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INTRODUCTION 
 

MYASTHENIA GRAVIS 

 

EPIDEMIOLOGY 
 

Myasthenia gravis (MG) is an autoimmune disorder, most often caused by pathogenic 

antibodies (Abs) against the nicotinic acetylcholine receptor (AChR) at the 

neuromuscular junction (NMJ) [1]. The clinical syndrome was probably first 

described by Sir Samuel Wilks in 1877, in a woman initially thought to be suffering 

from hysteria presenting with generalized weakness, squint and dysphagia [2]. The 

term “myasthenia gravis” was coined by Friedrich Jolly in 1895. 

 

Although both incidence and prevalence have increased over time, MG is still a 

relatively rare disease. In 1984, the prevalence of MG in Norway was reported to be 

90 per million [3]. In 2007, the estimated prevalence of seropositive MG in Norway 

was 126.2 per million, with a yearly incidence of 7.2 per million for the period 1995 - 

2008. Taking into account a 15% stipulated portion of seronegative MG (SNMG) 

patients, the total MG prevalence was estimated to 145 per million [4]. Globally, a 

prevalence between 100 and 200 per million is found in most populations studied [5], 

while the reported incidence varies widely between 1.7 and 10.4 per million [1]. 

 

MG affects both sexes at all ages, but in women there is a peak in incidence during 

early adulthood (age < 40 years). The incidence has been reported to be equal in both 

sexes during puberty and at older ages [4], but other investigators report a higher 

incidence in men above age 50 [6]. There is evidence of MG being underdiagnosed in 

old age (> 80 years), and this has been attributed to a wider range of differential 

diagnoses in this age group, with symptoms being interpreted as stroke or motor 

neuron disease [7]. 
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CLINICAL FEATURES 
 

Being a disorder of the NMJ, MG causes purely motor symptoms. Classically, 

patients present with fatigueable muscle weakness, involving specific muscle groups 

or being generalized. Most affected individuals experience fluctuation of weakness 

from day to day, or even from hour to hour. Weakness and fatiguability worsens with 

activity and improves with rest [1, 5]. Ocular symptoms in the form of ptosis and/or 

diplopia are the commonest initial presentation, and are seen in 85 percent of MG 

patients. Of these, 80 percent eventually progress to generalized weakness, most 

within 1 year of disease onset [6]. Maximum severity is reached within 2 years in 

most patients.  

 

Prominent bulbar symptoms with dysarthria, dysphagia and facial weakness are more 

common in patients with antibodies against the muscle specific tyrosine kinase 

(MuSK) [8-9].  Respiratory muscles may be affected in MG, sometimes to a degree 

necessitating assisted ventilation. Such respiratory crises are more common in 

MuSK-positive MG. Of notion, weakness of ankle dorsiflexion is unusual in MG but 

not in congenital myasthenic syndromes (CMS), and so can be useful as a 

distinguishing feature [10]. 

 

 

MG SUBGROUPS 
 

MG is usually divided into subgroups according to age at onset, thymic pathology 

and antibody profile. This subdivision of patients is of clinical importance, as 

treatment decisions are based upon it. 
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OCULAR MG 
 

This subgroup is characterized by purely ocular symptoms, and comprises 17 percent 

of the total MG population. Some of these patients will eventually develop 

generalized disease, but if this does not occur within 2 years of disease onset, there is 

only a 10 percent risk that they will do so later on [6]. Ocular MG can affect all age 

groups. Abs to AChR are detected in 50 percent. Abs to MuSK are rare in ocular MG, 

but an association with Abs against acetylcholine esterase (AChE) have recently been 

found [11]. 

 

EARLY ONSET MG (EOMG) 
 

These patients have disease onset before 50 years of age, no thymoma is present and 

Abs against AChR are detectable. Titin Abs are found in 10 percent [12], but Abs 

against the ryanodine receptor (RyR) are very rare. The EOMG subgroup has a 

female:male ratio of about 2.5:1 [6]. Most affected individuals have thymic 

hyperplasia [13]. 

 

EOMG with thymic hyperplasia is associated with HLA-DR3 and B8 [14]. These 

alleles are part of the conserved 8.1 HLA haplotype, which also includes HLA-A1. 

The 8.1 HLA haplotype is also associated with several other autoimmune diseases, 

such as autoimmune thyroid disease, rheumatoid arthritis and systemic lupus 

erythematosus [14-15]. These diseases co-occur with markedly increased frequency 

in MG patients [16], suggestive of shared genetic susceptibility. A protective effect of 

HLA-DR7 has been reported for EOMG with thymic hyperplasia [17]. 

 

LATE ONSET MG (LOMG) 
 

Onset of disease is after 50 years of age, no thymoma is present. For LOMG there is 

no sex preponderance. All patients have Abs against AChR, about 60% have 
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additional titin Abs and 14% have also RyR Abs [12]. The course of the disease is 

often more severe in LOMG as compared to EOMG [18], particularly in patients with 

Abs against titin and RyR [19]. 

 

The thymus is usually normal or atrophic. There is an association with HLA-A3, B7, 

DR2 [20] and HLA-DR4 [21]. The presence of titin Abs is associated with HLA-

DR7, and these patients also have a low frequency of the HLA-DR3 allele [17]. 

 

THYMOMA MG 
 

Herman Hoppe, in 1892, speculated that a mass he found at autopsy near a large 

bronchus had caused auto-intoxication in a patient presenting with myasthenia [22]. 

About 10 percent of MG patients have a thymoma [6], while 30-50 percent of 

thymoma patients develop MG, which in these patients is considered a paraneoplastic 

disease [23]. In nearly all cases symptoms of MG precede the detection of the 

thymoma, which usually is otherwise asymptomatic [6, 24]. Thymoma MG occurs in 

all age groups, but with a peak onset around 50 years. Incidence is not influenced by 

gender [24], and the disease course is similar to LOMG [25-27]. 

 

Although associations with HLA-DQB1*0604 [28] and HLA-DRw15, Dw2 [21] 

have been reported in thymoma MG, this has not been reproducible. A protective 

effect of the 8.1 HLA haplotype has been suggested [29]. All thymoma MG patients 

have Abs against AChR. Titin and RyR Abs are found in 95 and 70 percent, 

respectively [12]. 

 

MuSK AB-POSITIVE MG 
 

In 2001, Hoch et al. described for the first time MuSK as a target for auto-Abs in MG 

patients without detectable Abs against AChR, and also demonstrated their functional 

effects on agrin-induced AChR clustering [30]. MuSK Abs have been detected in 
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only one patient with AChR Abs [31-32]. The proportion of MuSK Ab-positive 

patients among the AChR Ab-negative patients varies widely from 47% in Italy, 22% 

in the Netherlands, to 4% in Taiwan [8, 33-34]. In Norway, having a population of 

4.8 million, only three patients with MuSK Abs have been identified (unpublished 

data). 

 

An association with HLA-DR14 and DQ5 has been found in MuSK Ab-positive MG 

[35]. Standard therapy for MG is often less satisfactory in patients with MuSK Abs, 

but these patients usually respond well to additional therapy with mycophenolate, 

cyclosporine or cyclophosphamide [31]. 

 

MG WITH LOW-AFFINITY AChR ANTIBODIES 
 

The observation that MG patients without detectable Abs against AChR or MuSK 

resemble AChR Ab-positive MG both clinically and in the response to treatment [8-9, 

36-37], made it likely that apparent seronegativity was due to failure of current assays 

to detect the Abs.  

 

Indeed, using human embryonic kidney cells expressing clustered AChR, low-affinity 

Abs against AChR have been detected in 66 percent of MG patients who were 

negative for Abs against both AChR and MuSK using standard assays [38]. These 

low-affinity Abs are mainly of the IgG1 subclass and are able to activate 

complement, supporting their role in MG pathogenesis. 

 

SERONEGATIVE MG 
 

A proportion of MG patients remain without detectable Abs using both conventional 

and experimental assays, and these patients are referred to as seronegative. 

