
Programming with Explicit Dependencies

A Framework for Portable Parallel Programming

Programming with Explicit Dependencies

A Framework for Portable Parallel Programming

Eva Burrows

Dissertation for the degree of philosophiae doctor (PhD)
at the University of Bergen

March 2011

ISBN 978-82-308-1730-8

© Eva Burrows, 2011

Parts of this publication are copyrighted by Elsevier Inc. © 2009

hereby reused under the authors’ Retained Rights policy.

Published by the University of Bergen, Norway, 2011

Printed by AIT Oslo AS

MOTTO

Remember your Creator in the days of your youth,
Before the difficult days come, and the years

draw near when you say, “I have no pleasure in them” (. . .)
For man goes to his eternal home,

And the mourners go about the streets.

Remember your Creator before the silver cord is loosed,
Or the golden bowl is broken,

Or the pitcher shattered at the fountain,
Or the wheel broken at the well.

Then the dust will return to the earth as it was,
And the spirit will return to God who gave it.

“Vanity of vanities,” says the Preacher,
“All is vanity.” (. . .)

And further, my son, be admonished by these.
Of making many books there is no end,

and much study is wearisome to the flesh.

Let us hear the conclusion of the whole matter:
Fear God and keep His commandments,

For this is man’s all.
For God will bring every work into judgment,

Including every secret thing,
Whether good or evil.

Ecclesiastes 12

Preface

When I set off on my Norwegian saga to obtain a PhD in computer science,
I soon realised how little prepared I was for the challenges that would have
to face on the long run, truly I was unprepared and naive. Making the
decision to embark on a journey like this took several years, and it brought
about a series of life-changing events, e.g., moving country, leaving behind
family and friends, and quitting Koinónia – a Romanian publisher where I
had spent most of my time working as IT Manager for more than a decade
by then.

My return to academia began with a two years study leave from my
employment to obtain a Master’s Degree in Programming Theory from the
Department of Informatics at the University of Bergen. Marc Bezem, who
supervised me at the time, tried to entice me to enrol on a PhD training right
away. I was, however, rather uncertain about this, and upon my graduation
I duly returned home.

During the years of my master studies, I had the opportunity to get
an insight into Magne Haveraaen’s research agenda on algebraic software
methodologies. In the first year, he was my professor for a course on algeb-
raic program specification, and in the following year, he asked me to be his
teaching assistant for the course.

When I made up my mind about my PhD, I contacted Magne inquiring
about the prospect of working with him. His most positive reply, finally,
removed all my remaining doubts.

The journey since then has been long, enriching but tiring, uplifting and
depressing. Sometimes all in the same time. I have learnt many a thing
about computer science, research, academia and life. This knowledge, I
hope, will stay with me on the journey onward.

Acknowledgements

I remain indebted to Magne for his unceasing advice and support which
provided me with the knowledge, determination and confidence to com-

vii

plete this dissertation. The long, enlightening discussions from the won-
ders of algebraic abstractions to the beauty of analog photography have
always been a source of excitement and refreshment. In the same time, my
gratitude goes to Mary Sheeran for taking me onboard, in the first place,
and becoming my co-advisor despite her busy schedule, and her constant
“How are things?”-check-ups. Her challenging remarks have improved a
great deal the breadth and depth of my work. Her workload and attitude
in responding my emails within ten minutes, and providing me usually
with all the answers I needed, will always remain an example to follow.

The Department of Informatics at the University of Bergen provided me
with financial support, a nice office, and countless opportunities for travel-
ling, all of which I ammost grateful for. The conferences I have been to were
most beneficial for my professional development and networking. I thank
my direct colleagues Anya Helene Bagge and Valentin David who helped
me in getting through the “PhD system”. I hardly ever had a technical or
not so technical question that Anya did not have an answer for and has
always been a source of information throughout my research. I also thank
Ida Holen, Liljan Myhr, Maria Marta Lopez and Tor Bastiansen for doing
such a great job in the administration, and getting things done so smoothly.

Many thanks go to people outside the academia, too. Ruth and Magnus
Frantzen have become my Norwegian parents, and have shown affection,
love and support the way that only parents can do. Their presence made a
huge difference to my stay in Norway, for which I am most thankful. Éva
Bartha, Ildikó Orbán, Éva Doepp, Ágnes Bálint and Erzsébet Visky have
been my best friends for the past 15 years. They are the kind of persons one
can always rely on. Their friendship and support have always meant a lot.

I am most grateful to my parents for just simply ALWAYS being there
for me. Sadly, my mother passed away before she could have witnessed this
happy day with the rest of my family, to whom many thanks go, too: my
brother Sanyika, his wife Lucsi and their daughter Anna. Their love and
kindness have always welcomed me. I am also grateful to my new family,
especially my mother-in-law Dorothy. Her constant love and support have
been a great source of encouragement throughout these years.

Love and countless thanks go to my husband, Andrew, for all his tender
care, love and kindness, support, friendship and wisdom that helped me
through many of the hickups of this journey and of my life.

Finally, but not least, my foremost gratitude, praise and thanks go to
God, for His unfailing love that saved me, and for the blessings of intelli-
gence, ambition and strength He granted me to complete this dissertation.
Soli Deo Gloria!

Bergen, March 2011

Contents

Preface vii

List of Figures xii

1 Introduction 1

1.1 Parallelism Going Mainstream 2

1.2 Program Dependence . 3

1.3 A DDA-based Parallel Programming Model 4

1.4 Contribution . 6

1.5 Published Results . 7

1.6 Outline . 7

2 Conquering Parallelism 9

2.1 A Retrospective of Data Dependency 11

2.1.1 Automatic Parallelization 11

2.1.2 Restructuring Compilers 15

2.1.3 Data-driven Paradigms 16

2.1.4 Parallel Functional Languages in the 90’s 17

2.1.5 Explicit Data Dependency 18

2.2 High-level Approaches in the Multi-Core Era 19

3 Preliminaries 25

3.1 Mathematics . 25

3.1.1 Sets . 25

3.1.2 Arithmetics . 27

3.1.3 Relations . 28

3.1.4 Functions . 28

3.1.5 Graphs . 31

3.2 Program Code Style Conventions 31

3.2.1 Language Constructs . 31

3.2.2 Guards . 32

ix

3.2.3 Data Types . 32

3.2.4 Operations . 36

4 Data Dependency Algebras 37

4.1 A Gentle Introduction to DDAs 37

4.1.1 DDAs vs. Classical Graph Representations 40

4.1.2 The Expressive Power of DDAs 42

4.1.3 Structuring DDAs . 44

4.2 DDAs for Computations . 50

4.3 Space-Time DDAs . 55

4.3.1 DDA-Embeddings . 59

4.3.2 Shared Memory Model 60

4.3.3 Hypercube . 62

4.3.4 Omega Network . 64

4.3.5 CUDA Programming Model 66

4.4 DDA-Projections . 69

4.4.1 Variations on the Butterly Theme 70

4.4.2 An Example of Non-injective DDA-Embedding 76

5 DDA-based Execution Models 81

5.1 The Repeat Statement . 81

5.2 Dependency-driven Computation 88

5.3 Space-time Controlled Repetition 93

5.3.1 Shared Memory Model Execution 93

5.3.2 Message Passing Execution Model 101

5.3.3 The CUDA Execution Model 102

5.3.4 FPGA Programming . 115

6 Programming with Data Dependencies 119

6.1 Bitonic Sort DDA . 120

6.1.1 Shared Memory Model 124

6.1.2 Hypercube Embedding 125

6.1.3 CUDA Embedding . 125

6.1.4 Shuffle Network . 128

6.2 Odd-Even Merge Sort . 131

6.3 Fast Fourier Transform . 137

6.4 The Sklansky Parallel Prefix Network 140

6.5 Tools . 144

6.6 Experiments . 145

7 Algebraic Properties of DDAs 147

7.1 DDA-Combinators . 147

7.1.1 The Parallel DDA-Combinator 148

7.1.2 The Serial DDA-Combinator 150

7.1.3 The Sub-DDA-Combinator 158

7.1.4 The Nesting-DDA-Combinator 159

7.2 Programming with Compound DDAs 166

7.2.1 The Transfer Function 166

7.2.2 Language Constructs for DDA-Combinators 166

7.2.3 An Example of “Combining” the Combinators 171

7.3 Compile Time Optimizations 174

8 Discussion 181

8.1 Magnolia: a DDA-enabled Compiler 181

8.2 Conclusion . 182

8.3 Future Work . 183

Summary 185

Acronyms 187

References 189

List of Figures

1.1 A Hardware Independent Parallel Programming Model 4

4.1 Simple data dependency graph . 41

4.2 Simple data dependency graph modified 44

4.3 Sub-DDA . 46

4.4 Isomorphic DDAs . 47

4.5 DDA isomorphism condition . 47

4.6 Non-isomorphic DDAs . 48

4.7 Forking DDA . 51

4.8 Butterfly DDA . 52

4.9 Reversed butterfly DDA . 54

4.10 Binary tree DDA . 55

4.11 Shared memory space-time DDA 61

4.12 Hypercube space-time DDA . 63

4.13 The perfect shuffle permutation . 64

4.14 Omega network space-time DDA 65

4.15 Butterfly DDA with alternative layout no. 1 70

4.16 Butterfly DDA with alternative layout no. 2 72

4.17 Butterfly DDA with alternative layout no. 3 72

4.18 Butterfly DDA with 3D layout no. 1 73

4.19 Butterfly DDA with 3D layout no. 2 74

4.20 Butterfly DDA with shuffle layout 75

4.21 Shuffled butterfly DDA embedded into smaller omega network . 77

6.1 Bitonic sort DDA . 122

6.2 Bitonic sort DDA in action . 123

6.3 Bitonic sort DDA with hypercube embedding 126

6.4 Bitonic sort DDA with CUDA embedding 127

6.5 Alternative bitonic sort DDA . 128

6.6 Alternative bitonic sort DDA with shuffle projections 129

xii

6.7 Specialised shuffle network for bitonic sorting 130

6.8 Odd-even merge sort DDA . 133

6.9 Odd-even merge sort DDA with CUDA embedding 136

6.10 Radix-2 Fast Fourier Transform DDA 139

6.11 Sklansky parallel prefix network DDA 141

6.12 Sklansky parallel prefix with CUDA embedding for T=4 143

6.13 Sklansky parallel prefix with CUDA embedding for T=8 143

6.14 Generated bitonic sort dependency for 512 inputs. 145

6.15 DDA-based bitonic sort running times 146

7.1 Serial combination of DDAs along a bijection 152

7.2 Serial combination of DDAs along a total function 152

7.3 Nesting DDAs . 160

7.4 Polynomial Multiplication DDA 172

CHAPTER 1
Introduction

The potential of parallel computing became evident more than four dec-
ades ago. Powerful parallel systems began to appear, and the initial im-
pression that programming such machines was far from obvious has pre-
vailed. The expanding universe of computing architectures was classified
in many different ways, e.g., Flynn’s famous taxonomy [Flynn, 1972]. These
classifications, however, were derived from the execution models of the sys-
tems, and said little about how to program them. As Luc Bougé pointed
out [Bougé, 1996], massively parallel machines seemed to have developed
so quickly that little time was left to design suitable languages. Therefore,
the tendency was to reflect the architecture in an architecture specific pro-
gramming language, typically by starting with a widely used programming
language and extending it with a construct for each hardware feature. This
resulted in programming models that were mere subsets of the hardware
execution models, and could hardly survive or adapt when new systems
appeared. This pointed towards the need of higher level parallel program-
ming models which would abstract from low-level hardware details, so that
a programmer need not bother about these [Danelutto et al., 1992; Feldman,
1979; Greif, 1977; Skillicorn, 1995].

Over the last decade, the Message Passing Interface (MPI) [Gropp et al.,
2000] and OpenMP [Chandra et al., 2000] have become the two most dom-
inant parallel programming models. They have been taken on board by
high-performance computing communities and compiler vendors.

MPI is a distributed memory model, which comes as a standard lib-
rary and is available on almost every parallel platform. It can be used on
networks of workstations as well as on parallel supercomputers. The user

1

1. Introduction

writes program code for every participating (parallel) process, and man-
ages the communication between processes by message passing. This is
time-consuming and error-prone (e.g. deadlocks, livelocks, etc.). MPI im-
plementations are claimed to be portable, yet they may need adaptations
from platform to platform to be more appropriate for the target system.

OpenMP is a shared memory model of parallel hardware, and may
achieve better performance than MPI in such an environment. OpenMP is
based on a set of compiler directives applied on top of a standard language
(e.g. C, Fortran, OCaml). Parallel regions are identified and annotated by
the user. In general OpenMP follows a fork-join execution model.

While MPI can easily be adapted to shared memory parallel systems,
OpenMP does not scale efficiently to distributed memory parallel systems.
However, strategies have been proposed for implementing OpenMP on
clusters [Chapman, 2005].

1.1 Parallelism Going Mainstream

Computational devices are now rapidly evolving into massively parallel
systems. The number of processors per chip is expected to double every
other year or so over the next few years, bringing parallel processing into
the mass market. Multi-core processors are standard, and high-performance
processors such as the Cell processor [Chen et al., 2007] and graphics pro-
cessing units (GPUs) featuring hundreds of on-chip processors are all de-
veloped to deliver high computing power. They make parallelism common-
place, not only the privilege of expensive high-end platforms. As a con-
sequence, software needs to be parallelized and ported in an efficient way
to massively parallel, possibly heterogeneous, architectures. However, cur-
rent parallel programming paradigms cannot readily exploit these highly
parallel systems. In addition, each hardware architecture yet again comes
along with a new programming model and/or application programming
interface (API). This makes the writing of portable, efficient parallel code
even more difficult.

One way of transforming many-core power into real application per-
formance – an approach adopted by most hardware vendors – is to provide
libraries, APIs or some ready-to-use software toolbox that help developers
to annotate legacy code with parallel constructs where possible (e.g. [Intel,
2009, 2010; Reinders, 2007]). Industry leaders have also joined forces to de-
velop OpenCL, a low-level cross-platform open standard for heterogeneous
parallel programming [Khronos, 2010]. OpenCL exposes everything of the
underlying platforms and abstracts very little, ultimately hoping to become
a target itself for higher level frameworks [HPC Wire, 2010].

2

1.2. Program Dependence

The programming community is still in great need of high-level parallel
programming models to adapt to the new era of commonly available paral-
lel computing devices as well as to the increasingly more accessible realm of
high-performance computing facilities. Parallel computing research blooms
like never before. While in the early years of computing parallelism seemed
to be desirable for high throughput, by today taking parallelism into ac-
count has become inevitable:

“The «not parallel» era we are now exiting will appear to be
a very primitive time in the history of computers when people
look back in a hundred years. The world works in parallel, and
it is time for computer programs to do the same. . . In less than a
decade, a programmer who does not «Think Parallel» first will
not be a programmer.” [Reinders, 2010]

1.2 Program Dependence

One of the major issues in parallelizing applications is to deal with the
underlying inherent dependency structure of the program. Data depend-
ency graphs can abstract how parts of a computation depend on data sup-
plied by other parts. This served as a basis for parallelizing compilers
[Banerjee et al., 1993; Wolfe, 1996], and proved that the idea of embedding a
program’s communication structure into the hardware topology was a reas-
onable approach. However, automatic dependence analysis is difficult for
the general cases, and as a result parallelizing compilers cannot make the
most of the underlying dependencies.

The constructive recursive (CR) approach proposed by Haveraaen [2000]
allows the modular separation of computation from its dependency, such
that both become programmable independently from each other. Depend-
encies are captured by algebraic abstractions – Data Dependency Algebras
(DDA) – and turned into explicit, programmable entities in the program
code. DDA-abstractions can also be used to describe hardware communica-
tion topologies. Then mapping the computation to a target architecture can
be dealt with at a high-level, using DDA-embeddings.

This dissertation presents a framework for portable parallel program-
ming based on DDA-abstractions. Two main issues of parallel computing
are addressed: how to map efficiently computations to different parallel
hardware architectures, and how to do this at a low development cost, i.e.,
without rewriting the problem solving code. Today’s most widespread par-
allel programming paradigms and APIs encourage programmers to disreg-
ard the underlying hardware architecture in the name of “user friendliness”

3

1. Introduction

– a line supported by most hardware vendors. Our proposed approach, on
the other hand, gives direct access to the hardware communication struc-
ture but at a high-level. Direct access to aspects of the hardware model
is needed by some architectures, e.g., graphics processors. However, the
model is fully portable and not tied to any specific processor or hardware
architecture, due to the modularisation of the data dependencies.

1.3 A DDA-based Parallel Programming Model

In the CR approach, the key element in the process of separating the com-
putations from their dependencies is played by DDAs. Here, we abstract
from the details of the separation methodology, and refer to Chapters 4, 5

and 6 for more details.
DDAs can also abstract over hardware communication layouts. Then

the inherent flexibility of DDAs allows us to deal with embeddings at a
high-level. A discussion of embeddings and ways to combine DDAs can be
found in [Anderlik and Haveraaen, 2003; Haveraaen, 2009].

Figure 1.1: A Hardware Independent Parallel Programming Model

The conceptual overview of our programming model is presented in Fig.
1.1. The key elements of the model are:

4

1.3. A DDA-based Parallel Programming Model

• The data dependency pattern of a computation captured in the form
of a DDA (e.g. DDA1). In practice, this means that the data dependency
graph of the computation is expressed in the formalism of DDAs.

• The computation reformulated as expressions on the points of the DDA,
such that dependencies between computational steps (DDA points)
become explicit entities in the expression.

• A hardware architecture’s space-time communication layout or API
also captured by a special space-time DDA (STA) (e.g. STA1).

• The embedding of the computation by the means of a DDA-embedding
(e.g. E1, En). This is a task of finding a mapping of the computation’s
DDA onto the space-time DDA of the hardware.

• A DDA-based compiler, which for a given computation (e.g. computa-
tion 1) needs to be fed with:

1. the computation in terms of DDA1 and the expressions over DDA1
2. the space-time DDA of the chosen hardware, e.g., STA1
3. the embedding E1 from DDA1 to this space-time, STA1

Then the compiler generates code for the chosen hardware architec-
ture. This can for instance be sequential code, CUDA code for GPUs,
or vectorized C/C++ for the CELL/BE, and so on.

Characteristics

The model assumes that the space-time DDAs of the hardware architectures
are predefined (e.g. STA1,STA2,. . . , STAn), and are associated with computa-
tional mechanisms in the DDA-enabled compiler. The programmer’s task
is to define the DDA of a computation, re-formalise the computation in
term of this DDA, and define an embedding into the space-time DDA of
the target architecture. For example, En from DDA1 to the space-time DDA
STAn. The expressions on DDA1 remain unchanged irrespective of the avail-
able hardware resource.

Since there is no need to rewrite the program solving code, the compu-
tation is hardware independent and portable. Also, there is no need for the
compiler to do advanced parallelizing program analysis, as the embedding
gives all the information needed for efficient parallel code generation. Al-
ternative embeddings can easily be tested in search for optimal solutions,

5

1. Introduction

since each embedding is defined explicitly, yet at a high, easy to manipulate,
level.

The DDA-based programming model allows other kinds of software re-
usability as well. Different computations may exhibit the same dependency
pattern (DDA1 in Computations 1 and 2), in which case all the embeddings
defined for DDA1 onto the different architectures can be reused. If a new
computation exhibits a new dependency pattern (e.g. DDA2 in Computation
3), all space-time DDAs, and associated execution models, are still avail-
able in the compiler, only new embeddings need to be defined into these,
illustrated by dashed lines in Fig. 1.1.

DDAs, STAs and DDA-embeddings are discussed in Chapter 4. Lan-
guage constructs for defining the computational expressions on DDA points
are presented in Chapter 5. DDA-based execution models associated with
space-time DDAs of different hardware architectures are also presented in
Chapter 5. Examples instantiating these ideas are provided in Chapter 6.
Mechanisms that promote automatic program refactoring in the compiler
are presented in Chapter 7.

1.4 Contribution

The contributions of this dissertation are:

• it illustrates the role that DDAs can play in parallel computing by:

– giving a fresh perspective of the DDA concept

– demonstrating how the abstractions available in DDAs can con-
trol spatial placements of computations at a high-level

– showing how modern parallel hardware architectures’ commu-
nication structure, such as GPUs, can be abstracted in terms of
space-time DDAs

– further expanding the general theory of DDAs

• it presents the foundations of a DDA-based hardware independent
parallel programming model

• it defines novel language constructs in accordance with the proposed
programming model, and presents associated computational mechan-
isms for various hardware architectures (sequential, shared memory,
GPUs and FPGAs)

• it formalises novel algebraic properties of DDAs that promote pro-
gram refactoring

6

1.5. Published Results

• it reports on preliminary practical results which underline that DDA-
based embeddings of computations can be dealt with at high-level,
and that DDA-based programming is portable

1.5 Published Results

This dissertation incorporates the following published works:

AHardware Independent Parallel ProgrammingModel, co-authored with Magne
Haveraaen, and published in the Journal of Logic and Algebraic Programming
by Elsevier Inc. [Burrows and Haveraaen, 2009b]. This is a joint work, with
the basic ideas originating from Magne. It presents a significant contribu-
tion to the work previously published on DDAs, e.g., [Čyras and Haveraaen,
1995; Haveraaen, 2000, 1990a].

Dependency-Driven Parallel Programming, co-authored with Magne Haver-
aaen, and published in the Proceeding of Norsk Informatikk Konferanse (NIK) by
Tapir [Burrows and Haveraaen, 2009a]. I am the main author with the work
being supervised by Magne. The paper revisits the concept of DDAs in a
gentle way, illustrates the results of the visualization tool, and comments on
practical experiments.

1.6 Outline

This dissertation is organised as follows:

• Chapter 1 (this chapter) presents the conceptual overview of the pro-
posed hardware independent parallel programming model.

• Chapter 2 reflects on the history of data dependency, focusing on how
dependence analysis influenced parallel computing research, and dis-
cusses some high-level parallel computing research directions of re-
cent years.

• Chapter 3 gets the reader familiarized with mathematical terminolo-
gies used in the formal presentations, and introduces program code
style conventions used in the program code examples.

• Chapter 4 revisits the formal definition of DDAs, giving a fresh per-
spective and understanding of what DDAs are, significantly expands
the study of space-time DDAs and DDA-projections, presents new
DDA concepts, related properties and relevant theorems, and defines
new DDA examples.

7

1. Introduction

• Chapter 5 proposes new language constructs, with precise syntax and
semantics, designed to encapsulate a DDA-based computational ex-
pression, and presents various execution models, targeting different
hardware architectures, which compute the semantics of the proposed
constructs.

• Chapter 6 illustrates the essence of DDA-based programming by elab-
orating DDA-based solutions of well-known computational problems,
and shows how these can be mapped to various hardware architec-
tures at a high-level.

• Chapter 7 gives a formal presentation of novel mechanisms that allow
the building of compound DDAs from existing ones. The techniques
presented promote program refactoring.

• Chapter 8 discusses the achieved results, draws some conclusions, and
points towards future directions.

8

CHAPTER 2
Conquering Parallelism

Parallel computing research is about half a century old now. Throughout
this period, most research directions aiming at tackling parallelism, in one
way or another, always reflected the actual state-of-the-art of (parallel) com-
puting systems. The steady developments of semi-conductor technology
have influenced a great deal both the intensity and the enthusiasm at which
researchers aimed at conquering parallelism.

Integrated circuit design had gone through a tremendous change. Moore
[1965]’s prediction about the promising future of integrated circuits had
been criticized, analysied and reformalized several times throughout the
70’s, to adapt to the developments of semi-conductor industry. The 80’s,
however marked a breakthrough. The appearance of Very-large-scale In-
tegration (VLSI) in circuit design allowed thousands of transistors to be
combined into a single chip.

The appearance of first parallel systems, the vector processors of the
60-70’s, brought forth much energy and launched a very optimistic and in-
tense drive in automatic parallelization research. Much of this work looked
back on the theoretical results of the 50’s and 60’s, which had already ad-
dressed some aspects of parallel and concurrent processing. The enthu-
siasm continued throughout the 80’s, since despite the developments of
VLSI uni-processor clock frequency did not increase as rapidly as expected.
Supercomputers, on the other hand, were available, and many minisuper-
computers began also to appear. This highly motivated parallel computing
research, as increasing computing power throughput was primarily expec-
ted from exploiting the parallelism available on these machines.

9

2. Conquering Parallelism

The 90’s ultimately justified Moore’s law, as uni-processor speed began
steadily to double every two years. This made uni-processors very appeal-
ing and more promising for achieving high computational throughput, for
the masses at least. As a result, the driving force of parallel computing
research has somewhat decreased, and became more of an interest for sci-
entific computing communities.

By the end of 80’s the focus from automatic parallelization research shif-
ted towards programming language-based methods to explore parallelism.
At the end of 90’s, these efforts led to the standardization of OpenMP and
MPI, which became the two dominant and very acceptable programming
models for high-performance systems, even up to today.

The beginning of the millenium, however, marked a new era in parallel
computing research. In 2005, Moore himself pointed out that his law cannot
continue for ever, there are physical limits in the semi-conductor industry
which ultimately cannot be pushed further to continuously increase uni-
processor speed. As a result, hardware vendors started to build multi-core
architectures. The technology was ready, but programming methodologies
were lacking. This reinvigorated parallel computing research and made it
strive like never before, as parallelism had to be faced now on a daily basis.

In their excellent discourse [Asanovic et al., 2006] on the state-of-the-
art of parallel computing research, Berkeley researchers argue that current
programming methodologies may be sufficient for systems with up to 8
processors, but they are not likely to scale beyond that. Inspired by the
success of parallelism at the extremes of the computing spectrum, i.e., em-
bedded computing and high-performance computing, the report suggests
several design targets that a programming model should meet. The target
is set to 1000 cores per chip, but programming models should not depend
on the number of processors. Models should allow the user to indicate
locality, and should support a wide range of data types. They should sup-
port well-known forms of parallelism: data-parallelism, task-parallelism,
and instruction-level parallelism. Finally, instead of traditional benchmarks,
they suggest new methods, borrowed from scientific computing, to design
and evaluate programming models and architectures.

In the following two sections, we address only two slices of the vast
topic of parallel computing research. The first, reflects on the history of
data dependency, showing why dependence analysis became important,
and how it influenced parallel computing research as a whole. The second
presents some higher level parallel programming models that have emerged
in the multi-core revolution era, and relates some of these approaches to our
framework.

10

2.1. A Retrospective of Data Dependency

2.1 A Retrospective of Data Dependency

Early research on the theory of compiling high-level languages for high
performance parallel systems was primarily based on program transform-
ations. Dependence analysis provided execution-order constraints between
program statements and as such served as a basis for establishing legitim-
ate ways to carry out such transformations. The notion of data dependency
describes one class of dependencies obtained throughout the process of de-
pendence analysis.

Using data dependencies for program parallelization has a long and
speckled history [Bacon et al., 1994; Wolfe and Banerjee, 1987]. Automatic
parallelization, loop transformations, systolic arrays, dataflow program-
ming, etc., are all connected to the notion of data dependency, which is
fairly wide-spread in compiler design communities. The notion of data de-
pendency algebra (DDA) – the key concept of this dissertation, is however
less known.

In a general sense, dependencies are considered inherent in a program
and low-level artifacts of the Von Neumann machine. As automatic depend-
ence analysis proved to be too difficult for the general cases, the common
understanding is that the limits of dependence analysis cannot be pushed
much further to provide improved level of abstraction at which to think
about parallelization.

The concept of DDA, on the other hand, points into a new direction.
When the data dependency is made explicit in the program code (by means
more expressive than just simple annotations), a parallelizing compiler can
omit data dependence analysis as a whole, and yet harness directly the
driving force of the dependency. Hence, DDAs increase the potential that
data dependencies can play in program parallelization.

2.1.1 Automatic Parallelization

At the dawn of computing when programs were written in the first high-
level programming languages, the programmer naturally assumed that the
results would be obtained by the machine executing the program statements
in the order of their appearance, eventually, obeying any additional control
flow constructs, such as if statements, goto-s, or similar branching mechan-
isms. Programs ran on primitive uni-processors, and there was no need for
reordering the statements nor for identifying potential parallelism between
the operations. When microprocessor technologies have become more ad-
vanced, with more sophisticated memory models, and the appearance of
parallel computers, however, made compilers face fundamentally new chal-
lenges. For instance, when the micro-architecture was enabled to support

11

2. Conquering Parallelism

instruction pipelining, compilers had to explore instruction-level parallel-
ism to make the most of the processors’ instruction pipelining ability. Ex-
ploring data- and task-parallelism, however, placed a significantly heavier
burden on both application developers as well as compiler designers.

For the programmer, the most appealing solution was the idea of auto-
matic parallelization, when all the hassle of the parallelization process is cast
on the compiler. The debate, however, was whether automatically generated
parallel code could (ever) achieve the same performance as a handcoded
parallel version.

The 1970’s mark the beginnings of automatic parallelization research
which set off as a joint effort to address portable programming on vec-
tor processors [Banerjee, 1976; Lamport, 1974; Loveman, 1976]. Hence this
kind of parallelization is often referred to as automatic vectorization. A com-
prehensive overview of automatic program parallelization techniques is
presented in [Banerjee et al., 1993]. In the search for program restructur-
ing techniques, the technological tool developed was based on dependence
analysis [Banerjee, 1988, 1996]:

“The aim of dependence analysis is to gather useful information
about the underlying dependency structure of a program and
present it in a suitable form. This analysis can be performed
at various levels: we may study dependencies between program
statements, iterations of a loop nest, subroutines in the program,
etc.” [Banerjee, 1996]

The compiler, based on a set of constraints, called dependencies, identifies
when the reordering of program statements would not change the overall
meaning of the program. These constraints are determined by the order in
which program statements appear. The early work of Bernstein [1966] had
a significant impact on the methods that were developed in the 70-80’s.

Two major classes of dependencies have been identified: control and data
dependency. These are usually represented as directed graphs in the com-
piler. An in-depth coverage of both methods can be found in [Wolfe, 1996]
and [Kennedy and Allen, 2002]. When parallelizing or restructuring pro-
grams, as a general rule, both data and control dependencies need to be
considered.

Control dependency relations provide a rather general method to capture
the essential conditions controlling the execution of a program. Intuitively,
control dependency occurs in a situation when a statement is executed if
a previous statement evaluates in a way that allows its execution. For in-
stance, in the following example:

12

2.1. A Retrospective of Data Dependency

S1: if a<>0

S2: b = b/a;

S3: c = 2;

the statement S2 is executed only if the execution of S1 evaluates to true.
Hence S2 is control dependent on S1, whereas S3 is control independent.

Control dependency graphs are usually much larger than the associated
control flow graphs. Two principal strategies were introduced to deal with
control flow. The first, referred to as if-conversion in the literature, elimin-
ates control dependencies by converting them into data dependencies. The
second approach counts the control dependency as an extension of the data
dependency by including edges of the control dependency graphs into the
data dependency graph. These strategies were motivated by the fact that,
during program analysis, it was easier to consider and argue about a single
dependency graph.

The primary development regarding the use of control dependency in
program transformation began with the work of Ferrante et al. [1987], and
the framework for building efficient control dependency graphs originates
from Cytron et al. [1991]. Various graph algorithms [Aho and Hopcroft,
1974] have been used to argue about the properties of control depend-
ency graphs relevant in the context of program transformations and ac-
tual code generation processes, for example, finding strongly connected
components of a directed graph. Significant contributions for the code
generation process in the presence of control dependency can be found in
[Kennedy and McKinley, 1990; McKinley, 1992].

Data dependency relations, on the other hand, ensure that data is provided
and used in a correct order. These are less restrictive than control de-
pendency relations, and give more flexibility in the transformation process.
However, the order of memory references can be changed only to the extent
that wrong values are not used or stored when the rearranged program is
executed [Wolfe, 1996].

Three main classes of data dependency constraints are distinguished.
Let S1 be a statement and S2 a subsequently executed statement. Then:

• S2 is flow (or true) dependent on S1, if S2 uses a variable which is as-
signed or previously modified in S1.

• S2 is anti-dependent on S1, if S2 reassigns a variable which has been
used in S1.

• S2 is output dependent on S1, if a variable assigned in S1 is reassigned
in S2.

13

2. Conquering Parallelism

The main data dependence problem for the compiler is to determine
if two variables have instances that reference the same memory location
during program execution [Banerjee, 1996]. The variables considered are
usually either scalars or array elements in loop-iterations. In the latter case,
the subscript expressions of the arrays are considered in the constraints
[Allen, 1983]. The more complex the array subscripts are, the more com-
plicated the dependence analysis becomes. Most accurate results could
be obtained when the array subscripts were affine functions of the loop
variables and they obeyed some additional properties [Maydan et al., 1995;
Wolfe and Banerjee, 1987]. But in some cases, the constraints just simply
could not be solved at all at compile-time, the compiler not having enough
information.

The presence of procedure calls complicated significantly the process
of dependence analysis [Burke and Cytron, 1986; Li and Yew, 1988]. Sev-
eral early papers addressed the issues arising with interprocedural calls
[Callahan et al., 1986; Cooper et al., 1986], but later new methods have been
presented [Burke and Cytron, 2004; Müller-Olm, 2004] which solved many
of these issues.

Due to these limitations, automatic vectorizers of simple sequential pro-
grams did not succeed in providing very significant high-performance. Non-
etheless, the techniques based on dependence analysis became standards
on most vector machines by the end of 1980’s [Allen and Kennedy, 1987;
Polychronopoulos et al., 1990; Wolfe, 1990].

With the appearance of shared and distributed memory architectures,
automatic parallelization research turned towards exploiting these systems
as well [Allen et al., 1988, 1987; Banerjee et al., 1993; Callahan and Kennedy,
1988; Kuck et al., 1980; Zima and Chapman, 1993]. Several additional as-
pects had to be considered, e.g., how to minimise the overhead of initiating
and synchronizing parallel threads on shared memory systems, or how to
partition data to the memories of the processors in distributed-memory sys-
tems with optimal communication [Amarasinghe and Lam, 1993], etc.

Dependence analysis became increasingly more complex, leading to long
compiler running times, and the results did not demonstrate significant
success as far as automatic parallelization was considered [Banerjee et al.,
1993]. The techniques developed, however, had a great impact on the op-
timization techniques applied in most modern compilers [Kuck et al., 1980,
1981; Padua and Wolfe, 1986].

At the end of the 80’s, the automatic parallelization enterprise came
to the conclusion that the long awaited high-performance was more likely
to come from a joint effort [Dongarra et al., 2003, p. 361]. While still ex-
ploiting methods for automatic parallelization, the programmer should also

14

2.1. A Retrospective of Data Dependency

provide some useful information at the level of the program code. Hence,
parallel programming language design began to explore language-based
strategies that provided the compiler with additional information about
data-decomposition, task- or data-parallelism. Some of these early research
efforts led, for instance, to the standardization of High-Performance For-
tran [Loveman, 1993] – a high-level data-parallel language based on Fortran
–, which served as a basis for the upcoming generation of high-level par-
allel languages developed for high-performance systems, e.g., Fortran 95,
OpenMP. The focus on language-based approaches, in the same time, nat-
urally raised portability issues. Explicit representation of parallelism in the
source code did not guarantee optimal use of parallel hardware. If one way
of expressing parallelism worked well on one architecture, this most likely
needed to be altered when ported to another system due to performance-
related considerations.

2.1.2 Restructuring Compilers

As loops tended to be the most time-consuming parts of the programs,
program restructuring methods were first highly focused on these. Loop-
based transformations promised to deliver increased parallelism as well as
optimized running time. The first high-level parallel language constructs
were also designed to express loop-level parallelism, for the same reason.

Loop-transformations were based on elaborate dependence tests of en-
tire loop nests and across subscripts of possibly multiple arrays. Based on
these methods, several strategies have been developed for various loop-level
transformations, e.g., loop interchange, loop skewing, loop fusion, loop re-
ordering, loop unfolding, loop tiling etc.

In the general cases, these tests became very complex. Low-complexity
tests, luckily, produced quite accurate results in many cases, such as the
GCD test [Psarris, 1996], the I-Test [Kong et al., 1991], and Banerjee’s In-
equilities [Banerjee, 1979; Psarris, 1992]. The Omega test [Feautrier, 1988;
Pugh and Wonnacott, 1992], a constraint-based analysis, was an independ-
ent effort to improve array dependence analysis which provided exact res-
ults for affine cases. While it was exponential for the general cases, it often
provided faster results than its fellow competitors for the common cases.
The Omega test is often related to the polyhedral model [Pouchet et al., 2008].
This is a mathematical framework based on affine transformations of de-
pendencies, useful in program restructuring, such as tiling [Gupta et al.,
2007].

While the idea of purely automatic parallelization did not succeed the
way it was hoped for, the vast amount of knowledge gathered about de-

15

2. Conquering Parallelism

pendence analysis contributed a great deal to building powerful optim-
izing compilers. [Bacon et al., 1994] is a concise and comprehensive sur-
vey of the state-of-the-art of dependence-based transformations of the pre-
Fortran 95 era. Wolfe [1996] provides a more technical presentation, and
Kennedy and Allen [2002] discusses further developments. Dependence-
based approaches have remained crucial in advanced program analysis and
transformation techniques in modern compiler design [Srikant and Shankar,
2007].

Research directions for developing more accurate and faster algorithms
for dependence tests are still noticeable. A recent comparison of data de-
pendence analysis tests can be found in [Viitanen and Hämäläinen, 2004].
A new dependence analysis tool is described by Kyriakopoulos and Psarris
[2005], which empirically is proved to be more efficient in program parallel-
ization than usual dependence tests. Zhou and Zeng [2006] present a more
general scheme of dependence test based on integer interval theory to solve
difficult dependence test problems.

2.1.3 Data-driven Paradigms

Also inspired by the inherent data and flow dependency of computations,
the 1970’s brought forth other approaches which meant to exploit paral-
lelism in a different way. As hardware were becoming (relatively) less ex-
pensive, special purpose micro-architectures began to appear especially de-
signed for signal and image processing. Based on these experiments, new
data-driven architecture models evolved as a contrast to the von Neumann
instruction-driven paradigm.

The term systolic array was coined by Kung and Leiserson [1978]. A
systolic system was presented as a regular pipe network arrangement of
processors, called cells, which computed and passed data through the sys-
tem rhythmically. Hence the name analogy with the regular pumping of
blood by the heart. Since the data was organised as multiple data streams,
the underlying idea well-supported data parallelism, and the regularity of
the network ensured scalability.

Systolic array research primarily focused on designing algorithms and
architectures that laid out well in two dimensions so that they could ad-
apt well to VLSI technology restrictions [Kung, 1982]. The shape of the
cell-network varied, e.g., rectangular, triangular or hexagonal, each exploit-
ing higher degree of parallelism in a different way. The actual intercon-
nects between the cells modeled the dataflow of the algorithm that the
systolic array was built for. Hence exploiting the flow and data depend-
ency of an algorithm was a key element in the design of systolic arrays, e.g.,

16

2.1. A Retrospective of Data Dependency

[Jen and Kwai, 1992; McCanny et al., 1990]. Miranker and Winkler [1984]
presented a general theory for characterizing and realising algorithms in
hardware. The approach was based on data dependency graphs of compu-
tations embedded into space-time representations of hardware. The tech-
nique developed described the mapping of a particular systolic algorithm
into a physical array.

Many systolic algorithms have been proposed, e.g., for matrix arith-
metic, data- and graph-algorithms, signal and image processing. They had
the potential of taking an exponential algorithm and turn it into a linear-
time hardware implementation. However, the building of a systolic array
parallelizing compiler that could translate a high-level scientific code for
systolic arrays remained challenging.

Despite their great potential for massive parallelism, high throughput,
and gradual support for SIMD organizations for vector operations and
MIMD for non-homogeneous parallelism, systolic arrays were expensive
and hard to build. Due to their inherent characteristics, systolic architecture
design, nonetheless, has prevailed, e.g., in reconfigurable computing.

The dataflow machine was another data-driven programmable computer
which had a specialised hardware optimised for fine-grain data-driven par-
allel computations. The concept originates back to the 60’s when dataflow
graphs were first developed [Davis, 1979]. The first implementation of a
dataflow machine points back to 1976 [Davis, 1979]. Dataflow architectures
disregard from the general notion of program counter, and promote explicit
data-driven execution. A survey of early machines can be found in [Veen,
1986]. Dataflow languages have also emerged (e.g., Sisal, Lustre, Lucid,
VHDL, etc.).

Binaries compiled for a dataflow machine contain dependency informa-
tion, which is usually not common to binaries. This information is utilised
when the program is executed on the machine, and by a special mechanism
it can decide over code segments that can be executed in parallel.

Dataflowmachines have been primarily implemented as specialized hard-
ware used in digital signal processing, network routing and graphics pro-
cessing.

2.1.4 Parallel Functional Languages in the 90’s

Under the flagship of automatic parallelization research, functional lan-
guages also emerged as potential candidates. The basic computational ab-
stractions of a functional language are functions. Since a functional program
has no such notion as execution state and has a value-oriented semantics, it
usually requires a simpler dependence analysis, at the cost of more complex

17

2. Conquering Parallelism

data allocation and modification operations. The key question in parallel
functional languages was how much parallelism can be extracted automat-
ically and how much should be provided by the programmer. Data parti-
tioning was one of the issues that required additional information. A nice
compilation of parallel functional compiler directions of this period can be
found in [Szymanski, 1991], including PTRAN, the HPF compiler. Some of
these were heavily based on dependence graph transformations in the code
generation process.

In particular, EPL and Crystal followed a transformation strategy based
on equational annotations, aiming at generating optimized and efficient im-
plementations for a variety of hardware. The optimization of Crystal pro-
grams followed a series of systematic transformations of data index-spaces,
automated by the compiler, until an optimal data distribution was found
which matched the physical characteristics of the given hardware. Both
languages hinted that modelling the hardware architectures’ physical prop-
erties at a higher abstraction level in the compiler would be beneficial in the
code generation process.

The book [Szymanski, 1991] also exposes the philosophy of dataflow
programming by presenting Sisal, Lucid and Id.

2.1.5 Explicit Data Dependency

As mentioned earlier, Miranker and Winkler [1984] introduced a general
theory about embedding the data dependency graph of a computation into
the space-time topology of a systolic array. Haveraaen [1990b, 2000, 1990a]
took this underlying idea further when developing the constructive recursive
(CR) approach. This allowed the modular separation of computation from
its dependencies, such that both became programmable independently from
each other. This also entailed a separation between local dependencies of a
function, and the global communication pattern of the whole computation
in the hardware. The idea showed many similarities with the structural
blanks approach of Čyras, and both techniques were presented and compared
in [Čyras and Haveraaen, 1995].

Haveraaen’s approach was based on algebraic abstractions, referred to
as Data Dependency Algebras (DDA). DDAs provided a formalism to express
data dependencies as explicit, first class, programmable entities in the pro-
gram code. This makes Haveraaen’s approach rather unique, compared to
previous frameworks. The extracted data dependencies are primarily true
(flow) data dependencies.

As Banerjee [1996] put it, the aim of dependence analysis was to gather
useful information about the underlying data dependency structure of a

18

2.2. High-level Approaches in the Multi-Core Era

program and present it in a suitable form. A DDA delivers exactly this in-
formation to the compiler, and it comes from the effort of the programmer,
and not of the compiler. The programmer analyses the underlying depend-
ency by the means of pencil, scratch paper and human intelligence. If the
attempt is successful, the result is a concise, meaningful representation of
the data dependency pattern of the computation in the program code, ready
to be used by a parallelizing compiler.

The prototype compiler implemented by Søreide [1998] followed an op-
timised recursion unfolding strategy in the code generation process. This
was entirely based on the information provided in the DDA. The compiler
adapted a technique inspired by tail recursion optimization, as common to
many functional languages, developing it to arbitrary, not just linear, de-
pendency patterns.

Later, Burrows and Haveraaen [2009b] presented a unified programming
model based on the basic idea of CR, showing that DDAs provide a high-
level, flexible and hardware independent formalism to deal with parallel-
ism. This served as starting point for this dissertation.

2.2 High-level Approaches in the Multi-Core Era

Research directions of earlier times are often revisited. In hindsight it is
often easier to understand why a very promising approach did not succeed.
High-Performance Fortran (HPF) is one of these [Kennedy et al., 2007]. HPF
was accepted with great enthusiasm in the early 90’s. However, the initial
excitement has faded out. This is attributed to reasons that are worth learn-
ing from: immature compiler technology leading to poor performance, lack
of flexible distributions, inconsistent implementations, missing tools, and
lack of patience by the high-performance computing community. Although
HPF itself failed to achieve success, it had a great impact on the develop-
ment of high-level parallel languages (e.g. Fortran 95, OpenMP, Chapel,
Fortress, X10).

In recent years, several new programming models have been proposed,
and in some cases implemented. However, the underlying basic ideas point
back to approaches from decades ago. In general, they come in either a
task parallel or data-parallel fashion, though the latter seems to outweigh
the former as to popularity. This should not come as a surprise, since data-
parallelism, by its nature, scales better with growing number of processors.

Some of the current programming models targeting multi-core and/or
GPU programming in imperative style are:

19

2. Conquering Parallelism

• CellSs [Perez et al., 2007] has been proposed as an alternative task
parallel programming model for multi-core processors, and its cur-
rent implementation targets IBM’s CELL/BE processor. It is based on
the automatic exploitation of the functional parallelism of a sequen-
tial program through the different processing elements of the Cell/BE
architecture. It is based on annotations to a sequential code, similar to
that of OpenMP.

• Also on the task parallel front, with Intel’s TBB library [Reinders,
2007] one can express parallelism in a C++ program. It is based on a
higher-level, task-based parallelism that abstracts platform details and
threading mechanism for performance and scalability.

• Intel’s Array Building Blocks [Intel, 2010] provides a generalized vec-
tor parallel programming solution that abstracts from the dependen-
cies on particular low-level parallelism mechanisms or hardware ar-
chitectures. It produces scalable, portable, and deterministic parallel
implementations from a single high-level source description.

• RapidMind [Monteyne, 2008] is a development and runtime platform
to a variety of architectures, including GPUs, the Cell/BE, and multi-
core CPUs. It is a data-parallel programming model which takes a
high-level abstraction of parallelism and maps it to what is available.
A recent article discusses its limitations [Christadler and Weinberg,
2011]. RapidMind is now part of Intel, and the technology is integ-
rated into Intel’s Array Building Blocks.

