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Abstract
In reservoir simulation the pressure is the solution of an elliptic equation. It follows

from the maximum principle that this equation satisfies a monotonicity property. This

property should be preserved when discretising the pressure equation. If this is not the

case, the pressure solution may have false internal oscillations and extrema on no-flow

boundaries. Thus, there is a need for sufficient conditions for the discretization methods to

be monotone. These conditions will depend on the permeability tensor and the grid.

Previously monotonicity for control volume methods has been studied on quadrilateral

grids and on hexagonal grids. The former was done for general methods which reproduces

linear potential fields, while the latter was done in a Control Volume Finite Element setting.

These analyses have given sharp sufficient conditions for the discretisation methods to be

monotone. However, for methods whose cell stencils include cells which do not have any

edges common with the central cell in the discretisation scheme, no work has been done on

unstructured grids.

In this work, we study monotonicity on triangular grids for control volume methods

which are exact for linear potential fields. We derive sufficient conditions for monotonicity

of the MPFA-O and -L methods. The found monotonicity regions for the MPFA meth-

ods are also tested numerically. The tests are done both on uniform grids in homogeneous

media, and on perturbed grids, which corresponds to heterogeneous media. The investiga-

tions are done for single phase flow only. However, the results are relevant for multiphase

simulations.

The results obtained in this work may be utilised in grid generation. In this way we

can construct grids where the discretisation of the pressure equation is guaranteed to be

monotone.

1 Introduction
Multiphase flow in an oil reservoir is governed by a set of non-linear partial differential equa-

tions. The pressure is the solution of an elliptic equation, while the saturation is described by an

almost hyperbolic equation.

It follows from the maximum principle that the elliptic pressure equation satisfies a mono-

tonicity property. This property should be conserved when discretizing the equation. Violations

of the monotonicity property might lead to false internal oscillations and extrema on no-flow

boundaries. Thus, there is a need for sufficient conditions for the discretization methods to be

monotone. These conditions will depend both on the permeability tensor and on the grid.

The hyperbolic behaviour of the saturation calls for numerical methods which are locally

conservative. Control volume methods are well suited to discretize the elliptic part of the equa-

tions. They are locally conservative, and the explicit flux expression allows for a fully implicit

formulation.
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The geology in the reservoir is characterised by high degrees of heterogeneities and an-

isotropies. This makes it feasible to use flexible, unstructured grids.

Monotonicity for control volume methods on quadrilateral grids is studied in [3, 11, 9, 10],

with special focus on Multipoint Flux Approximation (MPFA) methods. For general quadrilat-

eral grids, sufficient conditions for monotonicity are known. On hexagonal grids, monotonicity

has been studied in a Control Volume Finite Element setting. On unstructured grids, we have

results for linear methods whose cell stencil includes cells which share an edge with the central

cells. These methods, which includes the well known two point flux approximation, are mono-

tone only if they yield a linear system whose matrix is an M-matrix. To our knowledge, no

work has been done for more general methods. The focus in this paper is on monotonicity for

triangular grids.

2 Monotonicity
We study the elliptic model equation

−div(Kgradu) = q x ∈ Ω , (1)

where K is a symmetric, positive definite tensor and q is a source term. Consider the case

where K is sufficiently smooth and the source is positive, q ≥ 0. Then u has no minima in Ω.

This follows from a version of the maximum principle called Hopf’s lemma. Moreover, Hopf’s

lemma can be stated for any subdomain of Ω. Thus, for a positive source term, u cannot have

any local minima in Ω.

The solution of equation (1) with a homogeneous Dirichlet condition, u = 0 on ∂Ω can be

formulated in terms of a Green’s function. We have

u(x) =
∫

Ω
G(ξ,x)q(ξ) dτξ .

Here G(ξ,x) is the Green’s function for the boundary value problem. For K and ∂Ω sufficiently

smooth, we have

G(ξ,x) ≥ 0 ξ,x ∈ Ω .