Nevertheless, there is substantial evidence that humoral factors are involved; the 

disease can be transferred vertically and to mice (both by plasma and immunoglobin 
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preparation) and patients improve after plasma exchange [39]. Both IgG and non-IgG 

(probably IgM) plasma factors may be important in causing the disease. Yet 

unidentified antigens on the postsynaptic membrane may be the target of pathogenic 

Abs. Also, some patients could be misdiagnosed due to the broad differential 

diagnosis of MG including Lambert-Eaton myasthenic syndrome, CMS, motor-

neuron disease, inflammatory neuropathies and myopathies. 

 

PATHOPHYSIOLOGY 
 

MG is prototypical both as an Ab-mediated autoimmune disease and as a disorder of 

neuromuscular transmission. In MG (and all other neuromuscular transmission 

disorders) the safety factor (SF) for neuromuscular transmission is compromised, 

eventually leading to transmission failure. The SF can be defined as 

 

SF = (EPP)/(EAP – EM) 

 

where EPP is the endplate potential amplitude, EAP is the threshold potential for 

initiating an action potential and EM is the resting membrane potential [40]. As is 

evident, EAP – EM equals the amount of depolarization needed to reach threshold. In 

MG, there is loss of both AChR and postsynaptic Na+ channels, compromising the SF 

by reducing the EPP and increasing EAP [41-42]. 

 

AChR ANTIBODIES 
 

The main antigen in MG is AChR located at the postsynaptic side of the NMJ, and 

AChR Abs are detected in about 85 percent of patients with generalised disease using 

routine assays [43]. Such Abs were described for the first time in 1976 by Lindstrøm 

et al. [44]. 

 

AChRs represent cation channels composed of 5 subunits. In muscle there are two 

subtypes of AChR, fetal and adult, which differ in one subunit as illustrated in fig. 1. 
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Figure 1: Composition of fetal and adult AChRs. From Kaminski (Ed.): Myasthenia 
gravis and related disorders [45]. 

 

Each AChR has two acetylcholine binding sites, located at the interface between α1 

and the adjacent subunit [46]. The cytoplasmic domain is linked to the cytoskeleton 

through interaction with rapsyn, this being essential for clustering of the receptors at 

the motor endplate [47]. Abs against AChR bind predominantly to a region on the 

extracellular tip of the α1 subunit known as the main immunogenic region (MIR) [48-

50], which is distant from the acetylcholine binding sites. Binding of Abs to the MIR 

is highly dependent on AChR being in its native conformation, suggesting that the 

MIR is a cluster of epitopes adjacent only in the native conformation.  

 

Abs against AChR impair neuromuscular transmission by 3 mechanisms: 

1. Antigenic modulation, which represents an increased rate of internalization 

and degradation of AChR due to cross-linking of the receptors by divalent 

Abs, thus reducing the number of AChR in the postsynaptic membrane [51-

52]. 

2. Complement-mediated lysis of the motor endplate, resulting in simplification 

of the folded pattern of the postsynaptic membrane with loss of both AChR 

and voltage-gated Na+ channels [42, 53-55]. As AChR loss due to antigenic 

modulation may be partly offset by an increased AChR synthesis [56-57], 

complement-mediated lysis is regarded as the most important mechanism for 

transmission failure in MG [58]. 

3. Reversible blockade of AChR by Abs directed against the acetylcholine 

binding sites [59-60]. 

 



 16 

A correlation between AChR Ab titer and disease severity has not been found [44], 

but in an individual patient fluctuations in the clinical state are often accompanied by 

parallel changes in the Ab titer [61]. 

 

MuSK ANTIBODIES 
 

MuSK, by mediating agrin-induced clustering of AChR, is essential for development 

of the NMJ [62]. Abs against MuSK inhibit agrin-induced AChR clustering, 

indicating a possible effect also on maintenance of the NMJ, as MuSK is expressed at 

the mature NMJ [30]. Muscle weakness, electromyographical evidence of a 

neuromuscular transmission defect and reduced AChR clustering have been 

demonstrated in animal models with active MuSK immunization or passive transfer 

of IgG from MuSK Ab-positive MG patients [63-65]. 

 

MuSK Abs are predominantly IgG4, but they have also been shown to be of the IgG1 

subclass with the ability to activate complement [38]. Although the pathogenic 

mechanisms are still not clear, it seems that MuSK Ab-positive MG represents an 

immunologically distinct entity. 

 

OTHER ANTIBODIES 
 

A diversity of auto-Abs have been reported in MG, including Abs against 

myofibrillar proteins (myosin, actomyosin, tropomyosin, α-actinin and actin)  [66], 

the M1 muscarinic acetylcholine receptor [67],  β-adrenergic receptors [68] and non-

muscle antigens like interferon-α (INF-α) and interleukin-12 (IL-12) [69]. 

 

Titin is present in both skeletal and heart muscle, where it comprises the so-called 

third filament. It is the largest known protein to date, and produces passive force in 

striated muscle [70].  In 1990, Aarli et al. demonstrated that one group of non-AChR 

Abs found in the sera of thymoma MG patients was directed against titin [71]. 
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RyR is a calcium release channel of the sarcoplasmic reticulum and has an essential 

role in excitation-contraction coupling in striated muscle [72]. The RyR1 isoform 

predominates in skeletal muscle, while the RyR2 isoform is the most abundant in 

heart muscle. Abs against RyR bind to both of these isoforms, and it has been 

demonstrated that they inhibit calcium release in vitro [73]. As already described, 

RyR Abs are mostly found in thymoma MG [12]. 

 

Although both titin and RyR Abs are able to activate complement in vitro [74], there 

is no evidence that these Abs are pathogenic in vivo [75]. Since both titin and RyR 

are located intracellularly, generation of Abs against them may be secondary to 

muscle damage caused by AChR Abs, although the high specificity for thymoma MG 

makes this less likely. 

 

THYMIC INVOLVEMENT 
 

Abnormalities of the thymus, and especially thymic tumours, were found to be 

associated with MG over hundred years ago. Improvement of MG following removal 

of a non-tumorous thymus was observed for the first time in 1911 [22]. Since this, 

several lines of evidence support an important role for the thymus in MG 

pathogenesis. 

 

Muscle-like cells known as thymic myoid cells are found in the thymic medulla both 

normally and in MG. These cells express AChR but not MHC class II, making it 

unlikely that they themselves are able to present antigen (Ag) to CD4+ T cells [76]. 

However, professional antigen-presenting cells (APCs) could present AChR from 

myoid cells to AChR-specific CD4+ T cells. In the hyperplastic thymus of EOMG, 

perivascular infiltrates harbouring many APCs are frequent. Myoid cells are often 

located adjacent to, or within, these infiltrates [13]. 
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Germinal centers (GCs) with AChR-specific B cells undergoing clonal proliferation, 

somatic hypermutation and selection are also present in the thymic infiltrates, and 

follicular dendritic cells in these GCs present AChR on their dendritic processes [77].  

 

AChR Abs in MG are polyclonal in origin and belong to different IgG subclasses, 

implying that helper T cells are involved in the autoimmune response. Such AChR-

specific CD4+ T cells have been demonstrated in MG patients [78], and it has also 

been shown that they are more abundant in the thymus than in the blood [79-80]. 

However, AChR-specific T cells are also found in the blood of healthy individuals 

[81-82], so that in the normal situation these cells must be under tight regulatory 

control. Functional defects of thymic CD4+CD25+ regulatory T (Treg) cells have been 

reported in MG [83]. 

 

Medullary thymic epithelial cells are known to play an essential role in negative 

selection of self-reactive T cells through expression of virtually all self-Ags of the 

human body, a property known as promiscuous gene expression [84]. A single 

nucleotide polymorphism (SNP) in the promoter region of the CHRNA1 gene 

(encoding the α subunit of AChR) is associated with especially early onset of MG 

[85]. The MG-associated allele abrogated CHRNA1 promoter activity in thymic 

epithelial cells in vitro. Furthermore, both the CHRNA1 promoter variant and the 

autoimmune regulator gene (AIRE) was shown to modulate CHRNA1 mRNA levels. 

Downregulation of CHRNA1 expression in thymic epithelial cells could compromise 

negative selection of AChR-specific T cells. 

 

A two-step model for thymic autosenitization in MG has been proposed [86]. In the 

first step, AChR-specific T cells are primed by APCs and thymic epithelial cells. 

