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Preface

The structure of the thesis is as follows:
Chapter 1. We give an abbreviated review covering the history and applications of sub-

Riemannian geometry and semi-Riemannian geometry, since those are the areas we make a start
from. We introduce also H(eisenberg)-type groups with a natural left-invariant Riemannian
metric. We provide basic definitions and facts from designated research areas and give a short
overview of our contribution to the subject.

Chapter 2. With the above tools in hands, we are prepared to turn to the main results of
the thesis. We introduce principal notions in sub-semi-Riemannian geometry based on ideas of
sub-Riemannian and semi-Riemannian geometries, emphasizing the difference between them.
We construct various examples of H-type groups with left-invariant semi-Riemannian metrics
and describe their geodesics, our main object of interest. We start from the Heisenberg group
with sub-Lorentzian metric and then, in order to exhibit more features of sub-semi-Riemannian
geometry, we pass to higher dimensional examples. Further, we present general H-type groups
with nondegenerate metric of an arbitrary index and the detailed description of geodesics. We
finish the survey with a summary and a list of open questions related to sub-semi-Riemannian
geometry.

Chapter 3. We include five papers, two of which are published, one accepted, one submit-
ted and one is in preparation. The last article is somewhat independent of the rest of the thesis.
It concerns numerical integration on the discrete nonholonomic systems on sub-Riemannian
Heisenberg-type groups.
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Chapter 1

Introduction

The introductory chapter concerns preliminary knowledge about sub-Riemannian and semi-
Riemannian geometries and Heisenberg-type groups. In the first section we provide a glimpse
of the history of the question and motivation. Section 1.2. is devoted to a brief overview
of the thesis and our contribution to the development of the theory of sub-semi-Riemannian
geometry. The necessary notations and background are contained in Section 1.3.

1.1 History and motivation

1.1.1 Sub-Riemannian geometry and its applications

Interest to sub-Riemannian geometry was awakened in the past by many authors from dif-
ferent research domains, such as control theory, classical mechanics, Riemannian geometry,
electromagnetism, robotics, quantum physics, neurobiology, finances and others. But only
in the last decade of the past century sub-Riemannian geometry has been recognized as a
possible common abstract geometrical framework for all these topics. The subject has re-
ceived popularity and has been studied by a number of different investigators, more or less
independently, from a number of different viewpoints and under a number of different names
(Carnot-Carathéodory geometry, geometric control theory, nonholonomic geometry). Now it
is a fully-fledged research domain and is still very much the subject of active investigation
[BR96, CC09, Mon02, Str86, CDPT07, LD09, BR08].

Sub-Riemannian geometry is a certain type of generalization of the Riemannian geome-
try. Roughly speaking, a sub-Riemannian manifold is a Riemannian manifold together with
constraints on the admissible directions of motion.

A classical example of sub-Riemannian geometry is the well-known 3-dimensional Heisen-
berg group H1. Topologically it is the space R3. The constraint on curves is given by the
so-called horizontal distribution which assigns smoothly to each point of the underlying space
a 2-dimensional plane in the tangent space TR3. The admissible, or horizontal, curves would
be those that are tangent to such distribution of planes.

By the Chow-Rashevskii theorem [Cho39, Ras38] each pair of points on a sub-Riemannian
manifold with a completely nonholonomic distribution can be connected by at least one piece-
wise smooth horizontal curve. Then the distance between two points p and q can be defined
as an infimum of the lengths, defined with respect to a metric given on the distribution, of
all those horizontal curves joining p to q. Moreover, for any two points on a sub-Riemannian
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manifold locally there is a minimizing curve joining these points, i. e. the distance between
these points equals to the length of the curve.

Sub-Riemannian manifolds often occur in the study of constrained systems in classical
mechanics, such as the motion of vehicles on a surface, the motion of robot arms, and the
orbital dynamics of satellites. The functional mechanisms of the human visual cortex may be
clarified with the help of the sub-Riemannian geometry. In another words, it has applications
in those subjects where the movements are constrained but the manifold of reachable positions
should not be decreased.

1.1.2 Semi-Riemannian Geometry

Semi-Riemannian geometry studies smooth manifolds furnished with a nondegenerate metric
of an arbitrary index [O’N83]. Two principal cases of Semi-Riemannian Geometry are Rie-
mannian and Lorentzian Geometries, where the index of the metric is 0 and 1 respectively
[dC92, PR84, BEE96]. For many years these two geometries have developed almost inde-
pendently. More recently, in the 1970’s, progress on causality theory, singularity theory and
black holes in General Relativity, described in the influential work of S. W. Hawking and
G. F. R. Ellis [HE73], resulted in a resurgence of interest in global Lorentzian Geometry. A
formulation of Einstein’s General Theory of Relativity was given in terms of mathematical
model of space-time using prerequisites of general topology and differential geometry. This
model is a manifold with a metric of Lorentzian signature, which was later generalized to a
semi-Riemannian one. Thus, the mathematical model and physical phenomenon met and gave
seeds to the mathematically rigorous theory of semi-Riemannian geometry. Most of the notions
in semi-Riemannian geometry originate in Riemannian and Lorentzian geometries.

1.1.3 Heisenberg-type groups

Heisenberg-type groups, also known as generalized Heisenberg groups, or H-type groups, form
a subclass of the simply connected two-step nilpotent Lie groups having additional symme-
tries. Generalized Heisenberg groups endowed with a left-invariant Riemannian metric pro-
vide a framework in which interesting examples in geometry and analysis were constructed
[BTV95, CDKR91, Kap81, Kap83]. For instance, they appear in the Iwasawa decomposition
of semisimple Lie groups [CDKR91]. In fact, H-type groups can be regarded as special model
spaces for sub-Riemannian geometry in a similar way as Rn among all Riemannian manifolds.

H-type groups with a left-invariant Riemannian metric were introduced by A. Kaplan
[Kap80, Kap81, Kap83] about thirty years ago. They were defined as Riemannian nilmanifolds
attached to Clifford modules. In many ways H-type groups constitute a natural generalization
of the Heisenberg group and represent a first large class of objects with similar features which
can be described using the language of sub-Riemannian geometry. In [Kap81] some of their
geometry were studied and exact formulae for geodesics on H-type groups with Riemannian
metric were obtained. The work in this direction was continued further in, for example,
[CC09, CM06, CCM09].

