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Abstract Control-volume multipoint flux approxima-
tions (MPFA) are discussed for the simulation of com-
plex near-well flow using geometrically flexible grids.
Due to the strong non-linearity of the near-well flow,
a linear model will in general be inefficient. Instead, a
model accounting for the logarithmic pressure behav-
ior in the well vicinity is advocated. This involves a
non-uniform refinement of the grid in radial direction.
The model accounts for both near-well anisotropies and
heterogeneities. For a full simulation involving multi-
ple wells, this single-well approach can easily be cou-
pled with the reservoir model. Numerical simulations
demonstrate the convergence behavior of this model
using various MPFA schemes under different near-well
conditions for single phase flow regimes. Two-phase sim-
ulations support the results of the single phase simula-
tions.
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1 Introduction

In reservoir engineering, accurate well modeling is cru-
cial for reliable fluid flow simulations. Reservoirs are
managed through data accessed from the wells, and im-
portant well parameters, like the well flow rate and well
bore pressure, are sensitive to the computational accu-
racy of near-well flow models.

In his papers of 1978 and 1983 [26,27], Peaceman in-
troduced a way to relate the well bore pressure, the well
block pressure and the well flow rate for both isotropic
and anisotropic permeabilities, respectively, through a
numerical productivity index. Among the assumptions
for his derivation, is the restriction to 2D uniform rect-
angular grids in homogeneous media. Despite its limi-
tation, the formula is still a widely used well model in
reservoir simulation.

However, the key issue in numerical well simulations
is the difference in reservoir scale and the well bore ra-
dius. Reservoir flow models do not fully capture the true
flow behavior in the well vicinity. Grid blocks are gen-
erally on the scale of several tens of meters, whereas a
typical well bore radius is on centimeter scale. Near-well
regions are characterized as high-flow density regions,
and the dominating flow pattern exhibits a radial-like
nature with large pressure gradients, and for multiphase
flow, large saturation gradients caused by high produc-
tion rates. Skew or horizontal wells will also in general
imply a strong effect of anisotropy and heterogeneities
due to geological layering of the reservoirs. Hence, a
near-well model should be flexible with regards to local
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grid refinement and the handling of complex geological
near-well structures.

Thus, contrary to the point sink/source Peaceman
well model, we will impose a description of physical
variables on the well bore boundary itself. By discretiz-
ing the well bore, a numerical well index need not be
defined, and we allow for the use of locally refined flex-
ible grids in the well vicinity. We are thus able to re-
solve the well geometry and improve the accuracy of
the flow simulation. The finite well bore approach is
well suited for studying coning behavior in single-well
problems for multiphase flow. In full-field simulations,
however, fine grids are computationally expensive and
may lead to impractical restrictions on the time step
size. Moreover, during the lifetime of a reservoir, wells
are frequently being opened and shut-down for optimal
production. Local grid refinements are thus superflu-
ous in the vicinity of inactive wells. For active wells,
the near-well dynamics can be upscaled utilizing a lo-
cal fine grid around the well bore [34]. Furthermore,
the windowing technique described in [22] is designed
to supplement simulations on a global grid with local
fine grids. This technique is adaptive both in time and
space. Hence, it may remedy the CFL-restrictions due
to local grid refinements near a well, whether the well
is active or not. Our focus in this work is discretization
techniques based on fine grids in the well vicinity. The
issue of reducing the computational cost when apply-
ing these techniques in full-scale simulations, will not
be further addressed here.

As the well singularity is the predominant driving
force for the flow in the well vicinity, we seek a model
which takes this logarithmic pressure behavior into ac-
count. It is commonly recognized that numerical schemes
based on a linear reconstruction will be inefficient for
well modeling in the general case. In [30], Pedrosa and
Aziz presented a logarithmic near-well scheme for the
discretization of the flow equations in the well vicin-
ity. Their approach, however, is applicable for isotropic
medium and radial grids only. Moreover, it involves a
heuristic treatment of grid blocks in the transition be-
tween the near-well grid and the surrounding Cartesian
grid. A more general framework for near-well modeling
using the MPFA O-scheme on flexible grids was pro-
posed by Ding and Jeannin [11,12]. Based on a splitting
of the solution into a singular part stemming from the
well singularity and a regular part, they introduce near-
well models which reduce the numerical error due to the
dominating well singularity. This is achieved with the
aid of a logarithmic coordinate transformation, render-
ing the pressure variation linear in the new coordinate
system, and hence a linear scheme is applicable.

In this work we will pursue their approach using
flexible near-well grids. We construct analytical solu-
tions for 2D single phase near-well flow which is not
aligned with a radial inflow pattern. These solutions re-
semble strongly heterogeneous, possible anisotropic me-
dia. We compare different control-volume discretization
schemes and radial-type grids for such cases and give
their convergence behavior for single phase flow. The
objective is to obtain a clearer view on the accuracy of
the near-well grids and discretization schemes for large
contrast in permeability, and hence, to determine which
is the preferable grid and a suitable numerical scheme
given certain near-well conditions. The results of the
single-well test cases are supported by simulations in-
volving multiple wells and two-phase flow.