Secondly, myoid cells are attacked, eventually provoking local GC formation in the 

thymus leading to the production of high-affinity AChR Abs. 

 

In SNMG thymus, changes similar to those seen in EOMG are frequent, suggesting 

that these patients belong to the same etiologic group. In MuSK Ab-positive MG, 
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thymic changes are minimal, supportive of a different pathogenic mechanism in these 

patients [13]. 

 

PARANEOPLASTIC MG 
 

Thymomas are neoplasms arising from the thymic epithelium and are classified 

according to the World Health Organization histological classification system. During 

T cell development, CD4-CD8- T cell precursors migrate to the thymic cortex, where 

they develop into CD4+CD8+ T cells. These double-positive cells subsequently 

undergo positive and negative selection, before they differentiate into mature CD4+ or 

CD8+ T cells in the thymic medulla [87]. Only thymomas with a significant number 

of CD4+CD8+ T cells and also capable of exporting CD4+CD8- T cells to the 

periphery are associated with MG [23], indicating that these thymomas retain the 

ability to propagate the maturation of T cells. 

 

Thymoma epithelial cells express several epitopes cross-reactive with muscle 

proteins including AChR, titin and RyR [88-89], and their ability to present AChR 

peptides to T cells from patients with paraneoplastic MG has been demonstrated [90]. 

Both the expression of AIRE and the number of Treg cells are low in thymomas [91], 

and there is a selectively reduced export of Treg cells to the periphery [92]. MHC II 

expression is lower in thymomas than in the normal thymus. It might therefore be that 

T cells with high affinity T cell receptors, which normally are deleted during negative 

selection, instead survive [87]. In summary, it seems that mechanisms affecting both 

positive and negative selection are important in thymoma MG pathogenesis. 

 

In addition to MG, many other Ab-mediated paraneoplastic disorders are associated 

with thymoma, such as acquired neuromyotonia, limbic encephalitis and stiff person 

syndrome [93]; if the aforementioned mechanisms are responsible for thymoma-

associated autoimmunity, it seems reasonable that the autoimmune response is not 

always entirely restricted to AChR. 
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DIAGNOSIS 
 

Diagnostic tools in MG include clinical examination, pharmacological tests, 

electrophysiological measurements, tests for detection of auto-Abs and imaging. 

 

CLINICAL EXAMINATION 
 

Variation in the degree and distribution of muscle weakness on repeated 

examinations can be helpful in 

making the clinical diagnosis of 

MG. Deep tendon reflexes are 

typically normal, and skin sensation 

is intact. Differentiating between 

non-specific, generalized fatigue 

(which is common in the general 

population) and the objective 

fatigability and weakness of specific 

muscles characteristic of MG is 

pivotal. Affected muscles are tested, 

and the ptosis-test should be 

performed. Slurred speech due to 

tongue weakness may only be 

apparent after prolonged talking. 

Involvement of respiratory muscles 

should be thoroughly sought. 

 

After the diagnosis of MG is made 

the patient should be classified 

according to the Myasthenia Gravis 

Foundation of America (MGFA) 

clinical classification (table 1) [94]. The most severely affected muscles should be 

used to define the patient’s current clinical class. The maximum severity experienced 
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during the pre-treatment period should also be recorded and used as a reference point. 

 

PHARMACOLOGICAL TESTS 
 

Edrophonium chloride is an acetylcholinesterase inhibitor, prolonging the action of 

acetylcholine at the NMJ and thereby increasing the amplitude and duration of the 

EPP. It has a rapid onset (30 seconds) and short duration (5-10 minutes) of action. In 

the edrophonium test (also known as the Tensilon test), edrophonium chloride is 

administered intravenously and improvement in muscle strength is observed. 

Resolution of ptosis or improvement in the strength of a single extraocular muscle are 

considered the most reliable endpoints. This test has a diagnostic sensitivity of 70 – 

95 percent for generalized MG [95], but a positive response to edrophonium has also 

been reported in several other conditions and even in healthy controls. Although 

serious complications are rare, atropine should be readily available in case the patient 

develops severe bradycardia. 

 

A therapeutic trial with the orally administered acetylcholinesterase inhibitor 

pyridostigmine (Mestinon) for some days may also be of help in the diagnostic 

process [5]. 

 

ELECTROPHYSIOLOGICAL MEASUREMENTS 
 

In disorders of the NMJ, repetitive nerve stimulation (RNS) and single fiber 

electromyography (SFEMG) are used both to confirm the diagnosis, and also to 

exclude other defects of the motor unit. 

 

RNS causes depletion of ready releasable acetylcholine in the nerve terminal, leading 

to failure of neuromuscular transmission in a proportion of NMJs. Thus, fewer 

muscle fibers contribute to the compound muscle action potential (CMAP) resulting 

in a progressive decrease (decrement) in amplitude. A decrement of more than 10 

percent is usually considered abnormal. The characteristic finding in MG is a “U”-

shaped envelope pattern due to a decremental response with partial repair after the 
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third or fourth response of the train [95]. The sensitivity of RNS has been reported to 

be 53-100% for generalized MG and 10-29% for ocular MG, with specificities of 

97% and 94%, respectively [96-97]. To obtain maximal diagnostic yield several 

muscles should be tested, and in particular those that are clinically weak. 

 

SFEMG is the most sensitive test for defects in neuromuscular transmission, and can 

demonstrate abnormalities even in clinically unaffected muscles. The neuromuscular 

jitter is the variation in latency from nerve activation to muscle action potential, and 

is quantified by measuring variation in the time interval between the action potentials 

of two muscle fibers belonging to the same motor unit. The sensitivity of SFEMG 

have been reported to be 75-99% for generalized MG and 62-99% for ocular MG, 

with specificities of 96-98 % and 73-96%, respectively [96-97]. Studies of nerve 

conduction velocity and conventional electromyography should be done to exclude 

other primary disorders of nerve and muscle whenever SFEMG is abnormal [95]. 

 

DETECTION OF AUTO-ABs 
 

AChR Abs are routinely measured in a radioimmunoassay (RIA) with 125Iα-

bungarotoxin-labeled AChR as Ag [98]. Abs are detectable in 85 percent of 

generalized MG patients using this assay, and their presence verifies the diagnosis. 

Recently, a new assay for detection of AChR Abs has been developed [38]; this 

utilizes clustered AChR on the surface of transfected human embryonic kidney cells 

as Ag, and has the capacity to detect low-affinity Abs in a proportion of MG patients 

formerly negative for Abs to both AChR and MuSK. 

 

MuSK Abs are routinely measured in a RIA with 125I-MuSK as Ag, or in an enzyme-

linked immunosorbent assay (ELISA) with the extracellular domain of MuSK as Ag. 

A cell-based assay similar as that for AChR has also recently been developed [99]. 

Testing for MuSK Abs should be done in all patients negative for Abs against AChR 

[1]. 
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Titin Abs are detected in an ELISA with the titin fragment MGT-30 as Ag [100-101], 

and this assay is available for commercial use. RyR Abs are detected by western blot 

using crude sarcoplasmic reticulum as Ag [102]. In a patient positive for Abs to both 

titin and RyR the probability of a thymoma is 70 percent, and so these Abs can be 

used as serological markers for paraneoplastic MG [12]. 

 

IMAGING 
 

Investigation for a thymoma by radiographic examination of the chest should be done 

in all patients with a confirmed diagnosis of MG. Computed tomography (CT) has an 

overall sensitivity of 87.1% for detecting thymic pathology, the sensitivity for 

thymoma and thymic hyperplasia being 88.5-97.1% and 36-71.4%, respectively [103-

104]. As magnetic resonance imaging is equal or inferior to CT in the diagnosis of 

most anterior mediastinal tumors, including thymoma, CT should be the initial 

modality of choice [105]. 

 

TREATMENT 
 

Resemblance of MG with curare poisoning was noted by both Jolly and Herman 

Oppenheim. In 1934, Mary Broadfoot Walker successfully relieved the symptoms of 

MG with the curare-antidote physostigmine, in 1935 with oral neostigmine [106]. 