By Hopf’s lemma the Green’s function must be positive on any subdomain of Ω. A consequence

of this is that for a problem with homogeneous Dirichlet boundary conditions, we have

q ≥ 0 ⇒ u ≥ 0 . (2)

A discretization of a differential operator should ideally have the same properties as the

continuous operator. The discretization will give a system of linear equations

Au = q , (3)

where A is the discretized operator, u and q is the solution and the source term in each grid

block, respectively. The discrete analog of equation (2) is

q ≥ 0 ⇒ u ≥ 0 .

This is fulfilled if

A−1 ≥ 0 , (4)

where the inequality holds for all elements in A−1. When the inequality (4) holds, we say that

the matrix A−1 is monotone, while A is inverse monotone. Hopf’s lemma can be stated on

any subdomain of Ω. Thus the discretisation should yield a matrix whose inverse is monotone

not only for the grid covering Ω, but also for all possible subgrids. We call numerical methods

which has this property monotone methods.
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Figure 1: Local ordering of the cell stencil.

A special class of inverse monotone matrices are the M-matrices. These are inverse mono-

tone matrices whose off-diagonal elements are non-positive. Irreducibly diagonally dominant

matrices with positive diagonal elements and non-positive off-diagonal elements will be M-

matrices. However, this is a sufficient but not necessary criterion for monotonicity.

In [10], the following result was proved: Suppose that the matrix A has a splitting A =
B − C, with B−1 ≥ 0, and CB−1 ≥ 0. Suppose further that the inequality

∑
i

ai,j ≥ 0 ∀j , (5)

is either strict for all j, or CB−1 is irreducible, and (5) is strict for at least one j. Then the inverse

of A is monotone.

We will utilise this result to find sufficient conditions for monotonicity for control volume

methods.

3 Monotonicity for 10-point methods on general grids
We now study the monotonicity of control volume methods on triangular grids. Consider the

cell stencil shown in figure 1. We firstly focus on methods which express the flux out of cell 1

using all cells in the cell stencil except the cells 11, 12, and 13. We will make a comment on

this later. The control volume method approximate the integral of the equation (1) over a cell by

∫
Ωi,j

q dτ =
∫

Ωi,j

−div(Kgradu) dτ ≈
10∑

k=1

m
(i,j)
k uk ,

where m
(i,j)
k are the elements in the cell stencil for cell (i, j) and uk are the potentials in the

cells. By approximating the elliptic equation for all cells in the domain, we obtain a linear

system of the form (3).

By applying Hopf’s lemma on a subdomain consisting only of the central cell, we find that

m1 must be positive. For subdomains consisting of the central cell and one of the neighbours

which shares an edge with this cell (that is, cell number 2, 5, or 8), we need the second cell to

have a non-positive coefficient.

To obtain sufficient conditions for the method to be monotone, we utilise the block structure

of A. Let B be the diagonal blocks of A, and denote each of the blocks by Bj . Then Bj read

Bj =

⎡
⎢⎢⎣

. . . mi−1,j
2

. . .

mi,j
6 mi,j

5 mi,j
1 mi,j

2 mi,j
10

. . . mi+1,j
5

. . .

⎤
⎥⎥⎦ .

Define C by A = B−C. Then C consists of the lower and upper diagonal blocks of A, denote

these CL
j and CU

j . These matrices read
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CL
j = −

⎡
⎢⎢⎣

. . . mi−1,j
9

mi,j
7 mi,j

8 mi,j
9

mi+1,j
7

. . .

⎤
⎥⎥⎦ , CU

j = −

⎡
⎢⎢⎣

. . . mi−1,j
3

mi,j
4 0 mi,j

3

mi+1,j
4

. . .

⎤
⎥⎥⎦ .