1.1.4 Motivation

It was first mentioned in [Str86] that sub-Lorentzian geometry would be an interesting line of
research, but there are only few works devoted to this subject [BG01, Gro02, Gro04, Gro06,
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Gro09, CMV08].
In this project we attempt to give a coherent introduction to the general theory of sub-

semi-Riemannian geometry, taking a point of view that the subject is a generalization of
sub-Riemannian and semi-Riemannian geometries. Besides the relationship between these two
geometries and sub-semi-Riemannian geometry, the latter one may have some interest on its
own.

The goal behind this thesis is to understand how the properties of nonholonomic manifolds
change when we substitute a Riemannian metric on a smooth completely nonholonomic dis-
tribution with a semi-Riemannian one. More precisely, we are interested in giving an accurate
definition of sub-semi-Riemannian manifolds. The idea is to begin to study the model exam-
ples of this kind of geometry, that is why we restrict our consideration to 2-step nilpotent Lie
groups equipped with a nondegenerate left-invariant metric. These model examples represent
analogues of Heisenberg-type groups introduced in [Kap80, Kap81, Kap83]. In contrast to Ka-
plan we equip horizontal distributions of our H-type groups with a nondegenerate indefinite
metric instead of a positively definite one.

1.2 Overview of the thesis

This thesis is about sub-semi-Riemannian geometry on H-type groups equipped with nonde-
generate left-invariant metric. To begin the study we construct three examples of such groups:
3-dimensional Heisenberg group with Lorentzian metric, 7-dimensional Quaternion H-type
group with Lorentzian metric and 7-dimensional Quaternion H-type group with nondegener-
ate metric of index 2.

The first interest concerns the existence of geodesics and the setting of explicit formulae for
them on H-type groups with semi-Riemannian metric. We define geodesics as projections of
the solution of the associated Hamiltonian system onto the underlying manifold. We consider
different positions of points and study the cardinality of the set of geodesics connecting these
points. Since the nondegeneracy of the metric brings in addition the causality property to the
configuration space, the resulting geodesics appear to be causal, i. e. timelike, spacelike or
lightlike. In sub-Lorentzian manifolds we define also a time orientation and focus on reachable
sets by geodesics of different causal types and their physical interpretation. Furthermore, we
frequently compare and contrast the results and techniques of sub-semi-Riemannian geometry
to those of sub-Riemannian geometry to alert the reader to the basic differences between these
two geometries.

To develop the theory of sub-semi-Riemannian geometry we introduce and study such basic
notions as the exponential map, the Christoffel symbols and other differential operators. We
show the differential properties of the exponential map, namely, that it possesses an analogue
of “local diffeomorphism”property, although it is not a diffeomorphism at some points.

After the consideration of the aforementioned examples and getting a first feeling of the
subject we proceed to the general case of H-type groups furnished with a nondegenerate
metric of an arbitrary index. In particular, we give a description of geodesics on sub-semi-
Riemannian H-type groups depending on the index of the given nondegenerate metric. We
find geodesics as a solution to a geodesic equation derived with the help of the analogue of
Levi-Civita connection for the sub-semi-Riemannian case. An essential role in this description
plays the skew-symmetry of arising objects with respect to the semi-Riemannian product on
distribution. The evenness or oddness of the index of the metric influences significantly the
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geometric properties of the resulting causal geodesics.

1.3 Necessary background

We start from the basic definitions of sub-Riemannian geometry.
Let M be a connected k-dimensional, k � 3, C∞-manifold. Let TxM denote the tangent

space at a point x ∈ M . The tangent bundle is denoted by TM = ∪x∈MTxM . Fix an
integer n, such that 1 < n < k. Let D be a fixed subbundle of the tangent bundle TM ,
D = ∪x∈MDx, Dx be the fibre over x, of dimension n. The subbundle D will be called bracket
generating, or completely nonholonomic, if the vector fields which are sections of D, together
with all brackets span TxM at each x ∈ M . The bracket generating subbundle D is called the
horizontal subbundle, or horizontal distribution, and a curve γ(t) satisfying γ̇(t) ∈ Dγ(t) a. e. is
called the horizontal curve. A result of Chow and Rashevskii [Cho39, Ras38] says that any two
points on M can be connected by a piecewise smooth horizontal curve because of the bracket
generating property of D.

A sub-Riemannian metric Q on D is a smoothly varying in x positively definite quadratic
form Qx on Dx. The triple (M,D, Q) is called a sub-Riemannian manifold.

Below we present an example of sub-Riemannian manifold – an H-type group with a
Riemannian left-invariant metric on a distribution.

Definition 1 The H-type homogeneous groups are simply connected 2-step nilpotent Lie groups
G whose Lie algebras G are graded and carry an inner product QG such that

• G is the orthogonal direct sum of the generating space V and the center U : G = V ⊕ U ,
[V, V ] = U , [V,U ] = 0,

• the endomorphisms j(u) : V → V , u ∈ U , defined by

QG(j(u)v, w) = QG(u, [v, w]), v, w ∈ V,

satisfy the equation
j2(u) = −|u|2IV , u ∈ U. (1.3.1)

Here QG(·, ·) is an inner product on G defined as a sum of two positively definite non-
degenerating quadratic forms on V and U respectively: QG(·, ·) = QV (·, ·) + QU (·, ·), and
|u|2 = QG(u, u), IV denotes the identity mapping on V . Recall that the Clifford algebra
Cl(U, m) over the m-dimensional space U with its quadratic form QU (·, ·) is defined as the
free associative unitary algebra modulo the relations u2 = −|u|2IV . Then the linear mapping
j : U → End(V ) extends to a representation of Cl(U, m) on V , i. e. V becomes a Clifford mo-
dule over Cl(U, m). If there exists such an endomorphism j(u) : V → V , the algebra G = V ⊕U
is called an H-type algebra. It is known that unless m equals 3 or 7 modulo 8, Cl(U, m) is
a real, Heisenberg or quaternionic matrix algebra. When m is 3 or 7 modulo 8, the algebra
Cl(U,m) is a direct sum of two real or quaternionic matrix algebras (see, for example, [Lou01]).