2 Control-volume Formulation

We are concerned with numerical simulations of near-
well Darcy flow in anisotropic heterogeneous porous
media. Let Ω ⊂ R2 be an open bounded domain con-
taining at least one well. For incompressible fluids, the
fluid pressure p behaves as the solution of a steady-state
elliptic equation,

−∇ · (K(x)∇p) = 0, for x ∈ Ω, (1)

where K is the symmetric positive definite diffusion
tensor. The diffusion coefficients are allowed to be dis-
continuous across internal boundaries. Let ΓR and ΓW

denote the reservoir boundary and the well bore bound-
ary, respectively. We assign the following boundary con-
ditions:

p(x) = pw,

p(x) = pr,

−(K(x)∇p) · n = g,

for x ∈ ΓW,D,

for x ∈ ΓR,D,

for x ∈ ΓR,N .

(2)

Here, the vector n is the outward normal on ΓR,N . The
well flow rate Q is given by the relation

−
∫

ΓW

(K∇p) · n dσ = Q, (3)

with n now being the outward normal on the well bore.
Let {Th} be a family of partitions of Ω into non-

overlapping elements E. In reservoir flow simulation we
aim at a consistent reconstruction of the flux

fi = −
∫

Si

(K∇p) · n dS, (4)

over face Si of an element. A control-volume formula-
tion of Eq. (1) will in general provide an expression for
the face fluxes based on several local pressure values,

fi ≈
∑
j∈M

ti,jpj. (5)
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Fig. 1: Consider four quadrilateral cells with a common node x. Bounded by the dashed lines are the interaction
volumes for the MPFA O- and L-scheme, respectively. Subface fluxes are computed locally within each interaction
volume.
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(a) The lines from each vertex
to the opposite face midpoint
xi, respectively, intersect at the
barycentre xi.
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(b) Each triangle Ei renders three
subcells for local flux approxima-
tion.
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(c) The pressure continuity point
xη , where η = 1/3.

Fig. 2: The O(1/3)-method for triangular grids.

We denote by ti,j the transmissibility coefficients and
by M the set of cells contributing to the flux fi.

2.1 Multipoint Flux Approximation

Due to its ease of implementation, computational speed
and robustness, a two-point approximation (TPFA) of
(4) is a widely used numerical scheme in reservoir sim-
ulation. Computing the flux fi then involves the cell
center pressure values in the two cells adjacent to face
Si,

fi ≈ ti,j (pj+ − pj−). (6)

A TPFA scheme yields a consistent flux reconstruction
for K-orthogonal grids. In the general case of non-
orthogonal grids and full tensor anisotropy, however,
the two-point scheme does not render a consistent flux
approximation [2]. Hence, to amend this deficiency, mul-
tipoint flux approximations (MPFA) were introduced,
see, e.g., [1,3,4,14,15] and references therein. This class
of schemes has proven to be a powerful discretization
tool for general grids and discontinuous, anisotropic dif-
fusion coefficients [5,20].

Consider Fig. 1a. The MPFA O(η)-scheme intro-
duces a dual grid for local transmissibility calculations

at subfaces. Then, face transmissibilities are found by
an assembly of the subface transmissibilities, respec-
tively. Locally, the dual grid constitutes an interaction
region. In this local flux reconstruction, the O(η)-scheme
assumes full flux continuity over the subfaces in the in-
teraction region and pressure continuity at a point xη

at each subface. Here, the parameter η is the relative
distance from the face midpoint to the continuity point.
In this work, we discuss the well-known O(0)-method
and the recently proposed O(1/3)-method [17,19]. The
latter is introduced for triangular grids, for which it is
shown to be symmetric (see Fig. 2) and robust with
respect to convergence. We remark that in [17], an ex-
ample with the O(1/3)-method on a locally refined un-
structured grid in the well vicinity is shown. They con-
sider radial flow towards the well, and similar to our ap-
proach, the well bore itself is discretized. Other choices
for the continuity point xη are discussed in, e.g., [14,
15]. Moreover, see, e.g., [9,16,21,32] for other methods
that utilize a multipoint flux stencil.

Similarly, the MPFA L-method [6] introduces a dual
grid like the O-scheme. However, it seeks to reduce the
number of cell entries in the flux stencil with the aid
of a selection criterion in the local flux reconstruction.
Transmissibility coefficients are found by assuming full
continuity of both flux and pressure at the subfaces of
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each interaction region. This can be arranged in two
ways for each interaction volume, see Figs. 1b-1c.

We note that both the MPFA O(0)- and L-scheme
reduce to a two-point scheme when applied to a K-
orthogonal grid.

3 Near-well Grids

A flexible near-well grid with a radial-like nature is the
reasonable choice for accurate near-well simulations.
This is in agreement with the nature of the well inflow
pattern. Moreover, as the pressure behaves logarithmi-
cally rather than linear in the well vicinity, we seek a
grid which is adapted to this behavior. This means a
logarithmic refinement of the grid.

Also, the impact of the complexity in the near-well
region may vary along the well bore. Hence, the grid
generation should be independent of possible anisotropies
or heterogeneities. We will accomplish this by following
the methodology of Ding and Jeannin in [12]. We gen-
erate our near-well grids with the aid of a coordinate
transformation from Cartesian coordinates to coordi-
nates on logarithmic scale,

x = e ρ cos θ,

y = e ρ sin θ,
(7)

with θ ∈ [0, 2π] and ρ ∈ (−∞, +∞). We denote by P
the physical space, and by R the logarithmic reference
space. The pressure variation due to the well singularity
now has a linear behavior in R. Moreover, the circular
well bore boundary transform to a line for which ρ =
ln rw.