The index i is increasing along the line 6-10, while j is running along the line 7-3, refering to

figure 1. Note that the structure of the matrices CL
j and CU

j will change depending on which

cell is the central cell. For cell number (i + 1, j), CL
j will have a 0 on its diagonal, while the

diagonal element of CU
j will be nonzero.

To use the results presented in section 2, B must be monotone. If we require

mi,j
1 > 0 , (6)

max{mi,j
2 , mi,j

5 , mi,j
6 , mi,j

10} < 0 , (7)

mi,j
1 + mi,j

2 + mi,j
5 + mi,j

6 + mi,j
10 > 0 , (8)

B will be an M-matrix, and thereby inverse monotone. Define D = B−1. Next, we consider

the positivity of CB−1. Define the block matrices Dj , EL
j+1, and EU

j−1 by

Dj = B−1
j , EL

j+1 = CL
j+1Dj , EU

j−1 = CU
j−1Dj .

We write the coefficients as

Dj = {dj
i,k} , EL

j = {ej,L
i,k } , EU

j = {ej,U
i,k } .

Because D is the inverse of B , we have

mi,j
6 dj

i−2,k + mi,j
5 dj

i−1,k + mi,j
1 dj

i,k + mi,j
2 dj

i+1,k + mi,j
10dj

i+2,k = δi,k ,

that is

di,k =
δi,k

mi,j
1

−
mi,j

6 dj
i−2,k

mi,j
1

−
mi,j

5 dj
i−1,k

mi,j
1

−
mi,j

2 dj
i+1,k

mi,j
1

−
mi,j

10dj
i+2,k

mi,j
1

,

which yields

ej+1,L
i,k = − (mi,j

7 dj
i−1,k + mi,j

8 dj
i,k + mi,j

9 dj
i+1,k)

= − δi,k

mi,j
1

mi,j
8 +

(mi,j
8

mi,j
1

mi,j
6

)
dj

i−2,k +
(mi,j

8

mi,j
1

mi,j
5 − mi,j

7

)
dj

i−1,k

+
(mi,j

8

mi,j
1

mi,j
2 − mi,j

9

)
dj

i+1,k +
(mi,j

8

mi,j
1

mi,j
10

)
dj

i+2,k ,

and

ej+1,U
i,k = − (mi,j

4 dj
i−1,k + mi,j

3 dj
i+1,k) .

Now, B is an M-matrix, thus all the elements in D is non-negative. In order to have all the

elements in the E-matrices non-negative, we need

max{mi,j
3 , mi,j

4 , mi,j
8 } < 0 , (9)

min{mi,j
8 mi,j

5 − mi,j
1 mi,j

7 , mi,j
8 mi,j

2 − mi,j
1 mi,j

9 } > 0 . (10)
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Thus, we have obtained requirements for mi,j
7 and mi,j

9 which are weaker than an M-matrix

criterion.

We have used a logically Cartesian ordering of the cells, with the i-index running along the

axis from cell 6 to cell 10, referring to figure 1. The j-axis runs from cell 8 to cell 11. There

are two other natural orderings of the cell. We can have one axis from cell 4 to cell 9, and the

other axis either from cell 6 to cell 9 or from cell 3 to cell 7. All the three orderings will give

sufficient conditions for monotonicity of the control volume method. For each ordering two

cells have conditions which are weaker than the M-matrix criterion. To obtain as sharp results

as possible, the weak conditions should be used for the cells which are of least importance for

the potential in the central cell. The influence from one cell on the potential in another cell will

be dependent both on the geometry and on the permeability tensor.

We have only considered cell stencils which uses 10 cells to discretise the equation. It would

be natural to use all cells which have a common vertex with the central cell, that is, all cells in

figure 1. However, the splitting technique for the matrix used above does not work for these

expanded cell stencils. The reason is that whatever we do with the global ordering of the cells,

we end up with requiring that one of the cells 11, 12, or 13 must give a negative contribution to

the system matrix, which is a very strong condition. These are the cells which presumingly are

least important for the flow through the central cell. Hence, the conditions for monotonicity of

the discretisation method will not be sharp. To study monotonicity for 13 point cell stencils, we

need another technique to obtain sufficient conditions for the monotonicity of the method.