• Microsoft Research’s Dryad [Isard et al., 2007] is a general-purpose
distributed execution engine for coarse-grain data-parallel applica-
tions. It combines computational vertices with communication chan-
nels to form a dataflow graph. The user can specify a directed graph to
describe the application’s communication patterns between the com-
putation vertices.

• A heterogeneous data-parallel computational model for the Cell/BE
has been recently presented in [Li et al., 2008]. It proposes to aggreg-
ate the computing power of the two different processing elements of
the Cell/BE, i.e., of the synergistic processor elements, and of the
heavy duty processor element.

• Huckleberry [Collins et al., 2010] is an experimental tool which auto-
matically generates parallel implementations for multi-core platforms
from sequential recursive divide-and-conquer programs.

20

2.2. High-level Approaches in the Multi-Core Era

• The Sequoia [Fatahalian et al., 2006] programming language facilitates
the development of memory hierarchy aware parallel programs that
remain portable across modern architectures and controls data local-
ity. It provides language mechanisms to describe communication ver-
tically through the machine and to localize computation to particular
memory locations within it.

• The partitioned global address space (PGAS) [PGAS, 2010] is a rel-
atively new parallel programming model which serves as a basis for
several new high-level parallel languages, such as Unified Parallel C,
Co-array Fortran, Fortress, Chapel and X10. The model assumes that
the global memory space is logically partitioned. Each portion be-
comes local to each processor, and it may also have an affinity for the
particular thread running on the processor, thereby exploiting data
locality.

• ParaMeter [Kulkarni et al., 2009] is a tool which can determine how
much parallelism is latent in irregular programs wich exhibit amorph-
ous data-parallelism. It produces parallelism profiles for the pro-
grams in question, and the methodology used is based on graph-
representations.

Declarative approaches also tackle multi-core and GPU programming.
Since declarative languages offer a pure view of computation, such settings
are suitable to express data-parallelism in high-level descriptions [Lisper,
1996].

• Singh [2008] argues about the importance of the ability to target dif-
ferent computing devices from the same description. He shows how
GPUs and FPGAs can be targeted from a single data-parallel descrip-
tion, based on higher order functions and polymorphism.

• Data Parallel Haskell [Chakravarty et al., 2007] aims to implement
the programming model of nested data-parallelism into the Glasgow
Haskell Compiler, by extending NESL [Blelloch et al., 1994] in terms of
expressiveness and efficiency. NESL is a portable nested data-parallel
language, appeared in the early 90’s, which allows high-level, concise
descriptions of nested data-parallel programs.

• Obsidian [Svensson, 2011] is a data-parallel language embedded in
Haskell which targets GPU programming. The current version is im-
plemented for NVIDIA’s CUDA. The programming style is inspired
by Lava combinators [Bjesse et al., 1999], high-level structural hard-
ware design elements.

21

2. Conquering Parallelism

• Skeletal parallel programming evolved from the idea of higher-order
function applications [Cole, 1989]. Skeletons (“higher-order functions”)
are high-level parallel constructs, which describe computational struc-
tures without over-specifying the details. They come as library pack-
ages with efficient implementations for the different parallel systems.
The programmer identifies the patterns that fit his need, and custom-
izes them by filling in the “arguments”. These can be other func-
tions/procedures to which the skeleton is applied to produce the
problem specific final program [Cole, 2004; Rabhi and Gorlatch, 2003].

• Feldspar [Axelsson et al., 2010] is a domain-specific language, embed-
ded into Haskell, which enables high-level and platform-independent
description of digital signal processing algorithms. It offers a high-
level dataflow style of programming.

Few, if any, of these programming models represent fundamentally new
ideas. Task parallelism goes back to the 60’s idea of concurrent processes
[Hansen, 1973] with shared memory. Message passing style parallelism
goes back to the mid 70’s [Hoare, 1978] and its foundation has been invest-
igated in several process algebras from the 80’s onwards. Data-parallelism
evolved from systolic arrays, and was a firmly established approach by the
mid-80’s [Hillis and Guy L. Steele, 1986] when it was the main program-
ming model for some of that time’s high-end parallel machines. A wide
variation of early parallel programming models are surveyed in [Baer, 1973],
and a good literature list can be found in [Hibbard, 1980].

Our approach is data-parallel by considering the entire computation at
once. We emphasize modular separation of the computational expressions
from the data dependency, and separation of the dependency from its em-
bedding onto hardware. The latter allows us to fully control resource usage,
including data locality. This separates us from most functional approaches,
though our expression-oriented notation would be considered functional.

The focus on dataflow graphs is in common with the ParaMeter and the
Dryad approach. In the latter, the graphs, in response to some events that
occur during the computation, can change dynamically. Our dependency
graphs are fixed throughout the whole computation, and the DDA-based
approach targets fine-grain data-parallelism.

The dataflow execution model, originally developed to exploit massive
parallelism [Johnston et al., 2004], had a great effect in the development of
dataflow visual programming languages. In this model a program is rep-
resented as a directed graph. The nodes of the graph are primitive instruc-
tions such as arithmetic or comparison operations, and the arcs between

22

2.2. High-level Approaches in the Multi-Core Era

the nodes represent the data dependencies between the instructions. This
makes the dataflow programming model related to ours, however, it differs
in one fundamental aspect. In the dataflow programming model, the main
concept behind any program is the data. In the DDA-based approach, it is
the dependency which is promoted as first class citizen.

Automatic parallelization techniques of regular, loop-based applications,
based on compile time dependence analysis [Banerjee et al., 1993], are also
related to our approach. It has also been known for some time that com-
pilers can parallelize divide-and-conquer programs by analyzing memory
references to detect dependencies [Gupta et al., 2000; Rugina and Rinard,
1999]. The above mentioned Huckleberry tool is also based on this tech-
nique, and is related to our approach to the extent that it also utilises data
dependency information in the parallelization process. However, in DDA-
based parallelization, the compiler is fed with the data dependency, and
need not bother about advanced parallelizing program analysis. The in-
formation given in the DDA is sufficient for efficient parallel code gener-
ation, and offers more flexibility when it comes to mapping the computa-
tion onto different parallel hardware architectures. In addition, the DDA-
based approach is more general, and not tied to only divide-and-conquer
algorithms and loop-based applications.

23

CHAPTER 3
Preliminaries

Before embarking on the formal presentation of our subject, we recall the
mathematical notions relevant in the context of this dissertation, fix the
notations, and introduce program code style conventions together with
some data type abstractions assumed to be present in the examples. The
reader is assumed to be acquainted with elementary set and graph theory
as well as general programming language concepts.

3.1 Mathematics

3.1.1 Sets

By set we mean a collection of elements. Some particular sets are:

• the set of natural numbers, denoted by the symbol N = {0, 1, 2, . . .}

• non-zero elements of N, denoted by N+ = {1, 2, . . .}

• set of real numbers, denoted by R

• set of complex numbers, denoted by C = {a + bi | a, b ∈ R}, where i
is the imaginary unit with the property i2 = −1

• the two-element set of truth values, denoted by B = {0, 1}

• the empty set with no elements at all, denoted by {}

25

3. Preliminaries

The cardinality of a set A, often denoted by |A|, is the number of elements
in A. A finite set has a finite number of elements. A set that is not finite is
called infinite. A set is countable if it has at most the same cardinality as the
set of natural numbers. A set that is not countable is uncountable. E.g. the
set of real numbers is uncountable.

The following notations, operations and related properties are common
to sets:

• A ⊆ B – A is a subset of B, if all elements of A are also in B

• A ⊂ B – A is a proper subset of B, if A ⊆ B but A �= B

• A \ B = {a | a ∈ A and a �∈ B} – the difference of A and B

• A ∪ B = {a | a ∈ A or a ∈ B} – the union of A and B

• A ∩ B = {a | a ∈ A and a ∈ B} – the intersection of A and B. If
A ∩ B = {} then A and B are called disjoint

• Ai,c = {〈a, i〉 | a ∈ Ai} – the canonical form of set Ai wrt. some index-
set I, where i ∈ I.

• A1
 A2 = A1,c ∪ A2,c – the disjoint union of A1 and A2. The elements
of the disjoint union are ordered pairs 〈a, i〉, where the index i ∈ {1, 2}
indicates exactly which set Ai the element a comes from in the pair
〈a, i〉.

• A1 × A2 × . . . Ak = {〈a1, a2, . . . , ak〉 | ai ∈ Ai, 1 ≤ i ≤ k} – the cartesian
product of the sets A1, A2,. . . ,Ak with k ≥ 0. If k = 0 or one of the sets
is the empty set, then the cartesian product is also the empty set.

Note that one may use the cartesian product to construct the canonical
form of a set Ai, i ∈ I:

Ai,c = Ai × {i} = {〈a, i〉| a ∈ Ai}

Theorem 3.1.1. The union, intersection and disjoint union of sets obey the
following laws:

• Commutativity:

A1 ∪ A2 = A2 ∪ A1 (3.1)
A1 ∩ A2 = A2 ∩ A1 (3.2)
A1
 A2 = A2
 A1 (3.3)

26

3.1. Mathematics

• Associativity:

(A1 ∪ A2) ∪ A3 = A1 ∪ (A2 ∪ A3) (3.4)
(A1 ∩ A2) ∩ A3 = A1 ∩ (A2 ∩ A3) (3.5)
(A1
 A2)
 A3 = A1
 (A2
 A3) (3.6)

Proof: Properties 3.1, 3.2, 3.4 and 3.5 are straightforward from the defini-
tions. The commutativity (3.3) and associativity (3.6) of disjoint union fol-
low from the observation that the disjoint union is obtained through the
embeddings of the participating sets’ canonical forms, i.e.:

A1
 A2 = A1,c ∪ A2,c = A2,c ∪ A1,c = A2
 A1

and

A1
 (A2
 A3) = A1,c ∪ (A2,c∪ A3,c) = (A1,c ∪ A2,c)∪ A3,c = (A1
 A2)
 A3

These properties lead to the following generalized forms extended over
a family of sets (Ai)i∈I for some index-set I:

• Union:
⋃

i∈I Ai = {a | a ∈ Ai for some i ∈ I} and
⋃

i∈{} Ai = {}

• Disjoint union:
⊎

i∈I Ai =
⋃

i∈I{〈a, i〉| a ∈ Ai} and
⊎

i∈{} Ai = {}

• Intersection:
⋂

i∈I Ai = {a | a ∈ Ai for all i ∈ I}

3.1.2 Arithmetics

Given n ∈ N+, then the n-th root of unity is a complex number z ∈ C
satisfying the equation:

zn = 1

The n-th root of unity is primitive, if it is not a k-th root of unity for some
k ∈ N+ such that k < n, that is:

zk �= 1

The Euler formula establishes a relationship between the trigonometric
functions and the complex exponential function stating that for any x ∈ R:

eix = cos x + i sin x

27

3. Preliminaries

where e is the base of the natural logarithm and i is the imaginary unit. The
Euler formula is used then to transform the formula for the n-th roots of
unity into its most familiar form:

e2πi kn

This will be a primitive root if and only if the fraction k/n is in lowest
terms, that is their greatest common divisor is 1.

3.1.3 Relations

If A and B are sets, then a relation between A and B is defined as a subset
of their cartesian product, i.e., R ⊆ A× B. When A = B, one says that R is
a relation on A.

We will often use the shorthand R(a, b) for 〈a, b〉 ∈ R.
A relation R on A is called:

• trichotomous, if for all a, b ∈ A exactly one of the following holds:
R(a, b), R(b, a) or a = b;

• reflexive, if for all a ∈ A: R(a, a);

• symmetric, if for all a, b ∈ A: R(a, b) implies R(b, a);

• transitive, if for all a, b, c ∈ A: R(a, b) and R(b, c) implies R(a, c);

• equivalence relation, when it is reflexive, symmetric and transitive;

• strict total order, when it is trichotomous and transitive.

For instance, the relation “<” on the set of natural numbers is a strict
total order, and so is the standard dictionary order with the letters of the
latin alphabet, whereas “=” on the set of natural numbers is an equivalence
relation.

3.1.4 Functions

If A and B are non-empty sets, and f is a relation between A and B, then f
is called:

• a partial function from A to B, denoted by f : A � B, if for every
element a ∈ A there exists no or at most one b ∈ B such that 〈a, b〉 ∈ f .

• a total function from A to B, denoted by f : A → B, if for every element
a ∈ A there exists exactly one b ∈ B such that 〈a, b〉 ∈ f .

28

3.1. Mathematics

One then writes f (a) = b, where a is called argument and b the value of
f in a. If f is a partial function, and there exists no b ∈ B such that f (a) = b
then one says that f (a) is undefined.

A is called the domain of f , and B its codomain.
All functions are assumed to be total, unless explicitly stated otherwise.
If A and B are the empty sets, then f : {} → {} is called the empty

function.
A predicate is a function with the set B as its codomain.
If f is a function with some cartesian product as its domain, e.g. A× B,

we may omit the use of bracketing for the elements when they appear as
arguments, e.g., we write f (a, b) instead of f (〈a, b〉) for 〈a, b〉 ∈ A× B.

Given functions f : A → B and g : B → C, the composition of g to f is the
function g ◦ f : A → C defined by:

(g ◦ f)(a) = g(f (a)) for all a ∈ A

Theorem 3.1.2. The composition of functions is associative, i.e., if f : A →
B, g : B → C and h : C → D are functions then:

(h ◦ g) ◦ f = h ◦ (g ◦ f)

Proof: For all a ∈ A we have:

((h ◦ g) ◦ f)(a) = (h ◦ g)(f (a)) = h(g(f (a))) = h((g ◦ f)(a)) = (h ◦ (g ◦ f))(a)

The identity function of a set A is the function 1A : A → A defined by
1A(a) = a for all a ∈ A.

A function f : A → B is called an isomorphism, if there exists a function
f−1 : B → A, called its inverse, such that f ◦ f−1 = 1B and f−1 ◦ f = 1A.
One may also call then the sets A and B isomorphic, and write A � B.

Theorem 3.1.3. The inverse of an isomorphism is unique.

Proof: Let f : A → B be an isomorphism with inverse f−1 : B → A, i.e.,
f ◦ f−1 = 1B and f−1 ◦ f = 1A. Assume there exists also inverse f ′ : B → A
such that f ◦ f ′ = 1B and f ′ ◦ f = 1A also. Then we have for all b ∈ B:

29

3. Preliminaries

f ′(b) = 1A(f ′(b)) (by def. of 1A)

= (1A ◦ f ′)(b) (by def. of ◦)

= ((f−1 ◦ f) ◦ f ′)(b) (assumption)

= (f−1 ◦ (f ◦ f ′))(b) (by Th. 3.1.2)

= (f−1 ◦ 1B)(b) (assumption)

= f−1(1B(b)) (by def. of ◦)

= f−1(b) (by def. of 1B)

Hence f ′ = f−1.

A function f : A → B is called injective if for all a, b ∈ A with f (a) = f (b)
implies that a = b. f is called surjective if for all b ∈ B there exists a ∈ A
such that f (a) = b. An injective and surjective function is called bijective or
a bijection.

Theorem 3.1.4. A function f : A → B is bijective if and only if it has an
inverse.

Proof: (⇒) Assume f is bijective. Then we define g : B → A the inverse of
f as follows: for each b ∈ B there exists a ∈ A such that b = f (a) (since f
is surjective). a is also unique since f is injective. Then let g(b) = a. Then
(g ◦ f)(a) = g(f (a)) = g(b) = a for each a ∈ A. And (f ◦ g)(b) = f (g(b)) =
f (a) = b for each b ∈ B.

(⇐) Assume now that g : B → A is the inverse of f . Then f is injective
since f (a) = f (b) implies g(f (a)) = g(f (b)), that is (g ◦ f)(a) = (g ◦ f)(b),
that is, a = b. And f is also surjective: Let b ∈ B arbitrary, and set a = g(b).
Then f (a) = f (g(b)) = (f ◦ g)(b) = b.

If f : A → B is a function and C ⊆ A, then the restriction of f to C is the
function f

∣∣
C : C → B defined by:

f
∣∣
C(a) = f (a) for all a ∈ C

A binary operator over a set A is given by a function f : A× A → A.

30

3.2. Program Code Style Conventions

3.1.5 Graphs

A directed multigraph or directed graph is an abstract representation of a set
of objects with links between the objects. The objects are referred to as
nodes, and the links as edges. In the discussion of data dependency graphs
objects will often be referred to as points, and the links as branches, as well.
Formally, in classical graph representation, a directed multigraph is given by
a 4-tuple G = 〈N , E , s : E → N , t : E → N〉 where N is the set of nodes,
E is the set of edges, and functions s : E → N and t : E → N identify the
source and target nodes of an edge, respectively.

If G = 〈N , E , s : E → N , t : E → N〉 and G′ = 〈N ′, E ′, s′ : E ′ →
N ′, t′ : E ′ → N ′〉 are graphs then:

• G and G′ are called isomorphic, denoted by G � G′, if there exist iso-
morphisms φ : N → N ′ and ψ : E → E′ that respect the source and
target components, i.e., for all e ∈ E the following hold:

φ(s(e)) = s′(ψ(e))

φ(t(e)) = t′(ψ(e))

• G is a sub-graph of G′, if N ⊆ N ′, E ⊆ E′, s = s′
∣∣
E
and t = t′

∣∣
E
.

3.2 Program Code Style Conventions

The underlying leading mathematical structures and properties are presen-
ted using mathematical notations, e.g., see Chapters 4 and 7. However, the
examples instantiating these structures for programming purposes will be
presented in program code style, using typewriter face. Hence, the math-
ematical notations of the definitions will be adapted, e.g., a set B will be
presented as a data type B, a mathematical function declaration rp : rg → P
of an earlier definition will become a function declaration rp:rg→P in pro-
gram code style, and so on.

3.2.1 Language Constructs

The program codes and language constructs used in the examples are in-
spired by functional programming notations, and in general should be eas-
ily interpreted by anyone who has some familiarity with elementary pro-
gramming language concepts. For better readability, the reserved words of
our coding language will be set in bold typewriter face.

31

3. Preliminaries

3.2.2 Guards

Whenever we declare a partial function we will associate a guard with it.
For instance, rg can be seen as the guard of rp in any DDA example (see
Definition 4.1.1 then some examples for it in Section 4.2). A guard is a
predicate that identifies for which arguments the corresponding function
returns a well-defined value [Haveraaen and G. Wagner, 2000].

A judicious use of guards – assumed to be managed by the compiler –
will allow, for every expression, the automatic establishment of a (syntactic)
condition that ensures the well-definedness of the entire expression. By this,
we avoid syntactic clutter when writing code, as these implicit conditions
are assumed to be checked by the compiler for every expression, as long
as the guards have been defined. In the examples arguments for which
a partial function returns a well-defined value, in the presence of these
guards, will often be referred to as guarded or relevant arguments in the
explanatory comments.

3.2.3 Data Types

The data types of the program code examples will either be simple, tuple
or array data types:

1. simple data types such as:

• Bool – represents the type corresponding to the two-element set
of truth values, consisting of values true and false;

• Nat – represents the type corresponding to the set of natural
numbers;

2. a tuple data type is a structured data type declared together with:

• its type name

• its components’ types

• implicit projection functions

• implicit constructor for the tuple type

• and its data invariant.

An example declaration:

T = p1 Nat * p2 Nat | DI

where the data invariant DI:T→Bool is given by:

32

3.2. Program Code Style Conventions

DI(t) = (p1(t)<1000) && (p2(t)<1000)

would mean that we introduce a type T with a data structure consist-
ing of two natural numbers as components whose values are limited
to natural numbers less than 1000. Note that the data invariant, in
this sense, restricts the range of values that are meaningful for the
type in a given context. When the data invariant is omitted in a type
declaration it is assumed to implicitly hold for all values of the type.

The two projection functions are p1:T→Nat and p2:T→Nat, and the
constructor is named T with profile T:Nat,Nat→T. (Giving a con-
structor the same name as the type it constructs is common in many
programming languages.)

The constructor and the implicit projections of any tuple type are re-
lated by the following consistency requirements, where n1 and n2 are of
type Nat and t is of type T:

T(p1(t),p2(t)) = t

p1(T(n1,n2)) = n1

p2(T(n1,n2)) = n2

This pattern applies for any set of names and any number of com-
ponents in the data structure. Hence, we will call any set of functions
that satisfy such requirements with respect to a type T its projection
functions and its constructor.

The data invariant will implicitly induce a guard on the constructor T,
i.e., CG:Nat,Nat→Boolwith CG(n1,n2) = (n1<1000) && (n2<1000),
given that p1(T(n1,n2))=n1 and p2(T(n1,n2))=n2. Hence, T(n1,n2)
will only be considered to construct a value of type Twhen CG(n1,n2)
holds. The constructor guard is assumed to be managed by the com-
piler in the manner discussed in Section 3.2.2.

3. an array data type, e.g., A, is a parameterised data type with some des-
ignated index type P and element type E. For computability reasons,
we will limit the index type to be a countable data type, i.e., either
finite or representing a set isomorphic to N. With every array type we
consider a partial indexing operation _[_]:A,P→E together with its
implicit guard ig:A,P→Bool. Hence, if V is declared to be an array
of type A, i.e. V:A, and p is a variable of type P, i.e., p:P, then V[p]
denotes a value of type E whenever ig(V,p) holds. Then V is also
said to be defined for p. If ig(V,p) does not hold, then V is said to be
undefined for p.

33

3. Preliminaries

Type: Nat Bool Data Type Name

&& and
|| or
= equals
!= not equal
+ addition disjoint union
- subtraction
/ integer division
* multiplication
% modulus
>> bit-wise right shift

Table 3.1: Coding symbols used for binary operations on the specified argument types.

Equality

Every data type is associated with an equality predicate, denoted by EQ.
The equality predicate is an equivalence relation defined on the data type,
identifying elements that represent the same value in the data type. All
comparisons of the form e1 = e2, for any expressions e1 and e2 of identical
types, are checked using the equality predicate of that type.

In case of simple data types, unless explicitly stated otherwise, the equal-
ity predicate will be the common equality on the set of natural numbers,
and on the set of two-element truth values.

In case of array types: if V1:A and V2:A are arrays of the same type, then
EQ(V1,V2) holds whenever for all p:P it is the case that ig(V1,p)=ig(V2,p),
and EQ(V1[p],V2[p]) holds for all relevant p:P, where the latter is the
equality predicate associated with the element type of the array type A.

In case of tuple types, unless explicitly stated otherwise, the equality
predicate boils down to the conjunction of the equality predicates associated
with each component type in case.

Disjoint Union Data Types

The disjoint union of two types will be defined as a tuple type with special
components.

Definition 3.2.1 (Disjoint Union of Two Types). Let A and B be two data
types with d1:A and d2:B some default values. Then the disjoint union of A
and B is the data type A+B = v1 A * v2 B * tag {1,2} | DI with:

• data invariant for all p:A+B:

34

3.2. Program Code Style Conventions

= equals
!= not equal
< less
<= less or equal
> greater
>= greater or equal

Table 3.2: Coding symbols used for common comparison operators on Nat with return type
Bool.

DI(p) = ((tag(p) = 1) && (v2(p) = d2)) ||
((tag(p) = 2) && (v1(p) = d1))

• equality predicate for arbitrary p,q:A+B:

EQ(p,q) = ((tag(p) = 1) && (tag(q) = 1) && (v1(p) = v1(q)))
||

((tag(p) = 2) && (tag(q) = 2) && (v2(p) = v2(q)))

• and injections i1:A→A+B, i2:B→A+B defined by:

i1(a) = A+B(a,d2,1) for all a:A
i2(b) = A+B(d1,b,2) for all b:B

The data invariant limits the possible values of the components to only
those that are meaningful for the disjoint union type by making the irrelev-
ant component void (assigning a default value to it). This will induce the
implicit constructor guard, e.g., A+B(a,b,t)will only be considered, if b=d2
and t=1 or a=d1 and t=2.

The equality predicate ensures that the irrelevant component of the
triples does not count when testing whether two disjoint union type ele-
ments are equal. Note that in practice we always refer to disjoint union
type elements in an atomic way or via its injections. We may however ac-
cess the components via its projections.

We will use the same function names for the projections and injections
that come with the disjoint type definition for any given disjoint union type.
If several disjoint union types are defined, it will be the type of the variable
or expression to which the particular function is applied that will determ-
ine the right function call. We may also introduce a shorthand for a disjoint

35

3. Preliminaries

union type, e.g., DU=A+B. If ambiguity arises, e.g., when applying the func-
tions to terminals or constants, or invoking an injection call, we may use
the . selector operator: DU.v1(a) or DU.i1(0).

The definition can easily be expanded for the disjoint union of n types.
In this case the new data type will have a structure of n+1 components with
all associated projections, injections, constructor, data invariant, and equal-
ity predicate. The tag component’s type then will have n elements. Then
vi(p), e.g., will refer to the projection associated with the ith participating
data type, and so on.

3.2.4 Operations

All operations used in the program code examples are typically binary op-
erations and comparisons. These are collected and presented in Tables 3.1
and 3.2. Note that the equality sign “=” is used as a comparison symbol as
well as in function definitions. E.g., a function definition pred(p) = (p=0),
where pred:P→Bool is a boolean function, means that pred(p) is defined
to be true whenever p=0.

36

CHAPTER 4
Data Dependency Algebras

The concept of data dependency algebra (DDA) was established and first
introduced by [Haveraaen, 1990a]. The initial formalism has somewhat
changed and evolved in subsequent publications [Čyras and Haveraaen,
1995; Haveraaen, 2000], finally maturing into the notation style best de-
scribed in [Haveraaen, 2009]. This formalism was taken aboard in our
joint works [Burrows and Haveraaen, 2009a,b], and all upcoming works are
likely to adhere to this. This chapter revisits the formal definition of DDAs,
giving a fresh perspective and understanding of what DDAs are. It im-
proves the DDA presentation given in [Burrows and Haveraaen, 2009a,b],
significantly expands the study of space-time DDAs and DDA-projections,
and in addition, presents new DDA concepts, related properties and relev-
ant theorems, and defines new DDA examples.

4.1 A Gentle Introduction to DDAs

The concept of data dependency algebra is equivalent to that of a directed
multigraph. Miranker and Winkler [1984] suggested that program data de-
pendency graphs can abstract how parts of a computation depend on data
supplied by other parts. This is a basis for parallelizing compilers, see e.g.
[Wolfe, 1996]. A dependency graph, in classical graph representation, is
seen as a set of nodes and a set of edges with specified source and target
nodes. In the formalism of DDAs, we have a set of points P, a set of branch
indices B, and two special components: requests and supplies. As a general

37

4. Data Dependency Algebras

rule, a branch between two points of a data dependency graph stands for
a request–supply connection. Intuitively, the flow of the data along the
branch can be seen as a data request direction as well as a data supply dir-
ection where these directions are opposite to each other. DDAs differentiate
between these opposite directions along the same branch by using branch
indices from B. These are local at each end of the branch: one identifies the
request and one the supply direction.

At each point (nodes of the graph), request directions (arcs, identified
now by branch indices) lead to points from which data is required in order
to perform a computation at this point. Supply directions (the opposite
arcs, identified again by branch indices) lead to points that are supplied
with the data computed at the point. This duality of the request–supply
connection along the same branch leads to the isomorphic sets of request
arcs rg ⊆ P× B and supply arcs sg ⊆ P× B, i.e., the isomorphism r̃ : rg → sg
with inverse s̃ : sg → rg.

Obviously, we want to keep B as small as possible, but different points
may have a varying number of request and supply arcs, motivating the need
for request guard rg and supply guard sg. Input points typically do not have
any request arcs, since the computation is supposed to start up from these.
Likewise, output points typically do not have associated supply arcs, since
the computation is supposed to cease on these.

When doing computations on DDAs we need access to component-
wise information about these connections. Therefore we split the request
isomorphism into a pair of functions, r̃(p, b) = 〈rp(p, b), rb(p, b)〉 where
rp : rg → P and rb : rg → B, and likewise the supply isomorphism
s̃(q, d) = 〈sp(q, d), sb(q, d)〉 where sp : sg → P and sb : sg → B.

For a pair of point and branch index guarded by rg, the first component
of requests, the request function rp, identifies the point the request direction
leads to (i.e. where data is requested from). Likewise, for a pair of point
and branch index guarded by sg, the first component of supplies, the supply
function sp, identifies the point where the supply direction leads to (i.e.
where data is supplied to).

The second component of both requests and supplies, the branch-back
functions (rb and sb), identify the branch index of the opposite direction
along the same branch. The request branch-back rb gives the branch index
at the supplying end of the branch. Similarly, the supply branch-back sb
gives the branch index at the requesting end of the branch.

Following [Burrows and Haveraaen, 2009b], these notations lead to the
following formal definition of DDA.

Definition 4.1.1 (DDA). A data dependency algebra is given by a 4-tuple D =
〈P, B, req, sup〉, where:

38

4.1. A Gentle Introduction to DDAs

1. P is a set of points,

2. B is a set of branch indices,

3. req is the data request consisting of rg ⊆ P× B, rp : rg → P, rb : rg → B

4. sup is the data supply consisting of sg ⊆ P× B, sp : sg → P, sb : sg → B

such that for all p : P and for all b : B the following axioms hold:

sg(p, b) ⇒ rg(sp(p, b), sb(p, b)) (4.1)

sg(p, b) ⇒ rp(sp(p, b), sb(p, b)) = p (4.2)

sg(p, b) ⇒ rb(sp(p, b), sb(p, b)) = b (4.3)

rg(p, b) ⇒ sg(rp(p, b), rb(p, b)) (4.4)

rg(p, b) ⇒ sp(rp(p, b), rb(p, b)) = p (4.5)

rg(p, b) ⇒ sb(rp(p, b), rb(p, b)) = b (4.6)

The axioms here express the duality of requests and supplies as previ-
ously discussed. Expanding now the details of [Burrows and Haveraaen,
2009b], the following theorem establishes a direct correlation between the
axiomatic definition of DDAs and the presence of isomorphisms r̃ and s̃.

Theorem 4.1.2. Let D = 〈P, B, req, sup〉 be a 4-tuple where P and B are sets,
req consists of three components rg ⊆ P× B, rp : rg → P and rb : rg → B,
and sup also consists of three components sg ⊆ P × B, sp : sg → P and
sb : sg → B. Let further be r̃ : rg → sg and s̃ : sg → rg two functions defined
by: r̃(p, b) = 〈rp(p, b), rb(p, b)〉 and s̃(q, d) = 〈sp(q, d), sb(q, d)〉, respectively.

Then D is a DDA if and only if r̃ is an isomorphism with inverse s̃.

Proof: We show that the isomorphism r̃ : rg → sg with inverse s̃ : sg → rg is
a necessary and sufficient condition for D to qualify as a DDA.

From r̃ and s̃, we can define the functions r̃ ◦ s̃ : sg → sg and s̃ ◦ r̃ : rg →
rg. Then for arbitrary 〈p, b〉 ∈ sg, applying the definition of r̃ and s̃, we
obtain:

(r̃ ◦ s̃)(p, b) = r̃(s̃(p, b))
= r̃(sp(p, b), sb(p, b)) (4.7)
= 〈rp(sp(p, b), sb(p, b)), rb(sp(p, b), sb(p, b))〉

39

4. Data Dependency Algebras

Likewise, for an arbitrary 〈p, b〉 ∈ rg we have:

(s̃ ◦ r̃)(p, b) = s̃(r̃(p, b))
= s̃(rp(p, b), rb(p, b)) (4.8)
= 〈sp(rp(p, b), rb(p, b)), sb(rp(p, b), rb(p, b))〉

The function r̃ is an isomorphism with inverse s̃ if and only if r̃ ◦ s̃ = 1sg
and s̃ ◦ r̃ = 1rg . From the above equations we see that (r̃ ◦ s̃)(p, b) = 〈p, b〉
and (s̃ ◦ r̃)(p, b) = 〈p, b〉 if and only if the DDA axioms 4.1–4.3 and 4.4–4.6
hold, respectively.

Note that in the axiomatic DDA definition the content of the sets P and
B are not fixed, nor are the actual definitions of the request and supply
components. Hence, the definition can serve as a programmable interface,
where P and B would represent some generic types, and the components of
requests and supplies are generic function declarations on these types. All
concrete DDA implementations will fix the meaning of P and B and will
define the request and supply components in detail. However these should
satisfy all DDA-axioms, and – by abuse of language – we will call all such
implementations data dependency algebras, or DDAs. This obviously gives
rise to infinitely many implementations of the same interface.

We have seen that the DDA-axioms express the duality of requests and
supplies, which follows directly from the isomorphisms between rg and sg.
This and the symmetric requirements of the definition lead us to the fol-
lowing theorem, expanding further the details of [Burrows and Haveraaen,
2009b]:

Theorem 4.1.3. If D = 〈P, B, req, sup〉 is a DDA, then D = 〈P, B, sup, req〉 is
also a DDA.

Proof: Since D = 〈P, B, req, sup〉 is a DDA, by Def. 4.1.1 we have all DDA-
axioms satisfied. Reordering the axioms by swapping axiom 4.1 with 4.4,
axiom 4.2 with 4.5 and axiom 4.3 with 4.6, we attain the right order for the
axioms which make the 4-tuple D = 〈P, B, sup, req〉 a DDA.

Intuitively, the theorem states that we can obtain a new DDA with a
reversed dataflow by simply swapping req and sup.

4.1.1 DDAs vs. Classical Graph Representations

Before presenting some of the basic properties of DDAs, we first motiv-
ate their use for describing data dependency graphs. For the sake of the

40

4.1. A Gentle Introduction to DDAs

Figure 4.1: a) A data dependency graph with DDA-specific labelling. b) Identical compu-
tations are performed at each point of the DDA, for a given input. c) Different computations
are performed on the points, for a different input set.

example, a simple expression tree is defined as a DDA and the related com-
putations in terms of this dependency. The example sketches the essence of
DDA-based programming and hints at its potential for parallel computing.

Example 4.1.4 (Expression-tree DDA). Consider the data dependency graph
given in Fig. 4.1.a. The pattern can be described in the DDA formalism as
follows:

• The set of points P = {A, B,C,D, E, F,G}

• The set of branch indices B = {0, 1, 2}

• The requests are defined by:

– rg = {(F, 0), (F, 1), (E, 0), (E, 1), (G, 0), (G, 1), (G, 2)}

– the request-function is given by:

rp(F, 0) = A rp(F, 1) = B rp(E, 0) = C rp(E, 1) = D
rp(G, 0) = F rp(G, 1) = E rp(G, 2) = B

– and the request branch-back by:

rb(F, 0) = 1 rb(F, 1) = 1 rb(E, 0) = 1 rb(E, 1) = 1
rb(G, 0) = 1 rb(G, 1) = 1 rb(G, 2) = 0

• And the supplies are defined by:

– sg = {(A, 1), (B, 1), (B, 0), (C, 1), (D, 1), (F, 1), (E, 1)}

41

4. Data Dependency Algebras

– the supply-function is given by:

sp(A, 1) = F sp(B, 1) = F sp(B, 0) = G sp(C, 1) = E
sp(D, 1) = E sp(F, 1) = G sp(E, 1) = G

– and the supply branch-back by:

sb(A, 1) = 0 sb(B, 1) = 1 sb(B, 0) = 2 sb(C, 1) = 0
sb(D, 1) = 1 sb(F, 1) = 0 sb(E, 1) = 1

The dependency graph of Fig. 4.1.a can be also defined as a simple dir-
ected graph, G = 〈N , E , s : E → N , t : E → N〉 with:

• the set of nodes N = {A, B,C,D, E, F,G}

• the set of edges defined as E ⊆ N ×N , i.e.,

E = {〈G, F〉, 〈G, B〉, 〈G, E〉, 〈F, A〉, 〈F, B〉, 〈E,C〉, 〈E,D〉}

• s(a, b) = a for all 〈a, b〉 ∈ E and

• t(a, b) = b for all 〈a, b〉 ∈ E

Though both the DDA- and graph-based representations faithfully de-
scribe the dependency itself, the latter proves to be inadequate to express
certain computations. For instance, if we want to specify a computation
to be performed at a given node in terms of its dependencies, the classical
graph-representation lacks expressive power, whereas the DDA-based rep-
resentation can fully be exploited for this purpose, as shown next.

4.1.2 The Expressive Power of DDAs

A DDA may serve as a leading pattern for different computations. In the
default view of DDAs, the computations are point-valued, i.e., only one value
is computed at a point and this is passed on along all its supply directions.
But DDAs can be also endowed with branch-valued computations. Then,
instead of DDA points, the computations are defined on supply directions,
i.e., each pair 〈p, b〉 guarded by sg is assigned a computation.

Consider now the expression tree DDA, with point-valued computa-
tions, to evaluate different expressions. E.g., let’s consider A, B,C,D as
input points and F the output, so that the data flows in the opposite direc-
tion of the arrows. In Fig. 4.1.b each point of the DDA is associated with a
summing operation, which adds together the data values coming in along

42

4.1. A Gentle Introduction to DDAs

the request branches. Consider the array of integers w indexed by the ele-
ments of P. Provided that initial values have been assigned to w[A], w[B],
w[C] and w[D], the computation to be performed on the rest of the points
can be defined by:

w(p) =

{
w[rp(p, 0)] + w[rp(p, 1)] if p = F or p = E
w[rp(p, 0)] + w[rp(p, 1)] + w[rp(p, 2)] if p = G

This ultimately yields the desired final result at the (output) point G in
w[G].

Fig. 4.1.c illustrates yet another computation being performed on the
points of the DDA, resulting in the evaluation of another expression, for
a different input set. We can define this for another array of integers v
indexed also by P:

v(p) =

⎧⎨
⎩

min(v[rp(p, 0)], v[rp(p, 1)]) if p = F
max(v[rp(p, 0)], v[rp(p, 1)]) if p = E
v[rp(p, 0)] ∗ v[rp(p, 1)] ∗ v[rp(p, 2)] if p = G

(4.9)

Similarly, the desired final result will reside at point G in v[G].
Note how the dependency pattern described by rp becomes an expli-

cit entity in both computations. Hence, computation and dependency are
now separated in a modular way [Čyras and Haveraaen, 1995], so that both
are programmable independently from each other. E.g., for the same set of
points, branch indices and request guard, one could define a new expres-
sion tree (i.e. new DDA) by giving a different interpretation of the supply
guard, the request and supply functions, and ultimately of the branch-back
functions. The above computations still make sense, but yield different res-
ults typical for the new expression tree DDA. (E.g. Fig. 4.2 shows a slightly
modified DDA with the associated point-valued computations defined ex-
actly as in (4.9).)

We see that the modular separation of the computation from its de-
pendency is facilitated explicitly by the request component of the DDA. To
understand the role of the supply component, note that data dependency
graphs defined as DDAs together with the associated computations and in-
put values, have a double reading. On the one hand, utilizing the request
directions, they specify in a concise way the computations that are to be
performed at the points in order to achieve the final result. This corres-
ponds to a top-down reading. On the other hand, the supply directions
facilitate a bottom-up reading. Starting from the input values, it drives
the computation along the dependencies. The latter reading yields vari-
ous dependency-driven computational mechanisms, which depending on

43

4. Data Dependency Algebras

Figure 4.2: a) A new DDA, defined by slightly altering the request and supply components
of the original DDA. b) Same DDA with associated point-wise computations identical to
those given in Fig. 4.1.c and formally defined in 4.9.

the target machine and the inherent properties of the DDA in question, can
be turned into sequential, shared or distributed memory parallel code, or
be adjusted to some specialized multi-core or GPU code. A DDA-enabled
parallelizing compiler therefore can harness directly the implicit driving
force of dependencies and generate parallel code to virtually any paral-
lel system which has a well defined space-time communication structure.
While Chapter 5 presents these DDA-based computational mechanisms in
more detail, Sections 4.3 and 4.4 of this chapter will focus on specific DDA-
abstractions that make all these possible.

4.1.3 Structuring DDAs

Haveraaen [2009] showed that from every directed multigraph a DDA can
be derived, and vice versa, from every DDA a directed multigraph can be
defined. Moreover, if a graph G is derived from a DDA which itself is de-
rived from another graph G′, then G � G′. These properties establish a very
strong connection between DDAs and directed multigraphs. The class of all
DDAs, in this sense, happens to be too rich for programming purposes. The
following definitions allow us to delimit ourselves to different subclasses of
DDAs relevant in an appropriate computational context.

Definition 4.1.5 (Countable DDA). A countable data dependency algebra is a
DDA D = 〈P, B, req, sup〉 where P is countable and B is finite.

Definition 4.1.6 (Cyclic and Acyclic DDAs). A DDA has cycles or is cyclic,
if repeated application of requests from some starting point p : P takes us
back to p. If a DDA has no cycles it is acyclic.

44

4.1. A Gentle Introduction to DDAs

Definition 4.1.7 (Well-founded DDA). A DDA is well-founded if for any
point p : P all requests paths from p, obtained via repeated applications
of requests, are finite.

For instance, DDAs that describe the static connectivity of a parallel
hardware are typically cyclic, whereas the space-time unfoldings and com-
putation related DDAs are as a general rule acyclic.

Two new DDA-concepts are introduced next. Both are defined wrt. the
class of all DDAs. The sub-DDA concept will give rise to the definition of
one of the DDA combinators presented in Chapter 7. The second establishes
the notion of isomorphic DDAswhich identifies DDAs that define isomorphic
graphs.

Intuitively, two DDAs are in the sub-DDA relation, when the two de-
rived directed multigraphs are in the sub-graph relation. The following
definition captures this notion solely in terms of DDA components.

Definition 4.1.8 (Sub-DDA). Given DDAs D = 〈P, B, req, sup〉 and D′ =
〈P′, B′, req′, sup′〉, D′ is a sub-DDA of D, i.e., D′ ⊆ D, if and only if the
following conditions hold:

1. P′ ⊆ P

2. B′ ⊆ B

3. r′g ⊆ rg

4. r̃′ = r̃
∣∣
r′g

Theorem 4.1.9. Given DDAsD = 〈P, B, req, sup〉 and D′ = 〈P′, B′, req′, sup′〉
such that D′ ⊆ D, then the following also hold:

1. s′g ⊆ sg

2. s̃′ = s̃
∣∣
s′g

Proof: 1. By D′ ⊆ D we have r̃′ = r̃
∣∣
r′g

and r′g ⊆ rg. Further, note that

r̃′ : r′g → s′g and r̃ : rg → sg are isomorphisms. Then s′g = r̃′(r′g) = r̃
∣∣
r′g

(r′g) ⊆

r̃(rg) = sg.
2. In the above equality we see that r̃

∣∣
r′g

(r′g) = s′g, and since r̃ is an

isomorphism with inverse s̃, then the inverse of r̃
∣∣
r′g

is s̃
∣∣
s′g
. On the other

hand the inverse of r̃′ is s̃′. By the uniqueness of the inverse (see Theorem
3.1.3) and the equality r̃′ = r̃

∣∣
r′g
, we conclude that s̃′ = s̃

∣∣
s′g

45

4. Data Dependency Algebras

Figure 4.3: The DDA shown in a) is a sub-DDA of the DDA shown in b).

From a computational point of view, the sub-DDA is most likely to serve
as the dependency pattern of a different computation, i.e., other than the
one allowed by the main DDA. However, the sub-DDA concept, when ap-
plied as a DDA-combinator, serves as a refactoring tool to support code
reusability (see Chapter 7).

A very common scenario, when defining a DDA for a given dependency
pattern, is that there are several options out there for picking the set of
points (i.e. their type) and the set of branch indices. These may ultimately
lead to two different DDA-representations of the same dependency pattern.
E.g., in order to define the expression-tree dependency as a DDA (Example
4.1.4), one could have chosen the set {−2,−1, 0, 1, 2, 3, 4} to be the set of
points P, instead of P = {A, B,C,D, E, F,G}, and the set {a, b, c, d, e, f , g} as
the set of branch indices, one for each branch, instead of B = {0, 1, 2} (see
Fig. 4.4.a and b). These choices then lead to different request and supply
definitions, resulting in a different expression-tree DDA, but not a different
expression-tree dependency. The difference is only as per implementation.
The semantic behaviour of both DDAs are the same: both describe the same
dependency pattern, or in other words, the graphs derived from the two
DDAs will be isomorphic.

Note that while isomorphic graphs require isomorphic sets of nodes
and isomorphic sets of edges, isomorphic DDAs may have non-isomorphic
sets of branch indices. E.g., the branch indices set {0, 1, 2} of the DDA in
Fig. 4.4.a is not isomorphic with the branch indices set {a, b, c, d, e, f , g} of
the DDA in Fig. 4.4.b.

Definition 4.1.10 (Isomorphic DDAs). Given DDAs D = 〈P, B, req, sup〉 and
D′ = 〈P′, B′, req′ , sup′〉. Then D is isomorphic to D′, denoted by D � D′, if
and only if P � P′ and the following holds:

46

4.1. A Gentle Introduction to DDAs

Figure 4.4: The semantic behaviour of the DDA shown in a) is identical to the one shown
in b): they both describe the same dependency pattern, i.e., the graphs derived from them are
isomorphic. The DDA shown in c) fails to be isomorphic with the rest.

There exist isomorphisms, each respecting the isomorphism between
the set of points P and P′, ιrg : rg → r′g with inverse ι−1

rg : r′g → rg
and ιsg : sg → s′g with inverse ι−1

sg : s′g → sg such that:

r̃ = ι−1
sg ◦ r̃′ ◦ ιrg (4.10)

the latter constituting the DDA isomorphism condition.

Figure 4.5: Illustrating the DDA isomorphism condition for DDAs D and D′.

