels,
F. Parisi-Presicce, and G. Rozenberg, editors, ICGT 2004: 2nd

International Conference on Graph Transformations, volume 3256 of
LNCS, pages 161–177. Springer, 2004. doi: 10.1007/b100934.

[41] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic
Graph Transformation. Springer, March 2006. ISBN 3540311874.

132

References

[42] H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, and G. Taentzer. Information
Preserving Bidirectional Model Transformations. In M. B. Dwyer and
A. Lopes, editors, FASE 2007: 10th International Conference on
Fundamental Approaches to Software Engineering, volume 4422 of LNCS,
pages 72–86. Springer, 2007. ISBN 978-3-540-71288-6. doi:
10.1007/978-3-540-71289-3_7.

[43] EMF Compare. Project Web Site.
http://www.eclipse.org/emft/projects/compare/.

[44] Epsilon. Book.
http://epsilonlabs.wiki.sourceforge.net/Book.

[45] J. L. Fiadeiro. Categories for Software Engineering. Springer, May 2004.
ISBN 3540209093.

[46] F. Fondement and T. Baar. Making Metamodels Aware of Concrete Syntax.
In A. Hartman and D. Kreische, editors, ECMDA-FA 2005: 1st European
Conference on Model-Driven Architecture Foundations and Applications,
volume 3748 of LNCS, pages 190–204. Springer, 2005. ISBN
3-540-30026-0. doi: 10.1007/11581741_15.

[47] D. S. Frankel and J. Parodi. The MDA Journal: Model Driven Architecture
Straight From The Masters. Meghan Kiffer Pr, 2004. ISBN 0929652258.

[48] Fujaba Developer Team. The Fujaba Tool Suite.
http://www.fujaba.de/.

[49] T. Gîrba, J.-M. Favre, and S. Ducasse. Using Meta-Model Transformation
to Model Software Evolution. ENTCS, 137(3):57–64, 2005. doi:
10.1016/j.entcs.2005.07.005.

[50] C. Gonzalez-Perez and B. Henderson-Sellers. Metamodelling for Software
Engineering. Wiley, 2008. ISBN 0470030364.

[51] Graphical Modeling Framework. Project Web Site.
http://www.eclipse.org/gmf/.

[52] GReAT: Graph Rewriting and Transformation. Project Web Site.
http://www.isis.vanderbilt.edu/tools/GReAT.

[53] J. Greenfield, K. Short, S. Cook, and S. Kent. Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools.
Wiley, 2004. ISBN 0471202843.

[54] J. Greenyer and E. Kindler. Comparing relational model transformation
technologies: implementing Query/View/Transformation with Triple Graph
Grammars. Software and System Modeling, 9(1):21–46, 2010. doi:
10.1007/s10270-009-0121-8.

133

REFERENCES

[55] R. Grønmo. Using Concrete Syntax in Graph-based Model
Transformations. PhD thesis, Department of Informatics, University of
Oslo, Norway, February 2010.

[56] R. Grønmo, B. Møller-Pedersen, and G. K. Olsen. Comparison of Three
Model Transformation Languages. In R. F. Paige, A. Hartman, and
A. Rensink, editors, ECMDA-FA: 5th European Conference on Model
Driven Architecture - Foundations and Applications, volume 5562 of
LNCS, pages 2–17. Springer, 2009. ISBN 978-3-642-02673-7. doi:
10.1007/978-3-642-02674-4_2.

[57] E. Guerra, J. de Lara, and F. Orejas. Pattern-Based Model-to-Model
Transformation: Handling Attribute Conditions. In R. F. Paige, editor,
ICMT 2009: 2nd International Conference on Model Transformation,
volume 5563 of LNCS, pages 83–99. Springer, 2009. ISBN
978-3-642-02407-8. doi: 10.1007/978-3-642-02408-5_7.