4 Monotonicity on a uniform grid in a homogeneous medium
Next we study control volume methods which are exact for linear potentials. We still limit

ourselves to methods which have six cells in the flux molecule for each edge, see figure 2(a).

This means that the coefficients m11, m12, and m13 is zero for all cells. Moreover, we use

the barycentre as the centre of the cells. The grid is assumed to be uniform, and the medium

homogeneous.

4.1 General methods
The flux over an edge can be written in terms of the potential in the cells in the flux molecule.

Using the local cell numbering in figure 1, and edge numbering as in figure 2(b), we get

f1 = t1,1u1 + t1,2u2 + t1,3u3 + t1,5u6 + t1,8u8 + t1,10u10 .

where t1,i are called transmissibility coefficients. Due to symmetry, we have

t1,1 = −t1,2 , t1,3 = −t1,8 , t1,5 = −t1,10 ,

hence

f1 = t1,1(u1 − u2) + t1,8(u8 − u3) + t1,10(u10 − u5) . (11)

Similarly, for the fluxes out of edge number 2 and 3 we get

f2 = t2,1(u1 − u5) + t2,2(u2 − u6) + t2,4(u4 − u8) ,

f3 = t3,1(u1 − u8) + t3,5(u5 − u9) + t3,7(u7 − u2) .

We define the quantities r, s, and t by

r =
1
V

aT
1 Ka1 , s =

1
V

aT
2 Ka2 , t =

1
V

aT
3 Ka3 , (12)

where ai is the normal vector belonging to edge i, with length equal to the length of the edge,

see figure 2(b). All the normal vectors are pointing out of the central cell. The area of the cell is

denoted by V . With no loss of generality, we also assume that

r ≥ s ≥ t . (13)
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(a)

a1

a2

a3

(b) A cell with its normal vectors.

Figure 2: To the left, a flux molecule with six points. To the fight, a cell with its normal vectors.

In each flux expression, there are three transmissibilities. The flux should be exact for linear

potential field. For such a field, the gradient can be expressed as

∇u = 3
2V

(
1
3(2a1 + a2)(u2 − u1) + 1

3(a1 + 2a2)(u5 − u1)
)

(14)

= 3
2V

(
1
3(2a2 + a3)(u5 − u1) + 1

3(a2 + 2a3)(u8 − u1)
)

.

By applying these expressions in two linear independent directions, we remove two degrees of

freedom in the flux expressions. First, consider the case where the potential is such that the

flux over edge number 1 is zero. Inserting the gradients into f1 = −aT
1 K∇u, and utilising the

relations
∑3

i=1 ai = 0 and 1
V aT

1 Ka1 = 1
2(−r − s + t), we get

(u1 − u2) =
2(s − t)

3r − s + t
(u1 − u5) , (u1 − u8) = −3r + s − t

3r − s + t
(u1 − u5) ,

and equation (11) becomes(
(s − t)t1,1 + t1,8

(
3r + 2(s − t)

)
+ t1,10

(
3r − 2(s − t)

))
(u1 − u5) = 0 . (15)

where we also have used that for a linear potential field we have

(u8 − u3) = −2(u1 − u8) + (u1 − u2) , (u10 − u5) = 2(u5 − u1) + (u1 − u2) .

Next, we let the gradient be parallel to a1. Then

(u8 − u3) = −(u10 − u5) = 2(u1 − u2) .

Equation (11) then becomes

f1 = (t1,1 + 2t1,8 − 2t1,10)(u1 − u2) =
r

2
(u1 − u2) . (16)

The equations (15) and (16) can now be combined to give

t1,1 =
r

2
+

1
3
(−s + t) − 4t1,8 , t1,10 =

1
6
(−s + t) − t1,8 .

