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Part I

Background





Chapter 1

Introduction

Understanding of flow in subsurface porous media is of importance for several

reasons. Recovery of petroleum stored in the underground has been a vital source

of energy for the last 100 years or so, and it likely to be so for several decades

to come. Also, the subsurface stores vast amounts of geothermal energy that can

be exploited. Further, ground water is the main water supply in large parts of the

world, and thus contamination of water resources by industrial pollution or nu-

clear waste is a major concern. Geological storage of CO2 is one of the proposed

solutions to reduce global warming, which is related to an increase in the concen-

tration of CO2 in the atmosphere. These are some of the motivating factors for

getting better knowledge of processes that takes place in porous media. The main

focus in this work is recovery of hydrocarbons, however, many of the results can

be relevant for other applications as well.

In this introductory chapter, we provide a brief overview of important concepts

in reservoir technology that serve as a motivating background for the thesis. Some

of the concepts will be studied in more depth in the following chapters, for further

information, see, e.g., [65, 97, 98, 180, 208, 235]. At the end of the chapter, the

main directions of the thesis are outlined.

1.1 Reservoir Characteristics

1.1.1 Reservoir Geology

A petroleum reservoir consists of rock perforated by small channels, or pores, that

are filled with hydrocarbons. To act as a reservoir, the pores must be connected,

so that the fluids can flow. The rock in a reservoir has originated from sedimen-

tary deposition processes that took place millions of years ago. It therefore has a

layered structure, where each layer consists of a different type of rock, as seen in
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Figure 1.1: An picture of a meter-scale outcrop. Note the layering, and the irreg-

ularities in the geology.

Figure 1.1. Geological activity can later have modified the structure. The reservoir

may contain fractures, that is cracks in the rock. Further, the layers may have been

displaced along a fracture, creating a fault. These are some examples of the highly

heterogeneous nature of a porous medium; it contains characteristic features on a

continuum of length scales.

To create a viable model of the reservoir is a difficult task. Hard data is only

available from core samples obtained from wells. Due to rock heterogeneities,

information from the core samples is only locally representative. To obtain more

knowledge of the reservoir, we must resort to indirect methods. A much used

source of information is seismic data. In seismic surveys, sound waves are sent

from the surface towards the rock. When the waves propagate through the rock,

the signal is altered. Indeed, different types of rock have different impact on the

waves. Hence, a careful interpretation of the reflected signal can expose features

of the rock. Seismic surveys are thus based on the elastic properties of the rock.

In electromagnetic surveys, one instead utilise the rock’s electric conductivity, by

sending electromagnetic waves through the rock, and analyse the reflected signal.

Further, dynamic data from wells, such as pressure and flow rate can also inform

on the structure of the reservoir. We emphasis that all these data sources can

inform on the distribution of fluids in the reservoir as well as on the geology.

Based on these various sources of information, a geological model of the reser-

voir is build. Due to the lack of hard data, the geo-model relies heavily upon sta-

tistical methods. The sparsity of information on the rock means it is impossible

to model each individual pore. Moreover, if such a description of the pore system

was available, numerical simulations of flow based on this model would require

computational resources far beyond what is available. Therefore, the rock param-

eters in the geological model describe average properties. Despite the introduction
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Figure 1.2: Schematic overview of a petroleum reservoir. The hydrocarbons are

trapped by a sealing rock. The fluids are in hydrostatic equilibrium.

of average parameters, the geo-model can consist of up to 107 − 108 grid cells.

This is at least one to two orders of magnitude more than what is possible for a

traditional reservoir simulator to handle. Therefore, a coarser grid is constructed,

and the rock properties are represented on the new cells. The coarsening process

is known as upscaling. Ideally, the upscaling should not be detrimental to the

quality of the reservoir model. It is therefore crucial to construct the coarser grid

so that the rock parameters can be represented accurately in each cell.

1.1.2 Fluid Characterisation

Together with the sediments that later became the reservoir rock, organic material

was also deposited. This material has since evolved into oils and gasses by chemi-

cal reactions. It is commonly believed that the hydrocarbons are not formed in the

reservoir, but in some source rock. Later, the hydrocarbons migrate through the

reservoir. The main driving forces of the migration are buoyancy effects, but also

capillary forces can affect the movement. Eventually, the hydrocarbons may reach

a low conductivity rock formation, a seal, which prevents them from propagating

any further. When trapped, the fluids are in hydrostatic balance, as illustrated in

Figure 1.2.

The petroleum in a reservoir can consist of hundreds of different chemical

components. In general, they are either liquids or vapour, commonly referred to

as oil and gas, respectively. The vapour phase has lower density than the liquid

phase. Moreover, all the hydrocarbons are in general lighter than water. The gas

components can be highly mobile due to low viscosities, whereas the heavy oils

can have much larger viscosity than water. During a recovery process, the hy-
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drocarbons experience a wide range of pressure and temperature regimes. Both

viscosity and density can be highly dependent on pressure and temperature. Fur-

ther, the hydrocarbons can undergo phase transitions during production. A proper

description of flow in the reservoir requires knowledge of these PVT-properties of

the fluids. The properties can be quantified by laboratory analysis of the produced

hydrocarbons. However, due to the complex chemical composition of the fluids,

this is a highly challenging task.

When more than one phase is present, there are forces acting on the interface

between the phases. The fluids feel the action of these capillary forces in the

form of reduced rock conductivity. To accurately measure these petrophysical

properties is difficult at best.

1.2 Production Processes

The reservoir is initially at rest. This balance is disturbed when a well is opened,

and the fluids start to flow. The initial reservoir pressure is often high enough to

bring the fluids all the way to the surface without external supply of energy. This

period is called primary production. There are a few physical processes that can

provide the energy necessary to recover the hydrocarbons. They are all initiated

by the pressure drop, and tend to counteract the decline in pressure. The reser-

voir rock can experience a deformation and a decrease in pore volume, causing

a compaction drive. Water located beneath the hydrocarbons can flow upwards

and maintain the pressure. This is called (natural) water drive. A decline in pres-

sure also cause the highly compressible gas to expand, and cause a gas expansion

drive. Moreover, at high pressures, gas can be dissolved into the liquid phase. As

the pressure decreases, the gas is released again, sustaining the pressure.

The primary production is rather ineffective, and can at best lead to a recovery

rate of about 20%. Sometimes the rate is much lower. To produce more hydrocar-

bons, energy must be supplied to the reservoir. An easy and cheap way to do this

is to maintain the pressure by injecting water. This water flooding stage is called

secondary production. The injection is most often done in the water layer beneath

the hydrocarbons.

The injection of water can be effective, and yield recovery rates of up to 40-50

%. However, the reservoir is heterogeneous, and water often find a highly con-

ductive path between the injection well and a producer. After water breakthrough,

water flooding have limited effect, and large amounts of hydrocarbons are left in

less conductive parts of the reservoir. The effect of water flooding is also limited

by the high viscosity of heavy oil relative to water, and by capillary trapping of

oil. To recover even more petroleum enhanced oil recovery (EOR) techniques are

employed. This is called the tertiary production period. There are many EOR-
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methods, we will mention some of those most commonly applied. The adverse

viscosity ratio between heavy oil and water can essentially be improved in two

ways. The water viscosity can be increased, for instance by adding polymers to

the injected water. The oil viscosity is reduced with an increase in temperature,

which can be achieved by injection of hot water or steam. Also, if the supply of

oxygen is carefully controlled, one can start in situ combustion of some of the vis-

cous oil, and thereby heat the surrounding hydrocarbons. Other EOR-techniques

aim at reduced interfacial tensions between the phases. If a mixture of gasses,

notably containing CO2, is injected, these can mix with the oil, and initiate a mis-

cible displacement, where the gas and oil components act as a single phase with

higher mobility. Gas injection is often employed in combination with injection of

water. The interface tension can also be reduced by injection of surfactants, or by

a careful accommodation for growth of micro-organisms, that can help change the

flow pattern.

1.3 Numerical Simulations

Numerical simulations of flow in the reservoir have been employed in the industry

for several decades. To optimise the recovery rate, a long term field development

plan is made, that involves drilling of wells, application of EOR-techniques, etc.

The planning is supported by numerical predictions of the impact of different

production scenarios. Also, numerical simulations can help day to day decisions

on closing and opening wells etc.

Reservoir models have an inherently high level of uncertainty, due to for in-

stance the sparsity of geological information. To quantify the uncertainty, one

can apply Monte Carlo simulations, where several realisations of possible geo-

logical models are employed in simulations, and statistics are computed from the

results. Uncertainty estimation and prediction of worst case scenarios will also

play a major role for large scale geological storage of greenhouse gasses.

We emphasis that modelling and simulation of porous media flow are chal-

lenging mathematical and numerical problems. The geology is highly hetero-

geneous, and the fluid behaviour can be complex with frequent phase transitions.

The time scale of the processes of interest spans from day-to-day production man-

agement, to the fate of CO2 hundreds of years after it is injected in the porous

medium. A typical well has a diameter on the scale of centimetres, whereas the

size of the reservoir can be several kilometres, yielding a vast difference in spatial

scale. To give a proper mathematical description of the flow is therefore non-

trivial. Further, the model is discretised using advanced numerical techniques.

The discretisation often leads to a large system of ill-conditioned equations. The

choice of a mathematical model and numerical schemes is a trade-off between ac-
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curacy and computational cost. Due to the large span in processes and simulations

of interest, there is a need for diverse numerical methods with different forte.

1.4 Scope of the Thesis
Even though numerical simulations successfully have been applied in the industry

for decades, there is a constant need for further improvements of the methods. The

work can be aimed at developing new techniques, or to extend already existing

methods to new areas of applications. Also, it is important to achieve a better

understanding of properties and limitations of already existing approaches.

The focus in this work has been development and analysis of a class of numer-

ical schemes known as control volume methods, which are prevailing in commer-

cial reservoir simulators. In the present work, we have investigated a broad range

of subjects related to control volume methods.

The main computational overhead in reservoir simulations come from solu-

tion of linear systems of equations. So far, most simulation grids have been struc-

tured, partly due to a lack of efficient linear solvers that allows for more general

grid structures. However, usage of such general solvers seems to become more

widespread, and thus flexible grids can be used to a larger extent. This will render

possible a better representation of complex geological structures. In this work, we

analyse the robustness of control volume methods on realistic and flexible grids.

Moreover, we study applications of transport schemes designed for simulating

EOR-scenarios with adverse mobility ratios on unstructured grids.

All the recovered hydrocarbons are transported through wells. A proper de-

scription of flow in near-well regions is therefore a key issue. In the vicinity of a

well, the flow rates are high, and the flow pattern radial like. Moreover, to opti-

mise the recovery rate, skew and horisontal wells are drilled, yielding highly het-

erogeneous near-well regions. The numerical schemes must be adapted to these

challenges. In this work, we perform systematic tests of different grids and dis-

cretisation techniques in the vicinity of wells.



Chapter 2

Mathematical Modelling

The goal of this chapter is to provide insight in some physical effects that are

important for flow in porous media. Since this work mainly has been devoted to

development and analysis of numerical methods, we will put emphasis on math-

ematical modeling. We start by describing some important physical parameters.

Further, we discuss several sets of governing equations that model increasingly

complex physical processes. During the presentation, we will highlight properties

that are important for a numerical solution procedure.

2.1 Physical Parameters

The physical properties used to describe the flow in a reservoir can be divided into

three groups, describing the rock, the fluid, and the interaction between rock and

fluid. To characterise any of these properties is a research area in itself, thus we

will only give a high-level presentation.

2.1.1 Rock Properties

A reservoir consists of rock perforated by channels, or pores, filled with fluids. It

is impossible to obtain an accurate description of the channel system for a full-

scale reservoir, and the computational cost of simulations on such a model will be

far too high. Therefore, we must base the modelling on a macroscopic description

of the reservoir.

To bridge the gap between the microscopic pores and the spatial resolution

feasible for simulations, we introduce the concept of representative elementary
volumes (REV). The size of an REV must be much larger than the size of an indi-

vidual pore. On the other hand, we define parameters describing the properties of

the REV based on averaging. Hence, the size of the volume must be smaller than
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the length scale on which the rock properties vary considerably. It is important to

keep in mind that all parameters, equations and so on are defined for REVs, and

are not valid for smaller scales. See e.g. [32] for a further discussion. For sim-

plicity, we treat the rock properties as constant in time, i.e. we ignore compaction.

See however Section 2.5.

Porosity

To describe the flow through the pores, we need a measure of pore volume. Denote

by Vpore the pore volume in an REV. The porosity, φ, is defined as the volume

fraction occupied by pores to the total volume,

φ =
Vpore

Vtot

, (2.1)

where Vtot is the total volume of the rock. Note that Vpore only consists of the

volume of interconnected pores, that is, we have neglected solitary caves.

Absolute Permeability

The flow in the reservoir is driven by differences in the pressure. The flow rate

generated by a pressure gradient depends on the distribution of pores. In reservoir-

scale modelling, the flow conductivity of the rock is described by the permeability,

denoted by K. The permeability is a tensor, and according to Onsager’s principle,

it is symmetric and positive definite. A realistic permeability field is highly hetero-

geneous. Further, the permeability might be anisotropic, that is, the conductivity

is different in different directions.

2.1.2 Fluid Properties

The fluid in the reservoir can exist in several phases. In this work, we allow

for three different phases; aqueous, liquid, and vapour, denoted by a, l, and v,

respectively. For our modelling, we need expressions for viscosity and density

for each of the phases. The process of quantifying these properties is known as

PVT-analysis.

The aqueous phase most often consist of water only, although some mod-

els, notably those related to CO2-sequestration, can allow for other species in the

aqueous phase. Since the chemical composition of the aqueous phase is fairly

homogeneous, the PVT-characteristics are not very complex. On the contrary, the

hydrocarbons in a reservoir can consist of hundreds of different chemical com-

ponents. Since the PVT-properties are dependent on the chemical composition of

the phase, as well as on temperature and pressure, state of the art experimental
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pb
(a) Vapour viscosity

pb
(b) Density

Figure 2.1: Qualitative behaviour of viscosity and density for a black oil model

(Section 2.4.1). For high pressures, all of the hydrocarbons are in the vapour

phase. When pressure drops below the bubble point pressure pb, the components

with small molecules evaporate. The bubble point pressure is dependent on tem-

perature and chemical composition of the hydrocarbons. The y-axes are not to a

specific scale.

analysis is needed for quantification. As a rule of thumb, the fluid properties can

be characterised by the molecular weight of the components. Components that

consist of large molecules, usually exhibit fairly stable behaviour under changes

in pressure and temperature. If the molecular weight of a component is small, its

PVT-characteristics is often highly sensitive to pressure and temperature changes.

In general, a hydrocarbon component is found in both the liquid and vapour phase

simultaneously. The larger the molecular weight, the larger portion of the compo-

nent can be expected to be found in the liquid phase.

We remark that in the literature, the phases are called water, oil, and gas.

Further, the hydrocarbon components are often called to as oil and gas components

referring to their state under some standard conditions. The present terminology

is chosen to avoid confusion between phases and components.

Throughout the thesis, α denotes a generic phase.

Viscosity

The viscosity, μα, represents the internal friction in the fluids. For the aqueous

phase, μa is usually only weakly pressure dependent, it is often considered con-

stant. The viscosity of the liquid phase depends upon both the pressure, and the

molar composition of the phase. A possible viscosity behaviour is illustrated in

Figure 2.1(a). For the vapour phase, the viscosity is generally increasing with

pressure. We remark that viscosity is highly dependent on temperature, this must

be taken into account for non-isothermal flow.
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Compressibility and Density

The compressibility c, of a fluid is defined by

c =
1

ρ

∂ρ

∂p
, (2.2)

where ρ is the density of the fluid. For ideal fluids the compressibility is constant,

and Equation (2.2) can be integrated to yield

ρ = ρ0e
(c(p−p0)) , (2.3)

where ρ0 is a reference density, measured at a reference pressure p0.

Water can usually be considered an ideal fluid in reservoir simulation, more-

over, the water compressibility is small. So can the liquid phase, if it is composed

by large hydrocarbons. However, hydrocarbons with small molecular weight,

which are likely to be found in the vapour phase are generally not ideal fluids.

In that case, the relation is given by more advanced equations of state, see e.g.

[191]. See also Figure 2.1(b) for density behaviour of black oil fluids.

For simplicity, we often make an assumption of an incompressible fluid by

setting c = 0. Although not physically valid, this assumption eases both im-

plementation and analysis of the problems. The impact of compressibility varies

from one problem to another. Sometimes it can be seen as the limiting case when

compressibility goes to zero, see for instance the remark at the end of Section 4.5.

Under other circumstances, incompressibility is not a limiting case, but a singu-

larity, and the properties of the model change significantly when incompressibility

is assumed. For instance, we will see that the pressure variable no longer needs

initial values if the fluids are assumed incompressible. Throughout the thesis, we

often make this assumption. It is important to keep in mind that extensions to

physically valid conditions may add significant challenges.

2.1.3 Petrophysics

When more than one phase is present in the pore system, there is a surface tension

on the interface between the fluids. This generates a capillary pressure on the

interface. The interactions are determined by the geometry and the topology of

the pore system, as well as on the fluids. For a two-phase system, the wetting
phase tends to stick to the pore walls, whereas the non-wetting phase is found in

the middle of the pores. We can also have mixed-wet conditions, where which

phase is wetting depends on the pore size. The wettability depends on the rock, as

well as on the fluids, see e.g. [113, 214]. For three-phase systems, the wettability

of a phase is defined relative to each of the other phases.
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To find functions for the relative permeabilities and the capillary pressure (de-

fined below) is a non-trivial task. Since they both are caused by interface tension,

they must be defined consistently. For two-phase flow, there are several mod-

els,see [110, 113] and the references therein. These models contain tuning param-

eters that must be determined from laboratory experiments. To measure the flow

functions for three-phase flow is nearly impossible. Instead, one must resort to

interpolation of data from two-phase experiments.

Saturations

The forces between the phases depend on how large portion of the pore space is

occupied by each phase. The saturation of a phase α, Sα, is defined by

Sα =
Volume occupied by phase α

Total pore volume
. (2.4)

By definition, 0 ≤ Sα ≤ 1. In general, some fluid will be immobile due to

capillary forces. The saturation of this immobile fluid is called residual saturation,

Sα,r. We define the effective saturation as

Sα,e =
Sα − Sα,r

1 − ∑
α Sα,r

. (2.5)

An assumption that the fluids together fill the entire pore space yields the consti-

tutive relation∑
α

Sα = 1 . (2.6)

Capillary Pressure

On the interface between two phases, the pressure is discontinuous due to the

surface tension. We define the capillary pressure as

pcla = pl − pa , pcvl = pv − pl , (2.7)

where pα, α = a, v, l is the phase pressures. The capillary pressures are considered

functions of phase saturations.

