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Abstract

A nonideal equation of state using nearest-neighbor interactions is investigated for the multi-

component multiphase Shan-Chen model. We find that by defining the equation of state through

nearest-neighbor interactions, a more accurate pressure field can be obtained, and we achieve good

adherence to Laplace’s law even for low values of the separation parameter and small droplets. A

more accurate pressure field allows more accurate estimates of the surface tension coefficient.
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INTRODUCTION

Since the lattice Boltzmann method was introduced in 1988 by McNamara and Zanetti

[1], it has become a popular alternative to traditional Navier-Stokes solvers for fluid flow.

The model simulates flow by tracking the discrete distribution function. The rules for

interparticle collisions and particle movement are simple, and its structure makes parallel

processing very feasible [2].

Only a few years after the method was introduced, different schemes to extend the method

to multiphase flow were proposed. In chronological order, these include the color model

[3], the pseudo-potential models [4, 5], and the free energy models [6, 7]. In this article,

we use the pseudo-potential model, also called the “Shan-Chen” method, to investigate

multicomponent multiphase (MCMP) flow. This model features two components that exert

a repulsive force on each other, driving them apart and forming two distinct phases.

In single-phase flow, pressure variations are due to slight variations in density, and an

ideal equation of state is used. However, the forces in the Shan-Chen model add nonideal

terms to the equation of state which are especially significant near the interfaces. For the

Shan-Chen model, equations of state have been studied extensively for the single-component

case [8, 9].

A common test to verify that a lattice-Boltzmann model for multiphase flow is reasonable,

is to check that Laplace’s law holds for static, circular droplets. The pressure difference

between the interior and exterior of a droplet should be proportional to the reciprocal of

the droplet’s radius. A numerical example by Shan and Chen [4] showed that their model

respected Laplace’s law when the pressure p was calculated using the ideal gas equation.

Our observation is that this adherence to Laplace’s law relies on a moderately large

separation parameter and reasonably large droplets. When simulating fluids with a very

low surface tension, diffusive effects cause anomalous results, especially for small droplets.

However, the issue may be remedied by including nonideal terms in the pressure. In this

article, we improve on the traditional nonideal equation of state and show that the best

results are achieved if nearest-neighbor terms are accounted for. This improved equation of

state allows more accurate estimates of the surface tension coefficient.
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LATTICE BOLTZMANN METHOD

The purpose of the Lattice Boltzmann method is to track a particle distribution function

fi(x, t) on a discrete lattice. In a multicomponent model, each component has its own

distribution function. Particles may move to neighboring nodes along velocity vectors ei.

On a regular two-dimensional square lattice with diagonal movement and rest particles (also

called a D2Q9 lattice [10]), ei is given by

ei =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0, 0) i = 0,

(sin (iπ/2) ,− cos (iπ/2)) i = 1, 2, 3, 4,
√

2(cos
(

i−5π
2

+ π
4

)
, sin

(
i−5π

2
+ π

4

)
) i = 5, 6, 7, 8.

(1)

From the distribution function, the mass density ρ and momentum ρu can be calculated

as

ρ(x, t) = m
∑

i

fi(x, t), (2)

ρ(x, t)u(x, t) = m
∑

i

fi(x, t)ei, (3)

where m is the particle mass.

The distribution function fi is updated at each time step through the equation

fi(x + ei, t + 1) = fi(x, t) + Ωi, (4)

where the first terms represent advection while the Ωi term accounts for interparticle col-

lisions. For simplicity, we use the single-relaxation time model based on the Bhatnagar,

Gross, Krook (BGK) operator [11]. The BGK operator features a relaxation to an equilib-

rium distribution function f eq and is given by

Ωi =
1

τ
(fi − f eq

I ) (5)

f eq
i = wi

ρ

m

(
1 +

3(ei · u)

c2
s

+
9(ei · u)2

2c4
s

− 3

2

u2

c2
s

)
, (6)

where cs = 1√
3

is the speed of sound, the weights wi are given by

w0 =
4

9
, w1,2,3,4 =

1

9
, w5,6,7,8 =

1

36
, (7)

and the relaxation time parameter τ is related to the kinematic viscosity ν through the

relation

ν =
2τ − 1

6
. (8)
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The terms for the equilibrium distribution (6) can be derived from Gauss-Hermite quadra-

ture. Validity of the BGK operator is dependent on a low Mach number [12].