Similarly, we get

t2,1 =
1
3
(r − t) +

s

2
− 4t2,2 , t2,2 =

1
6
(r − t) − t2,4 ,
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t3,5 =
1
12

(−r + s) +
t

8
− 1

4
t3,1 , t3,7 =

1
12

(−r + s) − t

8
+

1
4
t3,1 .

For the elements in the system matrix, we get

m1 = t1,1 + t2,1 + t3,1 =
1
6
(r + s + 4t) − 4t1,8 + 4t2,4 + t3,1 ,

m2 = −t1,1 + t2,2 − t3,7 =
1
8
(−2r + 2s − 3t) + 4t1,8 − t2,4 −

1
4
t3,1 ,

m3 = −t1,8 , m4 = t2,4 ,

m5 = −t1,10 − t2,1 + t3,5 =
1
8
(2r − 2s − 3t) + t1,8 − 4t2,4 −

1
4
t3,1 ,

m6 =
1
6
(r − t) − t2,4 , m7 = t3,7 =

1
12

(s − r) − t

8
+

1
4
t3,1 ,

m8 = t1,8 − t2,4 − t3,1 =
1
6
(−r + t) + t1,8 + t2,4 − t3,1 ,

m9 = −t3,5 =
1
24

(2r − 2s − 3t) +
1
4
t3,1 , m10 = t1,10 =

1
6
(−s + t) − t1,8 ,

Inserting the expressions for m1 to m10 into the above inequalities, we get

t1,8 > 0 , t2,4 < 0 , t3,1 − t2,4 − t1,8 >
1
6
(t − r) , (17)

(1
6
(−r + t) + t1,8 + t2,5 − t3,1

)(1
8
(2r − 2s − 3t) + t1,8 − 4t2,4 −

1
4
t3,1

)
−

(1
6
(r + s + 4t) − 4t1,8 + 4t2,4 + t3,1

)( 1
12

(−r + s) − t

8
+

1
4
t3,1

)
> 0 ,(1

6
(−r + t) + t1,8 + t2,4 − t3,1

)(1
8
(−2r + 2s − 3t) + 4t1,8 − t2,4 −

1
4
t3,1

)
−

(1
6
(r + s + 4t) − 4t1,8 + 4t2,4 + t3,1

)( 1
24

(2r − 2s − 3t) +
1
4
t3,1

)
> 0 .

These inequalities are the most general set of conditions for monotonicity of a method with a 6

point flux stencil. A general method whose cell stencil consists of ten cells thus has 3 parameters

which defines the method. Allowing flux molecules with 10 cells, corresponding to using all the

cells in figure 1 for the cell stencil, will introduce another 6 parameters into the equations. The

properties of these extended methods can be explored in the same way as above, but the results

will be much more complicated. Even if we obtain expressions for the elements mi, we have no

way to tell if matrices which are not M-matrices still are inverse monotone.

4.2 The MPFA L-method

The L-method was introduced in [3] for quadrilateral grids, and applied on triangular grids in

[8]. The flux molecule for the L-method consists of three cells. The method approximates the

gradient in a cell by a linear function. This gives us 9 degrees of freedom. Three of these are

used for the potential in the cell centres. For each of the two edges in the flux molecule, both

the flux and the potential is continuous. The continuity of the potential means that the gradient

used in the L-method can be expressed by the potential in the three cell centres in the interaction

region. Consider the cells shown in figure 3(a). The L-method compute the fluxes over edge

number 1 and 5 by using cell number 1, 2, and 6. The gradient in the interaction region can be

expressed by

∇u =
3

2V

(1
3
(2a2 + a3)(u2 − u1) +

1
3
(a2 + 2a3)(u6 − u1)

)
,
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where the vectors ai are defined as in figure 2(b). The flux becomes

f1 = −1
2
aT

2 K∇u =
1
8

(
(−r − 3s + t)(u2 − u1) + 2(−r + t)(u6 − u1)

)
, (18)

where r, s, and t are defined by (12). We can also use the cells 1, 2, and 3 to compute the flux

over edge number 1. This gives us

f1 =
1
8

(
(r − 3s − t)(u1 − u2) + 2(r − t)(u3 − u2)

)
. (19)

Thus, we have two sets of transmissibilities, with cell 1 and 2 as the central cell, respectively.

