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INTRODUCTION 
 

An increasing number of men are diagnosed with prostate cancer each year. 

Prostate cancer is now the most common form of cancer in men and the second 

leading cause of cancer deaths after lung cancer.1 There is presently no efficient cure 

for disseminated, androgen-independent prostate cancer. Some of the major challenges 

of prostate cancer are to diagnose the cancer at the earliest possible stage and be able 

to characterize the molecular nature of the cancer tumour to discern between the 

patients who need active, invasive treatment versus those who will benefit from active 

surveillance. It would also be preferable to be able to tailor the treatment regime 

according to the nature of the tumour. Although of clinical diagnostic and prognostic 

value, the currently widely used PSA (prostate specific antigen) biomarker does not 

fulfil the above mentioned requirements, and there is an immense search for new more 

specific and sensitive biomarkers in order to provide the necessary information 

regarding screening, classification, prognosis and prediction. Our motivation to start 

genome-wide gene expression analysis of prostate cancer was the hope that this could 

be a very promising strategy to identify novel markers, to understand better the 

molecular mechanisms of prostate carcinogenesis and progression and that this might 

again be very useful for the discovery of potential therapeutic molecular targets. 

 

INCIDENCE  

  

In Norway, prostate cancer is the most frequent form of cancer in men, with 4168 out 

of 14000 new cases in 2008, which account for approximately 30 % of all cancers in 

men that year. Over the 5-year period 2004-2008 prostate cancer accounted for 29 % 

of all cancer cases in men. 

The vast majority of men diagnosed with prostate cancer are over the age of 50 

(Fig. 1).1, 2 In Norway during the years 2004-2008, 91.3 % of prostate cancer cases 

occurred in men aged 50 years or older.1 The mean age at prostate cancer diagnosis is 

72-74 years.2 Over the years the annual number of prostate cancer cases has increased. 

Since the five-year period 1956-60 to the five-year period 2001-2005 there has been a 
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five-time increase in the reported number of cases in Norway. This trend is worldwide 

and largely due to increased PSA testing since it became commercially available in 

1989, also in men who do not have any symptoms, and a growing and aging 

population. The Cancer Registry of Norway predicts that there will be an increase in 

annually reported cases of 50 % by 2020.3, 4 In terms of number of cancer deaths in 

2007, lung cancer ranks first in men (1224 deaths) closely followed by prostate cancer 

(1090 deaths; 19.3%). There has been a steady increase in the mortality rates since the 

1970s, but there is some evidence that recent mortality trends are more favourable, 

probably due to advances in early diagnosis, therapy and cancer care.1 Norway is one 

of the countries with the highest number of annual cases and deaths due to prostate 

cancer, but there is a general increase internationally as well. Prostate cancer accounts 

for approximately 10% of all malignant tumours in men worldwide. Incidences of 

prostate cancer vary widely between ethnic populations and countries, with the lowest 

rates in Asia and the highest in North America and Scandinavia, especially in African 

American people in the USA.2 Relative to Caucasians, prostate cancer incidence is 

66% higher in African Americans and 39% lower in Asian Americans.5 

 

 
Figure 1. Percentage distribution of cancer incidence by age in males, 2004-2008.                      

(Cancer in Norway 2008)1 
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AETIOLOGY AND RISK FACTORS 

 

The factors that contribute to an increased risk of or predisposition for prostate cancer 

are complex and not entirely understood. Both genetic dispositions, environmental 

factors including geographical location and diet and ethnic origin play a role in the 

elucidation of this complex picture. 

As mentioned above, there are ethnic variations concerning the risk of 

developing prostate cancer. Migration studies have shown that when people from low 

incidence areas (i.e. Japan) move to areas with higher incidence (i.e. USA), the 

incidence of prostate cancer increases, but the ethnic influence is still present. The 

increase is to about 50% of the rate for white Caucasians and to 25% of that for 

African-American people in the USA.6  

While most prostate cancers are sporadic, a hereditary predisposition to prostate 

cancer has been identified. Familial prostate cancer is estimated to account for 10% to 

20% of all cases of prostate cancer, and 5% to 10% of all cases are considered 

hereditary7, 8 and associated with early onset disease. The distinction between familial 

and hereditary prostate cancer relates to the number of family members and 

generations affected.8 Men with hereditary prostate cancer are diagnosed an average of 

6-7 years earlier than sporadic prostate cancer cases.9 Prostate cancer is genetically 

heterogeneous and several genes are likely to contribute to disease susceptibility. 

Hereditary candidate susceptibility genes with high penetrance have been identified, 

including HPC1/RNASEL, HPC2/ELAC2, HPCX, MSR1 and PCAP.10, 11 Linkage 

analysis based on genome-wide scans has mapped susceptibility loci for prostate 

cancer to chromosomes 1, X, 20, 17 and 8. Low-penetrance polymorphisms, in these 

genes and others, including the androgen receptor (AR), vitamin D-receptor, CYP17 

and SRD5A2, seem to play a role in the risk of developing prostate cancer.2 Also, men 

with germ-line mutations in the breast/ovarian cancer susceptibility genes BRCA1 and 

BRCA2 are at greater risk of developing prostate cancer, with a higher risk for carriers 

of BRCA2 than BRCA1 mutations.12, 13 Data from Iceland indicate that men with a 

mutation in BRCA2 are at particularly high risk of developing poorly differentiated, 

disseminated prostate cancer.14 
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Prostate cancer has been associated with a Western lifestyle, in particular a diet 

with a high intake of fat, meat and dairy products.2, 15-17 High intakes of �–linolenic 

acid and calcium are associated with prostate cancer2, 18 while a high intake of phyto-

oestrogens (in for example soybeans) and anti-oxidative compounds like tomato-based 

products high in lycopene, and the micronutrients selenium, vitamin E (�-tocopherol) 

and omega-3 fatty acids seem to reduce the risk of prostate cancer.19-24  

Androgens are important for the development of the normal prostate and 

withdrawal of testosterone is a well known and effective treatment for prostate cancer, 

but studies demonstrating the importance of varying androgen concentrations in 

prostate cancer are few and uncertain. Stattin et al. showed that high levels of 

circulating testosterone are not associated with increased prostate cancer risk.2, 25 High 

concentrations of the Insulin growth factor I (IGF-I), a peptide growth factor, increases 

the risk of prostate cancer and is proposed to represent a link between the western 

lifestyle and prostate cancer.  

 Viruses are known etiological agents accounting for approximately 20-25% of 

human cancers. Recently, the newly discovered gammaretrovirus xenotropic murine 

leukaemia virus-related virus (XMRV) has been identified in a percentage (0-27%) of 

prostate cancers with positive findings in the USA, but negative in European studies.26-

29 The incidence of the virus remains uncertain, but there seems to be a possible 

association between viral infection and prostate cancer, with different possible models 

of carcinogenesis dependent on whether epithelial or stromal cells are infected. The 

possible molecular mechanisms and etiological role in prostate carcinogenesis remain 

uncertain and needs to be studied further. 

 

  

THE PROSTATE AND CHARACTERISTICS OF PROSTATE CANCER 

The prostate 

In 335 B.C. Herophilus of Alexandria used the word ‘prohistani’ (Greek), which 

means ‘to stand in front of’, to describe the organ located ‘in front of’ the urinary 

bladder (Fig. 2). Although the existence of the prostate has been known for more than 
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two thousand years, accurate anatomical description of the gland did not appear until 

the Renaissance, with illustrations of the prostate and seminal vesicles by Regnier de 

Graaf around 1660.30  

 

 
Figure 2. A sketch of the anatomical location of the prostate gland in men. 

 

The prostate consists of three anatomical zones; the peripheral, transitional and central 

zone31 (Fig. 3). Few biochemical differences between the epithelial cells of the three 

zones have been demonstrated. 

 

 

 

 

 

 

 

 

 

 

Figure 3. An anatomical horizontal cross section of the prostate, displaying the three anatomical zones 

as well as the presence of cancer in the peripheral zone. (Picture courtesy by Lars A. Akslen and Ole J. 

Halvorsen). 
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The central zone does differ in containing a relatively large proportion of epithelial 

cells containing pepsinogen 2.32 Epidermal growth factor (EGF) receptors also seem to 

be present in a greater concentration in the central and transition zones than in the 

peripheral zone.  

 The prostate is an exocrine walnut-sized gland consisting of ductal-acinar 

structures embedded in stromal tissue.33 The acini are lined by well-differentiated 

secretory or luminal epithelial cells, which are androgen dependent and secrete 

proteins like Prostate specific antigen (PSA) into the lumen of the duct. These cells are 

surrounded by an underlying layer of proliferating non-secretory basal epithelial cells, 

that are primarily androgen independent and rest on the basement membrane, 

separating the epithelial cells from the surrounding stroma (Fig. 4). The basal cells 

express high molecular weight cytokeratines and p63, as opposed to luminal cells. 

Their absence is used as a marker of prostate cancer. In addition, rare neuroendocrine 

cells are present and are believed to be involved in the regulation of prostatic secretory 

activity and cell growth. The stroma surrounding the prostate is composed of smooth 

muscle cells, fibroblasts, lymphocytes and neurovascular tissue in a supporting 

extracellular matrix.34-37 

 

 
Figure 4. Three cell types in adult prostate epithelium. Basal cells (green) line the outside of the gland 

and reside against the basement membrane (black). Luminal cells (orange) contact the basal layer and 

the fluid-filled lumen. Rare neuroendocrine cells (red) are typically found in the basal layer with 

neurite-like extensions that can approach the luminal layer. (Goldstein et al., Mol. Oncol.,2010, 1-

12)35.  
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Characteristics of prostate cancer 

Most prostate cancers occur in the peripheral zone, less than 30% occur in the 

transitional zone and these have lower biochemical recurrence rates and are less 

malignant than tumours originating in the peripheral zone.38 The transitional zone is 

the predilection site of benign prostate hyperplasia (BPH). 

Prostatic intraepithelial neoplasia (PIN) which progresses to high-grade PIN 

(HGPIN) is considered the precursor lesion of prostate cancer.39-41 In HGPIN, the 

basal layer is present, but it shares otherwise many phenotypic similarities with cancer. 

HGPIN is characterized by benign prostatic acini and ducts, lined by cytologically 

atypical cells with prominent nucleoli in many cells, nuclear enlargement, nuclear 

crowding, an increased density of the cytoplasm and variation in nucleolar size. The 

volume of HGPIN has a positive correlation with the risk of cancer, tumour stage and 

Gleason grade.42, 43 Proliferative inflammatory atrophy (PIA) is described as discrete 

foci of proliferative glandular epithelium, with morphological appearance of simple 

atrophy or postatrophic hyperplasia occurring in association with inflammation.44, 45 

Etiological and pathological findings suggest that PIA may be involved in prostate 

carcinogenesis as maybe a very early precursor followed by HGPIN and malignant 

transformation,46, 47 PIA has also been suggested to represent the intermediate luminal 

cell type suggested to be the target of neoplastic transformation in prostate cancer.48 

The role of PIA in prostate cancer is uncertain and needs to be studied further. 

Recently, a model outlining the hierarchial relationship between the cells in the 

prostate epithelium was suggested35 (Fig. 5), with implications for the presumed cell of 

origin for prostate cancer. The cancer initiating cell type has remained unclear49 (Fig. 

6). Pathology observations, showing that more than 95% of prostate cancers express 

luminal markers with absence of basal cells, have led many to propose luminal cells as 

the source of prostate cancer (Fig. 6 – benign prostate tissue section to the left and 

prostate cancer tissue section to the right). The alternative stem cell hypothesis, 

however, proposes that a cancer stem cell might be the cancer initiating cell.50 A third 

scenario is that differentiation blockage at any intermediate developmental stage 

towards terminal luminal differentiation may give rise to cancer initiating cells. Very 

recently, strong evidence was presented that prostate cancer may originate among 
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basal cells51 and that the basal compartment and the luminal compartment may be 

capable of proliferating independently.52 Different possibilities are, however, not 

mutually exclusive, and further investigation into both normal lineage differentiation 

and prostate carcinogenesis is required.  

 

 
Figure 5. Proposed model for the prostate epithelial hierarchy. Stem cells within the basal layer likely 

give rise to multi-potent progenitor or intermediate cells that generate all three epithelial cell types. 

Evidence supports the existence of a luminal-restricted progenitor that can give rise to mature luminal 

cells. (Goldstein et al., Mol. Oncol.,2010, 1-12)35 

 

 
Figure 6. A schematic to illustrate alternative relationships between different epithelial cell types in 

the prostate gland as well as stained histological sections from prostate benign (left) and cancer (right) 

tissue from Rostad & Mannelqvist et al. (Paper I). 

Clinical and histopathological factors 

The initial TNM classification (before biopsy) and Gleason grading (after biopsy or 

surgery) are useful and widely applied prognostic tools in the assessment of prostate 
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cancer. The Gleason histological grading system, developed by Gleason in 196653 and 

later revised,54, 55 is based on the histological architectural pattern of the tumour (Fig. 

7).  

 

 
Figure 7. The Gleason grading system in which the sum of the two most prominent histological 

grades between one and five gives the Gleason score.56  

 

The grade is defined as the sum of the two most common growth patterns among five 

different patterns (grade 1-5) and reported as the Gleason score, thereby taking into 

consideration the heterogeneity of prostate cancer. This histologic grading is a 

powerful predictor of progression, and the prognosis of the cancer is more adverse 

with higher Gleason score.57, 58 The TNM classification (T-primary tumour; N-lymph 

node status; M-distant metastasis) is the most widely used system for prostate cancer 

clinical staging, in which stage T1 is clinically unsuspected prostate cancers, stage T2 

is prostate-confined cancer and stages T3 and T4 are tumours that transgress the 

boundaries of the prostatic gland (extension into the periprostatic tissue and/or seminal 

vesicle invasion (T3) with possible metastasis to other organs (T4)).59, 60 
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CHARACTERISTICS OF THE ETS-FAMILY OF TRANSCRIPTION 

FACTORS  

A transcription factor is any protein required to initiate or regulate gene transcription. 

The ETS family of nuclear transcription factors consists of approximately 30 

evolutionary conserved members in mammals, of which 27 have been identified in 

humans. The founding member of the ETS (E26 transformation-specific) (E-twenty-six 

specific) gene family, v-ets, was originally identified as a gag-myb-ets fusion 

oncogene of the avian transforming retrovirus E26, which induces both erythroblastic 

and myeloblastic leukaemia in chickens.61, 62 A characteristic feature of this family is 

that they share an evolutionary conserved winged helix-turn-helix DNA binding ETS 

domain of about 85 amino acid residues, which mediates binding to purine-rich DNA 

sequences with a central GGAA/T core consensus, the ETS binding site (EBS), and 

additional flanking nucleotides.63 It is one of the largest transcription factor families 

and based upon their structural composition and similarities in the ETS domain they 

are divided into 11 subfamilies (Fig 8).  

Most of the ETS-family members have the ETS domain in their C-terminal 

regions, although some have the domain in their N-terminal regions. In addition, a 

subset of ETS family proteins (ETS, ERG, ELG, ESE, TEL and PDEF) has another 

conserved domain called the Pointed domain (PNT) at their N-terminal regions, which 

forms a helix-loop-helix structure for protein-protein interactions. Some ETS proteins 

(TEL, ERF and TCF) contain a repressor domain and the majority (ETS, ERG, ELG, 

PEA3, ESE, SPI and TCF) contain a transcription activation domain (TAD).64-66 The 

ETS family of proteins displays distinct DNA binding specificities. The ETS domain 

and the flanking amino acid sequences of the proteins influence the DNA binding 

affinity, and alterations of single amino acids in the ETS domain can change its DNA 

binding specificities. 
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Figure 8. The ETS family of transcription factors. The main functional domains characteristic of 

members of each ETS sub family are depicted; alternative names for each member are given. 

Domains: AD, transcriptional activation domain; ETS, DNA binding domain; Pointed, basic helix–

loop–helix pointed domain; RD, transcriptional repressor domain. Protein abbreviations: E1AF, E1A 

enhancer binding protein; EHF, ETS homologous factor; ELF, E74-like factor; ELG, ETS like gene; 

ER81, ETS related protein 81; ERF, ETS repressor factor; ERG, v-ets avian erythroblastosis virus E26 

oncogene related; ERM, ETS related molecule; ESE, Epithelial specific ETS; ETS, v-ets 

erythroblastosis virus E26 oncogene homolog; ETV, ETS variant gene; FLI1, Friend leukemia virus 

integration 1; FEV, Fifth Ewing variant; GABP, GA repeat binding protein; LIN, abnormal cell 

lineage; MEF, myeloid ELF1-like factor; NERF, New ETS-related factor; PEA3, polyomavirus 

enhancer activator-3; PDEF, prostate derived ETS transcription factor; PSE, prostate epithelium-

specific ETS; SAP, Serum response factor accessory protein; SPDEF, SAM pointed domain 

containing ETS transcription factor; SPI, spleen focus forming virus proviral integration oncogene; 

TEL, translocation, Ets, leukemia; TCF, Ternary complex factor. (Gutierrez-Hartmann, TRENDS in 

Endocrinology and Metabolism; 18; 150-158; 2007)64 

 

ETS binding sites (EBS) have been identified in the promoter regions of viral and 

cellular genes, and ETS factors are involved in the regulation of expression of genes 

critical for proper control of cellular proliferation, differentiation, development, 

haematopoiesis, apoptosis, metastasis, tissue remodelling, angiogenesis, metastasis and 
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transformation. More than 400 ETS target genes have been postulated based upon the 

presence of functional EBS in their regulatory regions, 200 of which have been 

identified.62, 63, 67-72 

 Some ETS family proteins are expressed ubiquitously and some in a tissue-

specific manner. For example, ERG is initially expressed in embryonic endothelial 

tissues and later in the kidney, urogenital tracts and hematopoietic cells, while ETS2 is 

expressed ubiquitously.71  

 ETS family proteins regulate gene expression by functional interaction and 

complex formation with other transcription factors and co-factors on their DNA 

binding sites. Many ETS family proteins are downstream nuclear targets of the signal 

transduction cascades. Post-translational modification of ETS family proteins, for 

example by phosphorylation, modulates DNA-binding activities, association with co-

regulatory partners, transcriptional activation capacities, and subcellular localization.62, 

67, 71 Many ETS domain transcription factors are subject to autoregulation, during 

which their DNA binding activity is usually masked until an appropriate trigger and 

interactions with co-regulatory transcription factor(s) are in place. The ability of 

individual ETS factors to function as activators or repressors is also dependent upon 

promoter, co-factors and cell context.67 Unique combinations of protein-protein 

interactions direct different ETS factors to regulate the expression of specific target 

genes. A subset of ETS factors have repressor activity (e.g. ERF, YAN, TEL, NET) 

and may directly compete with other ETS factors for binding to EBS. For example, the 

transcriptional activity of ETS2 is inhibited by protein-protein interaction with ERG.73 

It has also been shown that ERG interacts with ESET (Erg-associated protein with 

SET domain), a histone H3-specific methyltransferase, thus participating in 

transcriptional repression.74 Unique promoter interactions with specific ETS factors 

have been demonstrated in the case of ETS2 (or ETS1) and ERG on the collagenase 

(MMP1) and stromelysin (MMP3) promoters. ERG appears to act as an activator of the 

collagenase promoter, while it inhibits stimulation of the stromelysin promoter by 

ETS2, whereas ETS2 stimulates both. In addition, interaction with other proteins can 

block the ability of ETS factors to activate transcription.67, 75 Overlap between specific 

protein-protein interactions may provide a mechanism to control the diverse functions 
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of ETS family. Such combinatorial control provides a mechanism to fine-tune the 

networks of cellular processes.   

Cellular responses to environmental stimuli are controlled by a series of 

signalling cascades that transduce extracellular signals from ligand activated cell 

surface receptors to the nucleus. There is a dynamic interplay between signalling 

pathways that results in the complex pattern of cell-type specific responses required 

for proliferation, differentiation and survival. Many of the ETS family proteins are 

downstream nuclear targets of the Ras-MAP kinase signalling pathway. They also 

interact with and influence crosstalk between specific cellular partners, which 

influence other signalling pathways such as the Jak/Stat, Smad and Wnt signalling 

pathways.71,76 ETS family members can act as both upstream and downstream 

effectors of signalling pathways. As downstream effectors their activities are directly 

controlled by specific phosphorylations, resulting in their ability to activate or repress 

specific target genes. As upstream effectors they are responsible for the expression of 

numerous growth factor receptors.76  

Among the first characterised interactions between ETS factors and another 

transcription factor, were studies demonstrating cooperativity between ETS factors and 

the AP1 (FOS/JUN) transcriptional complex to activate cellular responses by 

increasing the transcriptional activities of promoters containing AP1-EBS binding 

sites, including MMP1 (matrix metalloprotease-1 / collagenase), uPA (urokinase 

plasminogen activator), GM-CSF (granulocyte-macrophage colony stimulating 

factor), maspin (serpinB5) and TIMP-1 (tissue inhibitor of metalloproteinase-1). In 

contrast, MafB, and AP1 like protein, inhibits ETS1-mediated transactivation of the 

AP1-EBS sites.77 

ETS transcription factors and cancer  

Following the identification of ERG as being highly upregulated in a subset of prostate 

cancer patients,78, 79 ETS fusions have become one of the most common genetic 

markers of  prostate cancer.72, 80 The first clinically relevant candidates to dominant 

oncogenes in prostate cancer are ETS fusion genes resulting from chromosomal 

rearrangement of the 5’ untranslated region of the prostate-specific, androgen 
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responsive, Transmembrane serine protease gene (TMPSS2) to ERG, ETV1 (ER81), 

ETV4 (PEA3) or ETV5.80, 81 TMPRSS2:ETS gene fusions might be the most common 

genetic abnormality identified so far in human malignancies, resulting in androgen 

mediated induction of the respective ETS factors, which are then thought to activate a 

repertoire of ETS-responsive genes, leading towards prostate cell transformation.80 

Multiple genetic and epigenetic events may be required for cancer development. 

Oncogenes and tumour suppressor genes act as modulators of cell proliferation, while 

the balance of apoptotic and anti-apoptotic genes controls cell death. The hallmarks of 

cancer cells are: 1. independence from mitogenic/growth signals; 2. loss of sensitivity 

to “anti-growth” signals; 3. evasion of apoptosis; 4. induction of angiogenesis; 5. 

release from senescence; and 6. invasiveness and metastasis82 (Fig. 9).  

 

                       
Figure 9.  Acquired capabilities of cancer. (Hanahan and Weinberg,, Cell; 100; 57-70, 2000)82                          

 

 Oncogenic activation of cellular genes may occur through multiple 

mechanisms, including amplification and/or overexpression, activation by insertions of 

new regulatory sequences following retroviral integration, fusion with other proteins 

as a consequence of chromosomal translocations or through point mutations. ETS 

genes have altered expression patterns in both leukaemia and solid tumours, are 

chromosomally amplified or deleted, and are located at translocation breakpoints.72, 80 

As many ETS family transcription factors are downstream nuclear targets of Ras-MAP 
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kinase signalling, the deregulation of ETS genes may result in malignant 

transformation of cells.63, 68, 71 Since some ETS family proteins affect the expression of 

several oncogenes and tumour suppressor genes by direct regulation of their 

promoters, activation and repression, respectively, or by protein-protein interactions, 

and it is evident that they play important roles in cell proliferation, apoptosis and 

differentiation in normal cells, deregulated expression of ETS family proteins could 

lead to disruption of these processes and contribute to development and progression of 

malignant tumours.71 Several ETS family genes are expressed in the normal and/or 

cancerous prostate, including ETS1, ETS2, ELF1, ESE2 (ELF5), ER81 (ETV1), ERG, 

PDEF and PEA3 (ETV4). Advanced stages of prostate cancer are associated with 

expression of FLI1, ELF1, PDEF, ETS1 and ETS2. Transcriptional activation of ETS 

genes is essential for upregulation of extracellular matrix-degrading proteins including 

MMP1, MMP9, uPA, and the uPA receptor, many of which are associated with 

clinical features such as lymph node status and prognosis.72  

  The function of ETS family proteins has to be considered in combination with 

other cellular proteins, since the function of the same ETS protein sometimes differs in 

different types of tissues based on differences in cellular context.71 For example, 

expression of FLI1 is induced by ETS1 in endothelial cells but not in fibroblasts83, and 

ETS1 is involved in angiogenesis, but overexpression of ETS1 in umbilical vein 

endothelial cells induces apoptosis under serum deprived conditions.84  

 Individual ETS factors are overexpressed or downregulated in cancers. ETS2 is 

overexpressed in prostate and breast cancer, and this overexpression is necessary for 

transformed properties of the cancer cells. ETS1 expression is correlated with more 

malignant carcinomas and is a negative prognostic indicator.71 Conversely, PDEF 

expression is lost in many epithelial cancers.85 Among the multiple ETS target genes 

that are important for cancer progression are those that function in control of cell 

proliferation (cyclins and cdks), adhesion (cadherins, integrins, cell adhesion 

molecules (CAMs)), motility/migration (hepatocyte growth factor receptor c-Met, 

vimentin), cell survival (Bcl-2), invasion (uPA & uPAR, PAI, MMPs, TIMPs, 

heparanase), extravasation (MMPs, integrins), micro-metastasis (osteopontin, 

parathyroid hormone-related peptide (PTHrP), chemokine receptors (RANTES, MIP-
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3�), CD44), and establishment and maintenance of distant site metastasis and 

angiogenesis (integrin �3, VEGF, Flt-1/KDR, Tie2).67, 71 Many known stroma-

modifying factors have known linkage to ETS factors. For example, ETS1 is a 

downstream effector of the epithelial mesenchymal transition (EMT) promoting 

hepatocyte growth factor (HGF), emanating from the stroma, while in tumour cells 

ETS1 and PEA3 can induce the expression of EMT markers such as vimentin and 

MMPs. ETS1 is also an activator of the HGF receptor c-MET, thus forming a positive 

feedback loop. ETS proteins can also mediate similar communication across different 

tumour and stroma compartments. VEGF, produced by tumour cells and fibroblasts, 

can induce ETS1 expression in endothelial cells.86 Concomitantly, ETS1, in 

cooperation with Hif-2�, activates the transcription of VEGF receptor 2.87 Both ETS1 

and FLI1 are downstream effectors of, and are differentially regulated, by TGF�, and 

these two factors have divergent functions in both fibroblasts and endothelial cells.  