Capillary forces are of great importance for small scale processes, but the

influence diminishes for larger length scales. Therefore, the capillary pressure is

often neglected in simulations. Nevertheless, capillary forces have been shown to

be important for simulation of certain EOR-processes [66].
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Figure 2.2: Curves for capillary pressure (left) and relative permeability (right)

with hysteresis in a water-wet system. The figure shows the bounding curves for

drainage (j) and imbibition (k), and two examples of scanning curves for drainage

(l) and imbibition (m). Note that both the capillary pressure and the relative per-

meability is considered functions of water saturation.

Relative Permeability

The absolute permeability represents the conductivity when the pores are occupied

by a single phase. When more than one phase is present, the phases will interact,

and thereby reduce the flow. To describe this reduced conductivity, we introduce

the relative permeability, kr,α, for each phase. The relative permeability for a

phase is zero for saturation values below Sα,r. If S > Sα,r, kr,α increases, but it

never exceeds unity. The effective permeability, Kα, is then defined by

Kα = kr,α · K . (2.8)

The relative permeabilities are strongly non-linear functions of the phase sat-

urations. Moreover, the fluid interactions also reduce the total flow, that is,∑
α kα < 1. We now define the mobility of a phase, λα as relative permeabil-

ity divided by viscosity,

λα =
kr,α

μα

. (2.9)

Hysteresis

The flow functions depend not only on the saturations, but also on the saturation

history. This is known as hysteresis. Figure 2.2(a) shows how the capillary pres-

sure is different during drainage (Sw decreases) and imbibition (Sw increases). If
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the saturation change is reversed before it reaches the endpoint (Sw,r or 1 − So,r),

the capillary pressure will follow a scanning curve instead of the bounding curve.

The relative permeabilities can also experience hysteresis, mainly for the non-

wetting phase, see Figure 2.2(b), albeit the effect is not that important.

2.2 Single Phase Flow
A model for single phase flow is of limited importance in practical simulations,

although it can be representative for the dynamics in the primary stages of produc-

tion. However, the equations governing this flow will serve as model problems in

later chapters.

When only one phase is present, the flux, q, is computed from the gradient of

the pressure by Darcy’s law, which reads

q = − 1

μ
K∇(p − ρgz) , (2.10)

where g is the acceleration of gravity, and z is the vertical coordinate. Darcy’s law

was originally found experimentally, however, it can be derived as a first-order

approximation of a volume averaged Navier-Stokes equation, see e.g. [227]. The

Darcy model is only accurate for laminar flow; in high flow-regimes, this assump-

tion breaks down. Such non-Darcy effects can be modelled by Forchheimer’s law,

see e.g. [26].

Consider an arbitrary volume Ω. For conservation of mass within the volume,

the total flux out of Ω must equal the accumulation in the volume. Thus we get

the conservation equation

φ

∫
Ω

∂ρ

∂t
dV +

∫
∂Ω

n · (qρ) dS =

∫
Ω

q dV , (2.11)

where n is the outer normal vector of the boundary ∂Ω, and we have taken pos-

sible source or sink terms, q, into account. By using the divergence theorem and

Darcy’s law, we get the equation for single phase flow

φ
∂ρ

∂t
−∇ ·

(ρ

μ
K∇(p − ρgz)

)
= q . (2.12)

Since density is a function of pressure, Equation (2.12) is non-linear. For weakly

compressible fluids, i.e. water or hydrocarbons with large molecular weight,

Equation (2.11) can be approximated by a linear parabolic equation

cφ
∂p

∂t
−∇ ·

( 1

μ
K∇(p − ρgz)

)
=

q

ρ
, (2.13)
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where we have neglected terms of order (∇p)2. In the limit of incompressible

fluids, we get the elliptic equation

−∇ ·
( 1

μ
K∇(p − ρgz)

)
=

q

ρ
. (2.14)

2.3 Immiscible Two-Phase Flow
In some cases, the hydrocarbons are solely in the liquid phase, and the liquid

and aqueous phase make up a two-phase system. Especially during secondary

production, the fluids are separated into two phases, provided the pressure is above

the bubble point pressure. Moreover, many of the mathematical properties of the

equations governing flow in porous media can be illustrated by the flow of two

immiscible fluids. It is therefore of interest for us to study two-phase flow before

we continue to more complex models.

Let the two phases present be aqueous (a) and liquid (l). For each phase α, the

flux is modeled by a generalised Darcy law

qα = −λαK∇(pα − ραgz) . (2.15)

For a discussion of the validity of this generalisation, we refer to [128] and the

references therein. The conservation of mass for each phase can be stated on

integral form as∫
Ω

φ
∂(ραSα)

∂t
dV +

∫
∂Ω

n · (qαρα) dS =

∫
Ω

qα dV . (2.16)

Now, the divergence theorem gives us

φ
∂(ραSα)

∂t
+ ∇ · (qαρα) = qα . (2.17)

The Equations (2.15) and (2.17) for both phases, together with two-phase versions

of (2.6) and (2.7) constitute a closed set of equations for the phase pressures and

saturations.

To the end of this section, we assume incompressibility of the fluids. After

dividing by ρα, summing Equation (2.17) over the phases, and using Equation

(2.6), we get the pressure equation

∇ · qT =
∑
α=a,l

qα

ρα

, (2.18)

where the total velocity, qT = qa + ql, is given by

qT = −(K(λT∇pl − λw∇pcla − (λaρa + λlρl)g∇z)) . (2.19)



2.4 Three-Phase Flow 17

Here λT = λa + λl is the total mobility. This is an elliptic equation, which can be

solved for the pressure.

To get an equation for the saturation, we combine (2.15) with (2.19), and insert

the result in Equation (2.17) for water to get

φ
∂Sw

∂t
+ ∇ ·

(
K

λaλl

λT

∇(pcla + (ρl − ρa)g∇z) + qT
λw

λT

)
=

qa

ρa

. (2.20)

This is a parabolic equation describing conservation of the aqueous phase. How-

ever, the capillary term is often dominated by the advection term, thus the satura-

tion is governed by an almost hyperbolic equation.

We point out that the governing equations can be modified to apply other pri-

mary variables, notably by introducing a global pressure [52]. The change of

variables can both ease analysis of the equations, and make the problem better

posed for numerical methods [57]. We will, however, not pursue this any further.

2.4 Three-Phase Flow

In general, there will be hundreds of different chemical species present in the

reservoir. To describe the motion of each individual component is far beyond

the power of the computer resources available. It is therefore common to define

pseudo-components, each representing several chemical species. Denote by nc

the number of (pseudo-) components present. For notational simplicity, we as-

sume the water to be separated from the hydrocarbons, i.e., the water component

is only found in the aqueous phase, and the aqueous phase contains only water.

Throughout this section, the subscript c denotes a generic component.

Denote by ξc,α the molar density of component c in phase α. The molar density

of phase α is found by

ξα =
nc∑
i=1

ξi,α, α = l, v . (2.21)

Then the mole fraction of component c in phase α is defined as

Cc,α =
ξc,α

ξα

. (2.22)

We can now write the conservation equation for component c as

∂

∂t

(
φ

∑
α=l,v

Cc,αξαSα

)
+ ∇ ·

( ∑
α=l,v

Cc,αξαqα

)
=

∑
α=l,v

ρc,αqα , (2.23)



18 Mathematical Modelling

where qα are the phase velocities found by the generalised Darcy law. The liquid

and vapour phase are assumed to be in equilibrium,

fc,l = fc,v c = 1, . . . , nc , (2.24)

where fc,α are fugacity coefficients. Additional constraints that must be fulfilled

are the capillary pressure relations (2.7), and further (2.6). Moreover, the sum of

the mole fractions for each phase must be 1, that is

nc∑
i=1

Ci,α = 1 , α = a, l, v . (2.25)

In total, this gives us 2 · nc + 6 equations. The variables are nc mole fractions for

both the liquid and the vapour phase, three saturations, and three phase pressures,

in total 2 · nc + 6. However, the flow is assumed to be iso-thermal, thus there is

one less degree of freedom. If we further apply Gibb’s phase rule, we find that

the state of the system is determined by nc variables, see e.g. [48, 107]. We

will refer to these variables as primary variables, denoted by xp. The remaining,

secondary variables, xs, can be found from the primary variables. We indicate

this by writing xs = xs(xp), perhaps unintentionally implying a simple functional

relation. In reality to compute the secondary variables most often requires solving

the equilibrium relation (2.24), which can take a considerable part of the total

computation time. However, our main concern is not equilibrium calculations,

thus we will not go into details.

Regarding choice of primary equations and variables, there are several options

available. These issues should also be seen in connection with the selection of

a time stepping scheme (see next chapter). To give a presentation of the options

available is beyond the scope of this work, see instead [48] and the references

therein.

A large effort has been put into investigations of the mathematical structure of

the equations for compositional flow. It is shown in [217] that the pressure is gov-

erned by a parabolic equation. If the compressibility is small, the pressure field

will rapidly reach a steady state, thus the equation is almost elliptic. The compo-

nent transport equations are hyperbolic or close to being hyperbolic, depending

on the relative permeability functions, we refer to [33, 100, 101, 219].

Miscible Displacement and Dispersion

In the compositional model presented above, the hydrocarbons can exist in two

phases. Under some circumstances, the liquid and vapour phase can mix, and

act as a single phase. This is called miscible displacement. Since there is no

surface tension between the hydrocarbons under miscible displacement, the flow
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increases, and so can the recovery rate do. Therefore, initiation of miscible dis-

placement is a popular EOR technique.

The mathematical model for miscible displacement is similar to the above

compositional model. However, a process called mechanical dispersion that can

make a considerable contribution to the overall flow pattern, is not included in

Equation (2.23). The irregular pore network will naturally disperse mass at the

micro scale. Frictional forces along the walls in the pores also contribute to

the dispersion. To include dispersion effects, we augment the transport term

∇ · (∑α Cc,αξαqα) in Equation (2.23) to read

∇ ·
( ∑

α=l,v

Cc,αξαqα − ξαSαDc∇Cc,α

)
, (2.26)

where Dc is a dispersion tensor, see [108, 201]. For more information on disper-

sion, see e.g. [32].

When dispersion effects are included, the transport equations become

advection-diffusion equations, where the advection dominates. We will consider

numerical methods for transport problems in Chapter 5. The schemes primarily

studied in this work add an artificial numerical diffusion to the problem which

often is of much larger magnitude than the mechanical dispersion. Therefore, we

will hardly consider transport equations with second order terms, see however

Section 5.4.3.

2.4.1 The Black Oil Formulation

The computational burden of solving the compositional model can be quite heavy.

By making some assumptions, a model known as the black oil formulation can be

derived from the compositional model. The black oil formulation is computation-

ally cheaper to solve than a compositional model. Especially during secondary

production, if the liquid pressure drops below the bubble point, black oil models

are appropriate. The black oil model has two hydrocarbon pseudo-components,

referred to as heavy and light, in addition to water. To go from a compositional to

a black oil model, we assume the following:

• Water can only exist in the aqueous phase, and the aqueous phase contains

only water.

• The heavy component can only be in the liquid phase.

• The light component can be found both in the liquid and in the vapour phase.

With these assumptions, the conservation equations read
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φ
∂

∂t

(
bαSα

)
+ ∇ · (ραqα) = qα , α = a, l , (2.27)

φ
∂

∂t

(
bvSv + RsblSl

)
+ ∇ · (bvqv + Rsblql) = qv . (2.28)

Here, we have replaced the densities by the inverse volume factors bα = VREF

VRC
,

where VRC and VREF are the volumes occupied by a unit mass under reservoir

and reference conditions, respectively. The amount of the liquid phase consist-

ing of light component is described by the dissolved gas-oil rate Rs. The water

and vapour flux are given by a three-phase version of the generalised Darcy’s law

(2.15), with the density replaced by the inverse volume factor bα. For the liquid

phase, Darcy’s law reads, in terms of the variables used in the black oil formula-

tion,

ql = −λlK(∇pl + bl(ρl + Rsρv)g∇z) . (2.29)

The conservation equations for each of the components, together with the con-

straints (2.6) and (2.7) form a closed set of equations. The primary variables are

liquid pressure, and two phase saturations, commonly aqueous and vapour. If

the pressure is sufficiently high, all of the light component will be in the liquid

phase. In such cases, the vapour saturation is replaced by Rs, or equivalently by

the bubble point pressure pb, as primary variable. As for the above models, the

pressure variable exhibits elliptic behaviour, whereas the saturations are governed

by hyperbolic equations in the limit of zero capillary pressure [185, 218].

The black oil model can be extended to allow for vaporised heavy hydrocar-

bons. This is known as the extended, or volatile, black oil model [185]. We will

not pursue this further.

2.5 Further Extensions
The models considered in the previous section cannot capture all of physical pro-

cesses taking place in a porous medium during production. We here briefly men-

tion two possible extensions.

Thermal Flow

So far, all processes have been considered iso-thermal. In many cases this as-

sumption can be justified by the large heat capacity of the rock. However, if EOR-

techniques such as steam injection or in situ combustion are applied, thermal ef-

fects must be accounted for by introducing a conservation equation for energy. For
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an introduction to modelling of thermal processes, and associated computational

challenges, see for instance [59, 107, 108].

Rock Compaction

All of the above models consider the pore volume to be constant. In reality, the

pressure drop during production will change the geometry and topology of the

pore system. Thus in general, the rock properties described in Section 2.1.1 will

change. If these changes have significant impact on the flow pattern, both the

porosity and the permeability should be considered functions of time. Moreover,

rock compaction contributes significantly to sustain pressure during production.

Proper handling of these issues requires a coupling between geo-mechanical and

reservoir models, which will further complicate the simulations. Confer [193] and

the references therein for more information.





Chapter 3

Reservoir Simulation

So far, we have given governing equations for flow in a porous medium. Even

though the physical properties included in the modelling are simplified, we have

to solve a set of highly non-linear equations for each time step. The number of

grid blocks in the reservoir model can be of order 106. As we saw in the previous

chapter, there may be several unknowns in each grid block, depending on which

equations are employed to model the flow.

In this chapter, we will describe some aspects of reservoir simulations that will

serve as background for the next two chapters. We focus on solution of equations

(both non-linear and linear), gridding, and on time stepping methods. The presen-

tation will be rather brief, and the interested reader should consult the references

for more information.

Treatment of two topics that naturally belong to this chapter is postponed to

Chapter 4: Gridding in near-well regions will be considered in Section 4.6. The

multiscale methods introduced during the last decade are closely related to linear

solvers. These methods are treated in Section 4.7.

3.1 Solution of non-Linear Systems

Except from some very simplified cases, all the models presented in Chapter 2

contain equations that are non-linear. Thus we need to solve equations of the

form

F(xn+1
p xs(x

n+1
p )) = 0 , (3.1)

where F is a discretisation of the governing equations written in residual form

(F = 0). The primary and secondary variables are represented by the vectors xp

and xs, respectively. Superscripts refer to time steps.
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In reservoir simulation, non-linear equations are usually solved by the iterative

Newton-Raphson method, or Newton’s method for short. Let xn,l
p be a member of

the sequence of approximate solutions at time n + 1, with xn,0
p = xn

p . A Taylor

expansion of F around xn,l
p,i with respect to the primary variables gives us

F(xn,l+1
p ,xs(x

n,l+1
p )) ≈ F(xn,l

p ,xs(x
n,l
p )) +

∂F(xn,l
p ,xs(x

n,l
p ))

∂xp

Δxp,i , (3.2)

where Δxp = xn,l+1
p − xn,l

p . The differentiation is carried out with respect to the

primary variables at iteration l. If the solution obtained from the next iteration is

exact, the residual is zero, and thus

∂F(xn,l
p ,xs(x

n,l
p ))

∂xp

Δxp = −F(xn,l
p ,xs(x

n,l
p )) . (3.3)

This is a linear system to be solved for the update Δxp. If ‖F (xn,l+1
p , xs(x

n,l+1
p ))‖

is smaller than some tolerance, we set xn+1
p = xn,l+1

p . If not, we recompute the

Jacobian matrix, and obtain a new linear system. We also remark that columns

corresponding to explicit variables are non-zero on the diagonal only, and thus

these variables can be eliminated, yielding a smaller linear system.

The algorithm presented above is a straightforward application of the Newton

scheme. Provided with a good initial guess, the iterations will eventually experi-

ence second order convergence. However, in practical simulations, the equations

are badly conditioned, and the iterations may not converge. The classical way

to overcome convergence problems is to disregard the non-convergent iterations,

reduce the time step size and start computing a new sequence of approximations.

By taking into account the physical properties described by the equations, it

is possible to design algorithms that are more robust and more efficient. Since

the transport equations have a hyperbolic nature, the approximation obtained by

the Newton iteration might be improved by an update using local information.

This approach is investigated in [20, 145], where the pressure field obtained from

an iteration is used to reorder the unknowns. This allows for a local update of

variables governed by hyperbolic equations. Another possibility is to rewrite the

Newton-Raphson scheme to a form where it is not necessary to disregard non-

convergent iterations, see [233].

3.1.1 Linear Solvers
In the Newton algorithm, a linear system of equations must be solved in each

iteration. The size of the system can be several times the number of cells in

the simulation grid. Thus, to solve linear systems is often a bottleneck, and the
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availability of efficient linear solvers plays an important role when the simulation

strategy is decided.

The large number of unknowns makes direct methods like LU-decomposition

inappropriate. Instead, iterative schemes are applied, mainly methods that seek

solutions in Krylov subspaces. An overview of such methods can be found in e.g.

[31, 220]. For Krylov methods to be effective, they should be accompanied by a

suitable preconditioner. A survey of preconditioning techniques can be found in,

for example [35]. For the elliptic part of the problem (the pressure unknowns),

the global domain of dependence makes multigrid methods with domain decom-

position appropriate. The multigrid method could be geometric or algebraic, de-

pending on the whether the grid is structured or unstructured (see next section).

More information on multigrid methods can be found in e.g. [221], applications

to reservoir simulation are considered in [49, 210]. We point out that the clas-

sical algebraic multigrid approaches require the system matrix (for the restricted

pressure problem) to be an M-matrix. For transport equations, local methods like

incomplete LU-factorisation can be expected to perform well. Different strate-

gies for decoupling the system into pressure and transport parts are considered in

[49, 148, 210, 225]

3.2 Grids

Traditionally, reservoir simulations have employed quadrilateral grids in 2D, and

hexahedrals in 3D, see Figure 3.1(a) for an example. The logical ordering of the

cells eases the implementation. Moreover, the natural ordering of the unknowns

in the linear system makes the solution procedure faster. If higher resolution is

needed in some areas, this can be achieved by using local grid refinement, see

Figure 3.1(b). Note that this will introduce hanging nodes, which can cause diffi-

culties for some numerical methods.