47

4. Data Dependency Algebras

We have seen that the essence of DDAs are captured in the isomorph-
ism r̃ : rg → sg with inverse s̃ : sg → rg. It is not a surprise therefore
that isomorphic DDAs should have isomorphic request and consequently
isomorphic supply guards, such that their own request component (see
Fig. 4.5), e.g., r̃, will become expressible in terms of the other DDAs request
component, e.g. r̃′. This in turn does not require isomorphism between the
sets of branch indices. On the other hand, the isomorphism between the
point sets should be respected, e.g., if we denote this by ιp : P → P′, then
for all 〈p, b〉 ∈ rg

ιrg(p, b) = 〈q, d〉 ⇔ ιp(p) = q

and for all 〈p, b〉 ∈ sg

ιsg(p, b) = 〈q, d〉 ⇔ ιp(p) = q

The property then automatically holds for the inverses ι−1
rg and ι−1

sg . The
requirement of isomorphism between P and P′ spawns from the fact that
the graphs derived from the DDAs otherwise would not have the chance at
all to be isomorphic, e.g., see Fig. 4.6.a. If this isomorphism is not respected
by the mapping of request/supply directions of D to the request/supply
directions of D′, then it may be the case that the isomorphism condition
is satisfied, yet the two DDAs fail to define the same dependency, e.g., see
Fig. 4.6.b. Here the isomorphisms ιrg(F, 0) = 〈A, 1〉, ιrg(F, 1) = 〈B, 1〉 and
ι−1
sg (F, 0) = 〈A, 1〉, ι−1

sg (F, 1) = 〈B, 1〉 will make the isomorphism condition
hold, but they do not respect the isomorphism between the point sets, since
F cannot be mapped to both A and B.

Figure 4.6: Example of non-isomorphic DDAs: a) point sets are not isomorphic; b) there
exist isomorphisms ιrg and ιsg that would make the DDA isomorphism condition hold, but
they do not respect the isomorphism between the DDAs’ point sets.

48

4.1. A Gentle Introduction to DDAs

We show now that the isomorphism condition may take up different
forms, as a direct result of the duality of requests and supplies as well as
the isomorphisms between the guards of two isomorphic DDAs.

Theorem 4.1.11. The DDA isomorphism condition is equivalent to any of
the following equations:

r̃′ = ιsg ◦ r̃ ◦ ι−1
rg (4.11)

s̃ = ι−1
rg ◦ s̃′ ◦ ιsg (4.12)

s̃′ = ιrg ◦ s̃ ◦ ι−1
sg (4.13)

Proof: Equation (4.11):

r̃ = ι−1
sg ◦ r̃′ ◦ ιrg (by (4.10))

⇔ ιsg ◦ r̃ = r̃′ ◦ ιrg (by ιsg◦ |)

⇔ ιsg ◦ r̃ ◦ ι−1
rg = r̃′ (by | ◦ ι−1

rg)

Equation (4.12):

r̃ ◦ s̃ = ι−1
sg ◦ r̃′ ◦ ιrg ◦ s̃ (by (4.10) and | ◦ s̃)

⇔ 1sg = ι−1
sg ◦ r̃′ ◦ ιrg ◦ s̃

⇔ ιsg = r̃′ ◦ ιrg ◦ s̃ (by ιsg◦ |)

⇔ s̃′ ◦ ιsg = ιrg ◦ s̃ (by s̃′ ◦ |) (4.14)

⇔ ι−1
rg ◦ s̃′ ◦ ιsg = s̃ (by ι−1

rg ◦ |)

Equation (4.13):

s̃′ ◦ ιsg = ιrg ◦ s̃ (by 4.14) (4.15)

⇔ s̃′ = ιrg ◦ s̃ ◦ ι−1
sg (by | ◦ ι−1

sg) (4.16)

Proposition 4.1.12. The isomorphism condition of Definition 4.1.10 is inter-
changeable with any of the equations listed in Theorem 4.1.11.

Proof: Straightforward.

49

4. Data Dependency Algebras

The relevance of isomorphic DDAs shows up in cases when one is faced
with two different DDA-implementations of possibly the same data de-
pendency. The conditions of isomorphic DDAs discussed here provide the
means to argue, or perhaps to even prove that the two implementations have
the same semantic behaviour, i.e., they indeed define the same dependency.

Definition 4.1.13 (Sub-isomorphic DDA). Given DDAs D = 〈P, B, req, sup〉
and D′ = 〈P′, B′, req′, sup′〉, D′ is sub-isomorphic to D, i.e., D′ ⊆

∼ D, if and
only if there exists DDA D′′ = 〈P′′, B′′, req′′, sup′′〉 such that:

1. D′′ ⊆ D

2. D′′ � D′

With the above definition one can identify sub-DDAs up to isomorph-
ism. While the sub-DDA relation requires that the graphs derived from
the two DDAs should be in the sub-graph relation, a graph derived from a
sub-isomorphic DDA is required only to be isomorphic to a sub-graph.

4.2 DDAs for Computations

As a general rule, defining the data dependency pattern of a computation
as a DDA works best when the pattern shows a certain amount of regularity
that can be captured in an algorithmic or functional way. The expression-
tree DDA example of Section 4.1.1 was a small dependency graph, so the
lack of regularity did not really matter, since it can be described very neatly,
in just a few lines, by listing every guarded combination of the arguments.
However, in practice data dependency graphs are much larger. In this sec-
tion, we present more elaborate data dependency patterns defined as DDAs,
and show some techniques that promote DDA code reusability.

Remark 4.1. All concrete DDA examples presented here and in consequent
chapters:

1. are countable DDAs, defined in conformity with the coding style in-
troduced in Section 3.2;

2. in all DDA illustrations, the arrows go in the direction of the requests.
Data flows in the opposite direction of the arrows, i.e., along the sup-
ply directions.

3. DDA points and branch indices will often be referred to as DDA point
sort or type and branch index sort or type, respectively.

50

4.2. DDAs for Computations

We first illustrate the above-mentioned coding style on a simple DDA
which defines a forking pattern, see Fig.4.7, a dependency pattern common
to vector computations.

Example 4.2.1. A forking DDA of size n ∈ N, DFKn, is defined by:

1. DDA points: FKn = row Nat * col Nat | DIn where:

DIn(p) = ((row(p)=1) && (col(p)<n)) ||

((row(p)=0) && (col(p)<2n))

2. branch indices: B = {0, 1}

3. request components (rg,rp,rb)where:

rg(p,b) = (row(p)=1)

rp(p,b) = if (b=0) FKn(0,col(p))

else FKn(0,col(p)+n)

rb(p,b) = 0

4. supply components (sg,sp,sb)where:

sg(p,b) = (row(p)=0) && (b=0)

sp(p,b) = if (col(p)<n) FKn(1,col(p))

else FKn(1,col(p)-n)

sb(p,b) = if (col(p)<n) 0

else 1

4 5 6 70 1 2 3

0

0

1

0 0 0 0 0 0 0

1 1 10 0 01

0

Figure 4.7: Forking DDA of size 4. The col and row projections of FK4 points are illus-
trated as coordinates.

51

4. Data Dependency Algebras

The data invariant selects a sub-sort or sub-type of the DDA point sort
which is meaningful for the DDA. For all branches across, branch index
1 identifies the request direction and branch index 0 the supply direction.
The vertical branches are labelled for both directions with branch index
0. Request directions exist only for points of the top row, whereas supply
directions exist only for the points of the bottom row. These properties are
captured by the corresponding guards. The rest of both components are
defined as simple functional expressions which return the desired values
for guarded pair of inputs of a point and a branch index.

Next, the butterfly dependency is defined as a DDA. The butterfly, see
Fig. 4.8, appears in many divide-and-conquer algorithms, one of the most
common being the Fast Fourier Transform (FFT) [Bergland, 1969].

Example 4.2.2. A butterfly DDA of height h ∈ N, DBFh, is defined by:

1. DDA points: BFh = row Nat * col Nat | DIh where:

DIh(p) = (row(p)<=h) && (col(p)<2h)

2. branch indices: B = {0, 1}

3. request components (rg,rp,rb)where:

rg(p,b) = (row(p)<h)

rp(p,b) = if (b=0) BFh(row(p)+1,col(p))

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �

	 	 	 	 	 	 	 	

0 0 0 00 0 0 0

0 0 0 0

0 0 0 00 0 0 0

0 0 0 0
1 1 1 11 1 1 1

1 1 1 1

1 1 1 11 1 1 1

1 1 1 1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
4

3

2

1

0

Figure 4.8: Butterfly DDA of height 4. The col projections of BF4 points are presented as
binary numbers.

52

4.2. DDAs for Computations

else BFh(row(p)+1,flip(row(p),col(p)))

rb(p,b) = b

4. supply components (sg,sp,sb)where:

sg(p,b) = (0<row(p))

sp(p,b) = if (b=0) BFh(row(p)-1,col(p))

else BFh(row(p)-1,flip(row(p)-1,col(p)))

sb(p,b) = b

where flip(i,n) flips the ith bit (where bit 0 is the rightmost, least signi-
ficant bit of n) in the binary representation of the integer n.

In Fig. 4.8 the layout of the butterfly DDA is given as it is laid out in a
grid by the use of row and col projections of the DDA points. Inputs are
assumed to reside on the points of the bottom row, and an eventual compu-
tation proceeds upward. The flow of the data throughout the whole com-
putation is defined explicitly by the supply functions. Consecutive points
have their row projections decreased by 1 at every step. When data is passed
upright, along branch index 0, the col projections of the consecutive points
are preserved. And when data is passed across, along branch index 1, the
col projections of consecutive points differ in their binary representation:
the bit pointed to by the row projection flips. The definition of the supply
function is based on this observation. The definition of the request function
is dual.

When we have to deal with a butterfly pattern where the dataflow is
reversed, as it is often the case in FFT-related computations, a correspond-
ing reversed butterfly can be defined again from the old, see Fig. 4.9. We
preserve both the branch indices and the DDA point sort, without changing
the data invariant, and only swap the request and supply components. By
Theorem 4.1.3 we know that the result will be a DDA, leading to a direct
example of code reusability.

Example 4.2.3. A reversed butterfly DDA of height h ∈ N, DRBFh is defined by:

1. DDA points: BFh

2. branch indices: B = {0, 1}

3. request components (rg’,rp’,rb’)where:

rg’(p,b) = sg(p,b)

rp’(p,b) = sp(p,b)

rb’(p,b) = sb(p,b)

53

4. Data Dependency Algebras

4. supply component (sg’,sp’,sb’)where:

sg’(p,b) = rg(p,b)

sp’(p,b) = rp(p,b)

sb’(p,b) = rb(p,b)

where sg, sp, sb and rg, rp, rb denote, respectively, the supply and request
components of the butterfly DDA DBFh=<BFh,B,(rg,rp,rb),(sg,sp,sb)>.

By manipulating the data invariant of the DDA point sort, we may re-
strict further the range of points we are interested in, resulting in a new
DDA, corresponding to a new dependency. E.g., a binary tree DDA can be
defined from the reversed butterfly DDA, see Fig. 4.10.

Example 4.2.4. The binary tree DDA of height h ∈ N, DBTh, is defined by:

1. DDA points: BTh = BFh | DIT where:

DIT(p) = (col(p)%2row(p)=0)

2. branch indices: B = {0, 1}

3. request components (rgt,rpt,rbt)where:

rgt(p,b) = rg’(p,b)

rpt(p,b) = rp’(p,b)

rbt(p,b) = rb’(p,b)

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �

	 	 	 	 	 	 	 	

0 0 0 00 0 0 0

0 0 0 0

0 0 0 00 0 0 0

0 0 0 0
1 1 1 11 1 1 1

1 1 1 1

1 1 1 11 1 1 1

1 1 1 1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
0

1

2

3

4

Figure 4.9: Reversed butterfly DDA of height 4.

54

4.3. Space-Time DDAs

4. supply components (sgt,spt,sbt)where:

sgt(p,b) = sg’(p,b)

spt(p,b) = sp’(p,b)

sbt(p,b) = sb’(p,b)

where rg’, rp’, rb’ and sg’, sp’, sb’ denote, respectively, the request and
supply components of the reversed butterfly DDA.

Note that the new data invariant DIT is preserved by rpt and spt, even
though these are defined by the reversed butterly’s corresponding compon-
ents. It is easy to see also that the binary tree DDA is a sub-DDA of the
reversed butterfly DDA, i.e., DBTh⊆DRBFh. This construction also underlines
the fact that a high-level manipulation of the data invariant also endows
code reusability. Similarly, restriction of guards and consequent restric-
tions of the other DDA-components support code reusability. This can be
achieved by the application of the sub-DDA-combinator, which is presented
in details in Chapter 7.

4.3 Space-Time DDAs

Following Miranker and Winkler [1984] we may control the parallel execu-
tion of a computation by embedding the computation into the space-time
connectivity of a parallel machine. DDAs, by their very nature, can abstract

� � � � � � � �

� � � �

� �

�

� � � � � � � �

� � � �

� �

	

0 0 0 0

0 0 0 0

1 1 1 1

1 1 1 1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
0

1

2

3

4

Figure 4.10: Binary tree DDA of height 4.

55

4. Data Dependency Algebras

over both the static and the dynamic connectivity of a (parallel) machine ar-
chitecture. The former can be defined by ordinary DDAs, referred to as
hardware DDAs, whereas the latter can be defined by special DDAs, referred
to as space-time DDAs (STA). In a hardware DDA, the points identify the
processors and the branches the available communication channels between
the processors. The granularity of a processor can range from a single logical
gate (e.g. on FPGAs) to an arbitrarily complex function, or from a (parallel)
thread or MPI process to a general CPU. The dynamic connectivity of the
architecture, i.e., its space-time, is usually obtained by projecting its hard-
ware DDA over time. Then a computation on a processor takes place at the
points of the so obtained space-time DDA, while communications between
processors along the communication channels take a time increment, basic-
ally the pairing of the hardware DDA with time-stepping. This attributes a
special property to space-time DDAs, which is made concrete next.

In order to be able to formalise this property, we first introduce some
sorts. Let Space be a sort, representing the processors of a parallel machine.
And let Time be a sort representing the natural numbers, with a strict total
order <, a starting point zero, and an increment operator next:Time→Time,
such that t<next(t) for all t:Time.

Definition 4.3.1 (Space-time DDA). A space-time DDA (STA) is given by
a DDA D=<P,B,req,sup> with implicit projections space:P→Space and
time:P→Time, and constructor P:Space,Time→P, such that, on top of the
general consistency requirements imposed on implicit projections and con-
structor (see Section 3.2.3), the following property also holds for all pair
(p,b) guarded by rg:

time(rp(p,b))<time(p)

constituting the additional consistency requirement of space-time projections.

Example 4.3.2 (Expression tree STA). Consider the expression tree DDA
of Fig. 4.1.a. For instance, we could define the following space and time
projections, with next being the successor function on natural numbers,
and Space={0, 1, 2, 3}:

time(A) = time(B) = time(C) = time(D) = 0

time(F) = time(E) = 1

time(G) = 2

space(A) = space(F) = space(G) = 0

space(B) = 1

56

4.3. Space-Time DDAs

space(E) = space(C) = 2

space(D) = 3

It is easy to verify that these projections comply with all consistency
requirements of space-time projections.

Definition 4.3.3 (Finite span STA). A finite span space-time DDA is a space-
time DDA where the type Space is finite, and there is a natural num-
ber tspan such that at most tspan applications of next takes the value
time(rp(p,b)) to the value time(p), for all pair (p,b) guarded by rg, i.e.,

tspan = maxp,b(time(p)-time(rp(p,b))

Definition 4.3.4 (Single span STA). A single span STA is a finite span STA
with tspan=1.

In case of the expression tree STA with the projections defined as above,
tspan=2, since the maximum number of time-steps needed to get the value
at B to G is 2, i.e., time(G)-time(rp(G,2)=2.

In certain cases STAs with tspan>1 may be difficult or impossible to
embed to a given parallel machine’s space-time if, e.g., the machine happens
to have a restricted communication pattern. We can however transform any
computation with a large tspan STA to an equivalent computation with a
single span STA. This can be achieved by adding extra points along these
arcs, one corresponding to each “missing” time-step, and in the context of
the whole computation, appointing identity-like functions to each of the
new points.

Example 4.3.5 (Eliminating Large Tspans). Let D=<P,B,req,sup> be an STA
with tspan>1where req=(rg,rp,rb) and sup=(sg,sp,sb). We transform D
into a single span STA D’=<P’,B,req’,sup’> where req’=(rg’,rp’,rb’)
and sup’=(sg’,sp’,sb’) as follows.

Initially, D’ is identical to D, then the following steps are repeated until
there is no more p:P’ with time’(p)-time’(rp’(p,b))>1:

• Pick a point p:P’ such that time’(p)-time’(rp’(p,b))=k, for some
relevant b:B, where k>1.

• Define the DDA D”=<P”,B,req”,sup”> as follows:

1. DDA points: P”=P’+{1,2,...,k-1} is a disjoint union data type

2. branch indices: B (does not change)

57

4. Data Dependency Algebras

3. request component req”=(rg”,rp”,rb”)where:

rg”(q,d) = ((tag(q)=1) && rg’(v1(q),d)) ||

((tag(q)=2) && (d=b))

rp”(q,d) =

if (tag(q)=2)

if (v2(q)<k-1) P”(i2(v2(q)+1))

else P”(i1(rp’(p,b)))

else if (v1(q)=p) && (d=b) P”(i2(1))

else P”(i1(rp’(v1(q),d)))

rb”(q,d) = if (tag(q)=2) rb’(p,b) else rb’(v1(q),d)

4. supply component sup”=(sg”,sp”,sb”)where:

sg”(q,d) = ((tag(q)=1) && sg’(v1(q),d)) ||

((tag(q)=2) && (d=rb’(p,b)))

sp”(q,d) =

if (tag(q)=2)

if (v2(q)>1) P”(i2(v2(q)-1))

else P”(i1(p))

else if (v1(q)=rp’(p,b)) && (d=rb’(p,b)) P”(i2(k-1))

else P”(i1(sp’(v1(q),d)))

sb”(q,d) = if (tag(q)=2) b else sb’(v1(q),d)

• Define new time projections time”:P”→Nat as follows:

time”(q) = if (tag(q)=1) time’(v1(q))

else time’(p)-v2(q)

• Define new space projections space”:P”→Space by applying some
heuristics that utilizes unused space coordinates over Space at the
new time-steps, or by extending Space, if necessary, to appoint new
space coordinates.

• Let D’=D” and rename time” to time’ and space” to space’.

It is easy to see, that repeated applications of the above steps will turn
D’ into a DDA with tspan=1.

Then any computation defined on D in terms of its request component
can be defined on D’, by defining identity-like functions on the new points.

58

4.3. Space-Time DDAs

4.3.1 DDA-Embeddings

As we have seen, the DDA of a computation can be turned into a space-time
DDA, if we can define a pair of space-time projections that comply with the
additional consistency requirement of Definition 4.3.1. This then yields a
perfect overview over the parallel execution of any computation defined on
the DDA. E.g., a corresponding space-time unfolding of the butterfly DDA
can be defined with the projections space:BFh →Nat and time:BFh →Nat
as follows:

space(p) = col(p)

time(p) = h-row(p)

We can see that all computations across space with the same time projec-
tion can be executed in parallel, so that the butterfly DDA can be embedded
instantly, e.g., to a shared memory model architecture. The “dynamic con-
nectivity”, or space-time, of a shared memory model architecture is such
that every processor can communicate with every processor at any time, or-
chestrated by relevant synchronizations (see Section 4.3.2). Hence the space
projection can be interpreted directly as processors, and the time projections
step through the computation utilizing next and requiring synchronization
at every time-step.

In other cases, the parallel machine’s space-time connectivity is more re-
stricted, i.e., just certain processors can communicate with each other within
a time-step. The task is then to find a suitable “match” between the space-
time DDA of the computation and the hardware space-time DDA, so that
request/supply directions are mapped to existing communication channels.
E.g., the butterfly DDA maps nicely to the hypercube STA (see Section 4.3.3)
as well. As a general rule, this kind of embedding should always be pos-
sible, if the computation’s DDA is sub-isomorphic to the hardware space-
time DDA. If this is not possible, e.g., the number of processors is signific-
antly less than a one-to-one mapping would require, then the space-time
points of the computation can be partitioned, so that a group of points is
mapped onto one processor.

In more complicated cases, the embedding will only be possible if it may
involve multiple-step communication paths on the hardware side.

Since most examples presented in this dissertation only need to utilize
single-step communications on the hardware devices, we somewhat sim-
plify our definition of DDA-embeddings over the formal presentation given
in [Haveraaen, 2009, 1990a]. A typical multiple-step hardware communica-
tion embedding occurs, e.g., in the sharedmemory model architecture when

59

4. Data Dependency Algebras

the STA to be embedded is of tspan>1. This is however a specific case and
is therefore discussed separately in Section 4.3.2.

Accordingly, given a DDA with an associated computation and a hard-
ware space-time DDA, an embedding of the computation into the hardware
will be defined by three projections: EP which defines how DDA points
map into hardware space and time coordinates, ER which defines how a
request direction at a DDA point is translated into an incoming commu-
nication channel, and ES which defines how a supply direction at a DDA
point is translated into an outgoing communication channel. Hence, DDA-
embeddings can utilize explicitly the available hardware resource.

When no ambiguity arises, one may omit the explicit definition of re-
quest and supply directions’ mappings. In such cases, the embedding can
be usually specified only via the space-time projections defined from the
DDA point sort.

Since DDA-embeddings are primarily defined via projections, the study
of DDA-projections presented in Section 4.4 will be especially relevant in
our further investigations.

In the following sections, hardware space-time DDAs of important par-
allel architectures are presented. They become relevant in later examples
when concrete DDA-embeddings are defined for them, e.g., in Section 4.4
and Chapter 6.

4.3.2 Shared Memory Model Architecture

In a shared memory model architecture every processor has access to a (typ-
ically) large block of random access memory that is shared among all pro-
cessors with the intent to provide direct communication among them. The
processors run in parallel such that their communication is synchronised
in some way. DDAs can abstract the processors’ communication-topology
over time in the form of an STA. Every point of the STA corresponds to
a processor at a given time-step with all its branches pointing to all other
processors in the previous and upcoming time-steps, including itself.

Definition 4.3.6 (SharedMemory STA). Let Space = Nat be a type. A shared
memory space-time DDA for S ∈ N+ processors, DSMSTS, is defined by:

1. DDA points: SMSTS = node Space * time Nat | DIS where:

DIS(p) = node(p)<S

2. branch indices: BS={0,1,...,S-1}

3. request components (rg,rp,rb)where:

60

4.3. Space-Time DDAs

rg(p,b) = (0<time(p))

rp(p,b) = SMSTS(b,time(p)-1)

rb(p,b) = node(p)

4. supply components (sg,sp,sb)where:

sg(p,b) = true

sp(p,b) = SMSTS(b,time(p)+1)

sb(p,b) = node(p)

The choice of branch indices is motivated by the fact that every processor
can communicate with any other at any time-step. This has a direct effect on
any embedding defined into this space-time. When the embedded DDA is
of tspan=1, the way the DDA points are mapped into SMSTS space and time
coordinates, EP:P→SMSTS, will automatically determine the request and
supply direction embedding projections, i.e., ER(p,b)=node(EP(rp(p,b)))
and ES(p,b)=node(EP(sp(p,b))).

If the embedded DDA happens to be of tspan>1, then request direc-
tions implicitly get projected into relevant incoming communication paths on
the SMSTS side, and supply directions into relevant outgoing communication
paths as demanded by the actual computational strategy utilising the point-
projection EP. (A theory of multiple-step hardware communication embed-
dings can be found in [Haveraaen, 2009, 1990a].) To see this, note that

0

1

4

0 3 4 5 6 71

2

3

2

Figure 4.11: Shared memory space-time DDA for 8 processors, illustrated in 5 time-steps.

61

4. Data Dependency Algebras

for any processors n:Space and m:Space, in our model, there exists no
direct outgoing communication channel (SMSTS branch) from SMSTS(n,t)
to SMSTS(m,t+k) whenever k>1. So if for some point p of the computa-
tional DDA EP(p)=SMSTS(n,t) and EP(sp(p,b))=SMSTS(m,t+k), then there
always exists an implicit embedding projection for the supply direction
sg(p,b) that will make the value at processor n available at processor m
even across multiple tspans, e.g., via the following outgoing communica-
tion path in DSMSTS, presented as a list of SMSTS branches:

ES(p,b)=[node(EP(sp(p, b))), . . . , node(EP(sp(p, b)))︸ ︷︷ ︸
k times

]=[m, . . . , m︸ ︷︷ ︸
k times

]

and the corresponding incoming communication path will be the opposite
path.

ER(sp(p,b),sb(p,b))=[m, . . . , m︸ ︷︷ ︸
k−1 times

,n]

The branch-back function of DSMSTS gives us: sb(SMSTS(m,t+k-i),m)=m
for 1<=i<=k-1, and sb(SMSTS(n,t),m)=n. This information is used in the
above embeddings.

Intuitively, the construction shows that the value computed at processor
node(EP(p))=n at time-step time(EP(p))=t can be made available for pro-
cessor node(EP(sp(p,b)))=m already at time-step t+1 and it will remain
available for all following k-1 time-steps. The importance of this construc-
tions is purely theoretical, emphasising the fact that even if the embedded
DDA is with tspan>1, information can be exchanged over large tspans via
implicit hardware communication paths.

Thus whenever we define a DDA-embedding into a shared memory
model STA, we will often do so via designated space and time coordinates
only defined from the DDA point sort, assuming the presence of request
and supply direction embedding projections to be implicit and further not
specified.

4.3.3 Hypercube

The hypercube interconnection network of dimension d ∈ N is given by 2d pro-
cessors, each labelled with exactly one of the numbers {0,...,2d− 1}, such
that there exists exactly one communication channel between any two pro-
cessors whose labels’ differ by exactly one bit in their binary representation.
This interconnection comprises the static connectivity of the hypercube. Its
dynamic connectivity can be defined as follows:

62

4.3. Space-Time DDAs

� � � � � � � � � � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �	 	 	 	 	 	 	 	

� � � � � � � � � � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �	 	 	 	 	 	 	 	

� � � � � � � � � � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �	 	 	 	 	 	 	 	

� � � � � � � � � � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �	 	 	 	 	 	 	 	

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 1 23
4

0
1
2
3
4

0

1

2

3

4

Figure 4.12: Hypercube space-time DDA of dimension 4 illustrated in 5 time-steps. Chan-
nel 0 is the communication within a node, the other channels between nodes. The node
projections of HST4 points are presented in binary.

Definition 4.3.7 (Hypercube STA). A hypercube space-time DDA of dimension
d ∈ N, DHSTd, is defined by (see Fig. 4.12):

1. DDA points: HSTd = node Nat * time Nat | DId where:

DId(p) = node(p)<2
d

2. branch indices: BHSTd = {0, 1, ..., d}

3. request components (rg,rp,rb)where:

rg(p,b) = 0<time(p)

rp(p,b) = if (b = 0) HSTd(node(p),time(p)-1)

else HSTd(flip(b-1,node(p)),time(p)-1)

rb(p,b) = b

4. supply components (sg,sp,sb)where:

sg(p,b) = 0<=time(p)

sp(p,b) = if (b = 0) HSTd(node(p),time(p)+1)

else HSTd(flip(b-1,node(p)),time(p)+1)

sb(p,b) = b

63

4. Data Dependency Algebras

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Figure 4.13: The perfect shuffle permutation of 24 elements. The new positions are obtained
by cyclic shifts of the binary representations of the old positions. Hence 4 = log 24-step
interconnection of this pattern with itself brings each element back to its original position.

Branch indices are picked in such a way that they can easily determine
the differing bit’s position in the binary representation of the processors’
labels, now defined by the projection node(p).

Note, that in this dynamic connectivity, each processor gains a new com-
munication channel, i.e., the communication channel within the processor
itself, labelled by branch index 0.

The hypercube space-time DDA is an example of an infinite countable
DDA. Here the computations have a starting point (time 0), but may con-
tinue forever.

4.3.4 Omega Network

The omega network is an important repetitive network topology for parallel
processing based on the perfect shuffle [Stone, 1971]. Given an array of ele-
ments, the perfect shuffle permutation of the array elements (see Fig. 4.13) is
achieved by interlacing the first half of the array with the elements of the
second half. This can be viewed as shuffling a deck of cards: first dividing
them in half, and then shuffling the two halves perfectly. The omega net-
work is obtained by interconnecting the perfect shuffle permutation pattern
with itself such that adjacent elements are coupled together by a network
switch performing the right shuffle of the two inputs.

Since a 2h-element omega network has the property that h-step intercon-
nection of this pattern with itself brings each element back to its original
position, it is usually defined as a h-step network. However, without any
loss of generality, we can define it as an infinite countable space-time DDA
as follows:

Definition 4.3.8 (Omega Network STA). An omega network space-time DDA
of dimension h ∈ N, DONSTh is defined by:

64

4.3. Space-Time DDAs

4

2

1

0

3

0

0 0

01

1 0
1

1

1

Figure 4.14: Omega network space-time DDA of dimension 4 for 24 elements, where adja-
cent elements of the perfect shuffle are coupled by an omega network switch, illustrated in 5
time-steps.

1. DDA points: ONSTh = switch Nat * time Nat | DIh where:

DIh(p) = switch(p)<2h−1

2. branch indices: B = {0, 1}

3. request components (rg,rp,rb)where:

rg(p,b) = (0<time(p))

rp(p,b) = ONSTh(ShRh(switch(p)*2+b,1)/2,time(p)-1)

rb(p,b) = ShRh(switch(p)*2+b,1)%2

4. supply components (sg,sp,sb)where:

sg(p,b) = (0<=time(p))

sp(p,b) = ONSTh(ShLh(switch(p)*2+b,1)/2,time(p)+1,)

sb(p,b) = ShLh(switch(p)*2+b,1)%2

where the shift-right function ShRh:Nat,Nat→Nat is defined such that
ShRh(n,i) returns the value of a cyclic shift to the right on the h-bit
binary representation of n by i positions. ShLh:Nat,Nat→Nat per-
forms the opposite of ShRh.

65

4. Data Dependency Algebras

Each point p:ONSTh stands for a coupled pair of elements, i.e., an omega
network switch node. Branch index 0 identifies all left incoming and out-
going communication channels, and branch index 1 all right incoming and
outgoing communication channels. The branch indices have the auxiliary
role to identify the elements in the switch node as well. Branch index 0
identifies the left, and branch index 1 the right element of each node. This
additional information is being explicitly used in the definition of requests
and supplies in order to obtain the corresponding element’s position in the
original index-set of the 2h elements. Then, in the case of the request func-
tion, e.g., to this a cyclic shift to the right is applied first, and then the result
is projected into the switch node (integer division by 2) in the row below
(time(p)-1). Supplies are defined similarly, but there the cyclic shift-left
function plays the central role.

4.3.5 CUDA Programming Model

In the past decade, Graphics Processing Units (GPUs), primarily driven
by computer game industry, have matured into very powerful computing
devices [Owens et al., 2007], featuring hundreds of on-chip processors, and
have yet remained “budget” choices. Non-graphics oriented communities
soon realised the huge potential of GPU computing power. This prompted
graphics vendors to provide higher-level programming models (e.g., ATI’s
CTM [AMD, 2006], Nvidia’s CUDA [NVIDIA, 2010]), especially designed
for general-purpose, compute-intensive data-parallel applications. Hence,
GPU computing is now widely used in demanding consumer applications
as well as high-performance computing [Nickolls and Dally, 2010].

In this section, we focus on NVIDIA’s relatively new application pro-
gramming interface, the CUDA Programming Model [Kirk and Hwu, 2010],
which provides an intermediate layer for users familiar with the C program-
ming language to easily write programs for NVIDIA GPU devices. CUDA
programming is an instance of the single-program multiple-data (SPMD)
parallel programming style [Darema et al., 1988] – a popular choice for pro-
gramming massively parallel processors –, with certain restrictions.

In CUDA, the GPU device operates as a Co-processor to the main CPU.
The GPU is capable of handling a huge number of parallel threads each
executing the same program, called a kernel. The total number of CUDA
threads that execute a kernel is specified by the host when the kernel is
called and downloaded onto the device. The threads are organised in grid
of blocks upon the kernel invocation. A block contains a limited number of
threads, but a grid of blocks may contain any (reasonable) number of blocks.
Each thread executing the kernel is automatically assigned a unique thread

66

4.3. Space-Time DDAs

and block ID that is accessible within the kernel through built-in variables,
and through which the thread can access memory locations on the GPU
device. Threads within one block can synchronize and share data through
fast on-chip shared memory. Threads in different blocks can only commu-
nicate asynchronously via the main GPU memory. There is no guarantee
as to which blocks run in parallel, or in which order blocks are sequenced,
when the grid has more blocks than can be physically executed in paral-
lel on the device. So threads in different blocks are in practice unable to
exchange information within the same kernel. However, since the GPU
memory is persistent across kernels, inter-block communications can be at-
tained by ending and re-invoking the kernel. The GPU memory is also a
means for initialising computations and outputting results.

Definition 4.3.9. Let � be the maximum number of threads per block as
allowed by the hardware, and let B ∈ N and T ∈ N, T<=� represent the
number of blocks and threads per block, respectively, of a kernel invocation.
Then the CUDA kernel space-time DDA with B*T threads, DCUSTB,T, is defined
by:

1. DDA points:

CUSTB,T = space CUBB,T * time Nat

where space is comprised by

CUBB,T = block Nat * thread Nat | DIBB,T

with data invariant:

DIBB,T(s) = (block(s)<B) && (thread(s)<T) for all s:CUBB,T

2. branch indices: CUBB,T

3. requests components (rg,rp,rb)where:

rg(p,b) = (0<time(p))

rp(p,b) = CUSTB,T(b,time(p)-1)

rb(p,b) = space(p)

4. supply components (sg,sp,sb)where:

sg(p,b) = (0<=time(p))

sp(p,b) = CUSTB,T(b,time(p)+1)

sb(p,b) = space(p)

67

4. Data Dependency Algebras

The constant � is device-dependent and on the newest GPUs is 1024.
All threads of a kernel are interpreted as the space component, such that
CUBB,T identifies the local thread- and block-index a thread belongs to. Here
threads have a local thread index 0 through T-1 and local block index 0
through B-1. Branch indices are also of type CUBB,T, representing both inter-
block and intra-block communication channels between threads. Hence the
model assumes that every thread can virtually communicate with every
thread at any time-step. Request and supplies are then defined along CUBB,T
branches, describing communication between threads in successive time-
steps.

Given an embedding into DCUSTB,T, that is when we want to utilise this
space-time for our computation, only certain threads need to exchange data
at any one time. Note that since branches here are again identified by the
space component (similarly to the shared memory STA), any embedding
defined into DCUSTB,T, can be done so via designated space (threads) and
time projections only defined from the point sort of the DDA to be embed-
ded. Thus whenever

block(space(EP(p))) = block(space(EP(rp(p,b))))

we have fast, intra-block communication, otherwise inter-block communic-
ation through the GPU memory. The latter also implies that the kernel has
to be ended, control has to be handed over to the host, which then will
invoke a new kernel again in order to continue the computation.

Inside the kernel, there is no control over which of the threads – com-
prised here by the space coordinates of an embedding – at a given time-step
would trigger the completion of the kernel. Hence the inter-block commu-
nication test cannot be placed inside the kernel, as it would otherwise lead
to destructive race-conditions, e.g., if one of the threads requires inter-block
communication, yet another does not. However, a kernel scheduler can be
built outside the kernel. This will be specific to the embedding and will
be independent of the actual computation. Based on this, the host loops
through all kernel invocations needed to complete the computation. In turn,
each kernel terminates at a time appointed by the host, exactly when an
inter-block communication is about to take place, to give space to the next
kernel. This technique will be shown in Section 5.3.3 where the space-time
controlled CUDA execution model is presented.

Note that the abstractions we use for identifying threads and their com-
munications implicitly provide information about data locality as well. This
can be extracted by referring to the projections of CUBB,T and CUSTB,T.

68

4.4. DDA-Projections

The CUDA kernel space-time DDA abstracts over the connectivity of
a system with one GPU device available for the host. However, there ex-
ist CUDA-enabled multi-GPU systems, such as the Tesla Personal Supercom-
puter, in which several GPUs are made available for the host. These systems,
e.g., support the execution of programs with large data sets that would oth-
erwise overscale the physical limits of one GPU.

The abstraction technique used over one GPU can be extended to obtain
the space-time connectivity of a system with an arbitrary number of (pos-
sibly heterogeneous) GPUs. If n:Nat, n>1 represents the number of GPUs,
then let B and T be now two arrays indexed by {0,1,...,n-1} and element
type Nat representing the number of blocks and threads per blocks, respect-
ively, of each kernel run on the individual GPUs. Then the space of a Tesla
system with n GPUs can be comprised by:

TESLAB,T =

gpu {0,1,...,n-1} * block Nat * thread Nat | DIB,T

with data invariant for all s:TESLAB,T:

DIB,T(s) = (block(s)<B[gpu(s)]) && (thread(s)<T[gpu(s)])

Branch indices across time can be defined again by the space compon-
ent, here TESLAB,T. The parameter-arrays B and T indicate that the model
distinguishes between the block-grid and thread-block sizes of the kernels
to be executed on the GPUs in parallel. Hence the abstraction allows the
use of heterogeneous GPUs as well. Then for a given embedding, whenever

gpu(space(EP(p))) = gpu(space(EP(rp(p,b)))

the thread identified by space(EP(p)) at time-step time(EP(p)) requires
communication with a thread running on the same device, otherwise the
thread is on a different device. Again, all time-steps requiring inter-gpu
communication (and within this inter-block communication) can be pre-
computed, entailing the building of a more elaborate kernel scheduler that
instructs the host when to issue kernels for each device, and when to carry
out appropriate memory management across the GPUs’ memory content.

4.4 DDA-Projections

In all previous examples, we used the implicit projections of the DDA
point sort to define how points of the particular DDA is mapped into a

69

4. Data Dependency Algebras

two dimensional spatial grid for layout purposes. For instance, projec-
tions row:BFh→Nat and col:BFh→Nat determined the layout of the but-
terfly DDA DBFh, see Fig. 4.8. In general, for any given DDA, the points
can be placed in many different ways in a possibly multi-dimensional grid.
We can simply provide new projections from the DDA point sort, one for
each dimension, to give a new layout. This is obtained by placing the DDA
points in the chosen grid as defined by the new projections, and drawing
the corresponding branches between them utilizing the original DDA defin-
ition. The DDA point constructor plays an important role here, as it serves
as a gate between the two sets of projections. Imagine the branches as elastic
bands pinpointed by DDA points. The relation between the pins (points)
never changes: they are tied together via the elastic bands (branches) – illus-
trating the dependency itself. So if we reposition the pinpoints, the elastic
bands will either shrink or extend obeying the new positions of the pins,
resulting in a new layout.

4.4.1 Variations on the Butterly Theme

Let us illustrate this by showing various layouts of the butterfly DDA of
height 4, all obtained exclusively from various DDA-projections.

First consider projections: altRow,altCol:BFh→Natwith (see Fig. 4.15):

altRow(p) = row(p)

altCol(p) = ShRh(col(p),1)

Figure 4.15: Butterfly DDA of height 4 with spatial grid representation defined by altRow
and altCol.

70

4.4. DDA-Projections

Note that the way butterfly branches cross each other in this new layout
is different from the one in Fig. 4.9, yet the dependency is the same.

Each new set of projections requires a constructor such that they together
satisfy the consistency requirements discussed in Section 3.2. We denote the
new constructor for the point sort BFh by altBFh : Nat, Nat→ BFh, which is
defined in terms of the original constructor BFh, where a and b are arbitrary
parameters of type Nat:

altBFh(a,b) = BFh(a,ShLh(b,1))

It is easy to verify that all consistency requirements (see Section 3.2) of
the new projections wrt. this constructor are satisfied, since they are satisfied
for the implicit set of projections and constructor by default. The presence
of constructors ensures a smooth swap from one set of projections to the
other.

We can define projections which may completely ruin the butterfly’s
symmetric layout, without ruining the dependency itself. E.g., consider the
projections assRow,assCol:BFh→Nat, in which we apply the cyclic shifts to
only some of the points in the left half of the butterfly (see Fig. 4.16):

assRow(p) = row(p)

assCol(p) = if ((row(p)<h-1) && (col(p)<2h−1)) ShRh−1(col(p),1)

else col(p)

with constructor assBFh : Nat, Nat→ BFh:

assBFh(a,b) = if ((a<h-1) && (b<2
h−1)) BFh(a,ShLh−1(b,1))

else BFh(a,b)

In projections altAssRow,altAssCol:BFh→Nat we apply a new projec-
tion to some of the points in the right half of the butterfly (see Fig. 4.17) as
well:

altAssRow(p) = row(p)

altAssCol(p) = if (row(p)<h-1)

if (col(p)<2h−1) ShRh−1(col(p),1)

else ShRh−1(col(p)-2
h−1,row(p)) + 2h−1

else col(p)

with constructor altAssBFh : Nat, Nat→ BFh:

71

4. Data Dependency Algebras

altAssBFh(a,b) = if (a<h-1)

if (b<2h−1) BFh(a,ShLh−1(b,1))

else BFh(a, ShLh−1(b-2
h−1,a)+2h−1)

else BFh(a,b)

Figure 4.16: Butterfly DDA of height 4 with spatial grid representation defined by assRow
and assCol.

Figure 4.17: Butterfly DDA of height 4 with spatial grid representation defined by
altAssRow and altAssCol.

72

4.4. DDA-Projections

0
1

2
3

4
5

6

0
1

0

2

4

1

3

y−axisx−axis

z−
ax
is

Figure 4.18: Butterfly DDA of height 4 with three dimensional grid representation defined
by projections xcor3, ycor3, zcor.

The projections xcord,ycord,zcor:BFh→Nat defined next will lead to
three dimensional grid representations of different shapes depending on
the value of the parameter d ∈ N, 0<d<h, see Fig. 4.18 and 4.19:

xcord(p) = col(p)%2
d

ycord(p) = col(p)/2
d

zcor(p) = h-row(p)

and constructor dim3BFh : Nat, Nat, Nat→ BFh:

dim3BFh(x,y,z) = BFh(h-z,y*2
d+x)

73

4. Data Dependency Algebras

0

1

2

3
0

1
2

3

0

1

2

3

4

y−axis
x−axis

z−
ax
is

Figure 4.19: Butterfly DDA of height 4 with three dimensional grid representation defined
by projections xcor2, ycor2 , zcor.

We may use such projections not only when laying out a DDA on paper
or in space for visualization purposes, but also as a means of placing com-
putations (at each point) on processors in a network, or in a multi-core,
as discussed in Section 4.3. For instance, in the 2D illustrations the vari-
ous col projections or in the 3D illustrations the xcor and ycor projec-
tions may comprise positions in 1D or 2D network topologies, respectively,
of multi-core processors, or GPUs, etc. The asymmetric projections fur-
ther illustrate that a computation, from some time-step onward, could even
be split and mapped onto different hardware topologies. Note that row
and the corresponding alternative row-projections did not change in the ex-
amples. Though they can also be altered, within the limits of consistency

74

4.4. DDA-Projections

requirements, here they play the role of time-projections which determine
the space-time execution of any computation defined on the butterfly.

If the network topology happens to be of higher dimension, e.g. a torus,
a new set of projections, carved in a similar fashion as before, maps the
DDA points directly to torus points. This is achieved by further specifying
each DDA point, e.g., in the XY plane as a 3D shape, and so on.

We can also define projections that will result in repetitive network to-
pologies. Due to their structural properties, repetitive networks can be real-
ised at reduced costs. Only the repeating pattern need to be implemented in
terms of real hardware. The interconnection is achieved by leading outputs
back as inputs. This makes repetitive networks very popular, especially in
hardware design.

Consider the shuffle projections shuffleRow,shuffleCol:BFh→Nat:

shuffleRow(p) = row(p)

shuffleCol(p) = ShRh(col(p),row(p))

with constructor shuffleBFh : Nat, Nat→ BFh:

shuffleBFh(a,b) = BFh(a,ShLh(b,a))

We see that the shuffle layout of the butterfly DDA of height 4, achieved
in Fig. 4.20, shows similarities with the omega network STA of Fig. 4.14,

Figure 4.20: Shuffle layout of the butterfly DDA of height 4 obtained by projections
shuffleRow and shuffleCol.

75

4. Data Dependency Algebras

the only difference being the differing number of DDA points. However, a
5 time-step omega network STA of dimension 5 yields exactly the shuffle
layout of Fig. 4.20. Hence, the above shuffle projections can be used to
define a one-to-one embedding of the butterfly DDA DBFh into the omega
network STA DONSTh+1. However, with DDA-embeddings, we can define a
more efficient mapping, which only requires an omega network STA of size
h, instead of h+1.

4.4.2 An Example of Non-injective DDA-Embedding

Note that in Fig. 4.20, as by the default view of point-valued computations,
each point passes on its result to two different points along its supply dir-
ections, in a manner resembling the perfect shuffle. In the omega network,
these two receiving points happen to be coupled in a network switch node.
So if we couple the adjacent elements in the shuffle layout as well, then
all branches carrying the same result will appear as duplicated branches
between the coupled nodes. The superfluous presence of wires especially
in hardware design is undesired. More wires mean more heat, hence more
consumption. So it is desirable to reduce the number of wires as well, if
possible.

We can achieve this by defining a non-injective embedding: adjacent
points of the shuffle layout will be projected into an omega network space
and time coordinate, comprised by ONSTh; all request directions of DBFh will
be projected into incoming communication channels of the omega network;
and all supply directions into outgoing ones. As a result, branches carry-
ing the same value in Fig. 4.20 will be mapped onto one omega network
channel.

We define the omega embedding projections EP:BFh→ONSTh, ER:rg→{0,1}
and ES:sg→{0,1} as follows:

EP(p) = ONSTh(shuffleCol(p)/2,h-row(p))

ER(p,b) = if (shuffleCol(rp(p,b)) < 2h−1) 0 else 1
ES(p,b) = shuffleCol(p)%2

The result of these projections is seen in Fig. 4.21. This layout is now
isomorphic to the one in Fig. 4.14.

It may not be obvious from the definition of the omega projections that
they are consistent wrt. the connectivity of the omega network STA, i.e.,
the projected points, request and supply directions comply with the de-
pendency properties of the omega network STA, expressed in its request
and supply components. For instance, if (p,b) is a request direction in the

76

4.4. DDA-Projections

Figure 4.21: Omega network space-time embedding of the butterfly DDA of height 4 ob-
tained by embedding projections EP, ER and ES. All supply directions at a point in the
butterfly are mapped onto one outgoing communication channel of the omega network STA.

butterfly DDA, then (EP(p),ER(p,b)) should be a request direction in the
omega network STA as well, otherwise the omega projections are invalid.
We can see, that this property holds, since both request guards are defined
in terms of the row projection only. Likewise, (EP(p),ES(p,b)) will be a
supply direction in the omega network STA, whenever (p,b) is a supply
direction in the butterfly DDA.