[58] A. Habel, J. Müller, and D. Plump. Double-pushout graph transformation
revisited. Mathematical Structures in Computer Science, 11(5):637–688,
2001. doi: 10.1017/S0960129501003425.

[59] W. Hesse. More matters on (meta-)modelling: remarks on Thomas Kühne’s
“matters”. Software and System Modeling, 5(4):387–394, 2006. doi:
10.1007/s10270-006-0033-9.

[60] J. W. Hunt and M. D. McIlroy. An Algorithm for Differential File
Comparison. Technical Report 41, Bell Laboratories, Murray Hill, NJ,
USA, 1976.

[61] Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings.
Cambridge University Press, 1996. ISBN 0521496195.

[62] John Dawes. The VDM-SL Reference Guide. CRC Press, 1991. ISBN
0273031511.

[63] M. Johnson and R. D. Rosebrugh. Implementing a Categorical Information
System. In J. Meseguer and G. Rosu, editors, AMAST 2008: 12th
International Conference on Algebraic Methodology and Software
Technology, volume 5140 of LNCS, pages 232–237. Springer, 2008. ISBN
978-3-540-79979-5. doi: 10.1007/978-3-540-79980-1_18.

[64] Jonathan Jacky. The Way of Z: Practical Programming with Formal
Methods. Cambridge University Press, 1996. ISBN 0521559766.

[65] C. B. Jones. Systematic Software Development Using Vdm (Prentice-Hall
International Series in Computer Science). Prentice Hall, 1990. ISBN
0138807337.

134

References

[66] F. Jouault and I. Kurtev. On the architectural alignment of ATL and QVT.
In H. Haddad, editor, SAC 2006: 21nd ACM Symposium on Applied
Computing, pages 1188–1195. ACM, 2006. ISBN 1-59593-108-2. doi:
10.1145/1141277.1141561.

[67] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez. ATL: a
QVT-like transformation language. In P. L. Tarr and W. R. Cook, editors,
OOPSLA 2006: 21th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages and Applications,
pages 719–720. ACM, 2006. ISBN 1-59593-491-X. doi:
10.1145/1176617.1176691.

[68] A. G. Kleppe, J. Warmer, and W. Bast. MDA Explained: The Model Driven
Architecture: Practice and Promise. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2003. ISBN 032119442X.

[69] A. Königs. Model Integration and Transformation - A Triple Graph
Grammar-based QVT Implementation. PhD thesis, Electrical Engineering
and Information Technology, Technischen Universität Darmstadt, Germany,
October 2008.

[70] A. Königs and A. Schürr. Tool Integration with Triple Graph Grammars – A
Survey. ENTCS, 148(1):113–150, 2006. doi: 10.1016/j.entcs.2005.12.015.

[71] T. Kühne. Matters of (Meta-)Modeling. Software and System Modeling, 5
(4):369–385, 2006. doi: 10.1007/s10270-006-0017-9.

[72] T. Kühne. Clarifying matters of (meta-) modeling: an author’s reply.
Software and System Modeling, 5(4):395–401, 2006. doi:
10.1007/s10270-006-0034-8.

[73] I. Kurtev, J. Bézivin, and F. J. andPatrick Valduriez. Model-Based DSL
Frameworks. In OOPSLA ’06: Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and
applications, pages 602–616, New York, NY, USA, 2006. ACM. ISBN
1-59593-491-X. doi: 10.1145/1176617.1176632.

[74] L. Lengyel, T. Levendovszky, and H. Charaf. Constraint Validation Support
in Visual Model Transformation Systems. Acta Cybernetica, 17(2):
339–357, 2005.

[75] L. Lengyel, T. Levendovszky, and H. Charaf. Validated model
transformation-driven software development. IJCAT, 31(1/2):106–119,
2008. doi: 10.1504/IJCAT.2008.017723.

[76] Y. Lin, J. Gray, and F. Jouault. DSMDiff: A Differentiation Tool for
Domain-Specific Models. European Journal of Information Systems, 16(4,
Special Issue on Model-Driven Systems Development):349–361, 2007.