To fit a hexahedral grid to a complex reservoir with multiple geological layers,

faults, and fractures is a non-trivial task. This is illustrated by Figure 3.2, which

shows part of a simulation grid from a real North Sea field. It may be less compli-

cated to grid the reservoir with other polyhedra. For a three dimensional domain,

tetrahedra are very well suited to grid a complex domain. Another option is to

construct a two-dimensional triangular grid, and extend it prismatically to three

dimensions. Such a grid will have a large degree of flexibility. In a reservoir, the

geological layering define a natural division into horisontal layers, which can be

used for prismatic extensions of 2D-grids. However, geometrical constraints such

as faults and skew and horisontal wells pose a challenge for construction of such

2-1/2-D grids.

Another class of grids is the Voronoi-grids, which are duals of a primary grid.
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(a) (b)

Figure 3.1: To the left, a quadrilateral grid. To the right, an example of local grid

refinement.

Figure 3.2: Part of a hexahedral simulation grid from a real North Sea field. Note

the complex geometry.
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(a) A triangular grid (b) The dual

Figure 3.3: A triangular grid, and its dual. Note how cell centres and vertices

change roles.

The vertices and cell centres switch roles when going from a primary to a dual

grid, see Figure 3.3(a) and 3.3(b). A Voronoi-tessellation can be constructed for

any grid, however, they are mostly used for unstructured (triangular or tetrahedral)

grids. The Voronoi-grids are well suited for discretising the flow equations, see

Chapter 4. However, to adjust a Voronoi-grid to discontinuities in the medium can

be non-trivial.

Unstructured grids are appealing because of their flexibility, and there is a

literature on generation of such grids in difficult domains, see e.g. [96, 146, 147].

However, the number of unknowns in the linear system is high, and the system

matrix will in general not be banded. In three dimensions, tetrahedral grids suffer

more from a high number of unknowns than a prismatic extension of 2D triangular

grids. The dual of a tetrahedral grid in 3D can have a large number of neighbours,

which can lead to computationally very demanding simulations.

The structure and bandwidth of the system matrix are determined by grid

topology and geometry. Hence, properties of the numerical methods should ide-

ally be used as constraints in the gridding process. We end this section by pointing

to Figure 3.4, which shows an example taken from [114] on how a domain with

constraints (fractures) can be gridded using triangles. Note that away from the

fractures, the triangles are close to uniform. In these areas, other cells, such as

quadrilaterals or Voronoi cells, could equally well have been fitted to the geom-

etry. Further considerations can be found in [25, 183, 223]. We also remark that

this approach can be taken one step further by introducing adaptive grid refine-

ment based on a posteriori error estimates.
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Figure 3.4: A triangular grid fitted to multiple fractures (bold lines). Note that the

fractures resemble the outcrop shown in Figure 1.1.

3.3 Time Stepping Methods

There are several commonly used time stepping methods in reservoir simulations.

They differ in the choice of implicit in time variables. Due to its elliptic behaviour,

the pressure is always treated implicitly. For the advection dominated mass vari-

ables, there are several options. In the following we briefly describe some com-

mon time stepping strategies. For more a more detailed description and analysis

of the methods, we refer to [26, 59].

As in the previous chapter, we let nc be the number of components, which

will be equal to the number of primary variables, also for two-phase and black oil

models. Further, let ne be the number of cells in the grid.

Fully Implicit

In the fully implicit method (FIM), or simultaneous simulation, all the primary

variables are treated implicitly. FIM is unconditionally stable with respect to time

step size, however, in practice the time steps must be small enough for the New-

ton iterations to converge. The robustness of the fully implicit method makes

it popular for industrial simulations with relatively few variables, i.e. black oil
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simulations. For problems with more unknowns, the computational cost of the

simulations becomes severely high.

IMPES

As previously mentioned, it is only the pressure variable that definitely needs to be

discretised implicitly in time. If we treat all other variables explicitly, we arrive

at the implicit pressure explicit saturation (IMPES) or implicit pressure explicit

molar mass (impem) formulation. The two models differ in which variables are

used to represent masses. Common choices of primary variables lead to the use

of IMPES for two-phase or black-oil simulations, whereas impem is used in com-

positional simulations.

In each Newton iteration with IMPES/impem, there will only be ne linear

equations to solve. Thus one time step with the method is computationally cheap,

and the method is especially attractive for compositional simulations. However,

the time step sizes will be limited due to a stability criterion (CFL criterion),

which is typically determined by cells in high-flow regions. The restrictions on

the time step size can in many situations be severe. One possible remedy is to

apply Asynchronous time stepping [167], where a local time step is applied for

each cell.

IMPSAT

To choose the number of implicit variables is a trade off between robustness and

computational cost. FIM and IMPES can be seen as the two extrema in that sense.

An alternative is to treat pressures and saturations implicitly, and the rest of the

primary variables explicitly. This method is known as Implicit pressure and satu-

rations (IMPSAT). For IMPSAT to be different from FIM, we of course need nc to

be larger than 3. The IMPSAT method can be considerably cheaper than FIM, and

allows for much larger time steps than IMPES, see [48]. For more information on

IMPSAT and some models employing this strategy, we refer to [107].

The Adaptive Implicit Method

So far, we have considered three time stepping methods that treat a various num-

ber of variables implicitly. However, the degree of implicitness has been static,

in the sense that the choice of implicit variables is the same for every grid cell.

Moreover, it is customary to maintain the same degree of implicitness during the

entire simulation. With an explicit method, the time step size is dictated by the

cell with the highest CFL-number, which is typically found in high flow regions,

e.g. near fractures or wells. In such regions, an implicit time discretisation is
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appropriate. In the Adaptive implicit method, different time stepping strategies

are employed in different cells. Thus the discretisation scheme can be tuned to

increase robustness and time step size.

The adaptive implicit method was introduced to the reservoir community in

[213]. Criteria for switching between implicit and explicit treatment are analysed

in i.e. [199]. Compositional flow was studied in [48], where FIM, IMPSAT, and

IMPES all were employed in the same simulations. In [68, 69], AIM is proven to

be inconsistent on the boundary between explicit and implicit cells. A remedy is

also proposed, together with higher order schemes in time and space.



Chapter 4

Elliptic Discretisation Principles

As shown in Chapter 2, the pressure variable exhibits parabolic behaviour. After

discretising the time derivatives, we are left with solving an elliptic equation for

the pressure. This chapter is devoted to numerical methods for elliptic equations,

with emphasis on control volume methods. These methods make it feasible both

to solve the entire system of governing equations fully implicit (FIM), and to use

some sort of operator splitting (IMPES,IMPSAT, etc.). Other methods for elliptic

equations that are applied in the reservoir simulation community are mentioned in

the last section.

4.1 Preliminaries

Consider the equation for an incompressible single phase, (2.14). We introduce a

flow potential u = p − ρgz, set the viscosity to 1, and get

−∇ · (K∇u) = q , (4.1)

where q represents sink/source terms. The solution u behaves similarly to the

pressure variable for the more complex physical processes presented in Chapter 2,

and we therefore employ Equation (4.1) as a model equation for elliptic problems.

Before introducing discretisation schemes, we will briefly state some results from

the theory of elliptic equations:

• Regularity: For Equation (4.1) to be well posed, q must be continuous,

and K must be continuously differentiable. However, in porous media ap-

plications q can be a point sink/source, and the permeability is in general

only piecewise constant. Therefore, the equation is often casted into in a

weak form, and we seek a week solution of the problem. The weak, or

variational, formulations are starting points for many numerical methods,
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see Section 4.7. The control volume methods investigated in this work are

based on an integral formulation, however, they are closely related to ap-

proximations derived from the variational formulations [137].

• Symmetry: The differential operator −∇ · (K∇·) is self adjoint in the L2

inner product. The analogy for a discrete method is a symmetric system

matrix.

• Positive definiteness: The eigenvalues of the differential operator are pos-

itive. For a numerical method to mimic this property, it should render a

positive definite system matrix for the potential. This can be considered as

a stability condition for the discretisation.

• Maximum principles: The solution obeys a maximum principle. The anal-

ogy for numerical methods is covered by the consideration of monotonicity
properties. These issues are thoroughly investigated in Section 4.5.

• Global domain of dependence: A point sink/source will influence the so-

lution everywhere in the computational domain. Discretisations of elliptic

problems therefore render systems of algebraic equation where all cells are

connected. Hence, it can be computationally demanding to solve the equa-

tions.

The literature on elliptic equations is extensive, we refer to [6, 90] for more infor-

mation.

4.2 Control Volume Methods

Let Ωi be a cell in our computational domain. We integrate Equation (4.1) over

Ωi and use the divergence theorem to get

−
∫

Ωi

∇·(K∇u)dV = −
∫

∂Ωi

n·(K∇u)dS =

∫
∂Ωi

n·qdS =

∫
Ωi

qdV .(4.2)

Here we have introduced the flux variable q = −K∇u. Equation (4.2) is a con-

servation law, the flux out of Ωi is equal to the sinks/sources inside the cell. The

control volume methods approximate the gradient of u by the pressure values in

nearby cells. Let ∂Ωi,j be an edge of Ωi. The numerical flux fj through ∂Ωi,j , is

given by∫
∂Ωi,j

n · (K∇u) dS ≈ fj =
∑

k

tj,kuk , (4.3)
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where uk is the potential in cell k, and the sum is taken over all cells contributing

to the flux expression. The quantities tj,k are called transmissibilities. They

depend on both permeability and grid geometry. The fluxes are approximated for

all edges ∂Ωi,j , and conservation of mass is obtained by requiring

∑
j

fj =
∑

j

∑
k

tj,kuk =

∫
Ωi

q dV . (4.4)

There is a large number of control volume methods, see [93] for a recent

overview. In the sequel, we will discuss some methods that are relevant for reser-

voir simulations.

4.3 Two Point Flux Approximations
The two-point flux approximation (TPFA) is one of the simplest control volume

methods. As the name indicates, the flux over ∂Ωi,j is approximated by using

the pressure in the two cells sharing the edge. Consider Figure 4.1(a). The flux

through the edge seen from cell number 1, f1, can be expressed as

f1 = −
∫

∂Ωi,j

n ·
(
K1 ·

v1

‖v1‖
(ue − u1)

)
dS , (4.5)

where n is the normal vector out of cell 1, see Figure 4.1(a). The gradient is

approximated by a normalised vector v1, pointing from the cell centre x1 to the

midpoint of the edge xe, scaled by the potential difference between ue = u(xe)
and u1 = u(x1). Similarly, the flux can be seen from cell number 2 as

f2 = −
∫

∂Ωi,j

n ·
(
K2 ·

v2

‖v2‖
(u2 − ue)

)
dS . (4.6)

Here v2 represents a vector from xe to x2, cell centre of cell 2, and u2 = u(x2).
By requiring continuity of the flux we obtain

f1 = f2 = t(u1 − u2) . (4.7)

The transmissibility can be found by combining Equations (4.5) and (4.6). Note

that we have implicitly required continuity of the potential in xe.

TPFA does not render a consistent flux approximation, e.g. [5, 7, 82]. It is

only convergent in the special case where the grid is aligned with the principle

axes of the permeability tensor. Such grids are said to be K-orthogonal.

Figure 4.1(b) shows two Voronoi cells with a primary triangular grid. The

vector ν is normal to the straight line that connects the cell centres, and n is nor-

mal to the edge between the cells. A sufficient condition for K-orthogonality
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(b) K-orthogonality of Voronoi grids

Figure 4.1: To the left, the flux stencil for TPFA. To the right, a primal triangular

(stippled) and a dual grid. The vector ν is orthogonal to the line connecting the

cell centres.

reads νTKn = 0. We see that dual grids are K-orthogonal if the permeabil-

ity is isotropic, and the triangles have the Delaunay property. However, Voronoi

grids can yield good results also for anisotropic media. Dual grids for reservoir

simulations are studied in i.e. [109, 133, 184].

Even though TPFA is not convergent, and in many cases not capable of re-

solving the flow field accurately, it is widely used in industrial simulations [204].

There are several reasons for this, apart from historical ones. The method is easy

to formulate and apply. The resulting system matrix is symmetric with small

bandwidth, and it is an M-matrix provided all transmissibilities are positive. This

renders possible design of efficient linear solvers. Moreover, since the system

matrix is an M-matrix, TPFA does not suffer from artificial oscillations related

to monotonicity issues. This makes it more robust than the multi-point methods

studied in Section 4.4.

4.3.1 Non-Linear Methods

Despite the shortcomings of the TPFA method, its small cell stencil is appealing.

Before we introduce methods with larger stencil, we will therefore mention some

schemes that keep a two-point approximation of the fluxes, but consider the trans-

missibilities as functions of the solution u, as well as of permeability and grid ge-

ometry. This yields a significant improvement of the traditional TPFA method, to

the price of increased computational complexity. We denote the resulting schemes

non-linear two point flux approximation (NTPFA) methods.
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An Upscaling-Related Approach

For the two-point flux approximation to be good, the grid must be aligned with

the permeability field. The fine scale geological models often have isotropic per-

meability, but anisotropies and heterogeneities are introduced by grid effects and

upscaling. Still, upscaling procedures based on TPFA can provide accurate re-

sults. This motivated Chen et. al. to develop a NTPFA method applicable both to

upscaling and as a single level method [55].

The main idea is to compute a reference solution by multi-point flux approx-

imations; either globally or locally in combination with a global TPFA. Then,

transmissibilities are computed based on a local two-point flux approximation.

The aim is to tune the transmissibilities so that the reference flow field is repro-

duced as accurately as possible. To accomplish this, iterations might be necessary,

hence the transmissibilities depend on u. If more than one phase is present, the

flow pattern and thereby the reference potential solution will gradually change as

components are transported. The transmissibilities, which are tuned to mimic the

reference flow pattern, must thus be updated regularly. Compared to the compu-

tational cost of a multiphase simulation, the update is not a significant burden.

The results obtained with this method are promising, and indicate that in many

cases, a two-point method might be sufficient, provided the transmissibilities are

carefully computed.

An Unconditionally Monotone NTPFA Scheme

In [152], LePotier introduced an unconditional monotone NTPFA method. The

scheme has later been extended to a class of methods, see [159, 161, 234]. The

methods approximate the potential in collocation points that need not coincide

with the cell barycentres. In most of the methods, auxiliary unknowns are intro-

duced in the vertices of the grid. The flux through an edge from one cell can then

be approximated by the potential values in the collocation point of the cell and the

vertices of the edge. A similar expression is found for the other cell sharing the

edge. Requiring continuity of the flux gives a two point flux expression, i.e. the

auxiliary unknowns are eliminated. However, the transmissibility becomes a func-

tion of the potential in the vertex nodes, thus the method is non-linear. Further, the

vertex values are computed by interpolation from values in the collocation points,

and the choice of interpolation scheme affects the accuracy of the scheme. An

interpolation-free method is presented in [161].

The framework described here provides methods that are provably monotone,

also in cases where linear methods with increased cell stencils cannot be monotone

(see Section 4.5). The methods render algebraic systems of non-linear equations.

To guarantee positivity of the potentials in each iteration step, the system is solved
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(a) An interaction region

x1

x2

x3

(b) A variational triangle

Figure 4.2: To the left, an interaction region (stippled) for a cluster of cells. To

the right, a variational triangle used to construct basis functions.

by Piccard iterations instead of by Newton’s method. The number of iterations

needed is quite high, partly because not much effort has been put into solving the

system efficiently yet. It has been suggested that the schemes are best suited for

non-linear problems [205].

We are not aware of any applications of the method to multiphase flow. There-

fore, it is an open question how the non-linear transmissibilities will behave in

difficult scenarios such as counter-current flow and potentials close to the bubble

point. We also remark that if rock compressibility is significant, the permeability

is no longer constant in time. Hence the transmissibilities must be recomputed

anyhow, and the overburden due to the non-linear flux approximation is easier to

justify.

4.4 Multi-Point Flux Approximations

So far, we have stated that the flux over an edge cannot be approximated consis-

tently by a linear combination of the potentials in the two adjacent cells. One pos-

sible remedy is to introduce a non-linear approximation. Another way to amend

to the TPFA, is to modify the flux expression (4.7) to include more points in the

flux stencil. The result is the so called multi-point flux approximations (MPFA),

which were developed independently by Aavatsmark et. al. [8], and Edwards and

Rogers [80], and further studied in i.e. [9, 10, 11, 12, 81, 82, 153].

To obtain a local flux expression, MPFA methods introduce interaction
regions. For most methods we are aware of, these are cells or subcells in the

dual grid, see Figure 4.2(a). The only exception is the rarely used Z-method. The

shape of the interaction region differs from method to method. However, the con-

struction of the schemes have many similarities. We will therefore describe the

general procedure before we go on to discuss the two most commonly applied

methods. All considerations in this thesis are in two dimensions.

From Figure 4.2(a), we see that the interaction regions divide each cell into
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several subcells. In each of these subcells, the potential is approximated by a

linear function. The function is determined by the values in the cell centre, and in

one point on each edge, see Figure 4.2(b). These three points span a variational
triangle. Thus, on subcell i, the potential approximation can be expressed as

ui =
3∑

j=1

ui,jφi,j . (4.8)

Here ui,j is the potential values in the cell centre and the points at the edge, see

Figure 4.2(b). The basis functions φi,j are linear, with value 1 in one vertex of

the variational triangle, and 0 in the others. The gradient of the potential can be

used to find an approximation of the flux through a half-edge seen from one cell.

The flux through the half-edge can also be approximated by the potential in the

adjacent cell. This can be done for all half-edges in the interaction region. By

requiring continuity of all the fluxes, we get a linear system of equations

Aū = Bu , (4.9)

where ū and u are potential values at the edges and at the cell centres, respectively.

We invert A to get ū = A−1Bu. The flux over the edges can be expressed as

f = Cū + Du , (4.10)

and by substituting the expression for ū, we get

f = (CA−1B + D)u = Tu . (4.11)

The elements in T are the transmissibilities for the half-edges in the interaction

region. The fluxes over the edges are found by summing the half-edge fluxes. The

set of all cells contributing to the flux over an edge form a flux stencil, see Figure

4.3(a), whereas the cell stencil of a cell is the union of the flux stencils for all the

cell’s edges, confer Figure 4.3(b). Requiring conservation of mass yields a global

system of linear equations with the potentials in the cell centres as unknowns. The

bandwidth of the resulting system matrix equals the size of the cell stencils.

Boundary conditions can be handled by modifying the Equations (4.9)-(4.10).

In reservoir simulation, homogeneous Neumann conditions are prevailing. They

can easily be implemented by applying ghost cells with zero permeability. Ghost

cells can also be used to implement interpolated Dirichlet conditions. For han-

dling of non-homogeneous Neumann conditions and non-interpolated Dirichlet

conditions, we refer to [50, 87, 171].

We also remark that the use of interaction regions based on the dual grid allows

for assigning different permeability tensors to each subcell, and thus incorporate

more information from the geological model. However, this approach is rarely

used in practice.
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(a) Flux stencil (b) Cell stencil

Figure 4.3: A flux stencil and a cell stencil for the MPFA O-method on a quadri-

lateral grid.