The reader may easily check that the following properties also hold,
which ensure that request points and branch back values also get projected
consistently onto correct omega network STA request points and branch
back values, where rp’, rb’, sp’ and sb’ denote the omega network STA
request and supply components:

EP(rp(p,b)) = rp’(EP(p),ER(p,b))

ES(rp(p,b),rb(p,b)) = rb’(EP(p),ER(p,b))

Likewise, the supplies will also be consistent:

EP(sp(p,b)) = sp’(EP(p),ES(p,b))

ER(sp(p,b),sb(p,b)) = sb’(EP(p),ES(p,b))

77

4. Data Dependency Algebras

These properties allow us also to reformulate any computation defined
on the butterfly DDA to a computation defined on the omega network STA
of reduced dimension. This involves the mapping of the point-valued com-
putations of DBFh onto branch-valued computations of DONSTh.

Assume that we have the following point-valued computations associ-
ated with DBFh, expressed in the array V indexed by BFh and some element
type E, as follows:

V[p] = foo(V[rp(p,0)],V[rp(p,1)])

Since each supply direction of a point carries the same result, we can
write the above expression to an equivalent one by the means of an array
V’ indexed now by sg and some element type E, as follows:

V’[p,b] = foo(V’[rp(p,0),rb(p,0)],V’[rp(p,1),rb(p,1)])

Note that the appearance of b on the left side is not read on the right
side of the equality.

Now we are ready to make use of the omega projections. First note that
a value V’[p,b] at the (p,b) supply direction in DBFh will be computed at
the (EP(p),ES(p,b)) supply direction in DONSTh (note that ES(p,b) does
not depend on b). So we create an array for DONSTh, and transfer the com-
putation into that. Let W be an array of index type sg’ – denoting the supply
guard of DONSTh, and same element type E. Then the expression above can
be turned into:

W[EP(p),ES(p,b)] =

foo(W[EP(rp(p,0)),ES(rp(p,0),rb(p,0))],

W[EP(rp(p,1)),ES(rp(p,1),rb(p,1))])

Utilising the consistency properties of the omega projections discussed
above, we finally obtain an equivalent branch-valued expression in terms of
the omega network STA dependency as follows:

W[EP(p),ES(p,b)] =

foo(W[rp’(EP(p),ER(p,0)),rb’(EP(p),ER(p,0))],

W[rp’(EP(p),ER(p,1)),rb’(EP(p),ER(p,1))])

The omega projections illustrates how a DDA can be mapped onto a
smaller network topology with well defined connectivity, expressed here in
terms of the omega network STA, with the aim of porting computations
onto the network. The technique of mapping the result of a computation at

78

4.4. DDA-Projections

a DDA point onto an outgoing communication channel of a network node
hints at the idea that computations abstracted over a DDA can be easily
realised as circuits, e.g., on an FPGA. In Section 5.3.4, a DDA-based high-
level work-flow of FPGA programming is presented.

The examples presented here show that projections make DDAs very
flexible and easy to map to different network topologies. The illustrations
of this section representing various DDA layouts defined from projections
are obtained from either an xFig or MATLAB drawing automatically gener-
ated from the DDA implementation corresponding to Example 4.2.3, plus
the specified set of projections. This underlines the fact that the mapping of
computations specified on the top of DDAs can be handled on a high-level,
without interfering with the original DDA-implementation or the compu-
tation itself. The case studies of Chapter 6 further illustrate these ideas on
concrete computations.

79

CHAPTER 5
DDA-based Execution Models

The previous chapter’s primary aim was to get the reader familiarised with
the concept of DDAs, their kinds and structural properties, and the no-
tion of DDA-embedding projections as a means to map computations onto
various hardware architectures. This chapter shows the other side of the
coin by presenting the execution models associated with different hardware
space-time DDAs, and consequently with DDA-embeddings.

We proposed a language construct in [Burrows and Haveraaen, 2009b],
the repeat statement, which was designed to encapsulate a DDA-based com-
putational expression, and presented two execution models aiming at com-
puting the meaning of the repeat statement: one for a single-processor
and one for the shared memory model architectures. Starting up with a
slightly improved version of that presentation, in this chapter, we discuss
issues regarding the initialization of the repeat statement, and motivate the
need for an alternative, more elaborate targeted repeat statement. Its syntax
and semantics are presented, and related execution models are defined for
the single-processor and shared memory model architectures. In addition,
we expand the arsenal of our execution models and address the message
passing programming model, the generalised CUDA programming model
and FPGA-programming.

5.1 The Repeat Statement

We motivate the introduction of the repeat statement with an example. Let
V be an array indexed by a type P with element type E. Further, let B be a

81

5. DDA-based Execution Models

type with constants 0:B, 1:B and a partial function rp:P,B→P guarded by
rg. Assume that the array V is such that the data values in V are related to
each other by:

V[p] = if (cond(p)) min(V[rp(p,0)],V[rp(p,1)])

else max(V[rp(p,0)],V[rp(p,1)])

where min:E,E→E and max:E,E→E are minimum and maximum functions
on elements, and cond is some condition on indices p:P. Recall that the
guards (here rg and ig – the implicit guard of the indexing operation of the
array type) ensure that expressions are only applied when they are well-
defined; thus the equation is not considered if ig(V,p) does not hold for
some p. However, if the right-hand side expression was well-defined in
this case – it could be used to define the value of V at the point p. The
relation could then be used to define the value of V at any point p:P for
which ig(V,p) does not hold originally but the corresponding right-hand
side expression becomes well-defined. This attributes a repetitive semantics
to this relation, motivating the proposal of a repeat statement that will allow
us to do this.

We focus the repeat statement on the array data type. Array types can be
considered functions mapping from an index type to an element type. Due
to our focus on how to compute the contents of an array step by step, we
prefer to use the data oriented array concept rather than the corresponding
map.

Arrays can represent any structured data type such as lists and trees. A
structured data type can be thought of as implicitly indexed by the traversal
pattern used to access a given element. For a list, e.g., we can encode the
traversal as the number of tail operations before the head operation that
accesses a given element, and use this number as an index.

Before presenting the syntax and semantics of the repeat statement, we
need to introduce some concepts.

Definition 5.1.1 (1-reachable points). Let D=<P,B,req,sup> be a DDA and
S a selection of points from P. Then a point p:P is 1-reachable from S along D,
if all relevant rp(p,b) belong to S.

Definition 5.1.2 (e-derived extension). Let D=<P,B,req,sup> be a countable
DDA, V an array indexed by P with element type E, and e an expression of
type E such that each occurrence of the array V in e has the form V[rp(p,b)]
for expressions b of type B.

Let S be the set of points where ig(V,p) holds. Then the e-derived 1-
extension of V along D is the array extD,e(1,V), s.t., ig(extD,e(1,V),p) holds
exactly when p is in S or p is 1-reachable from S along D, and

82

5.1. The Repeat Statement

extD,e(1,V)[p] = if (p in S) V[p] else e

The e-derived k-extension of V along D is the array extD,e(k,V), for the
remaining k ∈ N, defined recursively by:

extD,e(0,V) = V

extD,e(k,V) = extD,e(1,extD,e(k-1,V))

The e-derived extension of V along D is the array extD,e(V) defined as the
limit of extD,e(k,V) as k grows.

When no ambiguities arise, extD,e(V) may be referred to as the derived
extension of V.

Note that the array extD,e(V) is well-defined for any countable P. Con-
sider any value p:P. For a suitably large k, either:

• ig(extD,e(k,V),p) holds, in which case ig(extD,e(V),p) holds, and
extD,e(V)[p] = extD,e(k,V)[p]; or

• ig(extD,e(k,V),p) does not hold, and there is no larger k that will
make it hold, thus ig(extD,e(V),p) does not hold.

If there are any circularities in the DDA, such points will not be given a
value with this extension (unless they are predefined in V). The circularity
will prevent all required V[rp(p,d)] to be defined, since some of these
(indirectly) depend on V[p] which has not been computed. Also, points
which do not require any inputs (the rg does not hold) will not be given a
value, unless V already defines them.

The following lemma states that the order in which the 1-reachable
points are chosen has no effect on the final result.

Lemma 5.1.3 (e-derived extension is unique). Let D=<P,B,req,sup> be a
countable DDA, V be an array indexed by P with element type E, and e an
expression of type E such that all occurrences of the array V in e has the
form V[rp(p,b)] for b an expression of type B.

Assume p:P is a 1-reachable point from the set containing all points
where V is defined, and let V’ be the array V extended with the value of e at
p. Then the e-derived extension of V along D equals the e-derived extension
of V’ along D.

Proof: First note that the e-derived (k+1)-extension of V along D always con-
tains the e-derived k-extension of V’ along D. Then note that the e-derived
k-extension of V’ along D always contains the e-derived k-extension of V
along D. Thus at the limit when k grows, both extensions will be equal.

83

5. DDA-based Execution Models

Following [Burrows and Haveraaen, 2009b], the syntax and semantics of
the repeat statement is defined as follows.

Definition 5.1.4 (Syntax of the repeat statement). Consider a countable
DDA D=<P,B,req,sup>. Let V be an array with index type P and element
type E. Then the the syntax of the repeat statement is given by:

repeat p:P along D from V in e

where repeat, along, from and in are keywords, imposing the following
syntactic and type requirements:

• e must be an expression of type E

• p is a freshly declared variable of type P, with scope e.

• All occurrences of the array V in e must have the form V[rp(p,b)] for
expressions b of type B, and rp is the request from the DDA D.

Note that the use of the rp-function in the repeat statement indicates that
there is a data dependency between the computational steps of the applica-
tion. The DDA D gives exactly what this data dependency is. This provides
a clean interface between the application e and its possible dependency
patterns.

Definition 5.1.5 (Semantics of the repeat statement). The meaning of a syn-
tactically and type correct repeat statement with countable data dependency
D=<P,B,req,sup>,

repeat p:P along D from V in e,

is the e-derived extension of V along D.

Example 5.1.6. The instantiation of the repeat statement for our original
example, using the butterfly DDA of height h, is:

repeat p:P along DBFh from V in

if (cond(p)) min(V[rp(p,0)],V[rp(p,1)])

else max(V[rp(p,0)],V[rp(p,1)])

84

5.1. The Repeat Statement

A repeat statement becomes an imperative statement by placing the
computed values into V itself rather than returning a new array.

Note that the statement itself is a closure statement since it computes all
missing pieces of V (or of the derived extension) – as much as possible –
using e.

From a computational point of view, all points p:P for which ig(V,p)
originally holds play the role of input points, i.e., all new values of the de-
rived extension are computed starting up from these initial values. Hence all
points p:P where ig(extD,e(V),p) holds but ig(V,p) did not hold origin-
ally are output points.

In Example 5.1.6 typical input points are those of the bottom row, i.e.,
ig(V,p)would normally hold for all points p:BFh such that row(p)=h. Then
all other points of the butterfly DDA for which a value has been computed,
given the expression, will be output points. In another setting, initial values
could be defined for a different set of input points, which will obviously
lead to a different derived extension. Or initial values may not be defined
at all.

The fact that the repeat statement does not impose any requirement on
the array V (apart from its index and value type) makes such scenarios feas-
ible. Therefore prior to the repeat statement ig(V,p)may hold for an arbit-
rary set of indices, or may not hold at all for any index. In the latter case,
the meaning of the repeat statement will be an array with no computed (nor
initial) values at all. Note that this is fully compatible with the definition
of the e-derived extension of V along D (see Definition 5.1.2), i.e., S will be
the empty set whenever ig(V,p) does not hold at all, hence V cannot be
extended, if it has no initial values.

Even though in the expression e some of the points could be initialized
via sub-expressions bypassing the dependency, however, these will not have
any effect over the meaning of the repeat statement. The reason behind this
is that the extension, as per Definition 5.1.2, de facto is derived along 1-
reachable points by computing a new value from the dependencies. This
ultimately implies that any initialization of the array V should be dealt with
prior to issuing the repeat statement. Hence, in the following we assume,
unless otherwise stated, that initial values have been always assigned to V
prior to the repeat statement.

In practice, we are often not interested in the whole derived extension of
V. For instance, in Example 5.1.6, we would perhaps be interested only in the
values of the top row of the butterfly, and not so much in the “intermediate”
values. This motivates the need of an additional syntactic element in the
repeat statement which, in such cases, can focus the meaning of the repeat
statement on a subtype of the indices P deemed directly as target points.

85

5. DDA-based Execution Models

Further expanding here the details of [Burrows and Haveraaen, 2009b],
a more elaborate repeat statement is introduced, referred to as the targeted
repeat statement.

Definition 5.1.7 (Target). Let P be some index type. Then a target for P is a
predicate TP:P→Bool. A point p:P is called a target point whenever TP(p)
holds. If V is an array with index type P, then V[p] is called a target value if
p is a target point, i.e., if TP(p) holds.

Note that the target points of P are not specific to any DDA having P as
a point type. Their sole purpose becomes evident only in the context of a
specific computation defined on the DDA.

Definition 5.1.8 (Targeted e-derived extension). Let D=<P,B,req,sup> be a
countable DDA, V be an array indexed by P with element type E, and e an
expression of type E such that all occurrences of the array V in e has the
form V[rp(p,b)] for expressions b of type B. Further let TP:P→Bool be a
target for P.

Then the TP-targeted e-derived extension of V along D, denoted by extTPD,e(V),
is obtained from extD,e(V) by disregarding all irrelevant values of the ex-
tension, i.e., for all p:P where TP(p) does not hold ig(extTPD,e(V),p) does
not hold either, and extTPD,e(V) is otherwise identical to extD,e(V).

When no ambiguities arise, extTPD,e(V) may be referred to as the targeted
derived extension of V.

If D is a DDA with infinitely, or just way too many points, identifying
or computing the collection of all target points (of a computation) may not
be possible. These situations can be handled by considering a sub-type of P
representing finite number of DDA points only, and constructing the corres-
ponding sub-DDA of D, and consider the computation on that. A technique
showing such a construction is shown in Section 7.1.3. Alternatively, we can
achieve similar results by altering the request/supply guards of the DDA.
Hence, we assume that the collection of all target points of a computation
can always be identified.

Proposition 5.1.9. A TP-targeted e-derived extension of V along D is obtain-
able from the first e-derived k-extension of V along D that has all target
values defined, for some k ∈ N.

Proof: Note that all new values of the e-derived extension of V along D com-
puted from the e-derived k-extension of V along D will become irrelevant in
the TP-targeted e-derived extension of V along D, hence there is no need to
compute them.

86

5.1. The Repeat Statement

Depending on the choice of target points the targeted derived extension
of V may or may not have all target values defined. E.g., if the derived
extension of V is not defined for some of the target points, the targeted
derived extension of V will not be either. This implies that none of the
undefined target values will be computable given the information we have,
since the derived extension would have otherwise defined them.

Definition 5.1.10 (Syntax of the targeted repeat statement). Consider a count-
able DDA D=<P,B,req,sup>. Let V be an array with index type P and ele-
ment type E, and TP:P→Bool a target for P. Then the the syntax of the targeted
repeat statement is given by:

repeat p:P along D from V for TP in e

where repeat, along, from, for and in are keywords, imposing the same
syntactic and type requirements as the regular repeat statement of Defini-
tion 5.1.4

Definition 5.1.11 (Semantics of the targeted repeat statement). The meaning
of a syntactically and type correct targeted repeat statement with countable data
dependency D=<P,B,req,sup>,

repeat p:P along D from V for TP in e,

is the TP-targeted e-derived extension of V along D.

The targeted repeat statement is a closure statement here as well: com-
puting now the target values of V (via its derived extension) – as much as
possible – using e along the dependency D.

Note that the collection of target points may not be identical with the
collection of output points of a targeted repeat statement. If the targeted
extension is not defined for some of the target points, then these points
cannot be considered output points.

When TP(p) holds for all p:P, i.e., we are interested in anything that
can be computed, the targeted repeat statement’s semantics becomes the
regular repeat statement’s semantics.

Example 5.1.12. Let us instantiate the targeted repeat statement for our
initial example, and define the target points to be the points of the top row
of the butterfly DDA, i.e., TP:BFh→Bool is defined by:

TP(p) = (row(p)=0)

Then the meaning of the targeted repeat statement:

87

5. DDA-based Execution Models

repeat p:P along DBFh from V for TP in

if cond(p) min(V[rp(p,0)],V[rp(p,1)])

else max(V[rp(p,0)],V[rp(p,1)])

are the values computed for the top row of the butterfly DDA, as much as
possible from the initial values of V.

Note that none of the repeat statements implies any specific computa-
tional algorithm. One possible algorithm would be to take the standard
approach to recursion, as we find it in most programming languages. The
implementation would start with a point, in case of the targeted repeat
statement it would start with a target point, and trace down the requests
until we end up at known values, compute what we can, and backtrack
the computation one step. This traces the dependency by a tree-directed
(top-down) traversal of the points, giving rise to exponential (in the num-
ber of branches) computing time per starting point. The use of memoization
techniques may reduce such computational work significantly.

Another simple idea is to repeatedly try all points p:P, computing a
value every time the conditions for a one-step computation are met. This
process terminates when there are no 1-reachable points from the set of
(currently) computed values or – in case of the targeted repeat statement –
when all target values have been computed. Again this gives an exponential
running time.

Instead, we will provide several computing strategies which will expli-
citly utilise the underlying data dependency, and by doing so they will also
provide control over resource usage.

5.2 Dependency-driven Computation

Given either a regular or a targeted repeat statement we may exploit the
supply component of the DDA to achieve an efficient computation. We tra-
verse the opposite graph of the requests, using the supply direction, which
will lead to a dependency-driven computation.

Definition 5.2.1 (Dependency-driven computation). Given a repeat state-
ment repeat p:P along D from V in e with countable data dependency
D=<P,B,req,sup>where the element type of V is E.

The dependency-driven computation of the repeat statement will gradually
fill in a fresh array V’ with index type P and element type E. V’ contains
all the values that have been computed up to a certain step during the
computation. Initially V’ is a copy of V together with its guard.

88

5.2. Dependency-driven Computation

The algorithm uses a set F and a support array M which contain inter-
mediate information about the computation, and both will be updated at
every step of the computation:

• The set F⊆P is the set of indices where V’ contains a value, but where
this value has not been propagated in the DDA (along the supply
direction). Initially F is the set of all indices where V is defined.

• The array M has index type P and as elements arrays with index type
B and element type E. In M[p][b] the value that will be requested by
point p via branch index b is stored, until the value at p has been
computed. Initially M is an empty array, i.e., its guard never holds.

We need a modified version e’ of e, where all occurrences of the pattern
V[rp(p,b)] have been replaced by M[p][b]. The computation repeats the
following steps until F becomes empty:

• Choose a point q∈F and remove it from F.

• For all branches d:B such that sg(q,d) holds do:

– Let p=sp(q,d)

– If ig(V’,p) does not hold, do:

* let M[p][sb(q,d)]=V’[q], creating the sub-array if needed,

* if p has received values from all branches b where rg(p,b)
holds, then add p to F, compute e’ and insert the value in V’
at point p, and empty the sub-array M[p] (ig(M,p) does not
hold).

When the intermediate F becomes empty, M can be freed completely, and
the array V’ is the result.

Proposition 5.2.2. Throughout the dependency-driven computation of the
repeat statement a point p is 1-reachable from the defined points of V’when
M[p][b] has been defined for all b where rg(p,b) holds.

Proof: Let p be a point such that M[p][b] has been defined for all relev-
ant b. Throughout the computation the only way M[p][b] has been as-
signed a value is through the assignment M[p][sb(q,d)]=V’[q], where
V’[q] is defined, p=sp(q,d) and b=sb(q,d) for some d where sg(q,d)
holds. Then, by the DDA axioms of Definition 4.1.1, we get that q=rp(p,b)
and d=rb(p,b). Hence V’[rp(p,b)]=V’[q] is also defined. This property
can be deduced for all b where rg(p,b) holds, and hence, by Definition
5.1.1, p is 1-reachable from the defined points of V’.

89

5. DDA-based Execution Models

Proposition 5.2.3. The dependency-driven computation repeat p:P along
D from V in e with countable DDA D=<P,B,req,sup> computes the e-
derived extension of V along D.

Proof: In its evolving computation of V’, the algorithm works by taking a
point p 1-reachable from the defined points of V’ (in the sense of Proposition
5.2.2), computing a value for it, and adding this value to V’. Since this value
is in the e-derived 1-extension of V’ along D, we know by Lemma 5.1.3
that the e-derived extension of the extended array V’ along D will give the
required semantics to the repeat statement.

To see that the right value is computed for a point p note that M[p][b]
= V’[rp(p,b)], for all b:B where rg(p,b) holds and thus e’ will compute
the required value.

The algorithm will stop when F becomes empty, but this can only hap-
pen when there is no point p 1-reachable from the defined points of V’,
hence we are at the limit where V’ equals the e-derived extension of V’
along D. In other words, the computation stops exactly when it has com-
puted the e-derived extension of V along D.

Note that in practice the computation will not terminate when an infin-
itely large part of P can be computed. But at the limit of this computation,
the e-derived extension of V’ along D will have been computed.

In this way the algorithm traverses P from the defined indices of V, com-
puting V’[p]when all of its dependents have been computed, until we have
computed as much of V’ as can be defined given the information we have.

The run-time cost of the dependency-driven computation is of the order
of the size of the computed elements of V’, since every point passes through
F at most once, and we need to compute once for every such point. Thus the
dependency-driven computation gives us control of the computation time
of the repeat construct.

The size of the intermediate data structures is not under control of this
algorithm. The order in which the points of F are chosen will influence the
number of points to be kept in F and the number of intermediate arrays M
must hold at any one time. Thus the maximal space used by the compu-
tation is not being controlled, implying that the memory requirements are
not known.

If the repeat statement was targeted, at the end of the computation we
only retain those values of V’ for which TP(p) holds. This would however
require to retain all irrelevant values of V’ throughout the whole computa-
tion, and to compute the whole derived extension of V, even if this is not
necessary. Instead, based on the observation of Proposition 5.1.9, we can fo-
cus the dependency-driven computation on the target values from the very

90

5.2. Dependency-driven Computation

beginning, and end the computation as soon as all target values have been
computed.

Definition 5.2.4 (Targeted dependency-driven computation). Given a tar-
geted repeat statement repeat p:P along D from V for TP in e where
the DDA D=<P,B,req,sup> is countable and the element type of V is E.

The targeted dependency-driven computation will gradually fill in a fresh
array V’ with index type P and element type E. V’ contains all target values
that have been computed up to a certain step during the computation and
all other values not yet propagated in the DDA. The values of V’ that are
not target values will be gradually discarded. Initially V’ is a copy of V
together with its guard.

The algorithm uses two sets F and L, and a support array Mwhich contain
intermediate information about the computation, and all will be updated at
every step of the computation:

• The set F⊆P, as before, is the set of indices where V’ contains a value,
but where this value has not been propagated in the DDA. Initially F
is the set of all indices where V is defined.

• The set L⊆P is the set of all target points that have not yet been com-
puted. Initially L contains all points p:P such that TP(p) holds.

• The array M has index type P and as elements arrays with index type
B and element type E. As before, in M[p][b] the value that will be
requested by point p via branch index b is stored, until the value at p
has been computed. Initially M is an empty array, i.e., its guard never
holds.

We work again with a modified version e’ of e, where all occurrences of
the pattern V[rp(p,b)] have been replaced by M[p][b]. The computation
repeats the following steps until F or L becomes empty:

• Choose a point q∈F and remove it from F.

• For all branches d:B such that sg(q,d) holds do:

– Let p=sp(q,d)

– If ig(V’,p) does not hold, do:

* let M[p][sb(q,d)] = V’[q], creating the sub-array if needed,

* if p has received values from all branches b where rg(p,b)
holds, then add p to F, compute e’ and insert the value in V’
at point p, and empty the sub-array M[p].

91

5. DDA-based Execution Models

• If q∈L then remove it from L, otherwise empty V’[q].

As soon as either F or L becomes empty, M can be freed completely. If
the computation terminates at F becoming empty, then the array V’ is the
result with as much target values computed as possible. If the algorithm
terminates at L becoming empty, then for all remaining points q from F,
V’[q] is also emptied, leaving as a result the array V’ with all target points
computed, and only those.

Proposition 5.2.5. The targeted dependency-driven computation repeat
p:P along D from V for TP in e with countable DDA D=<P,B,req,sup>
computes the TP-targeted e-derived extension of V along D.

Proof: First note that a defined, non-target value of V’ is only discarded after
this value has been propagated in the DDA. Hence, a point p can be con-
sidered 1-reachable from the defined values of V’, indirectly, as soon as all
M[p][b] have been assigned a value for all relevant b:B, even if V’[rp(p,b)]
has been discarded in the meantime (see also Proposition 5.2.2). Then by
the DDA axioms (Definition 4.1.1) we know that the right value is com-
puted for any such point. Hence the computation evolves by taking again
a 1-reachable point, computing a value for it, and adding it to V’. At the
same time it discards any non-target value which has just been propagated
in the DDA to all relevant locations, hence these will be “remembered” in
the intermediate array M for later computations.

The algorithm stops when either F becomes empty, i.e., no more 1-
reachable points can be computed, hence no more target values can be com-
puted either, or when L becomes empty, i.e., we have computed all target
values. The systematic disposal of irrelevant values of V’ ensures that only
target values will be kept in the final V’. Thus the computation stops when
the TP-targeted e-derived extension of V along D has been computed.

The run-time cost of this algorithm is at most the run-time cost of the
previous algorithm. It will still be of the order of the the size of all computed
elements of V’ (including all discarded values as well), but the computation
here may end without the need to re-visit every such point in F. The order
in which the points of F are picked will influence here the execution time
as well, since the sooner target points are picked from F, the sooner the
computation may end.

We still do not have control over the maximal space usage. However,
compared to the previous algorithm, the size of V’ will be reduced.

92

5.3. Space-time Controlled Repetition

5.3 Space-time Controlled Repetition

The dependency-driven computations of the previous section are sequential
algorithms, dealing with one point at a time. In many circumstances the
computation for different points are independent of each other. Therefore,
it should be possible to introduce some parallelism into the computation
mechanism. We will do this by exploiting the space-time projections of the
DDA points.

When the underlying DDA can be seen as a space-time DDA, with the
corresponding space and time projections (see Definition 4.3.1), we have
control over the space-time execution of the repeat statement.

Example 5.3.1. To illustrate this, consider the butterfly DDA DBFh of height
h (Example 4.2.2) together with some DDA-based repeat statement which
defines for each relevant p:BFh how V[p] is to be computed. We consider
the row and col projections as time and space, as pointed out earlier:

space(p) = col(p)

time(p) = h-row(p)

One can easily verify that the butterfly dependency with these projec-
tions satisfies the consistency requirements of a space-time DDA.

Assume that initial values are defined for the points on the bottom row.
Then all new points in the derived 1-extension of V can be computed in
parallel, independently of each other. In fact, all values at BFh points within
the same row are independent of each other, therefore can be computed in
parallel.

We can step through the computations in each repeat statement from
time-step zero and upwards, using the increment operator next to move
from one time-step to the next. At each time-step t:Time, we choose all the
points BFh(t,s) for all relevant s:Space. This allows the parallel computa-
tion of all elements at the given time-step t, since the requirements assert
that the computation for each spatial index is independent of each other.

In the following sections, we present several space-time algorithms as
allowed by various parallel hardware architectures.

5.3.1 Shared Memory Model Execution

As we have seen in Section 4.3.2, in a shared memory model architecture
processors can communicate with each other at any time via the glob-
ally available shared memory space. Let Space be the type representing

93

5. DDA-based Execution Models

the available processors, and let Time = Nat. The computational DDAs of
the repeat statements are assumed to be embedded into the correspond-
ing shared memory model STA via dedicated space and time coordinates
defined from the DDA point sort, turning every such DDA into an STA. For
computability reasons we assume the STAs to be of finite span.

The space-time controlled repetition in shared memory as presented in
[Burrows and Haveraaen, 2009b] computes the meaning of a regular repeat
statement primarily utilising the supply components of the DDA. As we
shall see, this mechanism can be easily transformed into a targeted repeti-
tion that computes the meaning of a targeted repeat statement with optimal
resource usage.

Before presenting these, however, we show that the shared memory
model architecture entails request based space-time controlled computa-
tion strategies as well. The following execution model requires very limited
memory space. Nonetheless, it does not transform into an optimal targeted
repetition.

Definition 5.3.2 (Request based space-time controlled repetition in shared
memory). Consider the repeat statement repeat p:P along D from V in
e with finite span space-time DDA D=<P,B,req,sup> where the element
type of V is E. Let tspan:Nat be the maximum number of time-steps spanned
by a request.

The request based space-time algorithm to compute the repeat statement will
gradually fill in a fresh array V’ using its previously computed values dir-
ectly.

• The array V’ has index type P and element type E, and it contains all
values that have been computed up to a certain time-step. The array is
in the shared memory, s.t., V’[p] is dealt with by processor space(p)
for a point p:P. Initially V’ is a copy of V together with its guard.

For every time-step t, starting at zero, the computation repeats the follow-
ing steps in parallel for all s:Space:

• Let p=P(s,t).1

1Recall that if the space embedding projection does not cover all space range of Space at a
given time-step, e.g., no DDA point is projected onto s:Space at time-step t, then the implicit
constructor guard CG will not allow P(s,t) to be considered, and hence the point p=P(s,t)
will not exist. Thus all computation steps at processor s involving p, and only those, will not be
considered either at time-step t. This observation remains valid for all subsequent execution
models of Section 5.3.

94

5.3. Space-time Controlled Repetition

• If ig(V’,p) does not hold, and for all b:B, ig(V’,rp(p,b)) holds
whenever rg(p,b), then compute e, and insert its value into V’[p].

• Synchronise with the other processes.

These steps are to be repeated until no processor has computed any new
value for tspan consecutive time-steps (nothing more can be computed) and
for all p:Pwhere ig(V,p) holds it is the case that time(p)<t-tspan (nothing
more can be computed from the initial values either).

The result of the computation is the array V’.

Proposition 5.3.3. Given the appropriate conditions, the request based space-
time controlled computation of the repeat statement repeat p:P along D
from V in e in shared memory computes the e-derived extension of V
along D.

Proof: Note that the computation covers all points in the region P(s,t) for
all relevant space-time coordinates (s,t). At every time-step, synchronised
across all processors, 1-reachable points are computed in parallel from the
defined values of V’. The expression e at a point p is only computed when
V’[p] should be assigned such a value.

The computation ends when the time-step has advanced enough to
make sure that nothing more can be computed from the initial and the
newly defined values of V’. Thus when the computation ends, V’ contains
the e-derived extension of V along D.

The request based space-time control repetition gives us full control over
the space and time resources via the space and time projections. Utilising
the request components directly, there is no need for internal memory loca-
tions to store intermediate results, like we needed in the dependency-driven
computations. Hence the storage space needed is only of the size of the
computed values of V’ which is the desired output as well.

Definition 5.3.4 (Request based space-time controlled targeted repetition in
shared memory). Given a targeted repeat statement repeat p:P along D
from V for TP in e where D=<P,B,req,sup> is a finite span space-time
DDA and the element type of V is E. Let tmax:Nat be the maximum time
coordinate defined from the target points:

tmax = max{p|TP(p)=true}(time(p))

Then the request based targeted space-time algorithm to compute the targeted
repeat statement will evolve exactly in the same manner as the space-time

95

5. DDA-based Execution Models

controlled repetition in shared memory based on requests, but the compu-
tation may end also as soon as the current time-step hits upon tmax+1. After
this all non-target values of V’ are discarded, and the array V’ is the result
of the computation.

Proposition 5.3.5. Given the appropriate conditions, the request based space-
time controlled targeted computation of the targeted repeat statement repeat
p:P along D from V for TP in e in shared memory computes the TP-
targeted e-derived extension of V along D.

Proof: The computation evolves aiming at computing the e-derived exten-
sion of V along D. It will end either when it has advanced enough to make
sure that nothing more can be computed from the initial and the newly
defined values of V’, or after the very last target points, at time-step tmax,
have been visited. In the former case, even if there are still undefined target
values, the condition assures that they cannot be computed. In the latter
case, nothing more relevant can be computed (see Proposition 5.1.9). Hence
the computation ends, clearing all irrelevant values of V’.

We are again in full control over space and time resources, however, the
irrelevant values of V’ can only be discarded safely in the last time-step,
leading to a non-optimal storage space utilisation.

In the following we present the space-time controlled repetition as pro-
posed in [Burrows and Haveraaen, 2009b] for a regular repeat statement.

Definition 5.3.6 (Supply based space-time controlled repetition in shared
memory). Consider the repeat statement repeat p:P along D from V in
e with finite span space-time DDA D=<P,B,req,sup> where the element
type of V is E. Let Time = Nat be used as the time type, and tspan:Nat be
the maximum number of time-steps spanned by a request, and let T be a
type defined as: T = {0,1,...,tspan-1}.

The supply based space-time algorithm to compute the repeat statement will
gradually fill in a fresh array V’, using a support array M which contains
intermediate information about the computation. Both will be updated at
every step of the computation.

• The array V’ has index type P and element type E. It contains all values
that have been computed so far. The array is distributed, s.t., V’[p]
is at processor space(p) for a point p:P. Initially V’ is a copy of V
together with its guard.

• The array M has index type Space*T and as elements arrays with index
type B and element type E. M is used to store, as they become avail-
able, all the element values a point P(s,t), for s:Space and t:Time,

96

5.3. Space-time Controlled Repetition

requests from branches b:B, until the point has been computed. Then
the array is distributed, s.t., M[s,t%tspan] is at processor s. Initially
M is an array of empty sub-arrays, i.e., the guard ig(M[s,t%tspan],b)
does not hold for any s:Space, t:Time and b:B.

We need again a modified version e’ of e, where all occurrences of the
pattern V[rp(p,b)]have been replaced by M[space(p),time(p)%tspan][b].
For every time-step t, starting at zero, the computation repeats the follow-
ing steps in parallel for all s:Space:

• Let p=P(s,t).

• If ig(V’,p) does not hold, M[s,t%tspan] is not empty, and for all b:B,
ig(M[s,t%tspan],b) holds whenever rg(p,b),
then compute e’, and insert its value into V’[p].

• Empty M[s,t%tspan].

• Synchronise with the other processes.

• If ig(V’,p) holds,
then for all relevant branches d:B do:

– Let q=sp(p,d)

– Let M[space(q),time(q)%tspan][sb(p,d)] = V’[p].

• Synchronise with the other processes.

These steps are to be repeated until for all p:P where ig(V,p) holds
it is the case that time(p)<t (all initial values have been visited), and all
sub-arrays in M are empty (nothing more can be computed).

After this the intermediate M is cleared, and the array V’ is the result of
the computation.

With the given assumptions, this algorithm will, time-step by time-step,
in parallel compute exactly the e-derived extension of V along D.

Proposition 5.3.7. Given the appropriate conditions, the supply based space-
time controlled computation of the repeat statement repeat p:P along D
from V in e in shared memory computes the e-derived extension of V
along D.

97

5. DDA-based Execution Models

Proof: The computation covers all points in the region P(s,t) for all relevant
space-time coordinates (s,t). At every time-step, synchronised across all
processors, 1-reachable points are computed in parallel from the defined
values of V’, indirectly, via the appropiate previously filled-in memory cells
(see Proposition 5.2.2). An expression e’ at a point p is only computed
when V’[p] should be assigned such a value. By the axioms of the DDA, it
is clear that the new value e’ computed using M[s,t%tspan] is the value of
that point in the e-derived extension.

In the meantime, when the related memory cells are emptied, all pro-
cessors need to be synchronised (within the same time-step), to avoid race
conditions, which otherwise may cause newly propagated values in M to be
deleted, and hence they could not be utilised in a consequent time-step.

Thus when the computation ends, V’ contains the e-derived extension
of V along D.

Note that the use of memory locations per processor node to store inter-
mediate results is compatible with the implicit supply direction embedding
projections into hardware paths sketched in Section 4.3.2 for STAs with
tspan>1.

We see that the supply based space-time controlled repetition requires
more storage space (the intermediate memory locations M) than the request
based one, but it still gives us full control of the space-time resources. If we
denote by S the size of the finite sort Space, then at most S ∗ tspan nodes
will be active at any time during the computation. Thus by controlling
the space-time projection we can control both time (number of time-steps
needed for the computation) and memory usage. This entails full control
over resource usage.

On the other hand, the intermediate memory locations M can be fully
utilised when the repeat statement is targeted, leading to a targeted space-
time controlled repetition with optimal storage space usage.

Definition 5.3.8 (Supply based space-time controlled targeted repetition
in shared memory). Consider the targeted repeat statement repeat p:P
along D from V for TP in e with D=<P,B,req,sup> a finite span space-
time DDA where the element type of V is E. Let tspan:Nat be the maximum
number of time-steps spanned by a request, and let T be a type defined as:
T = {0,1,...,tspan-1}. Further let tmax:Nat be the maximum time co-
ordinate defined from the target points:

tmax = max{p|TP(p)=true}(time(p))

The supply based targeted space-time algorithm to compute the targeted repeat
statement will gradually fill in a fresh array V’, using a support array M

98

5.3. Space-time Controlled Repetition

which contains intermediate information about the computation. Both will
be updated at every step of the computation.

• The array V’ has index type P and element type E. It contains all target
values computed so far, and all initial and just computed values that
have not yet been propageted in the DDA. The non-target values of V’
will be gradually discarded as the computation proceeds. The array is
distributed, s.t., V’[p] is dealt with at processor space(p) for a point
p:P. Initially V’ is a copy of V together with its guard.

• The array M has index type Space*T and as elements arrays with index
type B and element type E. M is used to store, as they become avail-
able, all the element values a point P(s,t), for s:Space and t:Time,
requests from branches b:B, until the point has been computed. Then
the array is distributed, s.t., M[s,t%tspan] is at processor s. Initially
M is an array of empty sub-arrays, i.e., the guard ig(M[s,t%tspan],b)
does not hold for any s:Space, t:Time and b:B.

We also need the modified version e’ of e, where all occurrences of the
pattern V[rp(p,b)]have been replaced by M[space(p),time(p)%tspan][b].
For every time-step t, starting at zero, the computation repeats the follow-
ing steps in parallel for all s:Space:

• Let p=P(s,t).

• If ig(V’,p) does not hold, M[s,t%tspan] is not empty, and for all b:B,
ig(M[s,t%tspan],b) holds whenever rg(p,b),
then compute e’, and insert its value into V’[p].

• Empty M[s,t%tspan].

• Synchronise with the other processes.

• If ig(V’,p) holds then:

– For all relevant branches d:B do:

* Let q=sp(p,d).

* Let M[space(q),time(q)%tspan][sb(p,d)] = V’[p].

– If TP(p) does not hold, empty V’[p].

• Synchronise with the other processes.

99

5. DDA-based Execution Models

These steps are to be repeated until t=tmax+1 (all target points have been
visited) or for all p:P where ig(V,p) holds it is the case that time(p)<t (all
initial values have been visited), and all sub-arrays in M are empty (nothing
more can be computed).

After this the intermediate M is cleared, all remaining irrelevant values
of V’ are emptied, leaving V’ as the result of the computation.

Proposition 5.3.9. Given the appropriate conditions, the supply based space-
time controlled targeted computation of the targeted repeat statement repeat
p:P along D from V for TP in e in shared memory computes the TP-
targeted e-derived extension of V along D.

Proof: The computation proceeds as the previous algorithm, with all rel-
evant synchronization steps in place to avoid harmful race-conditions, but
here computes the TP-targeted e-derived extension of V along D by comput-
ing 1-reachable points in parallel at every time-step, and if such a point is
not a target point, its value is discarded after the value has been propagated
in the DDA. Note that points are considered again 1-reachable from the
defined points of V’, indirectly, as soon as all relevant memory locations in
M at the point have been assigned a value. Likewise, an initial value, unless
it is also a target value for some reason, is gradually discarded from V’ after
it has been propagated in the DDA. If the computation ends at hitting the
time-step tmax+1, then all remaining non-target values of V’ will be emp-
tied (the leftover of irrelevant initial values). The computation ends with as
much target values computed as possible given the information we have.

We can see that the supply based targeted space-time controlled com-
putation has optimal storage usage compared to the request based targeted
space-time controlled computation. There we need to keep all intermediate
computed values of V’, here we only need to manage the array M of size at
most S*tspan to keep intermediate information.

The space-time controlled computational styles in shared memory can also
be adapted to a single processor, in a sequentialised form. In that case, a
loop for each spatial index must be run between every synchronisation step.
The shared memory versions given here are nonetheless more appropriate
for the current many-core architectures.

Note that we can control locality by selecting space-projections that
let requests and supplies communicate with neighbouring processors, if
possible (see Section 4.4 where the flexibility of DDA-projections was dis-
cussed).

100

5.3. Space-time Controlled Repetition

5.3.2 Message Passing Execution Model

The MPI (Message Passing Interface) standard is the most popular mes-
sage passing specification supporting parallel programming. The under-
lying hardware is assumed to be a collection of processors interconnected
via a network such that each processor has its own local memory with the
restriction that processors can have access only to their own local memory.
The only way processors can communicate with each other is via message
passing, in which a processor gives indirect access to its local data values
by physically sending it to the other processor which in turn is waiting for
the message.

In the message passing programming model, programs are organised
around concurrent processes that are assumed to be able to communicate
with each other at any time-step, since the underlying interconnection net-
work means that there is an implicit channel between every pair of pro-
cesses. Note that, in this respect, a corresponding distributed memory
model STA would be identical with the shared memory model STA, the
only difference being between the associated communication methods: in
shared memory there is direct access, in distributed memory the access is
indirect, via message passing.

Every concurrent process executes the same program, and each process
has a unique ID, hence different processes may carry out different tasks.
IDs are also used when specifying messages. The processes can be implicitly
synchronised via message passing, e.g., a process cannot receive data unless
the data was sent from another process, which in turn provides information
about the state of the sending process, and so on.

The abstractions available in the DDAs allows us to explicitly define
send and receive message pairs between the relevant processes, by utilising
the information available in the isomorphic request and supply compon-
ents. The computational DDA is embedded into this space-time by dis-
tributing, e.g., nearest neighbour points onto a single process, so that each
process deals with several DDA points at a given time-step. Each process
then can execute one of the space-time controlled computational strategies
in shared memory with its own local data, in a sequentialised form, as sug-
gested earlier. Whenever a data value is to be propagated to a DDA point
embedded on a different process, a corresponding sending message is in-
stantiated in the sending process. Likewise, the value at a DDA point can
only be computed if all relevant dependencies have been defined. If one
of these sits on a DDA point embedded onto a different process, then a
corresponding receive message is instantiated in the receiving process, thus
completing the desired communication between the two processes.

101

5. DDA-based Execution Models

Since a similar computation mechanism was already used when build-
ing the Sapphire prototype compiler which generated MPI code from DDA-
specifications [Søreide, 1998], we will omit a detailed presentation of the
message passing execution model instantiated for the proposed repeat state-
ments’ syntax and semantics.

5.3.3 The CUDA Execution Model

Our hardware is now comprised by the CUDA kernel space-time DDA,
DCUSTB,T as presented in Section 4.3.5 for a single-GPU system, where the
kernel is configured for B number of blocks and T number of threads per
block, i.e., B*T number of threads will execute the kernel. The DDA of
the repeat statement is assumed to be embedded into this space-time via
designated space and time projections, where space is comprised by CUBB,T
= block Nat * thread Nat and CUSTB,T = space CUBB,T * time Nat.

Example 5.3.10 (CUDA Embedding Projection). Consider the CUDA ker-
nel space-time DDA DCUSTB,T and let D=<P,B,req,sup> be a DDA. Then a
CUDA embedding projection of D into DCUSTB,T is given by EP:P→CUSTB,T to-
gether with projections space:P→CUBB,T and time:P→Nat and constructor
P:CUBB,T,Nat→P such that:

EP(p)=CUSTB,T(space(p),time(p))

A finite span CUDA embedding projection is one in which D forms a fi-
nite span STA with the projections space:P→CUBB,T and time:P→Nat, and
constructor P:CUBB,T,Nat→P.

In general, the CUDA execution of a computation is based on repeated
kernel invocations, unless the particular problem we are dealing with is
embarrassingly parallel (no dependency exists between the parallel parts),
or it is small enough to be executed by a single block of threads. Since
the execution order of the thread-blocks, as handled by the CUDA run-
time system, is completely random and asynchronous, threads of different
blocks can only communicate asynchronously via the GPU memory upon
a new kernel invocation. Therefore kernels should only run as long as
intra-block communication is guaranteed, otherwise they need to be ended
and reinvoked. The exact time-steps for invoking and ending a kernel is
an inherent property of the particular embedding in question, and does
not depend on the actual computations performed by the threads. This
property is made concrete next.

102

5.3. Space-time Controlled Repetition

Definition 5.3.11 (CUDA Kernel Scheduler). Let D=<P,B,req,sup> be a
DDA with a finite span CUDA embedding projection into DCUSTB,T, and
let next:Nat→Nat be the increment operator on time. Further, let tmax be
the maximum time-coordinate defined by the time projection of the embed-
ding, i.e., time(p)<=tmax for all p:P.

The kernel scheduler will use a support array K, the kernel schedule, in-
dexed by Nat and element type {0,1,...,tmax}, containing all time-steps
when a kernel has to be ended, built as follows.

Let i be some index-variable of type Nat, such that initially i=0, and let
temp be a boolean variable. We start at time-step t=0, and the following
steps are to be repeated while t<tmax:

• Let temp=true.

• If for some p:P with time(p)=t and for some relevant b:B

block(space(p))!=block(space(sp(p,b)))

then set temp=false.

• If temp=false then set K[i]=t and increase the index i++.

• Increment time-step: t=next(t).

In the end the last time-step tmax is also added to K, i.e., K[i] = tmax,
and the length of K thus will be i+1.

The first kernel invocation will be at time-step t=0. If the length of K is
tmax+1, the kernel has to be ended at every time-step and reinvoked at the
next time-step. When the length of K is 1, i.e., when K[0]=tmax, the kernel
will be ended (invoked) a single time.

