Formulas as Programs

Eva Suci, Master Thesis, Spring 2003

Supervisor: Marc Bezem

Contents

1 Introduction
1.1 Imperative Programming
1.2 Logic Programming . . .
1.3 Functional Programming

2 Operational Semantics
2.1 Computation Mechanism
2.2 Examples

2.3 Soundness and Completeness
2.4 Soundness Results Applied to Specifications

3 Alma-0 Programming Lang
3.1 General Aspects of the La
3.2 Declarative Interpretation

4 Tail-recursion
4.1 About Recursion

uage
NEUAZE . . .« v . v e e e

4.2 Tail-recursion Optimisation

4.3 Alma-0 and Tail-recursion

5 Maximum Element
5.1 Naive Solution.

5.2 Reduced Time Complexity

5.3 Tail-recursive Approach

6 Bubblesort
6.1 Using Matrices
6.2 Reducing Space

6.3 Optimization by Tail Recursion

7 Quicksort
7.1 Using a Matrix
7.2 Tail-recursive Quicksort

8 Conclusions

39
39
41

43
43
44
45

47
47
48
50

53
54
60
62

67
68
73

79

CONTENTS

Chapter 1

Introduction

Declarative programming is a style of programming in which a program has
a dual reading both as a sequence of instructions to a machine and as a
formula in a logic with a simple semantics. The execution of the program
should respect the logical semantics. Examples (with the corresponding log-
ics) are: functional programming (equational logic), logic programming (pred-
icate logic), constraint logic programming (predicate logic over specific do-
mains) and database querying (set theory). The dual reading of a program
as a formula is - deliberately - more abstract, abstracting for example from
a computational notion like state. This makes declarative programs easier to
understand, modify and verify, which - ideally - should outweigh the lesser
expressivity and efficiency.

Apt and Bezem [1] introduced a computational interpretation of first-order
logic based on a constructive interpretation of satisfiability w.r.t. a fixed but
arbitrary interpretation, in which approach the formulas themselves are pro-
grams.

The goal of this project has been to explore declarative programming by
extending this interpretation to such Alma-0 programs which contain recursive
and /or non-recursive procedures but still do not include destructive assign-
ments, as well as to give a formal proof for the implication:

Implementation — Specification

for some non-trivial examples.

Alma-0 is an implemented programming language that supports declara-
tive programming, and which combines the advantages of imperative and logic
programming paradigms.

Using Alma-0, we have elaborated declarative implementations for well-
known non-trivial computational problems, such as: finding a maximum ele-
ment of an array and sorting, accompanied by formal proofs for the implication
above.

Subsections of this chapter give a general overview of imperative, logic
and functional programming, pointing out main traits and differences of these

CHAPTER 1. INTRODUCTION

programming paradigms. [11]

1.1 Imperative Programming

The basic architecture of computers has had a crucial effect on programming
and language design. Most of the popular languages of the past decades (i.e.
Fortran, Pascal, C, etc.), have been designed around the dominant computer
architecture, called the von Neumann architecture (after one of its origina-
tors). In such a computer both data and programs are stored in the same
memory, whereas the central processing unit (CPU), which executes instruc-
tions, is separated from the memory, therefore data flow and instruction trans-
fer between the CPU and memory must be assured by some other means.
Nearly all digital computers since '40s have been based on this architecture.

Imperative programming languages are, to varying degrees, abstractions of
the underlying von Neumann computer. The abstractions in a language for the
memory cells of the machine are variables. In some cases, the characteristics of
the abstractions are very close to the characteristics of the cells. For example,
an integer variable is usually represented exactly as an individual hardware
memory word. In other cases, the abstractions are at a large distance from the
cells, as with a three-dimensional array, which requires a software mapping
function to support the abstraction.

The central features of imperative programming languages are variables to-
gether with the assignment statements and control statements. The purpose
of an assignment statement is to change the value of a variable, so an inte-
gral part of imperative programming is the concept of variables whose values
change during program execution. (Non-imperative languages may include
variables of a different sort, such as the parameters of functions in functional
languages.)