ηxe

x0
x̄j

(a) The continuity point

η

(b) The O(1/3)-method for trian-

gles

Figure 4.4: The continuity point for the O-method is determined by η, as shown

to the right. To the left, the O(1/3)-method on triangles. Note that the variational

triangles are part of parallelograms.

4.4.1 The O-Method
The O(η)-method can be considered the basic MPFA scheme. It can be applied

both in two and three dimensions, and for most grid topologies. However, it has

problems with handling hanging nodes, see [17].

The interaction region for the O-method consists of all cells sharing a vertex,

yielding an O-shaped region like the one showed in Figure 4.2(a). Thus there are

3 nc degrees of freedom, where nc is the number of cells in the interaction region.

We use 2 nc degrees of freedom to impose continuity of the fluxes, and to lock the

values in the cell centres. With the remaining nc degrees of freedom, continuity

of the potential is enforced in one point on each half-edge. The location of the

continuity point is determined by the parameter η, by the relation

x̄j = η x0 + (1 − η)xe , (4.12)

where xe is the midpoint of the edge, and x0 is the vertex in the centre of the

interaction region. Hence, η measures the relative distance from the midpoint of

the edge to the continuity point for the potential, see Figure 4.4(a). On quadri-

lateral grids, the two common choices for η are 0 and 0.5, see e.g. [5] and [81],
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Figure 4.5: The two possible variational triangles for the L-method.

respectively. On triangular grids η = 1/3 has been investigated in [95, 135].

For quadrilateral grids in two dimensions, the O-method in general yields a

9-point cell stencil. In three dimensions, the cell stencil consists of 27 cells. Note

that for K-orthogonal grids, the O(0)-method will reduce to TPFA. For quadrilat-

eral grids, K-orthogonality is also the only case in which the system matrix yields

an M-matrix for this choice of η.

If the transmissibilities are computed in physical space, the O-method ap-

plied to a quadrilateral grid will be symmetric only if the cells are parallelograms.

Symmetry can be obtained by a mapping to reference space, however, to this is

achieved to the price of deteriorated the convergence properties [13]. On trian-

gular grids, the O(1/3)-method with discretisation in physical space will always

be symmetric. This is due to the variational triangles being parallelograms, see

Figure 4.4(b).

4.4.2 The L-Method

For high anisotropy ratios, the O-method is known to suffer from spurious internal

oscillations. This will be further discussed in Section 4.5. The shortcomings

of the O-method have motivated development of other MPFA methods. The L-

method was introduced for quadrilateral grids in [17], although it was originally

discovered in [177] as a method with optimal properties with respect to avoiding

internal oscillations. Further, the L-scheme can handle hanging nodes, thus it is a

natural choice for local grid refinement. A method for three dimensional problems

was introduced in [15].

In two dimensions, the interaction region for the L-method consists of three

cells. This gives us 9 degrees of freedom, out of which 3 are used to lock the val-

ues in the cell centres. The remaining degrees of freedom are sufficient to ensure

continuity of both the potential and the flux over the entire half-edges. Consider

Figure 4.5(a). The flux over half-edge x0x̄1 can be computed by using the cells

1,2, and 4. However, as indicated by Figure 4.5(b), we can also use the cells 1,2,
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and 3. The two possible interaction regions give two sets of transmissibilities for

the half-edge x0x̄1. Let t1 and t2 be the transmissibilities for the half-edge com-

puted with cell 1 and 2 as the central cell in the interaction region, respectively. If

|t1| < |t2|, we use the values computed with cell 1 as the central cell, if not use

cell 2. For a uniform grid in a homogeneous medium, this selection criterion will

chose cells aligned with directions of high conductivity. The selection criterion

is defined so that the system matrix will be an M-matrix for a large range of grid

parameters, confer Section 4.5.3. A further motivation can be found in [17].

The cell stencil of the L-method consists of 7 cells if the cells are uniform par-

allelograms and the medium homogeneous, and increases to 9 for general quadri-

laterals and permeabilities. In three dimensions, the stencil has 13 cells. We also

remark that if the grid is K-orthogonal, the L-method reduces to a two-point flux

approximation. The L-method does not render a symmetric system matrix.

4.4.3 Convergence
There is no independent theory of convergence for MPFA methods. However,

the schemes can be considered as either mixed finite element methods or mimetic

finite difference methods (see Section 4.7), with numerical quadrature. Analytical

convergence results based on this relation can be found in [138, 135, 136, 139,

226] for the O-method, and [209] for the L-method. Numerical convergence of

MPFA methods is studied in e.g. [17, 14, 16, 86, 182]. For smooth solutions and

rough grids, these numerical investigations indicate second order convergence for

the potential, and first order convergence for the edge flux. However, the half-edge

fluxes are known to exhibit a reduced convergence rate [139]. For solutions with

low regularity, the convergence rates are in agreement with finite element theory.

4.4.4 Other Multi-Point Methods
For completeness, we mention some MPFA methods and related schemes that are

not discussed here. The MPFA Z-method, is constructed by using parts of two

cells in the dual grid, see [178]. This improves the monotonicity properties of the

O-method in highly anisotropic media. The U-method was introduced together

with the O-method [8] to reduce the size of the cell stencils, and thereby the band-

width of the system matrix. There is also an Enriched MPFA method [53], which

is an extension of the O-method, with improved monotonicity properties. Similar

work is also done in [85].

The notion of multi-point methods used in this thesis can somewhat loosely

be defined as methods that are formulated with an interaction-region framework,

and use more than two cell values to approximate the flux. A more straightfor-

ward interpretation of the name could consider all schemes that yield flux stencils
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with more than two points, which would include a vast number of methods. The

definition used here is, however, commonly used in the reservoir simulation com-

munity.

4.5 Monotonicity

As mentioned in the beginning of this chapter, the solution of elliptic equations

fulfils a maximum principle (for a precise definition, see below). This guarantees

that the solution will be free of internal oscillations, and the maximum princi-

ple should be preserved when the equation is discretised. Questions related to

preservation of maximum principles and to avoid spurious internal oscillations

for elliptic equations have become known as monotonicity issues. A major part of

the present work has been devoted to investigations related to monotonicity and

control volume methods, with special emphasis on MPFA methods. The results

are given in Papers A and B, and also the additional Paper F. In the following, we

give background information on monotonicity for elliptic equations.

4.5.1 Motivation

We say that a numerical method is monotone if it fulfils the discrete maximum

principle stated below. The importance of applying monotone methods is illus-

trated in Figure 4.6. The figure shows two solutions of Equation (4.1), where

the right hand side is a point source, and the boundary conditions are u = 0.

The transition from the peak at the source to the minima on the boundary should

be smooth, as seen in Figure 4.6(a). However, if the numerical solution scheme

is non-monotone, we can get internal oscillations, and false global extrema, see

Figure 4.6(b).

Monotonicity issues also arise for the Multiscale Finite Volume method dis-

cussed in Section 4.7.3. False internal oscillations in the potential can also cause

problems for streamline methods. Further, reordering methods for non-linear

problems [145] and transport methods [172] also show sensitivity to monotonicity

issues.

It is important to notice that since the MPFA methods by construction repro-

duce uniform flow exactly, they tend to robust even if applied to problems outside

their region of monotonicity. One example of this can be seen to the end of Paper

B. In other words, even if a discretisation violates necessary conditions for mono-

tonicity, this is not sufficient to yield oscillating solutions when the discretisation

is applied to a specific problem. Non-monotone behaviour is most often seen in

highly non-linear flow regimes, e.g. near wells.
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(a) Monotone (b) Non-monotone

Figure 4.6: The figure shows two numerical solutions of a problem with a point

source in the middle of a domain, and homogeneous Dirichlet boundary condi-

tions. The smooth solution to the right is obtained from a monotone method. To

the left, a highly oscillatory solution produced by a non-monotone method. Note

that the entire setup (including the grid) is identical for the two figures.

4.5.2 Maximum Principles

We consider the elliptic model equation (4.1), stated for a domain Ω. This

solution then fulfils a maximum principle, which can be stated as follows [115]:

Hopf’s first lemma
Let the permeability tensor be continuously differentiable and let the boundary

be sufficiently smooth. Further, let the source/sink term q be non-negative in a

domain ω ⊆ Ω. The, the solution u of Equation (4.1) has no local minima in

ω, i.e., there is no point x0 ∈ ω such that u(x0) < u(x) for all other x in a

neighbourhood of x0.

The maximum principle, or equivalently Hopf’s first lemma, should be preserved

in the discretisation. Since the term internal oscillation is not defined for a discrete

solution, it is not straightforward to define a discrete analogue of Hopf’s lemma.

To motivate the definition, we introduce a Green’s function G(ξ,x) to express the

solution of the elliptic equation. To test if the solution is free of local minima

on a domain ω, we impose homogeneous Dirichlet conditions on ∂ω. Then, the

solution of Equation (4.1) can be written

u(x) =

∫
ω

G(ξ,x)q(ξ) dτξ . (4.13)
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If the solution has no internal oscillations, it should decrease from a maximum at

the sources to 0 at the boundary, i.e. the solution is positive inside ω. Hence, we

see that if a non-negative q is to imply a non-negative u, G must be everywhere

non-negative;

G(ξ,x) ≥ 0 . (4.14)

A linear discretisation method will give a system of linear equations

Au = q , (4.15)

where A is the discretised operator, and u and q are the solution and the

sink/source term in the grid blocks, respectively. The solution of the linear system

reads u = A−1q, thus A−1 can be considered a discrete Green’s function. Now,

a positive right hand side should render a positive solution. This is fulfilled if the

discrete equivalent of Eq. (4.14)

A−1 ≥ 0 , (4.16)

where the inequality is interpreted in the element-wise sense. When the inequality

(4.16) holds, we say that the matrix A−1 is monotone, while A is inverse mono-

tone.

To impose homogeneous Dirichlet conditions on a subdomain gets a bit

involved. The boundary conditions are implemented using ghost cells. Thus, the

boundary is defined as a set of cell centres, and the linear interpolation between

them. This curve resembles a possible iso-contour for the solution. If there is a

positive source/sink inside the curve, and the curve happens to be an iso-contour,

we want our numerical solution to honour Hopf’s lemma; it should be positive

inside the curve. This is achieved if the restricted system matrix is inverse

monotone. However, for Hopf’s lemma to be valid on the domain bounded by

this piecewise linear curve, the boundary must have certain properties specified

below. Thus we get the following definition of the discrete maximum principle,

formulated in Paper A:

A discrete maximum principle
For any subgrid bounded by a closed Jordan curve, with homogeneous Dirichlet

conditions, the discretisation must yield a system matrix, whose inverse has no

negative elements. The boundary conditions are implemented by using ghost

cells. The boundary of the subgrid is defined by the linear interpolation of the

cell centres of the surrounding cells.
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We call numerical schemes which have this property monotone methods. It is

important to note that violations of the discrete maximum principle does not rule

out convergence of the numerical solution and vice versa. Indeed, a convergent

solution can exhibit spurious oscillations on every refinement level.

The discrete maximum principle does not involve discretisation of boundary

conditions on ∂Ω. That is partly covered by the following result [116]

Hopf’s second lemma
If the solution of Equation (4.1) with a smooth boundary and continuously

differentiable K has a maximum on the boundary, there must be a non-zero flow

through the boundary.

From a physical point of view, it is obvious that a stationary solution (no time

dependency) cannot have a maximum on a no-flow boundary. However, by Hopf’s

second lemma, non-physical values on the boundary are related to the maximum

principles. Moreover, in reservoir simulation, homogeneous Neumann conditions

are prevailing. Investigations of whether discretisations fulfill discrete maximum

principles should therefore involve tests with no-flow boundaries.

4.5.3 Sufficient Condition for Monotonicity of Control
Volume Methods

To test directly whether a discretisation of Equation (4.1) fulfils the discrete max-

imum principle we must invert system matrices for all subgrids fulfilling the re-

quirements. The computational complexity makes this task undesirable. There-

fore, there has in recent years been an effort to derive sufficient conditions for a

control volume method to yield a monotone discretisation of the elliptic model

equation.

One class of matrices that are inverse monotone is the M-matrices. An M-

matrix is an invertible matrix with positive diagonal elements and non-positive

off-diagonal elements [102]. The TPFA method always yields an M-matrix on

the main grid, as well as on subgrids, hence it is always monotone. For MPFA

methods, the situation is more complex. For instance, the O(0)-method on quadri-

laterals does not render an M-matrix unless the grid is K-orthogonal, when the

discretisation reduces to a TPFA. Still, the system matrix for the O(0)-method is

inverse monotone for more general grids. M-matrix analysis for other choices of

η can be found in e.g. [81]. Thus, we need criteria that take into account ma-

trices with positive off-diagonal elements, and still fulfill the discrete maximum

principle.
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Figure 4.7: To the left, the local numbering for the monotonicity conditions is

shown. The figure in the middle shows the parameters in Equation (4.18). To

the right, monotonicity regions for three MPFA methods for a parallelogram grid

in a homogeneous medium are shown. The green line shows the elliptic bound√
ab = |c|.

In [175] Nordbotten and Aavatsmark derived sufficient conditions for mono-

tonicity on uniform parallelogram grids in homogeneous media. The derivation

is based on constructing the discrete Green’s function (i.e. A−1) in a dimension

by dimension manner. Their arguments are, however, quite complicated and ex-

tensions of the technique to more general media and grid topologies seem out of

reach.

By utilising a splitting of the system matrix, Nordbotten et. al. [177] extended

the results from [175] to general quadrilateral grids. The splitting follows the grid

topology, based on the two natural directions in a quadrilateral grid. The analysis

holds for all linear control volume methods that lead to a 9-point cell stencil.

Let mi be the contribution to the system matrix corresponding to cell i, the local

numbering is shown in Figure 4.7(a). The results in [177] require m1 > 0 and

max(m2, m4, m6, m8) < 0. Further, the contribution from the corner cell 3 must

obey an inequality of the form

mi,j
2 mi,j−1

4 − mi,j−1
3 mi,j

1 > 0 . (4.17)

Here, the superscripts (i, j) refer to grid row and column index. Similar con-

straints apply to m5, m7, and m9. Thus, the system matrix can be inverse mono-

tone even if the elements corresponding to corner cells are positive.

The analysis in [177] also considered the special case of MPFA methods ap-

plied to uniform grids in homogeneous media. Let K denote the permeability in

the medium. Further, let a1 and a2 be normal vectors to the cells, with length

equal to their respective edges, see Figure 4.7(b). Then the monotonicity prop-

erties of the MPFA methods can be visualised by quantities a, b, and c, defined
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by

[
a1 a2

]T
K

[
a1 a2

]
=

1

V

[
a c
c b

]
, (4.18)

where V is the area of the cell. Note that for K to be positive definite, we must

have ab > c2. The monotonicity regions are shown in Figure 4.7(c). The sufficient

conditions seem to indicate that no linear methods are monotone below the line

a/|c| = b/|c|. The MPFA L-method is ideal in the sense that it is monotone

whenever b ≥ a, whereas both the O-methods have reduced monotonicity regions.

We remark that the L-method yields an M-matrix whenever it is monotone.

The analysis and numerical experiments in [177] did not, however, include

tests on convex subgrids. Such grids were considered in Paper A, with the result

that most of the conditions derived in [177] are necessary as well as sufficient.

Monotonicity for MPFA methods on triangular grids are considered in Paper B.

We also remark that for Voronoi grids, all cells that share a vertex will also

share an edge. By imposing the discrete maximum principle on subgrids consist-

ing of two cells sharing an edge, it can be shown that for the discretisation to be

monotone, it must yield a system matrix that is an M-matrix.

Monotonicity for Parabolic Equations

The elliptic model Equation (4.1) was derived from the equation for single phase

flow (2.12) under an assumption of incompressibility. The flow of a weakly com-

pressible fluid is governed by a linear parabolic equation, see Section 2.2. Mono-

tonicity properties for discretisations of such equations were studied in [120]. The

compressibility terms impose additional restrictions for the solution to be free

of spurious oscillations. The corner-elements m3, m5, m7, and m9 can still be

positive, but their magnitudes must be smaller than what is sufficient for incom-

pressible flow. Also worth noticing is that the region where the discretisation is

monotone increases when the time step is increased.

4.6 Near-Well Discretisations
In our presentation of control volume methods, we have barely touched upon how

to handle sink/source terms. Obviously, all the recovered hydrocarbons must flow

through wells, thus a proper representation of the sink/source terms is crucial for

the simulations. The importance of the well terms can be illustrated by consid-

ering the pressure equation; for a reservoir with no-flow conditions on the outer

boundary, the flow pattern will to a large extent be determined by the wells. Data

on the flow rate through a well, and the pressure at the well bore are among the
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few sources to knowledge of what happens in the reservoir that are available in

real time. This information is utilised in day-to-day reservoir management. Thus,

there are many reasons why an accurate description of flow in the vicinity of wells

is a key issue.

A part of this work has been devoted to investigations of control volume dis-

cretisations for flow in near-well regions. In the following, we give background

information for numerical modelling of processes near wells. Results from the

investigations can be found in Paper D.

4.6.1 Characteristics of Near-Well Regions
To illustrate the nature of near-well flow, we consider Equation (4.1) in a homo-

geneous reservoir. The reservoir contains a single well with flow rate q. If the

medium is isotropic, the solution of Equation (4.1) reads

u = uw +
q

2πk
ln

( r

rw

)
. (4.19)

Here uw is the pressure at the well bore, k is the (scalar) permeability, r is a radial

coordinate, and rw is the well radius. We note that the flow is purely radial, there is

no angular dependency in the solution. Further, the solution varies logarithmically

in the radial direction.

Equation (4.1) should be equipped with appropriate boundary conditions. On

the well bore, either the pressure or the flux must be specified. For an isotropic

medium, it seems evident that the well boundary condition should be uniform.

If the permeability is anisotropic, the situation becomes somewhat more compli-

cated. In a work addressing modelling of horisontal wells, Babu and Odeh apply a

point sink/source representation of the well [27]. They argue that in an anisotropic

medium, the iso-potential curves are ellipsis, and therefore the pressure varies

along the well bore. According to Babu and Odeh, a uniform flux condition is the

most correct boundary condition [28, 29].

Peaceman disagreed with the sink/source representation of the well, and ar-

gued in favour of assigning uniform pressure along the well bore. The anisotropic

medium can be transformed to an isotropic medium. The relation between the

physical coordinates (x, y) and (ρ, η) in the isotropic space reads

x = b
(kx

ky

)1/4

sinh ρ sin η , (4.20)

y = b
(ky

kx

)1/4

cosh ρ cos η . (4.21)

Here, we have assumed kx > ky. The constant b is given by

b2 =
r2
w(kx − ky)√

kxky

. (4.22)
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Figure 4.8: The flow pattern near a well in an anisotropic medium. The potential is

uniform along the well bore, but the iso-contours turn ellipses away from the well.