Several ETS family proteins have been shown to be involved in the apoptotic 

process, and most members behave anti-apoptotically. For example, ETS2 and PU1 

rescue apoptosis in macrophages upon deprivation of macrophage colony-stimulating 

factor (M-CSF), through upregulation of anti-apoptotic Bcl-XL but not of apoptotic 

Bcl-Xs.88 FLI1 and ERG inhibit apoptosis in NIH/3T3 cells induced by serum 

depletion or treated with a calcium ionophore.89 Whether the ETS family proteins 

induce or prevent apoptotic cell death may depend on several factors such as 

expression levels, cellular contexts and the existence of agonistic or antagonistic 

signals in cells. ETS1 and ETS2 have been reported to be pro- as well as anti-

apoptotic. For example, expression of the p42 splice variant of ETS1 promotes Fas-

mediated apoptosis by upregulating caspase-1 in human colon cancer cells,90 and 

overexpression of ETS1 in human umbilical vein endothelial cells induces apoptosis 

under serum-deprived conditions.84 Overexpression of ETS2 in prostate tumour cells 

increases apoptosis accompanied by increased levels of p21WAF1/Cip1.91 There are 

several reports showing that ETS family proteins directly induce expression of 

apoptosis related genes. Expression of the Fas ligand gene in vascular smooth muscle 

cells is controlled by cooperative activation between ETS1 and Sp1,92 and the EBS of 

the 5’-flanking region of the caspase-3 gene is necessary to achieve sustained 
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transcriptional activity of caspase-3.93 FLI1 negatively regulates Rb expression by 

binding to an EBS in the promoter.94 It has also been reported that FLI1 enhances the 

bcl-2 promoter activity in leukaemic cells, thereby rescuing the cells from apoptosis.95 

 Several ETS transcription factors are preferentially expressed in certain lineages 

of hematopoietic cells and play crucial roles in their development and differentiation. 

Many are also aberrantly expressed, often due to chromosomal translocations, and play 

essential roles in the transformation and development of leukaemias. These includes 

PU1,96, 97 TEL, which is often a target for chromosomal translocations,98, 99 TLS-ERG 

in acute megakaryoblastic leukaemia (AMKL)100, 101 and ERG and ETS2 in myeloid 

leukaemia.102 The TEL (ETV6) gene, for example, is juxtaposed to several tyrosine 

kinase genes in leukaemias, including the platelet-derived growth factor receptor � 

(PDGFR �) gene by [t(5;12)(q33;p13)] translocation in human chronic 

myelomonocytic leukaemias,103 the c-abl gene by [t(9;12)(q34;p13)] in chronic 

myelogenous leukaemias (CML) and acute lymphoblastic leukaemias (ALL),104 the 

Jak2 gene by [t(9;12)(p24;p13)] in T-cell and B-cell ALL,105 the TrkC/NTRK3 

(neutrophin-3 receptor) gene by [t(12;15)(p13q24)] in congenital fibrosarcomas,106 and 

ARG (c-abl related gene)/ABL2 by [t(1;12)(q25;p13)] in an acute myelogenous 

leukaemia (AML) line.107 All of the above-mentioned fused proteins possess the N-

terminal region including the pointed (PNT) domain for homo- and hetero-

dimerization from TEL and the intact tyrosine kinase domains from the partner 

proteins. Self-association through the PNT domain of TEL and subsequent activation 

of kinase activity of the fusion protein likely contributes to transformation of the 

cells.108  

The Ewing sarcoma (EWS) family of tumours share recurrent translocations 

that fuse the EWS gene from 22q12 to mainly FLI1, but also ERG (in approximately 

10% of EWS)109 ETV1, E1AF and FEV, all members of the ETS family of 

transcription factors. The N-terminal region of EWS, an RNA-binding protein, and the 

C-terminal region of FLI1, including the Ets domain, are fused forming EWS:FLI1 

�t(11;22)(q24;q12)� in 85% to 95% of the cases.110 They possess increased 

transactivation potential in comparison with the wild-type FLI1 gene and this activity 

is thought to contribute to malignant transformation of the cells. The EWS-ETS fusion 
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is causative in the development of Ewing's tumours, mainly due to the abnormal 

transcriptional regulation of key target genes which are involved in the regulation of 

cell cycle, signal transduction and migration.111 EWS and related tumours are 

characterized by elevated level of c-MYC expression. It has been shown that EWS-

FLI1 is a transactivator of the c-MYC promoter112 and is often associated with poor 

prognosis.113 The expression of EWS:FLI1 also leads to a considerable downregulation 

of the p57KIP2 tumour suppressor gene.114 In some cases of Ewing’s sarcoma, the EWS 

gene is fused with other ETS family genes including ERG, ER81/ETV1, FEV and 

E1AF.71,115�
 

 

ERG  

 

ERG is most often referred to as ‘ets-related gene’, but also as ‘v-ets erythroblastosis 

virus E26 oncogene like’, ‘v-ets erythroblastosis virus E26 oncogene homolog’ or ‘v-

ets erythroblastosis virus E26 oncogene related’. In 1987, Reddy et al.116 isolated 

cDNA clones representing the complete coding sequence of an ets-related gene which 

they named ERG1, due to the fact that nucleotide sequence analysis of this 4.6 kb long 

cDNA, predicted a 363 amino acid protein, whose amino acid sequence showed a 

homology of approximately 40% and 70% to two domains corresponding to the 5’ and 

3’ regions of v-ets oncogene, respectively. Rao et al.117 identified ERG1 and another 

cDNA clone with alternative splicing, encoding a longer protein of 462 amino acids, 

named ERG2.  They proposed that the various isoforms are formed by alternative sites 

of splicing and polyadenylation, together with alternative sites of translation initiation. 

The identification of other isoforms followed.118, 119 ERG3 was characterized by a 

differential splicing which results in the insertion of 24 amino acids in the coding 

region of the ERG2 protein.119 All ERG isoforms can bind the ETS site in a specific 

manner and act as transcriptional activators, although they demonstrate differential 
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interactions with the AP1 complex (transcription factor consisting of jun/fos family 

proteins).120 

 The ERG gene has been localized to chromosome 21q22.2117, 121 which is part 

of the Down syndrome critical region (DSCR) of chromosome 21. The DSCR of 

chromosome 21 is abnormally triplicated in a subset of individuals with Down’s 

syndrome. Owczarek et al.121 determined that the ERG gene consists of at least 17 

exons spanning approximately 300 kb of genomic sequence, generating at least 9 

separate transcripts, of which the last 4 (ERG6 – ERG9) are likely of relatively low 

abundance. Only two of these transcripts encoded proteins that may have functions. 

ERG1 – ERG5 encode five proteins of 38 to 55 kDa, all of which bind DNA at ETS 

sites and act as transcriptional activators. They differ in their 5’ regions and the 

expression of two alternative exons, A81 (81 bp) and A72 (72 bp). Later we revised 

the exon maps of ERG1 and ERG2 (Paper I).79  

 During mammalian embryogenesis, ERG is first expressed in endothelium and 

later in the kidney, urogenital tract and hematopoietic cells, whereas down-regulation 

is observed following tissue differentiation.122, 123 The isoforms of ERG may form 

homodimers with itself or heterodimers with other ETS proteins including FLI1, 

ETS2, Er81 and PU1.120  

Isoforms ERG3 (p55) and ERG5 (p38) are the predominant forms expressed in 

endothelial cells.124 By in-situ hybridization we identified expression of ERG in 

prostatic endothelial cells but not in benign epithelial cells.79 ERG is involved in 

vascular development and angiogenesis as it regulates the expression of endothelial-

specific genes including von Willebrand factor, VE-cadherin, endoglin and 

intracellular adhesion molecule-2 (ICAM2).125-127  

 ERG is one of the ETS members involved in a number of chromosomal 

translocations in human leukaemias, including a [t(8;21)(q22;q22)] non-random 

translocation in patients with myelogenous leukaemia subtype M2 (AML-M2),128 a 

�t(16;21)(p11;q22)� translocation in human myeloid leukaemia fusing the ERG gene 

with the TLS/FUS gene129 and chromosomal rearrangement with the EWS gene in 

Ewing´s sarcoma.130 As Petrovics et al.78 and our group79 have shown, ERG is highly 

upregulated in around 50 % of prostate cancer patients. In 2005 Tomlins et al.80 
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identified the mechanism for this as a chromosomal rearrangement fusing the promoter 

region of the highly expressed androgen responsive serine protease gene TMPRSS2 

(21q21.3) to the ERG (21q21.2) coding sequence (either through deletion or 

translocation). Although genetic rearrangements through translocations are very 

common in leukaemias, they had so far not been identified in epithelial 

adenocarcinomas until Tomlins et al. 80 demonstrated ERG gene fusions in prostate 

cancer. This has become one of the most common genetic markers of prostate cancer 

and the first clinically relevant candidate to a dominant oncogene in prostate cancer, 

together with ER81 (ETV1), PEA3 (ETV4) and ETV5,81 which may alternatively be 

fused with TMPRSS2 in a minority of ETS fusion positive cases. A number of 

alternative 5’ and 3’ fusion partners have since been identified (Fig. 10). Although 

there have been opposing conclusions regarding the implications of this fusion, there 

seems to be an association between positive fusion status and adverse prognosis (Table 

1). 
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Figure 10. A sketch representation of the gene fusions characterized in prostate cancers so far. The 5' 

fusion partners are depicted on the left side and corresponding 3' partners on the right. Light colours at 

the ends of the genes depict untranslated exons. The dark-coloured boxes depict coding exons. The 

numbers on the boxes identify the base positions of the exons. The arrows represent androgen 

responsiveness of the fusion genes: arrows pointing up signify androgen-mediated upregulation; 

arrows pointing down represent androgen-mediated downregulation of the corresponding gene; the 

horizontal arrows represent absence of androgen action on the fusion genes' expression. TMPRSS2–

ETS gene fusions have been grouped as type I; other gene fusions which are androgen-inducible have 

been grouped as type II, androgen-repressed fusion genes make up type III, androgen-insensitive 

fusion genes, type IV, and lastly, the novel situation in prostate cancer cell lines, with ETS genes 

rearranged to an androgen-sensitive location (without the generation of classical gene fusions), has 

been classified as type V. (Kumar-Sinha et al., 2008. Recurrent gene fusions in prostate cancer. Vol 8 

(7):497-511131) 
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ETS gene status Assay Patient cohort Prognostic association Study

TMPRSS2:ERG 

rearrangement 

Break-apart 
FISH 

Prostate cancer, 
surgically treated, n = 96 

High-pathologic stage.  
132 

TMPRSS2:ERG 

fusion 

RT-PCR and 
DNA sequencing 

Prostate cancer, 
surgically treated, n = 
26, Gleason score 7 

Higher rate of recurrence.  
Single most important 
prognostic factor. 

 
133 

TMPRSS2:ERG 

fusion 

RT-PCR and 
DNA sequencing 

Prostate cancer, 
surgically treated, n = 
165 

Higher risk of recurrence. 
Strong prognostic factor 
independent of grade, stage and 
PSA level. 

 
134 

ERG rearrangement Break-apart 
FISH 

Prostate cancer, cohort 
of conservatively 
managed patients (no 
hormone treatment),       
n = 445. TMAs of 
transurethral resection 

Very poor cause-specific 
survival (25% at 8 years) (2+ 
Edel) compared with ERG 
rearrangement-negative cases 
(90% at 8 years). 

 
135 

TMPRSS2:ERG 

rearrangement 

Multicoloured 
fusion FISH 

Prostate cancer, 
population-based 
watchful waiting cohort, 
n = 111 

Prostate-cancer specific death.  
136 

TMPRSS2:ERG 

rearrangement 

Dual colour 
break-apart FISH 

Prostate cancer, 
hormone-naive and 
hormone-refractory 
lymph node metastases, 
n = 136 

Higher tumour stage, presence 
of metastatic disease involving 
pelvic lymph nodes.  

 
137 

TMPRSS2:ERG 

fusion 

FISH 
Break-apart 
FISH 

Prostate cancer, 
surgically treated, 
TMAs, n = 196 

Moderate to poorly 
differentiated tumours. 

 
138 

ERG 

overexpression 

Microarray,  
real-time PCR 

Prostate cancer, laser 
capture microdissected 
epithelial cells ERG-
overexpressing tumours 

Longer recurrence-free 
survival, well and moderately 
differentiated stages, lower 
pathological stage, and 
negative surgical margins. 

 
78 

TMPRSS2:ERG 

fusion 

RT-PCR and 
DNA sequencing 

Prostate cancer, TRUS-
guided needle biopsies,  
n = 50 

Lower Gleason grade and 
better survival than fusion-
negative tumours. 

 
139 

TMPRSS2:ERG 

fusion 

RT-PCR and 
DNA sequencing 

Prostate cancer, 
surgically treated, n = 54 

No correlation with clinical 
outcome. 

 
140 

TMPRSS2:ERG 

fusion 

 

 

 

RT-PCR and 
DNA sequencing 
 
FISH 

Prostate cancer, 
surgically treated, n = 54 
 
Hormone-naive pelvic 
lymph node metastases, 
n = 9 

No association with tumour 
stage, Gleason grade or 
recurrence-free survival. 

 
141 

2+Edel, deletion of 5’ERG sequences, accompanied by duplication of TMPRSS2:ERG sequences; FISH, 
fluorescence in situ hybridization; PSA, prostate-specific antigen; RT-PCR, reverse-transcription PCR; TMA, 
tissue microarray; TRUS, transrectal-ultrasound. 

Table 1. Prognostic associations of the TMPRSS2:ERG gene fusions. (Kumar-Sinha et al., 2008. 

Recurrent gene fusions in prostate cancer. Vol 8 (7):497-511131) 
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SIM2

 

 The SIM2 (Single-minded homolog 2) gene has also been identified within the 

Down’s syndrome critical region (DSCR) on chromosome 21 (21q22.2), which is 

associated with trisomy 21.142, 143 SIM2 was originally identified in Drosophila where 

it plays an important role in development and has peak levels of expression during the 

period of neurogenesis. Drosophila single-minded acts as a positive master gene 

regulator in central nervous system midline formation. SIM2 encoded proteins belong 

to a family of transcriptional repressors and may control brain developments and 

neuronal differentiation.144-147 Chen et al.,142 proposed that the human SIM gene is a 

candidate for involvement in certain dysmorphic features (particularly the facial and 

skull characteristics), abnormalities of brain development, and/or mental retardation of 

Down syndrome. Due to alternative splicing, the SIM2 gene exists in two distinct 

isoforms, SIM2-long (SIM2-l) and SIM2-short (SIM2-s).144 

 SIM2 has been shown to be involved in the pathogenesis of solid tumours. 

Higher expression levels of SIM2-s have been seen in the carcinomas of colon, 

pancreas and prostate in comparison to the normal tissues, but not in breast, lung or 

ovarian carcinomas or in most normal tissues (it is expressed in the kidneys and 

tonsils). Elevated expression has been seen in early colon adenomas and BPH as well, 

raising the possibility that the SIM2-s activation may be an early event. SIM2-s 

specific immunoreactivity was detected in the majority of tumours of different 

Gleason scores and in prostatic intraepithelial neoplasia (PIN), but not in most stromal 

hyperplasia.148 In our own gene expression profiling study, SIM2 ranked second 

among highly upregulated genes in prostate cancer.149 We also identified both SIM2-s 

and, for the first time, SIM2-l, as being upregulated in prostate tumour tissue compared 

with paired benign tissue samples.150 

 A proposed cancer-related role of the SIM family of genes is their ability to 

transcriptionally regulate key metabolic enzymes to inactivate carcinogens.151 SIM2 

belong to a family of transcription factors containg PAS (Per/Arnt/Sim) 

heterodimerization domains.148 The PAS domains are also cytosolic sensors that detect 

xenobiotics, redox changes, and light, oxygen and energy levels in prokaryotes and 
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eukaryotes.152 SIM2, if dysregulated (due to mutations, amplifications or loss of 

repression), could suppress xenobiotic-stimulated induction of Phase II enzymes by 

inhibiting the dimerization of aryl hydrocarbon receptor (Ahr) and Ahr nuclear 

translocator (ARNT) at one of their PAS domains.153 The resultant absence of the Ahr-

ARNT-mediated protective and homeostatic pathway would render cells vulnerable to 

mutagenesis and other forms of oxidative damage, and would provide an environment 

for tumourigenesis. The Ahr-ARNT heterodimer also mediates xenobiotic-induced 

apoptosis in foetal ovarian cells, by binding to the xenobiotic response element in the 

promoter region of the pro-apoptotic bcl-2 family member, bax.154 Therefore, 

suppression of Ahr-ARNT activation by SIM2 might disable apoptotic checkpoints 

that are essential for cancer surveillance. The precise function and nature of genes 

regulated by SIM2 are not completely clear. 

 Several groups have studied the expression of SIM2 in various cancers or cancer 

cell lines. DeYoung et al.155 made a systematic study of the expression differences 

among SIM family members in pancreatic cancer. In APAN-1, a pancreatic cancer-

derived cell line, antisense inhibition of SIM2-s expression caused a dose-dependent 

inhibition of SIM2-s mRNA. The targeted protein SIM2-s was also inhibited in the 

antisense-treated cells accompanied by growth inhibition and induction of apoptosis, 

providing a rationale for preclinical testing of the SIM2-s antisense drug in pancreatic 

cancer models. They identified both SIM2-s and SIM2-l isoform as expressed in lung, 

kidney, skeletal muscle, testis and tonsils. Low-level expression of SIM2-l was seen in 

the bone marrow as well. Real-time qPCR analysis of pancreatic tissues and cell lines 

showed expression of both SIM2 isoforms in tumours and tumour-derived cell lines. 

DeYoung et al.156 also found that antisense inhibition of SIM2-s in a RKO-derived 

colon carcinoma cell line caused growth inhibition, apoptosis and inhibition of tumour 

growth in a nude mouse tumorigenicity model. On the other hand, Kwak et al.157 

observed that SIM2-s expression was lost in human breast cancers, and Laffin et al.158 

found that loss of SIM2-s promotes epithelial mesenchymal transition (EMT) and 

tumourigenesis in breast cancer cells. Loss of SIM2-s caused aberrant mouse 

mammary gland ductal development with features associated with malignant 

transformation, and knockdown of SIM2-s in MCF-7 breast cancer cells contributed to 
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an EMT and increased tumourigensis. These changes were associated with increased 

SLUG (SNAI2) and matrix metalloprotease 2 (MMP2) levels. They suggested that 

SIM2-s is a key regulator of mammary-ductal development and that loss of expression 

is associated with an invasive, EMT-like phenotype. These results suggest that SIM2-s 

plays a key role in controlling normal EMT processes involved in mammary gland 

development and that loss of SIM2-s promotes pathological EMT associated with 

tumour progression. These tumour suppressor properties of SIM2-s in breast cancer is 

contradictory to its cancer promoting role in colon, pancreas and prostate cancers, and 

may reflect different tissue specific functions or differences in effect depending upon 

the cellular context. Increased expression of SIM2-s has also been identified in glioma 

and glioblastom cell lines,159 in which they were suggested to play a role in invasion, 

which may partly be associated with increased expression of TIMP2 and decreased 

expression of MMP2.  

DeYoung et al.156 showed that antisense inhibition of SIM2-s expression in a 

colon cancer cell line caused inhibition of gene expression, growth inhibition and 

apoptosis. Administration of the antisense, but not the control oligonucleotides, caused 

significant inhibition of tumour growth in nude mice with no major toxicity, 

establishing SIM2-s as a molecular target for cancer therapeutics.  

 

DIAGNOSTIC AND PROGNOSTIC BIOMARKERS OF PROSTATE CANCER 

 

Prostate cancer is a heterogeneous and multifocal disease and biomarkers are strongly 

needed to enable more accurate detection, improved prediction of tumour grade, and 

stage, as well as facilitated discovery of new therapeutic targets for improved 

treatment. 

 Currently, an important diagnostic and prognostic marker of prostate cancer is 

prostate specific antigen (PSA). Based upon initial concentration of total PSA in 

serum, prostate cancer is diagnosed by histological examination of prostate tissue 

obtained by ultrasound guided transrectal needle biopsy. This method has suboptimal 

sensitivity and specificity, leading to many unnecessary initial and repeat biopsies. 
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 Biomarkers may be detected in prostatic cancerous tissue and in body fluids 

(blood, serum, urine). Prostate tissue sampling requires an invasive procedure 

(transrectal ultrasound-guided biopsy) and the chances of sampling error represent a 

problem. It has been known since 1869 that cancer cells break away from the primary 

tumour and are present in body fluids.160 Serum and urine contain degradation 

products of extracellular matrix and of benign and malignant cells and their secreted 

products. Even in early cancer development, these cells are shed and may be 

detected.161, 162 For prostate cancer both blood (serum) and urine are viewed as 

attractive samples for diagnostic assays, due to the less invasive procedure compared 

with tissue sampling (Fig. 11). 

 

 
Figure 11. Blood / serum and urine prostate cancer markers have certain advantages over tissue 

prostate cancer markers. They may easily be obtained while prostate tissue sampling requires and 

invasive procedure (transrectal ultrasound-guided biopsy) (van Gils et al., Eur Urol; 48(6):1031-41, 

2005).162 

 
Early detection of prostate cancer has proved difficult and current detection 

methods are inadequate. At present, one of the major challenges in prostate cancer 

treatment is to distinguish between patients with aggressive and clinically significant 

tumours who need more intense treatment, and patients with indolent tumours, who 

will benefit from active surveillance. Novel biomarkers are strongly needed to enable 

more accurate detection of prostate cancer, improved prediction of tumour 
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aggressiveness and facilitated discovery of new therapeutic targets. Prostate cancer 

specific molecules have the potential to serve as diagnostic and prognostic indicators 

and therapeutic targets. The challenge lies in finding potential molecular biomarkers 

only present in prostatic cancerous tissue and not in benign tissue, which might be 

detected by noninvasive techniques in blood/serum or urine. The heterogenous and 

multifocal nature of prostate cancer must be taken into consideration. This is a 

challenge most likely solved with a combinatorial test in which detection of 

combinations of biomarkers confer higher specificity and sensitivity than todays’ PSA 

testing. Ideally, biomarkers of prostate cancer aggressiveness should be available at 

the time of diagnosis to allow optimal treatment planning.  

 In addition to diagnostic markers, prognostic, predictive, and therapeutic 

markers are needed to predict disease severity, choosing treatments, and monitoring 

responses to therapies, respectively. Guidelines for biomarker development have been 

established to aid in the validation of candidates.163, 164 There are several existing and 

potentially interesting novel prostate cancer biomarkers which confer increased 

diagnostic and prognostic information as well as improved sensitivity and specificity 

compared with PSA alone. 

PSA and PSA-derived forms  
 
Prostate specific antigen (PSA) was identified by Ablin et al. in 1970.165, 166 It is a 

seminal proteinase produced by normal and malignant prostate epithelial cells. PSA 

was originally used for monitoring prostate cancer patients and was subsequently 

implemented for screening purposes. Serum PSA testing has been used for over 20 

years as an aid in the diagnosis and management of prostate cancer and PSA is the 

most successful and widely employed cancer serum marker in use today. The 

measurement of total PSA has been shown to be useful as a prognostic tool, with high 

preoperative values being associated with advanced disease and a poor clinical 

outcome. PSA is a very sensitive marker, which enables us to diagnose prostate cancer 

before it manifests itself symptomatically or clinically. It is unclear, however, whether 

PSA screening has led to a decline in mortality due to prostate cancer.  
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The tissue specificity of PSA is responsible for its utility as a serum marker.167 

PSA is produced almost exclusively in the prostate, but an increase in serum PSA 

levels is not necessarily associated with cancer, it is not cancer specific. Although 

highly sensitive, it suffers from a lack of specificity, showing elevated serum levels in 

a variety of pathological conditions in the prostate including prostatitis, benign 

prostate hyperplasia (BPH), and non-cancerous neoplasia. Even though prostate cancer 

cells make less PSA than normal cells, PSA leakage around disrupted gap junctions of 

cancer cells causes elevated protein in the circulation.168-170 Many patients undergo 

unnecessary biopsies or treatment for benign or latent tumours. More than half of the 

men with a PSA over 4.0 ng/ml, which is the accepted clinical decision limit, are 

negative on initial biopsy.162, 171 On the other hand, there is strong evidence that a cut-

point of 4 ng/ml misses a significant number of cancers. In a prospective cohort study, 

designed to evaluate the preventive effect of the drug Finasteride, 15% of men enrolled 

in the untreated control arm of this trial, and who had an initial PSA 4 ng/ml harboured 

prostate cancer, with 14% of them showing high grade disease.172 The “PSA dilemma” 

population of men (those with elevated PSA who are negative on initial biopsy) are 

frequently biopsied multiple times as they age to assess the possible development of 

clinically significant cancers. For those men who are diagnosed and undergo curative 

surgical treatment, about 20-30% will clinically relapse, revealing that for many men 

cancer was not detected at an early enough stage. Nevertheless, 15-40% of the 

patients who undergo intended curative treatment for clinically localized PC will 

experience biochemical recurrence (i.e., a rise in serum PSA) within 5 years.173 

Systematic PSA screening has resulted in marked overdiagnosis and 

overtreatment of clinically insignificant tumours.174, 175 As an effect of PSA screening, 

the lifetime risk of prostate cancer diagnosis has increased to 16%, whereas the 

lifetime risk of dying from the disease is only 3.4 %. Further, during the last decade, a 

significant shift at radical prostatectomy has been observed, also called “stage 

migration”, which is related to the widespread use of PSA for screening. Tumours 

detected by PSA alone are characterized by small size, low grade, and they express 

low levels of PSA. There is, however, a very strong evidence of a highly significant 

 36



association between long-term cancer risk and PSA-levels in the blood measured at 

early middle age in representative populations of healthy men.169,176

 Measurement of total PSA has been shown to be useful as a prognostic tool, 

with high preoperative values being associated with advanced disease and a poor 

clinical outcome. It is unclear whether PSA screening has actually led to a decline in 

mortality due to prostate cancer. The relationship of PSA to tumour grade is also not 

clear. The tissue PSA concentration has been shown to decrease with increasing 

Gleason score, 177 although concentrations in the serum increase because of disruption 

of the basement membrane surrounding the prostate epithelial cells and in the overall 

prostate tissue architecture. Currently used routine prognostic tools (i.e., the Partin 

staging tables178 and the postoperative nomograms developed by Kattan et al.179 and 

Stephenson et al.179, 180) rely solely on pathological and clinical parameters, including 

serum PSA, Gleason score and tumour stage. These tools have limited utility for many 

patients who are mid-range, i.e. have serum PSA values in the range of 4-10 ng/ml. 

The inadequacies of PSA as a marker have created a need for novel markers of 

prostate cancer to prevent overtreatment of indolent tumours.  