When the kernel is ended at some time-step K[j], it will be reinvoked
at the next time-step, i.e., next(K[j]), unless K[j]=tmax.

Then the CUDA kernel scheduler is executed by the host as follows:

• call the kernel the first time: kernel«B,T»(<arg-list>,0,K[0])

• If K[0]<tmax then

– Let i=1.

– While K[i]<=tmax do:

* kernel call: kernel«B,T»(<arg-list>,next(K[i-1]),K[i])

103

5. DDA-based Execution Models

where «B,T» specifies the dimension of the kernel; <arg-list> stands for
some actual argument list of the kernel and is specified later; and the last
two arguments of the kernel call specify the time-steps for invoking and
ending the kernel, respectively.

Obviously, the length of Kwill vary depending on the CUDA embedding
projection of D into DCUSTB,T, and ultimately the parameters B and T as well.
Note that for a fixed pair of parameters B and T several CUDA embedding
projections could be defined as long as they comply with the consistency
requirements of such projections (see Section 4.4).

A more elaborate kernel scheduler instead of precomputing the entire ar-
ray K would compute every next kernel schedule entry on-the-fly right after
a kernel has just been invoked. This could speed up the accumulated total
execution time, since CUDA allows concurrent execution between host and
GPU device, i.e., control is returned to the host before the device has com-
pleted the requested task. On the other hand, building the kernel schedule
array K can always be considered fixed and shipped with the CUDA em-
bedding itself, since it is independent of the computation associated with
the DDA or any input data.

CUDA syntax is an extension of the C programming language. Hence,
guards of partial indexing operations associated with arrays can be imple-
mented as arrays of boolean element type and exactly of the same dimen-
sion as the arrays they guard. If an array figures as an argument of the
kernel, we assume that its guard is also passed on as argument.

In CUDA the host manages the memory spaces visible to kernels (e.g.
its arguments) through calls to the CUDA run-time. This includes device
memory allocation and deallocation as well as data transfer between host
and device memory. We will, therefore, skip presenting the fine details of
this memory management, they are being specific to CUDA and straight-
forward in the context of a given kernel.

We will present various CUDA execution models, again request and
supply based ones, for both regular and targeted repeat statements. They
will primarily differ in the way the kernels are built up, their argument
lists, and the memory locations they utilise. Each of the execution models
is based on the kernel scheduler presented in Definition 5.3.11 with subtle
modifications as allowed by the particular model.

Definition 5.3.12 (Request based space-time controlled repetition in CUDA).
Given a repeat statement repeat p:P along D from V in e with a finite
span CUDA embedding projection of D into DCUSTB,T, and where the ele-
ment type of V is E. Let tspan:Nat be the maximum number of time-steps

104

5.3. Space-time Controlled Repetition

spanned by a request and let K be the CUDA embedding’s related kernel
schedule.

In the request based space-time algorithm to compute the repeat statement in
CUDA the kernel scheduler will systematically invoke CUDA kernels of
dimension B*T, one at a time, at the time-steps fetched from the kernel
schedule K (see Definition 5.3.11). The threads executing these kernels will
gradually fill in a fresh array V’ stored in the GPU memory across all kernel
invocations together with its guard, updated at every time-step.

• The array V’ has index type P and element type E. It contains all values
that have been computed so far. The array is distributed in the GPU
memory such that V’[p] is dealt with by thread space(p) for a point
p:P. Initially V’ is a device copy of V together with its guard.

The kernel scheduler will invoke the kernels with 4 arguments: the array
V’ and its guard – these will be updated by the threads of the kernel and
returned to the host; and t_start and t_end (fetched from K) will mark the
time-steps for starting and terminating the kernel, respectively.

Then all threads of a kernel across the space s:CUBB,T will execute in par-
allel2 the following steps starting at time-step t=t_start, while t<=t_end:

• Let p=P(s,t).

• If ig(V’,p) does not hold, and for all b:B, ig(V’,rp(p,b)) holds
whenever rg(p,b) holds, then compute e and insert its value to V’[p]
and set ig(V’,p)=true.

• Synchronize threads.

• t=next(t).

Each invoked kernel executes these steps within the given time steps as
appointed by the kernel scheduler.

After this, the result of the computation will be the entire array V’.

The kernel scheduler, suitably modified, may suspend the kernel invoca-
tions prior to reaching the kernel schedule entry tmax, by checking whether
there has been computed any new value in V’ in the last tspan consecutive
time-steps and for all p:P where ig(V’,p) initially held it is the case that
time(p)<K[i]-tspan for some kernel schedule entry K[i] (nothing more
can be computed from the initial values either).

2Since the actual thread-blocks are executed by the CUDA run-time system in a random or-
der, the execution of all threads across the space s:CUBB,T here is virtually parallel, as promoted
by the CUDA API.

105

5. DDA-based Execution Models

Proposition 5.3.13. Given the appropriate conditions, the request based
space-time controlled algorithm of the repeat statement repeat p:P along
D from V in e in CUDA computes the e-derived extension of V along D.

Proof: The computation will cover all DDA points in the region P(s,t) for
all relevant space-time coordinates (s,t), by letting each thread with global
ID s deal with the DDA point P(s,t) at time-step t. In each kernel, at every
time-step, 1-reachable points are computed in parallel from the defined val-
ues of V’. The explicit synchronization works across all the threads of a
block, and for all blocks individually (as allowed by the CUDA API). This
and the way the kernel scheduler is built ensure race-condition free exe-
cution between threads of the same and of different blocks. So the test
whether all relevant dependencies of V’[p] have been computed is guaran-
teed to be correct, i.e., if one of the dependencies is across block boundaries
and has not been computed by the time-step of the test, then it will not be
computed at all. Then the expression e at a point p is only computed when
V’[p] should be assigned such a value.

The kernel scheduler will stop invoking new kernels if either it has
reached tmax or, if we have the more elaborate kernel scheduler, nothing
new is computed by the kernels from the initial and any newly defined
values of V’.

Thus, when the computation ends, V’ contains the e-derived extension
of V along D.

We have control over execution time and storage space utilisation, how-
ever one should bear in mind that this execution model requires continu-
ous GPU memory accesses across all threads which is considered of high-
latency, i.e., expensive compared to low-latency, fast shared memory ac-
cesses of threads within a block. [NVIDIA, 2010]

Definition 5.3.14 (Request based space-time controlled targeted repetition
in CUDA). Given a targeted repeat statement repeat p:P along D from
V for TP in e with a finite span CUDA embedding projection of D into
DCUSTB,T, and where the element type of V is E. Let tspan:Nat be the max-
imum number of time-steps spanned by a request and let K be the CUDA
embedding’s related kernel schedule. Further let tpmax:Nat be the max-
imum time coordinate defined from the target points:

tpmax = max{p|TP(p)=true}(time(p))

Then the request based targeted space-time algorithm to compute the targeted
repeat statement in CUDA will proceed exactly as the request based regu-
lar space-time controlled repetition in CUDA, but the kernel scheduler may

106

5.3. Space-time Controlled Repetition

stop invoking the kernels also as soon as tpmax<K[i] for some kernel sched-
ule entry K[i], i.e., when all target values have been computed. After this,
only target values of V’ will be considered as the result of the computa-
tion.

Proposition 5.3.15. Given the appropriate conditions, the request based
space-time controlled targeted algorithm of the targeted repeat statement
repeat p:P along D from V for TP in e in CUDA will compute the TP-
targeted e-derived extension of V along D.

Proof: The computation aims at building the e-derived extension of V along
D until it has advanced enough to make sure that nothing more can be
computed or it has computed all target values of V’, in which case only
these are kept as a result, hence exactly the TP-targeted e-derived extension
of V along D is kept.

Note that the request based space-time controlled computation cannot
enhance again the memory management by casting away non-target inter-
mediate values on the go. The following supply based space-time controlled
repetition on the other hand will allow this. First it is presented for the
regular repeat statement, and then it is formalised for the targeted repeat
statement.

Definition 5.3.16 (Supply based space-time controlled repetition in CUDA).
Given a repeat statement repeat p:P along D from V in e with a finite
span CUDA embedding projection of D into DCUSTB,T, and where the ele-
ment type of V is E. Let tspan:Nat be the maximum number of time-
steps spanned by a request, and let TSPAN be a type defined as: TSPAN =
{0,1,...,tspan-1}. Further let K be the CUDA embedding’s related ker-
nel schedule.

In the supply based space-time algorithm to compute the repeat statement in
CUDA the kernel scheduler will systematically invoke CUDA kernels of
dimension B*T, one at a time, at the time-steps fetched from the kernel
schedule K as discussed in Definition 5.3.11. The threads executing these
kernels will gradually fill in a fresh array V’ stored in the GPU memory
across all kernel invocations together with its guard, updated at every time-
step. The algorithm uses two support arrays INM and OUTM, stored in the
GPU memory together with their guards, which contain intermediate in-
formation about the computation. Threads will access global GPU memory
content via global thread IDs, i.e., via the type CUBB,T.

• The array V’ has index type P and element type E. It contains all values
that have been computed so far. The array is distributed in the GPU

107

5. DDA-based Execution Models

memory, such that V’[p] is dealt with by thread space(p) for a point
p:P. Initially V’ is a device copy of V together with its guard.

• The arrays INM and OUTM have index type CUBB,T*TSPAN*B and element
type E. INM will provide additional information for each kernel upon
its start; initially all values of INM are undefined, i.e., its guard never
holds.

OUTM is used to store information about the computation from the
moment the kernel terminates until it is reinvoked by the host. At
the beginning of each kernel, all values of OUTM are undefined, i.e., its
guard never holds.

Both INM and OUTM are distributed in the GPU memory, such that the
sub-arrays INM[s] and OUTM[s] are dealt with by thread thread(s) in
the block block(s) for s:CUBB,T.

In addition, each block of threads, executing the kernel, will use a sup-
port array stored in the shared memory of each thread-block. These ar-
rays contain intermediate information about the computation executed by
the thread-blocks within one kernel, and will be updated at every time-
step. Note that upon the termination of a kernel, all shared memory con-
tent is cast away in the CUDA Programming Model. Threads will ac-
cess local shared memory content via local thread IDs, i.e., via the type
TT={0,...T-1}:

• SHM is an array with index type TT*TSPAN*B and element type E. All
arrays SHM across all blocks will be used to store, as they become avail-
able, all the element values a point P(s,t), for s:CUBB,T and t:Nat, re-
quests from branches b:B, until the point has been computed. In total,
there will be B number of such arrays, one for each block, and they
will be distributed such that SHM[thread(s)][t%tspan] is at thread
thread(s) within block block(s). At the beginning of each kernel,
the whole sub-array SHM[thread(s)] of block block(s) is a copy of
the sub-array INM[s] together with its guard from the global GPU
memory. At the end of the kernel, the newly computed content of the
sub-array SHM[thread(s)] of block block(s) is copied to OUTM[s], in
order to save it for the next kernel.

And finally, each thread will manage a private variable TMP of type E,
together with a guard igTMP, which is used to retrieve information from
V’ in the GPU memory in order to propagate it locally into the fast shared
memory. Whenever TMP is assigned a value, igTMP holds, and whenever TMP

108

5.3. Space-time Controlled Repetition

is emptied, igTMP does not hold. At the start of the kernel igTMP does not
hold.

We need again a modified version e’ of e, where all occurrences of the
pattern V[rp(p,b)] have been replaced by the relevant shared memory loc-
ations of the relevant blocks: SHM[thread(space(p)),time(p)%tspan][b].

The kernel scheduler will invoke the kernels with 8 arguments: the ar-
rays V’, INM and OUTM together with their guards, of which V’ and OUTMwill
be updated by the threads of the kernel; and t_start and t_end (fetched
from K) will mark the time-steps for starting and terminating the kernel,
respectively.

Between two kernel invocations, the host updates the content of INMwith
the received content of OUTM, and clears the content of OUTM, i.e., its guard
will never hold at the beginning of the kernels.

Then all threads of a kernel across the space s:CUBB,T will execute in
parallel the following steps starting at time-step t=t_start:

• Copy the content of the sub-array INM[s] from GPU memory into
SHM[thread(s)], together with its guard.

• Synchronize threads.

• The following steps are to be repeated while t<=t_end:

– Let p=P(s,t).

– If ig(V’,p) does not hold and for all b:B
ig(SHM[thread(s),t%tspan],b) holds whenever rg(p,b) then
compute e’ and insert its value to V’[p]

– Empty SHM[thread(s),t%tspan][b] for all b.

– Synchronize threads.

– If ig(V’,p) holds then read its value: TMP=V’[p]

– If igTMP holds then for all relevant d:B do:

* Let q=sp(p,d).

* If t=t_end then propagate directly to GPU memory, i.e.,
OUTM[space(q),time(q)%tspan][sb(p,d)]=TMP

* If t<t_end then propagate in the shared memory, i.e.,
SHM[thread(space(q)),time(q)%tspan][sb(p,d)]=TMP

* Empty TMP.

– Synchronize threads.

– Let t=next(t).

109

5. DDA-based Execution Models

• Let OUTM[s,ts][b]=SHM[thread(s),ts][b] only for those ts:TSPAN
and b:B where ig(SHM[thread(s),ts],b) holds.

• Synchronize threads.

Each kernel executes these steps within the given time steps as appoin-
ted by the kernel scheduler.

After this, the result of the computation will be the entire array V’.

The kernel scheduler, suitably modified, may suspend the kernel invoc-
ations prior to reaching the kernel schedule entry tmax, by checking if all
initial values of V have been visited, e.g., for some kernel schedule entry
K[i] we have that time(p)<K[i] for all initial points p:P, and the current
content of the returned array OUTM is such that its guard never holds, i.e.,
nothing more can be computed.

Proposition 5.3.17. Given the appropriate conditions, the supply based
space-time controlled algorithm of the repeat statement repeat p:P along
D from V in e in CUDA will compute the e-derived extension of V along
D.

Proof: The computation covers all points in the region P(s,t) for all relevant
space-time coordinates (s,t). In each kernel, at every time-step 1-reachable
points are computed in parallel, by all threads, from the defined values of
V’, indirectly, via the appropriate previously filled-in shared memory cells
in SHM (see Proposition 5.2.2). To see that the shared memory cells are
appropriately filled in, remember that the kernel scheduler ensures that
no inter-block communication is required while t<t_end, and that within
each thread-block, all the threads of the block synchronize with each other
avoiding harmful race-conditions. Only t=t_end marks the time-step of
the need for inter-block communication. Then all computed results of this
step are written directly to the corresponding memory cells of OUTM, since
threads otherwise cannot access the shared memory of a different block.
At the end of the kernel, if there are any intermediate results left in the
local shared memories, SHM-s, these will be copied to the relevant locations
of OUTM as well. The separate use of INM and OUTM ensures that threads
across block boundaries do not overwrite the input (INM) of a thread from
a different block. Upon each new kernel invocation, the host takes care of
updating the content of INM with that of OUTM, so that intermediate results
would not get lost.

The expression e’ at a point p is only computed when V’[p] should be
assigned such a value. The DDA axioms ensure that the value e’ computed

110

5.3. Space-time Controlled Repetition

using the relevant locations of the sub-array SHM[thread(s),t%tspan], in
block block(s), is the value of that point in the e-derived extension.

Thus when the computation ends, V’ contains the e-derived extension
of V along D.

The execution time and memory space usage of the entire computation is
under control via the CUDA embedding space and time projections. How-
ever, the storage space allocated on the GPU memory for storing V’, INM
and OUTM and their guards will be fixed (preallocated by the host) through-
out the entire computation. Even when OUTM is “empty”, the whole array
is allocated on the device for it. Likewise, if a value of V’ is “not defined”,
a memory location of size needed to store an element of type E will be
allocated, and cannot be deallocated in the kernel. Nonetheless, these re-
strictions originate from the CUDA API.

Comparing the request based space-time computation of the regular re-
peat statement with the supply based one, we see that here we heavily util-
ise shared memory accesses instead of continuous GPU memory accesses.
This, on the other hand, requires additional memory management and copy
of data to the relevant locations. It may well be the case that STAs with small
tspan and small number of branch indices may perform better under the
supply based execution model whereas STAs with large tspan and large
range of (request) branch indices may perform better under the request
based computation strategy. However, this observation is only an intuition,
and is not underpinned by experiments.

Definition 5.3.18 (Supply based space-time controlled targeted repetition
in CUDA). Given a targeted repeat statement repeat p:P along D from
V for TP in e with a finite span CUDA embedding projection of D into
DCUSTB,T, and where the element type of V is E. Let tspan:Nat be the max-
imum number of time-steps spanned by a request, and let TSPAN be a type
defined as: TSPAN = {0,1,...,tspan-1}. Further let K be the CUDA em-
bedding’s related kernel schedule.

In the supply based targeted space-time algorithm to compute the targeted
repeat statement in CUDA the kernel scheduler will systematically invoke
CUDA kernels of dimension B*T, one at a time, at the time-steps fetched
from the kernel shedule K. The threads executing these kernels will gradu-
ally fill in a fresh array V’ stored in the GPU memory across all kernel
invocations together with its guard, updated at every time-step, containing
only the target values of V and is built as follows:

• Let N be the number of target points, and tind:P→{0,1,...,N-1}
an injective partial function such that tind(p) is defined whenever

111

5. DDA-based Execution Models

TP(p) holds. The array V’ has index type {0,1,...,N-1} and element
type E, and it contains all target values computed so far. The array is
distributed in the GPU memory such that V’[tind(p)] is dealt with
by thread space(p) for any target point p:P, and the target value V[p]
will be given by V’[tind(p)]. Initially the guard of V’ never holds.

Initial values will be stored in the GPU memory across all kernels in the
form of an array of size exactly the number of input points, and is built as
follows:

• Let N’ be the number of input points, i.e., where ig(V,p) initially
holds. And consider iind:P→{0,1,...,N’-1} an injective partial
function such that iind(p) is defined whenever ig(V,p) holds. The
array I with index type {0,1,...,N’-1} and element type E contains
the initial values of V such that I[iind(p)]=V[p] for all initial points
p:P. Note that the guard of I will always hold, hence there is no need
to send it in the argument list of the kernel.

The algorithm uses two support arrays INM and OUTM, in the same fashion
as in the previous algorithm, stored in the GPU memory together with their
guards. Both have index type CUBB,T*TSPAN*B and element type E. Initially
all values of INM are undefined, i.e., its guard never holds.

In addition, each block of threads, executing the kernel, will use a sup-
port array SHM with index type TT*TSPAN*B and element type E stored in
the block’s shared memory. This will be managed and updated in the same
manner as discussed in the previous algorithm.

Each thread will have a private variable TMP of type E, together with a
guard igTMP.

We need again a modified version e’ of e, where all occurrences of the
pattern V[rp(p,b)] have been replaced by the relevant shared memory loc-
ations of the relevant blocks: SHM[thread(space(p)),time(p)%tspan][b].

The kernel scheduler will invoke the kernels with 9 arguments: the ar-
rays V’, INM and OUTM and their guards, of which V’ and OUTM will be up-
dated by the threads of the kernel and returned to the host; the initial array
I; and t_start and t_end will mark the time-steps for starting and termin-
ating the kernel, respectively.

Between two kernel invocations, again, the host updates the content of
INM with the received content of OUTM, and clears the content of OUTM, i.e.,
its guard never holds at the beginning of the kernels.

Then all threads of a kernel across the space s:CUBB,T will execute in
parallel the following steps starting at time-step t=t_start:

112

5.3. Space-time Controlled Repetition

• Copy the content of the sub-array INM[s] into SHM[thread(s)] to-
gether with its guard.

• Synchronize threads.

• The following steps are to be repeated while t<=t_end:

– Let p=P(s,t).

– If p is not an input point and for all b:B
ig(SHM[thread(s),t%tspan],b) holds whenever rg(p,b) then
compute e’ and insert its value to TMP. If TP(p) holds, send this
value as a result: V’[tind(p)]=TMP.

– Empty SHM[thread(s),t%tspan][b] for all b.

– Synchronize threads.

– If p is input point then read its value: TMP=I[iind(p)].

– If igTMP holds then for all relevant d:B do:

* Let q=sp(p,d).

* If t=t_end then propagate directly to GPU memory, i.e.,
OUTM[space(q),time(q)%tspan][sb(p,d)]=TMP

* If t<t_end then propagate in the shared memory, i.e.,
SHM[thread(space(q)),time(q)%tspan][sb(p,d)]=TMP

* Empty TMP.

– Synchronize threads.

– Let t=next(t).

• Let OUTM[s,ts][b]=SHM[thread(s),ts][b] only for those ts:TSPAN
and b:B where ig(SHM[thread(s),ts],b) holds.

• Synchronize threads.

Each kernel executes these steps within the given time steps as appoin-
ted by the kernel scheduler.

After this, the result of the computation will be the entire array V’.

The kernel scheduler, suitably modified, may suspend the kernel invoc-
ations prior to reaching the kernel schedule entry tmax as soon as all target
values have been computed, or when all initial values have been visited and
the current content of the returned array OUTM is such that its guard never
holds, i.e., nothing more can be computed.

113

5. DDA-based Execution Models

Proposition 5.3.19. Given the appropriate conditions, the supply based
space-time controlled targeted algorithm of the targeted repeat statement
repeat p:P along D from V for TP in e in CUDA will compute the TP-
targeted e-derived extension of V along D such that extTPD,e(V)[p]=V’[ind(p)]
for all p:P where TP(p) holds.

Proof: The computation proceeds as the regular supply based CUDA al-
gorithm, but here intermediate results of the e-derived extension of V along
D are only written in V’ if they are target values. Otherwise all interme-
diate values of the extension, stored across the threads in TMP at a given
time-step, are only propagated in the shared memory, or if in the last kernel
time-step, in the GPU memory, in order to make them available as defined
dependencies when needed in the subsequent computation. The algorithm
ends, when as many target values as possible have been computed in the
e-derived extension of V along D.

With the introduction of reduced size target and initial arrays, we re-
quire significantly less memory space on the GPU memory, which may also
lead to speed ups in the overall execution time. Such a scenario occurs
when we have a modified kernel that regularly inspects the guard of V’ to
see whether all target values have been computed, in order to suspend all
subsequent kernel invocations. (The host can only inspect the GPU memory
content indirectly, by copying the relevant GPU memory content back into
its own memory.)

These execution models can deal with any computational DDA embed-
ded into the CUDA kernel space-time DDA. Depending on the DDA struc-
tural properties, however, one computational strategy may lead to better
performance than another one. Certain, well-described properties of a DDA
and its embedding can lead to simplified execution models. E.g., if the em-
bedding is such that it has a minimal span, i.e., tspan=1, and all input points
are embedded to the time-step marking the start of the computation and all
target points to the time-step marking the end of the computation, then a
much simpler execution model can be derived from the above one. Appar-
ently, most DDAs we are presenting in this discourse are of tspan=1 and
the computations built on them share the above mentioned property (e.g.
see Chapter 4 and 6). Also remember that we can eliminate large tspans,
as described in Example 4.3.5, in which case the execution models would
require reduced size intermediate memory locations. Nonetheless, the exe-
cution models presented here do not impose any restriction on the DDAs,
their CUDA embeddings or their computations; hence they are applicable
in general.

114

5.3. Space-time Controlled Repetition

5.3.4 FPGA Programming

A Field Programmable Gate Array (FPGA) is an integrated circuit designed to
be programmed by the user after manufacturing, such that the final result is
a concrete circuit on the FPGA chip. The main characteristic of an FPGA is
that it is re-programmable, attributing renewed functionalities of the same
chip.

Programming an FPGA is primarily about circuit design which is a
“hardware” implementation rather than a “software” implementation of
a given problem. [Kuon et al., 2008] In this sense, we cannot talk about
a specific execution model associated to the semantics of the repeat state-
ment, since, for instance, an FPGA does not have a program counter in the
general sense, instead typically clocks all its gates at once. In the follow-
ing, however, we attempt to describe how the meaning of a targeted repeat
statement can be realised as a circuit which being fed with input data via
its input wires provides the target values via its designated output wires.

The process of FPGA programming is usually assisted by proprietary
software tools that take the specification of the circuit to be realised on the
FPGA in some hardware description language, e.g., VHDL, Verilog, etc.
Then the functionality of the design is verified by these tools, then synthes-
ized into a gate-level netlist, and finally realised on the FPGA chip. Since
the rigorous details of this workflow is out of the scope of this dissertation,
we will only focus on the methodology describing how an associated circuit
description can be generated for a targeted repeat statement.

We will focus our discussion on point-based computations to comply
with the syntax and semantics of the repeat statement as discussed in the
rest of this chapter. Note that branch-valued computations (see Sections
4.1.2 and 4.4.2), by their very nature, would induce reduced number of
wires in the design process, and thus could lead to “lighter” circuits. How-
ever, it may not always be possible to design branch-valued DDA-based
computations for a given problem.

Consider the following syntactically and type correct targeted repeat
statement, where D is a finite span STA, V is an array of index type P and
element type E, and where Space now is comprised by Nat:3

repeat p:P along D from V for TP in e

Then an associated circuit computing the TP-targeted e-derived exten-
sion of V along D can be built as follows.

3Note that FPGA chips have limited resource capacity, hence Space and Time will be obvi-
ously constrained by these physical limits.

115

5. DDA-based Execution Models

First of all, note that DDAs naturally look like circuits, especially in
a layout obtained via space-time projections. Hence, the task is to turn
all branches into wires, and all computations at each DDA point into a
corresponding computational node with I/O ports mapped to the relevant
wires.

While the DDA request/supply directions determine the exact map-
ping of the I/O ports of a computational entity (corresponding to a DDA
point) onto wires (or signals), DDA point projections can fully determine
the placements of the computational entities on the chip. Carefully chosen
placements are essential in FPGA programming as they can optimize FPGA
die resource utilisation, leading to speed-ups and less energy consump-
tion [Singh, 2000, 2011].

All branches (NB. not branch indices) of the DDA therefore will become
the wires of the circuit represented by some canonical labelling, e.g., defined
by c:rg→Nat, which assigns every request direction a unique natural num-
ber, starting from 0 and upward until some N∈ N, covering N+1 request
directions. The signals will carry values of type E presented in the form of a
signal-array V’ indexed by {0,1,...,N}. By the DDA axioms the values of
V’ are related to V as follows: V[p]=V’[c(sp(p,b),sb(p,b))] for all p and
all its supply directions.

Then from the expression e several design elements (circuit entities) will
be defined according to the sub-expressions from the sub-branches of the
(possibly nested) if statements.

For instance, the following expression e, where cond1(p) and cond2(p)
are some predicates:

if (cond1(p)) foo1(V[rp(p,0)], V[rp(p,1)])

else if (cond2(p)) foo2(V[rp(p,0)], V[rp(p,2)])

else foo3(V[rp(p,0)])

entails three main design entities, one for each sub-expression. Each en-
tity will have as inputs variables associated with the dependencies occur-
ring in the sub-expression, and as outputs variables associated with each
supply direction of p. E.g., from foo1(V[rp(p,0)], V[rp(p,1)]) the en-
tity ENT1(in:a0,a1, out:b0,b1) could be defined, given that sg(p,0) and
sg(p,1) are the only supply directions from p. Then the behaviour of the
entity is defined exactly as the sub-expression foo1 in which every occur-
rence of V[rp(p,0)] is replaced by a0, of V[rp(p,1)] by a1, and so on, thus
turning the entity into a generic computational pattern.

Since p:P in e can have any number of supply directions, unless the
number of supply directions from a point is uniform across the whole DDA,

116

5.3. Space-time Controlled Repetition

we need to create an entity for every sub-expression and every possible
number of supply directions. In the above example, e.g., if the maximum
number of supply directions from a point across the whole DDA is 2, then
2+ 1 entities will be created for each sub-expression in case. The additional
entity is motivated by points that do not have supply directions. Taking the
first sub-expression, for instance, the following entities will be created, each
with the same architecture, they will only differ in the number of outputs
(remember that each output is assigned the same value):

ENT1-0(in:a0,a1, out:b0)

ENT1-1(in:a0,a1, out:b0,b1)

ENT1-2(in:a0,a1, out:b0,b1,b2)

Note that each entity is declared with an additional output port. The
reason is that any of the points could be a target point, in which case we
will need an additional output wire to collect the result.

This entails a transformation of the expression e into an imperative one
which will be used when the structure of V’ is defined. In e’ we insert in
each sub-expression an additional test on the number of supply directions
from p. This will determine for each p the exact design entity to be used
for a given p. The I/O ports of the entity will be instantiated in terms of V’
indexed by the canonical labelling of requests applied for the point.

Consider again our example. Assuming that the number of supply dir-
ections from a point in D is uniformly 2 across the whole DDA, then the
expression e’ would become (there is no need for additional if statements):

if (cond1(p))

ENT1-1 port map (V’[c(p,rb(p,0))], V’[c(p,rb(p,1))],

V’[c(sp(p,0),sb(p,0))],V’[c(sp(p,1),sb(p,1))])

else if (cond2(p))

ENT2-1 port map (V’[c(p,rb(p,0))], V’[c(p,rb(p,2))],

V’[c(sp(p,0),sb(p,0))],V’[c(sp(p,1),sb(p,1))])

else ENT3-1 port map (V’[c(p,rb(p,0))],

V’[c(sp(p,0),sb(p,0))],V’[c(sp(p,1),sb(p,1))])

Initial points will need to be assigned special entities which have the
mere role to duplicate or triplicate, etc., the input signal according to the
supply directions of the initial point. E.g. INIT0(in:a0, out:b0)would be
used for initial points with one supply direction, INIT1(in:a0, out:b0,b1)
for initial points with two supply directions, etc.

Finally, we parse our space-time grid with space-time coordinates (s,t).
Then the structure of the global signal-array V’ is obtained by creating for

117

5. DDA-based Execution Models

every point p=P(s,t) a circuit-node, e.g., labelled node-p. Then each of
these will be assigned one of the previously defined (computational) en-
tities, and the entity’s I/O ports will be mapped to the relevant signals in
V’:

• If p is an initial point, then depending on the number of its supply
directions, node-p will be assigned an initial entity INITx with in-
put port mapped to a designated global input signal corresponding
to the initial value V[p], and each output port will be mapped to
V’[c(sp(p,b),sb(p,b))] for all relevant b.

• If p is not an initial point, then we execute e’ and assign node-p the
entity determined by e’, evaluating all I/O port-expressions for the
given p. If p happens to be a target point, then the next entity in the
same range but one additional ouput is assigned to node-p instead.
The extra output port is mapped to a designated global output signal.

Finally, each node-p is attributed with RLOC placements which will de-
termine the node’s relative position in the circuit. The space-time coordin-
ates (s,t) implicitly provide this information. Naturally, s will be inter-
preted as the X coordinate, and t as the Y coordinate, leading to the RLOC
labelling “XsYt”, for instance. Note that the space-time projections can fully
determine the layout of the circuit, and hence a different set of space-time
projections will lead to different circuit layout as well.

This concludes the high-level presentation of a targeted repeat statement
induced circuit design. The process is mainly concerned with the generation
of the circuit description itself (e.g., creating the signal-array, then all pos-
sible entities, generating nodes and assigning entities and RLOCs for them).
Some of the process can be straightforwardly automatised, especially those
related to the structure of the DDA (e.g. the signal-array V’ or the RLOCs
generation). Certain parts of the process are less trivial as they require
more elaborate source-code transformation, e.g., when decomposing e to
transform the sub-expressions foo from the host language into the chosen
hardware description language describing the behaviour or architecture of
the corresponding entity.

118

CHAPTER 6
Programming with Data

Dependencies

DDA-based programming may seem pretty awkward at first encounter and,
without doubt, it takes a considerable amount of time to get into the right
mindset for it. It forces the programmer to think about data dependencies,
and to think about them in a completely new perspective. When dealing with
a given computation the underlying data dependency needs to be analysed
in order to capture it, if possible, and turned into real program code, instead
of just simply assuming its implicit existence. This involves the making
of several sketches, drawings etc. before coming up with a correct DDA
definition. DDA-visualization tools may help a good deal in verifying the
correctness of the DDA, since the generated graph laid out via the requests
should be the same as the one laid out via the supply directions. Then
the original computation needs to be re-formalised accordingly, so that the
data dependency – now as code, but separated in a modular way – will
become explicit in the whole computation. The rest is up to the DDA-
enabled compiler with execution schemes in place for various hardware.
The programmer should only specify which of these hardware is the target,
and embed the program DDA into the hardware space-time DDA by means
of additional DDA-projections.

DDA-based approaches are best suited when computations exhibit static,
scalable, repetitive patterns that do not depend on the value of the actual
input data. For instance, Quicksort’s dependency pattern depends on the
values of the pivots chosen at every step. Even if the pivot is chosen from
the same index, each different input array would create a different data

119

6. Programming with Data Dependencies

dependency pattern. This makes Quicksort ill-suited for DDA-based ap-
proaches. On the other hand, sorting algorithms that can be represented
as sorting networks, e.g. the bitonic sorting and odd-even merge sorting
are well-suited.1 Certain partial differential equations-based computational
problems, e.g. heat-flow in one dimension, or dynamic programming prob-
lems, e.g. the stagecoach problem, the combinatorial calculation of binomial
coefficients, optimal polygon triangulation, etc. are also well-suited. These
and other DDA-based solutions of DP-problems and of numerical compu-
tations are presented in [Haveraaen and Søreide, 1998; Raubotn, 2003].

This chapter illustrates DDA-programming through the elaboration of
DDA-based solutions for well-known computational problems and discusses
how the computations can be mapped onto various (parallel) hardware
from the same DDA-code. Computational solutions when targeting spe-
cific hardware are ususally characterised by the same property: the more
finely-tuned, super-optimized the code is for the specific hardware, the less
portable it is. DDA-abstractions, on the other hand, not only give a good
intuition into how to parallelize a given computation, but support portabil-
ity. The emphasis in our solutions is therefore not so much so on the “how
to” parallelize these computations – countless solutions can be found in the
literature –, but rather on “the high-level” that parallelization can be dealt
with from DDAs, under the flag of portability.

Section 6.1 discusses the bitonic sorting which is primarily based on
the presentation given in [Burrows and Haveraaen, 2009b], extended with
a discussion on how bitonic sorting can be mapped onto a shuffle network
based on its underlying DDA. Section 6.2 presents a DDA-based odd-even
merge sorting network, Section 6.3 defines the forward and inverse Fast
Fourier Transforms in terms of its underlying DDA, and Section 6.4 defines
a parallel prefix DDA based on the Sklansky construction.

6.1 Bitonic Sort DDA

This section presents the bitonic sorting as a fully worked example of DDA-
based programming. The bitonic sort is a well studied parallel sorting al-
gorithm [Grama et al., 2003], first presented by K.E. Batcher [Batcher, 1968].
It sorts n elements in parallel in Θ(log2n) time. The basic operation consists
of repeatedly merging bitonic sequences of increasing size into ascending

1A sorting network is a computational model consisting of horizontal wires (one for each
input) and a collection of two-sorters (each of these placed as a vertical segment on two of the
wires) such that these can be set in advance for a given sorting algorithm, regardless of the
actual inputs.

120

6.1. Bitonic Sort DDA

or descending sequences. A sequence is called bitonic when it is the jux-
taposition of an ascending and a descending sequence. In the beginning
we have bitonic sequences of length two, which are combined to bitonic
sequences of length four, and so forth. In the penultimate step we have a
bitonic sequence of the size of the input sequence, and in the final step this
last bitonic sequence is merged into a sorted sequence.

The data dependency of a bitonic sorter can be seen as a combination
of several butterfly DDAs of different height, see Fig. 6.1. At the top is one
butterfly of size h, underneath two butterflies of size h− 1, and so forth. At
the bottom are 2h−1 butterflies of height 1. Each sub-butterfly corresponds
to a bitonic merge. Bitonic sorting is defined then as min/max functions on
the points of this DDA.

Example 6.1.1. The bitonic sort DDA for 2h inputs, h ∈ N, DBSh, is defined by:

1. DDA point: BSh = sbf Nat * row Nat * col Nat | DIh where:

DIh(p) = (0<sbf(p)<=h) &&

((row(p)<sbf(p)) || (row(p)<=sbf(p) && sbf(p)=1)) &&

(col(p)<2h)

2. branch indices: B = {0, 1}

3. request components (rg,rp,rb)where:

rg(p,b) = (row(p)!=1) || (sbf(p)!=1)

rp(p,b) =

if (((sbf(p)>1) && (0<=row(p)<=sbf(p)-2)) ||

((sbf(p)=1) && (row(p)=0)))

if (b=0) BSh(sbf(p),row(p)+1,col(p))

else BSh(sbf(p),row(p)+1,flip(row(p),col(p)))

else if ((sbf(p)>1) && (row(p)=sbf(p)-1))

if (b=0) BSh(sbf(p)-1,0,col(p))

else BSh(sbf(p)-1,0,flip(row(p),col(p)))

rb(p,b) = b

4. supply components (sg,sp,sb)where:

sg(p,b) = (row(p)!=0) || (sbf(p)!=h)

sp(p,b) =

if ((sbf(p)!=h) && (row(p)=0))

121

6. Programming with Data Dependencies

if (b=0) BSh(sbf(p)+1,sbf(p),col(p))

else BSh(sbf(p)+1,sbf(p),flip(sbf(p),col(p)))

else if (((sbf(p)=1) && (row(p)=1)) ||

(sbf(p)>1) && (1<=row(p)<=sbf(p)-1))

if (b=0) BSh(sbf(p),row(p)-1,col(p))

else BSh(sbf(p),row(p)-1,flip(row(p)-1,col(p)))

sb(p,b) = b

The first projection sbf of the point sort BSh identifies the sub-butterfly’s
height, the row projection is the local row number in the sub-butterfly, while
col gives the global column number. Note that for the points which belong
to two sub-butterflies, we use the projections corresponding to the lower
butterfly.

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �� � � �� � � �

� � � �� � � �

� � � �� � � �

� � � �� � � �

� � � �� � � �

� � � �� � � �

M MM M

M M M M

M M M M

M M M M

M MM M

M M M M

m mm m

m m m m

m m m m

m m m m

m m m m

m m m m

000 001 010 011 100 101 110 111
(1,1)

(1,0)

(2,1)

(2,0)

(3,2)

(3,1)

(3,0)

22 Butterflies of height 1

21 Butterflies of height 2

20 Butterfly of height 3

Figure 6.1: Bitonic sort DDA for 23 inputs. The col projections of BS3 points are presented
in binary at the bottom. The sbf and row projection are presented as pairs on the left. At
each node, either a minimum (“m”) or a maximum (“M”) is computed.

122

6.1. Bitonic Sort DDA

The role of the outer conditionals is to determine where in the DDA
the point is situated (e.g. which sub-butterfly, which row within the sub-
buterfly), and the inner conditional simply distinguishes between the two
branch indices. Just as in the case of the butterfly DDA, branch index 0 is
used to label horizontal arcs, and branch index 1 to label arcs across for both
requests and supplies. The definition glues together butterflies of increasing
height on top of each other.

The computations to be performed at each node are defined next. The
array V represents the result of the entire computation, i.e., data for all
the steps of the bitonic sort. Let vi, i∈{0,1,. . . ,2h-1} be the input ele-
ments to be sorted. They reside on the bottom points of the DDA graph:
V[BSh(1,1,i)]=vi. We define a condition whether we should do a min-
imum or a maximum:

cond(p) = (bit(sbf(p),col(p)) = bit(row(p),col(p))

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �� � � �� � � �

� � � �� � � �

� � � �� � � �

� � � �� � � �

� � � �� � � �

� � � �� � � �

10 7 4 6

7 10 6 4

5 10 6 1

6 5 7 10

7 103 4

1 4 6 10

5 13 0

5 3 1 0

3 7 4 0

3 4 1 0

1 0 6 5

0 3 5 7

10 5 3 7 4 1 6 0
(1,1)

(1,0)

(2,1)

(2,0)

(3,2)

(3,1)

(3,0)

INPUT: as 4 bitonic sequences of length 2

2 bitonic sequences of length 4

1 bitonic sequence of length 8

OUTPUT: sorted sequence

Figure 6.2: Example of sorting 23 inputs. On the bottom nodes reside the actual initial data
values to be sorted. The rest of the nodes show the values V[p] computed at each time-step.
On the top row the initial data values have become sorted.

123

6. Programming with Data Dependencies

Here bit:Nat,Nat→Nat is a function, s.t., bit(i,n) extracts the ith bit from
the binary representation of the number n.

We can now define the expression V[p] to be computed for all p:BSh by:

repeat p:BSh along DBSh from V in

if cond(p) min(V[rp(p,0)],V[rp(p,1)])

else max(V[rp(p,0)],V[rp(p,1)])

To understand the computation defined by the repeat statement recall
that the expressions are guarded, so they will stay within the limits of the
DDA DBSh. The explanation below follows the imperative version of the
algorithm from Definition 5.2.1 (dependency-driven computation).

Accordingly, each point p is associated with a memory cell M[p][b] for
each b ∈ B, and the sub-expressions V[rp(p,b)] are replaced with M[p][b].
The computation is started by fetching the data vcol(p) and using this as
the value of V[p] for each point p at the bottom row. The value V[p] is
then supplied to the memory cells M[sp(p,b)][sb(p,b)] for every b∈B and
point p on the bottom row.

The computation proceeds, for each point p where the required memory
cells have been given a value, to compute the expression V[p]. This value is
then supplied to the memory cells M[sp(p,b)][sb(p,b)] for every b∈B.

The result of the computation are the values of V[p] for the points p on
the top row. Depending on the target machine they may remain in memory
for being used in future computations, or offloaded in some way or another.

Fig. 6.2 shows the result of the computations of the values V[p] on points
p:BS3 for a concrete initial data set.

How the computation actually proceeds through the DDA (row parallel,
a point at a time, or skewed in some strange way), can be controlled by
the embedding of the bitonic sort DDA into the space-time of a chosen
hardware architecture.

6.1.1 Embedding into a Shared Memory Model Architecture

If the hardware is comprised by a shared memory model architecture then
the embedding is given by a simple point projection.

Example 6.1.2. An embedding of a bitonic sort DDA for 2h inputs into a shared
memory STA of size 2h is given by EP:BSh→SMST2h as follows:

EP(p) = SMST2h(col(p),grow(sbf(p),row(p)))

where the function grow:Nat,Nat→Nat computes the global row number
of a point in the bitonic sort DDA based on the sub-butterfly and local row
numbers, defined by grow(b,r) = b(b-1)/2 + b-r.

124

6.1. Bitonic Sort DDA

Then the algorithm follows a row parallel execution model, either the
request or supply based space-time controlled repetitions as presented in
Definitions 5.3.2 and 5.3.6.

6.1.2 Hypercube Embedding

Example 6.1.3. An embedding of a bitonic sort DDA for 2h inputs into a hyper-
cube space-time DDA of dimension h is given by the functions (see Fig. 6.3):

EP(p) = HSTh(col(p),grow(sbf(p),row(p)))

ER(p,b) = if (b = 0) 0

else row(p)+1

ES(p,b) = if (b = 0) 0

else if (row(p) = 0) sbf(p)+1

else row(p)

We can now execute the bitonic sorter V on the hypercube. The steps for the
DBSh points p become iterations at each processor node(EP(p))=col(p) for
time-steps time(EP(p)): receive data from channels ER(p,b) for all relevant
b:B, compute V, and then send the result on channels ES(p,b) for all relev-
ant b:B. In the first step the initial values vcol(p) will reside in the memory of
the corresponding node, and in the final step the computed values (sorted
data) will also reside in the memory of the nodes.

If there are more data than processors, we introduce multiple memory
cells on each node. We will show this principle when discussing the GPU
version below.

6.1.3 CUDA Embedding

Example 6.1.4. An embedding of DBSh into DCUSTB,T where 2h<=B*T becomes:

EP(p) = CUSTB,T(CUBB,T(col(p)/T,col(p)%T),grow(sbf(p),row(p)))

ER(p,b) = CUBB,T(col(rp(p,b))/T,col(rp(p,b))%T)

ES(p,b) = CUBB,T(col(sp(p,b))/T,col(sp(p,b))%T)

where rp and sp are the request and supply functions of DBSh.

Note that the explicit definition of ER(p,b) and ES(p,b) are in fact su-
perfluous. As discussed earlier in Section 4.3.5 they are deductible from EP,
for instance, ER(p,b)=space(EP(rp(p,b))).

We see that the bitonic sort will be split across several kernels, as ap-
pointed by the kernel scheduler, in order to communicate between blocks

125

6. Programming with Data Dependencies

for the wider branches. The process in each thread will receive data by
reading from the memory location corresponding to the channel given by
CUBB,T. If this channel is across block numbers, then the read is from the
global GPU memory. Otherwise it is local block memory. Then the appro-
priate min/max values are computed, and data is stored in the appropriate
CUBB,T memory location. Inter-block storage means storing in the global
GPU memory. Storage to global GPU memory also takes place at the end
of the kernel. With this strategy, the initial data sets are stored in the relev-
ant locations on the global GPU memory, and the result of the bitonic sort
algorithm likewise ends in the global GPU memory.

Fig. 6.4 illustrates the embedding for T=4 and B=4. Data shared within
one block is through fast shared memory. When the edges of the bitonic
sort DDA graph intersects block borders, threads of different blocks need
to share data via the global GPU memory. The darker grey frames across

� � � � � � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � � � � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � � � � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � � � � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � � � � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � � � � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �� � � �� � � �

� � � �� � � �

� � � �� � � �

� � � �� � � �

� � � �� � � �

� � � �� � � �
0 1 2 3 4 5 6 7

(1,1)

(1,0)

(2,1)

(2,0)

(3,2)

(3,1)

(3,0)

Figure 6.3: Bitonic sort DDA for 23 inputs embedded into the hypercube space-time DDA
of dimension 3 for 7 time-steps. Request and supply branches of the bitonic sort DDA (thick
lines) are mapped to hypercube communication channels.

126

6.1. Bitonic Sort DDA

all threads highlight this: threads write to the GPU memory, the kernel
terminates, and control is handed over to the host, which invokes a new
kernel with threads first fetching data from the GPU memory.

Note that the address splitting technique used here between blocks and
threads, also can be used to split large networks between nodes and local
memory on, e.g., a hypercube architecture.

BLOCK 0 BLOCK 1 BLOCK 2 BLOCK 3

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �

	 	 	 	 	 	 	 	

0

1

2

3

4

5

6

7

8

9

10

Figure 6.4: Bitonic sort DDA for 24 inputs, embedded into NVIDIA’s CUDA programming
model, executed by 4 kernel invocations, each consisting of 4 blocks of threads.