An assignment statement can simply cause a value to be copied from one
memory cell to another. But in many cases assignment statements include
expressions with operators. In this case, operands in expressions are piped
from memory to the CPU, and the result of evaluating the expression is piped
back to the memory cell represented by the left side of the assignment.

Control statements are linguistic mechanisms that make the computations
in imperative programs flexible and powerful. There are basically two main
mechanisms: some means of selecting among alternative control flow paths
(of statement execution) and some means of causing the repeated execution
of certain collections of statements.

The most efficient way to implement repetition on von Neumann computers
is the iterative form because in iteration instructions are stored in adjacent
memory cells. This efficiency discourages the use of recursion for repetition,
although recursion is often more natural.

The most common control statements present in imperative languages are:

1.2. LOGIC PROGRAMMING

if _then_ else as a form of selection statement, the for loop as a finite iterative
form of repetition, and the while statement which is a logically controlled
loop, possibly infinite. There are of course many others which may differ in
nuances from language to language.

Programming in imperative languages is primarily procedural, which means
that the programmer instructs the computer exactly how a certain computa-
tion should be accomplished. That is, the computer is treated as a simple
device that obeys orders. Everything that is computed must have every detail
of the computation spelled out.

For example, if we have a glass of water and a glass of milk, we know that
in order to be able to swap the content of the glasses we need a third empty
glass. In the case of a procedure that swaps two integers that’s exactly what
happens:

PROCEDURE Swap (VAR x,y:INTEGER);
VAR z:INTEGER;

BEGIN
Z 1= X;
y 1= X;
X 1= z;
END;

We communicated every detail needed for swapping: the request for a new
variable z, and the set of instructions that do the work.

1.2 Logic Programming

Logic programming is the use of a formal logic notation to communicate com-
putational processes to a computer. A subset of predicate calculus, called Horn
clause logic, is the notation used in current logic programming languages. A
logic programming language is a rule-based language, where rules are specified
in no particular order, and the language implementation system must choose
an execution order that produces the desired result.

Non-imperative languages, and in particular logic programming languages
are nonprocedural. Programs in such languages, unlike programs in impera-
tive languages, do not state exactly how a result is to be computed but rather
describe what result. The difference is that we assume the computer system
can somehow determine how the result is to be computed. What is needed to
provide this capability for logic programming languages is a concise means of
supplying the computer with both the relevant information and an inferenc-
ing process for computing desirable results. Predicate calculus supplies the
basic form of communication to the computer, and the proof method, named
resolution [10], supplies the inference technique. For Horn clause logic this
specialised inference method is called SLD-resolution, which forms the basis
for the Prolog programming language.

7

CHAPTER 1. INTRODUCTION

In fact, resolution is the primary activity of a Prolog interpreter. This pro-
cess, which uses backtracking extensively, involves mainly pattern matching
among propositions. When variables are involved, they can be instantiated to
values to provide matches. This instantiation process is called unification.

Languages used for logic programming are called declarative languages be-
cause programs written in them consist of declarations rather then assignments
and control flow statements. These declarations are actually statements, or
propositions, in symbolic logic. In this context, logic programming abstracts
from a computational notion like machine state, the execution of the program
being characterised by the inference rules.

One of the essential characteristics of logic programming languages is their
semantics, which is called declarative semantics. The basic concept of this se-
mantics is that there is a simple way to determine the meaning of each state-
ment, which doesn’t depend on how the statement might be used to solve a
problem. Therefore declarative semantics are considerably easier to under-
stand than the semantics of imperative languages. For example, the meaning
of a given proposition in a logic programming language can be concisely de-
termined from the statement itself, whereas in an imperative language, the
semantics of a simple assignment statement requires examination of local dec-
larations, knowledge of the scoping rules of the language, possibly even ex-
aminations of programs in other files just to determine the types of variables
in the assignment, and so on. Thus, declarative semantics, with no need to
consider textual context or execution sequences, is often stated as one of the
advantages that declarative languages have over imperative languages.