The solution still satisfies an elliptic equation in the
new coordinate system. Fluxes are also being conserved
under the transformation, that is; the flux across a
curve in the physical coordinate system equals the flux
across the transformed curve in logarithmic space R.
Hence,

fi = −
∫

Si

(K∇p) · n dS = −
∫

Ŝi

(K̂∇p) · n̂ dŜ, (8)

where n̂ is an outer normal vector in R, and with K̂

being the transformed diffusion tensor,

K̂ = J D−1K D−T . (9)

Here, D is the Jacobian matrix of the transformation,

D = e ρ

(
cos θ − sin θ

sin θ cos θ

)
, (10)

and the determinant J is given as J = e2ρ.

Consider Fig. 3a and Fig. 3b. A rectangular grid in
the logarithmic reference system is the equivalence of
a radial grid in the coordinate system P , while a tri-
angular grid in the logarithmic space becomes an un-
structured curved grid in the physical space under the
transformation. Thus, when discretizing in R, we uti-
lize grid blocks in the logarithmic space for which edges
are non-curved. We employ a triangular grid consisting
of isosceles triangles.

Furthermore, we may discretize on the physical grid
blocks directly, see Fig. 4. These grids are conceptually
similar to the grids in Fig. 3a and Fig. 3b. However, each
curved face is replaced by its respective line segment.
Finally, observe that the well bore is approximated by
a polygon for the physical space grids.

4 Single Phase Simulations

In this section, we present the convergence behavior of
the MPFA O- and L-scheme for some complex near-
well flow regimes. The investigations here are limited
to single phase flow. We apply logarithmic radial and
triangular grids. The errors are measured in discrete
L2 norms for the pressure and the normal velocities.
We denote by the subscript h, the discrete values. Let
AE be the area of a grid cell E ∈ Th. Then, for the
pressure, we define

‖p− ph‖(L2,h) =
(∑

E∈Th
AE(pE − ph,E)2∑
E∈Th

AE

)1/2

.

We denote by Ek, the set of all element faces in Th.
Let We be the area associated to a face e ∈ Ek. Here,
We = 1

CTh

(AE1 + AE2), where AEi , i = 1, 2, is the
area of the cell Ei adjacent to face e. The constant CTh

relates to the number of faces for each element. Thus,
for the radial grid, CTh

= 4, and for the triangular grid,
CTh

= 3. Then, the discrete L2 norm for the normal
velocities are given by

‖u − uh‖(L2,h) =
(∑

e∈Ek
We((ue − uh,e)/|eh|)2∑

e∈Ek
We

)1/2

,

where ue is the normal velocity across the edge e. We
also provide the results measured in discrete maximum
norm.

4.1 Anisotropy

The first test involves a homogeneous, but anisotropic
medium. A thorough investigation by Peaceman in [27],
showed that the true near-well flow pattern in the case
of an anisotropic permeability has an elliptic nature.
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(a) Logarithmic radial grid. (b) Logarithmic triangular grid. (c) Equidistant radial grid.

Fig. 3: Grids adapted to the flow behavior of the near-well region. Figure 3a and 3b show near-well grids with
logarithmic refinement. These grids have their equivalent grids in a logarithmic reference space. In Figure 3c, the
grid is equidistant.

(a) Radial near-well grid. (b) Triangular near-well grid.

Fig. 4: Grids adapted to the logarithmic flow behavior of the near-well region.

Denote by kx and ky the permeability in the x- and
y- direction, respectively. Assume kx > ky . Let

x = (kx/ky)1/4b sinh ρ sin θ,

y = (ky/kx)1/4b cosh ρ cos θ.
(11)

Here, the constant b depends on the well bore radius
rw and the permeability,

b2 =
r2
w(kx − ky)√

kxky

. (12)

The exact anisotropic solution to Eq. (1) is computed
with the aid of the elliptical (ρ, θ)-coordinates,

p = pw +
Q

2π(kxky)1/2
(ρ − ρw), (13)

where tanh2ρw = ky/kx is the parameter identifying
the well bore.

Contrary to the isotropic case, for which the pres-
sure contours are circular and streamlines are purely ra-
dial, Peaceman found that the isobars in the anisotropic

case rapidly turn into ellipses away from the circular
well bore. Furthermore, the streamlines will follow a hy-
perbolic trajectory, see Fig. 5. This observation implies
that, in the case of an anisotropic permeability, a radial
grid will not be aligned with the true flow behavior. We
will have flow across the radial beams of the grid. Our
aim is yet to investigate whether such a radial or a trian-
gular grid, along with a suitable discretization scheme,
yield an accurate prediction of the near-well flow with
anisotropic diffusion coefficients. We also compare the
convergence behavior of discretization in physical space
P and the logarithmic reference space R. Finally, we
assign Dirichlet boundary conditions both on the well
bore boundary and the exterior boundary.

However, how far from the well bore the singular
flow should be accounted for is a question not fully re-
solved. Albeit our focus is a model for accurate predic-
tion of the well inflow, we should also keep in mind that
the near-well grid needs to match a surrounding grid. A
reservoir grid block will in general be on the scale of tens
of meters, which is considerably larger than the well
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Fig. 5: Near-well flow pattern for the anisotropic, ho-
mogeneous case. Isocontours are ellipses with increas-
ing eccentricity and streamlines are hyperbolas. Here
κ = 10.

bore diameter. Thus, we have chosen the outer radius
re of the near-well region to be of the size re = 100×rw.