The Lie algebra G is identified with the tangent space to G at the identity TeG. Push-
forward allows to define the inner product on the entire tangent bundle TG = ∪σTσG as:

QG(·, ·)(σ) = QG(dLσ−1 ·, dLσ−1 ·),
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where Lσ denotes the left translation on G by the element σ ∈ G. Since V ⊂ TeG, the left
translation of V by element σ is dLσ(V ) ⊂ TσG. The mapping D : σ �→ dLσ(V ) represents a
horizontal distribution and any vector field v such that v(σ) ∈ dLσ(V ) is a horizontal vector
at the point σ.

The Lie algebra G is isomorphic to the set of left-invariant vector fields, i. e. vector fields
v ∈ G such that v(σ) = dLσv(e) for any σ ∈ G.

The H-type group G is introduced in such a way, that the horizontal distribution D pos-
sesses a 2-step bracket generating property. In this case by Chow-Rashevskii theorem any two
points in G can be connected by horizontal curves tangent to the distribution D. The triple
(G,D, QV ) is a sub-Riemannian manifold. Due to left translation we can work further with
the distribution at the point e, i. e. with dLe(V ) = V , instead of D.

We define the exponential map as a function exp: G → G in the usual way in the Lie groups
theory.

The most studied examples of H-type groups are the Euclidean k-dimensional space Rk,
the Heisenberg group and the quaternion H-type group. These groups satisfy the j2 condition:
for any v ∈ V and any u1, u2 ∈ U with QU (u1, u2) = 0 there exists u3 ∈ U such that

j(u1)j(u2)v = j(u3)v.

The Euclidean space. The space Rk is a trivial example of an H-type group since all
commutative relations vanish. The horizontal space V is identified with Rk via the exponential
map which is identity in this case. The center U is the empty set.

The Heisenberg group. We restrict our consideration to the 3-dimensional Heisenberg group
H1 which is a graded 2-step nilpotent Lie group whose underlying manifold is R3 with the
noncommutative group law

L(x,y,z)(x
′, y′, z′) = (x, y, z) ◦ (x′, y′, z′) =

(
x + x′, y + y′, z + z′ +

1
2
(xy′ − yx′)

)
.

The Heisenberg algebra G is identified with the set of left-invariant vector fields and has the
following properties:

• G = V ⊕ U , where V has dimension 2 and U has dimension 1, and

• [V, V ] = U , [V,U ] = 0 and [U, U ] = 0.

A left-invariant basis written in normal coordinates is

X = ∂x +
1
2
y∂z, Y = ∂x − 1

2
x∂z, and Z = ∂z = [X, Y ],

and the horizontal distribution is V = span{X, Y }.
The Heisenberg group with a Riemannian metric on the distribution is a sub-Riemannian

manifold and will be denoted by H1
R to accentuate the metric considered. The description of

higher-dimensional analogues of the Heisenberg group can be found, for example, in [CDPT07].
Quaternion H-type group. As in the previous case, we limit ourselves to the 1-dimensional

case. The multidimensional analogue can be seen, for instance, in [CCM09]. We will consider
the quaternion H-type group Q defined by (1.3.1) with V associated with the space of quater-
nions and U as a three-dimensional center. A quaternion can be represented in a matrix way
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by x = aI + bI1 + cI2 + dI3, where

I =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ , I1 =

⎛⎜⎜⎝
0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎟⎠ ,

I2 =

⎛⎜⎜⎝
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎞⎟⎟⎠ , I3 =

⎛⎜⎜⎝
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎞⎟⎟⎠
in the basis of quaternion numbers given by real (4×4)-matrices and a, b, c, d ∈ R. Let us take
the background manifold as R7 and define the noncommutative law with the help of quaternion
multiplication rule:

L(x,z)(x
′, z′) = (x, z) ◦ (x′, z′) =

(
x + x′, z + z′ +

1
2
Im(x̄ ∗ x′)

)
,

for (x, z) and (x′, z′) belong to R4 × R3. Here Im(x̄ ∗ x′) is the imaginary part of the product
x̄∗x′ of the conjugate quaternion x̄ to x by another quaternion x′. Let ∂x0 , . . . , ∂x3 , ∂z1 , . . . , ∂z3

be a standard basis of the tangent space TeQ to Q at e ∈ Q. The basic left-invariant vector
fields are obtained by the action of the tangent map dL(x,z) of L(x,z) to the standard basis as
dL(x,z)

(
∂

∂xi

)
= Xi(x, z), dL(x,z)

(
∂

∂zk

)
= Zk(x, z). Then the vector fields

X0 = ∂x0 +
1
2

(+x1∂z1 − x3∂z2 − x2∂z3) ,

X1 = ∂x1 +
1
2

(−x0∂z1 − x2∂z2 + x3∂z3) ,

X2 = ∂x2 +
1
2

(+x3∂z1 + x1∂z2 + x0∂z3) ,

X3 = ∂x3 +
1
2

(−x2∂z1 + x0∂z2 − x1∂z3) ,

(1.3.2)

span a 4-dimensional horizontal distribution V . The left-invariant vector fields Zβ = ∂zβ
,

β = 1, 2, 3 form a basis of the complement U to V in TeQ. The commutation relations are as
follows

[X0, X1] = −Z1, [X0, X2] = Z3, [X0, X3] = Z2,

[X1, X2] = Z2, [X1, X3] = −Z3, [X2, X3] = −Z1.

Therefore, {X0, . . . , X3} and their commutators span the entire tangent space T(x,z)Q at each
point (x, z) ∈ R4 × R3. This property makes the distribution V to be bracket-generating of
step 2. The Lie algebra with basis {X0, . . . , X3, Z1, Z2, Z3} is nilpotent of step 2.

Let us define the Riemannian metric QV on the distribution V in such a way that QV (Xi, Xj) =
δij , where δij is the Kronecker symbol. With this, we get the sub-Riemannian manifold
QR =

(
R7, V, QV

)
.



Chapter 2

Presentation of main results

In this chapter we introduce the notion of sub-semi-Riemannian geometry. We give examples,
showing the complexity of this geometry, and announce new results. More detailed presentation
of main results can be found in the papers A-D from Chapter 3.

2.1 Semi-Riemannian geometry with constraint

In contrast to sub-Riemannian geometry we furnish the horizontal distribution with a semi-
Riemannian, i. e. nondegenerate indefinite metric.