For example in Prolog the above mentioned swapping problem could be
specified as a relation of arity 4:

SWAP(X,Y,Y,X)

There are a number of problems with the current state of logic program-
ming. For reasons of efficiency, and even to avoid infinite loops, programmers
must sometimes state control flow information in their programs. Also, there
are the problems of the so called closed-world assumption (any query about
which there is not enough information to prove is assumed to be false) and
negation.

Logic programming has been used in a number of different areas, primarily
in relational database systems, expert systems, and natural language process-
ing.

1.3 Functional Programming

The functional programming paradigm, which is based on mathematical func-
tions, is the design basis for one of the most important non-imperative styles

1.3. FUNCTIONAL PROGRAMMING

of languages. This style of programming is supported by functional, or ap-
plicative, programming languages.

The objective of the design of functional programming language is to mimic
mathematical functions to the greatest possible. This results in an approach
to problem solving that is fundamentally different from methods used in im-
perative languages.

As we have seen, in imperative programming, an expression is evaluated
and the result is stored in a memory location, which is represented by a
variable in the program. A purely functional programming language does
not use variables or assignment statements. This frees the programmer from
concerns about the memory cells of the computer on which the program is
executed. Without variables, iterative constructs are not possible, for they
are controlled by variables. Therefore, iteration must be done by recursion
rather then by repetition.

Programs are function definitions and function application specifications,
and executions consist of evaluating the function applications.

In functional programming, for example, the before mentioned swapping
could be specified as follows:

FUN swap(x,y : INT) = (y,x) END

Without variables, the execution of a purely functional program has no
state in the sense of operational and denotational semantics. The execution
of a function always produces the same result when given the same parameters,
this property being called referential transparency. It makes the semantics of
purely functional languages far simpler than the semantics of the imperative
languages and functional languages that include imperative features.

A functional language provides a set of primitive functions, a set of func-
tional forms to construct complex functions from these primitive functions,
a function application operation, and some structures for representing data.
These structures are used to represent parameters and values computed by
functions. A well-defined functional language requires only a small number of
primitive functions.

Functional languages can have a very simple syntactic structure. The list
structure of LISP is an example. LISP began as a purely functional language
but soon required some important imperative features that increased its exe-
cution efficiency.

ML is a strongly typed functional language with more conventional syntax
than LISP, one that is more similar to Pascal. It includes a type inferencing
system and exception handling.

Although there may be advantages to purely functional languages over
their imperative relatives, their lower efficiency of execution on von Neumann
computers has prevented them from being considered by many as substitutes.

CHAPTER 1.

INTRODUCTION

10

Chapter 2

Operational Semantics

As a starting point we used the computation mechanism introduced by Apt
and Bezem [1], and analysed the soundness and completeness results obtained
there. As the defined language was too limited as a formalism for program-
ming, they discuss some possible extensions convenient for programming pur-
poses, such as: non-recursive procedures, sorts (i.e. types), arrays and bounded
quantification.

In this chapter we are presenting this computation mechanism, spelled
out and compiled it with the extensions there introduced, extending it fur-
ther on for recursive procedures, and according to all these, soundness and
completeness results are recovered.

2.1 Computation Mechanism

Consider an arbitrary many-sorted first-order language with equality and an
interpretation for it. Interpretations for many-sorted first-order languages are
obtained by assigning to each sort a non-empty domain and by assigning to
each function symbol and each predicate symbol, respectively, an appropriate
function and relation on these sorts. We assume in particular a fixed signature
with a corresponding interpretation of its elements in the domains. Arities in
the signature specify the sorts of the arguments of the function and predicate
symbols, as well as the sorts of the function values. Terms and atoms are well-
formed if the sorts of the arguments comply with the signature. In quantifying
a variable, its sort, if not clear from the context, should be made explicit.

Sorts can be used to model various basic data types occurring in program-
ming practice: integers, booleans, characters, but also compound data types
such as arrays.