127

6. Programming with Data Dependencies

6.1.4 Shuffle Network

There exists several repetitive network implementations for the bitonic sort-
ing based on the perfect shuffle, e.g. Stone [1971]’s one-stage perfect shuffle
or the more efficient recirculating bitonic sorting network of Lee and Batcher
[2000]. In both cases additional mechanisms are imposed on the network in
order to ensure right dataflow, or to achieve better running time perform-
ance.

(3,2)

(2,1)

(2,0)

(3,3)

(1,0)

(2,2)

(1,1)

(3,1)

mm MM MM mm mm MM MM mm

p p p p p p p p

mm mm MM MM MM MM mm mm

mm MM mm MM MM mm MM mm

p p p p p p p p

mm mm mm mm MM MM MM MM

mm mm MM MM mm mm MM MM

mm MM mm MM mm MM mm MM(3,0)

Figure 6.5: The alternative bitonic sort DDA with extra communication steps between
sub-butterfly levels for 23 inputs. Nodes are annotated with computational expression labels:
m stands for minimum, M stands for maximum and p stands for pass-on (equivalent to
identity).

128

6.1. Bitonic Sort DDA

The bitonic sort DDA the way it is defined, is not suitable for map-
ping it onto an omega network directly. Applying the shuffle projection
on its points (see Sec. 4.4), will result in an irregular succession of differ-
ent shuffles. However, if the DDA is defined such that the sub-butterflies
are not glued together, but pasted with an extra one-step communication,
then the pattern will become more regular. In the following a DDA-based
shuffle network implementation is sketched for the bitonic sorting based on
this extended version of the bitonic sort DDA. The implementation-sketch
underlines the role of DDA-projections in the design process.

In the new bitonic sort DDA new horizontal arcs are added between each
level where sub-butterflies meet, one for each point (Fig. 6.5). This increases

(2,1)

(2,2)

(2,0)

(1,0)

(1,1)

(b)

(4,2)

(3,0)

(4,4)

(4,3)

(3,2)

(3,1)

(3,3)

(4,1)

(a)

(4,0)

Figure 6.6: The alternative bitonic sort DDA with extra communication steps between sub-
butterfly levels for 24 inputs. (a) Layout with the usual row and col projections. (b) Shuffle
layout with the alternative column projection ShuffleCol.

129

6. Programming with Data Dependencies

the DDA height with h-1, and the number of points with (h− 1) ∗ 2h. Ac-
cordingly, sbf(p) at the points of the bottom rows of each sub-butterfly will
now return the actual sub-butterfly index, unlike before when they poin-
ted to the sub-butterfly below, and row(p)=sbf(p) instead of 0 for these
points now. The effect of the computation at any of these new points is the
passing-through of data (equivalent to the identity function): it receives the
data along the new arc from the point right below and it passes it on.

Then the shuffle projection ShuffleCol(p) = ShR(col(p),row(p))will
turn every level of the DDA into a perfect shuffle, apart from the new con-
necting levels (see Fig. 6.6.b). Here the arcs instead of a perfect shuffle will
show a different permutation, depending on how many steps are skipped
in an imaginary omega network. Hence we will refer to these as the hopping
shuffle permutations. (Remember that an omega network is a h-step intercon-
nection of 2h-keys perfect shuffles, so that in the end the keys get back to
their original positions.)

Figure 6.7: The schematic overview of a DDA-based shuffle network performing bitonic
sorting of 23 inputs. (The dataflow is now identical with the direction of the arrows.)

130

6.2. Odd-Even Merge Sort

In contrast to the shuffle networks proposed by [Lee and Batcher, 2000;
Stone, 1971] which are based on 2h−1 identical comparators at the pro-
cessing level, the DDA-based shuffle network is based on 2h processing
elements (PEs), each running the same code. In addition, there are 2h stor-
age registers, and the network is endowed with a permuting switch control
that performs the hopping shuffle permutation. A schematic overview of
such a network is presented in Fig. 6.7.

The whole computation is controlled by a global time-counter corres-
ponding to the new bitonic sort DDA global time projection, so that TMAX =
h*(h+1)/2 + h-1 is the final time-step. The code running on the PEs com-
putes either the minimum or the maximum of the corresponding register
values depending on the condition defined on the DDA point projected
onto the given PE at the global time-step.

The computation starts up by placing the inputs into the registers in a
shuffled order, i.e. register RShR(i,1) receives input data indexed by i, and
the global time-counter is set to 1. Then each PE deduces from the global
time-step and its PE-index which DDA point is assigned to it. PE Pi at time-
step t is dealing with a computation assigned via a DDA-projection s.t. i
= ShR(col(p),row(p)). From the global time-step t, given the new bitonic
sort DDA structure, it can always be deduced the actual value of row(p)
(and of sbf(p)). From this we obtain col(p) = ShL(i,row(p)), where ShL
is the inverse of ShR. Which leads us back to the point p for which V[p]
is to be computed by PE Pi. When all PEs have finished computing this,
it is checked if a hopping shuffle permutation is needed before the data is
passed on to the next network cycle:

• If row(p)!=0, the data is passed through the permuting switch control
via its original track, and the time-counter is increased by 1.

• If (row(p)=0) && (t<TMAX), then the data is passed through the per-
muting switch control requesting that the output of Pi should be po-
sitioned to the track ShR(i,sbf(p)+1), and the time-counter is in-
creased by 2. This step corresponds to the hopping shuffle permuta-
tion.

• If t=TMAX, i.e., the elements have been sorted, the data is passed through
the switch control via its original track and the result will reside in the
registers, in the natural order of register indices.

6.2 Odd-Even Merge Sort

The odd-even merge sort is another fast sorting network presented by K.E.
Batcher alongside the bitonic sort [Batcher, 1968]. It sorts n elements in

131

6. Programming with Data Dependencies

Θ(log2 n) time in parallel. The network is based on the repeated merging
of ascendingly-ordered sequences of increasing size into one ascendingly-
ordered sequence. The merging of two sequences of size one consists of just
a simple comparison. The merging of larger ascendingly-ordered sequences
is defined recursively by presenting the odd-indexed elements of both se-
quences to a smaller merge (the odd-merge) and the even-indexed elements
of both sequences to another smaller merge (the evenmerge), and then com-
paring the results of these smaller merges with a row of pairwise comparis-
ons. In the beginning we merge sequences of size one (simple comparison)
into ascendingly-ordered sequences of size two. These are then merged to
ascendingly-ordered sequences of length four, and so forth.

The data dependency of the odd-even merge sorting is presented next
when n is a power of two (see Fig. 6.8). The merging steps will define
distinguishable sub-patterns of increasing size. The first projection of the
DDA point sort identifies the height of a sub-merge step, the row projection
is the local row number in a sub-merge, while col gives the global column
number. Similarly to the bitonic sort DDA (as first presented), for the points
which belong to two sub-merges, the row and sm projections refer to the
lower sub-merge. All vertical arcs are labelled with 0 and all arcs across are
labelled with 1.

Example 6.2.1. The odd-even merge sort DDA for 2h inputs, h ∈ N, DOEMSh is
defined by:

1. DDA point: OEMSh = sm Nat * row Nat * col Nat | DIh where:

DIh(p) = (0<sm(p)<=h) &&

((row(p)<sm(p)) || (row(p)<=sm(p) && sm(p)=1)) &&

(col(p)<2h)

2. branch indices: B = {0, 1}

3. request components (rg,rp,rb)where:

rg(p,b) = !((row(p)=1) && (sm(p)=1)) && !(pass(p) && (b=1))

rp(p,b) =

if (row(p) <= sm(p)-2 || sm(p)=1)

if (b=0) OEMSh(sm(p),row(p)+1,col(p))

else if max(p) OEMSh(sm(p),row(p)+1,col(p)-2
row(p))

else OEMSh(sm(p),row(p)+1,col(p)+2
row(p))

else

132

6.2. Odd-Even Merge Sort

if (b=0) OEMSh(sm(p)-1,0,col(p))

else if max(p) OEMSh(sm(p)-1,0,col(p)-2
row(p))

else OEMSh(sm(p)-1,0,col(p)+2
row(p))

rb(p,b) = b

4. supply components (sg,sp,sb)where:

(1,1)

(1,0)

(4,0)(4,0)

(4,2)

(3,1)

(3,0)

(4,3)

(2,0)

(3,2)

(2,1)

(4,0)

(4,1)

(4,0)

m MMm m MMm m MMm m MMm m MMm m MMm m MMm m MMm

m Mm MMm Mm m Mm MMm Mm m Mm MMm Mm m Mm MMm Mm

p m MMm p p m MMm p p m MMm p p m MMm p

m Mm Mm Mm MMm Mm Mm Mm m Mm Mm Mm MMm Mm Mm Mm

p p m Mm MMm Mm p p p p m Mm MMm Mm p p

p m MMm m MMm m MMm p p m MMm m MMm m MMm p

m Mm Mm Mm Mm Mm Mm Mm MMm Mm Mm Mm Mm Mm Mm Mm

p p p p m Mm Mm Mm MMm Mm Mm Mm p p p p

p p m Mm MMm Mm m Mm MMm Mm m Mm MMm Mm p p

p m MMm m MMm m MMm m MMm m MMm m MMm m MMm p

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 6.8: The odd-even merge sort DDA for24 inputs. Nodes are annotated with compu-
tational expression labels: m stands for minimum, M stands for maximum and p stands for
pass-on (equivalent to identity).

133

6. Programming with Data Dependencies

sg(p,b) = !((row(p)=0) && (sm(p)=h)) &&

!((row(p)>=1) && (b=1) &&

pass(OEMSh(sm(p),row(p)-1,col(p))))

sp(p,b) =

if (row(p) = 0)

if (b=0) OEMSh(sm(p)+1,sm(p),col(p))

else if max(OEMSh(sm(p)+1,sm(p),col(p)))

OEMSh(sm(p)+1,sm(p),col(p)-2
sm(p))

else OEMSh(sm(p)+1,sm(p),col(p)+2
sm(p))

else if (b=0) OEMSh(sm(p),row(p)-1,col(p))

else if max(OEMSh(sm(p),row(p)-1,col(p)))

OEMSh(sm(p),row(p)-1,col(p)-2
row(p)−1)

else OEMSh(sm(p),row(p)-1,col(p)+2
row(p)−1)

sb(p,b) = b

where pass:OEMSh→bool and max:OEMSh→bool are two functions defined
on points p:OEMSh as follows:

pass(p) = (row(p) < sm(p)-1) &&

((col(p)%2sm(p) < 2row(p))||(2sm(p)-2row(p) <= col(p)%2sm(p))

max(p) =

((row(p)<sm(p)-1) && !(pass(p)) && (col(p)%2row(p)+1<2row(p)))

||

((row(p)=sm(p)-1) && (2row(p)<=col(p)%2row(p)+1))

The above definition, cumbersome as it is, can be easily decoded by fol-
lowing the meaning of the DDA-projections and constructor in Fig. 6.8. The
auxiliary boolean functions pass and max capture common properties of the
DDA points. E.g. each point for which pass(p) holds receives data along
only one vertical arc. All points for which max(p) holds receive data along
a vertical arc and one which is descending to the left from that point. All
the rest of the points, for which none of the above properties hold, receive
data along a vertical arc and one which is descending to the right. Altern-
atively, one could have chosen a larger set of branch indices to differentiate
between left-descending and right-descending arcs, and so on. That could
have resulted in simpler DDA code, but in turn it would have complicated
the expression inside the repeat statement. As we shall see, the auxiliary
functions will make the latter fairly straightforward. In the definition of
requests, the auxiliary functions are applied directly to the point in case. In

134

6.2. Odd-Even Merge Sort

the definition of supplies, they are applied to the point right above the point
in case, hence the use of the constructor OEMSh in the argument of pass and
max in the definitions of sg and sp, respectively.

The basic operations of the odd-even merge sort are the usual minimum
and maximum, and in addition there is the identity or pass-on computation,
in which data is received and passed-on along each supply arc without any
change. The predicates we used in the definition of the DDA now come in
very handy. They also help to differentiate between the points as far as the
computation at that point is concerned.

Given an array V with element type E and index type OEMSh, the ex-
pression V[p] to be computed for all p:OEMSh will be given by the repeat
statement as follows:

repeat p:OEMSh along DOEMSh from V in

if (pass(p)) V[rp(p,0)]

else if (max(p)) max(V[rp(p,0)],V[rp(p,1)])

else min(V[rp(p,0)],V[rp(p,1)])

The embedding of the computation is again controlled by defining em-
bedding projections for DOEMSh into the space-time of an available hardware
architecture. If this is a shared memory model architecture the embedding
projection is similar to the one defined for the bitonic sort DDA:

EP(p) = SMST2h(col(p),grow(sm(p),row(p)))

Regarding the hypercube, we see that DOEMSh is not sub-isomorphic
to DHSTh, hence one could only attempt to define embeddings which re-
quire multiple-step communication channels on the hypercube. A theory
for multiple-step communication embeddings can be found in [Haveraaen,
2009].

A Cuda embedding projection, on the other hand, is easily defined:

EP(p) = CUSTB,T(CUBB,T(col(p)/T,col(p)%T),grow(sm(p),row(p)))

This will partition the threads in a similar manner as presented for the
bitonic sort DDA in Fig. 6.4. However, remember that embeddings for the
same hardware architecture can be defined in many different ways by modi-
fying the point projections. Consider the following alternative Cuda embed-
ding projection:

EP’(p)=

if (sm(p)=h) CUSTB,T(CUBB,T(ShRh(col(p),1)/T,ShRh(col(p),1)%T),

grow(sm(p),row(p)))

else CUSTB,T(CUBB,T(col(p)/T,col(p)%T),grow(sm(p),row(p)))

135

6. Programming with Data Dependencies

Fig. 6.9 illustrates the result of this projection. We can see that it is
only the layout of the top sub-merge which differs from the one in Fig. 6.8,
and for the better. When the number of threads T is chosen to be half of
the number of inputs, T=2h−1, then the number of kernel invocations is
significantly reduced in the last sub-merge. Here less branches cross over
block boundaries, hence there is no need for a new kernel invocation at
every time-step (of the last sub-merge).

BLOCK 0 BLOCK 1

Figure 6.9: The odd-even merge sort DDA for 24 inputs with Cuda embedding projections
given by EP’ for T=8 and B=2. The embedding induces only 3 kernel invocations.

136

6.3. Fast Fourier Transform

6.3 Fast Fourier Transform

The Discrete Fourier Transform (DFT) is a linear transformation applied to a
function over a discrete domain, e.g. time, in order to turn it into a func-
tion over another domain, e.g. frequency. DFT plays an important role in
countless scientific and technical applications, for instance time series and
waveform analysis, solving partial differential equations in computational
fluid dynamics, digital signal processing, multiplying large polynomials,
etc. [Bergland, 1969; Emiris and Pan, 2010]

The input of DFT can be seen as a sequence of n ∈ N complex numbers
X = {x0, x1, . . . , xn−1} which is transformed by DFT into the sequence of
complex numbers Y = {y0, y1, . . . , yn−1} by the formula:

yi =
n−1

∑
k=0

xkωik i = 0, . . . , n− 1 (6.1)

where ω = e
2πi
n is a primitive n-th root of unity (see Section 3.1.2). The

powers of ω in the formula are usually referred to as twiddle factors.
Then the inverse DFT is given by the formula:

xk =
1
n

n−1

∑
i=0

yiω
−ik k = 0, . . . , n− 1

The time complexity of computing Y by the formula (6.1) is character-
ized by Θ(n2) operations (multiplication and addition of complex num-
bers). Since DFT has been used in many scientific applications, the ma-
chine calculation of these complex Fourier series needed to be optimised.
As a result many efficient algorithms have been proposed along the years,
which commonly are referred to as Fast Fourier Transform (FFT) algorithms.
[Duhamel and Vetterli, 1990]

By far the most common FFT is the Cooley–Tukey algorithm, based on
a divide and conquer technique that recursively breaks down a DFT into
smaller DFTs. [Cooley and Tukey, 1965] In general the Cooley–Tukey FFT
algorithms reduce the complexity to Θ(n log n). When n is a power of two,
and applying the property ωk = −ωk+ n

2 on the twiddle factors, the com-
plexity can be further reduced to Θ(n2 log n).

We will present now a DDA-based version of the radix-2 FFT, one of the
most well-known Cooley–Tukey algorithm, in which the split is of factor 2
at every step, and n is assumed to be a power of two.

Following [Grama et al., 2003, p. 538], equation (6.1) can be transformed
into:

137

6. Programming with Data Dependencies

yi =
(n/2)−1

∑
k=0

x2kω̃ik +
(n/2)−1

∑
k=0

x2k+1ω̃ik (6.2)

where ω̃ = e
2πi
n
2 = ω2 is a primitive n

2 -th root of unity.
Each summation of the formula (6.2) is now a DFT of size n

2 . These can
be further divided in a recursive manner, such that the maximum number
of levels of recursion is log n for any initial sequence of length n. At the
deepest level of recursion (row 1 in Fig. 6.10), the elements of the sequence
whose indices differ by n

2 are used in the computation. In each subsequent
level, the difference between the indices of the elements used together in a
computation decreases by a factor of two. This leads to the usual butterfly
dependency which here is topped with an extra dataflow level responsible
for shuffling the output (of row 3) into a bit-reverse order, so that the indices
of the initial sequence and the final sequence become aligned.

This dependency is defined next as a DDA. The branch index used in
the shuffling will be 0. The branch indices used on the butterfly will be
as usual: all horizontal branches will have branch index 0 and all branches
across will have branch index 1.

Example 6.3.1. The Radix-2 Fast Fourier Transform DDA for 2h inputs, h ∈ N,
DFFTh, is defined by:

1. DDA point: FFTh = row Nat * col Nat | DIh where:

DIh(p) = (row(p)<=h+1) && (col(p)<2h)

2. set of branch indices: B = {0, 1}

3. request components (rg,rp,rb)where:

rg(p,b) = (row(p)>0) && ((row(p)<h+1)||(b=0))

rp(p,b) = if (row(p)=h+1) FFTh(h,revh(col(p)))

else if (b=0) FFTh(row(p)-1,col(p))

else FFTh(row(p)-1,flip(row(p),col(p)))

rb(p,b) = b

4. supply components (sg,sp,sb)where:

sg(p,b) = (row(p)<=h) && ((row(p)<h)||(b=0))

sp(p,b) = if (row(p)=h) FFTh(h+1,revh(col(p)))

else if (b=0) FFTh(row(p)+1,col(p))

else FFTh(row(p)+1,flip(row(p)+1,col(p)))

sb(p,b) = b

138

6.3. Fast Fourier Transform

where flip(i,m) flips the ith bit in the binary representation of m, and
revh(m) reverses the bits-order in the h-bit binary representation of m.

Let V be an array with index type FFTh and some element type C cor-
responding to complex numbers. V is initialised with the input sequence
of type C, x[0],x[1],...,x[n-1], such that V[FFTh(0,i)]=x[i] for all
i:{0,1,...,n-1},where n=2h. That is, all input values reside on the bottom
row of the DDA.

Then the forward FFT computation is given by the following repeat
statement, where w denotes ω, the primitive n-th root of unity, and >> stands
for the bit-wise shift operation:

repeat p:FFTh along DFFTh from V in

if (row(p)<h+1)

if (col(p)<col(rp(p,1)))

V[rp(p,0)] + V[rp(p,1)]*wrevh(col(p)>>h−row(p))

else V[rp(p,1)] + V[rp(p,0)]*wrevh(col(p)>>h−row(p))

else V[rp(p,0)]

1

0

2

3

4

0 1 2 3 4 5 6 7

0
0
0
0

0
0 00 0 0 0 0

4444

0 0 0
0

0 4 40 0 0 0 0 6622

0 00 4 0 2 0 6 1 0 50 0 03 7

Figure 6.10: The Radix-2 Fast Fourier Transform DDA for 23 inputs. Branches are weighed
here with the twiddle factor exponents to illustrate how these fold out in the recursion, though
note that these are not part of the DDA itself. It will be in the computation that the twiddle
factor is multiplied with the value received along the corresponding request direction before
the summation takes place at each point of the rows 1-3.

139

6. Programming with Data Dependencies

Then the result of the Fourier transform will reside on the top row of
the DDA. If {y[0],y[1],...,y[n-1]} is the desired output sequence, then
y[i]=V[FFTh(h+1,i)].

When it comes to the inverse FFT, the underlying dependency remains
unchanged. The expression inside the repeat statement needs changing
only: we use w−1 as the base of twiddle factors, and in the last step we
apply complex number division by 2h on the result.

Let W be an array with index type FFTh and element type C. Initial values
are assigned again to the bottom row of the DDA, and the result will reside
on its top row.

repeat p:FFTh along DFFTh from W in

if (row(p)< h+1)

if (col(p)<col(rp(p,1)))

V[rp(p,0)] + V[rp(p,1)]*w−revh(col(p)>>h−row(p))

else V[rp(p,1)] + V[rp(p,0)]*w−revh(col(p)>>h−row(p))

else V[rp(p,0)]/2h

Note that making the bit-reverse shuffle part of the DDA, DFFTh be-
comes less suitable for a direct embedding onto the hypercube though the
butterfly pattern itself matches beautifully with the hypercube. The altern-
ative would be to define the FFT computations on the butterfly dependency
DBFh, defined earlier. Then the result can be retrieved by applying the bit-
reverse directly, e.g., y[i]=V’[BFh(0,revh(i)] (in DBFh the top row is 0),
assuming that V’ is an array idexed by BFh and its values are computed by
a corresponding repeat statement defined on DBFh.

On the other hand, leaving the bit-reverse shuffle as part of the DDA
makes DFFTh more suitable as a building block DDA when creating com-
pound DDAs (see Chapter 7.2.3).

Regarding the other hardware architectures, DFFTh can be easily embed-
ded into any shared memory model architecture or Cuda STA by simply
defining point projections from the FFTh into the given architecture’s space
and time coordinates.

6.4 The Sklansky Parallel Prefix Network

A parallel prefix network or scan commonly refers to a parallel implementa-
tion of the all-prefix-sums operation which given a sequence x0, x1, . . . xn−1
calculates the sums of the prefixes, i.e., it outputs the sequence y0, y1, . . . yn−1
such that yi = x0 ◦ x1 ◦ . . . ◦ xi for all 0 ≤ i ≤ n− 1, where the sum operation
◦ apparently stands for any associative binary operator [Blelloch, 1990].

140

6.4. The Sklansky Parallel Prefix Network

Parallel prefix networks are considered fundamental algorithms in com-
puter science since they provide parallel implementations of an otherwise
inherently sequential problem. They have many applications, for instance,
polynomial evaluation, binary addition, string comparison, lexical analysis
just to mention a few [Blelloch, 1990], and they also form important build-
ing blocks in modern microprocessors, for instance, in the implementation
of fast adders. Therefore the search for efficient parallel prefix networks still
plays a central role in circuit design [Sheeran, 2010].

The minimum possible depth of a parallel prefix network of width n
is �log n�. This bound is obtained by a usual divide and conquer pattern,
and is usually attributed to [Sklansky, 1960] (see Fig. 6.11). The Sklansky
construction recursively computes the parallel prefix sum for each half of its
inputs, and then combines the last output of the left half with each output
of the right half. The underlying dependency of this network is defined
next.

Example 6.4.1. We define the Sklansky Parallel Prefix Network DDA for 2h

inputs, h ∈ N, DSKh, as follows:

1. DDA sort: SKh = row Nat * col Nat, with data invariant:

DI(p) = (row(p)<=h) && (col(p)<2h)

2. branch indices: B = {0,1,2,...,2h−1}

3

1

2

0

4

11 12 13 14 1510983 4 5 6 7210

Figure 6.11: Sklansky parallel prefix network DDA for 24 inputs.

141

6. Programming with Data Dependencies

3. request components (rg,rp,rb)where:

rg(p,b) = (row(p)>0) && (b<=1) && (isSum(p) || (b=0))

rp(p,b) =

if (b=0) SKh(row(p)-1,col(p))

else SKh(row(p)-1, (col(p)/2
row(p))*2row(p) + 2row(p)−1 -1)

rb(p,b) = if (b=1) col(p)-col(rp(p,b))

else 0

4. supply components (sg,sp,sb)where:

sg(p,b) = (row(p)<h) && (b<=2row(p)) &&

(isBcast(p) || (b=0))

sp(p,b) = if (b=0) SKh(row(p)+1,col(p))

else SKh(row(p)+1,col(p)+b)

sb(p,b) = if (b=0) 0 else 1

where isSum:SKh →bool and isBcast:SKh →bool are boolean functions
defined by:

isSum(p) = (2row(p)−1 <= col(p)%2row(p) < 2row(p))

isBcast(p) = (col(p) = (col(p)/2row(p)+1)*2row(p)+1)+2row(p) -1

All vertical arcs are denoted by 0 at both ends. Branch indices used for
request directions are either 0 or 1. A point has two request directions only
when isSum(p) is true. This means that a sum operation is to be performed
at the point. Otherwise, the point has only one request direction denoted
by branch index 0. Then the computation to be performed at the point is
equivalent to the identity function. Supply directions are denoted by branch
indices: 0, 1, . . . , 2row(p) for a given point p:SKh. However, branch indices
1, . . . , 2row(p) will only exist for those points which have to broadcast their
computed values to exactly 2row(p)+1 points, i.e., whenever isBcast(p) is
true. Otherwise p only broadcasts along branch index 0 upward.

142

6.4. The Sklansky Parallel Prefix Network

Let V be an array indexed by SKh and some element type E. Assume
that all input values have been assigned, that is, V[SKh(0,i)]=xi for all
i∈{0,1,...,2h-1}. Further, let TP:SKh→Bool be a target for SKh defined
by TP(p) = (row(p)=h). Then the parallel prefix sums will be computed
by the following targeted repeat statement such that yi=V[SKh(h,i)] for all
i∈{0,1,...,2h-1}:

repeat p:SKh along DSKh from V for TP in

if isSum(p) V[rp(p,0)]+V[rp(p,1)]

else V[rp(p,0)]

BLOCK 0 BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4 BLOCK 5 BLOCK 6 BLOCK 7

Figure 6.12: Sklansky parallel prefix network DDA for 25 inputs embedded into CUDA by
EP for T=4, executed by 4 kernel invocations.

BLOCK 1BLOCK 0 BLOCK 2 BLOCK 3

Figure 6.13: Sklansky parallel prefix network DDA for 25 inputs embedded into CUDA by
EP for T=8, executed by 3 kernel invocations.

143

6. Programming with Data Dependencies

The Sklansky DDA can be easily embedded into any shared memory
model architecture or Cuda STA by defining point projections from the SKh
into the given architecture’s space and time coordinates. For Cuda this will
become for all p:SKh:

EP(p) = CUSTB,T(CUBB,T(col(p)/T,col(p)%T),row(p))

Depending on the choice of T, the number of kernel invocations determ-
ined by the kernel scheduler will vary. Fig. 6.12 and 6.13 illustrate the
embeddings defined by EP for different choices of T.

6.5 Tools

Graphical tools that make data dependencies evident are essential in par-
allel processing. We built a small visualization tool that taking a DDA-
implementation, generates either xFig or Matlab descriptions, targeting 2D
or 3D visualizations, respectively.

All DDA-examples presented here have been coded in C and tested by
the visualization tool, which has been also used to generate the underlying
DDA-drawings. The benefits of the visualization tool are three-folded:

1. it tests the correctness of the DDA-implementation: as a straightforward
consequence of the symmetric properties of the DDA-axioms, a DDA-
drawing generated via the supply directions should be identical with
the layout generated via the request directions.

2. it helps to define embeddings into hardware space-time coordinates: for in-
stance, in case of CUDA, it helps in choosing the right size parameters
for the GPU kernel so that the number of kernel invocations may be
optimal. Likewise, for the same hardware, different embedding pro-
jections can instantly be visualized and compared with each other.

3. it gives an intuition about what is happening at a large scale: since the num-
ber of inputs can be arbitrarily modified in the tool, one can inspect
the dependency for larger problem sizes, and more over, with various
embedding projections. This may provide insight, for instance, into
how to achieve some efficiency goals in trying to avoid certain kinds
of network congestion, e.g., see Fig. 6.14.

144

6.6. Experiments

6.6 Experiments

The DDA-based implementations of the computational mechanisms instan-
tiated for the examples of this chapter have been primarily handcoded.
They followed request based execution models optimised for sharedmemory
usage and targeting sequential and CUDA architectures. These experiments
provided us with the insight to formalise the execution models devised for
the general cases presented in Chapter 5.

It is beyond the purpose of this dissertation to evaluate the efficiency
of the dependency-driven implementations against handcoded parallelised
versions known from the literature. This surely will become a task when a
fully working DDA-based compiler will be in place. Our focus, for the mo-
ment, has been primarily portability, and efficiency issues were addressed
within the “constraints” of portability.

We present now some running time comparisons for the bitonic sort. The
results were collected by comparing two dependency-driven bitonic sorters
based on the bitonic sort dependency and the corresponding expression
described in Section 6.1. The first implementation was a sequential C pro-
gram, and the second a parallel CUDA program targeting Nvidia GPUs.
The bitonic sort dependency was implemented in a separate module (C
header file), so that both implementations could use the same module2.

The sequential DDA-based bitonic sorter was tested on an AMD Ath-
lon 64 X2 Dual Core processor against the classic divide-and-conquer im-
plementation of bitonic sort, see Fig. 6.15.a. Experiments show that the
dependency-driven computation is 1.4 times slower than the classic one.
This should not come as a surprise, if we think about the machinery that

2In case of the CUDA-implementation CUDA-specific keywords needed to be inserted in
front of the function declarations, but the rest of the module remained intact.

Figure 6.14: Generated bitonic sort dependency for 512 inputs.

145

6. Programming with Data Dependencies

drives the computation (various DDA function calls, projection-, constructor-
calculations, etc. at every step). A rigorous profiling could probably help to
optimise the DDA-module, but we did not look into this closely.

On the other hand, the DDA-abstraction made it pretty easy to port the
dependency-driven bitonic sorter to CUDA. We compared the sequential
DDA-based bitonic sorter against the CUDA implementation. The latter
was tested on the above mentioned CPU together with Nvidia GeForce 9600
GT and Nvidia GeForce GTS 250, respectively. Fig. 6.15.b summarises the
results over these platforms. The speedup when going parallel is significant:
the parallel version runs 7− 11 times faster than the sequential version.

While our dependency-driven CUDA-implementation compared to fine-
tuned, sophisticated, and in most cases hybrid GPU sorting algorithms
[Govindaraju et al., 2006; Satish et al., 2009; Sintorn and Assarsson, 2008] is
probably less efficient, the experiments underpin that DDA-based program-
ming is highly portable and flexible, making the approach promising for
parallel computing.

Figure 6.15: a) DDA-based bitonic sort vs. classical bitonic sort running times on the
same CPU. b) DDA-based bitonic sort running times on various platforms.

146

CHAPTER 7
Algebraic Properties of DDAs

Haveraaen [2009] showed how complex DDAs can be built from simpler
ones using various DDA-product-like constructors and investigated their
properties. One of these products is the underlying construct for defining
the space-time communication structure of a hardware as a space-time DDA
(see Section 4.3). This can be seen as a construct of two DDAs: the hardware
DDA (describing the hardware’s static connectivity) projected over time (a
linear-time DDA).

In this chapter we look into other ways of building DDAs, possibly more
complex ones. It starts up with a formal presentation of various mechan-
isms that allow the building of compound DDAs from existing ones. Then
it introduces some language constructs to denote their pragmatic counter-
parts for programming. The purpose is to allow the user to combine exist-
ing DDA implementations via high-level language constructs, and let the
compiler generate the corresponding new compound DDA’s implementa-
tion according to the formal definitions. We also discuss some aspects of
this related to the repeat statement. Finally, we start on the investigation of
a theory that allows the building of user-controlled tools which can identify
situations when the combining of DDAs could result in optimized code.

7.1 DDA-Combinators

Some of the DDA-constructs discussed in this section are primarily inspired
by the Lava serial and parallel composition combinators [Bjesse et al., 1999;

147

7. Algebraic Properties of DDAs

Claessen et al., 2003]. Lava is a domain specific languages embedded in
the functional programming language Haskell. It is designed to help spe-
cify the layout of circuits in order to improve performance and reduce area
utilization.

In the fashion of Lava combinators, DDAs can be either combined relat-
ive to each other with no communication, i.e. in parallel – along space, or
connected serially with explicit communication – along time.

In addition to these, the sub-DDA-combinator and the nesting-DDA-
combinator are presented. The first entails the selection of a sub-DDA of an
existing DDA, the latter provide means for more elaborate constructions.

7.1.1 The Parallel DDA-Combinator

Intuitively, the parallel DDA-combinator allows two (possibly different)
DDAs to be placed next to each other in space, thus resulting in a new,
larger DDA. All points and all dependency arcs from both DDAs are pre-
served, no new points nor new dependency branches are being created.

Definition 7.1.1 (Parallel DDA-Combinator). Let D1 = 〈P1, B1, req1, sup1〉
and D2 = 〈P2, B2, req2, sup2〉 be two DDAs. Then the parallel combination of
D1 and D2 is a 4-tuple

D1 ‖ D2 De f
= P = 〈PP , BP , reqP , supP〉

where:

• PP = P1
 P2,

• BP = B1 ∪ B2

• reqP consists of (rPg , r
P
p , r

P
b) where:

rPg (〈n, i〉, d) = (d ∈ Bi) ∧ rig(n, d)

rPp (〈n, i〉, d) = 〈rip(n, d), i〉

rPb (〈n, i〉, d) = rib(n, d)

• supP consists of (sPg , sPp , sPb) where:

sPg (〈n, i〉, d) = (d ∈ Bi) ∧ sig(n, d)

sPp (〈n, i〉, d) = 〈sip(n, d), i〉

sPb (〈n, i〉, d) = sib(n, d)

148

7.1. DDA-Combinators

Theorem 7.1.2. The parallel combination of two DDAs as given in Def. 7.1.1
is a DDA.

Proof: The 4-tuple 〈PP , BP , reqP , supP〉 is a DDA, if it satisfies all DDA
axioms (see Def. 4.1.1). Note that the new point set PP is a disjoint union
formed as the union of the canonical forms of sets P1 and P2. The second
component of each point of PP hence will distinguish which component
DDA the point originally belonged to. This information is being explicitly
used in the definition of the new request and supply components, so that
the DDA axioms will be satisfied on these, as they are satisfied for the
underlying building block DDAs.

Proposition 7.1.3. The parallel DDA-combinator is associative.

Proof: Follows directly from the fact that the union and disjoint union of
sets is associative (see Theorem 3.1.1), and that the latter is formed by the
union of the participating sets’ canonical forms.

This property entails the generalization of this combinator which will allow
the parallel combination of several DDAs in one step.

Definition 7.1.4 (k-ary Parallel DDA-Combinator). Given k DDAs, k ≥ 0,
D1 = 〈P1, B1, req1, sup1〉, . . . , Dk = 〈Pk, Bk, reqk , supk〉. Then the parallel
combination of D1, . . . , Dk is defined by

D1 ‖ D2 . . . ‖ Dk De f
= Pk = 〈PPk , BPk , reqPk , supPk〉

where:

• PPk =
⊎

1≤i≤k P
i

• BPk =
⋃

1≤i≤k B
i

• reqPk consists of (rPk
g , rPk

p , rPk
b) where:

rPk
g (〈n, i〉, d) = (d ∈ Bi) ∧ rig(n, d)

rPk
p (〈n, i〉, d) = 〈rip(n, d), i〉

rPk
b (〈n, i〉, d) = rib(n, d)

149

7. Algebraic Properties of DDAs

• supPk consists of (sPk
g , sPk

p , sPk
b) where:

sPk
g (〈n, i〉, d) = (d ∈ Bi) ∧ sig(n, d)

sPk
p (〈n, i〉, d) = 〈sip(n, d), i〉

sPk
b (〈n, i〉, d) = sib(n, d)

Theorem 7.1.5. The parallel combination of k DDAs, k ≥ 0 as given in
Def. 7.1.4 is a DDA.

Proof: Note that if k = 0 the data structure obtained in the above construc-
tion will be the empty DDA, which has the empty set as its set of points,
set of branch indices, request and supply guards, and the empty function
for the rest of the components of both request and supply.

If k ≥ 1, then the DDA axioms will be satisfied for the components of
reqPk and supPk as they are satisfied by assumption for the components of
each building block DDA’s reqi and supi in case.

7.1.2 The Serial DDA-Combinator

While the parallel DDA-combinator does not establish new connections
between the participating DDAs, the serial DDA-combinator is applied for
two DDAs in order to make them connected. The process of connecting
DDAs consists of the creation of new branches that will connect one DDA’s
points to the other DDA’s points. This can be done in many different ways,
however, one should avoid creating loops. The presence of loops in the
compound DDA would result in a cyclic DDA, which is not suitable for de-
fining space-time unfoldings and computation-related DDAs, and therefore
would fall out from our application domain.

In this setting, intuitively, one DDA is placed on the top of an other
DDA and some designated points of the lower DDA will supply data to
some designated points of the upper DDA along new branches. These are
determined by a given transfer function. Depending on the properties of
the transfer function two kinds of serial combinators will be introduced.
First we look at the simpler but less general one.

Definition 7.1.6 (Bijective Serial DDA-Combinator). Given two DDAs D1 =
〈P1, B1, req1, sup1〉 and D2 = 〈P2, B2, req2, sup2〉, and t : I → O a bijection,
where I ⊆ P2 and O ⊆ P1 . Then the serial combination of D1 and D2 along
bijection t,

D1 t
↔ D2 De f

= Sb = 〈PSb , BSb , reqSb , supSb〉

is defined by:

150

7.1. DDA-Combinators

• PSb = P1
 P2

• BSb = (B1 ∪ B2)
 {c} for some c

• reqSb consists of (rSb
g , rSb

p , rSb
b) where:

rSb
g (〈n, i〉, 〈d, j〉) =

(
(j = 1) ∧ (d ∈ Bi) ∧ rig(n, d)

)
∨(

(j = 2) ∧ (i = 2) ∧ (n ∈ I)
)

rSb
p (〈n, i〉, 〈d, j〉) =

{
〈rip(n, d), i〉 if j = 1

〈t(n), 1〉 if j = 2

rSb
b (〈n, i〉, 〈d, j〉) =

{
〈rib(n, d), 1〉 if j = 1
〈c, 2〉 if j = 2

• supSb consists of (sSb
g , sSb

p , sSb
b) where:

sSb
g (〈n, i〉, 〈d, j〉) =

(
(j = 1) ∧ (d ∈ Bi) ∧ sig(n, d)

)
∨(

(j = 2) ∧ (i = 1) ∧ (n ∈ O)
)

sSb
p (〈n, i〉, 〈d, j〉) =

{
〈sip(n, d), i〉 if j = 1

〈t−1(n), 2〉 if j = 2

sSb
b (〈n, i〉, 〈d, j〉) =

{
〈sib(n, d), 1〉 if j = 1
〈c, 2〉 if j = 2

where t−1 : O → I is the inverse of t.

Theorem 7.1.7. The serial combination of D1 and D2 along the bijection t
as given in Definition 7.1.6 is a DDA.

Proof: A formal proof showing that Sb satisfies all DDA axioms follows a
similar pattern provided for Theorem 7.1.9 when showing that the general
serial DDA-combinator defines a DDA.

Fig. 7.1 illustrates the use of new branch indices: 〈c, 2〉 identifies a new
supply direction in DDA D1 for all points in O, and a new request direction
in DDA D2 for all points in I.

The requirement imposed on t, i.e. to be a bijection, comes in very handy,
as the existence of t−1 makes the definition of supply well-defined.

However, this requirement might prove be too strong for the general
cases. The DDA sizes may differ, therefore it would be natural to be able

151

7. Algebraic Properties of DDAs

to combine DDAs even when |O| �= |I|, or when we want to create several
new supply directions from some point of O. (See Fig. 7.2.) In such cases,
it is sufficient to require t to only be a total function instead of a bijection.
For each point n ∈ I a new branch index is introduced to identify the
corresponding supply direction that leads back to the point n from t(n).

The bijective serial DDA-combinator (Definition 7.1.6) becomes a simpli-
fied version of the general serial DDA-combinator which is defined next.

Definition 7.1.8 (Serial DDA-Combinator). LetD1 = 〈P1, B1, req1, sup1〉 and
D2 = 〈P2, B2, req2, sup2〉 be two DDAs, and t : I → O a total function where
I ⊆ P2 and O ⊆ P1. Then the serial combination of D1 and D2 along the (total)
function t,

D1 t
�→ D2 De f

= St = 〈PSt , BSt , reqSt , supSt〉

Figure 7.1: Serial combination of DDAs D1 and D2 along the bijection t.

Figure 7.2: Serial combination of DDAs D1 and D2 along a total function t.

152

7.1. DDA-Combinators

is defined by:

• PSt = P1
 P2

• BSt = (B1 ∪ B2)

(
{c} ∪ {n| n ∈ I}

)
for some c

• reqSt consists of (rSt
g , rSt

p , rSt
b) where:

rSt
g (〈n, i〉, 〈d, j〉) =

(
(j = 1) ∧ (d ∈ Bi) ∧ rig(n, d)

)
∨(

(j = 2) ∧ (i = 2) ∧ (d = c) ∧ (n ∈ I)
)

rSt
p (〈n, i〉, 〈d, j〉) =

{
〈rip(n, d), i〉 if j = 1

〈t(n), 1〉 if j = 2

rSt
b (〈n, i〉, 〈d, j〉) =

{
〈rib(n, d), 1〉 if j = 1
〈n, 2〉 if j = 2

• supSt consists of (sSt
g , sSt

p , sSt
b) where:

sSt
g (〈n, i〉, 〈d, j〉) =

(
(j = 1) ∧ (d ∈ Bi) ∧ sig(n, d)

)
∨(

(j = 2) ∧ (i = 1) ∧ (d ∈ I) ∧ (t(d) = n)
)

sSt
p (〈n, i〉, 〈d, j〉) =

{
〈sip(n, d), i〉 if j = 1

〈d, 2〉 if j = 2

sSt
b (〈n, i〉, 〈d, j〉) =

{
〈sib(n, d), 1〉 if j = 1
〈c, 2〉 if j = 2

Theorem 7.1.9. The serial combination of D1 and D2 along a total function
t as given in Definition 7.1.8 is a DDA.

Proof: To ensure that St is a DDA we need to verify whether its reqSt and
supSt components satisfy all DDA axioms. We show this for the supplies,
i.e., supSt . The proof for the requests, reqSt , is similar.

Assuming that rSt
g (〈n, i〉, 〈d, j〉) holds, it is either the case that 1) (j =

1) ∧ (d ∈ Bi) ∧ rig(n, d) or 2) (j = 2) ∧ (i = 2) ∧ (d = c) ∧ (n ∈ I) holds. We
distinguish therefore these two cases:

1. Under the assumption that (j = 1) ∧ (d ∈ Bi) ∧ rig(n, d) holds we get:

rSt
p (〈n, i〉, 〈d, j〉) = 〈rip(n, d), i〉 (7.1)

rSt
b (〈n, i〉, 〈d, j〉) = 〈rib(n, d), 1〉 (7.2)

153

7. Algebraic Properties of DDAs

This leads to:

sSt
g

(
rSt
p (〈n, i〉, 〈d, j〉), rSt

b (〈n, i〉, 〈d, j〉)
)

= (7.3)

= sSt
g (〈rip(n, d), i〉, 〈r

i
b(n, d), 1〉) (by (7.1) and (7.2))

= sig(r
i
p(n, d), r

i
b(n, d)) (by def. of sSt

g and ass.)

which holds given that rig(n, d) holds and that Di is a DDA.

Then (7.3) also holds and this makes the remaning axioms for the
supplies hold:

sSt
p

(
rSt
p (〈n, i〉, 〈d, j〉), rSt

b (〈n, i〉, 〈d, j〉)
)

=

= sSt
p (〈rip(n, d), i〉, 〈r

i
b(n, d), 1〉) (by (7.1) and (7.2))

= 〈sip(r
i
p(n, d), r

i
b(n, d)), i〉 (by def. of sSt

p and ass.)

= 〈n, i〉 (as Di is a DDA)

sSt
b

(
rSt
p (〈n, i〉, 〈d, j〉), rSt

b (〈n, i〉, 〈d, j〉)
)

=

= sSt
b (〈rip(n, d), i〉, 〈r

i
b(n, d), 1〉) (by (7.1) and (7.2))

= 〈sib(r
i
p(n, d), r

i
b(n, d)), 1〉 (by def. of sSt

b and ass.)

= 〈d, 1〉 (as Di is a DDA)

= 〈d, j〉 (by ass.)

2. Under the assumption that (j = 2) ∧ (i = 2) ∧ (d = c) ∧ (n ∈ I) holds
we get:

rSt
p (〈n, i〉, 〈d, j〉) = rSt

p (〈n, 2〉, 〈c, 2〉) (by ass.)

= 〈t(n), 1〉 (by def. of rSt
p) (7.4)

rSt
b (〈n, i〉, 〈d, j〉) = rSt

b (〈n, 2〉, 〈c, 2〉) (by ass.)

= 〈n, 2〉 (by def. of rSt
b) (7.5)

This leads to:

sSt
g

(
rSt
p (〈n, i〉, 〈d, j〉), rSt

b (〈n, i〉, 〈d, j〉)
)

= (7.6)

= sSt
g (〈t(n), 1〉, 〈n, 2〉) (by (7.4) and (7.5))

154

7.1. DDA-Combinators

which holds by the definition of sSt
g and our assumption. Hence (7.6)

also holds, and leads to the rest of the supply axioms to hold as fol-
lows:

sSt
p

(
rSt
p (〈n, i〉, 〈d, j〉), rSt

b (〈n, i〉, 〈d, j〉)
)

=

= sSt
p (〈t(n), 1〉, 〈n, 2〉) (by (7.4) and (7.5))

= 〈n, 2〉 (by def. of sSt
p)

= 〈n, i〉 (by ass.)

sSt
b

(
rSt
p (〈n, i〉, 〈d, j〉), rSt

b (〈n, i〉, 〈d, j〉)
)

=

= sSt
b (〈t(n), 1〉, 〈n, 2〉) (by (7.4) and (7.5))

= 〈c, 2〉 (by def. of sSt
b)

= 〈d, j〉 (by ass.)