The numerical convergence behavior for the loga-
rithmic grids in Fig. 3a, Fig. 3b and Fig. 4 is seen in
Fig. 6 - 11. Firstly, we observe that the TPFA scheme
does not converge, neither for discretization in the space
P nor the space R. See Fig. 6 and Fig. 9, where the
scheme is applied to the radial grid with anisotropy ra-
tio κ = 5. The result is as expected since the radial grid,
when imposing an anisotropic permeability, is no longer
K-orthogonal in either of the discretization spaces.

For the MPFA simulations, we have employed aniso-
tropy ratios κ of 5 and 20. Consider the error mea-
sured in discrete L2 norm. Given κ = 5, we observe
h2-convergence for the pressure on both radial and tri-
angular grids. This applies to discretization in reference
space as well as in physical space. The same convergence
rate is seen also for the normal velocity. However, for
the triangular R-space discretization, we find a slight
degradation in the convergence order. Let κ = 20. We
find here a convergence behavior similar to the previous
case for the radial grid. The pressure convergence is still
h2 in both the P and R space for the triangular grid.
Now, the normal velocity is seen to converge slightly
slower in both spaces for this grid. We may, however,
expect the asymptotic rate of convergence to reach 2
for both values of κ.

Moreover, considering the error bounds itself, we
find that the triangular grid performs significantly bet-
ter than the radial grid. This applies to both anisotropy
ratios and discretization spaces. Note that, also MPFA
schemes with other values of the parameter η have been
tested for the local triangular grid. They are seen to
yield error bounds lying between the error bounds for
the radial grid and the triangular grid utilizing the
O(0)- and O(1/3)-method, respectively. Thus, the O(1/3)-
scheme seems to be the optimal choice.

In discrete L∞ norm, the pressure is seen to con-
verge very close to h2 for all cases. For the normal ve-
locity, the results are more spread out. The convergence
lies between h1 and h2. Finally, when measured in max-

imum norm, the difference in the error bounds for the
two grids is no longer as significant as in discrete L2

norm.
Now, discussions in the literature, see, e.g., [12], sug-

gest that a linear approach in the well vicinity is ineffi-
cient if the near-well grid blocks are of size larger than
the well bore itself. A linear grid, that is; a uniform
grid in radial direction, is seen in Fig. 3c. Numerical
tests, similar to the anisotropic near-well flow described
above, support this. Consider Fig. 12. We define a pa-
rameter β ∈ [0, 1], to describe the degree of logarithmic
refinement of the near-well grids. Denote by γr a grid
line in the near-well grid for which the radius r is con-
stant and θ ∈ [0, 2π]. Further, let γr,log and γr,lin denote
the corresponding grid line for a logarithmic near-well
grid and a linear near-well grid, respectively. Then, we
obtain grids with varying degree of logarithmic refine-
ment by the relation

γr = βγr,log + (1 − β)γr,lin. (14)

When β = 0, the grid is linear, and β = 1 yields the
logarithmic grid. We observe that as β → 1, the con-
vergence properties are improved, however, we do not
obtain full h2-convergence until the grid is fully loga-
rithmic. These observations apply to the triangular grid
as well. However, note that as re → rw , the difference
between a linear and logarithmic refinement becomes
less significant. With a near-well region defined within
only a few well radii for instance, the linear approach
seems to work as well as the logarithmic approach.

Finally, when applied to the local triangular grid, we
note that the L-scheme behaves poorly. For an anisotropy
ratio κ = 5, only the pressure measured in discrete
L2-norm, exercises h2-convergence. The normal veloc-
ity converges with reduced rates in both norms. For
both variables the errors are significantly larger than
for the O(1/3)-method. For stronger anisotropies, how-
ever, we meet some computational challenges with the
scheme. The system matrix becomes ill conditioned as
the grid is refined, and this applies to discretization in
both P- and R-space. This is a topic for further investi-
gations, however, we note that the L-scheme originally
was constructed for quadrilateral grids. Numerical tests
for regular triangular grids can be found in [23], where
the method is seen to work well for general anisotropic
and heterogeneous problems. However, in [18], the L-
scheme is found to perform poorly also for distorted
triangular meshes.

4.2 Heterogeneous Isotropic Medium

Next, we aim at investigating the numerical conver-
gence behavior in the case of a heterogeneity in the
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Fig. 6: Solution 13. Anisotropy ratio 5. Radial grid with discretization in logarithmic space. N is the number of
grid cells.
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Fig. 7: Solution 13. Anisotropy ratio 20. Radial grid with discretization in logarithmic space. N is the number of
grid cells.
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Fig. 8: Solution 13. Anisotropy ratios 5 and 20. Triangular grid with discretization in logarithmic space. N is the
number of grid cells.
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Fig. 9: Solution 13. Anisotropy ratio 5. Radial grid with discretization in physical space. N is the number of grid
cells.

4 6 8 10 12 14 16
−12

−10

−8

−6

−4

−2

0

2

4

Log2N

Lo
g 2e

O L2

L L2

O L∞

L L∞

(a) Potential

4 6 8 10 12 14 16
−10

−8

−6

−4

−2

0

2

4

6

8

10

Log2N

Lo
g 2e

O L2

L L2

O L∞

L L∞

(b) Edge normal velocity

Fig. 10: Solution 13. Anisotropy ratio 20. Radial grid with discretization in physical space. N is the number of grid
cells.
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Fig. 11: Solution 13. Anisotropy ratios 5 and 20. Triangular grid with discretization in physical space. N is the
number of grid cells.