Pressure variations in lattice Boltzmann methods arise from small variations in density.

When there are no large internal separation forces, the pressure can be calculated using the

ideal gas equation

p = c2
sρ. (9)

Shan-Chen model

Both the single-component and multicomponent Shan-Chen models for multiphase flow

were introduced in 1993 [4]. The multicomponent version was studied deeper by Shan and

Doolen [13].

In the multicomponent model, we need two distribution functions, fR
i and fB

i , where R

and B stand for the “red” and “blue” components. These generic terms are placeholders for

real fluids, for example, “red” may represent oil while “blue” represents water. We let the

superscript a stand for an arbitrary component, whereas â represents the other component.

Each of these distributions evolve as in equation (4). A common velocity u′ for all fluids at

the site is calculated by [14]

u′ =

∑
a=R,B

∑
i

fa
i ei

τa∑
a=R,B

ρa

τa

. (10)

The interaction between the fluids in the Shan-Chen model stems from repelling forces

between red and blue particles. In particular, the force F a on phase a caused by the presence

of phase â is given by

F a = −ρa(x, t)Gaâ

8∑
i=1

wiρ
â(x + ei)ei. (11)

The parameter Gaâ controls the strength of the separation, and controls several aspects such

as surface tension, phase purity, and interface thickness. From the force in equation (11),

each of the components receive an individual velocity ua calculated by [14]

ua = u′ +
τaF a

ρa
. (12)

Maintaining symmetry in the forces requires Gaâ = Gâa. In order to obtain phase separation,

the separation forces in equation (11) must be strong enough to overcome the diffusive effects.

This happens for a critical Gaâ
C , if Gaâ is below this value the phases will simply dissolve
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into one another leaving a uniform mixture. The value of Gaâ
C is dependent on a number

of factors, including the relaxation parameters τR and τB, and the densities ρR and ρB. If

ρR + ρB is fixed, GRB
C is smallest if ρR = ρB and increases as the density ratio between the

most and least abundant component increases [15]. Generally, the surface tension increases

with larger GRB and smaller τR and τB [16]. Sharper and less diffusive interfaces can be

obtained by increasing Gaâ. However, large forces create large velocities which violate the

assumption of a low Mach number and may destabilize the numerical stability of the model.

This limits the magnitude of Gaâ [17]. The choice of separation parameter is also limited

by the surface tension we wish to simulate, if we want to simulate flows where the surface

tension is small, we need to employ a small Gaâ and accept more diffusive interfaces.

Evaluation of pressure

The anomalous pressure readings for low G are a consequence of the impurity of the

phases. When there is a significant number of blue particles dissolved in the droplet (red

phase), the separation forces are non-trivial and the density becomes lower than it would be

if the phases were pure. Shan and Chen observed that the ideal gas equation could be used

in a single component region [4], but for low GRB close to GRB
C , these regions are not single

component. Therefore, nonideal pressure terms are needed to obtain proper estimates for

pressure.

Shan and Doolen [13] give an equation of state that accounts for the mixing. This has been

used extensively, including articles by Kang et al.[18] and Huang et al.[14]. The equation of

state is given by

p(x) =
∑

a

ρa(x)c2
s +

1

3
GRBρR(x)ρB(x). (13)

This equation adds nonideal terms to the pressure compensating for the lower interface

density. However, all the terms in equation (13) depend on the local densities in x only, and

not the nearest neighbors.