Let M be a smooth k-dimensional manifold, let TxM and T ∗
xM denote the tangent and

cotangent spaces at a point x ∈ M , and let 〈W, ξ〉 be a pairing between them, W ∈ TxM ,
ξ ∈ T ∗

xM . As before, let D be a smooth n-dimensional, n < k, bracket generating subbundle
of TM = ∪x∈MTxM , D = ∪x∈MDx. A sub-semi-Riemannian metric Q on D is a smoothly
varying in x nondegenerate form Qx on Dx.

We remind that the index p of a metric is the maximal dimension of the space Sx ⊂ Dx,
where the form Qx is negative. If p = 1, then we call such a metric the sub-Lorentzian metric
following the tradition in semi-Riemannian geometry. The sub-semi-Riemannian metric with
index p = 0 is just a sub-Riemannian metric.

Given Qx, we may define a linear mapping gx : T ∗
xM → TxM by

(i) image of T ∗
xM under gx is Dx,

(ii) gx and Qx are related by the identity

Qx(W, gxξ) = 〈W, ξ〉 for all W ∈ Dx. (2.1.1)

The map gx is called a cometric. We understand the action of the cometric g on T ∗M×T ∗M →
R (omitting x) as follows: g(ξ, ψ) = 〈gξ, ψ〉 = Q(gξ, gψ) for any two covectors ξ and ψ from
T ∗M . Let D⊥

x denote the kernel of gx, and D⊥ ⊆ T ∗M be the subbundle with fibers D⊥
x .

Then gx : T ∗
xM/D⊥

x → Dx is a bijection. The elements from D⊥ will be called annihilators.
Remark. If Qx is symmetric, nondegenerate and has index p on Dx, then gx is symmetric,

nondegenerate on and has index p on T ∗
xM/D⊥

x .
Conversely, given a symmetric linear operator gx : T ∗

xM → TxM with image Dx, there is a
unique nondegenerate quadratic form Qx satisfying (2.1.1). The matrix defining the cometric
gx is never invertible. See the paper B for more details on this.

A smooth manifold M with a chosen subbundle D of the tangent bundle and with a given
nondegenerate sub-semi-Riemannian metric Q on D will be called the sub-semi-Riemannian
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manifold. If the index p of Q is 1, then we call the triple (M,D, Q) sub-Lorentzian manifold
and in the case of p = 0 we get sub-Riemannian manifolds, which have been widely studied in
[Gro99, LS95, Mon02, Str86], see also the references cited therein.

We define the causal character of the underlying manifold M as follows. Fix a point x ∈ M .
A horizontal vector v ∈ Dx is called
– timelike if Q(v, v) < 0,
– spacelike if Q(v, v) > 0 or v = 0,
– lightlike if Q(v, v) = 0 and v = 0,
– nonspacelike if Q(v, v) � 0.
A horizontal curve is called timelike if its tangent vector is timelike at each point, similarly for
spacelike, lightlike and nonspacelike curves.

If the index of the metric Q is 1, then we can define a time orientation of the sub-Lorentzian
manifold. By a time orientation of (M,D, Q) we mean a horizontal timelike vector field T on
M . Then T divides all horizontal vectors into two disjoint classes, called future directed and
past directed. Namely, a nonspacelike v ∈ Dx is said to be future (respectively past) directed
if Qx

(T (x), v
)

< 0 (respectively Qx

(T (x), v
)

> 0). Throughout this paper f.d. stands for
“future directed”, t. for “timelike”, and nspc. for “nonspacelike”.

For an open set N and fixed x ∈ N , we define two reachable sets: I+(x, N) (respectively,
J+(x, N)) as the set of all points y ∈ N that can be reached from x along a t.f.d. (respectively,
nspc.f.d.) curve contained in N . In Lorentzian geometry I+(x, N) is called the chronological
future of x (with respect to N); similarly, J+(x, N) is called the causal future of x (with
respect to N). The terminology is adapted from the relativity theory. For a nice and complete
presentation of the semi-Riemannian geometry see [O’N83].

In this thesis we use two approaches to find geodesics: as a projection of a solution of a
Hamiltonian system and as a solution to the geodesic equation. In Sections 2.2–2.4 we use
Hamiltonian formalism which is widely applied in nonholonomic geometry. Given the cometric
gx : T ∗

xM → Dx we form the Hamiltonian function

H(x, ξ) =
1
2
〈gx(ξ), ξ〉

on T ∗M . If we have the orthonormal basis X1, . . . , Xp, . . . , Xn on D such that X1, . . . , Xp are
timelike and Xp+1, . . . , Xn are spacelike, we can write the Hamiltonian function in the form

H(x, ξ) = −1
2

p∑
j=1

〈Xj(x), ξ〉2 +
1
2

n∑
j=p+1

〈Xj(x), ξ〉2,

where p is the index of gx. Consider the Hamiltonian equations

ẋ(t) =
∂H(x, ξ)

∂ξ
, ξ̇(t) = −∂H(x, ξ)

∂x
. (2.1.2)

An absolutely continuous curve Γ(t) =
(
x(t), ξ(t)

)
satisfying (2.1.2) is called a bicharacteristic

of H. Its projection x(t) on M is called normal geodesic. Since we work only with normal
geodesics we will drop the word “normal”for shortness.

Remark. Bicharacteristics of a Hamiltonian H ∈ Ck(T ∗M) are curves of class Ck along
which H is constant. It means that it is not possible that the geodesic x(t) : [a, b] → M can
change its causal character, i. e. Qx(t)

(
ẋ(t), ẋ(t)

)
keeps its sign for all t ∈ [a, b].
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Notice also that if we differentiate the first equation of (2.1.2) and substitute the second
we will obtain the analogue of the geodesic equation in sub-Riemannian geometry. For details
see the paper B.

In Section 2.5 in order to find geodesics we use the notion of Levi-Civita connection on
a manifold M which we define as an affine connection compatible with nondegenerate metric
Q(·, ·) + Q̄(·, ·) on TM , where Q̄(·, ·) is a Riemannian metric on the complement to D in TM .

Let γ(t) be a C1-piecewise curve in M for t ∈ (a, b), where (a, b) is an interval in R. We
remind that a curve γ(t) is called horizontal if γ̇(t) ∈ Dγ(t) for any t where γ̇(t) is defined. A
section ξ(t) is called a cotangent lift of γ(t) if ξ(t) ∈ T ∗

γ(t)M and gγ(t)ξ(t) = γ̇(t) for every t
where it is defined.