9

4 6 8 10 12 14 16
−8

−6

−4

−2

0

2

4

6

Log2N

Lo
g 2e

L, β=0
L, β=0.4
L, β=0.8

Fig. 12: Discrete L2 error of normal velocity. The pa-
rameter β ∈ [0, 1] describes the degree of logarithmic
refinement of the grid. For β = 0, the grid is linear. We
observe that as β → 0, the converge rate deteriorates.
For β = 0, the converge rate is 0.6 in the last refinement
step.

near-well region. By imposing a barrier in the well vicin-
ity, we find a violation of the radial inflow pattern to-
wards the well. This may also resemble a multiphase
flow simulation, where the phases obstruct the flow of
each other.

We seek, in the physical space, an obstacle which is
aligned with the shape of the radial grid blocks as seen
in Fig. 3a. A semi-analytical solution for this case may
be constructed with the aid of the Schwarz-Christoffel
mapping to some polygonal region, on which we may
solve our boundary value problem. The algorithm may
be described as follows.

Consider a domain with the well bore centered at
the origin. Denote by z = reiθ a point in this physi-
cal domain. We enforce a barrier which is symmetric
about θ = 0. Thus, by exploiting the angular symme-
try, we may regard the upper half of the grid only. This
is visualized in Fig. 13a. Under the transformation

z = ew, (15)

this domain is the image of the polygonal domain seen
in Fig. 13b. The points zj , j = 1, . . . , 8, define the
geometry of the physical problem and correspond to
the corners wj , j = 1, . . . , 8, of the polygon, respec-
tively. The outer radius of the domain is set accord-
ing to z6 = 30 × z1. Now, we impose uniform Dirich-
let conditions on the polygon boundaries w1w8 and
w6w7, corresponding to the well bore boundary and the
outer boundary, respectively. The boundaries wjwj+1,
j = 1, . . . , 5, 7, are no-flow boundaries. These boundary
conditions are preserved under the conformal map (15).

We will now exploit the properties of the Schwarz-
Christoffel (SC) map to obtain a semi-analytical hetero-
geneous solution on the polygon. Let παj , j = 1, . . . , 8,

denote the interior angles at the polygon vertices. Then,
the explicit SC formula from the unit disk to the poly-
gon reads

f(η) = f(0) + C

∫ η

0

8∏
j

(s − ηj)αj−1 dS. (16)

Here, C is a complex constant and ηj are prevertices
of the polygon vertices wj , j = 1, . . . , 8, respectively.
The solution procedure involves computing f−1(η) from
the polygon to the disk, and further, a forward SC
map to a representative polygonal region taking the
boundary conditions into account. Finally, the solu-
tion is extracted. In the computation we employ the
Schwarz-Christoffel Toolbox for MATLAB developed
by T. Driscoll. See [13] for documentation. In Fig. 13c,
the isobars and streamlines of the solution are visual-
ized on the whole physical domain.

We simulate on both near-well grids. The curved
shape of the barrier necessitates a reference space dis-
cretization. Note that for the radial grid, the mesh in
the space R is K-orthogonal. Hence, the MPFA O(0)-
scheme reduces to the TPFA scheme for this simulation.
We note, however, that for the triangular grid, the full
O(1/3)-stencil still applies.

The heterogeneity constitutes an exterior angle β =
3π/2 to the surrounding medium. Let α = π/β = 2/3.
According to finite element theory [6,33], we expect a
convergence order in discrete L2 norm of h2α for the
pressure and hα for the normal velocity. The numeri-
cal convergence is seen in Fig. 14. We find both grids to
meet the expected convergence rates, and again, the tri-
angular grid yields a smaller error than the radial grid.
Measured in discrete maximum norm, the observed con-
vergence is hα for the pressure. The normal velocity is
not seen to converge. This applies to both near-well
grids. These results are in agreement with the discus-
sion in [5].

4.3 Multiple Wells

In Section 4.1, we provided quadratic convergence for
the near-well models in an anisotropic yet homogeneous
medium for single well cases. Here, we impose a flow
regime involving several wells in an anisotropic reser-
voir. Thus, we must account for the transition between
the near-well regions and the reservoir region in the
simulations henceforth. That is; we need to connect the
flexible near-well grid with a surrounding global grid.

Consider Fig. 15. We impose one injector I and two
producers, P1 and P2, to be located on two imperme-
able boundaries of the domain, respectively. The medium
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z1 z2

z3

z4

z5 z6z7 z8

(a) The points zj , j = 2, . . . , 5, define
the barrier. The well bore is delineated
by z1 and z8.

w1

w8

w2

w3 w4

w5 w6

w7

(b) Preimage of the physical do-
main.

(c) Isobars and streamlines for
the semi-analytical heteroge-
neous solution.

Fig. 13: We obtain a polygonal shape of our domain via the mapping z = ew. Note that, for visualization purposes,
the scaling is not correct. The solution for the full domain is seen to the right.
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Fig. 14: Near-well heterogeneity. Radial and triangular grids with R-space discretization. N is the number of grid
cells.

P1 P2

I

Fig. 15: Pressure contours and streamlines for the flow from an injector I towards the producers P1 and P2 for the
point sink/source approach. The angles in the triangle IP1P2 at Pi, i = 1, 2, are 45o.

Fig. 16: Transition between a radial near-well grid and a triangular grid in the reservoir. Note that, for visualization
purposes, this is not a snap-out of the grid we use for simulation.
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anisotropy ratio κ is set to 5.8, and the principal di-
rection associated with the larger eigenvalue is rotated
with an angle φ = 22.5o from the horizontal axis. An
analytical solution to such a problem using a point
sink/source well approach is found in example 2 in [2].
Our near-well approach, however, takes a finite well
bore radius into account. Motivated by [27,28], we as-
sign uniform Neumann boundary conditions on the well
bore boundaries.