Calculating the nonideal pressure using only the local particle densities creates a depen-

dence on the interface’s alignment with the underlying lattice. For example, if a perfectly

sharp interface runs between two fluid sites, so that the neighboring fluid sites on either side

of the interface are purely red or blue, the nonideal pressure term will be zero. However, if

the interface passes through a fluid node so that the interfacial site contains a mixture of red
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and blue particles, the nonideal term will be non-zero. While the Shan-Chen model does not

produce perfectly sharp interfaces, the issue remains that nonideal pressure arises from the

interaction of opposite components in neighboring sites, something which is not accounted

for in equation (13). We have therefore used another expression for nonideal equation of

state which involves the nearest-neighbors. This is inspired by the fact that the full pressure

tensors, found in Shan and Chen’s 1994 paper [5] and He and Doolen [19], involve gradients

and thus also accounts for nearest-neighbor interactions.

We propose the following equation of state:

p(x) =
∑

a

ρa(x)c2
s +

3

10

∑
a=R,B

ρa(x)Gaâ

8∑
i=1

wiρ
â(x + ei). (14)

Note that if ρa(x) and ρâ(x) are constant in x, equation (14) is equivalent to equation (13).

NUMERICAL EXPERIMENTS

Laplace’s law

When there are two immiscible fluids, a typical phase pattern consists of a disperse phase

which forms circular droplets inside a continuous phase. The pressure inside the droplets

is higher than the pressure outside, and at steady state, the pressure difference is given by

Laplace’s law

Δp =
σ

r
, (15)

where r is the droplet’s radius and σ is the surface tension coefficient.

Laplace’s law (15) is a fundamental result in multiphase flow, and all two-phase lattice

Boltzmann methods have been tested to verify that simulated droplets adhere to Laplace’s

law.

Laplace’s law has a very specific application in Shan-Chen simulations. As mentioned

in , σ increases with GRB and decreases with τ , but as the Shan-Chen is not based on

thermodynamic principles, the relationship between σ, τR, τB, and GRB can only be found

experimentally [16]. The simplest way is using rΔp as an estimate for σ, when there are

several drops a least-square approximation can be used. Obviously, an incorrect figure for

Δp will disturb the correct determination of σ.
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Shan and Chen’s original article [4] generated a set of random droplets from an initially

uniform mixture and plotted the particle density difference between the droplets’ interiors

against the inverse of the droplets’ radii. For their choice of parameters, their plot affirmed

the linear relationship which Laplace’s law (15) predicts.

Simulations and results

FIG. 1. (Color online) Pressure fields with GRB = 1.25 (top row) and GRB = 1.6 (second row),

and pressure difference pR−pB between the interior and exterior versus the inverse of the radius of

the droplets (third row). In the left column, pressure is measured using the ideal gas equation (9).

In the middle column, the pressure is measured using the nonideal gas equation (13) with local

terms only. In the figures in the right column, pressure is measured using the nonideal gas equation

(14) with contributions from the nearest neighbors. The average density is 1, and τR = τB = 1.
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FIG. 2. (Color online) Pressure field and pressure difference pR − pB between the interior and

exterior versus the inverse of the radius of the droplets. The columns from left to right represent

pressures calculated from equations (9), (13), and (14). Relaxation parameters τR = τB = 2
3 .

We have run two sets of experiments, with different values of the separation parameters

τR and τB, for the purpose of generating a set of droplets with different radii. In both cases.

the simulations are conducted on a 100×100 grid with periodic boundary conditions. The

particle mass for both components is 1 and the average total density ρR + ρB = 1. 30%

of the particles are red, while the remaining 70% are blue. A slight difference from Shan

and Chen’s experiment is that we seeded some droplets at t = 0 in order to ensure a wide

range of droplet radii. Pressure measurements according to equations (9), (13), and (14)

were taken at t = 10000. Another difference is that we conducted experiments on a square

grid, while Shan and Chen used a triangular grid.
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In the first case, we set τR = τB = 1.0. In this case, we found GRB
C ≈ 1.22, and we

conducted simulations with GRB = 1.25 and GRB = 1.60. The pressure fields, interpreted

according to equations (9), (13), and (14) for this set of experiments are shown in Figure

1. We have also plotted the pressure difference Δp against the reciprocal of each droplet’s

radius.