If x ∈ M , let Ωx be the set of covectors v in T ∗
xM such that the geodesic γv(t) is defined

at least on [0, 1] and γv(0) = x, ξ(0) = v. The exponential map of M at x is the function

expx : Ωx → M, such that expx(v) = γv(1).

The set Ωx is the largest subset of T ∗
xM on which expx can be defined.

As in sub-Riemannian geometry the exponential map is always differentiable, but it is not a
diffeomorphism at the origin. One of the main results of the Paper B says that the exponential
map expx(v) is a diffeomorphism if v is neither a lightlike vector nor an annihilator. The
sub-semi-Riemannian analogue of Gauss lemma is also stated and proved in Paper B.

In the next sections we present several examples of sub-semi-Riemannian manifolds, that
are Heisenberg-type groups with sub-Lorentzian metric and sub-semi-Riemannian metric of
index 2. Then we focus on the generalization of all H-type groups with nondegenerate metric
of arbitrary index p.

2.2 Sub-Lorentzian Heisenberg group

Let us consider the following example of sub-Lorentzian manifold that we call the Heisenberg
group with sub-Lorentzian metric and provide a description of geodesics on it. We remind
that the Heisenberg group H1 is the space R3 furnished with the noncommutative law of
multiplication

(x, y, z) ◦ (x′, y′, z′) =
(
x + x′, y + y′, z + z′ +

1
2
(yx′ − xy′)

)
.

The two-dimensional horizontal subbundle V is given as a span of the left-invariant vector
fields

X = ∂x +
1
2
y∂z, Y = ∂y − 1

2
x∂z.

Moreover, [X, Y ] = Z = ∂z. Let us consider the Lorentzian metric Q on the horizontal
distribution V . Suppose that it is defined by

Q(X, X) = −1, Q(Y, Y ) = 1, Q(X, Y ) = 0.

Ipso facto, the time orientation is given by the horizontal vector field X. Thus, we call the
triple (R3, V, Q) Heisenberg group with sub-Lorentzian metric, and to differ it from the classical
case we use the notation H1

L.
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We apply the method of Hamiltonian mechanics in order to calculate geodesics γ(t) =
(x, y, z)(t) of different causal character which pass through the origin with a given initial
velocity (ẋ0, ẏ0, ż0). The Hamiltonian system in this case can be reduced to the following
system (see paper A) (

ẍ
ÿ

)
=

(
0 −θ
−θ 0

)(
ẋ
ẏ

)
,

where θ is a real parameter. The solution is of the following form

x(t) =
ẋ0

|θ| sinh(|θ|t) − ẏ0

|θ|
(
cosh(|θ|t) − 1

)
,

y(t) = − ẋ0

|θ|
(
cosh(|θ|t) − 1

)
+

ẏ0

|θ| sinh(|θ|t).
(2.2.1)

Using the horizontality condition ż = 1
2(yẋ − xẏ), one can get (see also [Gro06])

z(t) =
‖v0‖2

2|θ|2
(|θ|t − sinh(|θ|t)), ‖v0‖2 = −ẋ2

0 + ẏ2
0.
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Figure 2.1: The graph of timelike geodesic in R3 passing through the origin

The projection of the timelike geodesic on (x, y)-plane is a branch of hyperbola passing
through the origin, see Figure (2.2).

We investigate the question of quantity of geodesics connecting the origin and an arbitrary
point. For that we calculate −x2+y2 = 4‖v0‖2

|θ|2 sinh2
( |θ|t

2

)
and notice that 4z

−x2+y2 = t
sinh2(|θ|t) −

coth(|θ|t).
Remark. The function μ(τ) = τ

sinh2(τ)
− coth(τ) is strictly decreasing in the interval

(−∞,∞) from 1 to −1, see Figure 2.3. Therefore, the equation

4z

−x2 + y2
=

τ

sinh2(τ)
− coth(τ) (2.2.2)
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x

y

Figure 2.2: The graph of projection of timelike geodesic on (x, y)-plane

has a unique solution τ for given coordinates (x, y, z) of the finite point, if −1 < 4z
−x2+y2 < 1,

and has no solution otherwise.
We would like to draw the reader’s attention to the function μ. It is an intriguing analogue

of the function used by Gaveau [Gav77] to study geodesics and geometry in general on the
classical Heisenberg group H1

R. The classical counterpart μ̃ of the function μ has the form
μ̃(τ) = τ

sin2(τ)
− cot(τ). The classical Heisenberg analogue of the equation (2.2.2) 4z

−x2+y2 =
τ

sin2(τ)
− cot(τ) has always more, or equal to, one solution.
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Figure 2.3: The graphs of functions μ̃(τ) and μ(τ)

We state the following theorem describing the reachable set by geodesics starting from the
origin.

Theorem 1 Let us define the following sets

Rt =
{− x2 + y2 < 0,

4|z|
x2 − y2

< 1
}
,

Rsp =
{− x2 + y2 > 0,

4|z|
−x2 + y2

< 1
}
,

Rl =
{− x2 + y2 = 0, z = 0

}
.

Then there exists a unique geodesic connecting the point O = (0, 0, 0) with a point A = (x, y, z)
that belongs to one of the sets Rt, Rsp or Rl. Particularly, if A ∈ Rt, then the geodesic is
timelike, if A ∈ Rsp, then the geodesic is spacelike, and if A ∈ Rl, then the geodesic is lightlike.
If point A does not belong to any of the sets Rt, Rsp or Rl, then there are no geodesics of any
causal type joining O with A. See Figure 2.4.

In other words, I+(0, R3) = Rt, J+(0, R3) = Rt ∪ Rl. The proof of the theorem and the
parametric equations for geodesics can be found in Paper A in Chapter 3.
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Figure 2.4: The domain reachable from the origin by timelike geodesics Rt

Remark. We would like to stress the difference between sub-Riemannian and sub-Lorentzian
cases. Unlike the sub-Riemannian Heisenberg Group H1

R we get the uniqueness of geodesics
between two points (if exist at all). Also, in the Heisenberg group with a positively definite
metric H1

R the point (0, 0, z), z > 0 is connected with the origin O = (0, 0, 0) by uncountably
many geodesics [CCG07]. Theorem 1 shows that the same point in the Heisenberg group with
Lorentzian metric H1

L can not be connected with origin by any geodesic independently of the
causal character.