According to the point sink/source solution, the flow
pattern is radial in the vicinity of the wells, whereas
for a finite well bore, we have seen that the stream-
lines have a hyperbolic character. However, according
to the discussion by Peaceman in [29], this difference
decreases rapidly as we move away from the well bore.
Thus, despite the differences in the two problems, the
point sink/source solution resembles the actual problem
we simulate quite well. We cannot, though, expect the
numerical solution to converge to the point sink/source
solution.

The outer radius re of each near-well region is here
set to re = 10× rw, with rw being the well radius. The
height h between the two impermeable boundaries we
define to be h = 100 × rw. In the near-well regions, we
will apply both the triangular and radial grid. Further-
more, the near-well regions are joined by a surrounding
triangular grid. This grid is generated by an algorithm
of Persson and Strang [31], with some minor modifi-
cations to avoid hanging nodes in the transition zone
between the meshes. In Fig. 16, the coupling of a ra-
dial near-well grid and a circumjacent triangular grid is
visualized. Note that in a full-scale simulation, the tri-
angular grid in Fig. 16 may also play the role of an in-
termediate grid between the near-well grid and a global
rectangular grid.

For the triangular grid we will still use the O(1/3)-
method, while we apply the O(0)-method only for the
radial grid. We measure the difference between the nu-
merical solution and the point sink/source solution in
the discrete L2 norm.

The findings in Section 4.1 showed a rather small
discrepancy between discretization in R and discretiza-
tion in P . The same tendency is observed here, and this
applies to both meshes. Yet, due to the disparity of the
two problems here, we cannot test for convergence of
the models. Contrary to the results of Section 4.1, we
have no means to establish which discretization space
yields the more reliable results. However, due to ease of
implementation, and possible complications in combin-
ing two different discretization spaces, we suggest to ap-
ply a physical space discretization in this case. In addi-
tion, following the discussion in [8], combining two dif-
ferent MPFA methods may yield less accurate results.

Here, we combine the O(0)- and O(1/3)-method in the
case of a radial near-well grid. Also, for near-well dis-
cretization in R, we combine a logarithmic MPFA near-
well scheme with a linear MPFA scheme. And again,
due to the lack of a proper analytical solution, we can-
not conclude on this issue.

Hence, with discretization in P , and for a grid with
948 cells, of which 32 is located in each of the near-
well regions, respectively, the difference in the pres-
sure is 1.2 × 10−2, while the difference in the flux is
2.7 × 10−3. This applies to both near-well grids. Fur-
ther refinements do not yield a smaller error. Finally, a
closer look at the solutions (not shown here) indicates
no difficulty in the transition between the logarithmic
and linear grids.

5 Multiphase Simulations

In the previous section, we studied the numerical behav-
ior of some control-volume MPFA schemes on flexible
near-well grids for single phase flow. Also, we presented
a way to couple the near-well grids with a surrounding
global grid.

When coupled to a transport equation, analysis of
the pressure equation becomes more involved. Thus, in
the literature, analysis of MPFA methods is done by
considering flow of a single phase only. Hence, for mul-
tiphase analysis, we resort to numerical experiments.

In this section, we extend the near-well models to
treat multiphase flow. We study, and compare, the dis-
cretization schemes and the near-well grids for a simple
two-phase simulation. The well is horizontal, pointing
in the y-direction, and the simulations are performed in
an xz cross section. The main purpose of this exercise
is to examine the applicability of our well models to
simulations of multiphase flow.

5.1 Experimental Setup

The flow is described by the conservation equations

φρα
∂Sα

∂t
−∇ · (ραuα) = qα, (17)

for each phase α = w, o. Denote by subscript w the wet-
ting phase (water) and o the non-wetting phase (oil).
Let φ be the porosity, Sα the phase saturation and let
qα be the source terms. The phase densities ρα are set
according to ρo/ρw = 0.8. Capillary forces and com-
pressibility are neglected. The Darcy velocity uα for
each phase reads

uα = −λαK(∇p − ραg∇z), α = w, o, (18)
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where g∇z is the gravity term, and λα are the phase
mobilities. Now, p denotes the flow potential. We em-
ploy quadratic relative permeabilities. The permeability
K is assumed to be homogeneous, yet anisotropic. The
anisotropy ratio is set to kx/kz = 2, hence, none of the
near-well grids are K-orthogonal for these simulations.
Residual saturations for both phases are set to zero.
Finally, the viscosities μα are set to be constant, with
μo/μw = 5.

The equations are solved in an IMPES formulation
[10], and the saturations are propagated through the
medium by employing a single-point upwinding scheme
[7].

For the sake of simplicity, all simulations are carried
out for a single production well. We confine the near-
well region within re = 30×rw in radial direction. Both
the triangular and radial near-well grid will be studied,
and we employ, for discretization of the pressure equa-
tion, the O(1/3)- and O(0)-scheme, respectively. Again,
the near-well grids are coupled to a triangular global
grid as described in Section 4.3. The outermost cells in
the local near-well grids and the neighboring cells in
the global grid are of comparable size. Note that, as in
Section 4.3, the face transmissibilities in the transition
zone between the logarithmic radial grid and the lin-
ear triangular grid, will be calculated by a combination
of two MPFA methods. And again, near-well discretiza-
tion in R implies a combination of a logarithmic MPFA
scheme with a linear MPFA scheme.