In the second case, we have τR = τB = 2
3
. In this case, we found that GRB

C ≈ 0.66, and

we conducted simulations with GRB = 0.68 and GRB = 0.85. The pressure fields and Δp

versus 1
r

plots for this set of experiments are shown in Figure (2).

DISCUSSION

Our simulations on static droplets using the Shan-Chen model show that the observation

of Laplace’s law using the ideal gas equation only occurs when GRB is moderately large, and

the radius of the droplets are much larger than the interface width. If these conditions are

not met, the ideal pressure will not respect Laplace’s law.

In the our first simulation, with τR = τB = 1.0 and G = 1.60, we find that Δp is indeed

proportional to r−1 for droplets with a radius of about 5 or larger as seen in Figure 1.

However, the data point for the smallest droplet does not align well with the data points for

the larger droplets. With GRB = 1.25, slightly over GRB
C , the interfaces are wider and more

diffuse, and the ideal pressure’s adherence to Laplace’s law breaks down for larger droplets

than was the case with GRB = 1.60. We observe that the pressure inside the smallest droplet

is lower than in the continuous phase. The smallest droplet has a radius of about 3 cells,

and even its center is in effect part of the interface, giving this droplet a very low density.

This effect which breaks Laplace’s law for low GRB and small droplets when p is calculated

from the ideal gas equation.

The pressure field using the nonideal gas equation based on local densities (13) gives an

improvement, and we see that the pressure difference Δp is positive for all the droplets.

However, plotting the pressure against the inverse of the radius shows that the smallest

droplets still deviate from the straight line predicted by Laplace’s law. With GRB = 1.25,

the pressure difference decreases with 1
r

for r < 5.

The pressure field using the nonideal gas equation based on nearest-neighbor densities

(14) provides the best result. With GRB = 1.0 and τR = τB = 1.0, the data point for the
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smallest droplet aligns well with the other data points. With GRB = 1.25, only (14) shows

Δp consistently increasing with 1
r
.

With τR = τB = 2
3
, and GRB = 0.68, we again see that equations (9) and (13) yield pres-

sures which deviate significantly from Laplace’s law for the smallest droplets. Although the

pressure calculated from (14) does not correspond exactly to Laplace’s law, the relationship

between Δp and r−1 comes closer to a straight line than the other equations for pressure.

With the larger GRB = 0.85, Laplace’s law is again approximately observed using the ideal

gas equation. With equation (13) we see a clear positive correlation between 1
r

and Δp,

although the data points deviate significantly from a straight line. The data points using

equation (14) for pressure deviate less from Laplace’s law.

CONCLUSIONS

The Shan-Chen model is a diffuse interface model, so it is essential to employ a nonideal

equation of state obtain an accurate pressure field. The common nonideal equation of state

(13) does not account for nearest neighbor interactions, and while it is an improvement

over the ideal gas equation, it can break down for small droplets. By taking into account

the nearest-neighbor interactions in the equation of state, the accuracy of the pressure field

is considerably enhanced, and Laplace’s law is acknowledged even when the interfaces are

highly diffusive. The improved adherence to Laplace’s law obtained from equation (14)

allows us to obtain better estimates for the surface tension coefficient.

For moderate GRB, the ideal gas equation will yield adherence to Laplace’s law, albeit

with a different estimate for the surface coefficient σ. Including nonideal terms should give

a more accurate estimate of the surface tension coefficient. The benefit of using equation

(14) instead of equation (13) is greatest when the droplets are small and when GRB is only

slightly larger than the critical GRB
C .
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