2.3 Sub-Lorentzian Quaternion group and its physical inter-
pretation

The sub-Lorentzian Quaternion H-type group QL is defined in the same way as the sub-
Riemannian Quaternion group QR (see Subsection 1.3), but instead of Riemannian metric on
the distribution V we consider a Lorentzian metric QV . Denote by η the matrix of its metric
tensor in the basis {X0, X1, X2, X3} which is defined by (1.3.2):

η =

⎛⎜⎜⎝
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ .

The causal character on QL is defined in a usual way.
We find geodesics on QL as the projections of solutions of the associated Hamiltonian

system on QL. The Hamiltonian function with respect to the sub-Lorentzian metric is defined
in the following way:

HL(x, ξ) = −1
2
〈X0, ξ〉2 +

1
2

3∑
i=1

〈Xi, ξ〉2.

We roll up the corresponding Hamiltonian system to the following linear system of ordinary
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differential equations
ẍ = Aẋ, (2.3.1)

żk = ẋtIkx, k = 1, 2, 3, (2.3.2)

that gives the equations for geodesics on QL. Here the matrices Ik, k = 1, 2, 3, are the basis of
quaternions in the representation given by the real (4×4)-matrices and A is a skew-symmetric
matrix with respect to the Lorentzian metric, i. e. QV (Av, w) = −QV (v, Aw), where v, w ∈ V :

A =

⎛⎜⎜⎝
0 −θ1 θ3 θ2

−θ1 0 −θ2 θ3

θ3 θ2 0 θ1

θ2 −θ3 −θ1 0

⎞⎟⎟⎠ , (2.3.3)

where θ1, θ2, θ3 are real parameters.
In paper C we show that the equation (2.3.1) coincides with the Lorentz force law dU

dt =
ηFU , where U = ẋ is the world velocity of a charged particle, dU

dt is the world momentum
(assuming that the charge and the mass of the particle equals 1) and F is an electromagnetic
tensor field which corresponds to a linear skew-symmetric transformation A: A = ηF . Thus,
we conclude that the equation (2.3.1) describes the motion of a particle of unit charge in the
constant electromagnetic field with electric field

−→
E = (θ2, θ3,−θ1) and magnetic field

−→
B = −−→

E .
The matrix A in (2.3.3) can be transformed to a canonical form

Ã =

⎛⎜⎜⎝
0 |θ| 0 0
|θ| 0 0 0
0 0 0 −|θ|
0 0 |θ| 0

⎞⎟⎟⎠ ,

where |θ| =
√

θ2
1 + θ2

2 + θ2
3. If M is a (4 × 4)-matrix, such that Ã = M−1AM , then x̃ = Mx

and z̃k = ˙̃xMIkM
−1x̃, k = 1, 2, 3. The solution x̃(t) = (x̃0, x̃1, x̃2, x̃3)(t) to the system ¨̃x = Ã ˙̃x

can be written in a matrix form x̃(t) = W (t) ˙̃x(0), where

W (t) =
1
|θ|

⎛⎜⎜⎝
sinh |θ|t cosh |θ|t − 1 0 0

cosh |θ|t − 1 sinh |θ|t 0 0
0 0 sin |θ|t cos |θ|t − 1
0 0 1 − cos |θ|t sin |θ|t

⎞⎟⎟⎠ ,

and ˙̃x(0) is an initial velocity.
Remark 1. The projection of the geodesic onto the (x̃0, x̃1)-plane is a branch of hyperbola

with canonical equation(
x̃0 +

˙̃x1(0)
|θ|

)2

−
(

x̃1 +
˙̃x0(0)
|θ|

)2

=
− ˙̃x2

0(0) + ˙̃x2
1(0)

|θ|2 .

Remark 2. The projection of the geodesic onto the (x̃2, x̃3)-plane is a circle with center

at
(
− ˙̃x3(0)

|θ| ,
˙̃x2(0)
|θ|

)
and of radius

√
˙̃x2
2(0)+ ˙̃x2

3(0)
|θ| .

Explicit formulae for the vertical part z̃ = (z̃1, z̃2, z̃3) can be found in Paper C.
We have the following results regarding the number and causal character of geodesics

connecting the origin of QL and the point P = (x̃, z̃) = (x̃0, x̃1, x̃2, x̃3, z̃1, z̃2, z̃3) ∈ QL, where
|x̃|2L = QV (x̃, x̃) = 0.
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• Given a point P = (x̃, 0), |x̃|L = 0, x̃2
0 + x̃2

1 = 0, there is a unique lightlike geodesic
joining the origin and P which is a straight line.

• Given a point P = (0, z̃) there are uncountably many spacelike geodesics connecting the
origin with P .

• Given a point P = (x̃, z̃), |x̃|L = 0, x̃0 = ±x̃1 = 0, |z̃| = 0, there are uncountably many
spacelike geodesics connecting the origin with P .

• If θ1 = θ2 = θ3 = 0, then the system (2.3.1)-(2.3.2) has a straight line as a solution which
is timelike/lightlike/spacelike if so is the initial velocity.

• Let P = (x̃, z̃), |x̃|L = 0, x̃2
1 < x̃2

0 and m0 is a global maximum of the function μ̄(τ) =
cosh(τ)−cos(τ)−sin(τ) sinh(τ)

sin2 τ
2
(sinh(τ)−τ)−sinh2 τ

2
(sin(τ)−τ)

(see Figure 2.5). If
∣∣∣ z̃2

2+z̃2
3

2z̃1x̃2
0

∣∣∣ < m0, then there exist more

than one spacelike geodesics joining the origin with P . If
∣∣∣ z̃2

2+z̃2
3

2z̃1x̃2
0

∣∣∣ > m0, then there are
no geodesics of any causal type joining 0 and P .

• Given a point P = (x̃, z̃) on the surface |x̃|L = 0, z̃ = 0, there are no timelike geodesics
joining 0 to P .
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Figure 2.5: The graph of function μ̄(τ)

Making a parallel between the sub-Lorentzian Quaternion group QL and the sub-Lorentzian
Heisenberg group H1

L we notice that in the latter one the uniqueness of geodesics joining the
origin and P ∈ Rl happens due to lower dimension of the “spacelike”part of H1

L.
Another interesting observation is that the horizontal part of the geodesic on sub-Lorentzian

Quaternion H-type group QL contains horizontal parts of both geodesics on sub-Riemannian
and sub-Lorentzian Heisenberg groups H1

R and H1
L.