135

REFERENCES

[77] M. Makkai. Generalized Sketches as a Framework for Completeness
Theorems. Journal of Pure and Applied Algebra, 115:49–79, 179–212,
214–274, 1997. doi: 10.1016/S0022-4049(96)00007-2.

[78] F. Mantz. Syntactic Quality Assurance Techniques for Software Models.
Diploma thesis, Department of Mathematics and Informatics, Philipps
University in Marburg, Germany, August 2009.

[79] S. Marković and T. Baar. Refactoring OCL annotated UML class diagrams.
Software and System Modeling, 7(1):25–47, 2008. doi:
10.1007/s10270-007-0056-x.

[80] T. Mens. A State-of-the-Art Survey on Software Merging. IEEE
Transactions on Software Engineering, 28(5):449–462, 2002. ISSN
0098-5589. doi: 10.1109/TSE.2002.1000449.

[81] T. Mens and P. V. Gorp. A Taxonomy of Model Transformation. ENTCS,
152:125–142, 2006. doi: 10.1016/j.entcs.2005.10.021.

[82] T. Mens, G. Taentzer, and O. Runge. Detecting Structural Refactoring
Conflicts Using Critical Pair Analysis. ENTCS, 127(3):113–128, 2005. doi:
10.1016/j.entcs.2004.08.038.

[83] A. Narayanan and G. Karsai. Towards Verifying Model Transformations.
ENTCS, 211:191–200, 2008. ISSN 1571-0661. doi:
10.1016/j.entcs.2008.04.041.

[84] Object Management Group. Web site. http://www.omg.org.

[85] Object Management Group. MDA Guide, June 2003.
http://www.omg.org/cgi-bin/doc?omg/03-06-01.

[86] Object Management Group. Unified Modeling Language Specification,
January 2005.
http://www.omg.org/cgi-bin/doc?formal/2005-04-01.

[87] Object Management Group. Meta-Object Facility Specification, January
2006.
http://www.omg.org/cgi-bin/doc?formal/2006-01-01.

[88] Object Management Group. Object Constraint Language Specification,
May 2006.
http://www.omg.org/cgi-bin/doc?formal/2006-05-01.

[89] Object Management Group. XML Metadata Interchange Specification,
December 2007.
http://www.omg.org/cgi-bin/doc?formal/2007-12-01.

136

References

[90] Object Management Group. Query/View/Transformation Specification,
April 2008.
http://www.omg.org/cgi-bin/doc?formal/2008-04-03.

[91] Object Management Group. Unified Modeling Language Specification,
February 2009.
http://www.omg.org/cgi-bin/doc?formal/2009-02-04.

[92] D. Ohst, M. Welle, and U. Kelter. Differences between versions of UML
diagrams. In ESEC/FSE 2003: 11th ACM SIGSOFT Symposium on
Foundations of Software Engineering 2003, pages 227–236. ACM, 2003.
doi: 10.1145/940071.940102.

[93] OMG Model Driven Architecture. Web Site.
http://www.omg.org/mda/.

[94] F. Orejas, E. Guerra, J. de Lara, and H. Ehrig. Correctness, Completeness
and Termination of Pattern-Based Model-to-Model Transformation. In
CALCO 2009: 3rd International Conference on Algebra and Coalgebra in
Computer Science, volume 5728 of LNCS, pages 383–397. Springer, 2009.
doi: 10.1007/978-3-642-03741-2_26.

[95] A. Petter, A. Behring, and M. Mühlhäuser. Solving Constraints in Model
Transformations. In R. Paige, editor, ICMT 2009: 2nd International
Conference on Model Transformation, volume 5563 of LNCS, pages
132–147. Springer, 2009. ISBN 978-3-642-02407-8. doi:
10.1007/978-3-642-02408-5_10.