PSA alternatives. PSA circulates in a number of distinct forms, and several variations 

have been studied as an alternative to the original total PSA test (for example 

evaluation of velocity, density, levels of free vs. bound proisoforms).168, 181-190 PSA 

processing is different in benign tissue and cancer tissue and measurement of these in 

addition to total PSA may significantly increase the diagnostic utility.162

   

Potential biomarkers 

A large number of potentially clinically useful biomarkers in prostate cancer have been 

investigated, some of which have been studied by our group and collaborators, and 

shown to be associated with adverse pathological parameters and of prognostic value 

in prostate cancer. These include loss of PTEN/p27 expression,191 increased expression 

of the p16 protein,192 strong EZH2 expression,193 high vascular proliferation194 as well 

as an association between the epithelial to mesenchymal transition (EMT), 

characterized by reduced E-cadherin and increased N-cadherin expression, and 
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prostate cancer progression.195 Table 2 provides a more comprehensive selection of a 

number of prostate cancer biomarkers which have been investigated, with various 

degrees of success. As previously mentioned, combinations of various biomarkers 

(multiplexed tests) are most likely to provide the necessary information needed, some 

of which studies are outlined in Table 3. The identification of the pathognomonic 

fusion between TMPRSS2:ERG and our ability to identify this gene product (mRNA 

detection) in tissue and urine of prostate cancer patients provide new hope regarding 

both more exact discrimination between grades of cancer and development of new 

therapeutic targets. This will be more closely covered under Discussion of results 

(Paper III).  

    Recently identified potential biomarkers are Sarcosine and Annexin A3. 

Sarcosine (N-methyl derivative of the amino-acid glycine) has recently been identified 

as a differentially expressed metabolite that is greatly elevated during prostate cancer 

progression to metastasis and it can be detected noninvasively in urine.196 Sreekumar 

et al.196 linked activation of the sarcosine pathway to AR and ETS gene fusion 

regulation. Both ERG- and ETV1-induced invasion were associated with a threefold 

sarcosine increase in benign RWPE cells. Knockdown of the ERG gene fusion in 

VCaP cells resulted in a more than threefold decrease in sarcosine with a similar 

decrease in the invasive phenotype. Androgen receptor and the ERG gene fusion 

product co-ordinately regulate components of the sarcosine pathway, and sarcosine is a 

potentially important metabolic intermediary of cancer cell invasion and aggressivity, 

making it a possible promising target for therapeutic interventions. Annexin A3 

(ANXA3) is negatively associated with prostate cancer.197, 198 ANXA3 protein 

expression is reduced in cancer providing a negative staining rate, which correlated 

with increasing pT stage and Gleason score. ANXA3 status was shown to be an 

independent adverse prognostic factor and ANXA3 may be detected in urine samples 

with improved specificity compared with PSA.  

 TMPRSS2:ERG gene fusions may also be detected in circulating prostate cancer 

cells. Mao et al.199 was unable to detect TMPRSS2:ERG transcripts by real-time qPCR 

in enriched cancer cells from peripheral blood from 15 patients with advanced 

androgen independent prostate cancer. However, they analyzed isolated circulating 

 38



 39

cancer cells from 10 of these patients with FISH, and found TMPRSS2:ERG fusions in 

six of these cases. This suggests that cancer cells with the gene fusion may migrate 

into the blood vessel for seeding at distant sites. Analysis of circulating tumour cells 

may be used to monitor tumour progression and response to therapies,200 but further 

investigation is required to evaluate the application of the gene fusion in monitoring 

early stage disease.199 
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Table 3. Combination tests of potential biomarkers in prostate cancer
 
BIOLOGICAL 
SAMPLE

          
BIOMARKERS 

MARKER
MEASURED 

CLINICAL 
RELEVANCE 

             
REFERENCE 

Urine PCA3, GOLPH, 
SPINK1, 
TMPRSS2:ERG 

mRNA Detection and prediction 
of prostate cancer 

 
251 

Seminal fluid GSTP1, hTERT DNA,  
mRNA 

GSTP1 methylation and 
hTERT expression may 
help predict negative 
biopsies for men with 
elevated PSA levels. 

 
211 

Tissue E-cadherine, 
EZH2 

protein Increased EZH2:ECAD 
status associated with 
recurrence after radical 
prostatectomy. 

 
216 

Urine PCA3, 
TMPRSS2:ERG 

mRNA Detection and prediction 
of prostate cancer 

 
252 
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BACKGROUND AND AIMS OF THE STUDY 

Background and general aim 

The general aim of our study was to understand critical gene expression changes and 

regulatory patterns associated with prostate cancer, based upon new technological 

achievements and the possibilities for genome-wide analysis of gene expression. The 

hypothesis was that this discovery driven approach, in addition to increasing the 

understanding of prostate carcinogenesis, might result in novel diagnostic and 

prognostic markers. One long term goal of our research is to provide sufficient 

molecular information for individualized and tailored treatment options. 

 

Specific aims 

Paper I 

Based on initial gene expression analysis of prostate cancer by Halvorsen et al.,149 the 

aim of this study was to explore the expression profiles of prostate cancer with special 

focus on transcription factors. Differentially expressed genes in matched pairs of 

benign and malignant prostate tissue were identified and validated, with special focus 

on the ETS family of transcription factors, out of which ERG was the most 

consistently and highly upregulated member. 

 

Paper II 

In a previous study of gene expression profiles in prostate cancer,149 the transcription 

factor SIM2 was identified as being highly overexpressed in prostate cancer, and has 

also been proposed as a molecular target for cancer therapy. The aim of this study was 

to examine the expression status of SIM2 at the transcriptional and protein level as 

related to patient outcome in prostate cancer. 

 

Paper III 

The mechanism behind the overexpression of the transcription factor ERG (Paper I) 

was found by another group to be due to a recurrent gene fusion between the promoter 

region of the constitutively expressed gene TMPRSS2 and the coding region of ERG. 
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This generates a fused gene and transcript characteristic for prostate cancer. The aim 

of paper III was to determine the presence or absence of the nucleic acid fusions of 

TMPRSS2:ERG in urine samples from prostate cancer patients who underwent radical 

prostatectomy. Aspects important for optimal detection were examined. Possible 

correlations between fusion status and clinicopathological variables were also 

investigated. 
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MATERIALS AND METHODOLOGICAL CONSIDERATIONS 
 

PATIENTS SERIES AND TISSUES 

The patient series used in our studies include both archival paraffin embedded 

prostatic tumour tissue material, fresh frozen prostatic tumour and benign tissues as 

well as urine samples from patients prior to radical prostatectomy (Table 4).  

 

Table 4. Patient material 
Time period Sample No.

cases

No. 

samples

Histology Material Method Paper

1988 - 1994 RP tissue 104 104 Carcinoma Paraffin ISH II 

1997 - 2003 RP tissue 33 291 Carcinoma Fresh 

frozen 

Microarray I, II 

   23 Benign    

1997 - 2003 RP tissue 492 373 Carcinoma Fresh 

frozen 

qPCR 

ISH 

I, II 

   39 Benign    

2006 Urine 

Hamburg 

42 42 Carcinoma Fresh 

frozen 

qPCR III 

2006 - 2007 Urine 

Bergen 

13 13 Carcinoma Fresh 

frozen 

qPCR III 

119 tumour/benign pairs. 2Includes 33 cases from 1997-2003. 327 tumour/benign pairs. 

 

In 1984 radical prostatectomy was established at the Haukeland University Hospital in 

Bergen. Patients with localized prostate cancer were offered this treatment if they had 

a clinical stage T1/T2 disease, negative bone scan, general good health and 10 to 15 

years life expectancy. The earliest study population of 104 patients (median age 62 

years) were treated between 1988 and 1994, i.e. before the PSA era. PSA testing was 

introduced in Norway in the middle of the 1990s. The majority of the cancers in this 

series were clinical stage T2 (89%) and PSA detected tumours more typically seen 

today are clinical stage T1c.253 These tumours were also larger (median diameter 28 

mm) with more advanced pathologic stages than usually seen today.254 Fresh frozen 

prostate tissue samples were collected during 1997 – 2003 from an independent series 
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of 49 radical prostatectomies. The majority of these cancers were clinical stage T1c 

and median Gleason grade 6.2, in line with other findings after the introduction of PSA 

screening.253 

Urine sampling - Hamburg cohort: Through collaboration with the University 

Medical Centre Hamburg-Eppendorf in Hamburg, Germany, we received urine pellets 

and corresponding urine supernatants from 42 prostate cancer patients. The urine 

pellets were resuspended in a small volume of urine and TRK-�-mercaptoethanol was 

added before the pellets and supernatants were shipped to Norway on dry ice and 

frozen at -80 oC. These patients did not receive prostatic massage prior to sampling. 

Bergen cohort: In 2006 we started to collect urine samples after prostatic massage 

from all prostate cancer patients (who gave their consent) prior to treatment with 

radical prostatectomy at Haukeland University Hospital, Bergen. Each urine sample 

was divided into whole urine sample and pelleted urine sample with corresponding 

supernatant. Total RNA was isolated from both cohorts as well as genomic DNA for 

further studies according to protocols (Paper III). Table 5 summarizes clinico- and 

histopathological variables in the two cohorts. Studied together, 15 patients had 

Gleason scores of < 7, while 35 patients had a Gleason score of 7 and only 2 patients 

had a Gleason score > 7.  

 

Table 5. Clinico- and histopathological variables of the Hamburg 

and Bergen urine sample cohorts. 
 Hamburg cohort Bergen cohort 

No. of patients 42 13 

Mean (median) age at diagnosis 62.8 (64) 62.9 (63) 

Pre-treatment sPSA 7.5 (6.4) 7.4 (7.1) 

After treatment Gleason score   

� 6 13 2 

� 7 26 11 

Pathological stage (TNM-staging)   

T2 (pT2) 29 8 

T3 (pT3) 10 4 
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Archival tumour material 

Archival radical prostatectomy specimens were retrieved from the files of Department 

of Pathology, Haukeland University Hospital. From 1988, formalin fixed 

prostatectomy specimens were totally embedded and studied by whole mount step 

sections at 5 mm intervals by one pathologist (Ole Johan Halvorsen), and a 

representative area of 1-2 cm2 of highest tumour grade was selected retrospectively 

from the paraffin blocks of each specimen, and reembedded for further studies.  

 

Fresh tissue sampling 

From 1997 radical prostatectomy specimens were brought to the pathology department 

for fresh tissue sampling immediately following surgical removal. Guided by needle 

biopsy findings and palpation, the prostate was incised vertically and small 2-4 mm 

tissue specimens were dissected from macroscopic tumour and benign areas, snap 

frozen in liquid nitrogen and stored at -80 oC. Benign tissues were harvested from the 

contralateral zone. In support of this sampling strategy, gene expression patterns in 

benign tissues adjacent to tumour have been shown to be so substantially altered that it 

resembles a cancer field effect.255 Histopathologic confirmation of benign or tumour 

tissues and evaluation of tumour content were performed on HE (hematoxylin-eosin) 

slides on opposing sides of the dissected area. Tissue samples from presumed benign 

areas were excluded if malignant or dysplastic glands (PIN) bordered on or were seen 

in the vicinity of the dissected area. Tumour cases were selected for RNA extraction if 

more than 50% carcinomatous tissue were present (mean 76%).  

 

Clinicopathologic variables 

Several clinical variables were recorded for subsequent analysis: patient age at radical 

prostatectomy, date of primary diagnosis, date of prostatectomy, clinical stage (TNM-

classification as described in the Introduction), serum-PSA before and after surgical 

treatment, and complete follow-up information including date and time of eventual 

biochemical failure, as well as date and site of clinical recurrences, and survival. 
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Histopathologic variables 

The following variables were studied retrospectively: largest tumour dimension in the 

paraffin embedded specimen (measured as height or maximum dimension on the 

histological sections), capsular penetration, seminal vesicle invasion, involvement of 

surgical margins,59 presence of lymph node metastasis and pathologic stage. In line 

with recent recommendations,55 a modified Gleason grading was applied. Mean 

Gleason score for the 29 carcinomas selected for fresh frozen tissue sampling: 6.2 

(median 6, range 5-8). For validation purposes (qPCR), this series was expanded to a 

total of 37 malignant tumours and 39 benign samples, including 27 tumour/benign 

pairs. Although a high Gleason score is a significant determinant of prostate cancer 

death, there is an urgent need for additional biomarkers to increase the predictive 

value.256 

 

MOLECULAR METHODS 

 

Microarray and bioinformatics 

Global gene expression analyses performed by DNA microarrays have revolutionized 

the study of global analysis of gene expression in cancer patient samples and 

experimental models. The technology takes advantage of the fact that a fragment of 

each gene, the probe, can be positioned in a dot matrix on one single glass slide or 

chip. Hybrids formed between the probes and the solubilised targets of enzymatically 

modified and fluorescently labelled mRNA from experiments or patient samples can 

be recorded by means of high precision microarray fluorescence laser scanners and 

assisting computer software. In principle, the DNA microarray technology can 

quantify the entire gene expression pattern in a sample at a given moment based upon 

one single hybridization experiment. This powerful technology might resolve the 

underlying gene expression and regulatory patterns of normal cell differentiation and 

the aberrant patterns of disease. Even though this method has proven to be highly 

successful and useful, the global gene expression strategy still has its limitations and 

pitfalls, and may at times add more noise than elucidation to the discovery process.257 
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It is important to keep this in mind when analysing and interpreting the gene 

expression data.  

The microarray technology has been through a major development over the last 

decade. There are a number of commercial platforms available, for example 

Affymetrix, Illumina, Nimblegen and Agilent. The latter is the platform used by our 

group. The first microarrays developed were cDNA microarrays, and initially our 

group utilized a sequence-validated human cDNA library of 40 000 clones (40k) 

obtained from Research Genetics, originating from the IMAGE consortium.149 There 

are several challenges and potential sources of noise with cDNA-arrays, including 

wrongly annotated sequences and errors during maintenance of the cDNA library. 

Maintaining and handling a library of 40 000 cDNA clones with control over which 

specific sequences are present is difficult, and wrong annotations of the sequences are 

also a problem.257 These challenges make it difficult to compare results between 

different platforms (cross-platform comparisons)258 and it is estimated that up to 10-

30% of  cDNA probes were wrongly annotated. A method for updating the annotation 

of probe sets within a platform, based on sequence alignments and specific probe 

selection, was proposed by Dai et al.259 The platforms using synthetic oligonucleotide 

probes provide generally data of high-quality, with superior reproducibility compared 

with custom-spotted cDNA arrays,170 and by now oligonucleotide arrays have largely 

replaced the more unreliable cDNA arrays for the genome-wide study of human gene 

expression. Agilent now applies 60-mer microarrays, consisting of probes containing 

60 oligonucleotides for each gene. Around 60 nucleotide probe length provides 

optimal sensitivity and specificity, providing a balance between stability, sensitivity, 

specificity and possible problems with crosshybridization if the probe is too long, even 

though longer probes could be more sensitive for individual target genes.260 

Microarrays containing 44 000 (44k) reference sequences are currently available, 

covering all known genes and making it possible to examine the global mRNA gene 

expression in one sample. Therefore, due to the technological development, our first 

patient series was analysed using a cDNA microarray and later validated with 

oligonucleotide microarrays in an extended patient series. Another development is the 

present use of one-colour microarrays (only Cy3) instead of two-colour microarrays 
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(Cy3 and Cy5) as in our studies. An advantage of the two-channel system is that the 

reference sequence may cancel and correct for non-biological variations between 

samples. A disadvantage is that the ratios are dependent upon the expression levels in 

the reference sample. The one channel system generates absolute gene expressions 

which can be compared side by side. Cy3 is also a more stable fluorochrome than Cy5 

and makes the target easier to handle and less prone to ozone mediated damage and 

fading. 

Microarray. The Research Genetics human 40k cDNA microarray was printed 

at the Institute for Systems Biology, Seattle, and described by Halvorsen et al.149 The 

slides were scanned in an Axon Genepix Scanner according to protocol and GenePix 

Pro 4.0 was used for quality control and spotfinding. For validation purposes the 

patient series was expanded and the 21k Agilent human 1A oligonucleotide microarray 

was used. The oligonucleotide microarrays were scanned and features automatically 

extracted, recorded and analysed using the Agilent Microarray Scanner Bundle.  

Data analysis. Normalization, flooring or filtering of data was performed as 

described149 and the data was then formatted in a J-Express file suitable for additional 

data mining (normalization, statistical analysis, gene search and visualization of gene 

expression using clustering and other tools) (http://www.molmine.com/)261 (Fig. 12). 

The bioinformatics analysis of gene expression data remains a major challenge, and 

the software program J-Express was developed by the bioinformatics group at the 

University of Bergen, for analysis and visualisation of microarray data. To obtain 

consistency and reduce non-significant data, the genes were filtered before inclusion 

into the dataset (filtered dataset). Genes were included if the signal intensities in both 

channels differed by more than 2 standard deviations over background in at least 70% 

of samples in each class (for example T or B). Since filtering may exclude important 

candidate genes expressed only in subsets of samples (for example only detectable in 

T or B), as turned out to be the case for i.e. the ERG gene, another dataset based on 

flooring was generated (floored dataset). Here, a small, but constant value (in our 

dataset the value 20) was substituted for a missing signal in one of the two channels, 

ensuring that a possible strong signal in the second channel is being stored as a 

“floored” ratio instead of being filtered and removed. A number of bioinformatics 
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algorithms and statistical methods were applied to explore the gene expression 

signatures of our datasets and validate the results. We were interested in identifying 

differential gene expression in matched pairs of benign and tumour tissue. Following 

normalization a Cy5/Cy3 log2-ratio was calculated for each gene and an average fold 

change between T and B was calculated (2d - where d is the absolute difference of the 

average log ratio in T and B). The t-score (two-sample t-test) was determined for each 

gene, to quantify the distance of the average log-ratios between the groups compared 

to the spread of log ratios within each group. Paired and unpaired t-tests were also 

performed. The t-scores will be higher if the gene is much stronger expressed in T than 

in B or if a gene is consistently upregulated in T compared with B tissue. 

 

 
Figure 12. Pictures of the Agilent scanning equipment to the lower left, and a flowchart of the 

principle for data analysis and validation of gene expression data following microarray Cy5/Cy3 

scanning to the right. 

 

Polymerase chain reaction (PCR) and sequencing of PCR products 

In the Polymerase chain reaction (PCR) method, a pair of DNA oligonucleotide 

primers specific for the gene of interest, is used to hybridize with the sample DNA. 

The temperature of the sample is repeatedly raised and lowered to help the DNA 
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polymerase transcribe the target DNA sequence. The PCR reaction can be divided into 

three phases; the exponential phase during which there is an exact doubling of product 

accumulating at every cycle; the linear phase, during which the reactions start to slow 

down and the PCR product is no longer doubled at each cycle; and the plateau, at 

which no more products are being made and eventually the PCR products will begin to 

degrade. The plateau phase is where traditional PCR takes its measurements, also 

known as end-point detection. By comparing the intensity of amplified band on a gel 

to standards of a known concentration, semi-quantitative results may be achieved.  

 We found ERG to be highly overexpressed in a subgroup of our prostate cancer 

cases (Paper I), and we therefore wanted to investigate in more detail which of the 

ERG isoforms that were responsible for this increased expression. Conventional PCR 

was performed using a number of ERG specific forward and reverse primers followed 

by agarose-gel visualization of the resulting amplicon. In the course of this work it 

became obvious to us that the published exon mapping of ERG and its isoforms,121 did 

not match our findings. We therefore decided to sequence ERG ourselves. 

Conventional PCR and DNA-sequencing was used to characterize the exon structure 

of ERG1 and ERG2. ss-cDNA was made using ERG specific primers and then primary 

and nested PCR were performed, followed by PCR product clean-up (Qiagen protocol) 

and sequencing-PCR with BigDye buffer 3.1 (BigDye Terminator v1.1, Applied 

Biosystems). The sequence reactions were analysed on a 3100 Genetic Analyser 

(Applied Biosystems). Our publication (Paper I) is now referred to by Genbank 

concerning the corrected and revised exon organization of ERG1 (NM_182918) and 

ERG2 (NM_004449).  

 

Real-time quantitative PCR (qPCR) 

Gene expression changes observed in the microarrays need to be validated with an 

independent method to ensure that the observed changes are reproducible in a larger 

number of samples, and to verify that the array findings are not the result of problems 

inherent to the array technology, but truly reflect the differential gene expression in the 

samples. Real-time qPCR is a powerful and sensitive gene analysis technique used for 

a number of applications including quantitative gene expression analysis, genotyping, 
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SNP analysis, pathogen detection, drug target validation and for measuring RNA 

interference. Combined with reverse transcription we used the method for relative 

quantification of messenger RNA (mRNA) in cells and prostatic tissue samples for a 

number of genes, like AMACR, SIM2, ERG and other ETS-family members. Real-time 

qPCR has a higher linear dynamic range (and accuracy) than DNA microarrays, but 

the capacity for number of genes studied at the same time is more limited.  

 Unlike traditional PCR, which measures the amount of accumulated PCR 

product at the end of the PCR cycles, real-time qPCR measures PCR products as they 

accumulate during amplification. During the qPCR run two values are calculated. The 

threshold line is the level of detection at which a reaction reaches a fluorescent 

intensity above background in the exponential phase of amplification. The PCR cycle 

at which the sample reaches this level is called the Cycle threshold, the Ct-value. The 

Ct-value is used in downstream quantification of the PCR product. By comparing the 

Ct-values of samples of unknown concentration with a series of standards, the amount 

of template DNA in an unknown reaction can be accurately determined. 

 A number of platforms exist for real-time qPCR analysis. Our group utilizes the 

Applied Biosystems platform with the ABI 7900HT Sequence Detection System and 

SDS2.2 software for analysis of gene expression. In order to detect the accumulation 

of PCR products, Applied Biosystems utilizes two types of fluorescent reporter 

molecules based on two types of chemistry, TaqMan chemistry and SYBR Green dye 

chemistry. As the quantity of target amplicon increases, so does the amount of 

fluorescence emitted from the fluorophore, and we detect this increase in fluorescent 

signal. The SYBR Green dye is a highly specific, double-stranded DNA binding dye 

(minor-groove binder), which detects PCR product as it accumulates during the PCR 

cycles. Initially our group used the SYBR Green dye, but one disadvantage of this 

method, which reduces the specificity, is that it detects all amplified double-stranded 

DNA, including non-specific reaction products which may generate false positive 

signals. In Papers I to III we used the TaqMan based detection, which exploits the 

exonuclease activity of AmpliTaq Gold DNA polymerase by using a cleavable 

fluorescent probe in combination with forward and reverse PCR primers. This 

approach requires homology for both primers and the probe for producing a 
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fluorescent signal and is thus much more specific than the SYBR Green method. 

Primers and probes were designed according to Applied Biosystems guidelines for 

quantitative assays (ABI Real-time PCR systems Chemistry guide, P/N 7378658 Rev 

A) (Assays-by-design) or ordered as ready-to-use assays (Assays-on-demand). 

 During the PCR reaction, specific TaqMan primers and probe anneal to 

complementary sequences in the target gene ss-cDNA, the probe between the primers. 

The probe contains a reporter dye linked to the 5’-end of the probe and a 

nonfluorescent quencher (NFQ) at the 3’-end. When the probe is intact, the proximity 

of the reporter dye to the quencher dye results in suppression of the reporter 

fluorescence. During polymerization (extension) of the DNA strands, AmpliTaq Gold 

DNA polymerase cleaves the probes that are hybridized to the target. This cleavage 

separates the reporter dye from the NFQ, which results in increased fluorescence by 

the reporter. The principle for the primer and probe chemistry is illustrated in Fig. 13. 

The increase in fluorescence signal occurs only if the target sequence is 

complementary to the probe and is amplified during PCR. Additional reporter dye 

molecules are cleaved from their respective probes with each cycle, resulting in an 

increase in fluorescence intensity proportional to the amount of amplicon produced. 

The higher the starting copy number of the nucleic acid target, the sooner a significant 

increase in fluorescence is observed above the background. The amount of the nucleic 

acid target is measured during each amplification cycle of the PCR. An amplification 

plot graphically displays the fluorescence signal versus cycle number (Fig. 14). The 

Ct-value for each sample is the fractional cycle number at which the fluorescence 

passes a set threshold level. The amount of nucleic acid and the Ct-value are 

proportionally inversely related variables. By using an endogenous control, we can 

normalize quantification of the target gene for differences in the amount of total RNA 

added to each reaction.  
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Figure 13. The principle of the TaqMan-probe based assay chemistry. An illustration of how the 5’ 

nuclease chemistry uses a fluorigenic probe to enable detection of a specific PCR product (ABI Real-

time PCR systems Chemistry guide, P/N 7378658 Rev A). 

 
 

 

Figure 14. Illustration of a single-sample amplification plot, showing terms commonly used in 

quantitative analysis. The amplification plot graphically displays the fluorescence signal versus PCR 

cycle number. (Ct: threshold cycle – the fractional cycle number at which the fluorescence passes the 

threshold; Rn : normalized reporter – the ratio of the fluorescence emission intensity of the reporter 

dye to the fluorescence emission intensity of the passive reference dye; �Rn: the magnitude of the 

signal generated by the specified set of PCR conditions (Rn – baseline); Baseline: the initial cycles of 

PCR, in which there is little change in fluorescence signal; Threshold: A level of �Rn that is used for 

Ct-determination. The level is set to be above the baseline and sufficiently low to be within the 

exponential growth region of the amplification curve. It is the line whose intersection with the 

amplification plot defines the Ct.) (ABI Real-time PCR systems Chemistry guide, P/N 7378658 Rev 

A) 
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The choice of an appropriate endogenous control is of vital importance for the 

normalization between samples and analysis of gene expression. The endogenous 

control is a gene present in each experimental sample and ideally should be expressed 

in equal amounts in each sample to be analyzed. �-actin (ACTB), GAPDH and other 

housekeeping genes are commonly used, although expression may vary between 

samples and introduce bias. An evaluation of the most optimal endogenous control 

must be performed when designing the experimental protocol, and through this we 

found ACTB to be most optimal for our purposes. 