2.4 Sub-semi-Riemannian Quaternion group with the metric
of index 2

The sub-semi-Riemannian Quaternion H-type group QsR with metric of index 2 is defined
similarly to the previous case of QL, but with the metric QV now being an index 2 semi-
Riemannian metric on the distribution V .
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The Hamiltonian function with respect to the semi-Riemannian metric is defined in the
following way:

HsR(x, ξ) = −1
2
〈X0, ξ〉2 − 1

2
〈X1, ξ〉2 +

1
2
〈X2, ξ〉2 +

1
2
〈X3, ξ〉2,

where Xk, k = 0, . . . , 3, span V and (x, ξ) ∈ T ∗QsR.
We reduce the corresponding Hamiltonian system to the following linear system of ordinary

differential equations
ẍ = Aẋ, (2.4.1)

żk = ẋtIkx, k = 1, 2, 3, (2.4.2)

that gives the equations for geodesics on QsR. Here the matrix A is skew-symmetric with
respect to semi-Riemannian product QV . Notice that the equations (2.4.2) are exactly the
same as in case of QL and, in fact, the same as in case of QR, since the horizontality condition
does not depend on the metric.

In paper B one can find the explicit formulae for geodesics on QsR and their homogeneous
norms.

2.5 General sub-semi-Riemannian Heisenberg-type group

It is known that the sub-Riemannian task of finding length-minimizing curves can be formu-
lated in terms of optimal control theory. In the case of sub-Lorentzian geometry it is also
possible reformulate the problem of finding length-maximizing curves as a solution to an affine
control system [Gro09]. But in the general case of sub-semi-Riemannian geometry the task
of finding geometrically optimal curves can not be reformulated in terms of control theory.
That is why the tools from differential geometry, not available to control theory provide an
important novelty and make it possible to work with the subject.

Let U and V be real vector spaces of dimensions m and n respectively with positively
definite product QU (·, ·) on U and nondegenerate product QV (·, ·) of signature (p, q), p+q = n,
on V . Denote by η the metric tensor of the product on V , which is a diagonal matrix with
first p negative and then q positive unities, i. e.

η =
( −Ip 0

0 Iq

)
, (2.5.1)

where Ip and Iq are usual identity matrices of dimensions (p × p) and (q × q) respectively.
The corresponding metric is a nondegenerate metric of index p and QV (v, w) = wtηv, where
v, w ∈ V and wt denotes the vector transposed to w.

We give a new definition of H-type group that carries a sub-semi-Riemannian metric as
follows.

Definition 2 Consider a mapping A : V → V , which is assigned to each u ∈ U and satisfies
the following properties:

i) AAt = AtA = |u|2IV ,

ii) QV (Av, w) = −QV (v, Aw),
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where v, w ∈ V , u ∈ U and IV is the identity mapping in V . Then we can define the bilinear
skew-symmetric map [·, ·] : V × V → U by

QU (u, [v, w]) = QV (Av, w).

We can now define a Lie algebra G = U ⊕ V with a Lie structure on it:

[u + v, r + w] = [v, w] (u, r ∈ U, v, w ∈ V ).

Constructed in this way Lie algebra is graded and 2-step nilpotent with center U . We shall call
such algebras H-type algebras with nondegenerate metric QV (·, ·). We shall refer to associated
Lie group G as H-type group with nondegenerate metric QV (·, ·).
This definition is equivalent to Definition 1 of Kaplan, but written in terms of the matrix A
which is skew-symmetric with respect to the semi-Riemannian product QV (·, ·). As before, the
Lie algebra G is identified with the tangent space to G at the identity TeG. Let Lσ denote the
left translation on G by an element σ ∈ G. Then the mapping D : σ �→ dLσ(V ) is a horizontal
distribution. Push-forward allows to define the scalar product on the entire D:

QD(·, ·)(σ) = QV (dLσ−1 ·, dLσ−1 ·)(e).
The triple (G, D, QD) is a sub-semi-Riemannian manifold and will be referred to as a sub-semi-
Riemannian Heisenberg-type group.

We investigate the problem concerning finding causal geodesics passing through the identity
with a given initial vector on such groups. Let {Vi, Uα}, i = 1, . . . , n, α = 1, . . . , m be
an orthonormal left-invariant basis on V and U respectively. By geodesic we mean a curve
γ : [0, 1] → G such that γ̇ ∈ D and ∇γ̇ γ̇ = 0, where ∇ is a Levi-Civita connection that is
compatible with the semi-Riemannian metric obtained by left translations of QV (·, ·)+QU (·, ·).
A curve t �→ γ(t) ∈ G will be described by means of the vector-valued functions t �→ v(t) ∈ D
and t �→ u(t) ∈ dLγ(t)U by γ(t) = exp

(
v(t), u(t)

)
. Then in terms of global coordinates on G

one gets γ̇ =
n∑

i=1
v̇iVi +

m∑
α=1

u̇αUα ∈ TγG. The equation ∇γ̇ γ̇ = 0 for the geodesic through the

identity with the initial vector γ̇(0) = (v̇0, u̇0) is equivalent to the following system with initial
conditions

(
v(0), u(0)

)
= (0, 0),

(
v̇(0), u̇(0)

)
=

(
v̇0, u̇0

)
{

v̈ − Av̇ = 0,

u̇ + 1
2 [v̇, v] = u̇0,

v(0) = 0, u(0) = 0

v̇(0) = v̇0, u̇(0) = u̇0.

(2.5.2)

The causal character of the geodesic is identical to the causal character of the initial vector.
Observe that the first equation of the system (2.5.2) coincides with the one for sub-Riemannian
geodesics when A is skew-symmetric with respect to Riemannian product on V (see [Kap81])
and the second equation is the condition for the curve γ to be horizontal.

We notice several important properties of the matrix A which will allow us to describe
qualitatively solutions of the system (2.5.2):

• The matrix A has n mutually orthogonal unit eigenvectors and is a diagonalizable matrix
(over C in general).
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• All eigenvalues of A have the same absolute value |u̇0|.

• If λ is an eigenvalue of A, then −λ is also an eigenvalue of A.