The streamlines are hyperbolas which are orthogonal to the potential contours.

Now, the potential is given by [187, 188]

u = uw +
q

2π
√

kxky

(ρ − ρw) , (4.23)

where tanh2(ρw) = kx/ky. Further, Peaceman showed that on the well bore,

uniform pressure and uniform flux are in fact equivalent. The iso-contours for

the potential are circular at the well bore, but turn into ellipsis away from the

well bore, as shown in Figure 4.8. The streamlines are orthogonal to the potential

iso-contours, and thus are hyperbolas. The difference between the sink/source

approach of Babu and Odeh and Peaceman’s finite well bore model decreases

rapidly as the distance from the well bore increases [190].

So far, we have tacitly assumed a homogeneous permeability field all the way

up to the well bore. In reality, the rock near the well can be damaged during

drilling. The permeability near the well can also be altered by injection of acids

and/or hydraulic fracturing, both aimed at increasing the conductivity near the

well. Such effects will modify the potential distribution described by (4.19), and

the equation becomes [65]

u = uw +
q

2πk

(
ln

( r

rw

)
+ S

)
, (4.24)

where S is called a skin factor. The modification of (4.23) is similar. For simplic-

ity, we will set S = 0.

We consider the well bore as the boundary of our domain, that is, we assume

infinite conductivity inside the well. In reality this is not true, and it might be

necessary to couple the porous media model to a hydraulic model for flow inside

the well. These issues will not be pursued further in this work.

4.6.2 Well Index Approaches
The main challenge in modelling near-well flow is the difference in scale. The

radius of the well bore will normally some centimetres, while the size of the reser-

voir can be several kilometres. For a well block with a size of meters, it may be
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reasonable to consider the well as geometric point. The numerical scheme itself is

not adapted to the flow in the near-well region. We emphasis that representing the

well as a point sink/source in the numerical scheme is not equivalent to the point

sink/source solution to the analytical problem, presented by Babu and Odeh. In-

deed, models for the interaction between the well and the surrounding grid can

be constructed both from Babu and Odeh’s point-source method, and Peaceman’s

finite well bore approach.

When the well is represented as a point sink/source, the computed pressure in

the grid block containing the well, ub, can differ significantly from the well bore

pressure. The relation between the pressure difference ub − uw and the well flow

rate is usually calculated according to

q =
WI

μ
(ub − uw) . (4.25)

Here, WI is the well index, which depend on cell geometry, permeability field,

well radius etc. For multiphase flow, (4.25) becomes

qα = WI
kr,α

μα

(ub − uw) . (4.26)

The above expressions are commonly applied in commercial simulators, with an

appropriate value of WI . Thus, the dynamics in the near-well region is repre-

sented by a well index, which is computed by upscaling.

Several authors have addressed the question of how to calculate the well index

for various well configurations. The first thorough investigation of these matters

was done by Peaceman in a series of papers. He defined an equivalent radius,

re, where the steady state flow pressure is equal to the well block pressure. In

an infinite, isotropic reservoir, with a uniform Cartesian grid with cell size h, the

equivalent radius for an isolated well is given by [186]

re = 0.2h . (4.27)

Now, let the medium be anisotropic with permeabilities kx and ky in the x and y
direction, respectively. Further Δx and Δy represent the grid spacing. Then, re is

defined by [187]

re = 0.28

(
(ky/kx)

1/2(Δx)2 + (kx/ky)
1/2(Δy)2

)1/2

(ky/kx)1/4 + (kx/ky)1/4
. (4.28)

In an anisotropic medium, the pressure at the equivalent radius is given by

ue = uw +
q

2π
√

kxky

ln
( re

rw

)
. (4.29)
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Thus, (4.25), (4.28) and (4.29) together give us (with viscosity set to unity)

WI =
q

ue − uw

=
2π

√
kxky

ln( re

rw
)

. (4.30)

Peaceman’s approach builds upon several simplifying assumptions. The grid

blocks are assumed to be rectangular, and aligned with the principle permeabil-

ity directions. The wells must be vertical and isolated, although an extension to

the case of multiple wells within one grid block is considered in [189]. Despite

these shortcomings, Peaceman’s equivalent radii approach is applied in commer-

cial simulators [204].

To increase the recovery factor, wells are drilled with highly complex trajec-

tories. In onshore production, vertical wells are still predominating, partly due to

low drilling costs. However, for offshore production, skew and horisontal wells

with multiple branches are commonly drilled. Such non-conventional wells can

intersect with grid blocks in an arbitrary manner. To upscale the near-well dy-

namics for such wells, more involved models are required. For general media,

we have no analytical expressions for the potential near non-conventional wells.

Instead, it is common to either consider simplified physical configurations where

analytical solutions can be found, or resort to semi-analytical techniques, or even

numerically computed solutions. Babu and Odeh proposed an analytical model

to compute the well index in [27, 30]. Their method applies to horisontal wells

in anisotropic, but homogeneous media. For more complex scenarios, a semi-

analytical approach based on Green’s functions was proposed in [229, 230]. Ding

studied upscaling for heterogeneous near-well regions [71]. He found the classical

upscaling methods that assume a linear flow regime inappropriate in the near-well

region. Instead he proposed to adapt the upscaling to the non-linearity in the

near-well dynamics. He applied a fine-scale pressure solve to compute equivalent

coarse-scale transmissibilities and well indices. This approach was later devel-

oped in e.g. [72, 79]. Similar considerations can also be found in for instance

[228].

We emphasis that the above presentation of approaches to near-well modelling

by no means is a complete survey of the available schemes. Our intention is rather

to point out that this is an unsolved topic, and thus there is a need for a more

general and robust framework.

4.6.3 Applications of MPFA Methods to Near-Well Mod-
elling

We here present a methodology for application of local grid refinement and control

volume methods in near-well regions. The common numerical methods, such as
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the control volume methods previously introduced, employ a linear reconstruction

of the potential. In near-well regions, we expect the potential to be dominated by

the well, and thus exhibit a logarithmic behaviour. Ding and Jeannin perform

a truncation error analysis near singularities of control volume methods based

on linear reconstruction [73]. They split the error into a ’regular’ term, er, and a

’singular’ term, es, stemming from the well, and the overall error, e, can be written

e = er + es = O(h2) + O
(h2

r2
w

)
, (4.31)

where h is a measure of the grid block size. Near the well, we expect e to be

dominated by es, and hence the truncation error will be small only if the grid

blocks are smaller than the well radius.

To improve the performance of the control volume methods, Ding and Jeannin

proposed to adapt the discretisation to the logarithmic potential profile. They

introduce a mapping from the physical space P to a logarithmic reference space

R, according to

x = eρ cos θ , (4.32)

y = eρ sin θ . (4.33)

Here, (x, y) and (ρ, θ) are the coordinates in P and R, respectively. A loga-

rithmic potential in physical space will vary linearly in reference space, thus nu-

merical methods based on linear reconstruction are appropriate. Moreover, the

transformation is of polar-type, honouring the radial nature of near-well flow. The

potential in R is the solution of an elliptic equation similar to (4.1), but with a

transformed permeability K̂. Further, let eP be an edge in physical space, and

let eR be its curvilinear image in reference space. Then the flux over the edge is

preserved, that is

f =

∫
eP

n · (K∇u) dS =

∫
eR

n̂ · (K̂∇u) dS . (4.34)

where n̂ is normal to eR.

Since fluxes are conserved in the transformation between P and R, and fur-

ther the potential varies linearly in R, it is natural to consider discretisation in

reference space instead of physical space. In [73], Ding and Jeannin investigate

this approach for a Cartesian grid. They show that if the transmissibilities are

computed in R by an MPFA method, the total error is O(h2/r). The well is con-

sidered a point sink/source inside the well block in R. However, the numerically

computed potential in the cell containing the block is a good approximation to

the actual pressure at the well bore. That is, the transmissibilities computed in

reference space can be considered a well index.
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(a) Quadrilaterals (b) Triangles

Figure 4.9: Illustration of the near-well grids in R. The spacing in radial direction

is equidistant.

(a) Quadrilaterals (b) Triangles

Figure 4.10: Illustration of near-well grids with logarithmic refinement shown

in physical space. The transmissibilities are computed in R, and the edges are

mapped to curved lines in P .

(a) Quadrilaterals (b) Triangles

Figure 4.11: Illustration of near-well grids with logarithmic refinement, and dis-

cretisation in physical space. The edges are straight lines in P . Note that the well

bore is approximated by a polygon.
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Another approach to well modelling is to create a grid that follows the well

bore itself, and describe the physical parameters at there. Thus, the boundary con-

dition on the well bore is treated as a boundary condition also in the numerical

scheme. This is in contrast to all previously discussed methods, where the well is

discretised as a point sink/source. Ding and Jeannin suggested this approach using

flexible grids, i.e. triangles or general polyhedra, in the near-well region [74]. In

Paper D, we follow up their work with a systematic test of different options for

near-well modelling with radial-like grids. We adapt to the logarithmic potential

profile by creating grids with equidistant spacing in the radial direction in R, thus

when transformed to P , the grids adapt to the logarithmic potential profile. The

grid cells can be either isosceles triangles or quadrilaterals, see Figure 4.9(a) and

4.9(b). On both grids, the elliptic equation is discretised by MPFA methods, with

the transmissibility calculation performed either in reference space, or in phys-

ical space. Since the potential varies linearly in R, we expect discretisations in

reference space to do well. A discretisation in physical space apply a linear recon-

struction of the potential, which was shown insufficient by Ding and Jeannin for

uniform Cartesian grids. However, since the grid cells are distributed according

to the logarithmic behaviour, the drop in the potential between cells aligned in

the radial directions is approximately constant. Therefore, we hope that a linear

reconstruction suffice to capture the flow pattern.

The grid edges are straight lines in the discretisation space. If the the transmis-

sibilities are computed in R, the grid has curved edges in physical space, as shown

in Figure 4.10(a) and 4.10(b). If the elliptic equation is discretised in P , the edges

will be non-curved, see Figure 4.11(a) and 4.11(b). Note that when discretising in

P , we approximate the well bore by a polygon.

When local grid refinement is applied in the near-well region, the near-well

grid must be coupled with the surrounding global grid. In Paper D, the global

grid is triangular, and the near-well region is considered a constraint in the global

triangulation. Note that if the global grid was quadrilateral, say, the transition

zone between the near-well grid and the surrounding grid can still be covered by

triangles. In this way, we can ensure a smooth transition from logarithmic to linear

gridding. Another way to handle the coupling can be found in [192].

4.7 Other Locally Conservative Methods

In addition to the control volume methods, there are several other locally conser-

vative methods that handle discontinuous permeability tensors. A recent overview

and comparison of some methods can be found in [137]. We here briefly discuss

some choices that are commonly considered in the reservoir simulation commu-

nity.
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4.7.1 Mixed Finite Elements

As mentioned in Section 4.1, the elliptic model equation (4.1) can be written in

weak form that reads; find u ∈ L2 and q ∈ H(Div, Ω) such that

∫
Ω

pTK−1q + u(∇ · p) dV = 0 , ∀p ∈ H(Div, Ω) , (4.35)∫
Ω

v(∇ · q − q) dV = 0 , ∀ v ∈ L2 . (4.36)

For a derivation of the weak form, and definition of the Sobolev space H(Div, Ω)
confer e.g. [41, 194].

The mixed finite element (MFE) method seeks for approximations (uh,qh) to

u and q in finite dimensional subspaces Vh ⊂ L2 and Wh ⊂ H(Div, Ω), respec-

tively. Here, uh is associated with pressure values in the cells, while qh represents

fluxes over the edges. For first order methods, there is one pressure unknown for

each cell, and one flux unknown for each edge. Higher order methods have more

degrees of freedom. For stability of the MFE method, the approximation spaces

Vh and Wh must be chosen such that a coersivity and an inf-sup condition hold,

see e.g. [37, 44]. In two dimensions, families of approximation spaces are con-

structed for triangles and quadrilaterals, for definitions and consideration see e.g.

[24, 42, 195]. For three-dimensional problems the MFE method is defined for

tetrahedral and hexahedrals, see e.g. [43, 173], and also [179] and the references

therein. Note, however, that if the hexahedral cells are more irregular than slightly

perturbed parallelepipeds, no approximation spaces have been published so far.

The MFE method has a good theoretical foundation, see e.g. [76]. Applica-

tions to reservoir simulation can be found in for instance [56, 78]. However, the

method has drawbacks that so far have limited the usage in industry. The Equa-

tions (4.35)-(4.36) form a saddle-point problem, and the discretisation renders an

indefinite symmetric linear system with both pressure and velocity variables as

unknowns. Local flux expressions for MFE methods are only known in special

cases [224]. Because of its high computational complexity, the MFE method is

mostly applied in IMPES formulations.

4.7.2 Mimetic Finite Differences

The mimetic finite difference (MFD) methods provide a framework to obtain dis-

cretisations that preserve, or mimic, certain properties of the continuous operator.

For elliptic conservation laws, the MFD methods define approximation spaces Ph

for the scalar variables (potentials) and Fh for the edge fluxes. In Ph we define an
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inner product by

[p, q]Ph
=

∑
i

|Vi|piqi , p, q ∈ Ph , (4.37)

where the sum is taken over all cells, |Vi| represents the volume of cell i, and

pi and qi contain the cell values. The construction of the inner product in Fh is

somewhat involved. For each cell C, we define

[f ,g]C = fTMCg . (4.38)

Here MC is a symmetric, positive definite matrix of dimension ne × ne, where ne

is the number of edges for the cell C. Further, f and g store fluxes over the edges

of C. The construction of the matrix MC is non-trivial. Sufficient conditions for

existence are given in [45]. Details on how to construct the matrix and analysis of

the resulting schemes can be found in [47, 158]. Note that the construction is not

unique. The inner product in Fh is now defined as

[f ,g]Fh
=

∑
C

[f ,g]C , f ,g ∈ Fh , (4.39)

with summation over all cells. The divergence operator DIV is readily defined as

a sum over edge fluxes;

(DIV G)C =
1

|VC |

ne∑
i=1

Gi|ei| , (4.40)

where the sum is taken over the edges of the cell, Gi is the edge flux, and ei is the

length of the edges. Finally, we can write a discrete Green’s formula as

[f , GRADp]Fh
= [p, DIV f ]Ph

, ∀p ∈ Vn , ∀ f ∈ Wn . (4.41)

This gives an implicit definition of the discrete gradient GRAD. The MFD dis-

cretisation of Equation (4.1) now reads; find uh ∈ Ph and qh ∈ Fh such that

qh = GRADuh , (4.42)

DIV qh = b , (4.43)

where b represents the sink/source terms.

The MFD method is appealing due to its applicability to general grids, and a

solid theoretical foundation for single phase problems. Convergence proofs for

the method are given in [45, 46]. However, like in the mixed finite element for-

mulation, the flux in the MFD method is a global function of the potential, and

the resulting linear system is of saddle point type. One notable exception is the

local method presented in [160], which is identical to the MPFA O(1/3)-method.

Regarding extensions to multiphase flow, the only applications we are aware of

are the multiscale methods mentioned next.
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4.7.3 Multiscale Methods
The flow in porous media have characteristic features on a multiple of length

scales, and information on geological properties such as permeability is available

on a much finer resolution than what can be handled by standard techniques. The

computational cost is especially severe for the pressure equation, due to its global

domain of dependence. We touched upon this problem in Chapter 1, where we

mentioned upscaling techniques as a tool to represent the parameters on a scale

that can be handled by the computer resources available. However, this approach

leaves much of the fine-scale information available unused after the upscaling.

In multiscale (MS) methods, coarse and fine scale descriptions of the medium

are combined in ways that attempt to combine the computational efficiency of a

coarse scale algorithm and the accuracy of the fine scale. A vast number of mul-

tiscale methods have been proposed, and we describe only some of the methods

studied in the reservoir simulation community. For simplicity, we will stick to

a two-level method in our outline. In the methods we consider, both a fine and

a coarse grid are constructed, so that the coarse grid cells define subdomains for

the fine grid. By solving local fine scale problems, one can obtain a coarse scale

operator for the pressure that incorporates fine scale features. The coarse scale

problem has fewer degrees of freedom than the original fine scale problem, and

its solution can be found faster. So far, the procedure resembles upscaling of

the pressure equation. However, contrary to an upscaling method, a MS method

provides a way to obtain the pressure and, for the methods applied to reservoir

simulation, mass conservative fluxes on the fine scale. The velocity field can be

used to solve transport equations on the fine scale.

Since MS methods for elliptic problems were introduced in [118], a vast num-

ber of different methods have been introduced, see e.g. [131]. There are MS

methods that applies techniques from MFE [1, 58] and MFD [4, 157]. The con-

trol volume methods that have been the primal focus of this work have their multi-

scale extension in the Multiscale Finite Volume (MSFV) method [121, 122]. The

MSFV method has been formulated to handle a large range of physical problems

[123, 154, 162, 163]. Also, since it is based on control volume methods, it is a nat-

ural candidate for incorporation into industrial codes. However, the monotonicity

issues discussed in Section 4.5 may limit the applicability to realistic problems.

The idea of considering the problem on multiple levels, and dividing the fine

scale grid into subdomains is also found in the domain decomposition (DD) meth-

ods. Indeed, links between multiscale methods and DD are studied in [2, 3, 176].



Chapter 5

Hyperbolic Discretisation
Principles

In Chapter 2 we saw that the mass variables are governed by equations that have

an hyperbolic nature. This chapter is devoted to techniques for discretising hyper-

bolic equations. Like in the previous chapter, we mainly consider schemes that

are used in the mainstream commercial simulators of today, i.e. control volume

methods. At the end of the chapter, we will briefly review alternative approaches.

5.1 Preliminaries
Hyperbolic equations have a quite different nature from the elliptic equations con-

sidered in the last chapter. They propagate information with finite speed, allowing

for explicit time stepping methods, cf Chapter 3. The solution of hyperbolic equa-

tions can exhibit discontinuities, or shocks. Consider the prototype hyperbolic

model equation for an unknown c in one dimension

∂c

∂t
+

∂f(c)

∂x
= 0 . (5.1)

Here, f(c) is a possibly non-linear flux function. Now, assume that the solution

experience a discontinuity, with value c = cR on one side, and c = cL on the other.

The speed of the discontinuity, σ, can be found by the Rankine−Hugoniot shock

condition

σ =
f(cR) − f(cL)

cR − cL

. (5.2)

However, there are two types of solutions that honours the Rankine-Hugoniot

condition. One is a shock, where the solution jumps from one state to another.
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The other is a continuous transition between cR and cL in rarefaction wave. For

the solution to exhibit a proper shock, it must honour Oleinik’s entropy condition

f(c) − f(cL)

c − cL

≥ σ ≥ f(c) − f(cR)

c − cR

. (5.3)

This holds for all c between cL and cR, no matter which of the initial values are

largest. For a general flux function f , the solution can consist of multiple shocks

and rarefaction waves.