The initial contact between the water phase and the
oil phase is located 50 well radii below the well cen-
ter. The computational domain is rectangular, and it is
large enough to avoid significant influence of the outer
reservoir boundaries. On the well bore, a uniform Neu-
mann condition is assigned. For the horizontal reservoir
boundaries, we impose a no-flow condition, while on the
vertical boundaries, the potential is set to equal the hy-
drostatic pressure. The saturations are fixed according
to the initial contact.

Remark that all figures shown in the following, are
zoomed in on the vicinity of the well. Thus, they display
a part of the computational domain only.

5.2 Discretization in Physical and Reference Space

As the well starts producing, the water phase will move
in upward direction towards the well. Gradually, the
saturation profile will cone, and eventually, there will
be a water breakthrough. The water phase will subse-
quently occupy a larger part of the near-well region.
This development is shown in Fig. 17 and Fig. 18, for
near-well discretization on the logarithmic triangular
grid in physical and reference space, respectively.

◦well

Fig. 19: Local triangular grid. Saturation profile along
the vertical line extending through the well bore for the
propagation front seen in Fig. 17d. In the grid transition
zone, there is a kink in the saturation.

The two time series shown both start at the same
point in time, and the data for the subsequent plots are
collected at the same time step for both simulations.
From the figures, the saturation profiles appear to be
equal. A more careful investigation, however, reveals
a spatial difference in saturation values of order 10−3.
These observations apply to the local radial grid as well
(not shown here).

Moreover, from the figures there seems to be a steep
saturation gradient in the transition between the local
near-well grid and the global grid. This is especially
apparent in Fig. 17c and 17d, and Fig. 18c and 18d.
Fig. 19 is the saturation profile of Fig. 17d along the
vertical line that extends through the well bore. The
profile is seen to have a weak kink near the transition
zone. This apparent kink in the saturation is probably
due to the difference in coarseness between the global
grid and the near-well grid, along with the increase in
sparsity and degree of unstructuredness of data points
in the transition to the global grid. The outer grid can-
not represent the flow pattern as accurately as the fine
near-well grid. By varying the coarseness of the grids in
the simulation, we also observe that as the grids are re-
fined, the apparent kink becomes weaker. Moreover, we
have simulated with different choices of re (not shown
here). From these experiments, we conclude that there
will be some weak irregularities in the saturation plots
in the transition zones provided that the well has suf-
ficient impact on the dynamics in the transition zone,
i.e., the near-well grid does not extend much further
than the well’s domain of influence.

Even though the saturation profiles resulting from
discretization in P and R are very similar, they can-
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(a) (b) (c)

(d) (e) (f)

Fig. 17: Physical space discretization: Propagation of near-well saturation fronts. The local grid is triangular and
transmissibilities are computed in physical space. The well bore and the outer near-well radius, re = 30 × rw, are
shown.

not be considered equal. Like in Section 4.3, we have
no means to establish which discretization space pro-
vides the more accurate result. However, the disparity
of the saturation profiles seen in Fig. 17 and Fig. 18, is
much less than the difference in saturation profiles re-
sulting from applying different near-well grids. This will
be shown below. Thus, henceforth we compare the near-
well grids for different refinement levels, rather than the
choice of discretization space. We follow the reasoning
of Section 4.3, and choose to apply a physical space
discretization from this point on.

5.3 Radial and Triangular Near-well Grid

Here, we compare the local radial and triangular grid.
The saturation profiles from the two simulations are
qualitatively similar. Prior to the coning of the water
phase, the propagation speeds predicted of the two, are
very much the same. However, as the saturation fronts
enter the near-well region, the local triangular grid pre-
dicts a somewhat faster propagation, and hence, an ear-
lier water breakthrough.

The saturation profiles for the breakthrough process
are seen in Fig. 20a - 20c and Fig. 20d - 20f, for the

triangular and radial grid, respectively. The snap-outs
are taken at the same time step for both series. The
lack of an analytical solution for this problem, again
leaves us unable to conclude on the more reliable of the
two simulations.

We note that, when constructing the global grid,
the parameters of the gridding algorithm [31], are tuned
to get a smooth connection to the near-well grid. This
optimization leads to about 25% more cells in the outer
global grid for the radial near-well grid than for the
triangular. We emphasize that in the local near-well
region, there is an equal number of cells.

5.4 Near-well Grid Refinement

The experiments presented in Section 5.2 and 5.3, were
all carried out with near-well grids of 4096 (212) cells.
There, we aimed at evaluating different discretization
techniques for the near-well flow equations. However,
with full-field simulations in mind, it is appropriate
to investigate the accuracy of computationally cheaper
simulations.

Consider Fig. 21. This figure shows the water propa-
gation for three refinement levels of the triangular near-
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(a) (b) (c)

(d) (e) (f)

Fig. 18: Reference space discretization: Propagation of near-well saturation fronts. Transmissibilities are computed
in reference space, and the local grid is triangular. The well bore and the outer near-well radius, re = 30× rw, are
shown.