During relative quantification, a change in gene expression in a given sample is 

analyzed relative to another reference sample (the calibrator), for example an untreated 

control sample or gene expression in tumour samples relative to benign samples. We 

applied two alternative methods for relative quantification:  

Principle of the Standard curve method: The target and endogenous control 

amplifications are run in separate tubes, and this method requires the least amount of 

optimization and validation, but drawbacks are reduced throughput because wells are 

needed for the standard curve samples and errors in dilutions made in creating the 

standard curve which may affect the final results. All that is required of the standards 

is that we know their relative dilutions, and any stock RNA or DNA containing the 

appropriate target can be used. In papers I and II, serial dilutions of pooled prostate 

cDNA was found to generate good standard curves for the detection of ERG and SIM2 

and endogenous controls in our patient samples. Normalized gene target quantity for 

the sample is determined from the standard curves (the quantity of the target gene 

divided by the quantity of the endogenous control) and then divided by the normalized 

target quantity of the calibrator. The tumour samples are thus expressed as an n-fold 

difference relative to the calibrator (the benign sample in our experiments).  

Principle of the Comparative ��CT calculation method: This method also describes 

the change in expression of the target gene in a sample relative to a calibrator. It is 

similar to the standard curve method, except that it uses arithmetic formulas to achieve 

the results for relative quantification. The advantage of using this approach is that the 

need for a standard curve is eliminated. For the ��CT calculations to be valid, the 

efficiency of the amplification of target and endogenous control must be 
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approximately equal. The amount of target, normalized to an endogenous control and 

relative to a calibrator, is calculated using the formula 2-��Ct.  

 Total RNA from patient tissues, cell cultures and urine samples (100 	l of 

whole urine, urine supernatant and pellet resuspended in 100 	l of whole urine after 

centrifugation at 1000 xg for 8 min) were isolated using the EZNA total RNA Kit 

(Omega Bio-tek) according to the manufacturer’s instructions. Prior to reverse 

transcription (ss-cDNA synthesis) the RNA was DNase treated, and ss-cDNA was 

synthesised according to Ambion instructions (MessageSensorTM RT Kit, catalog 

#1745, Instruction Manual). In the urine study (Paper III), genomic DNA was purified 

from 1 ml of whole urine (Bergen) or urine supernatant (Hamburg) using the Qiagen 

M48 Biorobot according to the manufacturers instructions for soft tissue (MagAttract 

DNA Mini M48 Handbook).  

Specific custom TaqMan gene expression assays (primers and probe) were 

designed (Assays-by-design) for the detection of the endogenous control �-actin 

(ACTB), ERG isoforms (Paper I), SIM2 short and long isoform (Paper II) and two 

TMPRSS2:ERG transcripts (Paper III). Ready-made assays (Assays-on-demand) were 

ordered for an assay common to both SIM2 isoforms (Paper II) and the endogenous 

control GAPDH (Paper III). Real-time qPCR: Hexamer-primed ss-cDNA 

corresponding to 5-10 ng of prostate total RNA was used in each PCR reaction (Papers 

I and II). For each reaction in the urine study (Paper III), we used 2.5 μl of total RNA 

(as ss-cDNA) for the endogenous controls (�-actin and GAPDH) and 7.5 μl total RNA 

for the TMPRSS2:ERG fusion transcript assays, to obtain optimal Ct-values. The real-

time qPCR reaction mixtures were prepared in 96-well optical microtiter plates and 

amplified in the ABI7900HT Sequence Detection System (SDS) (Applied Biosystems, 

Foster City, USA) according to protocol as described in Papers I to III. The SDS2.2 

software and Excel were used for analysis of relative gene expression using the 

Standard curve method (Papers I and II) or the Comparative threshold cycle (Ct) 

method (Paper III) according to program manuals and the ABI User Bulletin #2.  For 

the analysis of the urine samples (Paper III), normal female urine was used both as 

negative control and calibrator for the analysis. Samples with a real-time qPCR Ct-

value above 38 were considered to show no amplification and defined as negative. 
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This was supported by the observation that one of the duplicates showed poor 

amplification and often failed above this value. Laxman et al. 242 applied the same 

limit in their urine study.  

 TaqMan Low-density arrays (TLDA) are customizable 384-well microfluidic 

cards, allowing for simultaneous real-time qPCR for a large number of genes, greatly 

improving the efficiency of this method. Using TLDA the gene expression of a 

number of vascular markers and various ETS-family members were validated for 10 

prostate patient tumour/benign (T/B) pairs (Paper I). To validate the increased 

expression of SIM2-l isoform in tumour samples in the 96-well format, this isoform 

was included on a TLDA-card (Paper II). Each low-density array card was configured 

for 96 different genes in duplicates. ss c-DNA corresponding to 5 ng total RNA was 

diluted in TaqMan universal buffer and added to each loading well. The cards were 

prepared according to ABI guidelines and run at the same cycle parameters as 96-well 

plates before analysis were done by relative quantification using the SDS2.2 software. 

 All real-time qPCR samples were run in duplicates (TLDA) or triplicates 

(qPCR) for quality control and statistical verification. Negative controls (non-template 

controls (NTCs)) were also included on all plates and cards. Gene expression levels 

found by real-time qPCR corresponded well with, and validated, the microarray 

findings. We observed that expression ratios found between tumour samples and 

benign samples were compressed in the DNA microarrays compared with real-time 

qPCR, which is probably due to the fact that real-time qPCR has a much higher linear 

dynamic range than the microarray technology (106 vs 102-103) and this has previously 

been reported.260 

 

In-situ hybridization (ISH)

In-situ hybridization was performed both to validate our microarray and real-time 

qPCR findings of ERG (paper I) and SIM2 (paper II) mRNA expression in our cases, 

but also to provide information about their cellular locations. 

 In-situ hybridization, which preserves the histological morphology of the tissue 

sample, provides an advantage over extraction based techniques, since they are not 

able to take into account the heterogeneity of the prostatic tissue and distinguish 

 58



between gene expressions performed by the various cells present in the sample. Based 

upon the ability of nucleic acids to anneal to one another in a sequence specific 

complementary manner, and our ability to detect this annealing with labelled probes, 

this method identifies specific nucleic acids in situ in histological tissue samples, and 

therefore provides information concerning both the presence or absence of DNA or 

RNA and their location within the tissue sample, specifying the specific cell type 

responsible for gene expression and the location within the cell.262-264 In-situ 

hybridization provides excellent qualitative information, and a semi-quantitative 

evaluation of expression levels can be achieved by assessing staining intensity and 

frequency, although other methods like real-time qPCR are more optimal for 

quantification of gene expression.262 

  Archival tissues from patients are an invaluable resource to study and validate 

genes of clinical interest. One challenge of archival tissues is the fact that stored 

tissues are formalin-fixed and paraffin-embedded, which preserves the histological 

morphology, but can severely restrict the methods applicable for gene expression 

analysis.262, 263 In order for the probe to be able to reach its nucleic target, the tissue 

needs to be deparaffinised and the RNA unmasked by proteolytic digestion, which 

removes components of the cell nucleus and cytoplasm to allow probe access. The 

labelled probe may then hybridize with the target sequence before the visualization 

steps. Factors affecting hybridization efficacy and specificity are possible RNA 

degradation and crosslinking with proteins, degree of proteolytic digestion affecting 

the balance between probe penetration and destruction of cell and tissue architecture, 

specificity of the probe and the hybridization process and sensitivity of detection.263 

 Two types of probes are established for mRNA in-situ hybridization of paraffin 

embedded tissue, DNA oligonucleotide probes or RNA probes (riboprobes), and they 

may be radioisotope- (33P or 35S) or non-isotopic (e.g. Biotin or Digoxigenin) 

labelled.262, 263 Riboprobes are commonly used for RNA detection because RNA-RNA 

hybrids are more stable against denaturation than DNA-RNA hybrids. Riboprobe 

vectors can be used to generate both sense and antisense probes to allow control of 

hybridization, and unbound probe can be digested using RNase which does not digest 

double stranded hybridized RNA. DNA oligonucleotides may be used for the detection 
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of high abundance RNA. They have the advantage that they can be custom synthesised 

with high specificity and may be easily and efficiently labelled. Digoxigenin-labelled-

RNA probes (DIG-cRNA) may be generated by cloning (ERG in Paper I) or PCR 

(SIM2 in Paper II). When cloning, the probe sequence is cloned into a vector 

containing RNA polymerase promoter sites, and probe molecules are generated using 

phage RNA polymerase (T7, T3 or SP6) mediated incorporation of labelled 

nucleotides like digoxigenin-11-UTP. In the PCR method, labelled nucleotides may be 

directly incorporated or by using labelled primers.263  

 For in-situ hybridization of ERG (Paper I), histological tissue sections of cases 

with a high expression of ERG were selected. T3- and T7-containing Bluescript SK- 

ERG/�-actin plasmids (Invitrogen) were used for synthesis of DIG-RNA ERG 

antisense, ERG sense (negative control) and �-actin antisense probes (used as 

endogenous positive control), respectively. Plasmids were cut with restriction enzymes 

and then sequenced to verify the specificity of the sequence. Initially, short DNA 

oligonucleotide probes were designed, but they did not provide positive signals, 

possibly due to sensitivity limitations of short probes with less labelled groups than the 

Riboprobes. Cases expressing high levels of the SIM2-s isoform selected for in-situ 

hybridization as well (Paper II). SIM2-s antisense and sense and �-actin antisense 

fragmented DIG-cRNA probes were made by the PCR-based approach. The method 

was carried out as described in Papers I and II (for ERG and SIM2 respectively) 

according to protocols. Slides of paraffin-embedded tumour tissue were deparaffinised 

and the RNA unmasked to allow probe access. Fragmented DIG-cRNA probes for 

SIM2 and ERG were diluted and incubated on the slides overnight. Post-hybridization 

wash was done twice before the slides were RNase treated (to remove unbound probe). 

Re-fixation of the slides was followed by blocking before incubation with anti-DIG-

AP Fab fragments (Roche). Staining was done by Liquid Permanent Red Chromogen 

(LPR) (Dako) and hematoxylin was used for counter staining. 
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IMMUNOHISTOCHEMISTRY AND TISSUE MICROARRAY (TMA) 

 

As with in situ hybridization, used for studying nucleic acids present in tissue samples, 

immunohistochemistry (IHC) is also widely used for in situ studies, studying protein 

expression patterns in histological samples thereby preserving the cellular morphology 

of the tissue samples, which is an advantage considering the heterogeneous nature of 

the prostatic tissue. Both in situ hybridization and immunohistochemistry are 

invaluable tools in combination with other molecular methods like DNA microarray 

and real-time qPCR when studying gene expression and potential biomarkers for 

cancer. 

 Immunohistochemistry may be performed on full sections of paraffin-embedded 

cancer tissue samples or using large scale tissue microarrays (TMAs), allowing high-

throughput molecular profiling of tissue specimens. Large scale expression analysis on 

tissues by TMA was introduced in the late 1990s, and each TMA contains a large 

number of cylindrical tissue cores from paraffin embedded full sections (donor blocks, 

each from a different patient) arrayed into a receptor paraffin block, which is then cut 

into potentially several hundred thin sections on a slide ready for various in situ 

methods applicable for nucleic acid detection or protein detection (ISH or IHC 

respectively).262, 265 The TMA technique has been validated in a number of studies, 

including prostate cancer,266 and immunohistochemistry based on TMA versus large 

sections of tissue show good concordance.267-269 The principle of the TMA method is 

illustrated in Fig. 15. 

 Protein expression of SIM2-s in prostate cancer tissue samples was studied with 

immunohistochemistry on tissue microarrays (TMAs). Previous studies on tumour cell 

proliferation by Ki-67 expression in “hot spot” areas on regular tissue slides270 as well 

as data regarding expression of p16 and p27191, 192, 271 were also included in the SIM2 

study (Paper II). 

 After formalin fixation, radical prostatectomy specimens were totally embedded 

and studied by whole mount step sections. Immunohistochemistry was performed on 5 

	m slides and the area of highest tumour grade was selected for tissue microarray 

construction, using three parallel cores (0.6 mm in diameter) from each case.191, 265, 272 
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Triplicates were used to account for both intratumour heterogeneity and problems with 

drop-outs. Epitope retrieval (necessary because of eventual masking or loosing of the 

antigen due to formalin fixation) was achieved by microwave treatment for 20 min in 

Tris-EDTA buffer at pH 9.0. Both monoclonal and polyclonal antibodies may be used 

for immunohistochemistry, in general however, monoclonal antibodies are preferred, 

due to their superior reproducibility and single specificity.273 The differences in 

epitope specificities of various antibodies as well as differences of the detection 

systems may influence the results. Challenges when optimizing standard protocols for 

individual IHC include that antigens may be “masked” or lost during formalin fixation, 

requiring different methods of antigen retrieval, and the various antibodies require 

different dilutions, optimal incubation periods and staining procedures. The 

immunohistochemistry for SIM2 was carried out according to protocol as outlined in 

Paper II. 

 

 
 
Figure 15. Tissue-microarray construction: (a) Slides and paraffin blocks of possible donor tissue are 

collected from the archive. (b) Tissue core biopsy of 0.6 mm in diameter is punched from a pre-

selected region of a donor block using a thin-wall stainless steel tube. A hematoxylin & eosin-stained 

section overlaid on the surface of the donor block is used to guide sampling from representative sites 

in the tissue. The tissue core is transferred into a pre-made hole at defined array coordinates in the 

recipient block. (c) Sections from a tissue microarray block are ready to be used for simultaneous in 

situ analyses. (Nocito et al., Int J Cancer: 94, 1-5.2001)274 
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STATISTICAL METHODS 
 

Statistical methods and analysis are invaluable, essential tools in all clinico-

pathological research. In our studies, statistical software packages used were BMDP 

(BMDP, Los Angeles), SPSS (SPSS Inc, Chicago) and J-Express (Molmine, Bergen). 

The most common methods for univariate survival analysis, the Kaplan-Meier 

product-limit method as well as the log-rank test, which may be used to test for 

differences between survival curves from various groups, were used.275 For 

multivariate survival analysis the most commonly used approach to regression 

analysis of survival data, the Cox’ proportional hazard regression model (likelihood 

ratio test) was used, including only significant variables (p < 0.05) from the univariate 

analysis.276  

 Associations were assessed with the appropriate methods for categorical or 

continuous variables. The following methods were applied:  Mann-Whitney U test 

(nonparametric rank test which examines the difference between two groups), 

Kruskal-Wallis test (nonparametric rank test which examines the difference between 

two or more groups), Pearson’s 
2 test (parametric correlation coefficient which 

measures the strength of the linear association between outcome and exposure 

variables), Fisher’s exact test (the preferred method when studying categorical 

variables in small groups), the Chi-X2-test (examines the association between two 

categorical variables in larger groups) and the paired and unpaired T-test (provides 

associations in small groups based on a normal distribution).276 The Spearman rank 

correlation test (Spearman rho test) was used to investigate possible correlations 

between continuous variables (nonparametric method based on ranks which calculates 

a correlation coefficient providing a measure of the strength of the association between 

two variables). 

Microarray gene expression analysis. In the analysis of gene expression data, 

a number of methods were used to compare gene expression between groups (paired 

and unpaired T-tests), prediction of gene profiles (Fishers linear discriminant), 

hierarchical cluster analysis to identify homogeneous groups based on gene expression 

(average linkage and Pearson’s correlation), testing of the predictability of gene 
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expression classifiers (i.e. T and B) (leave one out crossvalidation) and to test 

prediction accuracy achieved against pure chance (random permutations).149 

Statistical cut-off values. Sometimes continuous variables may be divided into 

subgroups forming categories for relevant statistical analysis. When doing this it is 

important to avoid cut-point selection bias, and this was done by categorization by 

median, quartiles or tertiles while considering the size of the subgroups, the frequency 

distribution and the number of events in each category.277 This categorization method 

was used for the analysis of expression studies and immunohistochemistry results, 

survival analysis and in grouping of the patients according to preoperative s-PSA (<4, 

4-10, 10-20, >20) (or median s-PSA),278 age (two groups with the age � 63 or >63), 

pathological stage (two groups with � pT2 or � pT3) or by Gleason score (two groups 

with scores �  6 and � 7) for association and correlation studies. 
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MAIN RESULTS 
 

Paper I 

In Paper I we identified a number of genes differentially upregulated in tumour tissue 

compared with benign tissue, including previously described genes like AMACR and 

hepsin, as well SIM2, which was studied in more detail in Paper II, and ERG. The 

transcription factor ERG was found to be highly upregulated in a subset of prostate 

cancer patients (more than 20-fold upregulation in tumour samples (T) compared with 

benign samples (B) in approximately 50% of matched T and B tumour pairs). ERG1 

was identified as the predominant isoform expressed in prostatic tissue and ERG was 

shown to be expressed mainly in epithelial malignant tissue but also in vascular 

endothelial cells. The exon organization of ERG1 and ERG2 was also revised. The 

upregulated expression of the ETS-members ELF5, ETV1 and ETS1 was found to be 

inversely correlated with the overexpression of ERG, while ETS2 was moderately to 

strongly downregulated in most prostate cancers. Prostate tissue biopsies contain 

different cell types, including epithelial cells, stromal cells, endothelial cells and 

leukocytes in vessels and infiltrates. A very important result of this paper was to show 

by in situ hybridization that the abundant overexpression of ERG mRNA occurred in 

the epithelial cancer cells. Previously, ERG was known as an endothelial transcription 

factor, and the in situ hybridization was able to demonstrate ERG expression in 

endothelial cells although this was a minor contribution to the total ERG mRNA 

detected in cancer. 

 

Paper II 

In Paper II we validated the upregulation of SIM2 in prostate cancer. mRNA from 

both SIM2 isoforms, SIM2-s and SIM2-l, were shown to be highly upregulated in 

malignant tumour tissue compared with benign tissue. The SIM2-s protein was 

expressed in 44 of 103 prostate carcinomas (43%) and was associated significantly 

with preoperative serum PSA, high histological grade, extra-prostatic extension and 

increased tumour cell proliferation by Ki-67 expression as well as reduced expression 

of the p27 protein. A univariate survival analysis of 103 prostate cancer patients 
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showed a significant association between positive SIM2-s expression and reduced 

prostate cancer-specific survival. WHO histologic grade and SIM2-s expression were 

significantly associated with survival in a univariate analysis and only SIM2-s 

remained in a multivariate survival model as a significant independent predictor of 

reduced cancer-specific survival. 

 

Paper III 

In Paper III we were able to detect TMPRSS2:ERG gene fusion mRNAs in urine 

pellets from 19 out of 55 patients (34,5%) treated with radical prostatectomy. Gene 

fusion TMPRSS2:ERGa was identified in the majority of patients with a positive 

fusion status (89.5%), while TMPRSS2:ERGb was identified in a minority (36.8%) 

(7/19 positive cases). Five of these patients were positive for both fusion isoform a and 

b. Prostatic massage prior to urine collection improved the sensitivity of the test (69% 

positive cases in samples collected after prostatic massage vs. 24% positive cases in 

samples collected without prior massage). The highest detectable levels of gene fusion 

transcripts were found in total RNA from urine pellets collected after prostatic 

massage. The presence of the TMPRSS2:ERG gene fusion in urine was found to 

correlate with adverse clinicopathological variables, such as increasing s-PSA, high 

pathological stage and Gleason score 7 or higher. 
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DISCUSSION OF RESULTS 

Although there was initially (6 – 10 years ago) much scepticism to the potential, 

reliability and precision of the microarray technology, this methodology revolutionized 

global gene expression studies and is now widely applied in cancer research. 

Microarray studies analyze the genome-wide gene expression at a given time under 

certain conditions. An initial microarray gene expression study by Halvorsen et al.149 

provided us with a microarray data set used as a basis for the generation of gene lists 

of up- and downregulated genes in prostate cancer tissue compared with benign tissue, 

based on filtered (SIM2) or floored (ERG) datasets. Filtering of the genes before 

inclusion in the dataset may exclude candidate genes expressed only in subgroups of 

the samples. To compensate for this, the alternative method of flooring was also used. 

“Flooring” means to substitute a low and fixed value for either the denominator or the 

nominator when the hybridization signal is zero or close to zero in either channel. Both 

filtered and floored datasets were used for identification of differentially expressed 

genes. In the list of the differentially most upregulated genes based upon the floored 

dataset (Table II, Halvorsen et al.149) several unknown ESTs where highly ranked. 

ESTs (Expressed Sequence Tags) are short single-read transcript sequences of yet 

unidentified genes. The upregulated EST (IMAGE number 767130) (Table II, Paper I), 

exhibited full homology with the 3’ untranslated region of the ERG mRNA based upon 

BLAST analysis. Real-time PCR assays were designed for different regions of the 

ERG reading frame (ORF) and confirmed the very high overexpression of ERG in 

prostate cancer. The ETS family of transcription factors, and its member ERG in 

particular, was studied further in Papers I and III. The transcription factor SIM2 ranked 

second on the list of upregulated genes in the filtered dataset, after the already well 

known upregulated gene AMACR,279, 280 and was characterized further in relation to 

prostate cancer in Paper II. The majority of microarray gene expression studies of 

prostate cancer149, 232, 255, 279, 281-294 provide potential molecular signatures for prostate 

cancer vs. benign prostate, classification of moderate- vs. high-grade prostate cancer, 

prediction of PSA recurrence, tumour aggressiveness, predictive signatures, prediction 

of PSA recurrence etc. The search for clinically useful and applicable microarray 
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profiles and molecular biomarkers are ongoing, and the identification of ERG 

overexpression in half of all prostate cancer marks a new era in the understanding of 

prostate carcinogenesis. 

 

 

SIM2    

Based upon our initial microarray studies of  gene expression in localized prostate 

cancers compared with benign tissue,149 we decided to select highly differentially 

upregulated genes for validation and further studies. SIM2 ranked second on the gene 

list based on the filtered data set after AMACR (Table I in Halvorsen et al.149). We 

found that both the short and long isoforms of the SIM2 gene were expressed in benign 

prostatic tissue and that the expression was significantly upregulated in prostatic 

cancer tissue (Paper II). Tumour cell expression of the SIM2-s protein was shown to 

be associated with more aggressive clinicopathological features and reduced cancer-

specific survival. 

Although there are several microarray studies performed on prostate cancer, 

with the exception of one,295 none of them focus on or mention SIM2.255, 283-287, 295, 296 

But, when analyzing these studies in the publicly available gene microarray datasets 

within the Oncomine database,297 the data support our findings that the expression 

levels of SIM2 were significantly higher in prostate cancer tissue than in benign 

samples. The fold change of expression in tumour tissue compared with benign tissue 

varied between 2.5 to 65.8 in these studies according to Oncomine.  

SIM2 is a member of the PAS (Per/Arnt/Sim) family of transcription factors 

involved in regulation of key oxidative enzymes involved in carcinogen metabolism 

and cancer surveillance.148, 153 Although the exact molecular role and function of SIM2 

and pathways involved are not entirely clear, studies involving SIM2 in processes 

potentially involved in the carcinogenic processes are emerging. BNIP3 (HIF1�-

dependent, hypoxically induced pro-apoptotic Bcl-2 BH3-only family member) has 

recently been identified as a novel target of SIM2-s.298 The SIM2-s mediated 

repression of BNIP3, which has recently emerged as a pro-autophagic factor, is 

coupled to the role of SIM2-s in increasing prostate tumour-cell survival during 
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prolonged hypoxic conditions. Aleman et al.,299 have found a possible link between 

SIM2-s and differentiation. In antisense-SIM2-s treated colon-cancer derived cells 

(RKO cells), the expression of a key stress response gene, growth arrest and DNA 

damage gene (GADD) 45�, was found to be upregulated compared with normal cells, 

leading to subsequent apoptosis. Various apoptosis and differentiation-related genes 

were found to be up-regulated in the SIM2-s antisense-treated RKO cells. Key 

pathways, including GADD, caspase and p53 function, were identified as critical to 

the function of the SIM2-s gene. Li et al.300 proposed SIM2, as a candidate �-

catenin/TCF target gene in Wilm’s tumours, since it contains at least one consensus 

TCF site in its promoter region, but states that additional studies will be necessary to 

validate SIM2 as a �-catenin/TCF-responsive gene. Gravdal et al.195 however, did not 

find an association between SIM2-s and �-catenin expression in the prostate cancer 

series. 

There are tissue differences both with regard to SIM2 up- or downregulation 

promoting or suppressing tumourigenesis and with regards to isoform preferences in 

both benign and malignant tissues.155, 157, 158, 301 SIM2-s is expressed in benign breast 

tissue and has been found to be downregulated in breast cancer derived cell lines and 

in human breast cancer samples, and linked to tumour suppressor activities, including 

decreased expression of matrix metalloprotease 3 (MMP3) and a role in the control of 

epithelial to mesenchymal transition (EMT). Loss of SIM2-s in MCF-7 breast cancer 

cells correlated to cell survival through the activation of SLUG-mediated EMT.157, 158 

These tumour suppressor properties of SIM2-s in breast cancer are contradictory to its 

upregulation of expression and oncogenic cancer promoting role in colon, pancreas 

and prostate cancers, and may reflect different tissue specific functions or differences 

in effect depending upon the cellular context.  

Previous studies found SIM2-s, but not SIM2-l, to be associated with pancreas, 

prostate and colon cancer, although not expressed in the normal tissues of these 

organs. Elevated expression of SIM2-s seen in early colon adenomas and in BPH,148 

raises the possibility that this activation may be an early event in tumourigenesis. In 

contrast, we found both SIM2 isoforms to be expressed in both benign and tumour 

tissue (Paper II), and indeed the ratio between expression levels in tumour tissue and 
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benign tissue was much higher for SIM2-l compared with SIM2-s (fold change 6.7 vs. 

3.9). This is the first study to identify SIM2-l as overexpressed in prostate cancer and 

the relevance of this isoform should be studied further. 

Our findings that SIM2 expression might be important for clinical progression 

of prostate cancer and associated with reduced prostate cancer-specific survival 

support the proposal of SIM2-s as a candidate for targeted therapy in prostate 

cancer.156, 302 Arredouani et al.,302 found that human HLA-A2.1 restricted SIM2 

epitopes induce specific T-cells in vivo, and that anti-SIM2 antibodies are detectable in 

the sera from prostate cancer patients. They suggest SIM2 as a prostate cancer 

associated antigen that is a potential target for prostate cancer immunotherapy. 

The precise function of genes regulated by SIM2, molecular pathways involved 

and the role of both SIM2-l and SIM2-s in prostate cancer are not clear and needs to be 

further elucidated, as well as its prognostic and therapeutic potential and utility.  