We show next that the DDA obtained by the serial combination of two
DDAs along a bijection is isomorphic to the DDA obtained by the general
serial combinator when the total function has the additional property of
being a bijection.

Theorem 7.1.10. GivenD1 = 〈P1, B1, req1, sup1〉 andD2 = 〈P2, B2, req2, sup2〉
two DDAs, and t : I → O a bijection where I ⊆ P2 and O ⊆ P1. Then:

D1 t
↔ D2 � D1 t

�→ D2

Proof: By the previously introduced notations, we need to show that Sb �
St. First note that PSb = PSt , hence they are isomorphic. Following the
definition of isomorphic DDAs (Definition 4.1.10), we need to define then
isomorphisms ιrg : r

Sb
g → rSt

g with inverse ι−1
rg : rSt

g → rSb
g and ιsg : s

Sb
g → sSt

g

with inverse ι−1
sg : sSt

g → sSb
g that preserve the points and which satisfy

r̃Sb = ι−1
sg ◦ r̃St ◦ ιrg .

Note that rSb
g = rSt

g , hence we define

155

7. Algebraic Properties of DDAs

ιrg = ι−1
rg = 1

r
Sb
g

(7.7)

We define ιsg as follows:

ιsg(〈n, i〉, 〈d, j〉) =

{
〈〈n, i〉, 〈d, j〉〉 if j = 1
〈〈n, i〉, 〈t−1(n), j〉〉 if j = 2

and ι−1
sg as follows:

ι−1
sg (〈n, i〉, 〈d, j〉) =

{
〈〈n, i〉, 〈d, j〉〉 if j = 1
〈〈n, i〉, 〈c, j〉〉 if j = 2

Note that when j = 1 it is straightforward that ιsg ◦ ι−1
sg = 1

sStg
and

ι−1
sg ◦ ιsg = 1

s
Sb
g
. We show that these hold also when j = 2.

Consider (ιsg ◦ ι−1
sg)(〈n, i〉, 〈d, j〉) and note that t(d) = n, i = 1 and j = 2

by sSt
g . Hence we have:

ιsg(ι−1
sg (〈n, 1〉, 〈d, 2〉)) = ιsg(〈n, 1〉, 〈c, 2〉) (def. of ι−1

sg)

= 〈〈n, 1〉, 〈t−1(n), 2〉〉 (def. of ιsg)

= 〈〈n, 1〉, 〈d, 2〉〉 (t is bij. and t(d) = n)

= 1
sStg

(〈n, 1〉, 〈d, 2〉)

Likewise consider (ι−1
sg ◦ ιsg)(〈n, i〉, 〈d, j〉) and note that i = 1 and j = 2

by sSb
g , and then d = c by the definition of BSb . Hence we have:

ι−1
sg (ιsg(〈n, 1〉, 〈c, 2〉)) = ιsg(〈n, 1〉, 〈t

−1(n), 2〉) (def. of ιsg)

= 〈〈n, 1〉, 〈c, 2〉〉 (def. of ι−1
sg)

= 1
s
Sb
g

(〈n, 1〉, 〈c, 2〉)

Hence the isomorphisms and their inverses exist. Finally, we need to
check whether the isomorphism condition holds. By (7.7), this boils down
to: r̃Sb = ι−1

sg ◦ r̃St , that is:

156

7.1. DDA-Combinators

〈rSb
p (〈n, i〉, 〈d, j〉), rSb

b (〈n, i〉, 〈d, j〉)〉 =

= ι−1
sg (rSt

p (〈n, i〉, 〈d, j〉), rSt
b (〈n, i〉, 〈d, j〉)

= 〈ι−1
sg,p(r

St
p (〈n, i〉, 〈d, j〉), rSt

b (〈n, i〉, 〈d, j〉), ι−1
sg,b

(rSt
p (〈n, i〉, 〈d, j〉), rSt

b (〈n, i〉, 〈d, j〉)〉

where by ι−1
sg,p and ι−1

sg,b
we denote the first and the second component of ι−1

sg ,
respectively. But this holds, as the equality holds component-wise:

1. If j = 1 we have rSb
p (〈n, i〉, 〈d, j〉) = 〈rip(n, d), i〉 and

ι−1
sg,p(r

St
p (〈n, i〉, 〈d, j〉), rSt

b (〈n, i〉, 〈d, j〉) =

= ι−1
sg,p(〈r

i
p(n, d), i〉, 〈r

i
b(n, d), 1〉) (by def. of rSt

p , rSt
b)

= 〈rip(n, d), i〉 (first comp. of ι−1
sg)

If j = 2 we have rSb
p (〈n, i〉, 〈d, j〉) = 〈t(n), 1〉 and

ι−1
sg,p(r

St
p (〈n, i〉, 〈d, j〉), rSt

b (〈n, i〉, 〈d, j〉) =

= ι−1
sg,p(〈t(n), 1〉, 〈n, 2〉) (by def. of rSt

p , rSt
b)

= 〈t(n), 1〉 (first comp. of ι−1
sg)

Hence rSb
p (〈n, i〉, 〈d, j〉) = ι−1

sg,p(r
St
p (〈n, i〉, 〈d, j〉), rSt

b (〈n, i〉, 〈d, j〉).

2. If j = 1 we have rSb
b (〈n, i〉, 〈d, j〉) = 〈rib(n, d), 1〉 and

ι−1
sg,b

(rSt
p (〈n, i〉, 〈d, j〉), rSt

b (〈n, i〉, 〈d, j〉) =

= ι−1
sg,p(〈r

i
p(n, d), i〉, 〈r

i
b(n, d), 1〉) (by def. of rSt

p , rSt
b)

= 〈rib(n, d), 1〉 (sec. comp. of ι−1
sg)

If j = 2 we have rSb
b (〈n, i〉, 〈d, j〉) = 〈c, 2〉 and

157

7. Algebraic Properties of DDAs

ι−1
sg,b

(rSt
p (〈n, i〉, 〈d, j〉), rSt

b (〈n, i〉, 〈d, j〉) =

= ι−1
sg,b

(〈t(n), 1〉, 〈n, 2〉) (by def. of rSt
p , rSt

b)

= 〈c, 2〉 (sec. comp. of ι−1
sg)

Hence rSb
b (〈n, i〉, 〈d, j〉) = ι−1

sg,b
(rSt

p (〈n, i〉, 〈d, j〉), rSt
b (〈n, i〉, 〈d, j〉) as well.

Then the isomorphism condition is satisfied, and hence Sb � St when t is
bijective.

7.1.3 The Sub-DDA-Combinator

In Section 4.1.3 we have introduced the notion of sub-DDA, and have seen
an example of this in Example 4.2.4 through the manipulation of data in-
variant.

We define now the sub-DDA-combinator based on a subset of the point
set and a subset of the branch indices of an existing DDA. The construction
leads to a sub-DDA.

Definition 7.1.11 (Sub-DDA-Combinator). Given a DDAD = 〈P, B, req, sup〉
with P′ ⊆ P, B′ ⊆ B two sets. Then the sub-DDA-combinator along P′ and B′

applied for D is given by:

D
∣∣
P′,B′

De f
= D′ = 〈P′, B′, req′, sup′〉

where:

• req′ consists of:

r′g(n, d) = rg(n, d) ∧ (n ∈ P′) ∧ (d ∈ B′)∧

(rp(n, d) ∈ P′) ∧ (rb(n, d) ∈ B′)

r′p = rp
∣∣
r′g

r′b = rb
∣∣
r′g

158

7.1. DDA-Combinators

• sup′ consists of:

s′g(n, d) = sg(n, d) ∧ (n ∈ P′) ∧ (d ∈ B′)∧

(sp(n, d) ∈ P′) ∧ (sb(n, d) ∈ B′)

s′p = sp
∣∣
s′g

s′b = sb
∣∣
s′g

Theorem 7.1.12. If D = 〈P, B, req, sup〉 is a DDA and P′ ⊆ P, B′ ⊆ B are
two sets, then:

D
∣∣
P′,B′ ⊆ D

Proof: First note that r′p is a function with P′ as codomain, i.e., r′p : r′g → P′.
This is guaranteed by the way r′g is defined and that r′p(n, d) = rp(n, d)
which, with (n, d) ∈ r′g, can only lead to points in P′. Anything that would
lead to P \ P′ is thrown away in r′g. The same arguments apply for the
following: r′b : r′g → B′, s′p : s′g → P′ and s′b : s′g → B′. Second, all DDA
axioms will be satisfied by the components of req′ and sup′, as r′p , r′b, s

′
p and

s′b are defined exactly as the corresponding components of D. Hence D
∣∣
P′,B′

is a DDA.
To see that D

∣∣
P′,B′ is in effect a sub-DDA of D (see Definition 4.1.8), note

that r′g ⊆ rg and that:

r̃′ = 〈r′p, r
′
b〉 = 〈rp

∣∣
r′g
, rb

∣∣
r′g
〉 = r̃

∣∣
r′g

What the sub-DDA-combinator does is in fact to omit all points of P
and all branch indices of B that are not in P′ and B′, respectively, and omit
all dependency arcs which do not lead to or start from P′. Everything
else of the original DDA is otherwise kept, hence the sub-DDA-combinator
supports code reusability.

7.1.4 The Nesting-DDA-Combinator

In Section 6.1 we have defined the bitonic sort DDA. As pointed out, this de-
pendency pattern consists of the repetitive combination of several butterfly
dependency patterns of increasing size. The repetitive combination itself,

159

7. Algebraic Properties of DDAs

however, follows a dependency pattern, i.e., the binary tree dependency.
This is due to the divide and conquer nature of the algorithm. While the
divide part is responsible for the global binary tree dependency, the conquer
part yields each sub-butterfly dependency. A similar decomposition can be
identified in the other divide and conquer based odd-even merge sort de-
pendency, discussed in Section 6.2. There the global dependency is again
the binary tree.

This naturally raises the idea of nesting DDAs: given a global DDA pat-
tern and a bunch of local DDAs, such that each of these is associated with
one or more points of the global DDA, how can we obtain a corresponding
standalone large DDA. The following definition proposes a formalism for
this.

Definition 7.1.13 (Nested DDAs). Let G = 〈PG , BG , reqG , supG〉 be an acyclic,
well-founded (global) DDA such that IG ⊂ PG , IG �= {} is the subset of all

Figure 7.3: Detail of a nested DDA (black coloured), obtained from 4 points of a possibly
larger global DDA (grey coloured in the background), and their associated local DDAs.
Several new dependency arcs have been created as allowed by the global dependencies, labeled
with the corresponding new branch indices.

160

7.1. DDA-Combinators

points from PG which do not have request directions. Further let D =
(Di)i∈PG be a family of (local) DDAs such that each point i ∈ PG in the
global DDA is associated with the DDA Di = 〈Pi, Bi, reqi , supi〉. Further let
t = (ti)i∈PG\IG be a family of total functions such that ti : Ii →
j∈rGp (i,BG)

Pj

where Ii ⊆ Pi.
Then the nesting of G with D along t is given by

NG
D,t

De f
= N = 〈PN , BN , reqN , supN 〉

where:

• PN =
i∈PGPi

• BN =
⋃

i∈PG Bi × {�} ∪
⊎

i∈PG\IG Ii ∪ {〈c, c〉}
where c �= � and c, � �∈ PG

• reqN consists of (rNg , rNp , rNb) where:

rNg (〈n, i〉, 〈d, j〉) =
(
(j = �) ∧ (d ∈ Bi) ∧ rig(n, d)

)
∨(

(j = c) ∧ (d = c) ∧ (n ∈ Ii) ∧ (i �∈ IG)
)

rNp (〈n, i〉, 〈d, j〉) =

{
〈rip(n, d), i〉 if j = �

ti(n) if j = c

rNb (〈n, i〉, 〈d, j〉) =

{
〈rib(n, d), �〉 if j = �

〈n, i〉 if j = c

• supN consists of (sNg , sNp , sNb) where:

sNg (〈n, i〉, 〈d, j〉) =
(
(j = �) ∧ (d ∈ Bi) ∧ sig(n, d)

)
∨(

(j ∈ PG \ IG) ∧ (d ∈ I j) ∧ (tj(d) = 〈n, i〉)
)

sNp (〈n, i〉, 〈d, j〉) =

{
〈sip(n, d), i〉 if j = �

〈d, j〉 if j ∈ PG \ IG

sNb (〈n, i〉, 〈d, j〉) =

{
〈sib(n, d), �〉 if j = �

〈c, c〉 if j ∈ PG \ IG

The result of this nesting will in fact be a new DDA (see Fig. 7.3) as
this is stated and formally proven in the next theorem. We will often refer
to the functions ti as transfer functions. Each point of the global DDA will

161

7. Algebraic Properties of DDAs

be replaced by its associated local DDA, and new dependency arcs will be
created between the points of these local DDAs as appointed by the transfer
functions. However, note that the transfer functions are defined in such a
way, that new arcs will be added only along existing global dependencies.
All new points of the nested DDA will be defined as tuples in which the
second component will refer back to the original global DDA point. Branch
indices again will be tuples: those with the second component being l will
identify the original local branch indices of the local DDAs. Branch index
〈c, c〉 will identify the request end of all new dependency arcs, whereas for
their supply ends the remaining branch indices defined in BN will be used,
in a manner similar presented for the serial DDA-combinator.

Theorem 7.1.14. The nesting of G with D along t as given in Definition
7.1.13 defines a DDA.

Proof: The proof technique follows the same pattern first showed for the
serial DDA-combinator in Theorem 7.1.9.

N will be a DDA if its reqN and supN components satisfy all DDA
axioms. We show first for the supplies, i.e., supN .

If rNg (〈n, i〉, 〈d, j〉) holds, it is either the case that 1) (j = l) ∧ (d ∈ Bi) ∧

rig(n, d) or 2) (j = c) ∧ (d = c) ∧ (n ∈ Ii) ∧ (i �∈ IG) holds. We distinguish
therefore these two cases:

1. Under the assumption that (j = l) ∧ (d ∈ Bi) ∧ rig(n, d) holds we get:

rNp (〈n, i〉, 〈d, j〉) = 〈rip(n, d), i〉 (7.8)

rNb (〈n, i〉, 〈d, j〉) = 〈rib(n, d), l〉 (7.9)

This leads to:

sNg
(
rNp (〈n, i〉, 〈d, j〉), rNb (〈n, i〉, 〈d, j〉)

)
= (7.10)

= sNg (〈rip(n, d), i〉, 〈r
i
b(n, d), l〉) (by (7.8) and (7.9))

= sig(r
i
p(n, d), r

i
b(n, d)) (by def. of sNg and ass.)

which holds given that rig(n, d) holds and that Di is a DDA. Hence
(7.10) also holds.

162

7.1. DDA-Combinators

The rest of the axioms for the supplies also hold:

sNp
(
rNp (〈n, i〉, 〈d, j〉), rNb (〈n, i〉, 〈d, j〉)

)
=

= sNp (〈rip(n, d), i〉, 〈r
i
b(n, d), l〉) (by (7.8) and (7.9))

= 〈sip(r
i
p(n, d), r

i
b(n, d)), i〉 (by def. of sNp and ass.)

= 〈n, i〉 (as Di is a DDA)

sNb
(
rNp (〈n, i〉, 〈d, j〉), rNb (〈n, i〉, 〈d, j〉)

)
=

= sNb (〈rip(n, d), i〉, 〈r
i
b(n, d), l〉) (by (7.8) and (7.9))

= 〈sib(r
i
p(n, d), r

i
b(n, d)), l〉 (by def. of sNb and ass.)

= 〈d, l〉 (as Di is a DDA)

= 〈d, j〉 (by ass.)

2. Under the assumption that (j = c) ∧ (d = c) ∧ (n ∈ Ii) ∧ (i �∈ IG)
holds we get:

rNp (〈n, i〉, 〈d, j〉) = rNp (〈n, i〉, 〈c, c〉) (by ass.)

= ti(n) (by def. of rNp) (7.11)

rNb (〈n, i〉, 〈d, j〉) = rNb (〈n, i〉, 〈c, c〉) (by ass.)

= 〈n, i〉 (by def. of rNb) (7.12)

This leads to:

sNg
(
rNp (〈n, i〉, 〈d, j〉), rNb (〈n, i〉, 〈d, j〉)

)
= (7.13)

= sNg (ti(n), 〈n, i〉) (by (7.11) and (7.12))

which holds by the definition of sNg and our assumption, hence (7.13)
also holds.

The rest of the supply axioms hold as follows:

sNp
(
rNp (〈n, i〉, 〈d, j〉), rNb (〈n, i〉, 〈d, j〉)

)
=

= sNp (ti(n), 〈n, i〉) (by (7.11) and (7.12))

= 〈n, i〉 (by def. of sNp)

163

7. Algebraic Properties of DDAs

sNb
(
rNp (〈n, i〉, 〈d, j〉), rNb (〈n, i〉, 〈d, j〉)

)
=

= sNb (ti(n), 〈n, i〉) (by (7.11) and (7.12))

= 〈c, c〉 (by def. of sNb)

= 〈d, j〉 (by ass.)

The axioms will hold for the requests, reqN , as well:
If sNg (〈n, i〉, 〈d, j〉) holds, it is either the case that 1) (j = l) ∧ (d ∈ Bi) ∧

sig(n, d) or 2) (j ∈ PG \ IG)∧ (d ∈ I j)∧ (tj(d) = 〈n, i〉) holds. We distinguish
again two cases:

1. Under the assumption that (j = l) ∧ (d ∈ Bi) ∧ sig(n, d) holds we get:

sNp (〈n, i〉, 〈d, j〉) = 〈sip(n, d), i〉 (7.14)

sNb (〈n, i〉, 〈d, j〉) = 〈sib(n, d), l〉 (7.15)

This leads to:

rNg
(
sNp (〈n, i〉, 〈d, j〉), sNb (〈n, i〉, 〈d, j〉)

)
= (7.16)

= rNg (〈sip(n, d), i〉, 〈s
i
b(n, d), l〉) (by (7.14) and (7.15))

= rig(s
i
p(n, d), s

i
b(n, d)) (by def. of rNg and ass.)

which holds given that sig(n, d) holds and that Di is a DDA. Hence
(7.16) also holds.

The rest of the axioms for the requests come as follows:

rNp
(
sNp (〈n, i〉, 〈d, j〉), sNb (〈n, i〉, 〈d, j〉)

)
=

= rNp (〈sip(n, d), i〉, 〈s
i
b(n, d), l〉) (by (7.14) and (7.15))

= 〈rip(s
i
p(n, d), s

i
b(n, d)), i〉 (by def. of rNp and ass.)

= 〈n, i〉 (as Di is a DDA)

rNb
(
sNp (〈n, i〉, 〈d, j〉), sNb (〈n, i〉, 〈d, j〉)

)
=

= rNb (〈sip(n, d), i〉, 〈s
i
b(n, d), l〉) (by (7.14) and (7.15))

= 〈rib(s
i
p(n, d), s

i
b(n, d)), l〉 (by def. of rNb and ass.)

= 〈d, l〉 (as Di is a DDA)

= 〈d, j〉 (by ass.)

164

7.1. DDA-Combinators

2. Under the assumption that (j ∈ PG \ IG) ∧ (d ∈ I j) ∧ (tj(d) = 〈n, i〉)
holds we get:

sNp (〈n, i〉, 〈d, j〉) = sNp (tj(d), 〈d, j〉) (by ass.)

= 〈d, j〉 (by def. of sNp) (7.17)

sNb (〈n, i〉, 〈d, j〉) = sNb (tj(d), 〈d, j〉) (by ass.)

= 〈c, c〉 (by def. of sNb) (7.18)

This leads to:

rNg
(
sNp (〈n, i〉, 〈d, j〉), sNb (〈n, i〉, 〈d, j〉)

)
= (7.19)

= rNg (〈d, j〉, 〈c, c〉) (by (7.17) and (7.18))

which holds by the definition of rNg and our assumption, hence (7.19)
also holds.

The rest of the request axioms hold as follows:

rNp
(
sNp (〈n, i〉, 〈d, j〉), sNb (〈n, i〉, 〈d, j〉)

)
=

= rNp (〈d, j〉, 〈c, c〉) (by (7.17) and (7.18))

= tj(d) (by def. of rNp)

= 〈n, i〉 (by ass.)

rNb
(
sNp (〈n, i〉, 〈d, j〉), sNb (〈n, i〉, 〈d, j〉)

)
=

= rNb (〈d, j〉, 〈c, c〉) (by (7.17) and (7.18))

= 〈d, j〉 (by def. of rNb)

Note that the parallel DDA-combinator can be seen as a special case of
nesting DDAs. When the global DDA consists of two distinct points with
no arcs between them, then the family of transfer functions is the empty
set, as IG = PG . Then as a result of “the nesting” the two points will
be replaced with the corresponding two local DDAs and no new arcs will
be added. Likewise, the serial DDA-combinator is also a special case of

165

7. Algebraic Properties of DDAs

nesting DDAs. Here the global DDA consists of two points with one single
dependency arc between the points. Then the family of transfer functions
consists of only one function, the one that is required in the serial DDA-
combinator. However, note that formally the DDAs obtained via the parallel
DDA-combinator and the serial DDA-combinator will be isomorphic, and
not identical, with the corresponding nested versions.

7.2 Programming with Compound DDAs

The previous sections have presented various ways to combine DDAs. The
compound DDAs have been proved to be genuine DDAs, hence a DDA-
enabled compiler can directly generate new DDAs based on these formal
descriptions. In this section we propose some programming language con-
structs that allow us to declare and program with compound DDAs, and
motivates why, from a programming perspective, these constructs are use-
ful.

7.2.1 The Transfer Function

Both the serial DDA-combinator and the nested DDA require the existence
of a transfer function through which one can explicitly specify new connec-
tions between the points of the participating DDAs. The transfer function’s
domain and codomain as a general rule were subsets of DDA point sets. In
practice we can control this with data invariants. If P is a point type of a
DDA, then a subtype I of P can be defined as I = P | DI where DI is the
new data invariant restricting the range of values of P to the ones we are
interested in.

Let I and O be some types. If exp is an expression of type O, possibly
containing a variable p of type I, then a transfer function t:I→O can be
defined by t(p)=exp. When t is supposed to be bijective and serves as a
transfer function for a bijective serial DDA-combinator, depending on the
complexity of exp and the sub-types I and O, the compiler may not be able
to automatically derive the inverse of t or it may just be too costly (e.g.
administrating a huge look-up table). In such cases, its inverse should also
be defined as another expression.

7.2.2 Language Constructs for DDA-Combinators

Imagine a scenario, e.g., in which we have some signal processing compu-
tation at hand, and for the sake of this example, it is based on two inde-
pendent applications of the FFT (see Section 6.3). Assume that the two FFT-
based sub-computations are expressed as two repeat statements in terms of

166

7.2. Programming with Compound DDAs

the butterfly DDA only. Since the butterfly DDA has a well-defined par-
allel execution scheme, each repeat statement can be compiled into some
parallel code. Since they are independent, it would be natural to run them
in parallel, but in this setting they will run one after the other, depending
on the order they appear. Assume that the accumulated problem size of
both sub-computations is at most the number of the available parallel pro-
cessors. Then in practice each individual repeat statement will lead to a
non-optimal resource utilization – a significant number of processors will
still remain idle. Instead, we can use the parallel DDA-combinator to de-
clare a compound DDA as the underlying dependency and to express a
combined computation on it. This will allow a simultaneous execution of
the two sub-computations of the signal processing: one is computed on the
left butterfly, the other on the right, which can lead to both better resource
utilization as well as running-time speed-ups.

When declaring a compound DDA D to be the parallel combination of
DDAs D1 and D2 we use the par keyword:

D = D1 par D2

For better readability, we may place the whole expression between a set of
parantheses, if needed: (D1 par D2).

Example 7.2.1 (Cloned DBFs). Let DBFh be the butterfly DDA of height h as
defined in Example 4.2.2. Then the cloned butterfly DDA of height h will be
the DDA DBFh par DBFh defined according to Definition 7.1.1.

Accordingly, the point type of DBFh par DBFh will be BFh+BFh and branch
index type {0,1}, and let us denote by rp’ its request function.

Let V:A be an array type, where A has index type BFh+BFh, some element
type E and partial indexing operation _[_]:A,BFh+BFh→E.

We can now define a repeat statement on points p:BFh+BFh along the
compound DDA to do the required computations for our signal processing
problem. For the sake of type-correct expressions we utilize the implicit
projections of the disjoint union type (see Section 3.2.3).

repeat p:BFh+BFh along (DBFh par DBFh) from V in

if (tag(p)=1) exprSP1(V[rp’(p,0)],V[rp’(p,1)])

else exprSP2(V[rp’(p,0)],V[rp’(p,1)])

where exprSP1 and exprSP2 are the two sub-computations involved in the
overall computation defined in terms of the compound DDA’s request com-
ponent.

167

7. Algebraic Properties of DDAs

Note that if the two sub-computations are based on butterfly DDAs
of different heights, e.g., h1 and h2, one can accordingly define a repeat
statement on the compound DDA DBFh1 par DBFh2 instead. While good
resource utilization is still probable, speed-ups are likely to be more signi-
ficant when |h1 − h2| is small.

The par combinator can also be used in the specification of more com-
plex compound DDAs, as this is illustrated in the next section. But first we
need to introduce some language constructs for the serial DDA-combinator.

Let D1 be a DDA with point type P1 and D2 a DDA with point type P2.
Further let t:I→O be a transfer function, where I is a sub-type of P2 and O
is a sub-type of P1. Then the serial combination of D1 with D2 along t will
be the DDA D denoted by seq and via keywords as follows:

D = D1 seq D2 via t

If t is a bijection we replace via with bij. Note that from a pragmatical
point of view, if |I| is large, the size of the compound DDA’s branch index
type obtained by the bijective serial DDA-combinator can be significantly
smaller than the one obtained by the application of the general serial DDA-
combinator via a total function (see Definition 7.1.8). On the other hand,
in the latter case, the definition of the supply function omits completely
the use of some corresponding inverse expression of t (though in certain
cases it may be feasible to craft such an “inverse expression” automatically,
even when t is only total). So instead, the new supply function uses dir-
ectly these extra branch indices on the new connecting arcs to obtain the
point the supply leads to. This could be beneficial for the running time as
the execution won’t be slowed down by the inverse expression’s evaluation.
Ultimately, the right choice between the two serial DDA-combinator is in-
fluenced by the actual building block DDA’s properties and the way these
combinators are finally implemented.

A typical example for the use of the serial combinator is when the result
of a DDA-based computation, e.g., the target values (or some of the output
values) of a repeat statement, are the initial values of a DDA-based compu-
tation right away, e.g., the next repeat statement. Hence it seems reasonable
that, instead of two repeat statements, we issue only one with the com-
pound DDA as the underlying dependency. This especially can be useful
when the repeat statements are executed on an external (highly-parallel)
accelerator (e.g. GPU, FPGA). Then there is no need to initialise twice the
external hardware, and the desired result can be achieved in one go instead
of additional data and device code transfers between host and device.

168

7.2. Programming with Compound DDAs

We illustrate the use of seq in a situation where, for the sake of the
example, we need both the result of an FFT and its sorted form (e.g. for
some statistical analysis). The underlying DDA of the FFT is again the
butterfly DDA of height h, i.e., DBFh (Example 4.2.2), and the bitonic sort
DDA for 2h inputs, i.e., DBSh is used for sorting the results (Example 6.1.1).

Further let t:Ih→Oh be a transfer function, where:

• Ih = BSh | DII
with DII(p) = ((row(p)=1) && (sbf(p)=1))

• Oh = BFh | DIO
with DIO(p) = (row(p)=0)

• defined by t(p) = BFh(0,col(p)) for all p:Ih

Note that t is a bijection, t−1(p) = BSh(1,1,col(p)) for all p:Oh, hence
we will consider the compound DDA obtained by the serial combination of
DBFh and DBSh via t:

D = DBFh seq DBSh bij t

D will have BFh+BSh as its point type, and {0,1}+{c} its branch index
type, and we will denote its request function by rp’.

We can now define a targeted repeat statement on D, in which the target
points of the computation will be the points of the top row of the butterfly
DDA (end result of FFT) and of the top row of the bitonic sort DDA (end
result of sorting). We define the target points for all p:BFh+BSh as follows:

TP(p) = ((tag(p)=1) && (row(v1(p))=0)) ||

((tag(p)=2) && (row(v2(p))=0) && (sbf(v2(p))=h))

where v1 and v2 are the usual projections of the disjoint union type.
Let W be an array of index type BFh+BSh and some element type E, ini-

tialised with the inputs of the FFT, such that each W[p] with tag(p)=1 and
row(v1(p))=h gets an initial value (the points of the bottom row of the
butterfly DDA). Then the targeted repeat statement will be as follows:

repeat p:BFh+BSh along D from W for TP in

if (tag(p)=1) exprFFT(V[rp’(p,i1(0))],V[rp’(p,i1(1))])

else if ((row(v2(p))=1) && (sbf(v2(p))=1)) V[rp’(p,i2(c))]

else exprBS(V[rp’(p,i1(0))],V[rp’(p,i1(1))])

169

7. Algebraic Properties of DDAs

where i1 and i2 are the usual injections of the disjoint union type; exprFFT
is the computational expression on the bottom DDA performing the FFT;
exprBS is the expression doing the sorting on the upper bitonic sort DDA.

Those points of the bitonic sort DDA for which (row(v2(p))=1 and
sbf(v2(p))=1) (i.e. exactly those in I) receive the value coming along on
the new connecting arcs, i.e., with branch index i2(c).

The sub-DDA-combinator applied to a DDA D=<P,B,req,sup> along P1
and B1, which are sub-types of P and B, respectively, is declared with the
keywords sub and along :

D1 = sub D along P1,B1

We can instantiate this construct on the reversed butterfly DDA, DRBFh
(Example 4.2.3) to define the binary tree DDA as its sub-DDA. In Example
4.2.4 we defined the binary tree DDA explicitly. The same result can be
obtained in one line by applying the sub-DDA-combinator:

DBTh = sub DRBFh along BTh,B

In the explicit definition of DBTh, in Example 4.2.4, we do not redefine the
request and supply guards, and do not use restrictions on the arguments
of the original DDA’s components when defining the binary tree DDA’s re-
quests and supplies. This is due to the assumption we made in the prelim-
inaries about guards and partial functions to avoid syntactic clutter. Hence
the new BTh point type will be propagated in the binary tree DDA’s newly
defined components by the compiler. Likewise, in the formal definition
of the sub-DDA-combinator the mechanism keeping things well-defined is
spelt out in details, and this will also be handled by the compiler.

Projections of Compound DDAs

The parallel execution schemes of repeat statements are based on the space
and time projections of the underlying DDA’s point type (Section 4.3). Com-
pound DDAs either inherit the building block DDAs own projections – ad-
justed to the compound DDA’s point type, or if the programmer is aware of
some additional properties of the compound DDA, perhaps more suitable
projections can be defined.

170

7.2. Programming with Compound DDAs

7.2.3 An Example of “Combining” the Combinators

Ultimately each combinator promotes code reusability. Looking at a more
complex data dependency graph of a given computation, sometimes it may
be easier to express it as a compound DDA in terms of some smaller, easier
definable DDAs. Then these “smaller” implementations can be reused by
letting the compiler create the desired new DDA implementation. We need
not to worry about what the new requests/supplies are, however we can
refer to them as known when writing a repeat statement to solve our initial
problem on the compund DDA.

We illustrate this via an example. There exists an efficient algorithm
for multiplying large polynomials (e.g. [Quinn, 1986, p.98-99]) based on the
repetitive application of the forward and the inverse FFT (Section 6.3). Any
polynomial of degree n− 1 is uniquely determined by its values at the n-
th roots of unity. Applying the FFT on the coefficients of a polynomial
of degree n − 1 generates the value of the polynomial at the n roots of
unity. Then the value of the product polynomial at any point is simply the
product of the values of the two polynomials at the point. Then performing
the inverse FFT on the values of the product polynomial at the n roots of
unity generates its coefficients.

The underlying dependency of this computation can be defined as a
compound DDA (see Fig. 7.4). Consider two polynomials of degrees n1
and n2. The product polynomial will have degree n1+n2. For each direct
and inverse FFT we need a copy of the radix-2 FFT DDA, DFFTh. In order to
make the product polynomial fit our FFT we choose the size of DFFTh such
that 2h>n1+n2.

The evaluation of the two initial polynomials can be done in parallel,
therefore we first combine two copies of DFFTh with par. Then the result of
these direct FFTs need to be multiplied pair-wise, hence we connect DFFTh
par DFFTh with a forking DDA of size 2h, DFK2h , serially via a bijection t.
Finally, this is further combined serially with a new DFFTh via another bijec-
tion t’ along which the product polynomial’s coefficients will be obtained
in the inverse FFT.

Example 7.2.2. The polynomial multiplication DDA of degree 2h, h ∈ N is a
DDA DPMh=<P,B,req,sup> defined as follows:

DPMh = ((DFFTh par DFFTh) seq DFK2h bij t) seq DFFTh bij t’

where:

• DFFTh is the radix-2 FFT DDA of size h

171

7. Algebraic Properties of DDAs

• DFK2h is the forking DDA of size 2h

• t:Ih →Oh is a bijection with

– Ih = FK2h | DII
DII(p) = (row(p)=0)

– Oh = FFTh+FFTh | DIO

DIO(p) = (((tag(p)=1) && (row(v1(p))=h+1)) ||

((tag(p)=2) && (row(v2(p))=h+1)))

– t(p) = if (col(p) < 2h) i1(FFTh(h+1,col(p)))
else i2(FFTh(h+1,col(p)-2

h))

DFK

... seq ... bij t’

... seq ... bij t

2 DFFT to evaluate each polynomial via FFT

DFFT par DFFT

2DFFT

4

2

22

Figure 7.4: The structural composition of the DDA underlying the multiplication of poly-
nomials with degree n1 and n2 such that n1+n2<4.

172

7.2. Programming with Compound DDAs

– and inverse:

t−1(p) = if (tag(p)=1) FK2h(0,col(v1(p)))

else FK2h(0,col(v2(p)))

• t’:Ih’→Oh’ is a bijection with

– Ih’ = FFTh | DII’
DII’(p) = (row(p)=0)

– Oh’ = (FFTh+FFTh)+FK2h | DIO’
DIO’(p) = ((tag(p)=3) && (row(v3(p))=1))

– t’(p) = i3(FK2h(1,col(p)))

– and inverse:

t’−1(p) = FFTh(0,col(v3(p)))

Let us denote by PMh the point type of DPMh, and by B its branch indices.
Then by the definitions of the applied combinators we have:

PMh = (((FFTh+FFTh)+FK2h)+FFTh)

B = ({0,1}+{c})+{c}

The use of parantheses in the disjoint union type definitions will de-
termine the tag component. For instance for a point p:PMh of the compound
DDA we have:

• if tag(p)=1, then p is a point of the left bottom DFFTh

• if tag(p)=2, then p is a point of the right bottom DFFTh

• if tag(p)=3, then p is a point of the forking DDA DFK2h

• if tag(p)=4, then p is a point of the top DFFTh

We can now define the polynomial multiplication computations on DPMh
in form of a repeat statement. Let V be an array of index type p:PMh and
some complex number element type C. Our target values are the product
polynomial’s coefficients computed at the top row points of the compound
DDA, that is our target points are those p:PMh such that:

TP(p) = ((tag(p)=4) && (row(v4(p))=h+1))

173

7. Algebraic Properties of DDAs

Assume that ig(V,p) holds whenever (tag(p)=1) && row(v1(p))=0 or
(tag(p)=2) && row(v2(p))=0, that is V is properly initialised with the ini-
tial polynomials’ coefficients. Let us denote by rp the request function of
DPMh. Then the following targeted repeat statement defines the multiplica-
tion of two polynomials of degree n1 ∈ N and n2 ∈ N, respectively, where
n1+n2<2h:

repeat p:PMh along DPMh from V for TP in

1 if ((tag(p)=4) && (row(v4(p))=0)) V[rp(p,i3(c))]

2 else if ((tag(p)=3) && (row(v3(p))=0)) V[rp(p,i2(c))]

3 else if (tag(p)=1) expr1FFT
4 else if (tag(p)=2) expr2FFT
5 else if (tag(p)=3) V[rp(p,i1(0))]*V[rp(p,i1(1))]

6 else expr3INV−FFT

where expr1FFT, expr2FFT are the forward FFT expressions adopted from
Section 6.3 and applied on the related parts of the compound DDA, i.e., the
bottom left and bottom right DFFTh-s, respectively. Likewise expr3INV−FFT is
the inverse FFT applied on the top DFFTh. For instance, expr1FFT stands for:

if (row(v1(p))<h+1)

if (col(v1(p))<col(v1(rp(p,i1(1))))

V[rp(p,i1(0))] + V[rp(p,i1(1))]*wrevh(col(v1(p))>>h−row(v1(p)))

else V[rp(p,i1(1))] + V[rp(p,i1(0))]*wrevh(col(v1(p))>>h−row(v1(p)))

else V[rp(p,i1(0))]

Lines 1-2 pass the values on along the new connecting arcs of the com-
pound DDA. Lines 3-4 do the forward FFTs. Line 5 multiplies the results
pairwise (NB. multiplication here is supposed to be of complex numbers).
And line 6 deals with the inverse FFT.

7.3 Compile Time Optimizations

We see that programming with compound DDAs is feasible, though it may
result in hard-to-read repeat statements, if the compound DDA is too com-
plex. Writing up all nested if-branches inside the repeat statement, with all
the correct expressions within each if-branch, may not be very appealing for
the programmer, and it is error-prone. The computation above defined for
polynomial multiplication on the compound DDA illustrates exactly this
problem.

174

7.3. Compile Time Optimizations

Another scenario of a DDA-based polynomial multiplication would be
to write two repeat statements on the simple FFT-DDA, then do the pairwise
multiplication of the results on the forking DDA, and finally interpolate the
result in the final repeat statement on the FFT-DDA again.

The theory of compound DDAs naturally raises the question whether
a DDA-enabled compiler could identify situations like this, when repeat
statements, defined on simple DDAs, can be safely merged together and
build the underlying compound DDA? Intuitively, this should be possible
when, for instance, the repeat statements’ semantics are independent, or
when the output values of one repeat statement serve as input values for the
next one, or when the repeat statements are skewed or nested in a specific
way satisfying certain properties.

This could be presented then in the form of an additional toolset that
analysing the source code it points out possible ways of optimisations, al-
lowing the programmer to consult the compound DDA and define em-
bedding projections for it for the target hardware, or modify compiler-
generated intermediate code and analyse its effect on the overall execution-
time.

In the following section, we present some theoretical results that pin-
point these ideas. However note that these are just preliminary results, only
a foretaste of the theory backing up the building of such optimisation tools.

Merging Consecutive Repeat Statements

The program codes and language constructs presented in the examples have
the feeling of functional programming style. This applies to both the DDA
examples as well as the repeat statements. Since the mathematical formu-
lation of a DDA consists of a collection of functions, it is straightforward
to implement them as functions. On the other hand, the repeat statement’s
functional recursive style is more deliberate. When the programmer issues
a repeat statement, it will be at compile time that the compiler, based on
the embedding space-time projections defined for the DDA, picks the cor-
responding execution scheme (sequential, MPI, CUDA, etc.) and generates
code for it. However, prior to issuing the repeat statement the array involved
in the repeat statement is supposed to be initialised otherwise no new val-
ues will be computed. Likewise, in subsequent code, the semantics of the
repeat statement is assumed, i.e., the output or target values of the array
to be computed by the repeat statement can be used, modified or thrown.
Therefore we will assume an order of execution of the repeat statements
following the order they appear in a program.

175

7. Algebraic Properties of DDAs

As suggested in Section 7.2.2 the use of par can lead to better resource
utilization of a parallel machine and possibly improved running time. Pro-
grammers may not always be aware of this when writing repeat statements.
The following theorem characterizes a situation when consecutive repeat
statements can be merged automatically. In a sequential execution scheme
this may not have much effect. In a parallel execution scheme, however, it
may result in better resource utilization depending on how the size of the
new compound DDA compares with the number of available processors. If
the number of processors is smaller, then new space-time projections can
further tune the setting. A straightforward benefit of the DDA-enabled
compiler and the above-mentioned toolset would be that one is able to deal
with such details at a high-level, resulting in efficient prototyping and im-
plementation.

Theorem 7.3.1 (par-Based Optimization). Let D1=<P1,B1,req1,sup1> and
D2=<P2,B2,req2,sup2> be two countable DDAs, M1 an array indexed by P1
with element type E1, and M2 an array indexed by P2 with element type E2.
Further let exp1 and exp2 be expressions of type E1 and E2, respectively,
such that the following repeat statements are both syntactically and type
correct:

repeat n:P1 along D1 from M1 in exp1;

repeat m:P2 along D2 from M2 in exp2;

If exp2 has no occurrences of M1, i.e., the values of array M1 can be computed
independently from values of M2 and vice versa, then the overall semantics
of the above repeat statements is the same as the semantics of the merged
repeat statements from below:

repeat p:P1+P2 along (D1 par D2) from M in

if (tag(p)=1) (E1+E2).i1(exp1’)

else (E1+E2).i2(exp2’)

where

• p is fresh wrt. exp1 and exp2

• M is an array indexed by P1+P2 and element type E1+E2 related to M1
and M2 such that:

– for all n:P1 where ig(M1,n) initially holds M[(P1+P2).i1(n)] =
(E1+E2).i1(M1[n]), otherwise ig(M,(P1+P2).i1(n)) does not
hold .

176

7.3. Compile Time Optimizations

– for all m:P2 where ig(M2,m) initially holds M[(P1+P2).i2(m)] =
(E1+E2).i2(M2[m]), otherwise ig(M,(P1+P2).i2(m)) does not
hold.

• exp1’ is an expression of type E1 obtained from exp1 as follows:

– each occurrence of M1[rp1(n,b)] for any expression b of type B1
is substituted with v1(M[rp(p,b)])

– any other occurrence of rg1(n,b), rp1(n,b), rb1(n,b), if any, for
any expression b of type B1 is replaced by rg(p,b), v1(rp(p,b)),
rb(p,b), respectively

– any occurrence of sg1(n,b), sp1(n,b), sb1(n,b), if any, for any
expression b of type B1 is replaced by sg(p,b), v1(sp(p,b)),
sb(p,b), respectively

– all other occurrences of n is substituted with v1(p)

• exp2’ is an expression of type E2 obtained from exp2 as follows:

– each occurrence of M2[rp2(m,b)] for any expression b of type B2
is substituted with v2(M[rp(p,b)])

– any other occurrence of rg2(m,b), rp2(m,b), rb2(m,b), if any, for
any expression b of type B2 is replaced by rg(p,b), v2(rp(p,b)),
rb(p,b), respectively

– any occurrence of sg2(m,b), sp2(m,b), sb2(m,b), if any, for any
expression b of type B2 is replaced by sg(p,b), v2(sp(p,b)),
sb(p,b), respectively

– all other occurrences of m is substituted with v2(p)

(rg, rp, rb) denoting the request and (sg, sp, sb) the supply compon-
ents of (D1 par D2).

Proof: First note that the merged repeat statement is both syntactically and
type correct due to the carefully chosen substitutions applied to exp1 and
exp2 and the fact that p was chosen to be fresh wrt. to these. Its semantics
will be the array M filled with as many computed values as possible from its
initial points – injected from the initial points of M1 and M2 – along the com-
pound dependency obtained from the individual underlying dependencies
of the original repeat statements. This also means that no less and no more
is going to be computed than what is allowed by the original statements.

177

7. Algebraic Properties of DDAs

Secondly, all p:P1+P2 s.t. ig(M,p) holds after the execution of the merged
repeat statement it is the case that tag(p) = tag(M[p]) which will ensure
a direct correlation between the elements of the array M and of the arrays
M1 and M2. In other words, the values of M1 and M2 computable in the
original repeat statements can be obtained from the computed values of M
and vice versa as follows: M1[v1(p)]=v1(M[p]) whenever tag(p)=1, and
M2[v2(p)]=v2(M[p]) otherwise.

In practice, the initialisation of the arrays M1 and M2 takes place before
issuing the repeat statements. It is also likely that some other statements
may appear between the two repeat statements. The following proposition
deals with such a scenario:

Proposition 7.3.2. Consider the following statements:

initialiseM1();

repeat n:P1 along D1 from M1 in exp1;

otherstatements();

initialiseM2();

repeat m:P2 along D2 from M2 in exp2;

If there is no occurrence of M1 in initialiseM2(), and initialiseM2()
is not dependent on otherstatements() then the result of the above pro-
gram code is also a result of the one below:

initialiseM1(); initialiseM2();

createinitialiseM();

repeat p:P1+P2 along (D1 par D2) from M in

if (tag(p)=1) then (E1+E2).i1(exp1’)

else (E1+E2).i2(exp2’)

updateM1(); updateM2();

otherstatements();

where:

• expr1’ and expr1’ are obtained in the manner discussed in The-
orem 7.3.1

• createinitialiseM() creates an array M indexed by P1+P2 and ele-
ment type E1+E2 and initialises it as discussed in Theorem 7.3.1

178

7.3. Compile Time Optimizations

• updateM1() and updateM2() updates the original arrays with the com-
puted values of M, i.e., for all p:P1+P2where ig(M,p) holds M1[v1(p)]
= v1(M[p])whenever tag(p)=1, and M2[v2(p)] = v2(M[p])

Proof: The result of the first set of statements is basically the computed val-
ues of M1, M2 and whatever else it has been computed in otherstatements().
(The latter may even use values of M1.) The result of the second set of state-
ments contains the computed values of M, and through the updates, the
computed values of M1 and M2, and whatever else is being computed in
otherstatements(). That the computed values of M1 and M2 are identical
after both statements follows directly from Theorem 7.3.1 and the condition
imposed on the intermediate statements.

If initialiseM2() is dependent on M1 then a corresponding transfer
function and the automatic application of seq ...via ... combinator
would lead to a merged repeat statement based on a compound DDA ob-
tained via the serial combinator. The automatic application of the serial
combinator and nested DDAs however is not addressed here, a theory for
these is to be investigated in future work.