Define t1 as the transmissibility of cell 1, when this cell is the central one, and t2 in a analogous

manner. For quadrilateral grids, the choice was made by comparing the magnitude of the trans-

missibilities t1 and t2 [3]. If |t1| < |t2| we use t1, else use t2. This criterion, although somewhat

ad hoc, leads to a method with a compact cell stencil and nice monotonicity properties. We will

use the same criterion on triangular grids. The relationship r ≥ s ≥ t leads us to use expres-

sion (19) for the flux. We proceed in the same manner, and get the flux expressions f = Tu,

where f = (f1, . . . , f6),

T =
1
8

⎡
⎢⎢⎢⎢⎢⎢⎣

r − 3s − t 3(−r + s + t) 2(r − t) 0 0 0
0 2(−r + s) 3(r − s − t) −r + s + 3t 0 0
0 0 0 2(−s + t) 3(−r + s − t) 3r − s + t
0 0 0 −r + 3s + t 3(r − s − t) 2(−r + t)

r − s − 3t 0 0 0 2(r − s) 3(−rs + t)
2(s − t) 3(r − s + t) −3r + s − t 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The flux over the edges in cell 1 then becomes

f1 = (t6,2 + t3,6)u1 + (t6,3 + t3,5)u2 + t6,4u3 + t6,1u5 + t3,1u8 + t3,4u10

=
1
4
(3r − 2s + 2t)(u1 − u2) +

1
4
(s − t)(u5 − u10) ,

f2 = (t1,2 + t4,4)u1 + t1,3u2 + t1,6u4 + (t1,1 + t4,5)u5 + t4,6u6 + t1,3u8

=
1
4
(3s + 2t − 2r)(u1 − u5) +

1
4
(r − t)(u2 − u6) ,

f3 = (t2,4 + t5,6)u1 + t5,5u2 + t2,5u5 + t2,2u7 + (t2,3 + t5,1)u8 + t5,2u9

=
1
4
(2s + 3t − 2r)(u1 − u8) +

1
4
(r − s)(u2 − u7) .

We note that none of the cells 3,4, nor 9 contributes to the cell stencil. Thus for a homogeneous

medium on a uniform grid the L-method only uses 7 cells to express the potential over the edges.

For the L-method to be monotone, we need m5 < 0, that is

2r − 2s − 3t < 0 , (20)

When inserting the expressions for mi into (6)- (10), it turns out that (20) also gives a sufficient

condition for monotonicity. Also, when (20) holds, the system matrix will be an M-matrix. Thus

the L-method will yield an M-matrix whenever it is monotone. An analogous result holds for

quadrilateral grids.
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Figure 3: To the left local ordering of cells and edges, and direction of the fluxes. To the right,

vectors used to express the gradient in cell 1, where ν1 = 1
3(−a2) + 1

2(1
3 − η)(−a3) and

ν2 = 1
3(−a3) + 1

2(1
3 − η)(−a2)

4.3 The MPFA O(η)-method

The MPFA O-method was studied in [1, 2, 4, 5, 6]. The MPFA O(η)-method expresses the

potential in each cell in the interaction region by a linear function. For a uniform triangular grid

this leaves in total 3 · 6 = 18 degrees of freedom. We fix the potential in the cell centre for

each cell, using 6 degrees of freedom. We need six degrees of freedom to ensure continuity of

the flux for all edges. The potential is continuous only in one point on each edge, as opposed

to the L-method, which has full continuity of the potential. As we will see, this makes the flux

expressions for the O-method much more complicated.