 

 

ERG AND OTHER ETS TANSCRIPTION FACTORS IN PROSTATE 

CANCER

 

Increased expression of ERG in prostate cancer 

The ERG gene was first described by Reddy et al.,116 in 1987, who suggested that ERG 

might be a member of the ETS oncogene family. Considering that ETS1 and ETS2 are 

translocated in certain leukaemias, they discussed the possibility of ERG being linked 

to any human malignancy either by amplification, translocation or other 

rearrangement. In Paper I, we identified ERG as one of the most highly upregulated 

genes in a large subset of prostate cancer patients through gene expression microarray 

analysis and validation with real-time qPCR. Approximately 50 % of our patient 

tumour tissue samples showed a high overexpression of ERG compared with benign 

tissue samples. This was a confirmation of the independent work done by Petrovics et 

al.,78 who in 2005 published ERG1 as being frequently overexpressed in the majority 

of prostate cancers. Since then several studies have confirmed the upregulation of ERG 
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in prostate cancer, ranging from 40-80% of prostate cancer patients being fusion 

positive.  

 

Exon organization of ERG

During the course of our work it became apparent that the published exon organization 

of ERG isoform 1 (NM_182918) and isoform 2 (NM_004449),121 did not match our 

experimental findings. Especially, when analyzing agarose gels run after PCR 

amplification across pre-mRNA splice sites, there was a discrepancy between the 

observed gel bands and the ones we expected according to Owczarek et al..121 A gel 

band of approximately 70 nucleotides present in ERG1 but not in ERG2, did not 

correspond with the assumed exon overview. We therefore undertook extensive 

sequencing of the ERG cDNA from benign prostate tissue, and based upon this we 

revised the exon organization of these two isoforms (Fig. 1, Paper I) and the relevant 

Genbank Accession numbers (NM_182918 and NM_004449) were corrected 

accordingly. The observed gel band corresponded to the 72-nucleotide exon 9 in the 

revised ERG1.  

 

Mechanism behind upregulated gene expression of ERG and other ETS family 

members

Later in 2005, Tomlins et al.,80 through a bioinformatic method called cancer outlier 

profile analysis (COPA), which analyses microarray data for marked overexpression 

of genes in subsets of cases, identified the two ETS transcription factors ERG and 

ETV1 as outliers and highly overexpressed in prostate cancer. COPA is useful to avoid 

that strongly expressed genes in subgroups go undetected, and in this respect serves a 

similar purpose as the “flooring” of gene expression data used in our studies. Without 

“flooring” both ERG and ETV1 would also have been filtered away in our microarray 

data. Importantly, Tomlins et al.80 identified the mechanism behind the observed 

upregulation of ERG, and also several other ETS transcription factors, in prostate 

cancer. The initial finding was that the promoter of the TMPRSS2 gene was fused to 

the ERG reading frame due to a chromosomal translocation or deletion. The TMPRSS2 

promoter is androgen-dependent and highly active in prostate luminal cells. This 
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translocation therefore results in strong aberrant activation of the ERG gene, which is 

silenced in benign prostate epithelium. They identified recurrent gene fusions of the 5’ 

untranslated region of TMPRSS2 also to ETV1, and suggested that the androgen-

responsive promoter element of TMPRSS2 drives the overexpression of ETS family 

members in prostate cancer. Although gene fusions, through translocations or 

interstitial deletions are very common oncogenic mechanisms in haematological 

tumours and sarcomas, as exemplified by the gene fusion BCR-ABL1 (Philadelphia 

chromosome) in CML,303 as well as the gene fusions between mainly FLI1 but also 

ERG and other ETS transcription factor genes and EWS in Ewing’s sarcoma,130 this 

finding was the first identification of a recurrent gene fusion in solid epithelial 

adenocarcinomas. The two alternative isoforms of TMPRSS2:ERG were called 

TMPRSS2:ERGa and TMPRSS2:ERGb (GenBank accession numbers DQ204772 and 

DQ204773 respectively), of which TMPRSS2:ERGa is the most prevalent one, and 

they were further analysed in our urine study (Paper III). The previous absence of 

identified gene fusions in common solid epithelial tumours like prostate cancer and 

breast cancer has been attributed to technical difficulties associated with their 

cytogenetic analysis.304, 305 Also, epithelial cancers are clonally heterogeneous, which 

makes it difficult to separate tissue with chromosomal aberrations from clinically 

irrelevant tissue. These recurrent gene fusions in prostate cancer were identified on the 

basis of gene expression data, thereby bypassing the technical limitations of 

cytogenetics in solid cancers.  

 The mechanisms involved in generating the double-strand break (DSB) that 

leads to the TMPRSS2:ERG gene rearrangements are not completely understood, but 

recently a proposed mechanism behind this was published,306 linking the generation of 

TMPRSS2:ERG fusions through DSBs to androgen stimulation. Topoisomerase II� 

(TOP2B) is required for androgen-mediated gene expression and is recruited to the 

TMPRSS2 promoter by the androgen receptor (AR) which is induced upon luminal 

epithelial cell differentiation. Topoisomerases catalyze transient DSB as part of their 

normal activity, but dysfunction may lead to aberrant rejoining of DSB and resulting 

translocations. Both AR and TOP2B were highly coexpressed in TMPRSS2:ERG 

fusion positive neoplastic cells comprising prostatic intraepithelial neoplasia (PIN) 
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lesions. It was therefore hypothesized that androgen receptor signalling might lead to 

TOP2B-mediated DSBs and that such breaks could be involved in the generation of 

TMPRSS2:ERG fusions.  

 Since the first paper on the gene fusions was published,80 a number of different 

isoforms of TMPRSS2 and ERG gene fusions have been identified, as well as 

alternative 5’ partners for ERG, alternative ETS 3’ partners for TMPRSS2 and 

alternative 5’ partners for other ETS factors involved in recurrent gene fusions. A 

classification of ETS gene fusions in prostate cancer have been proposed.131, 307-309 

Most of the fusion genes and transcripts characterized so far have the protein coding 

region derived largely from the ETS gene, and in all fusion variants the ETS domain 

appears to be retained and the DNA binding domain preserved. The most common 

variants involve TMPRSS2 exon 1 or 2 fused to ERG exon 2, 3, 4 or 5.80, 138, 140, 141, 307, 

310-313 Less frequent combinations include TMPRSS2 exon 4 or 5 fused to ERG exon 4 

or 5313 and, in one case, TMPRSS2 exon 2 was found fused to inverted ERG exon 6-

4.312 These variant fusion transcripts most probably represent alternative splicing 

variants, and there are distinct phenotypic effects produced by different isoforms. The 

TMPRSS2:ERG fusion is found in approximately 90% of fusion positive cases, 

followed by ETV1 and ETV4 fusions, respectively. The reason for the observed 

frequencies of fusion partners with TMPRSS2 is unclear.314  

 

Differential expression of other ETS transcription factors 

Other ETS transcription factors were also differentially expressed, either up- or 

downregulated, in a number of our prostate cancer samples (Paper I). Our Agilent 

microarray expression data were available for 20 different ETS transcription factors. 

Most of the ETS factors did not show a differential gene expression in tumour tissue 

compared with benign tissue, we did find however, a negative correlation between the 

expression of ERG and ETV1, ETS1 and ELF5, i.e. some cases lacking ERG 

overexpression showed upregulation of these instead, suggesting that these 

transcription factors might substitute for ERG in prostate cancer. Whether genetic 

rearrangements are also responsible for the observed increased expression of ETS1 

and/or ELF5 in a subset of prostate cancers remains to be determined.  
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ETS2 was moderately to strongly downregulated in a majority of our prostate 

cancer samples. Both ERG and ETS2 are located on chromosome 21 (21q22.2-q22.3) 

only approximately 150 kb apart,117, 121 and it is likely that the ETS2 gene, which is 

located between TMPRSS2 and ERG, is lost in the process when the TMPRSS2 

promoter is fused to the ERG reading frame. The ETS transcription factors ERG and 

ETS2 may have competing roles in transcription complexes,73, 75 and the loss of ETS2 

could further promote ERG activity. The interactions between different ETS factors 

may have stimulatory or repressive effects on transcription. As one example, together 

with the AP1 transcription complex (FOS/JUN), ERG promotes collagenase-1 

(MMP1) activation and ETS2 promotes activation of stromeolysin-1 (MMP3). 

However, when ERG and ETS2 is coexpressed, ERG can bind to the stromelysin-1 

promoter and repress its activation by ETS2.73, 75 

One of our patients without increased ERG expression had instead a marked 

overexpression of ETV5. We suspected that this ETS factor could also possibly be 

involved in a gene fusion responsible for the upregulation, maybe with TMPRSS2. 

Exon-walking quantitative PCR identified an increased expression of the exons located 

towards the 3’-end of the gene compared with a 5’-end exon, suggesting the presence 

of a possible gene fusion. We performed 5’ RACE (5’ RNA-ligase-mediated rapid 

amplification of cDNA ends) and sequenced the 5’ end of the transcripts (unpublished 

work) in an attempt to identify a possible gene fusion partner. Unfortunately, this time 

consuming and challenging method revealed only the complete ETV5 nucleotide 

sequence, and we were at that time unable to identify any gene fusions. The reason for 

this is unclear, but could be due to one intact allele of ETV5 or contamination during 

PCR amplification by a normal ETV5 sequence. At the end of this work, Helgeson et 

al.,81 published the fusion between ETV5 and TMPRSS2 confirming our hypothesis, 

and we therefore did not go any further with this work. They also identified SLC45A3 

as an alternative 5’ partner for ETV5.  

 

Carcinogenesis 

Due to its high prevalence and recurrence in prostate cancer, it seems clear that 

TMPRSS2:ERG gene fusions play an essential role in the development of prostate 
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carcinogenesis. ETS factors have been reported to play an important role in extra-

cellular matrix remodelling and epithelial-to-mesenchymal transition (EMT) and their 

overexpression has been linked to increased motility, invasion and metastasis in 

various cancer models, as mentioned in the introduction. The actual role, and when in 

the malignant process the TMPRSS2:ERG gene fusions appear, is presently being 

thoroughly investigated. We suggested that the observed activation of ERG, or related 

ETS factors, might reactivate an embryonic proliferation program (Paper I). 

 The relationship between the epithelial luminal cells and basal cells in the 

prostate, both during development, in the adult and during cancer development has 

been discussed extensively, and the cancer initiating cell type has remained unclear. 

Pathology observations, showing that more than 95% of prostate cancers express 

luminal markers with absence of basal cells, have led many to propose luminal cells as 

the source of prostate cancer cells.315, 316 Crum et al.52 states that under normal 

conditions, there is little evidence that the basal cells of the prostate differentiate into 

secretory cells, and that both basal and luminal compartments appear capable of 

independent proliferation and self-renewal. This is contradictory to recent reports that 

prostate cancer may originate among basal cells.49, 51 Goldstein et al.,35 proposed an 

epithelial hierarchy of the normal prostate in which a stem cell within the basal layer 

of the normal prostate can give rise to multi-potent progenitor cells. This progenitor 

cell likely gives rise to neuroendocrine cells, mature basal cells and luminal-restricted 

progenitors that can generate mature luminal cells. They suggested that prostate cancer 

likely originates from a progenitor cell with multi-lineage differentiation potential or a 

mature cell that acquires this property. It could be that re-programming of basal cells 

and progeny causes them to differentiate in the direction of the luminal cell lineage 

and that prostate carcinogenesis in vivo is associated with differentiation towards 

mature luminal cells. This is consistent with the generally acknowledged loss of many 

basal cell markers and the presence of luminal cell markers in prostate cancer 

biopsies.51 Lawson et al.49 assessed the tumourigenic potential of different prostate cell 

subpopulations, and found that basal/stem cells were more efficient targets for 

transformation than luminal cells following the introduction of multiple alternative 

oncogenic stimuli.  
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   Emerging evidence suggests that the TMPRSS2:ERG gene fusion is an early 

event in human prostate tumorigenesis. ERG associated gene rearrangements and the 

resulting aberrant overexpression of the transcription factor may represent critical 

cooperative progression events in prostate tumourigenesis. ERG rearrangements have 

been identified in approximately 50% of localized cancers and 30% of metastatic 

cancers, but only in approximately 16-20% of PIN and HGPIN lesions.137, 307, 310, 317-320 

Genetic rearrangement of ERG is infrequently found in HGPIN and with the same 

ERG fusion pattern in the adjacent invasive prostate cancer.320, 321 However, the 

majority of prostate cancer specimens with ERG did not display this rearrangement in 

the associated HGPIN and there were no cases of ERG fusion in HGPIN associated 

with ERG negative cancers. Therefore, it seems likely that the TMPRSS2:ERG 

translocation is an early event in human prostate tumourigenesis associated with 

progression from HGPIN to cancer. Increased expression of ERG is found to increase 

invasion, but is not sufficient to drive the malignant transformation from HGPIN to 

cancer.319 However, forced expression of the androgen receptor, ERG and activated 

AKT1 can induce prostate cancer from basal cells.51 Deletion of all or part of the 

tumour suppressor gene PTEN (which is one way to activate the AKT pathway) is a 

frequent event in prostate cancer development (30%-70% of the cases) and PTEN loss 

and ETS gene rearrangements are proposed to be critically important and common 

molecular events in prostate carcinogenesis.80,319,321-322 Several authors319, 323, 324 have 

speculated that loss of PTEN or NKX3-1 may precede and cooperate with ETS gene 

fusions to drive cancer development from PIN to malignant cancer. King et al.322 

found that transgenic TMPRSS2:ERG mice developed PIN, but only in the context of 

PI3-kinase pathway activation, and suggested that additional events are likely required 

for actual malignancy. Yoshimoto et al.325 demonstrated that the co-occurrence of 

PTEN loss and ERG genetic rearrangement was a statistically independent predictor of 

biochemical failure after radical prostatectomy, and Carver et al.321 suggested that 

ERG targeted therapy may be effective at preventing the transition between HGPIN 

and invasive cancer, but this still remains to be studied further. 

Recently, Yu et al.,326 provided a link between the androgen receptor (AR), 

epigenetic regulation by polycomb and TMPRSS2:ERG gene fusions in prostate 
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cancer. They found that ERG disrupts AR signalling by inhibiting AR expression, 

binding to and inhibiting AR activity at gene-specific loci, and inducing repressive 

epigenetic programs via direct activation of the H3K27 methyltransferase polycomb 

protein EZH2, which has also been shown by Kundefranco et al.,327 who identified 

EZH2 as a target gene of ERG and ESE3. Interestingly, they showed that the AR and 

ERG co-occupy target genes, that there is an extensive overlap between AR and ERG 

binding sites, and they suggested that TMPRSS2:ERG plays a central role as a 

”malignant regulatory switch” that shuts down androgen signalling, thereby inhibiting 

normal prostate differentiation and inducing an epithelial stem cell-like 

dedifferentiation program that may be exploited during carcinogenesis. 

 

Screening

One of the major challenges in cancer diagnostics and treatment is to find genes and 

proteins specific for cancer and preferably not present in benign tissue, which ideally 

are of diagnostic use, provide information regarding prognosis and predictive 

information for choosing treatment options, as well as represent targets for clinical 

therapy. There is an urgent need for biomarkers capable of distinguishing between 

indolent tumours and aggressive tumours. Biomarkers that are specific for cancer and 

only present in cancerous tissue and never in benign tissue, are called pathognomonic 

(“characteristic for a particular disease”) biomarkers.  The current routinely used and 

dominating biomarker for prostate cancer is prostate specific antigen (PSA). One of 

the disadvantages of PSA, as discussed in the introduction, is the lack of specificity 

and sensitivity for prostate cancer. PSA is produced in benign as well as cancerous 

prostate cells, and elevated levels of PSA are present in benign conditions like BPH 

and prostatitis as well as in non-physiological conditions, for example following 

prostatic massage. The gene fusions between TMPRSS2 and ERG and other ETS 

transcription factors have only been identified in prostate cancer and the precursor 

stages PIN and HGPIN, and therefore these gene rearrangements are pathognomonic 

and extremely attractive potential biomarkers for clinical use as well as potential 

targets for therapy. The ability to detect these pathognomonic gene fusions in body 

fluids without the need for invasive strategies like biopsies is also an advantage. 
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 We analyzed our urine samples (Paper III) for the first two TMPRSS2:ERG 

isoforms identified, which are also among the most prevalent isoforms. We were able 

to detect TMPRSS2:ERG isoforms a and b in urine from prostate cancer patients taken 

prior to radical prostatectomy. We were very surprised when we identified the 

presence of more than one TMPRSS2:ERG gene fusion variant in one urine sample 

from five out of 19 fusion positive patients. Before our work on the urine samples was 

published, this observation was supported by the findings of others in both urine 

samples252 and prostate tissue samples.307, 328 Localized prostate cancer is typically 

multifocal, and various isoforms of the TMPRSS2:ERG gene fusion as well as other 

TMPRSS2:ETS variants may be identified in different foci of a prostate cancer,328-331 

reflecting the heterogeneity of the various foci present in a prostate cancer patient. 

This provides a challenge when screening for prostate cancer and deciding on the 

number of biopsies necessary to perform as well as how to analyse the results. Do the 

tumour clones from which the biopsies were taken reflect the true picture of the 

cancer? However, different sites of metastatic prostate cancer from the same patient 

are uniformly fusion-positive or fusion-negative.  

 Our ability to detect the TMPRSS2:ETS gene fusion products in body fluids like 

urine, provides both the possibility of easy noninvasive sampling and also circumvents 

the aforementioned challenge of multifocality and heterogeneity which has to be taken 

into consideration when performing and evaluating tissue sample biopsies. Since the 

first report of identification of the gene fusion in urine242 and the completion of our 

work, there has been published a number of papers regarding the identification of 

TMPRSS2:ERG and other potential prostate cancer biomarkers either alone or together 

in urine samples from prostate cancer patients (reviewed by Jamaspishvili et al.332), 

regarding diagnostic, prognostic and predictive purposes. Serum and prostatic fluids 

are also being evaluated. Urine sample detection relies on the fact that prostate cancer 

tumour cells are shed into the urine, and we demonstrated (Paper III) that the 

sensitivity of the detection of TMPRSS2:ERG greatly improved with prostatic massage 

prior to urine sampling.  

Hessels et al.252 calculated a score for the prostate specific non-coding RNA 

PCA3, which is highly upregulated in most prostate cancers, and found that a 

 78



combination of TMPRSS2:ERG fusion status and the PCA3 score improved the 

sensitivity for cancer diagnosis. Later, in a multiplex study of biomarkers in urine 

sediments using qPCR, Laxman et al.251 found that detection of GOLPH2, SPINK1, 

PCA3 and TMPRSS2:ERG fusion transcripts were significant predictors of prostate 

cancer, and outperformed serum PSA or PCA3 alone in detecting prostate cancer 

(sensitivity 66% and specificity 76%). Mao et al.,199 was able to detect the 

TMPRSS2:ERG fusion gene in circulating prostate cancer cells and suggested that it 

had a potential in monitoring tumour metastasis.  

A recent very interesting strategy to identify the presence of TMPRSS2:ERG 

gene fusions in prostate cancers, is the antibody-based detection of a truncated ERG 

protein by Park et al..333 They characterized a rabbit anti-ERG monoclonal antibody 

(clone EPR 3864; Epitomics, Burlingame, CA) using immunoblot analysis on prostate 

cancer cell lines, synthetic TMPRSS2-ERG constructs, chromatin 

immunoprecipitation, and immunofluorescence. ERG protein expression was 

correlated with the presence of ERG gene rearrangements in prostate cancer tissues 

using a combined immunohistochemistry (IHC) and fluorescence in situ hybridization 

(FISH) analysis. ERG expression was confined to prostate cancer cells and high-grade 

prostatic intraepithelial neoplasia associated with ERG-positive cancer, as well as 

vessels and lymphocytes. They detected ERG rearrangement prostate cancer with 

close to 100% sensitivity (96%) and specificity (97%). This study identifies a specific 

anti-ERG antibody and demonstrates association between ERG gene rearrangement 

and truncated ERG protein product expression. ERG protein expression may be useful 

for molecularly subtyping prostate cancer based on ERG rearrangement status. 

The usefulness of TMPRSS2:ETS gene fusions and other recently identified 

potential biomarkers, like Sarcosine (a metabolite)196 and Annexin A3 (ANXA3) 

(negatively associated with prostate cancer),197, 198 as clinically useful tests, either 

alone or in combinations with other biomarkers including PSA, needs to be studied 

further. Most likely specific and sensitive multiplex biomarker urine tests will be 

developed which hopefully provides more specific information and probably 

outperforms PSA alone in prostate cancer diagnosis and treatment.  
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Prognosis

TMPRSS2:ETS fusions may represent the most common recurrent structural aberration 

and gene fusion among all human malignancies. There are a great number of 

conflicting reports regarding possible associations between gene fusion status and 

patient outcome, but emerging data suggest that TMPRSS2:ERG positive cancers 

represent a subclass of prostate cancers that have a more aggressive nature and poor 

prognosis,131, 309 supporting our findings of a correlation between a positive 

TMPRSS2:ERG fusion status (Paper III) and adverse clinicopathological variables 

(increasing preoperative s-PSA, Gleason score � 7 and high pathological stage), 

although we were the first to report an association between positive fusion status and 

increasing s-PSA (Paper III). These gene fusions have been variously associated with 

high pathological stage132 and higher rate of recurrence133 in independent cohorts of 

surgically treated localized prostate cancer cases, and the presence of gene fusion has 

been scored as the single most important prognostic factor.133, 134 In an assessment of 

gene fusion status in a population-based ‘watchful waiting’ cohort of men with 

localized prostate cancer, the TMPRSS2:ERG fusion positive subset of 15 % men was 

found to be significantly associated with prostate cancer specific death.136 In other 

studies, significant associations has been found between TMPRSS2:ERG rearranged 

tumours and higher tumour stage, as well as the presence of metastatic disease 

involving pelvic lymph nodes,137 more frequent gene fusions in moderate to poorly 

differentiated tumours as compared with well-differentiated tumours138 and a 

significant higher risk of recurrence (58.4% at 5 years) than fusion negative patients 

(8.1%).134  

Fusion of TMPRSS2 and ERG can occur through either translocation between 

both chromosome 21s or interstitial deletion (Edel) of the genomic material between 

TMPRSS2 and ERG.137, 140 Interestingly, observations suggest that the rearrangement 

through Edel represents an aggressive molecular subtype of prostate cancer.135, 137, 317 

However, many studies have reported a positive association or an absence of clinical 

correlation between the TMPRSS2:ERG fusion and prognosis.78, 139-141 Many of the 

negative reports have small sample sizes though, and more studies are needed with 

larger patient cohorts to resolve specific prognostic associations and assess the actual 
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clinical usefulness of the gene fusions. Phenotypic morphological associations of the 

gene fusions (and their variants) have been identified,334 but molecular associations 

require follow-up studies.  

 

General conclusions 

The discovery of the upregulation of the oncogene ERG in prostate cancer in 2005 is 

one of the major success stories of genome-wide microarray studies. The following 

discovery of the mechanism behind this upregulation due to the gene fusions between 

TMPRSS2 and ERG (or several alternative ETS transcription factors) and the progress 

in the elucidation of the biological functions and mechanism of ERG activity, have 

been of major importance in the ongoing understanding of prostate carcinogenesis. 

Representing pathognomonic biomarkers, it is likely that these gene fusions will be 

useful for the screening of prostate cancer and possibly also of prognostic or predictive 

use. A future issue is whether and how ERG and other ETS family members, or parts 

of their regulatory networks, may be utilized for the development of therapeutic 

molecular targets. 
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SPECIFIC CONCLUSIONS 
 

1.  The ETS family transcription factor ERG was identified as highly and 

consistently upregulated in prostate cancers. Approximately 50% of the prostate 

cancers showed 20-fold to more than 100-fold increased expression of ERG. 

Although endothelial cells expressed ERG, epithelial cancer cells were the main 

source of ERG expression. ERG1 was the predominant isoform expressed in 

cancerous tissue. (Paper I) 

 

2. Several ETS-family members were differentially expressed in cancerous tissue 

compared with benign tissue. ELF5, ETV1 and ETS1 were alternatively 

overexpressed in patients without increased ERG expression. Their increased 

expression was inversely related to ERGs, suggesting that these ETS 

transcription factors might substitute for ERG in prostate cancer. (Paper I) 

 

3. ETS2 was moderately to strongly downregulated in most prostate cancers. 

TMPRSS2, ERG and ETS2 are located on chromosome 21q22 and it is possible 

that the ETS2 gene is lost when TMPRSS2 is fused to ERG. Since ERG and 

ETS2 seem to have competing roles in transcription complexes, the loss of 

ETS2 could further promote ERG activity. (Paper I) 

 

4. It is possible to detect TMPRSS2:ERG mRNA transcripts in urine from prostate 

cancer patients. Isoform a (89.5%) was most prevalent compared with isoform 

b. Prostatic massage prior to urine sampling greatly improved detection of the 

fusion transcripts and thereby increased the sensitivity of the test. (Paper III) 

 

5.  More than one TMPRSS2:ERG isoform may be detected in urine from one 

patient, reflecting the heterogeneity of prostate cancer. (Paper III)  

 

6. The presence of TMPRSS2:ERG fusions in urine was significantly associated 

with adverse clinicopathological variables (preoperative s-PSA, Gleason score 
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and pathological stage). We were the first to show a positive association 

between fusion status and PSA levels. (Paper III) 

 

7. The transcription factor SIM2 was one of the most highly upregulated genes in 

prostate cancer, and both SIM2 isoforms, SIM2-long and SIM2-short, were 

highly overexpressed in cancer tissue. (Paper II) 

 

8. Expression of the SIM2-s protein in prostate cancer was significantly associated 

with adverse clinicopathological factors and reduced survival. SIM2 may be 

involved in the clinical progression of prostate cancer, and our findings support 

the proposal of SIM2 as a candidate for targeted therapy of prostate cancer. 

(Paper II) 

 

 83



REFERENCES 
 

1. Cancer in Norway 2008. Cancer Registry of Norway. Institute of Populationbased 
Cancer Research, 2008 

2. Gronberg H. Prostate cancer epidemiology. Lancet. 2003 Mar 8;361(9360):859-64. 
3. Potosky AL, Miller BA, Albertsen PC, Kramer BS. The role of increasing detection in 

the rising incidence of prostate cancer. Jama. 1995 Feb 15;273(7):548-52. 
4. Cancer in Norway 2005: Cancer Registry of Norway. Institute of Populationbased 

Cancer Research, 2005. 
5. Weir HK, Thun MJ, Hankey BF, Ries LA, Howe HL, Wingo PA, et al. Annual report 

to the nation on the status of cancer, 1975-2000, featuring the uses of surveillance data 
for cancer prevention and control. J Natl Cancer Inst. 2003 Sep 3;95(17):1276-99. 