(a) Local triangular grid. (b) (c)

(d) Local radial grid. (e) (f)

Fig. 20: Propagation of near-well saturation front. The local grid is triangular in (a)-(c), while radial in (d)-(f).
The triangular grid exhibits an earlier water breakthrough.
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(a) Coarse grid. (b) (c)

(d) Intermediate grid. (e) (f)

(g) Fine grid. (h) (i)

Fig. 21: Propagation of near-well saturation front for three refinement levels of the local triangular grid. The coarse
grid in (a)-(c) the front is smeared out. The finer grids in (d)-(f) and (g)-(h) resolve the front well.

well grid at three time levels of the simulations. The
series of grids has 28, 210 and 212 near-well cells, re-
spectively. The fine grid is the grid employed in the
previous simulations.

Clearly, the saturation front is best resolved for the
finest grid. However, also the intermediate refinement
level yields a fairly good resolution of the front. For
the coarse grid, the saturation profile is smeared out,
and, by a closer look, one finds the profile to follow the
grid lines. Thus, due to the smearing, it is more diffi-
cult to localize the front exactly. Again, we emphasize
that we cannot conclude on which level yields a certain
accuracy.

5.5 Production Data

In Fig. 22, the water cuts are shown for the triangu-
lar and the radial near-well grids, respectively. For the
triangular grids, the water cuts correspond to the sim-
ulations described in Section 5.4. For the local radial
grid, the coarse and intermediate grids have the same
number of near-well cells as the corresponding trian-
gular grids. The fine radial grid is similar to the grid
applied for the simulations seen in Fig. 20d-20f. More-
over, we have applied both a physical and a reference
discretization for the fine grids.

First, we note that curves corresponding to discretiza-
tion in reference and physical space, respectively, are
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(a) Local triangular grid.
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(b) Local radial grid.
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(c) Fine triangular and radial grid.

Fig. 22: Water cuts for both near-well grids at three different refinement levels. The water cut obtained from a
reference space discretization is shown for the fine grid only. Observe that the fine grid water cut curves for the
discretization in R and P are visually indistinguishable. The triangular grid exhibits an earlier breakthrough time
than the radial grid at all levels, and seems to be closer to convergence. The water production rates are fairly
similar for the two near-well grids.

almost identical. This applies to both choices of local
grids. Also, for both grids, the water breakthrough oc-
curs at an earlier time for finer grids. However, for all
refinement levels, the triangular grid exhibits an earlier
breakthrough time than the radial grid. The triangular
grid seems closer to convergence.

However, the water production rates appear to be
fairly similar for the two different near-well grids.

6 Concluding Remarks

In this work, we have compared the numerical conver-
gence behavior of control-volume MPFA schemes on
anisotropic, heterogeneous near-well problems. The sim-
ulations are performed using flexible near-well grids
which are adapted to the known logarithmic pressure
variation in the near-well flow. We have employed trian-
gular and radial near-well grids. The schemes have been
tested for different anisotropy ratios. We have shown
that the much-used two-point scheme does not converge
for anisotropic problems. Furthermore, we have found
that the MPFA schemes exercise deteriorated conver-
gence behavior for equidistant near-well grids. The con-
vergence rates for various MPFA schemes on logarith-
mically refined grids are given. The pressure exhibits
quadratic convergence for both near-well grids. This
applies to discretization both in physical space and ref-
erence space. The normal velocity is seen to have the
same convergence behavior as the pressure for the local
radial grid, whereas for the triangular grid, we expect
the asymptotic rate of convergence to reach h2. More-
over, we have seen that the rates of convergence do not

seem to depend on the choice of discretization space.
Thus, for the sake of simplicity, we may argue that a
discretization in physical space is preferable. The nu-
merical results also indicate that a triangular grid, due
to a smaller error, should be preferred over a radial grid.
The flexible nature of the triangular grid will proba-
bly be even more beneficial for more complex near-well
flow. Finally, we have shown a way to couple the near-
well grids with a surrounding global grid.

The near-well models are also applied in simulations
of a two-phase flow problem. These results support the
observations from the single phase experiments regard-
ing the choice of discretization space. A discretization
in physical space seems to be the reasonable choice.
Further, there are some disparities between the satu-
ration profiles stemming from a local radial grid and a
local triangular grid, respectively. And due to the lack
of proper analytical solutions, we have no means to con-
clude which near-well grid yields the more reliable sim-
ulations. However, the disparities between the different
grids do not seem to be significant. This is especially
seen in the water breakthrough times. Thus, both ap-
proaches are seen to yield good results.

For heterogeneous and anisotropic media, it is well-
known that MPFA methods can yield solutions with
spurious oscillations, see, e.g., [24,25] . These mono-
tonicity issues are most likely to occur in regions where
the solutions are strongly non-linear. The logarithmic
pressure variation in the well vicinity can thus be ex-
pected to trigger such oscillatory behavior. However,
we have not observed any monotonicity problems in our
simulations. By construction, MPFA methods are exact
for linear pressure fields, and they are also well suited
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to capture nearly linear behavior. Here, the near-well
grids are adapted to the non-linearity by a logarithmic
refinement radially, rendering a nearly constant pres-
sure drop between adjacent cells in the radial direction.
This can explain the non-oscillatory behavior of our
near-well solutions.

The results of this work are based on local grid re-
finement in the near-well region. This yields a good
resolution the nature of the well flow. However, for full-
scale simulations involving several wells, it may not be
reasonable to employ such computationally expensive
techniques in a small part of the reservoir. Moreover,
fine grids yield impractical CFL-restrictions on the time
steps. Future challenges involve development of strate-
gies to overcome this issue. Also, the simulations here
are for simple 2D two-phase flow, a natural extension
will include 3D three-phase flow for more complex phys-
ical processes.
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