 

SYMPTOMATIC DRUG TREATMENT 
 

Orally administered acetylcholinesterase inhibitors (most often pyridostigmine) are 

the initial treatment in MG, and may also be used alone as long-term treatment in 

milder cases. These drugs are purely symptomatic. As the concentration of 

acetylcholine increases also at muscarinic synapses adverse effects related to this may 

occur, the common ones being gut hypermotility, increased sweating, excessive 

respiratory and gastrointestinal secretions and bradycardia [107]. 
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IMMUNOSUPPRESSIVE DRUG TREATMENT 
 

Immunosuppressive treatment aims at inducing and then maintaining remission. Oral 

corticosteroids induce remission or marked improvement in 70-80 percent of MG 

patients, and should be the first-line immunosuppressive treatment [107]. A 

temporary exacerbation of MG may occur 4-10 days after initiation of steroid 

treatment, and so the dose should initially be low and then gradually increased. After 

remission is induced, steroids should be tapered to the minimum effective dose due to 

the high risk of adverse effects. 

 

Azathioprine is a purine antimetabolite which interferes with T cell function. When 

long-term immunosuppressive treatment is needed, azathioprine should be started 

together with corticosteroids to allow tapering of the latter to the minimum dose 

[107]. The combination of these two drugs are both more effective and better 

tolerated than steroids alone [108]. The therapeutic response to azathioprine can be 

delayed for 4-12 months, with maximal effect occurring after 6-24 months. About 10 

percent of patients experience flu-like symptoms or gastrointestinal disturbances. 

Liver enzymes and blood cell counts should be monitored as hepatitis and cytopenias 

are possible adverse effects. 

 

Other immunosuppressive drugs for the treatment of MG include mycophenolate 

mofetil, ciclosporin, cyclophosphamide, tacrolimus and methotrexate. These drugs 

should be considered in patients unresponsive or intolerant to steroids and 

azathioprine [107]. The use of monoclonal Abs directed against lymphocyte subsets 

is a promising approach for the treatment of MG. Good clinical outcome has been 

reported both for anti-CD20 (rituximab, a B cell inhibitor) [109-112] and anti-CD4 (a 

T cell inhibitor) [113],  but more evidence is needed [107]. 
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PLASMA EXCHANGE AND INTRAVENOUS IMMUNOGLOBULIN 
 

Plasma exchange works by removing Abs from the patient’s serum. Improvement is 

seen within the first week, lasting 1-3 months. Several case-series have shown a 

beneficial effect in MG [114], and plasma exchange are recommended as a short-term 

treatment in severe cases and in preparation for surgery [107]. Intravenous 

immunoglobulin are equally effective as plasma exchange in MG exacerbations 

[115]. 

 

THYMECTOMY 
 

No randomized controlled trials evaluating the effect of thymectomy for non-

paraneoplastic MG have been performed, but a trial is in progress [116]. In 

paraneoplastic MG thymectomy is always indicated irrespective of MG severity, with 

the aim of treating the tumour [107]. 

 

EOMG patients with generalized disease and persistent symptoms despite the use of 

acetylcholinesterase inhibitors are usually considered for thymectomy early on in the 

disease course. In LOMG, thymectomy is only recommended for the minority of 

patients with a hyperplastic thymus resembling EOMG. LOMG patients with titin 

Abs usually do not improve after thymectomy [5]. Thymectomy is not performed in 

ocular MG, as no beneficial effect is seen in these patients compared to medical 

treatment only [117-118]. In MuSK Ab-positive MG remission rates are low 

following thymectomy [8, 119], which therefore is not usually performed. There is no 

general agreement regarding the role of thymectomy for SNMG [107], but a similar 

postoperative course as for seropositive MG has been reported [120-121]. Negative 

health effects of thymectomy have never been found [5]. 
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GENETICS OF MYASTHENIA GRAVIS 

 

Several lines of evidence demonstrate the key role of genetic factors in MG. Up to 4 

percent of patients’ family members develop MG themselves  [122]. There is an 

excess of other autoimmune diseases among family members of MG patients [14], as 

well as in affected individuals themselves [16]. The co-occurrence of multiple 

autoimmune diseases suggests shared susceptibility factors. Twin studies have shown 

the concordance of MG to be significantly higher in monozygotic as compared to 

dizygotic twins [123], strongly suggestive of a genetic predisposition. 

 

GENETIC LOCI ASSOCIATED WITH MG 
 

Several genetic loci, including both MHC and non-MHC genes, have been reported to 

be associated with MG (reviewed in [14]). Some of these will be described here. 

 

HLA 
 

The most reproducible genetic association in MG is the HLA-A1, B8, DR3 haplotype 

with EOMG with thymic hyperplasia. Several studies have shown that the 

predominant association is with the HLA-B8 allele [20, 124-126]. A susceptibility 

locus, MYAS1, has been mapped to a 1.2 Mb region comprising the distal MHC III 

and proximal MHC I, including TNFA and TNFB [126]. It has also been reported that 

HLA-DR7 confers a protective effect in EOMG with thymic hyperplasia [17], with 

significant peaks of negative association in the TNF gene cluster and the HLA-A 

locus [14]. 

 

For LOMG, associations with HLA-A3, B7, DR2 [20] and HLA-DR4 [21] have been 

reported. Also, titin Ab-positive patients have an association with HLA-DR7 [17]. 

Paraneoplastic MG is associated with HLA-A25, and for patients with a B2 thymoma 

HLA-A2 shows a protective effect [127]. A protective effect has also been suggested 

for the 8.1 HLA haplotype in paraneoplastic MG [29]. In MuSK Ab-positive patients, 

there is an association with HLA-DR14, DQ5 [35]. 
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FCGR 
 

The genes encoding Fc gamma receptors (FcγR) are clustered on the long arm of 

chromosome 1. Two studies have investigated whether functional polymorphisms in 

FCGR2A (encoding FcγRIIa), FCGR3A (encoding FcγRIIIa) and FCGR3B (encoding 

FcγRIIIb) are associated with MG; the first study reported a high frequency of the 

FcγRIIa 131H/H genotype in thymoma MG patients [128], while the second study 

found a high frequency of the FcγRIIa 131R/R genotype among MG patients, but  

with no difference between subgroups [129]. 

 

FcγRIIa belongs to the group of activating FcγRs [130], and is found on virtually all 

cells of the myeloid lineage. The variant containing a histidine at amino acid position 

131 (131H) has a higher affinity for IgG2 than the variant containing an arginine 

(131R) [131]. Because activating and inhibitory FcγRs usually are found co-

expressed on the cell surface and are co-engaged by the IgG ligand, the cellular 

response is determined by their activation ratio [130]. Thus, polymorphisms affecting 

receptor affinity may well modify immune responses. 

 

IL10 
 

IL10, the gene encoding interleukin-10 (IL-10), is located on the short arm of 

chromosome 1. The expression level of IL-10 in peripheral blood mononuclear cells 

(PBMCs) stimulated by Con A is related to three SNPs in the IL10 promoter [132]; 

G/A at position -1082, T/C at position -819 and A/C at position -592. They constitute 

three haplotypes (GCC, ATA, ACC), which in combination are associated with high 

(GCC/GCC), medium (GCC/ATA, GCC/ACC) or low (ATA/ATA, ATA/ACC, 

ACC/ACC) expression of IL-10. 

 

There are also two CA repeat microsatellites designated IL10.G and IL10.R located 

in the IL10 promoter [133]. MG patients with high titres of AChR Abs have an 

association to IL10.G allele 134, and MG patients with normal thymic histology have 

an association to IL10.R allele 112 [134]. 
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TNF 
 

TNFA (encoding tumour necrosis factor α, TNF-α) and TNFB (encoding TNF-β) are 

located in the MHC class III region, between the complement cluster and HLA-B. 

Two SNPs located in the promoter region of TNFA may influence transcription 

levels; -308G/A [135] and -238G/A [136]. The high expression variant TNFA -308A 

(designated TNFA*T2) is associated with HLA-A1, B8, DR3, while the low 

expression TNFA -308G allele (designated TNFA*T1) is associated with HLA-DR4 

and DR6 [137]. TNFB contains an NcoI diallelic restriction fragment length 

polymorphism in the first intron; the TNFB*1 allele correlates with increased 

transcription of TNF-β compared to the TNFB*2 allele [138]. 