6. Ries LAG EM, Kosary CL, et al. SEER cancer statistics review, 1973-1999. Bethesda: 
National Cancer Institute. 2002. 

7. Carter BS, Bova GS, Beaty TH, Steinberg GD, Childs B, Isaacs WB, et al. Hereditary 
prostate cancer: epidemiologic and clinical features. J Urol. 1993 Sep;150(3):797-802. 

8. Stanford JL, Ostrander EA. Familial prostate cancer. Epidemiol Rev. 2001;23(1):19-
23. 

9. Bratt O, Damber JE, Emanuelsson M, Gronberg H. Hereditary prostate cancer: clinical 
characteristics and survival. J Urol. 2002 Jun;167(6):2423-6. 

10. Ostrander EA, Markianos K, Stanford JL. Finding prostate cancer susceptibility genes. 
Annu Rev Genomics Hum Genet. 2004;5:151-75. 

11. Shand RL, Gelmann EP. Molecular biology of prostate-cancer pathogenesis. Curr 
Opin Urol. 2006 May;16(3):123-31. 

12. Friedenson B. BRCA1 and BRCA2 pathways and the risk of cancers other than breast 
or ovarian. MedGenMed. 2005;7(2):60. 

13. Rosen EM, Fan S, Goldberg ID. BRCA1 and prostate cancer. Cancer Invest. 
2001;19(4):396-412. 

14. Sigurdsson S, Thorlacius S, Tomasson J, Tryggvadottir L, Benediktsdottir K, Eyfjord 
JE, et al. BRCA2 mutation in Icelandic prostate cancer patients. J Mol Med. 1997 
Oct;75(10):758-61. 

15. Howell MA. Factor analysis of international cancer mortality data and per capita food 
consumption. Br J Cancer. 1974 Apr;29(4):328-36. 

16. Armstrong B, Doll R. Environmental factors and cancer incidence and mortality in 
different countries, with special reference to dietary practices. Int J Cancer. 1975 Apr 
15;15(4):617-31. 

17. Hayes RB, Ziegler RG, Gridley G, Swanson C, Greenberg RS, Swanson GM, et al. 
Dietary factors and risks for prostate cancer among blacks and whites in the United 
States. Cancer Epidemiol Biomarkers Prev. 1999 Jan;8(1):25-34. 

18. Chan JM, Stampfer MJ, Ma J, Gann PH, Gaziano JM, Giovannucci EL. Dairy 
products, calcium, and prostate cancer risk in the Physicians' Health Study. Am J Clin 
Nutr. 2001 Oct;74(4):549-54. 

19. Bylund A, Zhang JX, Bergh A, Damber JE, Widmark A, Johansson A, et al. Rye bran 
and soy protein delay growth and increase apoptosis of human LNCaP prostate 
adenocarcinoma in nude mice. Prostate. 2000 Mar 1;42(4):304-14. 

20. Giovannucci E, Rimm EB, Liu Y, Stampfer MJ, Willett WC. A prospective study of 
tomato products, lycopene, and prostate cancer risk. J Natl Cancer Inst. 2002 Mar 
6;94(5):391-8. 

 84



21. Heinonen OP, Albanes D, Virtamo J, Taylor PR, Huttunen JK, Hartman AM, et al. 
Prostate cancer and supplementation with alpha-tocopherol and beta-carotene: 
incidence and mortality in a controlled trial. J Natl Cancer Inst. 1998 Mar 
18;90(6):440-6. 

22. Redman C, Scott JA, Baines AT, Basye JL, Clark LC, Calley C, et al. Inhibitory effect 
of selenomethionine on the growth of three selected human tumor cell lines. Cancer 
Lett. 1998 Mar 13;125(1-2):103-10. 

23. Redman C, Xu MJ, Peng YM, Scott JA, Payne C, Clark LC, et al. Involvement of 
polyamines in selenomethionine induced apoptosis and mitotic alterations in human 
tumor cells. Carcinogenesis. 1997 Jun;18(6):1195-202. 

24. Leitzmann MF, Stampfer MJ, Michaud DS, Augustsson K, Colditz GC, Willett WC, 
et al. Dietary intake of n-3 and n-6 fatty acids and the risk of prostate cancer. Am J 
Clin Nutr. 2004 Jul;80(1):204-16. 

25. Stattin P, Lumme S, Tenkanen L, Alfthan H, Jellum E, Hallmans G, et al. High levels 
of circulating testosterone are not associated with increased prostate cancer risk: a 
pooled prospective study. Int J Cancer. 2004 Jan 20;108(3):418-24. 

26. Arnold RS, Makarova NV, Osunkoya AO, Suppiah S, Scott TA, Johnson NA, et al. 
XMRV infection in patients with prostate cancer: novel serologic assay and 
correlation with PCR and FISH. Urology. 2010 Apr;75(4):755-61. 

27. Rusmevichientong A, Chow SA. Biology and pathophysiology of the new human 
retrovirus XMRV and its association with human disease. Immunol Res. 2010 Aug 18. 

28. Silverman RH, Nguyen C, Weight CJ, Klein EA. The human retrovirus XMRV in 
prostate cancer and chronic fatigue syndrome. Nat Rev Urol. 2010 Jul;7(7):392-402. 

29. Urisman A, Molinaro RJ, Fischer N, Plummer SJ, Casey G, Klein EA, et al. 
Identification of a novel Gammaretrovirus in prostate tumors of patients homozygous 
for R462Q RNASEL variant. PLoS Pathog. 2006 Mar;2(3):e25. 

30. Kirby RS CT, Brawer M. Prostate Cancer: Mosby, Times Mirror International 
Publishers; 1996. 

31. McNeal JE. Regional morphology and pathology of the prostate. Am J Clin Pathol. 
1968 Mar;49(3):347-57. 

32. Reese JH, McNeal JE, Redwine EA, Samloff IM, Stamey TA. Differential distribution 
of pepsinogen II between the zones of the human prostate and the seminal vesicle. J 
Urol. 1986 Nov;136(5):1148-52. 

33. Cunha GR, Donjacour A. Stromal-epithelial interactions in normal and abnormal 
prostatic development. Prog Clin Biol Res. 1987;239:251-72. 

34. Vashchenko N, Abrahamsson PA. Neuroendocrine differentiation in prostate cancer: 
implications for new treatment modalities. Eur Urol. 2005 Feb;47(2):147-55. 

35. Goldstein AS, Stoyanova T, Witte ON. Primitive origins of prostate cancer: In vivo 
evidence for prostate-regenerating cells and prostate cancer-initiating cells. Mol 
Oncol. 2010 Jul 14. 

36. Bonkhoff H, Stein U, Remberger K. The proliferative function of basal cells in the 
normal and hyperplastic human prostate. Prostate. 1994;24(3):114-8. 

37. Bonkhoff H, Stein U, Remberger K. Multidirectional differentiation in the normal, 
hyperplastic, and neoplastic human prostate: simultaneous demonstration of cell-
specific epithelial markers. Hum Pathol. 1994 Jan;25(1):42-6. 

38. McNeal JE, Redwine EA, Freiha FS, Stamey TA. Zonal distribution of prostatic 
adenocarcinoma. Correlation with histologic pattern and direction of spread. Am J 
Surg Pathol. 1988 Dec;12(12):897-906. 

39. Beheshti B, Vukovic B, Marrano P, Squire JA, Park PC. Resolution of genotypic 
heterogeneity in prostate tumors using polymerase chain reaction and comparative 

 85



genomic hybridization on microdissected carcinoma and prostatic intraepithelial 
neoplasia foci. Cancer Genet Cytogenet. 2002 Aug;137(1):15-22. 

40. Sakr WA, Grignon DJ, Crissman JD, Heilbrun LK, Cassin BJ, Pontes JJ, et al. High 
grade prostatic intraepithelial neoplasia (HGPIN) and prostatic adenocarcinoma 
between the ages of 20-69: an autopsy study of 249 cases. In Vivo. 1994 May-
Jun;8(3):439-43. 

41. Sakr WA, Haas GP, Cassin BF, Pontes JE, Crissman JD. The frequency of carcinoma 
and intraepithelial neoplasia of the prostate in young male patients. J Urol. 1993 
Aug;150(2 Pt 1):379-85. 

42. Bishara T, Ramnani DM, Epstein JI. High-grade prostatic intraepithelial neoplasia on 
needle biopsy: risk of cancer on repeat biopsy related to number of involved cores and 
morphologic pattern. Am J Surg Pathol. 2004 May;28(5):629-33. 

43. Qian J, Wollan P, Bostwick DG. The extent and multicentricity of high-grade prostatic 
intraepithelial neoplasia in clinically localized prostatic adenocarcinoma. Hum Pathol. 
1997 Feb;28(2):143-8. 

44. Cheville JC, Bostwick DG. Postatrophic hyperplasia of the prostate. A histologic 
mimic of prostatic adenocarcinoma. Am J Surg Pathol. 1995 Sep;19(9):1068-76. 

45. Ruska KM, Sauvageot J, Epstein JI. Histology and cellular kinetics of prostatic 
atrophy. Am J Surg Pathol. 1998 Sep;22(9):1073-7. 

46. De Marzo AM, Nakai Y, Nelson WG. Inflammation, atrophy, and prostate 
carcinogenesis. Urol Oncol. 2007 Sep-Oct;25(5):398-400. 

47. De Marzo AM, Platz EA, Sutcliffe S, Xu J, Gronberg H, Drake CG, et al. 
Inflammation in prostate carcinogenesis. Nat Rev Cancer. 2007 Apr;7(4):256-69. 

48. van Leenders GJ, Gage WR, Hicks JL, van Balken B, Aalders TW, Schalken JA, et al. 
Intermediate cells in human prostate epithelium are enriched in proliferative 
inflammatory atrophy. Am J Pathol. 2003 May;162(5):1529-37. 

49. Lawson DA, Zong Y, Memarzadeh S, Xin L, Huang J, Witte ON. Basal epithelial 
stem cells are efficient targets for prostate cancer initiation. Proc Natl Acad Sci U S A. 
2010 Feb 9;107(6):2610-5. 

50. Miki J, Rhim JS. Prostate cell cultures as in vitro models for the study of normal stem 
cells and cancer stem cells. Prostate Cancer Prostatic Dis. 2008;11(1):32-9. 

51. Goldstein AS, Huang J, Guo C, Garraway IP, Witte ON. Identification of a cell of 
origin for human prostate cancer. Science. 2010 Jul 30;329(5991):568-71. 

52. Crum CP, McKeon FD. p63 in epithelial survival, germ cell surveillance, and 
neoplasia. Annu Rev Pathol. 2010;5:349-71. 

53. Gleason DF. Classification of prostatic carcinomas. Cancer Chemother Rep. 1966 
Mar;50(3):125-8. 

54. Epstein JI. An update of the Gleason grading system. J Urol. 2010 Feb;183(2):433-40. 
55. Epstein JI, Allsbrook WC, Jr., Amin MB, Egevad LL. The 2005 International Society 

of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of 
Prostatic Carcinoma. Am J Surg Pathol. 2005 Sep;29(9):1228-42. 

56. Gleason DF. Histologic grading and clinical staging of prostatic carcinoma. In: 
Urologic pathology: The Prostate. Philadelphia: Leah & Febiger; 1977. 

57. Epstein JI, Amin M, Boccon-Gibod L, Egevad L, Humphrey PA, Mikuz G, et al. 
Prognostic factors and reporting of prostate carcinoma in radical prostatectomy and 
pelvic lymphadenectomy specimens. Scand J Urol Nephrol Suppl. 2005 May(216):34-
63. 

58. Humphrey PA. Gleason grading and prognostic factors in carcinoma of the prostate. 
Mod Pathol. 2004 Mar;17(3):292-306. 

 86



59. Bostwick DG. Staging prostate cancer--1997: current methods and limitations. Eur 
Urol. 1997;32 Suppl 3:2-14. 

60. Hoedemaeker RF, Vis AN, Van Der Kwast TH. Staging prostate cancer. Microsc Res 
Tech. 2000 Dec 1;51(5):423-9. 

61. Leprince D, Gegonne A, Coll J, de Taisne C, Schneeberger A, Lagrou C, et al. A 
putative second cell-derived oncogene of the avian leukaemia retrovirus E26. Nature. 
1983 Nov 24-30;306(5941):395-7. 

62. Sharrocks AD. The ETS-domain transcription factor family. Nat Rev Mol Cell Biol. 
2001 Nov;2(11):827-37. 

63. Graves BJ, Petersen JM. Specificity within the ets family of transcription factors. Adv 
Cancer Res. 1998;75:1-55. 

64. Gutierrez-Hartmann A, Duval DL, Bradford AP. ETS transcription factors in 
endocrine systems. Trends Endocrinol Metab. 2007 May-Jun;18(4):150-8. 

65. Slupsky CM, Gentile LN, Donaldson LW, Mackereth CD, Seidel JJ, Graves BJ, et al. 
Structure of the Ets-1 pointed domain and mitogen-activated protein kinase 
phosphorylation site. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12129-34. 

66. Kim CA, Phillips ML, Kim W, Gingery M, Tran HH, Robinson MA, et al. 
Polymerization of the SAM domain of TEL in leukemogenesis and transcriptional 
repression. EMBO J. 2001 Aug 1;20(15):4173-82. 

67. Sementchenko VI, Watson DK. Ets target genes: past, present and future. Oncogene. 
2000 Dec 18;19(55):6533-48. 

68. Bassuk AG, Leiden JM. The role of Ets transcription factors in the development and 
function of the mammalian immune system. Adv Immunol. 1997;64:65-104. 

69. Dittmer J, Nordheim A. Ets transcription factors and human disease. Biochim Biophys 
Acta. 1998 Apr 17;1377(2):F1-11. 

70. Wasylyk B, Hagman J, Gutierrez-Hartmann A. Ets transcription factors: nuclear 
effectors of the Ras-MAP-kinase signaling pathway. Trends Biochem Sci. 1998 
Jun;23(6):213-6. 

71. Oikawa T, Yamada T. Molecular biology of the Ets family of transcription factors. 
Gene. 2003 Jan 16;303:11-34. 

72. Seth A, Watson DK. ETS transcription factors and their emerging roles in human 
cancer. Eur J Cancer. 2005 Nov;41(16):2462-78. 

73. Basuyaux JP, Ferreira E, Stehelin D, Buttice G. The Ets transcription factors interact 
with each other and with the c-Fos/c-Jun complex via distinct protein domains in a 
DNA-dependent and -independent manner. J Biol Chem. 1997 Oct 17;272(42):26188-
95. 

74. Yang L, Mei Q, Zielinska-Kwiatkowska A, Matsui Y, Blackburn ML, Benedetti D, et 
al. An ERG (ets-related gene)-associated histone methyltransferase interacts with 
histone deacetylases 1/2 and transcription co-repressors mSin3A/B. Biochem J. 2003 
Feb 1;369(Pt 3):651-7. 

75. Buttice G, Duterque-Coquillaud M, Basuyaux JP, Carrere S, Kurkinen M, Stehelin D. 
Erg, an Ets-family member, differentially regulates human collagenase1 (MMP1) and 
stromelysin1 (MMP3) gene expression by physically interacting with the Fos/Jun 
complex. Oncogene. 1996 Dec 5;13(11):2297-306. 

76. Yordy JS, Muise-Helmericks RC. Signal transduction and the Ets family of 
transcription factors. Oncogene. 2000 Dec 18;19(55):6503-13. 

77. Sieweke MH, Tekotte H, Frampton J, Graf T. MafB is an interaction partner and 
repressor of Ets-1 that inhibits erythroid differentiation. Cell. 1996 Apr 5;85(1):49-60. 

 87



78. Petrovics G, Liu A, Shaheduzzaman S, Furasato B, Sun C, Chen Y, et al. Frequent 
overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. 
Oncogene. 2005 May 26;24(23):3847-52. 

79. Rostad K, Mannelqvist M, Halvorsen OJ, Oyan AM, Bo TH, Stordrange L, et al. ERG 
upregulation and related ETS transcription factors in prostate cancer. Int J Oncol. 
2007 Jan;30(1):19-32. 

80. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, et al. 
Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. 
Science. 2005 Oct 28;310(5748):644-8. 

81. Helgeson BE, Tomlins SA, Shah N, Laxman B, Cao Q, Prensner JR, et al. 
Characterization of TMPRSS2:ETV5 and SLC45A3:ETV5 gene fusions in prostate 
cancer. Cancer Res. 2008 Jan 1;68(1):73-80. 

82. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000 Jan 7;100(1):57-70. 
83. Lelievre E, Lionneton F, Mattot V, Spruyt N, Soncin F. Ets-1 regulates fli-1 

expression in endothelial cells. Identification of ETS binding sites in the fli-1 gene 
promoter. J Biol Chem. 2002 Jul 12;277(28):25143-51. 

84. Teruyama K, Abe M, Nakano T, Iwasaka-Yagi C, Takahashi S, Yamada S, et al. Role 
of transcription factor Ets-1 in the apoptosis of human vascular endothelial cells. J 
Cell Physiol. 2001 Aug;188(2):243-52. 

85. Feldman RJ, Sementchenko VI, Gayed M, Fraig MM, Watson DK. Pdef expression in 
human breast cancer is correlated with invasive potential and altered gene expression. 
Cancer Res. 2003 Aug 1;63(15):4626-31. 

86. Lavenburg KR, Ivey J, Hsu T, Muise-Helmericks RC. Coordinated functions of 
Akt/PKB and ETS1 in tubule formation. FASEB J. 2003 Dec;17(15):2278-80. 

87. Elvert G, Kappel A, Heidenreich R, Englmeier U, Lanz S, Acker T, et al. Cooperative 
interaction of hypoxia-inducible factor-2alpha (HIF-2alpha ) and Ets-1 in the 
transcriptional activation of vascular endothelial growth factor receptor-2 (Flk-1). J 
Biol Chem. 2003 Feb 28;278(9):7520-30. 

88. Sevilla L, Zaldumbide A, Carlotti F, Dayem MA, Pognonec P, Boulukos KE. Bcl-XL 
expression correlates with primary macrophage differentiation, activation of 
functional competence, and survival and results from synergistic transcriptional 
activation by Ets2 and PU.1. J Biol Chem. 2001 May 25;276(21):17800-7. 

89. Yi H, Fujimura Y, Ouchida M, Prasad DD, Rao VN, Reddy ES. Inhibition of 
apoptosis by normal and aberrant Fli-1 and erg proteins involved in human solid 
tumors and leukemias. Oncogene. 1997 Mar 20;14(11):1259-68. 

90. Li R, Pei H, Papas T. The p42 variant of ETS1 protein rescues defective Fas-induced 
apoptosis in colon carcinoma cells. Proc Natl Acad Sci U S A. 1999 Mar 
30;96(7):3876-81. 

91. Foos G, Hauser CA. Altered Ets transcription factor activity in prostate tumor cells 
inhibits anchorage-independent growth, survival, and invasiveness. Oncogene. 2000 
Nov 16;19(48):5507-16. 

92. Kavurma MM, Bobryshev Y, Khachigian LM. Ets-1 positively regulates Fas ligand 
transcription via cooperative interactions with Sp1. J Biol Chem. 2002 Sep 
27;277(39):36244-52. 

93. Liu W, Wang G, Yakovlev AG. Identification and functional analysis of the rat 
caspase-3 gene promoter. J Biol Chem. 2002 Mar 8;277(10):8273-8. 

94. Tamir A, Howard J, Higgins RR, Li YJ, Berger L, Zacksenhaus E, et al. Fli-1, an Ets-
related transcription factor, regulates erythropoietin-induced erythroid proliferation 
and differentiation: evidence for direct transcriptional repression of the Rb gene 
during differentiation. Mol Cell Biol. 1999 Jun;19(6):4452-64. 

 88



95. Lesault I, Quang CT, Frampton J, Ghysdael J. Direct regulation of BCL-2 by FLI-1 is 
involved in the survival of FLI-1-transformed erythroblasts. EMBO J. 2002 Feb 
15;21(4):694-703. 

96. Mueller BU, Pabst T, Osato M, Asou N, Johansen LM, Minden MD, et al. 
Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood. 
2002 Aug 1;100(3):998-1007. 

97. Vangala RK, Heiss-Neumann MS, Rangatia JS, Singh SM, Schoch C, Tenen DG, et 
al. The myeloid master regulator transcription factor PU.1 is inactivated by AML1-
ETO in t(8;21) myeloid leukemia. Blood. 2003 Jan 1;101(1):270-7. 

98. Golub TR, Barker GF, Stegmaier K, Gilliland DG. The TEL gene contributes to the 
pathogenesis of myeloid and lymphoid leukemias by diverse molecular genetic 
mechanisms. Curr Top Microbiol Immunol. 1997;220:67-79. 

99. Zelent A, Greaves M, Enver T. Role of the TEL-AML1 fusion gene in the molecular 
pathogenesis of childhood acute lymphoblastic leukaemia. Oncogene. 2004 May 
24;23(24):4275-83. 

100. Dastugue N, Lafage-Pochitaloff M, Pages MP, Radford I, Bastard C, Talmant P, et al. 
Cytogenetic profile of childhood and adult megakaryoblastic leukemia (M7): a study 
of the Groupe Francais de Cytogenetique Hematologique (GFCH). Blood. 2002 Jul 
15;100(2):618-26. 

101. Shimizu K, Ichikawa H, Tojo A, Kaneko Y, Maseki N, Hayashi Y, et al. An ets-
related gene, ERG, is rearranged in human myeloid leukemia with t(16;21) 
chromosomal translocation. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10280-4. 

102. Baldus CD, Liyanarachchi S, Mrozek K, Auer H, Tanner SM, Guimond M, et al. 
Acute myeloid leukemia with complex karyotypes and abnormal chromosome 21: 
Amplification discloses overexpression of APP, ETS2, and ERG genes. Proc Natl 
Acad Sci U S A. 2004 Mar 16;101(11):3915-20. 

103. Golub TR, Barker GF, Lovett M, Gilliland DG. Fusion of PDGF receptor beta to a 
novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) 
chromosomal translocation. Cell. 1994 Apr 22;77(2):307-16. 

104. Golub TR, Goga A, Barker GF, Afar DE, McLaughlin J, Bohlander SK, et al. 
Oligomerization of the ABL tyrosine kinase by the Ets protein TEL in human 
leukemia. Mol Cell Biol. 1996 Aug;16(8):4107-16. 

105. Lacronique V, Boureux A, Valle VD, Poirel H, Quang CT, Mauchauffe M, et al. A 
TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. 
Science. 1997 Nov 14;278(5341):1309-12. 

106. Knezevich SR, McFadden DE, Tao W, Lim JF, Sorensen PH. A novel ETV6-NTRK3 
gene fusion in congenital fibrosarcoma. Nat Genet. 1998 Feb;18(2):184-7. 

107. Iijima Y, Ito T, Oikawa T, Eguchi M, Eguchi-Ishimae M, Kamada N, et al. A new 
ETV6/TEL partner gene, ARG (ABL-related gene or ABL2), identified in an AML-
M3 cell line with a t(1;12)(q25;p13) translocation. Blood. 2000 Mar 15;95(6):2126-31. 

108. Golub TR, McLean T, Stegmaier K, Carroll M, Tomasson M, Gilliland DG. The TEL 
gene and human leukemia. Biochim Biophys Acta. 1996 Aug 8;1288(1):M7-10. 

109. Peter M, Couturier J, Pacquement H, Michon J, Thomas G, Magdelenat H, et al. A 
new member of the ETS family fused to EWS in Ewing tumors. Oncogene. 1997 Mar 
13;14(10):1159-64. 

110. Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, et al. Gene fusion 
with an ETS DNA-binding domain caused by chromosome translocation in human 
tumours. Nature. 1992 Sep 10;359(6391):162-5. 

111. Delattre O. [Ewing's tumours, genetic and cellular aspects]. Pathol Biol (Paris). 2008 
Jul;56(5):257-9. 

 89



112. Bailly RA, Bosselut R, Zucman J, Cormier F, Delattre O, Roussel M, et al. DNA-
binding and transcriptional activation properties of the EWS-FLI-1 fusion protein 
resulting from the t(11;22) translocation in Ewing sarcoma. Mol Cell Biol. 1994 
May;14(5):3230-41. 

113. Lin PP, Brody RI, Hamelin AC, Bradner JE, Healey JH, Ladanyi M. Differential 
transactivation by alternative EWS-FLI1 fusion proteins correlates with clinical 
heterogeneity in Ewing's sarcoma. Cancer Res. 1999 Apr 1;59(7):1428-32. 

114. Dauphinot L, De Oliveira C, Melot T, Sevenet N, Thomas V, Weissman BE, et al. 
Analysis of the expression of cell cycle regulators in Ewing cell lines: EWS-FLI-1 
modulates p57KIP2and c-Myc expression. Oncogene. 2001 May 31;20(25):3258-65. 

115. Mastrangelo T, Modena P, Tornielli S, Bullrich F, Testi MA, Mezzelani A, et al. A 
novel zinc finger gene is fused to EWS in small round cell tumor. Oncogene. 2000 
Aug 3;19(33):3799-804. 

116. Reddy ES, Rao VN, Papas TS. The erg gene: a human gene related to the ets 
oncogene. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6131-5. 

117. Rao VN, Papas TS, Reddy ES. erg, a human ets-related gene on chromosome 21: 
alternative splicing, polyadenylation, and translation. Science. 1987 Aug 
7;237(4815):635-9. 

118. Duterque-Coquillaud M, Niel C, Plaza S, Stehelin D. New human erg isoforms 
generated by alternative splicing are transcriptional activators. Oncogene. 1993 
Jul;8(7):1865-73. 

119. Prasad DD, Rao VN, Lee L, Reddy ES. Differentially spliced erg-3 product functions 
as a transcriptional activator. Oncogene. 1994 Feb;9(2):669-73. 

120. Carrere S, Verger A, Flourens A, Stehelin D, Duterque-Coquillaud M. Erg proteins, 
transcription factors of the Ets family, form homo, heterodimers and ternary 
complexes via two distinct domains. Oncogene. 1998 Jun 25;16(25):3261-8. 

121. Owczarek CM, Portbury KJ, Hardy MP, O'Leary DA, Kudoh J, Shibuya K, et al. 
Detailed mapping of the ERG-ETS2 interval of human chromosome 21 and 
comparison with the region of conserved synteny on mouse chromosome 16. Gene. 
2004 Jan 7;324:65-77. 

122. Maroulakou IG, Bowe DB. Expression and function of Ets transcription factors in 
mammalian development: a regulatory network. Oncogene. 2000 Dec 18;19(55):6432-
42. 