5.1.1 Riemann Problems

A fundamental building block in many numerical methods for hyperbolic prob-

lems is the much studied Riemann problem. The Riemann problem consist of a

non-linear hyperbolic equation like (5.1) with initial condition

c(x, 0) =

{
cL x < 0 ,

cR x > 0 .
(5.4)

A numerical method that approximates the flux over an edge using only function

values in the two adjacent cells, must in practice solve a Riemann problem for

each edge. The analytical flux for a Riemann problem with a general shaped flux

function is given by

f(c) =

⎧⎨
⎩

min
cL≤c≤cR

f(c) , if cL ≤ cR ,

max
cR≤c≤cL

f(c) , if cR ≤ cL .
(5.5)

We remark that for a monotone f , the flux is simply either f(cL) or f(uR), de-

pending on the initial data.

5.1.2 Hyperbolic Formulations

We now develop two formulations of the hyperbolic transport equations intro-

duced in Chapter 2. For simplicity, we focus on flow of two incompressible, im-

miscible phases. The governing equations for this case were introduced in Section

2.3. If we define the concentration of phase α as cα = ραSα, and for simplicity

set the porosity to 1 everywhere and ignore capillary forces, Equation (2.17) can

be written

∂cα

∂t
−∇ · (ραλαK∇(p − ραgz)) = qα . (5.6)
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f(c)

c
(a) Monotonic

f(c)

c
(b) Non-monotonic

Figure 5.1: Two possible flux functions. The function to the left is monotonic.

The function to the right has a sonic point.

This is a hyperbolic transport equation for the concentrations. We refer to Equa-

tion (5.6) as the phase-based approach.

In the absence of capillary forces, the total velocity qT can be written

qT = −
∑

α

λαK∇(p − ραgz) . (5.7)

Now, we can rewrite Equation (5.6) to read

∂cα

∂t
−∇ · (ραfα(qT − K∇(p − ρβ �=αgz)λβ �=α)) = qα . (5.8)

Here we have introduced the fractional flow function fα = λα

λT
. Hereafter, we will

refer to Equation (5.8) as the fractional flow or total velocity formulation.

The total velocity field will normally vary slower in time than the phase ve-

locities. Therefore, the fractional flow might be the more robust formulation,

however, it might be more difficult to apply. Consider the methods in one spatial

dimension, written on the form of Equation (5.1). The monotonic flux function

(f ′ > 0) shown in Figure 5.1(a) is representative for the phase based formulation

both for horisontal and vertical flow. The flux function for the fractional flow for-

mulation will only be monotonic if the flow is horisontal. For vertical flow, the

flux function can have a shape as shown in Figure 5.1(b). Note that it has a point

where f ′ = 0, and thus the solution of the Riemann problem becomes non-trivial.

In two dimensions, the phase formulation can be written in the form

∂c

∂t
+ ∇ · (ζ(c)(σxex + σzez) = q , (5.9)

where ζ is some generally non-linear function, and the velocity vector

σ = σxex + σzez , (5.10)
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is independent of c. Due to the gravity term, this will not be true for the fractional

flow formulation.

To ease the presentation, we have neglected capillary forces. The character

of the phase formulation is not altered if capillary forces are introduced, although

the phase velocities will change. On the contrary, the fractional flow formulation

turns into an advection-diffusion equation, which has a parabolic nature. In the

control volume framework presented next, the parabolic terms will naturally be

treated with elliptic discretisation principles as discussed in the previous chapter.

To ensure stability the diffusive terms should be treated implicitly. Treatment of

diffusion terms in Lagrangian methods will be discussed at the end of this chapter.

5.2 Control Volume Methods
For a multi-dimensional problem, a generic hyperbolic equation can be written

∂c

∂t
+ ∇ · f(c) = q . (5.11)

As in the previous chapter, let Ωi be a cell in the grid, and write the edges of the

cell as ∂Ωi,j , so that ∂Ωi =
⋃

j ∂Ωi,j . Integration in space over Ωi and in time

from tn to tn+1 yields

∫
Ωi

(cn+1 − cn)dV +
1

Vi

∑
j

tn+1∫
tn

∫
∂Ωi,j

f(c) · ndSdt =

tn+1∫
tn

∫
Ωi

qdV dt,(5.12)

where we have used the divergence theorem, Vi is the area of Ωi, and n is the outer

normal vector of ∂Ωi,j . By replacing c and q by cell centred variables, we get a

numerical scheme

cn+1 − cn =
1

Vi

∑
j

∫ tn+1

tn

∫
∂Ωi,j

f(c) · ndSdt +

∫ tn+1

tn
qidt . (5.13)

Our main focus is to construct approximations, fnum to the flux integral

fnum ≈
∫

∂Ωi,j

(f(c) · n)dS . (5.14)

However, before we do so, we need to introduce a concept from the theory for

scalar transport schemes. If the approximation (5.13) only depends on values at

time tn, the scheme can be written in the generic form

Cn+1
i = Φn

i (Cn
1 , . . . , Cn

ne
) , (5.15)
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where ne is the number of cells in the grid. The scheme is said to be monotone if

[155]

∂Cn+1
i

∂Cn
j

=
∂Φn

i (Cn
1 , . . . , Cn

nc
)

∂Cn
j

≥ 0 ∀j . (5.16)

A monotone scheme cannot generate spurious oscillations in the computed solu-

tion, and requiring monotonicity may seem natural. This will be sufficient to guar-

antee convergence to the correct entropy solution [62, 105]. However, as shown

in [99], monotone methods are at most first order accurate. Thus, it is natural to

require monotonicity for first order schemes, whereas higher-order schemes must

meet other criteria. We will briefly come back to this in Section 5.4.

5.2.1 Upstream Weighting
The perhaps simplest way to approximate the flux integral (5.14) is to consider a

Riemann problem with the discontinuity at the edge ∂Ωi,j , and the initial values

equal to the cell values in the adjacent cells. Now, the upstream method, hereafter

denoted SPU (single point upstream) evaluate the direction of the flux over the

edge based on the local velocity field v, and define the flux according to

fnum(cu) =

{
|∂Ωi,j|f(ui) , v · n > 0 ,

|∂Ωi,j|f(uj) , v · n < 0 ,
(5.17)

where the normal vector of the edge n points from cell i into cell j, and |∂Ωi,j|
denotes the length of the edge.

The prevailing solution technique in industrial reservoir simulators is to

solve the phase based formulation with upstream weighting [26]. The up-

stream approach is monotone, and proof of convergence for this approach to

one-dimensional problems and homogeneous media can be found in [40, 203].

The upstream method suffers from some problems near discontinuities in the flux

function (i.e. discontinuous permeability) [19]. The difficulty stems from how the

upstream direction is found. SPU defines the upstream direction according to the

local velocity field. However, the analytical solution of the Riemann problem ap-

plies upstreaming with respect to waves defined by the flux function. For complex

flux functions, the two approaches are not necessarily equal.

The standard upstream method as presented above is essentially a one-

dimensional method; it computes the flux based on the values in the two adja-

cent cells only. This methodology can readily be extended to multi-dimensional

problems by doing a dimensional splitting, and this is the common approach in in-

dustrial simulations. The convergence proof for monotone methods given in [62]

also holds for dimensional splitting on Cartesian grids.
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Figure 5.2: Figure a) illustrates cells involved in multi-dimensional upstream

weighting. Figure b) and c) show saturation contours for a quarter-five spot sim-

ulation. The direction of the grid orientation is indicated in the figures. Except

from grid orientation, the parameters for the simulations are identical.

However, in displacement processes with adverse mobility ratios, i.e. the in-

truding fluid is more mobile than the displaced fluid, dimensional splitting can

lead to grid orientation effects (GOE), first observed in [215]. Consider Figure

5.2(a). The upstream method approximates the flow over the edge between cells 1

and 2 by using cell 2 as the upstream cell. Any contribution from cell 3 is ignored.

A possible result of this can be seen in the Figures 5.2(b) and 5.2(c). These shows

saturation profiles from a simulation on a Cartesian grid. There is an injection in

the lower left corner, and a producer well in the upper right corner. The displac-

ing fluid has lower viscosity than the displaced fluid, and the mobility functions

are taken from [232]. The saturation front tends to follow the coordinate lines,

rendering solutions that completely depend upon grid geometry.

GOE in reservoir simulation is a much studied topic, see for instance [38] and

the references therein. The fundamental difficulty is that the displacement process

is unstable on the level it is discretised; that is, the mathematical model is not well

posed. Therefore, the instability does not disappear with grid refinement. Param-

eters such as grid size, mobility ratio, and truncation errors for the discretisation

schemes play an important role in triggering the instabilities. Several remedies

have been proposed for reducing GOE, including applying higher order methods

for transport [54], and constructing pressure discretisations aimed at capturing the

flow over corners [207, 232].

5.3 A Framework for Truly Multi-Dimensional
Upstream Weighting

Here we present a framework for upstream methods that preserve the multi-

dimensionality of the problem better than dimensional splitting approaches. The
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1
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Figure 5.3: The figure shows local numbering of cells that are possible candidates

for a transport scheme for the central cell.

intention is to amend to SPU, and thereby reduce biasing with respect to the grid.

The methods apply to all problems that can be written on the form (5.9) - (5.10).

The framework was originally developed and studied by Kozdon and coworkers

in [141, 142, 143]. To ease the presentation, we restrict ourselves to Cartesian

grid. Extensions to other grids are considered in Paper E.

5.3.1 Multi-Dimensional Transport

The reason for the poor performance of SPU shown in Figure 5.2(b) and 5.2(c), is

that the scheme neglects flow over corners, that is, from cell 3 to cell 1, referring

to Figure 5.2(a). To formulate better schemes, we thus need to define methods

with larger stencils. Consider the cells shown in Figure 5.3, and assume for the

time being that both the velocity components are positive, i.e. the flow is more

or less from the lower left to the upper right corner. Then, the four cells that are

most significant for the state in cell 1 are number 1, 2, 3, and 4. We will formulate

a framework which utilise schemes consisting of these four most important cells.

We remark that also cell number 5 and 6 are in the upstream direction to cell 1,

and thus it is possible to define stencils with five and six cells. This will not be

pursued here, more information can be found in [222].

One of the simplest hyperbolic problems is that of linear transport. Referring

to Equation (5.11), this corresponds to f = (cv1, cv2), where v1 and v2 are the

velocity components in the x- and y-direction, respectively. In [197], Roe and

Sidilkover found that the linear four-point schemes on Cartesian grids can be de-

scribed by a single parameter. Further, due to the simple structure of the problem,

it is possible to gain insight in the properties of the methods by a modified equa-

tion analysis. Details can be found in [142, 197], and also in Paper E, where the

analysis is extended to parallelogram grids. Even though our transport problem of

interest is non-linear, we would like to base our framework upon the linear theory.

As we saw in Chapter 2, the variables that are governed by hyperbolic equa-

tions typically represents mass or concentrations. Obviously, negative values of
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(a) An interaction region
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x̄2
xωx0

(b) Forward trace

Figure 5.4: To the right, an interaction region for the multi-dimensional transport

framework. The arrows show the positive directions of the velocities. The forward

trace is shown to the left, ω∗ = ‖xω − x0‖/‖x̄2 − x0‖.

these variables make no sense from a physical point of view, and the numerical

schemes should be designed to avoid this situation. For two-phase systems, we

can avoid such numerical artifacts by requiring the schemes to be monotone. That

is, Definition (5.16) will be imposed for each cell in the grid. In general, all cells

are included in several cell stencils, and hence the positivity requirement might

yield a global coupling of the coefficients in the transport scheme, which must be

solved for each time step. In addition to being a cumbersome solution procedure,

this can impose strong restrictions on the schemes. Moreover, the global cou-

pling is in conflict with the local nature of hyperbolic problems. To avoid these

issues, the numerical schemes are formulated with the help of interaction regions,

which were presented in Section 4.4. As we will see, this framework allows for

the coefficients in the transport scheme to be defined locally. The desire to use

interaction regions is also the reason why we only seek inspiration from methods

with four-point cell stencils.

We now first describe how the schemes constructed for linear transport can be

formulated by interaction regions. Applications to two-phase flow will be consid-

ered next. Assume that a velocity field is known, and let the fluxes over a half-edge

i be represented by Ui. Moreover, denote by ζi cell centred values of a quantity

to be treated with upstreaming. For the time being we do not assign any physi-

cal meaning to ζ , but instead emphasis the generality of the framework presented

here. Later, we will let the upstreamed quantities be phase mobilities. Consider

the interaction region shown in Figure 5.4(a). The transport over half-edge i is

given by

Fi = Uiζ̄i , (5.18)

where the function value at the half-edge, ζ̄i, is to be determined. Consider the
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case shown in Figure 5.4(b), when both U1 and U2 are positive. Then, a forward

trace of the characteristic from the midpoint of edge 1 suggests that ζ̄2 can be

expressed as a combination of the value of ζ in the centre of cell 2, ζ2 = ζ(C2),
and ζ̄1. This can be achieved if we define ζ̄2 by

ζ̄2 = (1 − ω2)ζ2 + ω2ζ̄1 , (5.19)

where ω2 will be defined below. For a general velocity field, the edge concentra-

tions can be written as

ζ̄i =

{
(1 − ωi)ζi + ωiζ̄i−1 , if Ui ≥ 0 ,

(1 − ωi)ζi+1 + ωiζ̄i+1 , if Ui < 0 ,
(5.20)

where i±1 is defined cyclically on i = 1 . . . 4. This is of course not the only way to

define edge quantities ζ̄i. It is however convenient, since Definition (5.20) allows

the parameter ωi to describe the family found by Roe and Sidilkover of all possible

linear, monotone four-point schemes for a constant velocity field. Moreover, we

can apply these schemes to more general cases as well.

Equation (5.20 can be set up for all half-edges in the interaction region. Let

ζ = (ζ1, . . . , ζ4) and ζ̄ = (ζ̄1, . . . , ζ̄4). Then ζ̄ can be found from the linear system

ζ̄ = Sζ + Tζ̄ . (5.21)

In this way, the coefficients in the transport scheme are computed locally within

each interaction region, thus, we avoid the issues with a global coupling. If the

concentrations are positive, ζ ′(C) > 0, and ωi < 1 for at least one i, the scheme

will be monotone [141, 142].

What remains is to define the parameter ω so that flow not aligned with the

grid is properly represented. Again, consider Figure 5.4(b). We do a local recon-

struction of the velocity field inside cell 2, based on U1 and U2. A vector aligned

with the velocity field, starting in the midpoint of edge 1, x̄1, will intersect with

half-edge 2 in a point xω. Then define ω∗ as the relative distance between xω and

the centre in the interaction region x0, compared to the length of the half-edge,

ω∗ =
‖xω − x0‖
‖x̄2 − x0‖

. (5.22)

The functional relationship between ω∗ and ω = ω(ω∗) is inspired by methods

designed for linear adevection. To guarantee monotonicity of the schemes, the

weights of both ζ and ζ̄ should be positive. Therefore, we need 0 ≤ ω ≤ 1. More-

over, the schemes are not monotone unless ω ≤ ω∗ [141]. For Cartesian grids,
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we consider three choices, single point upstream (SPU), tight multi-dimensional

upstream (TMU), and smooth multi-dimensional upstream (SMU), given by

ωSPU(ω∗) = 0 ,

ωTMU(ω∗) =

{
min(ω∗, 1) , ω∗ > 0

0 , ω∗ < 0
, (5.23)

ωSMU(ω∗) =

{
ω∗

1+ω∗ , ω∗ > 0

0 , ω∗ < 0
.

The schemes are motivated by the standard SPU scheme, the Narrow scheme

[197] and Koren’s scheme [140], respectively. The reason for defining the limiter

functions in this way can most easily be seen from a modified equation analysis,

confer [142] and Paper E.

We point out that in [142], the method was formulated as a traceback instead

of a forward trace. For Cartesian grids, the two approaches are equivalent. How-

ever, on an unstructured grid, forward tracing is conceptually somewhat easier

to formulate than tracing backwards. In practice, the two different formulations

yield approximately the same results.

5.3.2 Discretisation of Two-Phase Flow

So far, we have only considered transport schemes for a single time step. We will

now outline how the scheme presented above can be applied to two-phase flow.

As we saw in Section 2.3, the mobilities render a hyperbolic behaviour for the

mass or saturation variables, thus they are treated with upstream weighting. We

remark that we could have treated the mass variables with upstreaming instead

of the mobilities. However, it has been found difficult to obtain schemes that are

provably monotone within such a framework [141].

Flow of two immiscible phases was studied in Section 2.3, where we derived

the governing equation

∫
Ω

φ
∂(ραSα)

∂t
dV +

∫
∂Ω

n · (ραλαK∇(pα − ραgz)) dS =

∫
Ω

qα dV . (5.24)

Throughout this section, we for simplicity consider the density to be constant.

Now, let the control volume be a cell Ωi, and split the surface integral into one for

each edge. We then recognise∫
∂Ωi,j

n · (ραλαK∇(pα − ραgz))dS , (5.25)
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as a two-phase version of Equation (4.3). For each edge j, we therefore split the

flux term into a fluid term λ̄α,j and a geometric term

σα,j =

∫
∂Ωi,j

n · (K∇(pα − ραgz))dS , (5.26)

where σα,j is a phase flux over edge j. This phase flux should not be confused

with the mass flux of phase α, which is fα = ραλ̄ασα. For simplicity, the densities

are considered constant in this section.

The geometric term can thus be treated by the control volume techniques from

the previous chapter, and a discretisation of Equation (5.26) for all edges gives us

σα = T(p − ραgH)) . (5.27)

Here σα is a vector of phase velocities for each edge, T is a transmissibility ma-

trix, and the vectors p and H contain cell centre pressures and heights.

The phase velocity field can be used to define mobilities on the edges by the

method previously presented. The vector of edge mobilities, λ̄α, can be written

as

λ̄α = Cαλα , (5.28)

where Cα is a matrix that takes cell values to edge values, based on Equation

(5.21), and λα is a vector of cell mobilities. Note that Cα depend on σα, hence

the edge mobilities are functions of the pressure. The flux over all edges can now

be written on the form

fα = λ̄α · σα , (5.29)

where · denotes component wise multiplication. Each component in fα can be

considered a flux approximation fnum to its respective edge, confer Section 5.2.

As long as the mobilities are non-decreasing functions of saturation, the phase

formulation yield a flux function with no sonic points. For more complex physical

processes, this will no longer be the case. A strategy for how to handle sonic points

is presented in [141]. The basic idea is to apply upstreaming to fluxes instead of

mobilities. We remark that this approach requires knowledge of the sonic points

of the flux functions.