 

Titin Ab-negative MG patients (including EOMG) have an increased frequency of the 

TNFA*T2 and TNFB*1 alleles, while titin Ab-positive MG patients (including 

paraneoplastic MG) have an increased homozygote frequency of TNFA*T1 and 

TNFB*2 [139]. 

 

The different genetic associations among MG subgroups, along with the observed 

clinical and pathophysiological heterogeneity, support that subgroups represent 

distinct etiological entities. 

 

CYTOKINES IN MYASTHENIA GRAVIS 

 

Cytokines interact with each other and with the cells of the immune system in a 

complex network, and their effects may be pleiotropic. In experimental autoimmune 

myasthenia gravis (EAMG) CD4+ T cells are necessary for development of the 

disease [140]. SCID mice grafted with blood lymphocytes from MG patients produce 

Abs against human AChR and develop myasthenic symptoms only if CD4+ T cells 

are included in the graft [141]. Therefore, investigations have focused on the role of 

cytokines involved in CD4+ T cell function. 
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The Th1 subset of CD4+ T cells secrete pro-inflammatory cytokines such as 

interferon-γ (INF-γ), IL-2 and TNF-β, and are involved in activation of APCs and 

cell-mediated immune responses. However, Th1 cells also promote growth and 

differentiation of B cells producing complement-fixing Abs both in humans and 

rodents [142]. Th2 cells can downregulate Th1 cells and activated APCs by secreting 

anti-inflammatory cytokines like IL-4, IL-5 and IL-10, and they also promote growth 

and differentiation of B cells producing Abs that do not fix complement [142]. Given 

the importance of complement-mediated damage both in MG [58] and EAMG [143], 

Th1 cells may have a crucial role in their pathogenesis.  

 

IL-12 is the major growth and differentiation factor for Th1 cells [142]. Several lines 

of evidence have demonstrated its importance in EAMG pathogenesis, including the 

increased propensity seen with exogenous administration of IL-12 [144], and the 

prevention seen with knock-out of IL-12 signalling [145]. Results regarding the 

principal Th1 effector cytokine, INF-γ, have been conflicting. Investigators have 

reported INF-γ knock-out mice both to have similar [146] and reduced [147] 

susceptibility to EAMG as compared to wild-type mice, while others have found such 

mice to be resistant to EAMG [148]. 

 

The Th2 cytokine IL-4 appears to have a protective effect against EAMG, as IL-4 

knock-outs develop more severe and persisting myasthenia than their wild-type 

littermates [149-150]. Conversely, other Th2 cytokines seem to facilitate EAMG; 

Both IL-5 and IL-6 knock-out mice develop myasthenia less frequent and with less 

severity [151-152]. Due to its anti-inflammatory activity, IL-10 has been regarded as 

a possible therapeutic option in autoimmune diseases. PBMCs from MG patients 

show increased in vitro spontaneous secretion of AChR Abs, but not of IL-10 [153], 

and decreased IL-10 mRNA expression in non-stimulated PBMCs from MG patients 

in vitro has been reported [154]. To the contrary, both transgenic mice expressing IL-

10 under control of the IL-2 promoter and mice given subcutaneous IL-10 have an 

increased susceptibility to EAMG [155-156]. The diverging results regarding the role 
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of IL-10 in MG may reflect both the methodological variation and the complex and 

pleiotropic effects of this cytokine. 

 

CONGENITAL MYASTHENIC SYNDROMES 

 

CMS are inherited, usually autosomal recessive disorders in which failure of 

neuromuscular transmission is caused by specific presynaptic, synaptic or 

postsynaptic mechanisms. Affected individuals commonly present within the first 

year of life [10]. A genetic diagnosis is established in about half of CMS patients, and 

80 percent of these are postsynaptic [157]. 

 

During formation of the NMJ, agrin released from the nerve terminal activates 

MuSK, which subsequently activates rapsyn (Receptor Associated Protein of the 

SYNapse), a 43 kDa membrane-associated cytoplasmic protein. Rapsyn interacts 

directly with AChR, inducing their clustering in the postsynaptic membrane [158]. 

Dok-7 (Downstream Of Kinase 7), a 55 kDa cytoplasmic protein, is an indispensible 

player in this process; Dok-7 interacts directly with the cytoplasmic region of MuSK, 

and regulates its localization, activation and responsiveness to agrin [159]. By largely 

unknown mechanisms, the NMJ matures during the early period of postnatal life into 

its adult three-dimensional structure with gutters and folds in the postsynaptic 

membrane [158]. 

 

It is important to emphasise that CMS, being genetic disorders, do not benefit from 

immunosuppressive treatment. It is therefore essential to distinguish these patients 

from those with autoimmune neuromuscular transmission disorders, so as to prevent 

the inappropriate use of immunosuppressive drugs, and eventually also thymectomy. 
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RAPSYN CMS 
 

Mutations in rapsyn (encoded by the RAPSN gene located on the short arm of 

chromosome 11) are responsible for 10 percent of all CMS cases [157]. Endplate 

studies from these patients revealed AChR and rapsyn deficiency, and a simplified 

morphology with loss of postsynaptic folding [160]. Depending on the specific 

mutation(s), the molecular mechanisms responsible for AChR deficiency in rapsyn 

CMS include reduction in rapsyn self-association, stability, co-localization with 

AChR, and reduced stability of AChR clusters [161]. 

 

The usual presentation of rapsyn CMS is at birth with hypotonia, multiple joint 

contractures (arthrogryposis multiplex congenita), bulbar dysfunction and the need 

for mechanical ventilation. During early childhood, most patients experience 

recurrent episodic crises with apnea precipitated by minor infections. Later, most 

patients have mild symptoms, although strabismus is present in the majority. Some 

affected individuals, however, present during late childhood or in adulthood with 

symptoms resembling autoimmune MG. Patients with rapsyn CMS have a positive 

response to cholinesterase inhibitors [162].  

 

Although several mutations in rapsyn have been identified, in most cases the N88K 

(c.264C>A) mutation is present on at least one allele [10]. This is probably due to a 

founder effect in people of Indo-European heritage [163]. All reported patients with 

late-onset rapsyn CMS have at least one copy of the N88K mutation, the vast 

majority being homozygous [164]. The dominance of this mutation makes screening 

for rapsyn CMS quick and simple. 

 

Cholinesterase inhibitors are regarded as standard pharmacotherapy, but 3,4-

diaminopyridine is an option. Some patients may benefit from a combination of the 

two [47]. 
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Dok-7 CMS 
 

Mutations in DOK7, the gene encoding Dok-7, are increasingly recognized as a cause 

of postsynaptic CMS. In a recent French cohort of CMS patients, DOK7 mutations 

were found in 18 percent, superseded only by mutations in CHRNE (47%). In four of 

these patients SNMG was initially suggested [165]. NMJs are small and simplified 

[166-167], and denervation, reinnervation and formation of ectopic NMJs occur 

[165]. AChR density and function are almost normal [166], but AChE activity is 

reduced [165]. In addition, presynaptic changes can be observed [165]. 

 

Dok-7 CMS usually presents in early childhood, although it may also present with 

hypotonia at birth. In a minority of patients, the initial presentation is in early 

adulthood [165, 168]. A waddling gait and frequent falls are typical. Weakness 

predominantly affects proximal muscles of both the upper and lower extremities, 

giving rise to a limb-girdle phenotype. Respiratory difficulties are common, and 

crises necessitating invasive ventilation may occur. Ocular involvement, most often 

ptosis, is usually present. Fluctuations in muscle weakness dependent on exercise are 

experienced by most patients. The disease course is often progressive, with many 

patients developing spinal deformities. 

 

In the majority of patients with Dok-7 CMS, a common four basepair duplication is 

detected in exon 7. This c.1124_1127dupTGCC mutation has been detected at least 

heterozygously in all late-onset patients identified [165, 168]. The high frequency of 

this mutation makes screening for Dok-7 CMS feasible. 