• If λ = α + iβ is an eigenvalue of A, then λ̄ = α − iβ is also an eigenvalue of A.

• The following decomposition of A is possible:

A = PDP−1, (2.5.3)

where P is an orthogonal matrix and D is a block-diagonal matrix with (2×2) and (4×4)
blocks of the following possible forms:(

0 |u̇0|
|u̇0| 0

)
, (2.5.4)

(
0 |u̇0|

−|u̇0| 0

)
, (2.5.5)

and ⎛⎜⎜⎝
αk βk

−βk αk
0

0
−αk −βk

βk −αk

⎞⎟⎟⎠ , k = 1, . . . ,
n

4
− r

2
,

where α2
k + β2

k = |u̇0|2, k = 1, . . . , n
4 − r

2 , and r is a number of cells of types (2.5.4) and
(2.5.5) together.

• We may represent the matrix A as a linear combination of matrices ηjα, α = 1, . . . , m:

A = u̇0
1ηj1 + . . . + u̇0

mηjm,

where the matrix η is defined in (2.5.1) and jα : V → V , α = 1, . . . , m, are standard
generators for the representation j of the Clifford algebra Cl(U, m) on V from Definition 1,
such that A = ηj(u̇0). Matrices corresponding to endomorphisms jα are skew-symmetric,
anti-commuting and can be viewed as square roots of −IV .

• If the index p of QV is even, then A has no real eigenvalues and there are no cells of
type (2.5.4) in the decomposition (2.5.3). If the index p is odd, then A has two real
eigenvalues ±|u̇0| and there is only one cell of type (2.5.4) in the decomposition (2.5.3).

Recall that if λ is an eigenvalue of A then there exists a subspace Vλ of V such that
A(Vλ) ⊂ Vλ. In paper D we show that if λ is real, then the projection of the curve v(t)
onto the 2-dimensional space Vλ ∪ V−λ is a branch of hyperbola. The amazing part is that
this projection is identical to the horizontal part (2.2.1) of the geodesic in sub-Lorentzian
Heisenberg group H1

L.
If λ is purely imaginary, we show that the projection of v(t) onto the corresponding 2-

dimensional space Vλ∪V−λ is a circle as in case of geodesics of the sub-Riemannian Heisenberg
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group H1
R. This is a new, though not surprising result since in the sub-Riemannian case the

matrix A is skew-symmetric with respect to the positively definite inner product and has only
purely imaginary eigenvalues, and as it is known, the geodesic on H1

R between the origin in R3

and the point (x, y, z) is the lift of a circular arc joining the origin with (x, y), whose convex
hull has area z.

For complex eigenvalue λ = α + iβ we show that the projection of v(t) onto the corre-
sponding 2-dimensional space Vλ ∪ V−λ is a logarithmic spiral (see Figure 2.6) and coincides
with the horizontal part of the geodesic in sub-semi-Riemannian Quaternion group QsR with
the metric of index 2.

Figure 2.6: Graphics of logarithmic spirals for α + iβ and α − iβ respectively.

Thus, the horizontal part of a geodesic on a sub-semi-Riemannian H-type group is built
from the horizontal parts of the geodesics on H1

R, H1
L and QsR. The reason to this is in

the underlying Clifford module structure of H-type groups that keeps popping up in different
places throughout mathematics and physics showing its multiple significance.

2.6 Summary and open problems

We summarize that we computed normal geodesics for sub-semi-Riemannian H-type groups.
The arised geometry exhibit features of both sub-Riemannian and semi-Riemannian geome-
tries. We hope that with the basic principles and theorems obtained in the thesis the main
business of sub-semi-Riemannian theory is ready to begin, namely, to develop a rich theory
generalizing and integrating the magnificent results of classical sub-Riemannian and semi-
Riemannian theories.

Open problems:
- Generalization to groups with nilpotency of higher steps than 2
- Abnormal extremals in sub-Lorentzian geometry and sub-semi-Riemannian geometry
- Formulation of the problem of finding geodesic in terms of control theory
- Uncovered possible hidden applications to fields such as physics
- Next step could be to consider U and V with both nondegenerate metrics 〈·, ·〉U and

〈·, ·〉V .
- Connectivity in case of index 2 of the metric.
- Connectivity on QL (the rest of the cases).
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[LS95] Wensheng Liu and Héctor J. Sussman. Shortest paths for sub-Riemannian metrics
on rank-two distributions. Mem. Amer. Math. Soc., 118(564):x+104, 1995.

[Mon02] Richard Montgomery. A tour of subriemannian geometries, their geodesics and ap-
plications, volume 91 of Mathematical Surveys and Monographs. American Math-
ematical Society, Providence, RI, 2002.

[O’N83] Barrett O’Neill. Semi-Riemannian geometry, volume 103 of Pure and Applied
Mathematics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New
York, 1983. With applications to relativity.

[PR84] Roger Penrose and Wolfgang Rindler. Spinors and space-time. Vol. 1. Cambridge
Monographs on Mathematical Physics. Cambridge University Press, Cambridge,
1984. Two-spinor calculus and relativistic fields.

[Ras38] P. K. Rashevskii. About connecting two points of complete nonholonomic space
by admissible curve. Uch. Zapiski Ped. Inst. K. Liebnecht, (2):83–94, 1938.

[Str86] Robert S. Strichartz. Sub-Riemannian geometry. J. Differential Geom., 24(2):221–
263, 1986.



28 BIBLIOGRAPHY



Chapter 3

Papers A-E

• Paper A: A. Korolko, I. Markina. Nonholonomic Lorentzian geometry on some H-type
groups. Journal of Geometric Analysis: Volume 19, Issue 4 (2009), 864–889.

• Paper B: A. Korolko, I. Markina. Semi-Riemannian geometry with nonholonomic con-
straints. To appear in December Issue (2011) of Taiwanese Journal of Mathematics.

• Paper C: A. Korolko, I. Markina. Geodesics on H-type quaternion groups with sub-
Lorentzian metric and their physical interpretation. Complex Analysis and Operator
Theory: Volume 4, Issue 3 (2010), 589–618.

• Paper D: A. Korolko. Sub-semi-Riemannian geometry on H-type groups. Submitted to
Mathematica Scandinavica.

• Paper E: A. Korolko, R. McLachlan. Symplectic integrators for nonholonomic systems.
In preparation.