179

CHAPTER 8
Discussion

This chapter reflects on the characteristics of our DDA-based compiler to
be, draws some conclusions, and points towards future directions.

8.1 Magnolia: a DDA-enabled Compiler

All previous chapters have played the role to demonstrate or emphasize, in
one way or another, various aspects of our proposed programming model.
The compiler, however, is one aspect which has received little attention. The
primary reason behind this is the absence of a fully working DDA-based
compiler.

In the late 90’s, following the constructive recursive (CR) approach,
Søreide [1998] built a prototype compiler based on Sapphire, a functional
language designed for specifying CR problems in a rather simple way for
rapid prototyping. This later was revisioned by Raubotn [2003]. The com-
piler generated sequential and MPI-code from simple DDA-descriptions,
expressed in Sapphire.

Later, as we investigated the upcoming new generation of hardware ar-
chitectures, the framework of our programming model has crystalised. This
led us to the conclusion that merging the idea of a DDA-based compiler
with the Magnolia framework [Bagge, 2009] would be a more promising
enterprise. The tools used for the building of the Sapphire compiler, by this
time, became obsolete, therefore, dusting and adjusting Sapphire was a far
less appealing alternative.

181

8. Discussion

Magnolia is a new programming language1, currently under develop-
ment, which aims at experimenting with program transformation and op-
timization. Though it tries to remain general-purpose, it is highly motiv-
ated by the numerical software domain where high-performance and sup-
port for parallel architectures are critical. This is the crucial point where
our DDA-based approach fits beautifully in the Magnolia framework. The
new directions pinpointed in Section 7.3 about DDA-combinators become
very feasible given the apparatus through which the Magnolia compiler is
being developed. Magnolia also allows the definition of axiom-based con-
cepts by which one can specify the interface and behaviour of abstract data
types [Bagge and Haveraaen, 2010]. This is central for our axiom-based
DDA-formalism, since the compiler can verify the correctness of any DDA-
implementation by checking whether they satisfy all DDA-axioms. This is
essential for all supply-based execution models. For instance, if the DDA-
implementation fails the test, the compiler should not generate code, as
there is no guarantee whatsoever that the code would do the right thing.

The implementation of a DDA-enabled compiler, nonetheless, is not tied
to Magnolia. All essential elements needed for the building of the compiler
have been covered. From here, it is only a matter of taste how to choose the
means.

8.2 Conclusion

We have presented the fundamental elements of a high-level portable par-
allel programming model, based on the formal theory of DDAs and their
embeddings, and provided computational mechanisms that can serve as a
basis for a DDA-enabled parallelizing compiler.

The evaluation of the model has been limited as we could only report
on handcoded experiments. These, on the other hand, provided us with the
necessary insight to be able to formalise and to argue about the correctness
of the proposed computational mechanisms.

The practical experiments underlined that DDA-based programming is
hardware independent, portable and flexible. Once the data dependency
pattern of the computation is defined in a separate module, this can be
re-used over various platforms. This results in high portability, but at the
cost of slightly less optimal running times compared to fine-tuned platform
specific program codes. A DDA-enabled compiler, however, with a proper
optimizing mechanism in place is likely to be able to alleviate this problem.

1http://magnolia-lang.org/

182

8.3. Future Work

The efficiency of the approach, in this sense, has been only addressed within
the constrain of portability.

It has been shown that DDAs can capture the space-time communication
topology of parallel systems, including modern architectures as well, such
as GPUs. DDA-embeddings then allow us to modify at a high-level the
way computations are mapped onto these hardware topologies. They give
us full control over data locality, and spatial placements of computations.
The latter led us to the idea that DDAs are suitable abstractions for defining
FPGA placements of computations, and a circuit design process has been
presented based on DDA-descriptions.

The visualization tool, which illustrated the effect of various embed-
dings, demonstrated the inherent flexibility of DDAs. The tool has been a
great help in generating the majority of DDA-illustrations.

DDAs provide full control over the computation time of the execu-
tion models. Since spatial placements of computations are controlled from
DDAs, this gives full control over space usage, whether sequential or par-
allel execution is desired. In the parallel cases, DDAs give full control over
processor and memory allocation, and communication channel usage, while
still at the abstraction level of the source program.

The framework primarily suits algorithms that exhibit static data de-
pendencies, extractable as program code, for instance, certain recursive,
loop-based or numerical computations. Due to their program refactoring
properties, the DDA-combinators promise to expand this domain.

8.3 Future Work

Building the compiler with all back-end features presented is of utmost
priority. Evaluation then can continue at various levels. Expanding the
front-end with DDA-combinators is also considered of high priority. We
plan building a more advanced visualization tool based on OpenGL, and
expanding the back-end features with new execution models as soon as they
have been formalised, amongst others, for Multi-GPU systems, Cell/BE and
architecture specific instances of OpenCL.

Computations expressed on branch-valued DDAs will be explored as
these suit better circuit descriptions, for instance, when targeting FPGAs.
The study of DDA-combinators is going to be further developed as they
point into directions with applicability in numerical software and high-
performance computing. One essential aspect, for instance, is identifying
some heuristics to automatically define optimal space-time projections of

183

8. Discussion

compound DDAs. Since other hardware aspects, such as network/bus is-
sues, traffic congestion, cache issues, etc., greatly affect system perform-
ance, it will be investigated how space-time DDAs can model these aspects
as well. Then all execution models can take this additional information into
account, which ultimately should lead to improved performance. Com-
putations with dynamic data dependencies will also be explored in future
work.

184

Summary

The foundations of a high-level hardware independent parallel program-
ming model are presented. The theory of the underlying technical tools are
expanded, and related mechanisms formalised for program refactoring.

The model addresses two main issues of parallel programming: how
to map computations to different parallel hardware architectures, and how
to do this at a low development cost, i.e., without rewriting the problem
solving code. The user is presented with a programmable interface which
allows to express the data dependency of the computation as real code.
This in turn provides the means for a parallelizing compiler to harness
directly the implicit driving force of dependencies and generate parallel
code to virtually any parallel system which has a well defined space-time
communication structure.

The underlying technical tool is based on the theory of Data Depend-
ency Algebras (DDAs) and their embeddings. The computations and hard-
ware communication layouts are defined in terms of DDAs. This entails
the embedding of the computation onto various hardware architectures to
be expressed in the form of DDA-embeddings. A DDA-based parallelizing
compiler then can produce parallel code specific for each target architecture.
The embedding is fully controlled by the programmer, at a high- and easy
to modify level, without the need of rewriting the problem solving code.

The precise syntax and semantics of new language constructs are defined
which provide the means to express DDA-based computations. This leads
to a viable programming approach based on explicitly dependency-driven
computational mechanisms. Several DDA-based computational mechan-
isms are presented, each targeting different hardware architectures, such
as uni-processors, shared-memory model architectures, NVIDIA GPUs and
FPGAs.

The ideas are instantiated through several well-known computational
problems including sorting algorithms, parallel prefix sum and the Fast
Fourier Transform. Preliminary experiments show that the approach is
high-level, flexible and portable.

185

Summary

The theory of DDAs is further developed, expanding the study of space-
time DDAs and DDA-projections, and presenting new DDA concepts.

Finally, new mechanisms are introduced which allow the building of
more complex DDAs, in full suport of program refactoring.

186

Acronyms

• Cell/BE – Cell Broadband Engine: a heterogeneous microprocessor
architecture jointly developed by Sony Computer Entertainment, IBM,
and Toshiba

• CPU – Central Processing Unit: the central part of a computer that
executes the instructions of a program.

– Core: part of a CPU that de facto performs instruction execution.

– Multi-core processor – a processor endowed with two or more
cores interconnected on a single chip for enhanced performance,
reduced power consumption, and more efficient simultaneous
processing of multiple tasks.

– Many-core processor – a common term referring to a multi-core
processor possessing hundreds or thousands of on-chip cores

• CR – Constructive Recursion: is a programming methodology de-
veloped by Haveraaen [2000] to deliver a space and time optimal com-
pilation of recursive programs.

• CUDA – Compute Unified Device Architecture: a parallel computing
architecture developed by NVIDIA that serves as a high-level interface
to program NVIDIA GPUs.

• DDA – Data Dependency Algebra: an algebraic abstraction developed
to define data dependency graphs of computations as well as hard-
ware connectivities. It constitutes the key concept of this dissertation.

• FPGA – Field Programmable Gate Array: an integrated circuit de-
signed to be programmed by the user after manufacturing. The pro-
gram is to be specified in some hardware description language, e.g.
VHDL, which is then realised as a concrete circuit on the FPGA chip.
It is re-programmable, attributing renewed functionalities of the same
chip. A major supplier of FPGAs is Xilinx, Inc.

187

Acronyms

• GPU – Graphics Processing Unit: a processor designed to work as
a co-processor to the main CPU in order to accelerate 2D and 3D
graphics rendering.

• GPGPU – General Purpose Computations on GPUs: it refers to the
non-graphics related use of GPUs to execute general purpose compu-
tations traditionally handled by the main CPU.

• MPI – Message Passing Interface: a standard communications pro-
tocol in parallel programming, especially used to program parallel
computers connected in a network.

• NVIDIA – a multinational hardware vendor specialised in chipset
technologies and GPUs.

• RLOC – Relative Location: a basic relational mapping and placement
macro used to describe the layout of the circuit to be realised on FP-
GAs using Xilinx software. It is primarily used to increase speed and
to use FPGA die resources efficiently.

• STA – Space-Time Algebra: a special DDA used to abstract over the
dynamic connectivity of a (parallel) hardware or to define the space-
time unfolding of a computation.

188

References

Aho, A. V. and Hopcroft, J. E. (1974). The Design and Analysis of Computer
Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1st edition. ISBN 0201000296.

Allen, F.; Burke, M.; Charles, P.; Cytron, R.; and Ferrante, J. (1988). ”An
overview of the PTRAN analysis system for multiprocessing”. In
Proceedings of the 1st International Conference on Supercomputing, pages
194–211, New York, NY, USA. Springer-Verlag New York, Inc. ISBN
0-387-18991-2. URL
http://portal.acm.org/citation.cfm?id=73950.73962.

Allen, J. R. (1983). Dependence analysis for subscripted variables and its
application to program transformations. PhD thesis, Rice University,
Houston, TX, USA. AAI8314916.

Allen, r.; Callahan, D.; and Kennedy, K. (1987). ”Automatic decomposition
of scientific programs for parallel execution”. In Proceedings of the
14th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, POPL ’87, pages 63–76, New York, NY, USA. ACM. ISBN
0-89791-215-2. DOI http://doi.acm.org/10.1145/41625.41631.

Allen, R. and Kennedy, K. (1987). ”Automatic translation of FORTRAN
programs to vector form”. ACM Trans. Program. Lang. Syst., 9, pp.
491–542. ISSN 0164-0925.
DOI http://doi.acm.org/10.1145/29873.29875.

Amarasinghe, S. P. and Lam, M. S. (1993). ”Communication optimization
and code generation for distributed memory machines”. SIGPLAN
Not., 28, pp. 126–138. ISSN 0362-1340.
DOI http://doi.acm.org/10.1145/173262.155102.

AMD (2006). ”ATI CTM Guide”. Technical reference manual, ATI. URL
http://ati.amd.com.

189

REFERENCES

Anderlik, A. and Haveraaen, M. (2003). ”On the Category of Data
Dependency Algebras and Embeddings”. Proceedings of the Estonian
Academy of Sciences, Physics, Mathematics, 52(4), pp. 337–355.

Asanovic, K.; Bodik, R.; Catanzaro, B. C.; Gebis, J. J.; Husbands, P.; Keutzer,
K.; Patterson, D. A.; Plishker, W. L.; Shalf, J.; Williams, S. W.; and
Yelick, K. A. (2006). ”The Landscape of Parallel Computing
Research: A View from Berkeley”. Technical Report
UCB/EECS-2006-183, EECS Department, University of California,
Berkeley.

Axelsson, E.; Claessen, K.; Dévai, G.; Horváth, Z.; Keijzer, K.; Lyckegård,
B.; Persson, A.; Sheeran, M.; Svenningsson, J.; and Vajda, A. (2010).
”Feldspar: A domain specific language for digital signal processing
algorithms”. In Formal Methods and Models for Codesign
(MEMOCODE) 2010, 8th IEEE/ACM International Conference on, pages
169 –178. DOI http://dx.doi.org/10.1109/MEMCOD.2010.5558637.

Bacon, D. F.; Graham, S. L.; and Sharp, O. J. (1994). ”Compiler
transformations for high-performance computing”. ACM Comput.
Surv., 26, pp. 345–420. ISSN 0360-0300.
DOI http://doi.acm.org/10.1145/197405.197406.

Baer, J. L. (1973). ”A Survey of Some Theoretical Aspects of
Multiprocessing”. ACM Comput. Surv., 5(1), pp. 31–80. ISSN
0360-0300. DOI http://doi.acm.org/10.1145/356612.356615.

Bagge, A. H. (2009). Constructs & Concepts, Language Design for Flexibility
and Reliability. PhD thesis, Department of Informatics, University of
Bergen, Norway, P.O. Box 7800, N-5020 Bergen, Norway.

Bagge, A. H. and Haveraaen, M. (2010). ”Interfacing Concepts: Why
Declaration Style Shouldn’t Matter”. In Ekman, T. and Vinju, J. J.,
editors, Proceedings of the Ninth Workshop on Language Descriptions,
Tools and Applications (LDTA ’09), volume 253 of Electronic Notes in
Theoretical Computer Science, pages 37–50, York, UK. Elsevier.
DOI http://dx.doi.org/10.1016/j.entcs.2010.08.030.

Banerjee, U. (1976). ”Data dependence in ordinary programs”. Master’s
thesis, Dept. of Computer Science, University of Illinois at
Urbana-Champaign.

Banerjee, U. (1979). Speedup of ordinary programs. PhD thesis, University of
Illinois at Urbana-Champaign, Champaign, IL, USA. AAI8008967.

190

REFERENCES

Banerjee, U.; Eigenmann, R.; Nicolau, A.; and Padua, D. (1993). ”Automatic
program parallelization”. Proceedings of the IEEE, 81(2), pp. 211 –243.
ISSN 0018-9219. DOI http://dx.doi.org/10.1109/5.214548.

Banerjee, U. K. (1988). Dependence Analysis for Supercomputing. Kluwer
Academic Publishers, Norwell, MA, USA. ISBN 0898382890.

Banerjee, U. K. (1996). Dependence Analysis. Kluwer Academic Publishers,
Norwell, MA, USA. ISBN 0792398092.

Batcher, K. E. (1968). ”Sorting Networks and Their Applications”. In
AFIPS Spring Joint Computing Conference, pages 307–314.

Bergland, G. D. (1969). ”A Guided Tour of the Fast Fourier Transform”.
IEEE Spectrum, 6, pp. 41–52.
DOI http://dx.doi.org/10.1109/MSPEC.1969.5213896.

Bernstein, A. J. (1966). ”Analysis of Programs for Parallel Processing”.
Electronic Computers, IEEE Transactions on, EC-15(5), pp. 757 –763.
ISSN 0367-7508.
DOI http://dx.doi.org/10.1109/PGEC.1966.264565.

Bjesse, P.; Claessen, K.; Sheeran, M.; and Singh, S. (1999). ”Lava: hardware
design in Haskell”. SIGPLAN Not., 34(1), pp. 174–184. ISSN
0362-1340. DOI http://doi.acm.org/10.1145/291251.289440.

Blelloch, G. E. (1990). ”Prefix Sums and Their Applications”. Technical
Report CMU-CS-90-190, School of Computer Science, Carnegie
Mellon University.

Blelloch, G. E.; Hardwick, J. C.; Sipelstein, J.; Zagha, M.; and Chatterjee, S.
(1994). ”Implementation of a portable nested data-parallel
language”. J. Parallel Distrib. Comput., 21(1), pp. 4–14. ISSN
0743-7315. DOI http://dx.doi.org/10.1006/jpdc.1994.1038.

Bougé, L. (1996). ”The Data Parallel Programming Model: A Semantic
Perspective”. In The Data Parallel Programming Model: Foundations,
HPF Realization, and Scientific Applications, volume 1132 of Lecture
Notes in Computer Science, pages 4–26. Springer. ISBN 3-540-61736-1.

Burke, M. and Cytron, R. (1986). ”Interprocedural dependence analysis
and parallelization”. In Proceedings of the 1986 SIGPLAN symposium
on Compiler construction, SIGPLAN ’86, pages 162–175, New York,
NY, USA. ACM. ISBN 0-89791-197-0.
DOI http://doi.acm.org/10.1145/12276.13328.

191

REFERENCES

Burke, M. G. and Cytron, R. K. (2004). ”Interprocedural dependence
analysis and parallelization”. SIGPLAN Not., 39, pp. 139–154. ISSN
0362-1340. DOI http://doi.acm.org/10.1145/989393.989411.

Burrows, E. and Haveraaen, M. (2009a). ”Dependency-driven Parallel
Programming”. In Proceedings of the Norsk Informatikk Konferanse
(NIK 2009), Trondheim, Norway. URL
http://www.ii.uib.no/~eva/Publications/BuHa-nik09.pdf.

Burrows, E. and Haveraaen, M. (2009b). ”A Hardware Independent
Parallel Programming Model”. Journal of Logic and Algebraic
Programming, 78, pp. 519–538.
DOI http://dx.doi.org/10.1016/j.jlap.2009.06.002.

Callahan, D.; Cooper, K. D.; Kennedy, K.; and Torczon, L. (1986).
”Interprocedural constant propagation”. In Proceedings of the 1986

SIGPLAN symposium on Compiler construction, SIGPLAN ’86, pages
152–161, New York, NY, USA. ACM. ISBN 0-89791-197-0.
DOI http://doi.acm.org/10.1145/12276.13327.

Callahan, D. and Kennedy, K. (1988). ”Compiling programs for
distributed-memory multiprocessors”. The Journal of Supercomputing,
2, pp. 151–169. ISSN 0920-8542. URL
http://dx.doi.org/10.1007/BF00128175.

Chakravarty, M. M. T.; Leshchinskiy, R.; Jones, S. P.; Keller, G.; and Marlow,
S. (2007). ”Data parallel Haskell: a status report”. In DAMP ’07:
Proceedings of the 2007 workshop on Declarative aspects of multicore
programming, pages 10–18, New York, NY, USA. ACM. ISBN
978-1-59593-690-5.
DOI http://doi.acm.org/10.1145/1248648.1248652.

Chandra, R.; Menon, R.; Dagum, L.; Kohr, D.; Maydan, D.; and McDonald,
J. (2000). Parallel programming in OpenMP. Morgan Kauffman, San
Franciso. URL http://www.OpenMP.org.

Chapman, B. (2005). ”The Challenge of Providing A High-Level
Programming Model for High-Performance Computing”. In
High-Performance Computing: Paradigm and Infrastructure, pages
21–49. Wiley. DOI http://dx.doi.org/10.1002/0471732710.ch2.

Chen, T.; Raghavan, R.; Dale, J. N.; and Iwata, E. (2007). ”Cell Broadband
Engine Architecture and its first implementation – A performance
view”. IBM Journal of Research and Development, 51(5), pp. 559–572.
ISSN 0018-8646.

192

REFERENCES

Christadler, I. and Weinberg, V. (2011). ”RapidMind: Portability across
Architectures and Its Limitations”. In Keller, R.; Kramer, D.; and
Weiss, J.-P., editors, Facing the Multicore-Challenge, volume 6310 of
Lecture Notes in Computer Science, pages 4–15. Springer Berlin /
Heidelberg. URL
http://dx.doi.org/10.1007/978-3-642-16233-6_4.

Claessen, K.; Sheeran, M.; and Singh, S. (2003). ”Using Lava to design and
verify recursive and periodic sorters”. International Journal on
Software Tools for Technology Transfer (STTT), 4, pp. 349–358. ISSN
1433-2779. URL http://dx.doi.org/10.1007/s10009-002-0089-y.

Cole, M. (1989). Algorithmic skeletons: Structured management of parallel
computation. MIT press, Mass.

Cole, M. (2004). ”Bringing skeletons out of the closet: a pragmatic
manifesto for skeletal parallel programming”. Parallel Comput., 30(3),
pp. 389–406. ISSN 0167-8191.
DOI http://dx.doi.org/10.1016/j.parco.2003.12.002.

Collins, R. L.; Vellore, B.; and Carloni, L. P. (2010). ”Recursion-driven
parallel code generation for multi-core platforms”. In Proceedings of
the Conference on Design, Automation and Test in Europe, DATE ’10,
pages 190–195, 3001 Leuven, Belgium, Belgium. European Design
and Automation Association. ISBN 978-3-9810801-6-2. URL
http://portal.acm.org/citation.cfm?id=1870926.1870972.

Cooley, J. and Tukey, J. (1965). ”An Algorithm for the Machine Calculation
of Complex Fourier Series”. Mathematics of Computation, 19(90), pp.
297–301. DOI http://dx.doi.org/10.2307/2003354.

Cooper, K. D.; Kennedy, K.; and Torczon, L. (1986). ”Interprocedural
optimization: eliminating unnecessary recompilation”. In
Proceedings of the 1986 SIGPLAN symposium on Compiler construction,
SIGPLAN ’86, pages 58–67, New York, NY, USA. ACM. ISBN
0-89791-197-0. DOI http://doi.acm.org/10.1145/12276.13317.

Čyras, V. and Haveraaen, M. (1995). ”Modular Programming of
Recurrencies: a Comparison of Two Approaches”. Informatica, 6(4),
pp. 397–444.

Cytron, R.; Ferrante, J.; Rosen, B. K.; Wegman, M. N.; and Zadeck, F. K.
(1991). ”Efficiently computing static single assignment form and the
control dependence graph”. ACM Trans. Program. Lang. Syst., 13, pp.

193

REFERENCES

451–490. ISSN 0164-0925.
DOI http://doi.acm.org/10.1145/115372.115320.

Danelutto, M.; Di Meglio, R.; Orlando, S.; Pelagatti, S.; and Vanneschi, M.
(1992). ”A methodology for the development and the support of
massively parallel programs”. Future Gener. Comput. Syst., 8, pp.
205–220. ISSN 0167-739X.
DOI http://dx.doi.org/10.1016/0167-739X(92)90040-I.

Darema, F.; George, D. A.; Norton, V. A.; and Pfister, G. F. (1988). ”A
single-program-multiple-data computational model for
EPEX/FORTRAN”. Parallel Computing, 7(1), pp. 11 – 24. ISSN
0167-8191.
DOI http://dx.doi.org/10.1016/0167-8191(88)90094-4.

Davis, A. L. (1979). ”A data flow evaluation system based on the concept
of recursive locality”. Managing Requirements Knowledge, International
Workshop on, 0, pp. 1079.
DOI http://doi.ieeecomputersociety.org/10.1109/AFIPS.1979.2.

Dongarra, J.; Foster, I.; Fox, G.; Gropp, W.; Kennedy, K.; Torczon, L.; and
White, A., editors (2003). Sourcebook of parallel computing. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA. ISBN
1-55860-871-0.

Duhamel, P. and Vetterli, M. (1990). ”Fast fourier-transforms – A tutorial
review and a state-of the art”. Signal Processing, 4(19), pp. 259–299.
DOI http://dx.doi.org/10.1016/0165-1684(90)90158-U.

Emiris, I. Z. and Pan, V. Y. (2010). ”Applications of FFT and structured
matrices”. In Atallah, M. J. and Blanton, M., editors, Algorithms and
theory of computation handbook, pages 18–18. Chapman & Hall/CRC.
ISBN 978-1-58488-822-2. URL
http://portal.acm.org/citation.cfm?id=1882757.1882775.

Fatahalian, K.; Horn, D. R.; Knight, T. J.; Leem, L.; Houston, M.; Park, J. Y.;
Erez, M.; Ren, M.; Aiken, A.; Dally, W. J.; and Hanrahan, P. (2006).
”Sequoia: programming the memory hierarchy”. In Proceedings of the
2006 ACM/IEEE conference on Supercomputing, SC ’06, New York, NY,
USA. ACM. ISBN 0-7695-2700-0.
DOI http://doi.acm.org/10.1145/1188455.1188543.

194

REFERENCES

Feautrier, P. (1988). ”Array expansion”. In Proceedings of the 2nd
international conference on Supercomputing, ICS ’88, pages 429–441,
New York, NY, USA. ACM. ISBN 0-89791-272-1.
DOI http://doi.acm.org/10.1145/55364.55406.

Feldman, J. A. (1979). ”High level programming for distributed
computing”. Commun. ACM, 22, pp. 353–368. ISSN 0001-0782.
DOI http://doi.acm.org/10.1145/359114.359127.

Ferrante, J.; Ottenstein, K. J.; and Warren, J. D. (1987). ”The program
dependence graph and its use in optimization”. ACM Transactions on
Programming Languages and Systems, 9, pp. 319–349.

Flynn, M. J. (1972). ”Some Computer Organizations and Their
Effectiveness”. IEEE Trans. on Computers, C-21(9), pp. 948–960.

Govindaraju, N.; Gray, J.; Kumar, R.; and Manocha, D. (2006).
”GPUTeraSort: high performance graphics co-processor sorting for
large database management”. In SIGMOD ’06: Proceedings of the 2006

ACM SIGMOD international conference on Management of data, pages
325–336, New York, NY, USA. ACM. ISBN 1-59593-434-0.
DOI http://doi.acm.org/10.1145/1142473.1142511.

Grama, A.; Gupta, A.; Karypis, G.; and Kumar, V. (2003). Introduction to
Parallel Computing. Second Edition. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA. ISBN 0201648652.

Greif, I. (1977). ”A language for formal problem specification”. Commun.
ACM, 20, pp. 931–935. ISSN 0001-0782.
DOI http://doi.acm.org/10.1145/359897.359904.

Gropp, W.; Lusk, E.; and Skjellum, A. (2000). Using MPI: Portable Parallel
Programming with the Message-passing Interface. 2nd edition. MIT Press.

Gupta, G.; Renganarayanan, L.; Rajopadhye, S.; and Strout, M. (2007).
”Computations on Iteration Spaces”. In Srikant, Y. N. and Shankar,
P., editors, The Compiler Design Handbook: Optimization and Machine
Code Generation, 2nd edition. CRC Press. ISBN 9781420043822.

Gupta, M.; Mukhopadhyay, S.; and Sinha, N. (2000). ”Automatic
Parallelization of Recursive Procedures”. Int. J. Parallel Program., 28,
pp. 537–562. ISSN 0885-7458.
DOI http://dx.doi.org/10.1023/A:1007560600904.

195

REFERENCES

Hansen, P. B. (1973). ”Concurrent Programming Concepts”. ACM Comput.
Surv., 5(4), pp. 223–245. ISSN 0360-0300.
DOI http://doi.acm.org/10.1145/356622.356624.

Haveraaen, M. (1990b). ”Distributing Programs on Different Parallel
Architectures”. In Padua, D. A., editor, Proceedings of the 1990

International Conference on Parallel Processing (ICPP), volume II
Software, pages 288–289. The Pennsylvania State University Press,
University Park and London. ISBN 0-271-00728-1.

Haveraaen, M. (2000). ”Efficient Parallelisation of Recursive Problems
Using Constructive Recursion”. In Euro-Par 2000: Proceedings from
the 6th International Euro-Par Conference on Parallel Processing, number
1900 in Lecture Notes in Computer Science, pages 758–761, London,
UK. Springer-Verlag. ISBN 3-540-67956-1.
DOI http://dx.doi.org/10.1007/3-540-44520-X_104.

Haveraaen, M. (2009). ”An algebra of data dependencies and embeddings
for parallel programming”. Formal Aspects of Computing. To appear.

Haveraaen, M. (June 1990a). ”Data Dependencies and Space Time Algebras
in Parallel Programming”. Technical Report 45, Department of
Informatics, University of Bergen, Norway.

Haveraaen, M. and G. Wagner, E. (2000). ”Guarded Algebras: Disguising
Partiality so You Won’t Know Whether Its There”. In Bert, D.;
Choppy, C.; and Mosses, P., editors, Recent Trends in Algebraic
Development Techniques, volume 1827 of Lecture Notes in Computer
Science, pages 3–11. Springer Berlin / Heidelberg. ISBN
978-3-540-67898-4.
DOI http://dx.doi.org/10.1007/978-3-540-44616-3_11.

Haveraaen, M. and Søreide, S. (1998). ”Solving Recursive Problems in
Linear Time Using Constructive Recursion”. In Norsk
Informatikkonferance NIK’98, pages 310–321, Trondheim, Norway.
Tapir. URL http://www.ii.uib.no/saga/papers/tech2-5c.ps.

Hibbard, P. (1980). ”Multiprocessor software design”. In ACM ’80:
Proceedings of the ACM 1980 annual conference, pages 527–536, New
York, NY, USA. ACM. ISBN 0-89791-028-1.
DOI http://doi.acm.org/10.1145/800176.810011.

Hillis, W. D. and Guy L. Steele, J. (1986). ”Data parallel algorithms”.
Commun. ACM, 29(12), pp. 1170–1183. ISSN 0001-0782.
DOI http://doi.acm.org/10.1145/7902.7903.

196

REFERENCES

Hoare, C. A. R. (1978). ”Communicating sequential processes”. Commun.
ACM, 21(8), pp. 666–677. ISSN 0001-0782.
DOI http://doi.acm.org/10.1145/359576.359585.

HPC Wire (2010). ”A Call to Arms for Parallel Programming Standards.
An interview with Intel’s Tim Mattson”. URL
http://www.hpcwire.com.

Intel (2009). ”Intel Parallel Studio”. URL
http://www.intel.com/go/parallel.

Intel (2010). ”Intel’s Array Building Blocks”. URL
http://software.intel.com/en-us/data-parallel/.

Isard, M.; Budiu, M.; Yu, Y.; Birrell, A.; and Fetterly, D. (2007). ”Dryad:
distributed data-parallel programs from sequential building blocks”.
SIGOPS Oper. Syst. Rev., 41(3), pp. 59–72. ISSN 0163-5980.
DOI http://doi.acm.org/10.1145/1272998.1273005.

Jen, C.-W. and Kwai, D.-M. (1992). ”Data flow representation of iterative
algorithms for systolic arrays”. Computers, IEEE Transactions on,
41(3), pp. 351 –355. ISSN 0018-9340.
DOI http://dx/.doi.org/10.1109/12.127448.

Johnston, W. M.; Hanna, J. R. P.; and Millar, R. J. (2004). ”Advances in
dataflow programming languages”. ACM Comput. Surv., 36, pp.
1–34. ISSN 0360-0300.
DOI http://doi.acm.org/10.1145/1013208.1013209.

Kennedy, K. and Allen, J. R. (2002). Optimizing compilers for modern
architectures: a dependence-based approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA. ISBN 1-55860-286-0.

Kennedy, K.; Koelbel, C.; and Zima, H. (2007). ”The rise and fall of High
Performance Fortran: an historical object lesson”. In HOPL III:
Proceedings of the third ACM SIGPLAN conference on History of
programming languages, pages 7–1–7–22, New York, NY, USA. ACM.
ISBN 978-1-59593-766-X.
DOI http://doi.acm.org/10.1145/1238844.1238851.

Kennedy, K. and McKinley, K. S. (1990). ”Loop distribution with arbitrary
control flow”. In Proceedings of the 1990 ACM/IEEE conference on
Supercomputing, Supercomputing ’90, pages 407–416, Los Alamitos,
CA, USA. IEEE Computer Society Press. ISBN 0-89791-412-0. URL
http://portal.acm.org/citation.cfm?id=110382.110458.

197

REFERENCES

Khronos (2010). ”The OpenCL Specification”. Manual, Khronos OpenCL
Working Group. URL http://www.khronos.org/registry/cl/.

Kirk, D. B. and Hwu, W.-m. W. (2010). Programming Massively Parallel
Processors: A Hands-on Approach. Morgan Kaufmann. ISBN
978-0-12-381472-2.

Kong, X.; Klappholz, D.; and Psarris, K. (1991). ”The I Test: An Improved
Dependence Test for Automatic Parallelization and Vectorization”.
IEEE Trans. Parallel Distrib. Syst., 2, pp. 342–349. ISSN 1045-9219.
DOI http://dx.doi.org/10.1109/71.86109.

Kuck, D.; Kuhn, R.; Leasure, B.; and Wolfe, M. (1980). ”Analysis and
transformation of programs for parallel computation”. In Proceedings
of the 4th International Computer Software and Applications Conference,
pages 709–715, New York, NY, USA. IEEE.

Kuck, D.; Kuhn, R.; Padua, D.; Leasure, B.; and Wolfe, M. (1981).
”Dependence graphs and compiler optimizations”. In Proceedings of
the 8th ACM SIGPLAN-SIGACT Symposium on the Principles of
Programming Languages, page 207–218, New York, NY, USA. ACM
Press.

Kulkarni, M.; Burtscher, M.; Inkulu, R.; Pingali, K.; and Casçaval, C. (2009).
”How much parallelism is there in irregular applications?”.
SIGPLAN Not., 44, pp. 3–14. ISSN 0362-1340. URL
http://doi.acm.org/10.1145/1594835.1504181.

Kung, H. T. (1982). ”Why Systolic Architectures?”. Computer, 15, pp. 37–46.
ISSN 0018-9162.
DOI http://dx.doi.org/10.1109/MC.1982.1653825.

Kung, H. T. and Leiserson, C. E. (1978). ”Systolic Arrays (for VLSI)”. In
Spare Matrix Proc. Academic Press.

Kuon, I.; Tessier, R.; and Rose, J. (2008). ”FPGA Architecture: Survey and
Challenges”. Found. Trends Electron. Des. Autom., 2, pp. 135–253.
ISSN 1551-3076. DOI http://dx.doi.org/10.1561/1000000005.

Kyriakopoulos, K. and Psarris, K. (2005). ”Efficient Techniques for
Advanced Data Dependence Analysis”. In Proceedings of the 14th
International Conference on Parallel Architectures and Compilation
Techniques, PACT ’05, pages 143–156, Washington, DC, USA. IEEE
Computer Society. ISBN 0-7695-2429-X.
DOI http://dx.doi.org/10.1109/PACT.2005.19.

198

REFERENCES

Lamport, L. (1974). ”The parallel execution of DO loops”. Commun. ACM,
17, pp. 83–93. ISSN 0001-0782.
DOI http://doi.acm.org/10.1145/360827.360844.

Lee, J.-D. and Batcher, K. E. (2000). ”Minimizing Communication in the
Bitonic Sort”. IEEE Trans. Parallel Distrib. Syst., 11(5), pp. 459–474.
ISSN 1045-9219. DOI http://dx.doi.org/10.1109/71.852399.

Li, B.; Jin, H.; Zheng, R.; and Zhang, Q. (2008). ”A Heterogeneous Data
Parallel Computational Model for Cell Broadband Engine”.
ChinaGrid, Annual Conference, pages 325–330.
DOI http://dx.doi.org/10.1109/ChinaGrid.2008.56.

Li, Z. and Yew, P.-C. (1988). ”Efficient interprocedural analysis for program
parallelization and restructuring”. SIGPLAN Not., 23, pp. 85–99.
ISSN 0362-1340. DOI http://doi.acm.org/10.1145/62116.62125.

Lisper, B. (1996). ”Data Parallelism and Functional Programming”. In The
Data Parallel Programming Model: Foundations, HPF Realization, and
Scientific Applications, volume 1132 of Lecture Notes in Computer
Science, pages 220–250. Springer. ISBN 3-540-61736-1.

Loveman, D. (1993). ”High performance Fortran”. IEEE Parallel &
Distributed Technology: Systems & Applications, 1(1), pp. 25–42. URL
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=219857.

Loveman, D. B. (1976). ”Program improvement by source to source
transformation”. In Proceedings of the 3rd ACM SIGACT-SIGPLAN
symposium on Principles on programming languages, POPL ’76, pages
140–152, New York, NY, USA. ACM.
DOI http://doi.acm.org/10.1145/800168.811548.

Maydan, D. E.; Hennessy, J. L.; and Lam, M. S. (1995). ”Effectiveness of
data dependence analysis”. International Journal of Parallel
Programming, 23, pp. 63–81. ISSN 0885-7458.
DOI http://dx.doi.org/10.1007/BF02577784.

McCanny, J.; McWhirter, J.; and Kung, S.-Y. (1990). ”The use of data
dependence graphs in the design of bit-level systolic arrays”.
Acoustics, Speech and Signal Processing, IEEE Transactions on, 38(5), pp.
787 –793. ISSN 0096-3518.
DOI http://dx.doi.org/10.1109/29.56023.

199

REFERENCES

McKinley, K. S. (1992). Automatic and interactive parallelization. Phd thesis,
Rice University Houston, TX, USA, Houston, TX, USA. URL
www.cs.utexas.edu/users/mckinley/papers/thesis.pdf.

Miranker, W. L. and Winkler, A. (1984). ”Spacetime representations of
computational structures”. Computing, 32(2), pp. 93–114. ISSN
0010-485X. DOI http://dx.doi.org/10.1007/BF02253685.

Monteyne, M. (2008). ”RapidMind Platform”. Technical report,
RapidMind.

Moore, G. E. (1965). ”Cramming more components onto integrated
circuits”. Electronics, 38(8).

Müller-Olm, M. (2004). ”Precise interprocedural dependence analysis of
parallel programs”. Theoretical Computer Science, 311, pp. 325–388.
ISSN 0304-3975.
DOI http://dx.doi.org/10.1016/j.tcs.2003.09.002.

Nickolls, J. and Dally, W. J. (2010). ”The GPU Computing Era”. IEEE Micro,
30, pp. 56–69. ISSN 0272-1732.
DOI http://dx.doi.org/10.1109/MM.2010.41.

NVIDIA (2010). ”CUDA Programming Guide”. Manual, Nvidia. URL
http://www.nvidia.com.

Owens, J. D.; Luebke, D.; Govindaraju, N.; Harris, M.; Krüger, J.; Lefohn,
A. E.; and Purcell, T. J. (2007). ”A Survey of General-Purpose
Computation on Graphics Hardware”. Computer Graphics Forum,
26(1), pp. 80–113.
DOI http://dx.doi.org/10.1111/j.1467-8659.2007.01012.x.

Padua, D. A. and Wolfe, M. J. (1986). ”Advanced compiler optimizations
for supercomputers”. Commun. ACM, 29, pp. 1184–1201. ISSN
0001-0782. DOI http://doi.acm.org/10.1145/7902.7904.

Perez, J.; Bellens, P.; Badia, R. M.; and Labarta, J. (2007). ”CellSs: Making it
easier to program the Cell Broadband Engine processor”. IBM
Journal of Research and Development, 51(5), pp. 593–604. ISSN
0018-8646. DOI http://dx.doi.org/10.1147/rd.515.0593.

PGAS (2010). ”Partioned Global Address Space”. URL http://pgas.org.

200

REFERENCES

Polychronopoulos, C. D.; Gikar, M. B.; Haghighat, M. R.; Lee, C. L.; Leung,
B. P.; and Schouten, D. A. (1990). ”The structure of parafrase-2: an
advanced parallelizing compiler for C and FORTRAN”. In Selected
papers of the second workshop on Languages and compilers for parallel
computing, pages 423–453, London, UK, UK. Pitman Publishing.
URL http://portal.acm.org/citation.cfm?id=92402.92562.

Pouchet, L.-N.; Bastoul, C.; Cohen, A.; and Cavazos, J. (2008). ”Iterative
optimization in the polyhedral model: part ii, multidimensional
time”. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 90–100, New York,
NY, USA. ACM.

Psarris, K. (1992). ”On exact data dependence analysis”. In Proceedings of
the 6th international conference on Supercomputing, ICS ’92, pages
303–312, New York, NY, USA. ACM. ISBN 0-89791-485-6.
DOI http://doi.acm.org/10.1145/143369.143424.

Psarris, K. (1996). ”The Banerjee-Wolfe and GCD tests on exact data
dependence information”. J. Parallel Distrib. Comput., 32, pp.
119–138. ISSN 0743-7315.
DOI http://dx.doi.org/10.1006/jpdc.1996.0009.

Pugh, W. and Wonnacott, D. (1992). ”Eliminating false data dependences
using the Omega test”. SIGPLAN Not., 27, pp. 140–151. ISSN
0362-1340. DOI http://doi.acm.org/10.1145/143103.143129.

Quinn, M. J. (1986). Designing efficient algorithms for parallel computers.
McGraw-Hill, Inc., New York, NY, USA. ISBN 0-070-51071-7.

Rabhi, F. A. and Gorlatch, S., editors (2003). Patterns and skeletons for parallel
and distributed computing. Springer-Verlag, London, UK. ISBN
1-85233-506-8.

Raubotn, S. (October 2003). Hvordan implementere DP-problemer i Safir v.h.a.
Konstruktiv Rekursjon. Master Thesis. Master thesis, University of
Bergen, P.O. Box 7800, N-5020 Bergen, Norway.

Reinders, J. (2007). Intel Threading Building Blocks: Outfitting C++ for
Multi-core Processor Parallelism. O’Reilly.

Reinders, J. (2010). ”Think parallel or perish”. The Parallel Universe (Intel),
1(1).

201

REFERENCES

Rugina, R. and Rinard, M. (1999). ”Automatic parallelization of divide and
conquer algorithms”. In Proceedings of the seventh ACM SIGPLAN
symposium on Principles and practice of parallel programming, PPoPP
’99, pages 72–83, New York, NY, USA. ACM. ISBN 1-58113-100-3.
DOI http://doi.acm.org/10.1145/301104.301111.

Satish, N.; Harris, M.; and Garland, M. (2009). ”Designing efficient sorting
algorithms for manycore GPUs”. In Parallel & Distributed Processing,
2009. IPDPS 2009. IEEE International Symposium on, pages 1–10. URL
http://dx.doi.org/10.1109/IPDPS.2009.5161005.

Sheeran, M. (2010). ”Functional and dynamic programming in the design
of parallel prefix networks”. Journal of Functional Programming,
FirstView, pp. 1–56.
DOI http://dx.doi.org/10.1017/S0956796810000304.

Singh, S. (2000). ”Death of the RLOC?”. Field-Programmable Custom
Computing Machines, 2000 IEEE Symposium on, page 145. ISSN
1082-3409. DOI http://dx.doi.org/10.1109/FPGA.2000.903401.

Singh, S. (2008). ”Declarative Programming Techniques for Many-Core
Architecures”. URL
http://research.microsoft.com/~satnams/dec_manycore.pdf.

Singh, S. (2011). ”The RLOC is Dead – Long Live the RLOC”. In Field
Programmable Gate Arrays (FPGA), 2011 ACM/SIGA International
Symposium on. ACM.

Sintorn, E. and Assarsson, U. (2008). ”Fast parallel GPU-sorting using a
hybrid algorithm”. J. Parallel Distrib. Comput., 68(10), pp. 1381–1388.
ISSN 0743-7315.
DOI http://dx.doi.org/10.1016/j.jpdc.2008.05.012.

Skillicorn, D. B. (1995). ”Towards a higher level of abstraction in parallel
programming”. In Proceedings of the conference on Programming
Models for Massively Parallel Computers, PMMP ’95, pages 78–,
Washington, DC, USA. IEEE Computer Society. ISBN 0-8186-7177-7.
URL http://portal.acm.org/citation.cfm?id=525697.826754.

Sklansky, J. (1960). ”Conditional-Sum Addition Logic”. Electronic
Computers, IRE Transactions on, EC-9(2), pp. 226–231. ISSN 0367-9950.
DOI http://dx.doi.org/10.1109/TEC.1960.5219822.

202

REFERENCES

Søreide, S. (1998). Compiling Sapphire into Sequential and Parallel Code Using
Assertions. Master thesis, Department of Informatics, University of
Bergen, Norway, P.O. Box 7800, N-5020 Bergen, Norway.

Srikant, Y. N. and Shankar, P., editors (2007). The Compiler Design Handbook:
Optimizations and Machine Code Generation, 2nd edition. CRC Press.
ISBN 9781420043822.

Stone, H. (Feb. 1971). ”Parallel Processing with the Perfect Shuffle”.
Computers, IEEE Transactions on, C-20(2), pp. 153–161. ISSN
0018-9340. DOI http://dx.doi.org/10.1109/T-C.1971.223205.

Svensson, J. (2011). Obsidian: GPU Kernel Programming in Haskell. Licentiate
thesis 77l, Computer Science and Enginering, Chalmers University
of Technology, Gothenburg. URL
http://www.cse.chalmers.se/~joels/writing/lic.pdf.

Szymanski, B. K., editor (1991). Parallel functional languages and compilers.
ACM, New York, NY, USA. ISBN 0-201-52243-8.

Veen, A. H. (1986). ”Dataflow machine architecture”. ACM Comput. Surv.,
18, pp. 365–396. ISSN 0360-0300.
DOI http://doi.acm.org/10.1145/27633.28055.

Viitanen, M. and Hämäläinen, T. D. (2004). ”Comparison of Data
Dependence Analysis Tests”. In Pimentel, A. and Vassiliadis, S.,
editors, Computer Systems: Architectures, Modeling, and Simulation,
volume 3133 of Lecture Notes in Computer Science, pages 183–192.
Springer.
DOI http://dx.doi.org/10.1007/978-3-540-27776-7_16.

Wolfe, M. and Banerjee, U. (1987). ”Data dependence and its application to
parallel processing”. Int. J. Parallel Program., 16, pp. 137–178. ISSN
0885-7458. DOI http://dx.doi.org/10.1007/BF01379099.

Wolfe, M. J. (1990). Optimizing Supercompilers for Supercomputers. MIT
Press, Cambridge, MA, USA. ISBN 0262730820.

Wolfe, M. J. (1996). High Performance Compilers for Parallel Computing.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
ISBN 0805327304.

203

REFERENCES

Zhou, J. and Zeng, G. (2006). ”A general data dependence analysis to
nested loop using integer interval theory”. In Proceedings of the 20th
international conference on Parallel and distributed processing, IPDPS’06,
pages 386–386, Washington, DC, USA. IEEE Computer Society. ISBN
1-4244-0054-6. URL
http://portal.acm.org/citation.cfm?id=1898699.1898952.

Zima, H. and Chapman, B. (1993). ”Compiling for distributed-memory
systems”. Proceedings of the IEEE, 81(2), pp. 264 –287. ISSN
0018-9219. DOI http://dx.doi.org/10.1109/5.214550.

204