123. Vlaeminck-Guillem V, Carrere S, Dewitte F, Stehelin D, Desbiens X, Duterque-
Coquillaud M. The Ets family member Erg gene is expressed in mesodermal tissues 
and neural crests at fundamental steps during mouse embryogenesis. Mech Dev. 2000 
Mar 1;91(1-2):331-5. 

124. Hewett PW, Nishi K, Daft EL, Clifford Murray J. Selective expression of erg isoforms 
in human endothelial cells. Int J Biochem Cell Biol. 2001 Apr;33(4):347-55. 

125. Yuan L, Nikolova-Krstevski V, Zhan Y, Kondo M, Bhasin M, Varghese L, et al. 
Antiinflammatory effects of the ETS factor ERG in endothelial cells are mediated 
through transcriptional repression of the interleukin-8 gene. Circ Res. 2009 May 
8;104(9):1049-57. 

126. McLaughlin F, Ludbrook VJ, Cox J, von Carlowitz I, Brown S, Randi AM. Combined 
genomic and antisense analysis reveals that the transcription factor Erg is implicated 
in endothelial cell differentiation. Blood. 2001 Dec 1;98(12):3332-9. 

127. Oettgen P. Regulation of vascular inflammation and remodeling by ETS factors. Circ 
Res. 2006 Nov 24;99(11):1159-66. 

 90



128. Rao VN, Modi WS, Drabkin HD, Patterson D, O'Brien SJ, Papas TS, et al. The human 
erg gene maps to chromosome 21, band q22: relationship to the 8; 21 translocation of 
acute myelogenous leukemia. Oncogene. 1988 Nov;3(5):497-500. 

129. Ichikawa H, Shimizu K, Hayashi Y, Ohki M. An RNA-binding protein gene, 
TLS/FUS, is fused to ERG in human myeloid leukemia with t(16;21) chromosomal 
translocation. Cancer Res. 1994 Jun 1;54(11):2865-8. 

130. Shing DC, McMullan DJ, Roberts P, Smith K, Chin SF, Nicholson J, et al. FUS/ERG 
gene fusions in Ewing's tumors. Cancer Res. 2003 Aug 1;63(15):4568-76. 

131. Kumar-Sinha C, Tomlins SA, Chinnaiyan AM. Recurrent gene fusions in prostate 
cancer. Nat Rev Cancer. 2008 Jul;8(7):497-511. 

132. Mehra R, Tomlins SA, Shen R, Nadeem O, Wang L, Wei JT, et al. Comprehensive 
assessment of TMPRSS2 and ETS family gene aberrations in clinically localized 
prostate cancer. Mod Pathol. 2007 May;20(5):538-44. 

133. Nam RK, Sugar L, Wang Z, Yang W, Kitching R, Klotz LH, et al. Expression of 
TMPRSS2:ERG gene fusion in prostate cancer cells is an important prognostic factor 
for cancer progression. Cancer Biol Ther. 2007 Jan;6(1):40-5. 

134. Nam RK, Sugar L, Yang W, Srivastava S, Klotz LH, Yang LY, et al. Expression of 
the TMPRSS2:ERG fusion gene predicts cancer recurrence after surgery for localised 
prostate cancer. Br J Cancer. 2007 Dec 17;97(12):1690-5. 

135. Attard G, Clark J, Ambroisine L, Fisher G, Kovacs G, Flohr P, et al. Duplication of 
the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer. 
Oncogene. 2008 Jan 10;27(3):253-63. 

136. Demichelis F, Fall K, Perner S, Andren O, Schmidt F, Setlur SR, et al. 
TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful 
waiting cohort. Oncogene. 2007 Jul 5;26(31):4596-9. 

137. Perner S, Demichelis F, Beroukhim R, Schmidt FH, Mosquera JM, Setlur S, et al. 
TMPRSS2:ERG Fusion-Associated Deletions Provide Insight into the Heterogeneity 
of Prostate Cancer. Cancer Res. 2006 Sep 1;66(17):8337-41. 

138. Rajput AB, Miller MA, De Luca A, Boyd N, Leung S, Hurtado-Coll A, et al. 
Frequency of the TMPRSS2:ERG gene fusion is increased in moderate to poorly 
differentiated prostate cancers. J Clin Pathol. 2007 Nov;60(11):1238-43. 

139. Winnes M, Lissbrant E, Damber JE, Stenman G. Molecular genetic analyses of the 
TMPRSS2-ERG and TMPRSS2-ETV1 gene fusions in 50 cases of prostate cancer. 
Oncol Rep. 2007 May;17(5):1033-6. 

140. Yoshimoto M, Joshua AM, Chilton-Macneill S, Bayani J, Selvarajah S, Evans AJ, et 
al. Three-color FISH analysis of TMPRSS2/ERG fusions in prostate cancer indicates 
that genomic microdeletion of chromosome 21 is associated with rearrangement. 
Neoplasia. 2006 Jun;8(6):465-9. 

141. Lapointe J, Kim YH, Miller MA, Li C, Kaygusuz G, van de Rijn M, et al. A variant 
TMPRSS2 isoform and ERG fusion product in prostate cancer with implications for 
molecular diagnosis. Mod Pathol. 2007 Apr;20(4):467-73. 

142. Chen H, Chrast R, Rossier C, Gos A, Antonarakis SE, Kudoh J, et al. Single-minded 
and Down syndrome? Nat Genet. 1995 May;10(1):9-10. 

143. Rahmani Z, Blouin JL, Creau-Goldberg N, Watkins PC, Mattei JF, Poissonnier M, et 
al. Critical role of the D21S55 region on chromosome 21 in the pathogenesis of Down 
syndrome. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5958-62. 

144. Chrast R, Scott HS, Chen H, Kudoh J, Rossier C, Minoshima S, et al. Cloning of two 
human homologs of the Drosophila single-minded gene SIM1 on chromosome 6q and 
SIM2 on 21q within the Down syndrome chromosomal region. Genome Res. 1997 
Jun;7(6):615-24. 

 91



145. Goshu E, Jin H, Lovejoy J, Marion JF, Michaud JL, Fan CM. Sim2 contributes to 
neuroendocrine hormone gene expression in the anterior hypothalamus. Mol 
Endocrinol. 2004 May;18(5):1251-62. 

146. Moffett P, Reece M, Pelletier J. The murine Sim-2 gene product inhibits transcription 
by active repression and functional interference. Mol Cell Biol. 1997 Sep;17(9):4933-
47. 

147. Rachidi M, Lopes C, Charron G, Delezoide AL, Paly E, Bloch B, et al. Spatial and 
temporal localization during embryonic and fetal human development of the 
transcription factor SIM2 in brain regions altered in Down syndrome. Int J Dev 
Neurosci. 2005 Aug;23(5):475-84. 

148. Deyoung MP, Scheurle D, Damania H, Zylberberg C, Narayanan R. Down's 
syndrome-associated single minded gene as a novel tumor marker. Anticancer Res. 
2002 Nov-Dec;22(6A):3149-57. 

149. Halvorsen OJ, Oyan AM, Bo TH, Olsen S, Rostad K, Haukaas SA, et al. Gene 
expression profiles in prostate cancer: association with patient subgroups and tumour 
differentiation. Int J Oncol. 2005 Feb;26(2):329-36. 

150. Halvorsen OJ, Rostad K, Oyan AM, Puntervoll H, Bo TH, Stordrange L, et al. 
Increased expression of SIM2-s protein is a novel marker of aggressive prostate 
cancer. Clin Cancer Res. 2007 Feb 1;13(3):892-7. 

151. Hankinson O. The aryl hydrocarbon receptor complex. Annu Rev Pharmacol Toxicol. 
1995;35:307-40. 

152. Taylor BL, Zhulin IB. PAS domains: internal sensors of oxygen, redox potential, and 
light. Microbiol Mol Biol Rev. 1999 Jun;63(2):479-506. 

153. Probst MR, Fan CM, Tessier-Lavigne M, Hankinson O. Two murine homologs of the 
Drosophila single-minded protein that interact with the mouse aryl hydrocarbon 
receptor nuclear translocator protein. J Biol Chem. 1997 Feb 14;272(7):4451-7. 

154. Matikainen TM, Moriyama T, Morita Y, Perez GI, Korsmeyer SJ, Sherr DH, et al. 
Ligand activation of the aromatic hydrocarbon receptor transcription factor drives 
Bax-dependent apoptosis in developing fetal ovarian germ cells. Endocrinology. 2002 
Feb;143(2):615-20. 

155. DeYoung MP, Tress M, Narayanan R. Down's syndrome-associated Single Minded 2 
gene as a pancreatic cancer drug therapy target. Cancer Lett. 2003 Oct 8;200(1):25-31. 

156. DeYoung MP, Tress M, Narayanan R. Identification of Down's syndrome critical 
locus gene SIM2-s as a drug therapy target for solid tumors. Proc Natl Acad Sci U S 
A. 2003 Apr 15;100(8):4760-5. 

157. Kwak HI, Gustafson T, Metz RP, Laffin B, Schedin P, Porter WW. Inhibition of 
breast cancer growth and invasion by single-minded 2s. Carcinogenesis. 2007 
Feb;28(2):259-66. 

158. Laffin B, Wellberg E, Kwak HI, Burghardt RC, Metz RP, Gustafson T, et al. Loss of 
singleminded-2s in the mouse mammary gland induces an epithelial-mesenchymal 
transition associated with up-regulation of slug and matrix metalloprotease 2. Mol Cell 
Biol. 2008 Mar;28(6):1936-46. 

159. He Q, Li G, Su Y, Shen J, Liu Q, Ma X, et al. Single minded 2-s (SIM2-s) gene is 
expressed in human GBM cells and involved in GBM invasion. Cancer Biol Ther.  
Mar 15;9(6):430-6. 

160. Ashworth A. A case of cancer in which cells similar to those in the tumours were seen 
in the blood after death. Aust Med J. 1869;14:146. 

161. Duffy MJ. Can molecular markers now be used for early diagnosis of malignancy? 
Clin Chem. 1995 Oct;41(10):1410-3. 

 92



162. van Gils MP, Stenman UH, Schalken JA, Schroder FH, Luider TM, Lilja H, et al. 
Innovations in serum and urine markers in prostate cancer current European research 
in the P-Mark project. Eur Urol. 2005 Dec;48(6):1031-41. 

163. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM. Reporting 
recommendations for tumor marker prognostic studies (REMARK). J Natl Cancer 
Inst. 2005 Aug 17;97(16):1180-4. 

164. Pepe MS, Etzioni R, Feng Z, Potter JD, Thompson ML, Thornquist M, et al. Phases of 
biomarker development for early detection of cancer. J Natl Cancer Inst. 2001 Jul 
18;93(14):1054-61. 

165. Ablin RJ, Bronson P, Soanes WA, Witebsky E. Tissue- and species-specific antigens 
of normal human prostatic tissue. J Immunol. 1970 Jun;104(6):1329-39. 

166. Ablin RJ, Soanes WA, Bronson P, Witebsky E. Precipitating antigens of the normal 
human prostate. J Reprod Fertil. 1970 Aug;22(3):573-4. 

167. Reynolds MA, Kastury K, Groskopf J, Schalken JA, Rittenhouse H. Molecular 
markers for prostate cancer. Cancer Lett. 2007 Apr 28;249(1):5-13. 

168. Sardana G, Dowell B, Diamandis EP. Emerging biomarkers for the diagnosis and 
prognosis of prostate cancer. Clin Chem. 2008 Dec;54(12):1951-60. 

169. Steuber T, Helo P, Lilja H. Circulating biomarkers for prostate cancer. World J Urol. 
2007 Apr;25(2):111-9. 

170. Sorensen KD, Orntoft TF. Discovery of prostate cancer biomarkers by microarray 
gene expression profiling. Expert Rev Mol Diagn. 2010 Jan;10(1):49-64. 

171. Stamey TA. Preoperative serum prostate-specific antigen (PSA) below 10 microg/l 
predicts neither the presence of prostate cancer nor the rate of postoperative PSA 
failure. Clin Chem. 2001 Apr;47(4):631-4. 

172. Thompson IM, Pauler DK, Goodman PJ, Tangen CM, Lucia MS, Parnes HL, et al. 
Prevalence of prostate cancer among men with a prostate-specific antigen level < or 
=4.0 ng per milliliter. N Engl J Med. 2004 May 27;350(22):2239-46. 

173. Freedland SJ, Humphreys EB, Mangold LA, Eisenberger M, Dorey FJ, Walsh PC, et 
al. Risk of prostate cancer-specific mortality following biochemical recurrence after 
radical prostatectomy. JAMA. 2005 Jul 27;294(4):433-9. 

174. Andriole GL, Crawford ED, Grubb RL, 3rd, Buys SS, Chia D, Church TR, et al. 
Mortality results from a randomized prostate-cancer screening trial. N Engl J Med. 
2009 Mar 26;360(13):1310-9. 

175. Schroder FH, Hugosson J, Roobol MJ, Tammela TL, Ciatto S, Nelen V, et al. 
Screening and prostate-cancer mortality in a randomized European study. N Engl J 
Med. 2009 Mar 26;360(13):1320-8. 

176. Lilja H, Ulmert D, Bjork T, Becker C, Serio AM, Nilsson JA, et al. Long-term 
prediction of prostate cancer up to 25 years before diagnosis of prostate cancer using 
prostate kallikreins measured at age 44 to 50 years. J Clin Oncol. 2007 Feb 
1;25(4):431-6. 

177. Aihara M, Lebovitz RM, Wheeler TM, Kinner BM, Ohori M, Scardino PT. Prostate 
specific antigen and gleason grade: an immunohistochemical study of prostate cancer. 
J Urol. 1994 Jun;151(6):1558-64. 

178. Partin AW, Yoo J, Carter HB, Pearson JD, Chan DW, Epstein JI, et al. The use of 
prostate specific antigen, clinical stage and Gleason score to predict pathological stage 
in men with localized prostate cancer. J Urol. 1993 Jul;150(1):110-4. 

179. Kattan MW, Eastham JA, Stapleton AM, Wheeler TM, Scardino PT. A preoperative 
nomogram for disease recurrence following radical prostatectomy for prostate cancer. 
J Natl Cancer Inst. 1998 May 20;90(10):766-71. 

 93



180. Stephenson AJ, Scardino PT, Eastham JA, Bianco FJ, Jr., Dotan ZA, Fearn PA, et al. 
Preoperative nomogram predicting the 10-year probability of prostate cancer 
recurrence after radical prostatectomy. J Natl Cancer Inst. 2006 May 17;98(10):715-7. 

181. Oesterling JE. Age-specific reference ranges for serum PSA. N Engl J Med. 1996 Aug 
1;335(5):345-6. 

182. Catalona WJ, Beiser JA, Smith DS. Serum free prostate specific antigen and prostate 
specific antigen density measurements for predicting cancer in men with prior 
negative prostatic biopsies. J Urol. 1997 Dec;158(6):2162-7. 

183. Catalona WJ, Richie JP, deKernion JB, Ahmann FR, Ratliff TL, Dalkin BL, et al. 
Comparison of prostate specific antigen concentration versus prostate specific antigen 
density in the early detection of prostate cancer: receiver operating characteristic 
curves. J Urol. 1994 Dec;152(6 Pt 1):2031-6. 

184. D'Amico AV, Chen MH, Roehl KA, Catalona WJ. Preoperative PSA velocity and the 
risk of death from prostate cancer after radical prostatectomy. N Engl J Med. 2004 Jul 
8;351(2):125-35. 

185. Chun FK, Briganti A, Graefen M, Porter C, Montorsi F, Haese A, et al. Development 
and external validation of an extended repeat biopsy nomogram. J Urol. 2007 
Feb;177(2):510-5. 

186. Karakiewicz PI, Benayoun S, Kattan MW, Perrotte P, Valiquette L, Scardino PT, et al. 
Development and validation of a nomogram predicting the outcome of prostate biopsy 
based on patient age, digital rectal examination and serum prostate specific antigen. J 
Urol. 2005 Jun;173(6):1930-4. 

187. Brawer MK, Meyer GE, Letran JL, Bankson DD, Morris DL, Yeung KK, et al. 
Measurement of complexed PSA improves specificity for early detection of prostate 
cancer. Urology. 1998 Sep;52(3):372-8. 

188. Parsons JK, Brawer MK, Cheli CD, Partin AW, Djavan R. Complexed prostate 
specific antigen (PSA) reduces unnecessary prostate biopsies in the 2.6-4.0 ng/mL 
range of total PSA. BJU Int. 2004 Jul;94(1):47-50. 

189. Zhang WM, Finne P, Leinonen J, Salo J, Stenman UH. Determination of prostate-
specific antigen complexed to alpha(2)-macroglobulin in serum increases the 
specificity of free to total PSA for prostate cancer. Urology. 2000 Aug 1;56(2):267-72. 

190. Zhu L, Leinonen J, Zhang WM, Finne P, Stenman UH. Dual-label immunoassay for 
simultaneous measurement of prostate-specific antigen (PSA)-alpha1-
antichymotrypsin complex together with free or total PSA. Clin Chem. 2003 
Jan;49(1):97-103. 

191. Halvorsen OJ, Haukaas SA, Akslen LA. Combined loss of PTEN and p27 expression 
is associated with tumor cell proliferation by Ki-67 and increased risk of recurrent 
disease in localized prostate cancer. Clin Cancer Res. 2003 Apr;9(4):1474-9. 

192. Halvorsen OJ, Hostmark J, Haukaas S, Hoisaeter PA, Akslen LA. Prognostic 
significance of p16 and CDK4 proteins in localized prostate carcinoma. Cancer. 2000 
Jan 15;88(2):416-24. 

193. Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA, et 
al. EZH2 expression is associated with high proliferation rate and aggressive tumor 
subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and 
breast. J Clin Oncol. 2006 Jan 10;24(2):268-73. 

194. Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA. Proliferation of immature tumor 
vessels is a novel marker of clinical progression in prostate cancer. Cancer Res. 2009 
Jun 1;69(11):4708-15. 

195. Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA. A switch from E-cadherin to N-
cadherin expression indicates epithelial to mesenchymal transition and is of strong and 

 94



independent importance for the progress of prostate cancer. Clin Cancer Res. 2007 
Dec 1;13(23):7003-11. 

196. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, et al. 
Metabolomic profiles delineate potential role for sarcosine in prostate cancer 
progression. Nature. 2009 Feb 12;457(7231):910-4. 

197. Kollermann J, Schlomm T, Bang H, Schwall GP, von Eichel-Streiber C, Simon R, et 
al. Expression and prognostic relevance of annexin A3 in prostate cancer. Eur Urol. 
2008 Dec;54(6):1314-23. 

198. Schostak M, Schwall GP, Poznanovic S, Groebe K, Muller M, Messinger D, et al. 
Annexin A3 in urine: a highly specific noninvasive marker for prostate cancer early 
detection. J Urol. 2009 Jan;181(1):343-53. 

199. Mao X, Shaw G, James SY, Purkis P, Kudahetti SC, Tsigani T, et al. Detection of 
TMPRSS2:ERG fusion gene in circulating prostate cancer cells. Asian J Androl. 2008 
May;10(3):467-73. 

200. Hayes DF, Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Miller MC, et al. 
Circulating tumor cells at each follow-up time point during therapy of metastatic 
breast cancer patients predict progression-free and overall survival. Clin Cancer Res. 
2006 Jul 15;12(14 Pt 1):4218-24. 

201. Becker C, Piironen T, Pettersson K, Hugosson J, Lilja H. Clinical value of human 
glandular kallikrein 2 and free and total prostate-specific antigen in serum from a 
population of men with prostate-specific antigen levels 3.0 ng/mL or greater. Urology. 
2000 May;55(5):694-9. 

202. Haese A, Graefen M, Steuber T, Becker C, Noldus J, Erbersdobler A, et al. Total and 
Gleason grade 4/5 cancer volumes are major contributors of human kallikrein 2, 
whereas free prostate specific antigen is largely contributed by benign gland volume in 
serum from patients with prostate cancer or benign prostatic biopsies. J Urol. 2003 
Dec;170(6 Pt 1):2269-73. 

203. Haese A, Graefen M, Steuber T, Becker C, Pettersson K, Piironen T, et al. Human 
glandular kallikrein 2 levels in serum for discrimination of pathologically organ-
confined from locally-advanced prostate cancer in total PSA-levels below 10 ng/ml. 
Prostate. 2001 Oct 1;49(2):101-9. 

204. Elgamal AA, Holmes EH, Su SL, Tino WT, Simmons SJ, Peterson M, et al. Prostate-
specific membrane antigen (PSMA): current benefits and future value. Semin Surg 
Oncol. 2000 Jan-Feb;18(1):10-6. 

205. Elgamal AA, Troychak MJ, Murphy GP. ProstaScint scan may enhance identification 
of prostate cancer recurrences after prostatectomy, radiation, or hormone therapy: 
analysis of 136 scans of 100 patients. Prostate. 1998 Dec 1;37(4):261-9. 

206. Talesa VN, Antognelli C, Del Buono C, Stracci F, Serva MR, Cottini E, et al. 
Diagnostic potential in prostate cancer of a panel of urinary molecular tumor markers. 
Cancer Biomark. 2009;5(6):241-51. 

207. Fracalanza S, Prayer-Galetti T, Pinto F, Navaglia F, Sacco E, Ciaccia M, et al. Plasma 
chromogranin A in patients with prostate cancer improves the diagnostic efficacy of 
free/total prostate-specific antigen determination. Urol Int. 2005;75(1):57-61. 

208. Taplin ME, George DJ, Halabi S, Sanford B, Febbo PG, Hennessy KT, et al. 
Prognostic significance of plasma chromogranin a levels in patients with hormone-
refractory prostate cancer treated in Cancer and Leukemia Group B 9480 study. 
Urology. 2005 Aug;66(2):386-91. 

209. Tricoli JV, Schoenfeldt M, Conley BA. Detection of prostate cancer and predicting 
progression: current and future diagnostic markers. Clin Cancer Res. 2004 Jun 
15;10(12 Pt 1):3943-53. 

 95



210. Kamiya N, Akakura K, Suzuki H, Isshiki S, Komiya A, Ueda T, et al. Pretreatment 
serum level of neuron specific enolase (NSE) as a prognostic factor in metastatic 
prostate cancer patients treated with endocrine therapy. Eur Urol. 2003 Sep;44(3):309-
14; discussion 14. 

211. Crocitto LE, Korns D, Kretzner L, Shevchuk T, Blair SL, Wilson TG, et al. Prostate 
cancer molecular markers GSTP1 and hTERT in expressed prostatic secretions as 
predictors of biopsy results. Urology. 2004 Oct;64(4):821-5. 

212. Gonzalgo ML, Nakayama M, Lee SM, De Marzo AM, Nelson WG. Detection of 
GSTP1 methylation in prostatic secretions using combinatorial MSP analysis. 
Urology. 2004 Feb;63(2):414-8. 

213. Gonzalgo ML, Pavlovich CP, Lee SM, Nelson WG. Prostate cancer detection by 
GSTP1 methylation analysis of postbiopsy urine specimens. Clin Cancer Res. 2003 
Jul;9(7):2673-7. 

214. Nakayama M, Gonzalgo ML, Yegnasubramanian S, Lin X, De Marzo AM, Nelson 
WG. GSTP1 CpG island hypermethylation as a molecular biomarker for prostate 
cancer. J Cell Biochem. 2004 Feb 15;91(3):540-52. 

215. Yegnasubramanian S, Kowalski J, Gonzalgo ML, Zahurak M, Piantadosi S, Walsh 
PC, et al. Hypermethylation of CpG islands in primary and metastatic human prostate 
cancer. Cancer Res. 2004 Mar 15;64(6):1975-86. 

216. Rhodes DR, Sanda MG, Otte AP, Chinnaiyan AM, Rubin MA. Multiplex biomarker 
approach for determining risk of prostate-specific antigen-defined recurrence of 
prostate cancer. J Natl Cancer Inst. 2003 May 7;95(9):661-8. 

217. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, 
et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. 
Nature. 2002 Oct 10;419(6907):624-9. 

218. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, 
et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc 
Natl Acad Sci U S A. 2008 Jul 29;105(30):10513-8. 

219. Spahn M, Kneitz S, Scholz CJ, Stenger N, Rudiger T, Strobel P, et al. Expression of 
microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis 
and predicts clinical recurrence. Int J Cancer. 2010 Jul 15;127(2):394-403. 

220. Tong AW, Fulgham P, Jay C, Chen P, Khalil I, Liu S, et al. MicroRNA profile 
analysis of human prostate cancers. Cancer Gene Ther. 2009 Mar;16(3):206-16. 

221. Cussenot O, Teillac P, Berthon P, Latil A. Noninvasive detection of genetic instability 
in cells from prostatic secretion as a marker of prostate cancer. Eur J Intern Med. 2001 
Feb;12(1):17-9. 

222. Thuret R, Chantrel-Groussard K, Azzouzi AR, Villette JM, Guimard S, Teillac P, et 
al. Clinical relevance of genetic instability in prostatic cells obtained by prostatic 
massage in early prostate cancer. Br J Cancer. 2005 Jan 31;92(2):236-40. 

223. de la Taille A. Progensa PCA3 test for prostate cancer detection. Expert Rev Mol 
Diagn. 2007 Sep;7(5):491-7. 

224. Kirby RS, Fitzpatrick JM, Irani J. Prostate cancer diagnosis in the new millennium: 
strengths and weaknesses of prostate-specific antigen and the discovery and clinical 
evaluation of prostate cancer gene 3 (PCA3). BJU Int. 2009 Feb;103(4):441-5. 

225. Schilling D, de Reijke T, Tombal B, de la Taille A, Hennenlotter J, Stenzl A. The 
Prostate Cancer gene 3 assay: indications for use in clinical practice. BJU Int.  
Feb;105(4):452-5. 

226. Bussemakers MJ, van Bokhoven A, Verhaegh GW, Smit FP, Karthaus HF, Schalken 
JA, et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. 
Cancer Res. 1999 Dec 1;59(23):5975-9. 

 96



227. de Kok JB, Verhaegh GW, Roelofs RW, Hessels D, Kiemeney LA, Aalders TW, et al. 
DD3(PCA3), a very sensitive and specific marker to detect prostate tumors. Cancer 
Res. 2002 May 1;62(9):2695-8. 

228. Gandini O, Santulli M, Cardillo MR, Stigliano A, Toscano V. Correspondence re: J. 
B. de Kok et al., DD3, A very sensitive and specific marker to detect prostate tumors. 
Cancer Res., 62: 2695-2698, 2002. Cancer Res. 2003 Aug 1;63(15):4747; author reply 
8-9. 