We denote the cell centre potential in cell i by ui. Define the continuity point on an edge by

x̄j = ηx0 + (1 − η)xmp , (21)

where xmp is the midpoint of the edge, and x0 is the vertex lying in the centre of the interaction

region. The potential in x̄j is denoted ūj . Consider the interaction region shown in figure 3(a).

Using the potentials u1, ū1, and ū5, the gradient in cell 1 can be written as

∇u(1) =
18

(4 − (3η − 1)2)V

((1
3
(−a2) +

1
2
(
1
3
− η)(−a3)

)
(ū1 − u1) (22)

+
(1
3
(−a3) +

1
2
(
1
3
− η)(−a2)

)
(ū5 − u1)

)
, (23)

where V is the area of the cell, and the vectors ai are orthogonal on the edges of the triangle as

shown in figure 3(a). The length of ai is equal to the length of the edge they are orthogonal to,

see figure 2(b). By using this expression, we get for the flux over edge 1

f1 = −1
2
aT

2 K∇u(1) =
9

2(4 − (3η − 1)2)

(
(

1
12

(r + 3s − t) +
η

4
(−r + s + t))(ū1 − u1)

+ (
1
6
(r − t) − η

2
s)(ū6 − u1)

)
,

where r, s, and t are defined in equation (12). The gradients in the other cells can be expressed in

a similar way. By requiring continuity of the flux, we get a linear system of equations Av = Bu,

where v = (ū1, . . . , ū6) and u = (u1, . . . , u6). Note that we have here implicitly have required
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equality of the potentials on the edges. If we define

E =
1
2
diag

(
− s(1 + η),−t(1 + η),−r(1 + η)

)
,

and

F =
1
6

⎡
⎣ 0 −r + t + 3sη r − t + 3sη
−r + s + 3tη 0 r − s + 3tη
s − t + 3rη −s + t + 3rη 0

⎤
⎦ ,

we can write

A =
[

E F
−E −F

]
,

while B reads

B =
1 − η

4

⎡
⎢⎢⎢⎢⎢⎢⎣

−r − s + t r − s − t 0 0 0 0
0 0 r − s − t −r + s − t 0 0
0 0 0 0 −r + s − t −r − s + t
0 0 0 r + s − t −r + s + t 0

r − s + t 0 0 0 0 −r + s + t
0 r − s + t r + s − t 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The linear system can be solved to obtain v = A−1Bu. The flux over the edges can be written

as f = Cv + Du. We let

G =
1
12

diag
(
(r + 3s − t) + 3η(−r + s + t), (−r + s + 3t) + 3η(r − s + t),

(3r − s + t) + 3η(r + s − t)
)

,

and

H =
1
6

⎡
⎣ 0 (r − t) − 3sη 0

0 0 (s − r) − 3tη
(t − s) − 3rη 0 0

⎤
⎦ ,

and write

C =
9

2(4 − (1 − 3η)2)

[
G H
−G −H

]
,

while

D =
9(1 − η)

8(4 − (1 − 3η)2)

⎡
⎢⎢⎢⎢⎢⎢⎣

−r − s + t 0 0 0 0 0
0 0 r − s − t 0 0 0
0 0 0 0 −r + s − t 0
0 0 0 r + s − t 0 0
0 0 0 0 0 −r + s + t
0 r − s + t 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Inserting the expression for v, we obtain a flux expression f = (CA−1B + D)u = Tu. The

matrix T can be computed from the expressions above. However, the elements in the matrix are

quite complicated, so we do not give the expressions here.
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Figure 4: Parameter combinations where the MPFA methods are not monotone. The tests are

performed on an unperturbed grid.