 

The response to treatment with cholinesterase inhibitors and 3,4-diaminopyridine is 

usually poor, and these drugs may even worsen the patients clinical state. However, 

the edrophonium test is positive in some patients, and some also improve transiently 

on pyridostigmine treatment [165, 168]. Treatment with ephedrine may give 

substantial improvement [165, 169]. 
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AIMS OF THE STUDY 

I. To investigate whether functional polymorphisms in the IL-10 promoter 

associate with MG (paper I). 

II. To investigate whether specific combinations of allelic variants individually 

associated with MG synergize in predisposing to MG (paper II). 

III. To investigate whether late-onset CMS caused by rapsyn or Dok-7 mutations 

are frequently misdiagnosed as SNMG (paper III). 
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SUMMARY OF RESULTS 

 

IL10 PROMOTER POLYMORPHISMS IN MG 

 

Since IL-10 is important in MG pathogenesis and polymorphisms in the IL10 

promoter influence the expression level of IL-10, we analyzed the distribution of 

these polymorphisms in MG patients and controls to determine whether they 

influenced MG susceptibility. The study included 64 MG patients (26 with EOMG, 

20 with LOMG, 14 with thymoma MG and 4 in which subgroup had not yet been 

determined) and 87 blood donors as healthy controls. All patients and controls were 

Norwegian Caucasians. 

 

A 587-base pair (bp) fragment of the IL10 promoter containing the three biallelic 

polymorphisms located at position -592, -819 and -1082 was amplified by 

polymerase chain reaction (PCR) and subsequently bidirectionally sequenced. The 

distribution of IL10 genotypes is shown in table 2 and figure 2. 
 

Table 2 

 

We found a significantly higher frequency of the ACC/ACC genotype in MG patients 

when compared to controls (12.5% vs. 3.4%, P=.05). The thymoma MG subgroup 

also had a significantly higher frequency of the ACC/ACC genotype (21.4%) when 

compared to controls (P=.03), as had the LOMG patients (20%, P=.02). EOMG 

patients had an increased frequency of the ATA/ATA genotype when compared to 

controls (19.2% vs. 3.4%, P=.02). 
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MG patients had a significantly lower frequency of the ACC/ATA genotype when 

compared to controls (6.3% vs. 19.5%, P=.03). The subgroup of LOMG patients had 

a lower frequency of the ATA/GCC genotype (5.0%) when compared to the 

remaining MG patients (P=.006). 

 

 

 

 

 

 

 

 
Figure 2: IL10 genotype distribution in MG subgroups and controls. 

 

Titin Ab-status was known for 40 patients (62.5%), of which 20 were positive. Titin 

Ab-positive patients were similar to thymoma and LOMG patients with an increased 

frequency of the ACC/ACC genotype when compared to controls (20.0% vs. 3.4%, 

P=.02). The distribution of IL10 genotypes in relation to titin Ab-status is shown in 

figure 3. 

 

 

 

 

 

 

 
Figure 3: IL10 genotype distribution and the presence of titin Abs. 
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POLYGENIC DISEASE ASSOCIATIONS IN MG 

 

Most genetic associations in MG are rather weak, and MG is probably a polygenic 

disease. We therefore wanted to investigate whether allelic variants in several genes, 

individually associated with MG, synergize in MG predisposition. The study included 

47 patients with generalized MG (18 with EOMG, 19 with LOMG and 10 with 

thymoma MG) and 92 blood donors as healthy controls. All were Norwegian 

Caucasians, and none were related. 

 

Two polymorphisms in the TNFA promoter were analyzed; -308G/A and -238G/A. 

As mentioned in the introduction, the low expression variant -308G is designated 

TNFA*T1 and the high expression variant -308A is designated TNFA*T2. In TNFB 

we analyzed the NcoI diallelic restriction fragment length polymorphism located in 

the first intron. FCGR2A was analyzed for the biallelic 131H/R polymorphism. 

Finally, we analyzed the IL10 promoter polymorphisms located at position -592, -819 

and -1082. 

 

When comparing all MG patients with controls, MG patients had a higher frequency 

of the IL10 ACC/ACC genotype (P=.01). We found no significant differences for 

other allelic variants, alone or in combination, when comparing all MG patients with 

controls. 

 

Thymoma MG patients had a higher frequency of TNFB*2 (85.7% vs. 35.6%, P=.01) 

and FCGR2A 131H/H (55.6% vs. 22%, P=.05) when compared to controls, as shown 

in table 3. 55.6% (5 of 9 for which data was available) of thymoma MG patients had 

the 3 thymoma MG-related allelic variants TNFA*T1, TNFB*2 and FCGR2A 

131H/H, a combination which occurred in only 6.5% of controls (P=.001) and 2.9% 

(1 of 34 for which data was available) of non-thymoma MG patients (P=.001). The 

risk of having thymoma MG correlated with the number of thymoma MG-associated 

allelic variants, as shown in figure 4. 
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Table 3 

 

 

Figure 4 
 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Titin Ab-positive MG patients had a similar genetic profile as thymoma MG patients, 

with the combination of TNFA*T1, TNFB*2 and FCGR2A 131H/H being found in 

31.6%, compared to 6.5% of controls (P=.007) and none of the titin Ab-negative MG 

patients (P=.02), as shown in table 4. 
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Table 4 

 

EOMG patients had an increased frequency of TNFB*1 (40% vs. 7.8%, P=.01) and 

the IL10 ATA/ATA genotype (16.7% vs. 2%, P=.05). No combination of EOMG-

associated allelic variants showed a significant difference in distribution between 

EOMG patients and controls, and the occurrence of more than one EOMG-associated 

allelic variant was rare both in EOMG patients and in controls. 

RAPSYN AND Dok-7 CMS IN SNMG PATIENTS 

 

Since late-onset CMS caused by rapsyn or Dok-7 mutations can resemble 

autoimmune MG both clinically and electrophysiologically, we wanted to investigate 

the frequency of these disorders in the population of apparent SNMG patients. DNA 

from 76 patients diagnosed with SNMG at a neurology department in Norway was 

obtained from the biobank at the Department of Neurology, Oslo University Hospital, 

Kirkeveien. 37 blood donors participated as healthy controls. 

 

Exon 2 of RAPSN and exon 7 of DOK7 were amplified by PCR and subsequently 

bidirectionally sequenced. In patients heterozygous for the rapsyn N88K mutation, 

the promoter and remaining exons were sequenced looking for an additional 

mutation. 
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Among the 76 SNMG patients, we found one who was homozygous for the rapsyn 

N88K mutation, i.e. she had late-onset postsynaptic CMS (figure 5a). We also found 

two carriers of this mutation, one patient and one control (figure 5b). 

 
Figure 5: Sequences showing the rapsyn N88K (c.264C>A) mutation in the a) homozygous 

and b) heterozygous states. 

a) Homozygous N88K (A at base 65) 

 

 

 

 

 

 
b) Heterozygous N88K (C+A at base 69) 

 

 

 

 

 

 

Sequencing of the RAPSN promoter and the 7 remaining exons in the patient 

heterozygous for N88K revealed no additional mutation. 

 

We reviewed the clinical data of the patient found to have late-onset rapsyn CMS. 

Myasthenic symptoms presented for the first time in the post partum period at age 35 

years. She experienced muscle leg weakness and impaired swallowing, and later 

respiratory muscle weakness necessitating invasive ventilation. MG was suspected, 

and edrophonium and pyridostigmine had an alleviating effect. She was later 

thymectomized with no beneficial effect, and thymus histology was normal. 

 

Sequencing exon 7 of DOK7 revealed no mutations in SNMG patients or in the 

controls. 
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GENERAL DISCUSSION 

Investigating MG patients for IL10 promoter polymorphisms, we found an increased 

frequency of the ACC/ACC genotype in titin Ab-positive, LOMG and thymoma MG 

patients. This association could be related to the presence of titin Abs, given the high 

frequency of such Abs in LOMG and thymoma MG. The increased frequency of the 

ACC/ACC genotype in the total MG population when compared to controls results 

from the high frequency of this genotype in LOMG and thymoma MG. In EOMG 

patients, a higher frequency of the ATA/ATA genotype was found. 