229. Roobol MJ, Schroder FH, van Leenders GL, Hessels D, van den Bergh RC, Wolters T, 
et al. Performance of Prostate Cancer Antigen 3 (PCA3) and Prostate-Specific 
Antigen in Prescreened Men: Reproducibility and Detection Characteristics for 
Prostate Cancer Patients with High PCA3 Scores (>/=100). Eur Urol. 2010 Sep 26. 

230. Roobol MJ, Schroder FH, van Leeuwen P, Wolters T, van den Bergh RC, van 
Leenders GJ, et al. Performance of the prostate cancer antigen 3 (PCA3) gene and 
prostate-specific antigen in prescreened men: exploring the value of PCA3 for a first-
line diagnostic test. Eur Urol. 2010 Oct;58(4):475-81. 

231. Chen Z, Fan Z, McNeal JE, Nolley R, Caldwell MC, Mahadevappa M, et al. Hepsin 
and maspin are inversely expressed in laser capture microdissectioned prostate cancer. 
J Urol. 2003 Apr;169(4):1316-9. 

232. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, et al. 
Delineation of prognostic biomarkers in prostate cancer. Nature. 2001 Aug 
23;412(6849):822-6. 

233. Stephan C, Yousef GM, Scorilas A, Jung K, Jung M, Kristiansen G, et al. Hepsin is 
highly over expressed in and a new candidate for a prognostic indicator in prostate 
cancer. J Urol. 2004 Jan;171(1):187-91. 

234. Rubin MA, Bismar TA, Andren O, Mucci L, Kim R, Shen R, et al. Decreased alpha-
methylacyl CoA racemase expression in localized prostate cancer is associated with an 
increased rate of biochemical recurrence and cancer-specific death. Cancer Epidemiol 
Biomarkers Prev. 2005 Jun;14(6):1424-32. 

235. Rogers CG, Yan G, Zha S, Gonzalgo ML, Isaacs WB, Luo J, et al. Prostate cancer 
detection on urinalysis for alpha methylacyl coenzyme a racemase protein. J Urol. 
2004 Oct;172(4 Pt 1):1501-3. 

236. Sreekumar A, Laxman B, Rhodes DR, Bhagavathula S, Harwood J, Giacherio D, et al. 
Humoral immune response to alpha-methylacyl-CoA racemase and prostate cancer. J 
Natl Cancer Inst. 2004 Jun 2;96(11):834-43. 

237. Zielie PJ, Mobley JA, Ebb RG, Jiang Z, Blute RD, Ho SM. A novel diagnostic test for 
prostate cancer emerges from the determination of alpha-methylacyl-coenzyme a 
racemase in prostatic secretions. J Urol. 2004 Sep;172(3):1130-3. 

238. Shariat SF, Roehrborn CG, McConnell JD, Park S, Alam N, Wheeler TM, et al. 
Association of the circulating levels of the urokinase system of plasminogen activation 
with the presence of prostate cancer and invasion, progression, and metastasis. J Clin 
Oncol. 2007 Feb 1;25(4):349-55. 

239. Miyake H, Hara I, Yamanaka K, Gohji K, Arakawa S, Kamidono S. Elevation of 
serum levels of urokinase-type plasminogen activator and its receptor is associated 
with disease progression and prognosis in patients with prostate cancer. Prostate. 1999 
May;39(2):123-9. 

240. Dhir R, Vietmeier B, Arlotti J, Acquafondata M, Landsittel D, Masterson R, et al. 
Early identification of individuals with prostate cancer in negative biopsies. J Urol. 
2004 Apr;171(4):1419-23. 

241. Leman ES, Cannon GW, Trock BJ, Sokoll LJ, Chan DW, Mangold L, et al. EPCA-2: 
a highly specific serum marker for prostate cancer. Urology. 2007 Apr;69(4):714-20. 

 97



242. Laxman B, Tomlins SA, Mehra R, Morris DS, Wang L, Helgeson BE, et al. 
Noninvasive detection of TMPRSS2:ERG fusion transcripts in the urine of men with 
prostate cancer. Neoplasia. 2006 Oct;8(10):885-8. 

243. Ivanovic V, Melman A, Davis-Joseph B, Valcic M, Geliebter J. Elevated plasma 
levels of TGF-beta 1 in patients with invasive prostate cancer. Nat Med. 1995 
Apr;1(4):282-4. 

244. Shariat SF, Walz J, Roehrborn CG, Montorsi F, Jeldres C, Saad F, et al. Early 
postoperative plasma transforming growth factor-beta1 is a strong predictor of 
biochemical progression after radical prostatectomy. J Urol. 2008 Apr;179(4):1593-7. 

245. Umbas R, Isaacs WB, Bringuier PP, Schaafsma HE, Karthaus HF, Oosterhof GO, et 
al. Decreased E-cadherin expression is associated with poor prognosis in patients with 
prostate cancer. Cancer Res. 1994 Jul 15;54(14):3929-33. 

246. Umbas R, Schalken JA, Aalders TW, Carter BS, Karthaus HF, Schaafsma HE, et al. 
Expression of the cellular adhesion molecule E-cadherin is reduced or absent in high-
grade prostate cancer. Cancer Res. 1992 Sep 15;52(18):5104-9. 

247. Gu Z, Thomas G, Yamashiro J, Shintaku IP, Dorey F, Raitano A, et al. Prostate stem 
cell antigen (PSCA) expression increases with high gleason score, advanced stage and 
bone metastasis in prostate cancer. Oncogene. 2000 Mar 2;19(10):1288-96. 

248. Han KR, Seligson DB, Liu X, Horvath S, Shintaku PI, Thomas GV, et al. Prostate 
stem cell antigen expression is associated with gleason score, seminal vesicle invasion 
and capsular invasion in prostate cancer. J Urol. 2004 Mar;171(3):1117-21. 

249. Hara N, Kasahara T, Kawasaki T, Bilim V, Obara K, Takahashi K, et al. Reverse 
transcription-polymerase chain reaction detection of prostate-specific antigen, 
prostate-specific membrane antigen, and prostate stem cell antigen in one milliliter of 
peripheral blood: value for the staging of prostate cancer. Clin Cancer Res. 2002 
Jun;8(6):1794-9. 

250. Lam JS, Yamashiro J, Shintaku IP, Vessella RL, Jenkins RB, Horvath S, et al. 
Prostate stem cell antigen is overexpressed in prostate cancer metastases. Clin Cancer 
Res. 2005 Apr 1;11(7):2591-6. 

251. Laxman B, Morris DS, Yu J, Siddiqui J, Cao J, Mehra R, et al. A first-generation 
multiplex biomarker analysis of urine for the early detection of prostate cancer. 
Cancer Res. 2008 Feb 1;68(3):645-9. 

252. Hessels D, Smit FP, Verhaegh GW, Witjes JA, Cornel EB, Schalken JA. Detection of 
TMPRSS2-ERG fusion transcripts and prostate cancer antigen 3 in urinary sediments 
may improve diagnosis of prostate cancer. Clin Cancer Res. 2007 Sep 1;13(17):5103-
8. 

253. Partin AW, Mangold LA, Lamm DM, Walsh PC, Epstein JI, Pearson JD. 
Contemporary update of prostate cancer staging nomograms (Partin Tables) for the 
new millennium. Urology. 2001 Dec;58(6):843-8. 

254. Eichelberger LE, Koch MO, Eble JN, Ulbright TM, Juliar BE, Cheng L. Maximum 
tumor diameter is an independent predictor of prostate-specific antigen recurrence in 
prostate cancer. Mod Pathol. 2005 Jul;18(7):886-90. 

255. Yu YP, Landsittel D, Jing L, Nelson J, Ren B, Liu L, et al. Gene expression 
alterations in prostate cancer predicting tumor aggression and preceding development 
of malignancy. J Clin Oncol. 2004 Jul 15;22(14):2790-9. 

256. Andren O, Fall K, Franzen L, Andersson SO, Johansson JE, Rubin MA. How well 
does the Gleason score predict prostate cancer death? A 20-year followup of a 
population based cohort in Sweden. J Urol. 2006 Apr;175(4):1337-40. 

257. Oyan AM, Bo TH, Jonassen I, Ulvestad E, Tore Gjertsen B, Bruserud O, et al. Global 
gene expression in classification, pathogenetic understanding and identification of 

 98



therapeutic targets in acute myeloid leukemia. Curr Pharm Biotechnol. 2007 
Dec;8(6):344-54. 

258. Tinker AV, Boussioutas A, Bowtell DD. The challenges of gene expression 
microarrays for the study of human cancer. Cancer Cell. 2006 May;9(5):333-9. 

259. Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG, et al. Evolving 
gene/transcript definitions significantly alter the interpretation of GeneChip data. 
Nucleic Acids Res. 2005;33(20):e175. 

260. Petersen K, Oyan AM, Rostad K, Olsen S, Bo TH, Salvesen HB, et al. Comparison of 
nucleic acid targets prepared from total RNA or poly(A) RNA for DNA 
oligonucleotide microarray hybridization. Anal Biochem. 2007 Jul 1;366(1):46-58. 

261. Dysvik B, Jonassen I. J-Express: exploring gene expression data using Java. 
Bioinformatics. 2001 Apr;17(4):369-70. 

262. Henke RT, Maitra A, Paik S, Wellstein A. Gene expression analysis in sections and 
tissue microarrays of archival tissues by mRNA in situ hybridization. Histol 
Histopathol. 2005 Jan;20(1):225-37. 

263. Herrington CS. Demystified ... in situ hybridisation. Mol Pathol. 1998 Feb;51(1):8-13. 
264. Specht K, Richter T, Muller U, Walch A, Werner M, Hofler H. Quantitative gene 

expression analysis in microdissected archival formalin-fixed and paraffin-embedded 
tumor tissue. Am J Pathol. 2001 Feb;158(2):419-29. 

265. Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, et al. 
Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat 
Med. 1998 Jul;4(7):844-7. 

266. Kallioniemi OP, Wagner U, Kononen J, Sauter G. Tissue microarray technology for 
high-throughput molecular profiling of cancer. Hum Mol Genet. 2001 Apr;10(7):657-
62. 

267. Camp RL, Charette LA, Rimm DL. Validation of tissue microarray technology in 
breast carcinoma. Lab Invest. 2000 Dec;80(12):1943-9. 

268. Hoos A, Urist MJ, Stojadinovic A, Mastorides S, Dudas ME, Leung DH, et al. 
Validation of tissue microarrays for immunohistochemical profiling of cancer 
specimens using the example of human fibroblastic tumors. Am J Pathol. 2001 
Apr;158(4):1245-51. 

269. Stefansson IM, Salvesen HB, Akslen LA. Prognostic impact of alterations in P-
cadherin expression and related cell adhesion markers in endometrial cancer. J Clin 
Oncol. 2004 Apr 1;22(7):1242-52. 

270. Halvorsen OJ, Haukaas S, Hoisaeter PA, Akslen LA. Maximum Ki-67 staining in 
prostate cancer provides independent prognostic information after radical 
prostatectomy. Anticancer Res. 2001 Nov-Dec;21(6A):4071-6. 

271. Halvorsen OJ. Expression of p16 protein in prostatic adenocarcinomas, intraepithelial 
neoplasia, and benign/hyperplastic glands. Urol Oncol. 1997;3:59-66. 

272. Rubin MA, Dunn R, Strawderman M, Pienta KJ. Tissue microarray sampling strategy 
for prostate cancer biomarker analysis. Am J Surg Pathol. 2002 Mar;26(3):312-9. 

273. Nelson PN, Reynolds GM, Waldron EE, Ward E, Giannopoulos K, Murray PG. 
Monoclonal antibodies. Mol Pathol. 2000 Jun;53(3):111-7. 

274. Nocito A, Kononen J, Kallioniemi OP, Sauter G. Tissue microarrays (TMAs) for high-
throughput molecular pathology research. Int J Cancer. 2001 Oct 1;94(1):1-5. 

275. Clark TG, Bradburn MJ, Love SB, Altman DG. Survival analysis part I: basic 
concepts and first analyses. Br J Cancer. 2003 Jul 21;89(2):232-8. 

276. Kirkwood B, Sterne, JAC. Essential medical statistics: Blackwell Science; 2005. 
277. Clark TG, Bradburn MJ, Love SB, Altman DG. Survival analysis part IV: further 

concepts and methods in survival analysis. Br J Cancer. 2003 Sep 1;89(5):781-6. 

 99



278. Partin AW, Kattan MW, Subong EN, Walsh PC, Wojno KJ, Oesterling JE, et al. 
Combination of prostate-specific antigen, clinical stage, and Gleason score to predict 
pathological stage of localized prostate cancer. A multi-institutional update. JAMA. 
1997 May 14;277(18):1445-51. 

279. Luo J, Duggan DJ, Chen Y, Sauvageot J, Ewing CM, Bittner ML, et al. Human 
prostate cancer and benign prostatic hyperplasia: molecular dissection by gene 
expression profiling. Cancer Res. 2001 Jun 15;61(12):4683-8. 

280. Xu J, Stolk JA, Zhang X, Silva SJ, Houghton RL, Matsumura M, et al. Identification 
of differentially expressed genes in human prostate cancer using subtraction and 
microarray. Cancer Res. 2000 Mar 15;60(6):1677-82. 

281. Ashida S, Nakagawa H, Katagiri T, Furihata M, Iiizumi M, Anazawa Y, et al. 
Molecular features of the transition from prostatic intraepithelial neoplasia (PIN) to 
prostate cancer: genome-wide gene-expression profiles of prostate cancers and PINs. 
Cancer Res. 2004 Sep 1;64(17):5963-72. 

282. Glinsky GV, Glinskii AB, Stephenson AJ, Hoffman RM, Gerald WL. Gene expression 
profiling predicts clinical outcome of prostate cancer. J Clin Invest. 2004 
Mar;113(6):913-23. 

283. Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K, et al. Gene 
expression profiling identifies clinically relevant subtypes of prostate cancer. Proc 
Natl Acad Sci U S A. 2004 Jan 20;101(3):811-6. 

284. LaTulippe E, Satagopan J, Smith A, Scher H, Scardino P, Reuter V, et al. 
Comprehensive gene expression analysis of prostate cancer reveals distinct 
transcriptional programs associated with metastatic disease. Cancer Res. 2002 Aug 
1;62(15):4499-506. 

285. Magee JA, Araki T, Patil S, Ehrig T, True L, Humphrey PA, et al. Expression 
profiling reveals hepsin overexpression in prostate cancer. Cancer Res. 2001 Aug 
1;61(15):5692-6. 

286. Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, et al. Gene expression 
correlates of clinical prostate cancer behavior. Cancer Cell. 2002 Mar;1(2):203-9. 

287. Welsh JB, Sapinoso LM, Su AI, Kern SG, Wang-Rodriguez J, Moskaluk CA, et al. 
Analysis of gene expression identifies candidate markers and pharmacological targets 
in prostate cancer. Cancer Res. 2001 Aug 15;61(16):5974-8. 

288. Dakhova O, Ozen M, Creighton CJ, Li R, Ayala G, Rowley D, et al. Global gene 
expression analysis of reactive stroma in prostate cancer. Clin Cancer Res. 2009 Jun 
15;15(12):3979-89. 

289. Knight JF, Shepherd CJ, Rizzo S, Brewer D, Jhavar S, Dodson AR, et al. TEAD1 and 
c-Cbl are novel prostate basal cell markers that correlate with poor clinical outcome in 
prostate cancer. Br J Cancer. 2008 Dec 2;99(11):1849-58. 

290. Richardson AM, Woodson K, Wang Y, Rodriguez-Canales J, Erickson HS, Tangrea 
MA, et al. Global expression analysis of prostate cancer-associated stroma and 
epithelia. Diagn Mol Pathol. 2007 Dec;16(4):189-97. 

291. Tamura K, Furihata M, Tsunoda T, Ashida S, Takata R, Obara W, et al. Molecular 
features of hormone-refractory prostate cancer cells by genome-wide gene expression 
profiles. Cancer Res. 2007 Jun 1;67(11):5117-25. 

292. Thorsen K, Sorensen KD, Brems-Eskildsen AS, Modin C, Gaustadnes M, Hein AM, 
et al. Alternative splicing in colon, bladder, and prostate cancer identified by exon 
array analysis. Mol Cell Proteomics. 2008 Jul;7(7):1214-24. 

293. Tomlins SA, Mehra R, Rhodes DR, Cao X, Wang L, Dhanasekaran SM, et al. 
Integrative molecular concept modeling of prostate cancer progression. Nat Genet. 
2007 Jan;39(1):41-51. 

 100



294. True L, Coleman I, Hawley S, Huang CY, Gifford D, Coleman R, et al. A molecular 
correlate to the Gleason grading system for prostate adenocarcinoma. Proc Natl Acad 
Sci U S A. 2006 Jul 18;103(29):10991-6. 

295. Luo JH, Yu YP, Cieply K, Lin F, Deflavia P, Dhir R, et al. Gene expression analysis 
of prostate cancers. Mol Carcinog. 2002 Jan;33(1):25-35. 

296. Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, Angelo M, et al. 
Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad 
Sci U S A. 2001 Dec 18;98(26):15149-54. 

297. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al. 
ONCOMINE: a cancer microarray database and integrated data-mining platform. 
Neoplasia. 2004 Jan-Feb;6(1):1-6. 

298. Farrall AL, Whitelaw ML. The HIF1alpha-inducible pro-cell death gene BNIP3 is a 
novel target of SIM2s repression through cross-talk on the hypoxia response element. 
Oncogene. 2009 Oct 15;28(41):3671-80. 

299. Aleman MJ, DeYoung MP, Tress M, Keating P, Perry GW, Narayanan R. Inhibition 
of Single Minded 2 gene expression mediates tumor-selective apoptosis and 
differentiation in human colon cancer cells. Proc Natl Acad Sci U S A. 2005 Sep 
6;102(36):12765-70. 

300. Li CM, Kim CE, Margolin AA, Guo M, Zhu J, Mason JM, et al. CTNNB1 mutations 
and overexpression of Wnt/beta-catenin target genes in WT1-mutant Wilms' tumors. 
Am J Pathol. 2004 Dec;165(6):1943-53. 

301. Metz RP, Kwak HI, Gustafson T, Laffin B, Porter WW. Differential transcriptional 
regulation by mouse single-minded 2s. J Biol Chem. 2006 Apr 21;281(16):10839-48. 

302. Arredouani MS, Lu B, Bhasin M, Eljanne M, Yue W, Mosquera JM, et al. 
Identification of the transcription factor single-minded homologue 2 as a potential 
biomarker and immunotherapy target in prostate cancer. Clin Cancer Res. 2009 Sep 
15;15(18):5794-802. 

303. Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous 
leukaemia. Nat Rev Cancer. 2005 Mar;5(3):172-83. 

304. Mitelman F, Johansson B, Mertens F. Fusion genes and rearranged genes as a linear 
function of chromosome aberrations in cancer. Nat Genet. 2004 Apr;36(4):331-4. 

305. Mitelman F, Mertens F, Johansson B. Prevalence estimates of recurrent balanced 
cytogenetic aberrations and gene fusions in unselected patients with neoplastic 
disorders. Genes Chromosomes Cancer. 2005 Aug;43(4):350-66. 

306. Haffner MC, Aryee MJ, Toubaji A, Esopi DM, Albadine R, Gurel B, et al. Androgen-
induced TOP2B-mediated double-strand breaks and prostate cancer gene 
rearrangements. Nat Genet. 2010 Aug;42(8):668-75. 

307. Clark J, Merson S, Jhavar S, Flohr P, Edwards S, Foster CS, et al. Diversity of 
TMPRSS2-ERG fusion transcripts in the human prostate. Oncogene. 2007 Apr 
19;26(18):2667-73. 

308. Hermans KG, Bressers AA, van der Korput HA, Dits NF, Jenster G, Trapman J. Two 
unique novel prostate-specific and androgen-regulated fusion partners of ETV4 in 
prostate cancer. Cancer Res. 2008 May 1;68(9):3094-8. 

309. Pflueger D, Rickman DS, Sboner A, Perner S, LaFargue CJ, Svensson MA, et al. N-
myc downstream regulated gene 1 (NDRG1) is fused to ERG in prostate cancer. 
Neoplasia. 2009 Aug;11(8):804-11. 

310. Cerveira N, Ribeiro FR, Peixoto A, Costa V, Henrique R, Jeronimo C, et al. 
TMPRSS2-ERG gene fusion causing ERG overexpression precedes chromosome copy 
number changes in prostate carcinomas and paired HGPIN lesions. Neoplasia. 2006 
Oct;8(10):826-32. 

 101



311. Hermans KG, van Marion R, van Dekken H, Jenster G, van Weerden WM, Trapman J. 
TMPRSS2:ERG fusion by translocation or interstitial deletion is highly relevant in 
androgen-dependent prostate cancer, but is bypassed in late-stage androgen receptor-
negative prostate cancer. Cancer Res. 2006 Nov 15;66(22):10658-63. 

312. Iljin K, Wolf M, Edgren H, Gupta S, Kilpinen S, Skotheim RI, et al. TMPRSS2 
fusions with oncogenic ETS factors in prostate cancer involve unbalanced genomic 
rearrangements and are associated with HDAC1 and epigenetic reprogramming. 
Cancer Res. 2006 Nov 1;66(21):10242-6. 

313. Soller MJ, Isaksson M, Elfving P, Soller W, Lundgren R, Panagopoulos I. 
Confirmation of the high frequency of the TMPRSS2/ERG fusion gene in prostate 
cancer. Genes Chromosomes Cancer. 2006 Jul;45(7):717-9. 

314. Tomlins SA, Mehra R, Rhodes DR, Smith LR, Roulston D, Helgeson BE, et al. 
TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. 
Cancer Res. 2006 Apr 1;66(7):3396-400. 

315. Okada H, Tsubura A, Okamura A, Senzaki H, Naka Y, Komatz Y, et al. Keratin 
profiles in normal/hyperplastic prostates and prostate carcinoma. Virchows Arch A 
Pathol Anat Histopathol. 1992;421(2):157-61. 

316. Parsons JK, Gage WR, Nelson WG, De Marzo AM. p63 protein expression is rare in 
prostate adenocarcinoma: implications for cancer diagnosis and carcinogenesis. 
Urology. 2001 Oct;58(4):619-24. 

317. Mehra R, Tomlins SA, Yu J, Cao X, Wang L, Menon A, et al. Characterization of 
TMPRSS2-ETS gene aberrations in androgen-independent metastatic prostate cancer. 
Cancer Res. 2008 May 15;68(10):3584-90. 

318. Perner S, Mosquera JM, Demichelis F, Hofer MD, Paris PL, Simko J, et al. 
TMPRSS2-ERG fusion prostate cancer: an early molecular event associated with 
invasion. Am J Surg Pathol. 2007 Jun;31(6):882-8. 

319. Tomlins SA, Laxman B, Varambally S, Cao X, Yu J, Helgeson BE, et al. Role of the 
TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia. 2008 Feb;10(2):177-88. 

320. Mosquera JM, Perner S, Genega EM, Sanda M, Hofer MD, Mertz KD, et al. 
Characterization of TMPRSS2-ERG fusion high-grade prostatic intraepithelial 
neoplasia and potential clinical implications. Clin Cancer Res. 2008 Jun 
1;14(11):3380-5. 

321. Carver BS, Tran J, Gopalan A, Chen Z, Shaikh S, Carracedo A, et al. Aberrant ERG 
expression cooperates with loss of PTEN to promote cancer progression in the 
prostate. Nat Genet. 2009 May;41(5):619-24. 

322. King JC, Xu J, Wongvipat J, Hieronymus H, Carver BS, Leung DH, et al. 
Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate 
oncogenesis. Nat Genet. 2009 May;41(5):524-6. 

323. Shaffer DR, Pandolfi PP. Breaking the rules of cancer. Nat Med. 2006 Jan;12(1):14-5. 
324. Tomlins SA, Laxman B, Dhanasekaran SM, Helgeson BE, Cao X, Morris DS, et al. 

Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in 
prostate cancer. Nature. 2007 Aug 2;448(7153):595-9. 

325. Yoshimoto M, Joshua AM, Cunha IW, Coudry RA, Fonseca FP, Ludkovski O, et al. 
Absence of TMPRSS2:ERG fusions and PTEN losses in prostate cancer is associated 
with a favorable outcome. Mod Pathol. 2008 Dec;21(12):1451-60. 

326. Yu J, Yu J, Mani RS, Cao Q, Brenner CJ, Cao X, et al. An integrated network of 
androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer 
progression. Cancer Cell. 2010 May 18;17(5):443-54. 

 102



 103

327. Kunderfranco P, Mello-Grand M, Cangemi R, Pellini S, Mensah A, Albertini V, et al. 
ETS transcription factors control transcription of EZH2 and epigenetic silencing of the 
tumor suppressor gene Nkx3.1 in prostate cancer. PLoS One. 2010;5(5):e10547. 

328. Barry M PS, Demichelis F, Rubin MA. TMPRSS2-ERG Fusion Heterogeneity in 
Multifocal Prostate Cancer: Clinical and Biologic Implications. Urology. 
2007;70(4):630-3. 

329. Arora R, Koch MO, Eble JN, Ulbright TM, Li L, Cheng L. Heterogeneity of Gleason 
grade in multifocal adenocarcinoma of the prostate. Cancer. 2004 Jun 1;100(11):2362-
6. 

330. Clark J, Attard G, Jhavar S, Flohr P, Reid A, De-Bono J, et al. Complex patterns of 
ETS gene alteration arise during cancer development in the human prostate. 
Oncogene. 2008 Mar 27;27(14):1993-2003. 

331. Mehra R, Han B, Tomlins SA, Wang L, Menon A, Wasco MJ, et al. Heterogeneity of 
TMPRSS2 gene rearrangements in multifocal prostate adenocarcinoma: molecular 
evidence for an independent group of diseases. Cancer Res. 2007 Sep 1;67(17):7991-
5. 

332. Jamaspishvili T, Kral M, Khomeriki I, Student V, Kolar Z, Bouchal J. Urine markers 
in monitoring for prostate cancer. Prostate Cancer Prostatic Dis. 2010 Mar;13(1):12-
9. 

333. Park K, Tomlins SA, Mudaliar KM, Chiu YL, Esgueva R, Mehra R, et al. Antibody-
based detection of ERG rearrangement-positive prostate cancer. Neoplasia. 2010 
Jul;12(7):590-8. 

334. Mosquera JM, Perner S, Demichelis F, Kim R, Hofer MD, Mertz KD, et al. 
Morphological features of TMPRSS2-ERG gene fusion prostate cancer. J Pathol. 
2007 May;212(1):91-101. 

 
 