Explicit Time Stepping

The schemes introduced in the previous section are provably monotone, and

thereby free of spurious oscillations. For a consistent scheme, monotonicity is

sufficient to guarantee non-negative values of the transported variable cα [141].
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However, we have no means to impose an upper bound on the variable. The com-

mon approach for a two-phase simulation would be to let the mass be represented

by one saturation variable, and define the saturation of the other phase according

to (2.6);
∑

α Sα = 1. However, the pressure equation for the multi-dimensional

framework derived below has non-linearities which require an iterative solution

approach, i.e. Newton’s method. In practice, the pressure solution will therefore

not be exact, and transport of saturations according to the corresponding veloc-

ity field may yield non-physical values, i.e. they do not honour the constraints

0 ≤ Sα ≤ 1, and
∑

α Sα = 1. One remedy is to use phase masses as primary

variables. Let Mα,i be the average mass in cell i,

Mα,i =

∫
Ωi

ραSα dV , (5.30)

where the phase can be aqueous or liquid. The discrete saturation of phase α in

cell i is then defined by

Sα,i =
Mα,i/ρα

Ma,i/ρa + Ml,i/ρl

. (5.31)

This definition guarantees positive saturations if the masses are so, moreover, the

physical constraints are satisfied. However, the discrete saturation concept, means

we have in fact introduced a framework which allows for a volume residual. An-

other way to think of this is that we have added a small, artificial compressibility

to the system.

Again considering Equation (5.24), we now have a strategy for discretising all

the surface integrals for all the edges. Moreover, we recognise the first term as the

time derivative of the discrete mass in cell i. We integrate in time from tn to tn+1,

and apply the fundamental theorem of calculus to get the discrete conservation

equation for phase α as

Mn+1
α = Mn

α (5.32)

−ΔtV−1(Div((ραλ̄α(Sn
α,pn+1) · σα(pn+1))) − ραQα(Sn

α,pn+1)) .

Here, Mα is a vector of cell averaged masses, V is a diagonal matrix with cell

volumes on the diagonal, and Div is a discrete divergence operator. Further Sα is a

vector of phase saturations, and (volumetric) source terms are represented by Qα.

Superscripts indicate time steps and Δt is the time step size. Note that we have

employed an IMPES strategy; pressure is discretised implicitly, while masses and

saturations are treated explicitly.
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If we divide by the densities, and sum the conservation equations for the two

phases, we get a pressure equation which reads

∑
α=a,l

Mn+1
α

ρα

=
∑
α=a,l

Mn
α

ρα

(5.33)

−ΔtV−1
∑
α=a,l

(
Div((λ̄α(Sn

α,pn+1) · σα(pn+1))) − Qα(Sn
α,pn+1)

)
.

If the volume balance is exact, we have

∑
α=a,l

Mn+1
α

ρα

=
∑
α=a,l

Mn
α

ρα

. (5.34)

However, within the volume relaxed framework, this is not necessarily true. We

aim for volume balance at time step n + 1 by setting

∑
α=a,l

Mn+1
i,α

ρα

= 1 . (5.35)

Now, the pressure equation can be written in residual form, F = 0, where

F(pn+1) = e −
∑
α=a,l

Mn
α

ρα

(5.36)

+ΔtV−1
∑
α=a,l

(
Div((λ̄α(Sn

α,pn+1) · σα(pn+1))) − Qα(Sn
α,pn+1)

)
,

where e is a vector of ones. This is a non-linear equation for pn+1, which can be

solved by Newton’s method. The Jacobian matrix, Jp,p, is also needed in the fully

implicit method, and is presented below.

The above equations represent a truly multi-dimensional framework for two-

phase transport. The computational cost of the scheme is somewhat increased

compared to a standard two phase method with pressure and saturation as primary

variables. First, more than one iteration might be needed to solve the pressure

equation, although, in practice a residual tolerance of 10−3 has been sufficient for

the tests done so far. This is normally achieved after 1-3 iterations on the pressure

equation, depending on how important role gravitational forces play. Second, we

need to update two mass equations variables instead of one saturation equation.

However, solving an explicit transport equation is cheap, and this does not add a

significant computational burden to the simulation.
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Implicit Time Stepping

The multi-dimensional framework can also be used for fully implicit methods.

Since the transport equation now is solved implicitly, it is tempting to use water

saturation as our mass variable to limit the number of equations. We therefore

abandon the volume relaxed framework. Treatment of non-physical saturation

values is discussed in Paper E.

Our governing equations are now one equation for pressure, and one for trans-

port of the saturation of water. The discretised pressure equation can be written

as

Fp(Sw,p) = ΔtV−1
∑
α=a,l

(
Div(λ̄α(Sα,p) · σα(p)) − Qα(Sα,p)

)
. (5.37)

Similarly, the saturation equation is discretised by

FS(Sw,p) = Sw−Sn
w+ΔtV−1Div(λ̄w(Sw,p)·σw(p))−Qα(Sw,p)).(5.38)

We solve the equations by casting them into residual form, (Fp,FS) = 0, and

apply Newton’s method. The Jacobian matrix reads

J(S, p) =

[
JS,S JS,p

Jp,S Jp,p

]
, (5.39)

where Ja,b = ∂Fa

∂b
. The elements in the Jacobian are defined as follows

JS,S = I + ΔtV−1
(
Div

(
diag(σw(p))

∂λ̄w

∂Sw

)
− ∂Qw

∂S

)
, (5.40)

JS,P = ΔtV−1
(
Div

(
diag(λ̄w)T + diag(σw(p))

∂λ̄w

∂p

)
− ∂Qw

∂p

)
,(5.41)

JP,S = ΔtV−1
∑
α=a,l

(
Div

(
diag(σα(p))

∂λ̄α

∂Sw

)
− ∂Qα

∂S

)
, (5.42)

JP,P = ΔtV−1
∑
α=a,l

(
Div

(
diag(λ̄α)T + diag(σα(p))

∂λ̄α

∂p

)
(5.43)

−∂Qα

∂p

)
.

The multi-dimensional upstream formulation adds terms involving ∂λ̄α

∂p
to the Ja-

cobian matrix. Differentiation of Equation (5.21) with respect to the pressure,

gives a linear system that can be solved for ∂λ̄α

∂p
.
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The methods presented in this section have been applied to Cartesian grids

in [141, 143], and they have been shown to reduce grid orientation dependency.

Development of the method presented above is in a starting phase, and only very

simplified cases have been considered so far. Some thoughts on the road ahead

are given in Chapter 7.

5.4 Other Approaches
There are many methods developed for solving transport equations apart from the

simple first order upstream strategy. The aim of this section is to give an overview

of some of the alternatives to the upstreaming presented above. There are two

distinct groups of schemes for hyperbolic problems: control volume methods and

Lagrangian methods. However, we first discuss Riemann solvers in general, and

present front tracking methods, which can be applied both in control volume and

Lagrangian frameworks.

5.4.1 Riemann Solvers and Front Tracking
In Section 5.2, we formulated control volume methods in terms of a set of Rie-

mann problems that must be solved for each edge. Godunov proposed a method

based on solving the Riemann problem exactly for each edge. For scalar equa-

tions, he also showed that this strategy gives a method with less artificial diffusion

than any other monotone method. If this strategy is applied to problems with more

than one hyperbolic conservation law, we need to solve systems of equations of

the form

∂c

∂t
+ ∇ · (f(c)) = q , (5.44)

with initial data

c(x, 0) =

{
cL x < 0 ,

cR x > 0 .
(5.45)

The solution will in general contain multiple shocks, rarefaction waves and con-

tact discontinuities. One key difficulty for Riemann solvers is that the theory

for hyperbolic systems is not fully developed, and we only know the solution

in certain special cases, see for instance [127, 130]. If an analytical solution is

not available, approximate Riemann solvers must be applied to find the wave-

structure, see for instance [181, 196, 216]. These procedure can be cumbersome,

and this partly explains why reservoir simulators often use upstream evaluation

based on the phase velocity field instead of the Riemann waves.
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The Riemann solvers can be applied to reservoir simulations in (at least) two

different ways. The edge fluxes in a control volume method can be considered as

solutions of Riemann problems. Another possibility is to represent the solution

as a set of discontinuities, and propagate them in time. This is the philosophy

of the front tracking methods. An important point here is that the flux function

is approximated by a piecewise linear function, while the initial data is piecewise

constant [63, 112]. Thus, the speed of the shocks can be computed by the Rankine-

Hugoniot condition. Further, rarefaction waves are approximated by a sequence

of small shocks. As the name indicates, the methods are especially well suited

to follow fronts in the solution, e.g. the water front during secondary production.

Now, the fronts can either be tracked on a Cartesian grid, with some dimensional

splitting, e.g. [106], or a streamline method (explained below) can be applied

[129, 156].

5.4.2 Control Volume Methods

Higher Order Upstream Methods

So far, all methods presented have solved problems with constant initial data in

each cell. As a result, the methods are only first order accurate. Higher order

methods can be constructed in a Reconstruct - Solve - Average fashion. Based on

the solution from one time step, a higher order representation of the data is com-

puted, often in the form of polynomials. These polynomials serve as initial data

for the next time step. The solution is propagated, and an average value in each

cell is computed for use in the next time step. As previously mentioned, a mono-

tone method cannot be more than first order accurate. A naive approach to the

reconstruction of the solution may lead to self-sharpening, and eventually devel-

opment of spurious oscillation in areas where the solution gradient is steep. This

can be avoided by a careful reconstruction step that ensures that the method is only

first order accurate near shocks. Well known higher order methods are of TVD-

, ENO-, or WENO-type, we refer to the reviews [206, 211] and the references

therein. Applications to porous media flow can be found in e.g. [166, 198, 212].

Multi-Dimensional Upstreaming

Most control volume methods are essentially designed for one spatial dimen-

sional, although multi-dimensional problems can be solved by dimensional split-

ting. However, Hurtado et.al. [119] presented a methodology with strong sim-

ilarities to the framework presented here. They define edge mobilities based on

forward tracing on a dual grid. However, the pressure equation is solved by a

control volume finite element method, and this also mean the concepts of primal
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and dual grid is flipped compared to the present method.

Another genuinely multi-dimensional approach which is quite similar to the

one outlined in this chapter was presented by Edwards in [83, 84], and further

developed by Lamine and Edwards in [150, 151]. The main focus of the work is

to develop higher order methods for transport. Their methods combine an MPFA

pressure solver with multi-dimensional transport. However, the upstream quanti-

ties are either fluxes or saturations, and they do not explicitly introduce an interac-

tion region framework for transport. Moreover, the transport method is based on

the fractional flow formulation instead of phase velocities. So far, no extension to

problems with gravity included (i.e. fractional flow functions with sonic points)

has been published.

Central Schemes

All the schemes mentioned above can be considered as upstreaming methods. An

alternative is the class of central schemes. The simplest method is the first or-

der Lax-Friedrichs scheme, which suffers from high levels of numerical viscosity.

Nessyahu and Tadmor proposed to use higher order central methods, and showed

that the higher accuracy reduce the artificial smearing [174]. The scheme was

further improved in e.g. [125, 144]. Multi-dimensional problems can be handled

without dimensional splitting [126]. An application to multiphase flow is pre-

sented in [18]. A major concern for these methods is how much artificial smearing

they will introduce in areas with sharp discontinuities in the permeability.

Discontinuous Galerkin Methods

The higher order methods mentioned above construct a polynomial from the func-

tion value in multiple cells, rendering a system of equations with some bandwidth.

Moreover, extensions to multiple dimensions can be difficult if the grid is irregu-

lar, even if dimensional splitting is applied. In the Discontinuous Galerkin (DG)

framework, a higher order finite element method is applied in the interior of the

elements. The finite element framework allows for a high resolution in the interior

of the cells, and since the approximation on the interior is decoupled from other

cells, parallelising is easy. We let Vh(Ωi) denote the approximation space on an el-

ement Ωi. A DG discretisation of Equation (5.11) on Ωi reads: Find uh ∈ Vh(Ωi)
such that for all vh ∈ Vh(Ωi)∫

Ωi

∂uh

∂t
vh − f(uh) · ∇vhdV +

∫
∂Ωi

(f̂ · n)vhdS = q . (5.46)

Here, vh are basis functions in a finite element space Vh(Ωi), and f̂ · n denotes the

numerical flux over the cell boundary. A finite element solution will in general not
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preserve mass over the element edges. Therefore, the interaction between the ele-

ments is approximated by a numerical method, usually a lower order method such

as Godunov, Enquist-Osher, or Lax-Friedrichs. To prevent artificial oscillations,

some slope limiting is necessary. Time integration is commonly done by Runge-

Kutta methods. The flux approximation is one-dimensional, however, the high

resolution on the interior means the method is able to capture multi-dimensionality

better than traditional control volume method. For more information, confer [60]

and the references therein. Usage of DG in porous media flow is reported in e.g.

[88, 117].

5.4.3 Lagrangian Methods

The control volume methods considered in this chapter can be considered Eule-

rian, in the sense that the grid is constant in time, and fluid is transported between

grids cells. Explicit time stepping is computationally cheap, but for stability the

schemes must honour a CFL-criterion that limits the size of the time step [61].

In some sense, this is an artificial constraint imposed by the computational grid.

If the transport scheme is implicit in time, the time step can be taken larger, but

the computational overhead from solving linear systems can be severe. Moreover,

control volume methods suffer from grid orientation effects.

By employing a Lagrangian frame of reference that follows the path of fluid

particles, the time step restriction can be relaxed . If capillary forces are included,

we must consider advection-diffusion equations on the form

∂c

∂t
+ ∇ · (vf(c)) −∇ · (D∇c) = q , (5.47)

where D is a diffusion tensor, which can be a function of c. For simplicity, we

will sometimes consider a simplified model problem (on non-conservative form)

instead;

∂c

∂t
+ v · ∇c −∇ · (D∇c) = q , (5.48)

where we have ignored compressibility effects (∇ · v = 0), and assumed a linear

flux function f . We go to a Lagrangian frame of reference by introducing the

material derivative

D

Dt
=

∂

∂t
+ v · ∇ . (5.49)

Now, Equation (5.48) can be written

Dc

Dt
−∇ · (D∇c) = q , (5.50)
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which is a parabolic equation without an advective first order term. Thus, in a La-

grangian frame of reference there are no steep fronts, and the resulting solution is

much smoother than in an Eulerian framework; hence the stability restrictions on

time step size is correspondingly less restrictive [91]. Also, Lagrangian methods

will be far less sensitive to grid orientation errors than Eulerian techniques.

Application of Lagrangian methods to complex recovery processes (tertiary

production) is in an early stage of development compared to the control volume

framework primarily studied in this work, and thus there are many issues that

should be investigated further. Also, implementation of Lagrangian methods is

non-trivial compared to Eulerian methods. However, if these methods can be im-

proved on, Lagrangian transport schemes may offer a robust and computationally

cheap alternative to control volume approaches [97]. We therefore briefly review

some methods that have shown promising results.

Characteristic Methods

In an advection dominated process, information is mainly transported along char-

acteristic curves, and the characteristic methods are based upon tracing these

lines. The classical approach would be to trace characteristics forward with a

finite difference method. However, if we trace forward from time tn, there may be

cells that contain no characteristics at time tn+1, thus some interpolation scheme

must be applied. Therefore backward tracing is often preferred. A technique well

known in reservoir simulation is the method of modified characteristics (MMOC)

presented in [77], and extended in i.e. [89, 202], with emphasis on porous media

flow. An MMOC discretisation of Equation (5.48) read

∫
Ω

c(x, tn+1)(̧x∗, tn)

Δt
w(x)dV

+

∫
Ω

∇w(x)D∇c(x, tn+1)dV =

∫
Ω

q(x, tn+1)dV , (5.51)

where w is a finite element method basis function. The point (x∗, tn+1) is defined

by back tracing from (x, tn) along the path described by the material derivative
Dc
Dt

.

Even though MMOC outperforms forward tracing, it does in general not con-

serve mass, since it is based on backward tracing. An adjusted version of MMOC

that preserves mass is presented in [75]. To maintain conservation of mass and

volume in backward tracing is a challenge for characteristic methods in general,

see [22]. The advection and diffusion terms are handled by operator splitting,

which may lead to artificial diffusion near shocks, as shown in [134], where a
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remedy is also presented. Moreover, there are also issues with handling of bound-

ary conditions.

The Euler-Lagrange localised adjoint method (ELLAM), first introduced in

[51, 111] can be viewed as an improvement of MMOC. Again, we consider the

linear problem (5.48), for non-linear problems confer [64]. For backward tracing

from time tn+1, we let wADJ be a test function satisfying the system of equations

∂wADJ

∂t
− v · ∇wADJ = 0 , (5.52)

∇ · (D∇wADJ) = 0 . (5.53)

This is a splitting of the adjoint equation of (5.48), see e.g. [200]. Note that in

general, both v and D can be time dependent, thus the basis functions must be

redefined for each time step. Equation (5.53) is elliptic, suggesting that a finite

element basis is appropriate for wADJ . To honour Equation (5.52), wADJ should

be defined as constant along the characteristics ∂x
∂t

= v. This will also assure a

Lagrangian treatment of transport, allowing for large time steps. Then, a discreti-

sation of Equation (5.48) will result in an equation

∫
Ω

c(x, tn+1) dV + Δt

∫
Ω

(∇wADJD∇c)(x, tn+1) dV

=

∫
Ω

c(x, tn)wADJ(x, tn+) dV +

∫
Ω

qwADJ dV . (5.54)

Here, wADJ(x, tn+) is interpreted as the limit value when t → tn from above. EL-

LAM methods have been formulated for a large range of problems with promising

results, we refer to [92, 200] and the references therein for an overview. Other

methods such as Characteristic mixed finite elements can also be considered EL-

LAM methods [23].

Streamline Methods

The streamline methods represent the flow pattern by tracing a set of stream-

lines starting at different spatial points. In each time step, the pressure equation

is solved implicitly. After the pressure solve, the velocity field is used to trace

streamlines. Along the streamlines, we must solve a one-dimensional hyperbolic

problem of the form

∂c

∂t
+ ∇ · (vf(c)) = q . (5.55)

The streamlines usually varies on a much slower time scale than the transport

along the streamlines. Therefore, streamline methods allow for time step sizes
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that can be several times the CFL-restriction. After the transport solve, the mass

variables must be mapped back to the grid for a new pressure update.

A major advantage of streamline methods is that problems in multiple dimen-

sions are reduced to a set of one dimensional problems. These can be solved by

for instance front tracking, or higher order methods. Thus, streamlines offer a

way to reduce the dimensionality without applying dimensional splitting. How-

ever, there are some issues related to the methods. The mapping from the grid to

the streamline, known as streamline tracing, is non-trivial, see [104]. Also, in the

mapping from streamlines back to the grid, mass is usually not conserved. More-

over, gravity is treated by operator splitting [39], and it is an open question how

this can be done properly. For more information of streamline methods, we refer

to [67, 103, 165] and the references therein.