 

Interestingly, both the ACC/ACC and ATA/ATA genotypes are associated with low 

expression of IL-10 [132]. As differences in LPS-induced IL-10 secretion are related 

to corresponding differences in mRNA production, rather than increased mRNA 

stability, transcription is implicated as the principal mechanism for variation in IL-10 

production [170]. Thus, the finding of low-producer IL10 genotypes in MG points to 

IL-10 as a factor of importance in MG pathogenesis. 

 

Our finding of low producer IL10 genotypes in MG is in line with previous 

observations regarding the role of Th1 cells in MG pathogenesis; IL-10 is a powerful 

inhibitor of proliferation and cytokine production in Th1 cells both via its down-

regulating effect on APCs and by a direct inhibitory effect on the Th1 cells and their 

IL-2 and TNF production [171]. As Th1 cells induce synthesis of complement-fixing 

Abs [142] and complement-mediated lysis of the muscle endplate is regarded as the 

most important pathogenic mechanism in MG [58], low levels of IL-10 could 

exaggerate the autoimmune response in MG. 

 

IL-10 has also direct effects on B cells, and these effects are dependent upon their 

activation state. In B cells stimulated in vitro, IL-10 exerts suppressive influence 

during the initial activation, whereas it promotes an active response following 

activation [172]. IL-10 also inhibits IL-2 production, and IL-2 is a crucial 

differentiation factor for B cells [173-174]. 
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That MG is associated with low-producer IL10 genotypes may also explain part of 

the response to treatment with glucocorticoids. The IL10 promoter contains a 

glucocorticoid response element motif [133, 175], and glucocorticoids up-regulate 

constitutive IL-10 production in human monocytes, measured at both protein and 

mRNA levels. This effect is abolished by the glucocorticoid receptor antagonist 

RU486 [176]. Glucocorticoids also increase IL-10 expression in PBMCs from 

multiple sclerosis patients with acute relapse [177]. An association between -1082 

A/A (low producer) IL10 genotype and steroid-dependency has been shown for 

ulcerative colitis and Crohns disease [178]. 

 

In paper II, the increased frequency of the IL10 ACC/ACC genotype in the total 

group of MG patients was confirmed. However, the study population in paper II was 

also included in paper I, and so this was not a replication in an independent 

population. The association with the ACC/ACC genotype was also confirmed for titin 

Ab-positive MG patients, as was the association with the ATA/ATA genotype for 

EOMG. We did not find an association of the ACC/ACC genotype with LOMG and 

thymoma MG. However, the number of patients was lower in paper II, and so this 

study might have been underpowered to detect these differences in genotype 

distribution. Given a frequency of 3.4% for the ACC/ACC genotype in controls and 

an odds ratio of 7.64, a sample size of 70 in each group would be needed to give a 

90% power of achieving 5% significance. Paper II also confirmed previously reported 

associations at the TNFA, TNFB and FCGR2A loci with MG subgroups [128, 139, 

179]. 

 

We found that the risk of having a thymoma in patients with MG correlated with the 

number of allelic variants individually associated with thymoma MG. This 

demonstrates that thymoma MG is a polygenic disorder. It remains to be determined 

whether the association primarily exists with the development of MG in the 

population of thymoma patients or with the development of the thymoma per se.  
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The thymoma MG-associated allelic variants can be used as markers for the presence 

of a thymoma in the MG population, in which thymomas are much more common 

than in non-MG controls. However, a CT scan of the chest is thought to have a 

sensitivity of about 90-95 percent for detecting a thymoma [103-104]. In our study, 

all thymoma MG patients for whom records were available had preoperative findings 

on CT of the mediastinum indicative of a thymoma. 

 

The genetic profile of thymoma MG patients corresponds to a phenotype with low 

expression of TNF-α, TNF-β and IL-10, and with optimal interaction between 

FcγRIIa and IgG2 [131-132, 135, 138]. Abs to AChR are predominantly of the IgG1 

and IgG3 subclasses, but anti-AChR IgG2 has also been detected in MG sera [180]. 

IgG2 has been demonstrated to be an effective inducer of EAMG [181]. Although 

IgG subclasses do not directly correspond in rodents and humans, it may be that IgG2 

Abs are involved in the induction of MG. 

 

Expression of several muscle epitopes has been identified in thymomas [88-89, 182-

184] and there is strong evidence for an intra-thymoma immunization process against 

them in paraneoplastic MG [80, 90-91]. Given that this immunization process 

involves IgG2, IgG2-Ag complexes will bind efficiently to FcγRIIa on APCs. 

Presentation of Ag epitopes to Th cells will lead to a predominantly humoral immune 

response, due to low levels of TNF-α and TNF-β. Furthermore, low levels of IL-10 

will promote the Ag-presentation of APCs and the production of Th1-dependent 

complement-fixing Abs (figure 6). 
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Figure 6: Production of complement-fixing Abs is dependent on Th1 cells, while Th2 cells 

induce the production of Abs that do not fix complement. From Conti-Fine, et al. (2008). 

"CD4+ T cells and cytokines in the pathogenesis of acquired myasthenia gravis." Ann N Y 

Acad Sci 1132: 193-209 [185]. 

 

Our data show that Titin Ab-positive MG patients have a genetic profile similar to 

thymoma MG. Nearly all patients with paraneoplastic MG are positive for titin Abs 

[12], and one might speculate as to whether non-thymoma MG patients positive for 

titin Abs have already rejected an occult thymoma. Titin Abs are found in about 60 

percent of LOMG, but in only 10 percent of EOMG patients. Paraneoplastic MG has 

a peak onset around 50 years of age [23]. 

 

In EOMG, more than one EOMG-associated allelic variant rarely occurred in an 

individual patient. This correlates with previous findings in these patients, where the 

main association have been with the ancestral 8.1 HLA haplotype, which includes the 

TNFA*T2 and TNFB*1 alleles. A susceptibility locus termed MYAS1 has been 

mapped between the distal MHC III and proximal MHC I [126]. This 1.2 Mb region 

notably includes the TNF gene cluster. Thus, both previous observations and our 

study suggest that EOMG is more closely linked to a specific gene at the MYAS1 

locus, rather than to a specific combination of the allelic variants tested by us. The 

TNFA*T2 and TNFB*1 alleles correlate with a high TNF production [135, 138], 

which may contribute to thymic GC formation [186]. 
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In paper III, we screened 76 SNMG patients for the common mutations N88K 

(c.264C>A) and c.1124_1127dupTGCC in RAPSN and DOK7, respectively. We 

found one patient homozygous for the rapsyn N88K mutation. The patient underwent 

a thymectomy which we now know could have been avoided. This underlines the 

importance of considering late-onset rapsyn CMS in patients diagnosed with SNMG. 

The patient had strabismus and experienced deterioration of muscle weakness during 

intercurrent febrile illness, both typical of rapsyn CMS [10, 187-188]. Increased 

awareness of rapsyn CMS in the differential diagnosis of SNMG is important in order 

to make the correct diagnosis. 

 

In addition, two carriers of the rapsyn N88K mutation were identified, one patient 

and one control. We calculated a carrier frequency of 1.8% (2 out of 112) for this 

mutation, which is similar to the frequency of 1.7% previously reported in 300 

controls [189]. The homozygote frequency (q2) for rapsyn N88K was estimated: 

 

 

 

This estimated homozygote frequency suggests that the number of N88K 

homozygotes in the Norwegian population (4.8 million) is about 380. However, such 

a high carrier frequency of the N88K mutation has not been found in other studies 

[160, 162, 190]. The estimated number of N88K homozygotes may therefore be too 

high. In the region served by Haukeland University Hospital, having a population of 

1 million, there are only 5 patients with a diagnosis of CMS (ICD: G70.2). This 

strongly suggests that CMS is underdiagnosed. This is also suggested by others [169], 

although there is no reliable epidemiological information to confirm this.  

 

It is tempting to speculate as to whether a proportion of sudden infant death syndrome 

(SIDS) cases represent undiagnosed CMS. Parents of SIDS victims frequently report 

that their baby had symptoms of minor infection during the immediate days before 

death, especially respiratory tract symptoms, but these infections are not believed to 
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be the cause of death [191]. Most patients with rapsyn CMS experience recurrent 

episodic crises with apnea precipitated by minor infections [162]. One study reported 

presynaptic CMS due to mutations in CHAT (encoding choline acetyltransferase) as 

the underlying cause of SIDS [192]. To our knowledge there have not been any 

investigations for postsynaptic CMS in cases of SIDS. It would be interesting to 

pursue this in the future. 