Now, consider the cell stencil shown in figure 1. The fluxes over the edges can be expressed

as

f1 = (t6,2 + t3,6)u1 + (t6,3 + t3,5)u2 + t6,4u3 + t6,5u11 + t6,6u4 + t6,1u5

+ t3,1u8 + t3,2u9 + t3,3u13 + t3,4u10 ,

f2 = (t1,2 + t4,4)u1 + t1,3u2 + t1,4u3 + t1,5u11 + t1,6u4 + (t1,1 + t4,5)u5

+ t4,6u6 + t4,1u12 + t4,2u7 + t4,3u8 ,

f3 = (t5,6 + t2,4)u1 + t5,5u2 + t2,5u5 + t2,6u6 + t2,1u12 + t2,2u7

+ (t2,3 + t5,1)u8 + t5,2u9 + t5,3u13 + t5,4u10 ,

where ti,j refers to element (i, j) in the matrix T. If we collect the factors in front of the poten-

tials ui, we get the elements in the system matrix mi. These coefficients are rather complicated

for a general continuity point η. We will therefore focus on two choices for the parameter η.

For quadrilateral grids, much work has been done on the O(0)-method. Setting η = 0 gives

us m11 = (r−s)2

8(r+s+t) and m12 = (s−t)2

8(r+s+t) . With (13) in mind, we conclude that the O(0)-method

is never an M-matrix unless r = s = t, that is, the grid is K-orthogonal.

In [6], it was shown that the O(1/3)-method will always yield a symmetric system matrix

on triangular grids. For this choice of η the M-matrix region will be described by the equation

s + t − r > 0.

The results for the MPFA O-method is not as satisfactory as for the L-method. The reason is

that although we can find the transmissibilities, we have no general framework to obtain sharp

necessary conditions for monotonicity, due to the limitations mentioned in the end of section 3.

The best we can do is to find regions where the method yields an M-matrix.

5 Numerical results
The monotonicity properties of the methods is tested on a grid constructed by dividing a 12 x 12

parallelograms in two, yielding equilateral triangles. The results are visualised by plotting the

quantities t
r and s

r . Due to (12) and (13) we have

0 ≤ t

r
≤ s

r
≤ 1 ,

while the requirement that K is positive definite gives us

(
1 −

√
t

r

)2
≤ s

r
.
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(c) Monotonicity regions for a

perturbed grid.
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Figure 5: Monotonicity and M-matrix regions for both an unperturbed grid and a perturbed grid.

The region of ellipticity is to the right of the curved line s
r =

(
1 −

√
t
r

)2
. The methods are

monotone to the right of their respective lines.

We test the monotonicity of the methods in media with random elements in the permeability

tensor. The ellipticity of the equation is ensured. The results of such a test is shown in figure 4,

and the corresponding regions of monotonicity are plotted in figure 5(a). Figure 5(b) shows the

regions where the matrix yields an M-matrix.

For more realistic test cases, we perturb the nodes according to

xnew = xold + α rx ynew = yold + α ry ,

where xold and xnew are the x-coordinate before and after perturbation, yold and ynew are defined

similarly, and rx and ry are random numbers in the interval [−0.5, 0.5]. The monotonicity and

M-matrix regions obtained by using α = 0.2 are shown in figure 5(c) and 5(d), respectively.

The parameters r, s, and t are computed for the grid before the nodes are perturbed. We notice

that also for a perturbed grid, the L-method yields an M-matrix whenever it is monotone.

6 Conclusions
In this paper, we have investigated MPFA method on triangular grids, with focus on their mono-

tonicity properties. We have derived expressions for transmissibilities of the L- and the O(η)-
method on a uniform grid in a homogeneous medium. These expressions were used to analyse

the monotonicity regions of the methods. The analyses of the O-methods are somewhat un-

satisfactory due to limitations in our analysis techniques. This should be a topic for further

work.

The results obtained in this paper should be considered used to create grids where the MPFA

methods are guaranteed to give monotone discretizations. Methods to improve the monotonicity

properties of MPFA methods based on the M-matrix property was considered in [7]. With the

new results obtained here, it might be possible to extend this work.
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