[96] I. Poernomo. A Type Theoretic Framework for Formal Metamodelling. In
International Seminar on Architecting Systems with Trustworthy
Components, volume 3938 of LNCS, pages 262–298. Springer, 2006. ISBN
3-540-35800-5. doi: 10.1007/11786160_15.

[97] U. Ranger and E. Weinell. The Graph Rewriting Language and
Environment PROGRES. In A. Schürr, M. Nagl, and A. Zündorf, editors,
AGTIVE 2007: 3rd International Symposium on Applications of Graph
Transformations with Industrial Relevance, volume 5088 of LNCS, pages
575–576. Springer, 2007. ISBN 978-3-540-89019-5. doi:
/10.1007/978-3-540-89020-1_41.

[98] J. E. Rivera and A. Vallecillo. Representing and Operating with Model
Differences. In TOOLS Europe 2008: 46th International Conference on
Objects, Components, Models and Patterns, volume 11 of LNBIP, pages
141–160. Springer, 2008. ISBN 978-3-540-69823-4. doi:
10.1007/978-3-540-69824-1_9.

137

REFERENCES

[99] J. R. Romero, J. E. Rivera, F. Durán, and A. Vallecillo. Formal and Tool
Support for Model Driven Engineering with Maude. Journal of Object
Technology, 6(9):187–207, 2007.

[100] A. Rossini, A. Rutle, F. Mancini, D. Hovland, K. A. Mughal, Y. Lamo, and
U. Wolter. A Formal Approach to the Specification of Data Validation
Constraints in MDE. In NWPT 2009: 21st Nordic Workshop on
Programming Theory, pages 86–88, October 2009. ISBN
978-87-643-0565-4.

[101] A. Rossini, A. Rutle, Y. Lamo, and U. Wolter. A Formalisation of the
Copy-Modify-Merge Approach to Version Control in MDE. Journal of
Logic and Algebraic Programming, 79(7):636–658, 2010. ISSN
1567-8326. doi: 10.1016/j.jlap.2009.10.003.

[102] J. Rothenberg. The nature of modeling. Santa Monica: The Rand
Corporation, 1989.

[103] G. Rozenberg. Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. World Scientific Publishing
Company, River Edge, NJ, USA, 1997. ISBN 98-102288-48.

[104] A. Rutle, U. Wolter, and Y. Lamo. A Diagrammatic Approach to Model
Transformations. In EATIS 2008: Euro American Conference on Telematics
and Information Systems, pages 1–8. ACM, 2008. ISBN
978-1-59593-988-3. doi: 10.1145/1621087.1621105.

[105] A. Rutle, A. Rossini, Y. Lamo, and U. Wolter. A Category-Theoretical
Approach to the Formalisation of Version Control in MDE. In M. Chechik
and M. Wirsing, editors, FASE 2009: 12th International Conference on
Fundamental Approaches to Software Engineering, volume 5503 of LNCS,
pages 64–78. Springer, 2009. ISBN 978-3-642-00592-3. doi:
10.1007/978-3-642-00593-0_5.

[106] A. Rutle, A. Rossini, Y. Lamo, and U. Wolter. A Diagrammatic
Formalisation of MOF-Based Modelling Languages. In M. Oriol and
B. Meyer, editors, TOOLS Europe 2009: 47th International Conference on
Objects, Components, Models and Patterns, volume 33 of LNBIP, pages
37–56. Springer, 2009. ISBN 978-3-642-02571-6. doi:
10.1007/978-3-642-02571-6_4.

[107] A. Rutle, A. Rossini, Y. Lamo, and U. Wolter. A Formalisation of
Constraint-Aware Model Transformations. In D. Rosenblum and
G. Taentzer, editors, FASE 2010: 13th International Conference on
Fundamental Approaches to Software Engineering, volume 6013 of LNCS,
pages 13–28. Springer, 2010. ISBN 978-3-642-12028-2. doi:
10.1007/978-3-642-12029-9_2.