 

Screening for rapsyn CMS is greatly facilitated by the dominance of the N88K 

mutation. Although only one of 76 SNMG patients in our study had rapsyn CMS, we 

propose testing all SNMG patients for the N88K mutation before initiating 

immunosuppressive treatment, and before eventual thymectomy. This is justified by 

the significant adverse effects of unnecessary immunosuppressive treatment and the 

ease of screening for the N88K mutation. 

 

We did not find any SNMG patients with the DOK7 c.1124_1127dupTGCC 

mutation. DOK7 mutations were found in 18 percent of CMS patients in a recent 

French cohort [165]. Four of these patients had an initial diagnosis of SNMG; three 

had an apparent response to steroids, two to intravenous immunoglobulin, and two 

were thymectomized. Thus, one should be aware of the possibility of Dok-7 CMS in 

patients diagnosed with SNMG.  

 

The relatively recent discovery of DOK7 mutations makes it likely that these will be 

increasingly recognized as the molecular basis for limb-girdle myasthenia of 

unknown aetiology in the future. Due to the high frequency of the 

c.1124_1127dupTGCC mutation, screening for Dok-7 CMS is feasible. 
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METHODOLOGICAL CONSIDERATIONS 

 
INVESTIGATION OF GENETIC ASSOCIATIONS (PAPERS I AND II) 
 

Genetic association studies for rare disorders like MG are case-control studies based 

on the comparison of allele frequencies between affected individuals and unaffected 

controls. A statistically significant difference indicates association of the genetic 

variant with the disease. An association can arise for three principal reasons: 

1. The associated allele is causative for the disease. 

2. The associated allele is in linkage disequilibrium (LD) with the actual 

causative allele. 

3. A false-positive association. 

  

False-positive associations can occur due to a number of reasons; studies without 

correction of p-values for multiple hypothesis testing represent a widespread 

problem. Determining the appropriate level of statistical significance is of particular 

concern in genome-wide association studies, in which hundreds of thousands of SNPs 

are genotyped [193]. A false-positive association can also arise because of population 

stratification due to ethnic admixture. If the study population is mixed and the trait 

investigated is present at a higher frequency in one ethnic group, then any allele that 

also happens to be more frequent in that group will show a positive association with 

the trait [194-195]. Finally, different rates of genotyping error or success between 

cases and controls may lead to falsely different allele frequencies. 

 

All patients and controls included in papers I and II were Norwegian Caucasians. It is 

therefore unlikely that the observed associations are due to population stratification.  

 

In paper II, p-values were not corrected for multiple hypothesis testing. It can be 

argued that such correction, when analyzing small samples, increases the risk of 

making type II errors. An increased sample size and appropriate correction of p-
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values would be desirable. A multi-centre study would enable a larger sample size, 

but this would likely also increase genetic heterogeneity. Positive findings should 

always be confirmed in independent patient materials, this being especially important 

when small samples are examined and without correction for multiple comparisons. 

 

The TNFA and TNFB loci, located in the MHC class III region, are in LD with each 

other and with other loci in the MHC region on the short arm of chromosome 6. The 

FCGR2A and IL10 loci are located on the long and short arm of chromosome 1, 

respectively, and so they are not in LD with the other loci investigated in paper II. 

Therefore, the high frequency of multiple thymoma MG-associated alleles in 

individual thymoma MG patients is not merely due to LD between the investigated 

loci. 

 

A major problem in association studies has been a lack of reproducibility [196]. This 

can be attributed to three main causes: 

1. A false-positive association is correctly not replicated. This is probably 

responsible for a majority of non-reproducible associations [197]. 

2. A true association in one population is not true in a second population due to 

heterogeneity in their genetic or environmental background. If the investigated 

allele is not causal, but in LD with the causal allele, the extent of historical 

recombination may differ between populations. This will be reflected in the 

strength of association differing between the populations. 

3. A false-negative follow-up study. 

 

False-negative studies are most commonly due to an underpowered sample [195], and 

they are probably an important cause of the inconsistency seen in genetic association 

studies [197]. Due to the “winner’s curse” (a phenomenon explaining why the initial 

report describing an association nearly always overestimates the effect size [197]), 

follow-up studies should have a sample size large enough to detect a more modest 

effect size than initially reported. Similar to false-positive associations, false-negative 

results may also occur due to population admixture and technical errors. 
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If the sample size required in order to reach statistical significance is very large, i.e. 

the investigated association is weak, then the association will be of limited clinical 

relevance. However, such an association may still be important by pointing to the 

pathogenic mechanism involved. 

 

DETECTION OF GENETIC MUTATIONS (PAPER III)  
 

Bidirectional DNA sequencing is a sensitive method for the detection of point 

mutations, as well as small deletions and duplications. Deletions of whole exons, 

however, may easily be missed by this technique. Mutations in non-sequenced 

regions, e.g. intronic mutations affecting RNA splicing, will of course also be missed. 

To identify whole-exon deletions, quantitative PCR can be used. 

 

In paper III, we identified one SNMG patient who was heterozygous for the rapsyn 

N88K mutation. Bidirectional sequencing of the RAPSN promoter and remaining 

exons, including their flanking intronic sequences, did not reveal any additional 

mutations. We examined the sequences for all known SNPs, as heterozygosity for 

these would strongly indicate the presence of two disease-inducing alleles. However, 

these were all present at homozygosity. We cannot exclude the possibility of a whole-

exon deletion in this patient. 
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CONCLUSIONS 
 

The present study provides knowledge of genetic associations in MG. The study 

demonstrates how functional polymorphisms in the IL10 promoter are associated with 

subgroups of MG patients. The polymorphisms which associate with MG constitute 

low-producer IL10 haplotypes. This may be important in MG pathogenesis. Further 

studies investigating the role of IL-10 are needed to elucidate the complex role of this 

cytokine in MG. 

 

The risk of having a thymoma in patients with MG correlates with the number of 

allelic variants individually associated with thymoma MG. This demonstrates how 

thymoma MG is a polygenic disorder. The association could be with the development 

of MG among thymoma patients, or with the development of thymoma per se. 

Thymoma MG-associated allelic variants could be used as markers for the presence 

of a thymoma in the MG population. CT scan of the chest has, however, a higher 

sensitivity and specificity. 

 

In EOMG, the occurrence of more than one EOMG-associated allele in an individual 

patient is very rare. This suggests that EOMG is more closely linked to a specific 

gene at the MYAS1 locus, than to a specific combination of the allelic variants tested. 

 

Late-onset rapsyn CMS can be mistaken for SNMG even after a full examination by 

neurologists. However, the frequency of rapsyn CMS in our nationwide cohort of 

(apparent) SNMG patients is low. The carrier frequency of the rapsyn N88K mutation 

suggests that rapsyn CMS is underdiagnosed. There are no patients with late-onset 

Dok-7 CMS in our nationwide SNMG cohort. The DOK7 c.1124_1127dupTGCC 

mutation is not detected in any patients or controls. 
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ERRATA 
 

On pages 27 and 47 in the dissertation, IL10 is incorrectly described as being located 

on the short arm of chromosome 1. The correct location of IL10 is on the long arm of 

chromosome 1 (1q31-q32). 

 

Paper I 

Throughout the article, genotypes are referred to as haplotypes (e.g. ACC/ACC 

haplotype, which should be ACC/ACC genotype). Also, the IL10 gene is referred to 

as the IL-10 gene. 

 

Paper II 

Throughout the article, the IL10 gene is referred to as the IL-10 gene. 

 

In table 1, the P-value for the comparison of IL10 ACC/ACC genotype between 

thymoma MG patients and controls should be 0.17, not 1.7. All P-values comparing 

thymoma and non-thymoma MG patients should be in italics (column 6 of the table). 

 

In table 2, several P-values >0.05 are in boldface, while some P-values <0.05 are not; 

only P-values ≤0.05 should be in boldface. All P-values comparing titin Ab-positive 

and -negative MG patients should be in italics (column 6 of the table). 
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