Chapter 6

Summary of the Papers

As a part of the work with this thesis, a number of scientific papers have been

produced. The previous chapters have provided theory and background for the

investigations. Here, we further outline the process leading to the papers, and

present the main results.
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Paper A: Sufficient criteria are necessary for monotone control volume methods

Eirik Keilegavlen, Jan Martin Nordbotten, and Ivar Aavatsmark

Published in Applied Mathematics Letters, Vol. 22 (8), Pages 1178-1180, 2009

In Section 4.5, we gave background information on monotonicity for elliptic

equations. Sufficient conditions for monotonicity of control volume methods on

quadrilateral grids were found in [177]. These criteria were derived by a global

analysis, requiring inverse monotonicity of the entire system matrix. However,

as stated in Section 4.5, the maximum principle is valid also on subgrids. The

present paper considers monotonicity on subdomains consisting of no more than

3 cells. These considerations show that most of the criteria from [177] are nec-

essary as well as sufficient. The importance of the subdomains are reflected in a

definition of a discrete maximum principle more precise than what stated in [177].

The main conclusion from this paper is that no linear nine-point control volume

method can be constructed that satisfies a discrete maximum principle for all me-

dia and quadrilateral grids. Referring to the special case of parallelogram grids in

homogeneous media shown in Figure 4.7(c), no methods can be monotone below

the line b < a.
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Paper B: Monotonicity for MPFA methods on triangular grids

Eirik Keilegavlen and Ivar Aavatsmark

Submitted to Computational Geosciences, April 2009

This paper attempts to establish monotonicity properties for MPFA methods on

unstructured grids. The aim of the work was to follow up the results in [177]

with a similar analysis as for quadrilateral grids. However, as the work in Paper F

shows, the techniques applied to quadrilaterals come cannot provide sharp results

for triangular grids. The topology of the grid makes splitting of the system matrix

inappropriate. Therefore, it seems out of reach to obtain results for general meth-

ods on general grids based on a global analysis, i.e. which focus on properties on

the entire grid. We therefore have to restore to considering specific methods, and

rely heavily upon numerical experiments.

For the special case of uniform triangular grids in homogeneous media, Pa-

per B provides a characterisation of the monotonicity properties of some MPFA

methods, namely the O(η)-method for η = 0, 1/3, and 0.5, and the L-method.

The regions cover quite a large part of the entire parameter space, apart from the

O(0)-method, which has considerably worse properties than the other methods.

On genuinely unstructured grids, the failure to obtain sharp sufficient mono-

tonicity constraints limits the analytical results. Numerical simulations on several

realisations of randomly perturbed grids are used to give an indication of the prop-

erties of the methods. Based on the insight from Paper A, special attention is given

to subgrids composed by clusters of cells sharing a vertex. Indeed, for a genuinely

unstructured grid, subgrids consisting of all but one cell sharing a vertex prove to

yield the most restrictive monotonicity constraints. The main result of these test

is that an MPFA discretisation on an unstructured grid cannot be expected to be

monotone. The methods prove even more vulnerable when anisotropies are intro-

duced in the permeability tensor. If an MPFA method still is to be applied, the

O(1/3)-method seems to be the best choice.

In the last part of the paper, simple two-phase experiments are performed. This

serves as a test of the role of monotonicity for non-linear problems. Even though

the pressure discretisation is not monotone, the saturation profiles produced bear

no signs of irregularities.
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Paper C: Non-hydrostatic pressure in sigma-coordinate ocean models.

Eirik Keilegavlen and Jarle Berntsen

Published in Ocean Modelling, Vol 28 (4), Pages 240-249, 2009

This paper explores computation of pressure in an ocean modelling setting. Nu-

merical ocean modelling is computationally very expensive, and traditionally,

many approximations are done to ease the computational burden. One of these

simplification is to neglect the non-hydrostatic pressure, stemming from dynami-

cal processes. For coarse grids, this is a good approximation, however, it becomes

questionable with the increasing grid resolutions now available. Processes such

as mixing of water masses take place on a rather small scale, and is greatly influ-

enced by non-hydrostatic pressure. Therefore accurate modelling of these effects

is vital.

For Cartesian grids, equations governing the non-hydrostatic pressure was

given in [168]. These were transformed to the terrain-following σ-coordinate

system in [132]. However, the σ-coordinate system is not orthogonal unless the

bottom is flat. Thus, the classical 5-point stencil used to solve elliptic equations is

transformed into a 9-point stencil in terrain following coordinates. In three dimen-

sions, we get a stencil of 15 points instead of 7 [132]. The increased bandwidth

can result in a significant overhead when solving the linear system.

In [36], a new set of governing equations for the non-hydrostatic pressure was

proposed, modelling the pressure directly in the non-orthogonal σ-coordinate sys-

tem. This leads to a 5 or 7 point stencil in 2 and 3 dimensions, respectively. Es-

sentially, the approach of [36] is to replace a multi-point approximation of the

flux with a two-point estimate. Paper C explores the differences between the

two systems presented in [132] and [36]. It is shown that except from the triv-

ial case of a flat bottom (i.e. the grid is orthogonal) the two approaches are not

equal. To investigate the differences by analytical means is out of reach because

of the complexity of the systems of equations. Instead, the two approaches are

explored by numerical experiments. The differences due to computation of the

non-hydrostatic pressure are influenced by feedback from the rest of the simula-

tion procedure. However, the difference in the primary variables obtained with the

two approaches is of comparable size with other well-known sources of errors in

ocean modelling. The test cases involve a broad range of physical regimes. Thus,

in this application, it seems justifiable to use a TPFA-method instead of the more

expensive multi-point estimates.
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Paper D: Simulation of Anisotropic Heterogeneous Near-well Flow using MPFA

Methods on Flexible Grids

Sissel Mundal, Eirik Keilegavlen, and Ivar Aavatsmark

Accepted for publication in Computational Geosciences.

In this work, we explore different strategies for local grid refinement in near-

well regions. The local grids are radial-like, and they (mostly) apply logarithmic

refinement towards the well to adapt to the expected behaviour of the pressure.

The cells are both triangular and quadrilateral, and we test discretisation both in

physical and reference space.

Simple tests for a single well in an anisotropic medium show that a two-point

flux approximation is inadequate to get a convergent solutions; thus multi-point

methods must be applied. Further, if the grid spacing in radial direction is not

logarithmic, the convergence rate deteriorates. A comparison between the two

different cell types shows that triangles yield a much smaller error than quadri-

lateral. Moreover, discretisation in physical space is sufficient, the logarithmic

behaviour of the solution is well captured by the adjustments in the grid. For a

heterogeneous test case, the convergence rate is reduced, in agreement with finite

element theory.

If more than one well is present, or if the near-well grid do not cover the entire

domain, a transition grid is needed in the zone between the near-well grids and

the boundary of the domain. In this paper, we apply a triangulation algorithm

to construct the transition grid. A test case with three wells indicate a smooth

transition between the near-well region and the surrounding grid.

To support the single phase test, we also do two-phase simulations for a ho-

risontal well. There are only minor differences in saturation profiles and water cut

curves for the different discretisation choices. In the two-phase simulation, there

is a kink in the saturation in the transition from the near-well grid to the surround-

ing grid. However, the size of the kink is reduced as the grids are refined. We also

test the sensitivity of the solutions with respect to grid resolution in the near-well

region. These simulations show that a fairly large number of cells is needed to

capture the flow accurately.
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Paper E: Multi-dimensional upstream weighting on general grids for flow in

porous media

Eirik Keilegavlen, Jeremy Kozdon, and Bradley Mallison

Draft manuscript

In Section 5.3 a framework for multi-dimensional upstream weighting was pre-

sented. The methods have only been formulated for Cartesian grids, though. This

paper addresses extensions of the methodology to more general grids.

The edge mobilities are defined according to the description in Section 5.3.

Since the grid no longer is Cartesian, the definition of edge parameters should be

reconsidered. On uniform parallelogram grids, the linear advection problem can

be studied by a modified equation analysis. The schemes considered for Cartesian

grids seem to be fairly well behaved also on more general grids. The usefulness of

the analysis is however limited due to a lack of understanding of how performance

for linear problems are carried over to non-linear cases. Some possible guidelines

for adapting the interpolation parameters to grid geometry are also given.

Since the grids are no longer K-orthogonal, TPFA methods can no longer be

applied. Due to the similarities between the multi-dimensional framework pre-

sented in Chapter 5 and MPFA methods, we apply the latter schemes to discretise

the elliptic parts of the problem. An MPFA discretisation provides fluxes for each

half-edge. In general, the fluxes over the two halves of an edge are not equal.

The trace forward in the hyperbolic scheme can be based on either the half-edge

fluxes, or the total edge fluxes. The latter option will, however, lead to a pro-

hibitively large cell molecule, and we are forced to consider the half-edge fluxes.

To assess the applicability and robustness of the multi-dimensional schemes,

numerical tests are performed on a series of grids. Both parallelogram grids and

general perturbed quadrilaterals are considered, as well as triangular and dual

grids. Overall, the new schemes reduce the bias in the solutions compared to SPU.

When multi-dimensional upstream weighting is applied in combination with fully

implicit time stepping, the number of non-linear iterations decreases significantly.



Chapter 7

Conclusions and Future
Directions

In this final chapter of the background, we draw conclusions, and point out direc-

tions for further work.

7.1 Control Volume Methods for Elliptic Prob-
lems

An major part of this work has been devoted to preservation of maximum princi-

ples for elliptic equations when constructing control volume discretisations. For

quadrilateral grids, sufficient and necessary conditions for monotonicity are now

known. These allow us to tell whether a method is monotone based on the dis-

cretisation coefficients. For unstructured grids, however, we have no means to

tell if a discretisation fulfils the discrete maximum principle without inverting a

large number of matrices. The main problem is a lack of understanding of which

parameters control monotonicity. This issue should be investigated further. In

principle, it should be possible to derive the sufficient conditions for monotonic-

ity found in [177] starting with subdomains similar to those studied in Paper A.

If such a link between the local and global criteria can be found, this may also

inform the analysis for triangular grids.

In real field applications, much of the computational efforts are spent on

solving non-linear, and thereby linear systems. Development of fast solvers for

MPFA methods is of major importance for the schemes to gain popularity out-

side academia. Of special importance is cases where the system matrix is not an

M-matrix. This is again related to monotonicity issues.

Another open issue regarding MPFA methods is to formulate a proper mathe-

matical framework for analysis of the methods. So far, convergence analysis has
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been based on relations between MPFA methods and MFE or MFD discretisa-

tions. However, there are indications that the estimates obtained in this way are

too conservative, see e.g. [139]. Further research is thus needed to know when

the methods are applicable.

As we have seen in Chapter 4, the transmissibilities in control volume meth-

ods are determined by both the permeability field, and the cell geometry. Hence,

the methods may be improved by appropriate adjustments in the grid. This way

of thinking has led to development of state of the art triangulation algorithms that

are optimised with respect to convergence of finite element simulations. In the

same way, grid generation algorithms that pay special attention to control vol-

ume methods should be explored. An example of grid optimisation with respect

to monotonicity constraints can be found in [169]. A more radical option is to

put more weight on discretisation techniques when the geo-model is built and up-

scaled. Today, grids are constructed with representation of geology in mind, more

than discretisation of flow equations. However, to change this would require a

major change in the work flow, which might be difficult to achieve in practise.

Control volume methods are of great interest for industrial applications due

to their the local flux expressions and applicability to general grids. In Chapter

4, we mentioned three methods or classes of methods; TPFA, non-linear TPFA,

and MPFA. Of these, TPFA is not consistent, and will in many cases not be suf-

ficient to capture the flow pattern accurately. MPFA methods will often render a

better representation of the flow, however, they suffer from spurious oscillations

in the pressure solution. The non-linear TPFA requires iterations on the numer-

ical scheme even for linear problems. Methods with larger cell stencil can be

expected to have better properties due to their greater flexibility, but to the price

of an increased computational cost when solving linear systems. The question

then becomes how to deal with problems where we cannot preserve both conver-

gence, monotonicity, and linearity of the solution scheme. In some cases, we may

be forced to let go of one of the properties, thus guidelines for what to do should

be developed. Another possibility is to apply ’hybrid’ methods, that attempt to

achieve a compromise between robustness and accuracy, see [149] for an exam-

ple. Which method is best, or more generally, which schemes provide reasonable

results, is probably case dependent, and theoretical analysis of simplified cases

can only give limited insight. It may be necessary to perform systematic studies

of the performance of control volume schemes for elliptic problems under differ-

ent physical circumstances, as was done in Paper C. Due to the broad range in

processes of interest (cf Chapter 1), this is an enormous task.
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7.2 Simulation in Near-Well Regions

In Paper D, we considered grids and discretisations adapted to the flow pattern in

near-well regions. The single phase simulations indicated that the near-well grid

should be triangular, and that the transmissibilities can be computed in physical

space, provided the grid has logarithmic spacing in the radial direction. Further,

the methods are applicable also for multiphase flow. However, the presented nu-

merical simulations are far from realistic, thus there is a long way to go before

the methods can be applied to real cases. We now discuss two possible bottle-

necks; extensions to three dimensions and reduction of the computational cost of

the methods.

A non-conventional well can have several branches, each of which can be

horisontal or skew. The well can also perforate multiple geological layers. To

create a grid that adapts to the logarithmic pressure variation and also honour the

main geological features near the well is a challenging task. The results in Paper

D suggest that the grid should be based upon triangles, possibly by applying a

prismatic extension to three dimensions. However, creating a 2 1/2-D grid that

can adapt to a realistic well trajectory and reservoir geometry will be difficult. On

the other hand, simulations will be computationally more expensive on tetrahedral

grids than on prismatic extensions of triangles. Also, the coupling between the

near-well grid and the global grid becomes much more complicated when going

from 2D to non-conventional 3D wells. Some ideas on how this can be done can

be found in e.g. [34, 94, 124].

Even though the two-phase experiments in Paper D were far from realistic, a

fairly large number of grid cells was needed near the well to capture the dynamics

somewhat accurately. For a realistic field, with at least tens of (non-conventional)

wells, each with a length of hundreds of meters, the number of grid cells needed

can be severely high. Moreover, to enhance recovery, wells are frequently opened

and shut down. To apply local grid refinement around a well that has been closed

for a while may be a waste of computational resources. These topics need to

be addressed before the techniques developed in Paper D are applicable to field-

cases. One possible solution is to apply a local time stepping in the near-well

region. The mapping between the local and global grid can be handled by the

windowing technique presented in [70, 170]. However, conservation of mass in

the mapping might be an issue. Another option would be to use the fine-scale

solution obtained by the methods presented in Paper D as a basis for upscaling

to a coarser grid. This will be similar to the upscaling techniques mentioned in

Section 4.6.2.

An alternative to compute a well index based on upscaling might be to apply

the MSFV method presented in Section 4.7.3 Treatment of wells in the MSFV

method is based on introducing an extra basis function to capture the singularity
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in the solution, see [164, 231]. Another possible strategy is to consider the MSFV

method as a domain decomposition method as outlined in [176], and assign a sep-

arate subdomain for each near-well region. This can allow for a good resolution

of flow in the vicinity of the well, and still ease the computational burden of solv-

ing the pressure equation for large system matrices. Similar considerations can be

found in [21].

7.3 Multi-Dimensional Upstream Weighting

As we have seen in this thesis, there has been a considerable effort to construct

robust and accurate schemes for elliptic equations for use in reservoir simulation.

In the same way, it is natural to consider more advanced transport schemes that

can be applied within today’s framework. The multi-dimensional upstream meth-

ods introduced in Chapter 5 can be considered analogous to MPFA methods for

hyperbolic equations. Since the upstream schemes are based on a control-volume

methodology, they fit naturally into mainstream simulators, and they might yield

improvements in accuracy as well as performance. However, several aspects to

the methods should be further investigated.

In this work, we have only considered two-phase problems. Grid orientation

effects are especially severe for adverse mobility ratios. These situations often

arise when heavy oil is produced with the help of EOR-techniques. During tertiary

production, compositional modelling is appropriate. Therefore, the framework

introduced in Chapter 5 should be extended to three phases and compositional

flow. Several challenges can be expected for such extensions. The distribution of

masses in a two-phase problem can be described by a single variable that fulfil

a comparison principle. This motivates us to require monotonicity of numerical

schemes. For three-phase or compositional problems, we do not have such a prop-

erty. Therefore, it is not clear what a robust and rigorous scheme should be based

on.

We have only considered FIM and IMPES time stepping strategies. For a com-

positional problem, the high number of unknowns makes fully implicit methods

too expensive, while the IMPES time step restriction may be severe. Therefore,

more flexible methods should be considered. One natural candidate is an adaptive

implicit scheme. For AIM, it is an interesting question what are appropriate pri-

mary variables; saturations or component masses. Other options are asynchronous

time stepping, or maybe multiscale methods.

Except from very simplified cases, the strength of the non-linearities in the

pressure equation mean only an approximate solution can be found, and thus the

resulting velocity field will be inexact. As an consequence, if volume-related vari-

ables (i.e. saturations) are transported according to the velocity field, unphysical
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values may arise. In Chapter 5 and Paper E, we circumvented this problem by

using mass variables instead of saturations. The incompressible two-phase sim-

ulations performed in [141] and Paper E show no sign of problem with this ap-

proach. However, it is an open question how the volume relaxed framework will

affect more difficult physical problems such as large differences in component

densities, highly compressible fluids, and phase equilibrium calculations. We em-

phasis that the inexactness of the pressure solution must be treated somehow; the

volume relaxed framework has proven to be robust and provide physical values

for the mass variables for the tests performed so far.

The upstream strategies mainly considered in this work are only first order

accurate. It is thus natural to consider higher order methods in space, that is, to

treat hyperbolic problems with the same order of accuracy as the elliptic equa-

tions. A higher order reconstruction of data would require a cell stencil that is

larger than the scheme presented in Chapter 5. The reconstruction should be done

in a way that minimise bias with respect to grid orientation, furthermore, spurious

oscillations should be avoided.

All investigations done so far are for two-dimensional flow. An extension

of the trace forward methodology to three dimensions should be possible. In

practice, however, the hexahedral cells which are prevailing in reservoir grids,

most often follow the geological layering, and thus be thin in the vertical direction.

As a consequence, all the schemes considered in this work become very similar

to the standard SPU-method for transport orthogonal to the layering. The reason

why the cells are long and thin is that we expect the flow to a large extent to

be confined within the layers. Thus, for hexahedral cells it might be sufficient

to apply the multi-dimensional schemes to transport aligned with the geological

layers. For other cells, i.e. tetrahedral and their duals, further investigations are

needed.

On the theoretical side, there is a lack of understanding of what are the crucial

properties for solving non-linear problems. For linear problems, the TMU scheme

[197] is ideal, whereas this is not the case for non-linear transport. A better under-

standing can hopefully also help construction of limiters for more general grids.
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