138

References

[108] A. Rutle, A. Rossini, Y. Lamo, and U. Wolter. A Formal Approach to the
Specification and Transformation of Constraints in MDE. Journal of Logic
and Algebraic Programming, Submitted.

[109] A. Schürr. Specification of Graph Translators with Triple Graph Grammars.
In E. W. Mayr, G. Schmidt, and G. Tinhofer, editors, WG :20th
International Workshop on Graph-Theoretic Concepts in Computer
Science, volume 903 of Lecture Notes in Computer Science, pages 151–163.
Springer, 1994. ISBN 3-540-59071-4. doi: /10.1007/3-540-59071-4_45.

[110] R. W. Sebesta. Concepts of Programming Languages (8th Edition).
Addison Wesley, 2007. ISBN 0321493621.

[111] E. Seidewitz. What Models Mean. IEEE Software, 20(5):26–32, 2003. doi:
10.1109/MS.2003.1231147.

[112] S. Sendall and W. Kozaczynski. Model Transformation: The Heart and
Soul of Model-Driven Software Development. IEEE Software, 20(5):
42–45, 2003.

[113] H. D. Simon and B. Wilkinson. Grid Computing - Techniques and
Applications. Chapman & Hall, 2009. ISBN 78-1-4200695-3-2.

[114] Software Technologies for Distributed Systems. Project Web Site.
http://prosjekt.hib.no/distech/index.html.

[115] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse
Modeling Framework 2.0 (2nd Edition). Addison-Wesley Professional,
2008. ISBN 0321331885.

[116] Steve Schneider. The B-method (Cornerstones of Computing). Palgrave
Macmillan, 2001. ISBN 033379284X.

[117] M. Stölzel, S. Zschaler, and L. Geiger. Integrating OCL and Model
Transformations in Fujaba. ECEASST, 5, 2006.

[118] G. Taentzer and A. Rensink. Ensuring Structural Constraints in
Graph-Based Models with TypeInheritance. In M. Cerioli, editor, FASE
2005: 8th International Conference on Fundamental Approachesto
Software Engineering, volume 3442 of LNCS, pages 64–79. Springer, 2005.
ISBN 3-540-25420-X.

[119] The Attributed Graph Grammar System. Project Web Site.
http://user.cs.tu-berlin.de/~gragra/agg/.

[120] The EMF Henshin Transformation Tool. Project Web Site.
http://www.eclipse.org/modeling/emft/henshin/.

139

REFERENCES

[121] The Entity Attribute Sketch Implementation Kit. Project Web Site.
http://mathcs.mta.ca/research/rosebrugh/Easik/.

[122] The Maude System. Project Web Site.
http://maude.cs.uiuc.edu/.

[123] The VIsual Automated model TRAnsformations. Project Web Site.
http://www.eclipse.org/gmt/VIATRA2/.

[124] D. Varró and A. Balogh. The model transformation language of the
VIATRA2 framework. Sci. Comput. Program., 68(3):214–234, 2007. doi:
10.1016/j.scico.2007.05.004.

[125] Visual OCL. Project Web Site.
http://tfs.cs.tu-berlin.de/vocl/.

[126] J. Warmer and A. Kleppe. The Object Constraint Language (2nd Edition):
Getting your models ready for MDA. Addison-Wesley, August 2003. ISBN
0321179366.

[127] U. Wolter and Z. Diskin. The Next Hundred Diagrammatic Specification
Techniques – An Introduction to Generalized Sketches. Technical Report
358, Department of Informatics, University of Bergen, Norway, July 2007.

[128] U. Wolter and Z. Diskin. From Indexed to Fibred Semantics – The
Generalized Sketch File. Technical Report 361, Department of Informatics,
University of Bergen, Norway, October 2007.

[129] J. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof
(Prentice-Hall International Series in Computer Science). Prentice Hall,
1996. ISBN 0139484728.

140