Arrays are modelled as vectors or matrices, using projection functions that
are given a standard interpretation. Given a sort for the indices (typically, a
segment of integers or a product of such segments) and a sort for the elements
of the array, we add a sort for arrays of the corresponding type to the signa-
ture. We also add to the language array variables, or arrays for short, to be

11

CHAPTER 2. OPERATIONAL SEMANTICS

interpreted as arrays in the standard interpretation.

We use the letters a, b, ¢ to denote arrays and to distinguish arrays from
objects of other sorts. We write a[ty,ts,...,t,] to denote the projection of
the array a on the index tq,1s, ..., %,, akin to the use of subscripted variables
in programming languages. The standard interpretation of each projection
function maps a given array and a given index to the correct element. Thus
subscripted variables are simply terms, but they are handled in such a way,
that, e.g., a[ty, to, ..., t,] is viewed as a variable and not as a compound term.

Definition 1 (valuation, a-closed, a-assignment). A valuation is a finite
mapping from variables to domain elements. Valuations will be denoted as
single-valued sets of pairs x/d, where x is a variable and d a domain element.
We use a, o, 3,3, ... for arbitrary valuations and call o' an extension of «
when o C o/, that is, every assignment to a variable by « also occurs in «’'.
Further, £ denotes the empty valuation. A variable = is a-closed, if for some
d the pair 2:/d is an element of «.

Let a be a valuation. A term t is a-closed, if all variables of ¢ get a value
in a. In that case t* denotes the evaluation of t under o in the domain. More
generally, for any expression F the result of the replacement of each a-closed
term t by t* is denoted by E“.

In general, we say that a term f(¢1,%s,...,t,), with f function symbol, is
a-closed if each term t; is a-closed.

As an extension to this valuation we define the array valuation to be a finite
mapping from array elements to domain elements. They will be denoted as
pairs of the form a|dy,ds, ...,d,]/d, where a is an n-ary array symbol, and
di,ds, ...,d,,d are domain elements. This means that, if the terms t1, o, ..., t,
evaluates to dy,ds, ..., d, respectively, then the term alt, s, ..., t,], handled
rather as a variable, evaluates to d.

A term alty,ty, ..., t,] is a-closed, if each term ¢; is a-closed and evaluates
to a domain element d; such that for some d the pair a[dy,dy, ..., d,]/d is an
element of a.

Hereafter, whenever we will refer to a valuation «, we will consider its
extension to arrays as well.

An equation s =t is an a-assignment if either

e one side of it, say s, is a variable that is not a-closed and the other side,
t, is an a-closed term, or

e one sside of it, say s, is of the form alty, s, ..., t,,], where each ¢; is a-closed
but alty, ta, ..., t,] is not a-closed, and the other, ¢, is an a-closed term.

In our setting, the only way to assign values to variables or arrays at a se-
lected position will be by evaluating an «a-assignment as above. Given an
a-assignment = t, we evaluate it by assigning to x the value ¢, or given an
a-assignment alty, to, ..., t,] = t, we evaluate it by assigning a[t{,t9, ..., t%] the

12

2.1. COMPUTATION MECHANISM

value t°.

Definition 2 (formulas). In order to accommodate the definition of the
operational semantics, the set of formulas has an inductive definition which
may look a bit peculiar. First, unbounded universal quantifiers are absent.
Second, every formula is taken to be a conjunction, with every conjunct (if any)
either an atomic formula (in short: an atom), or a disjunction, conjunction
or implication of formulas, a negation of a formula, an existentially quantified
formula, an existentially or universally bounded formula. The latter three
unary constructors are assumed to bind stronger then the previous binary
ones.
An atom is either:

e an equation of the form s = ¢, with s and ¢ terms, or

e a term p(ty,ts,...,t,), with p, an n-ary relation symbol, and ¢, s, ..., ¢,
terms.

For maximal clarity we give here an inductive definition of the set of formulas.
In the operational semantics all conjunctions are taken to be right associative.

1. The empty conjunction [is a formula.

2. If ¢ is a formula and A is an atom, then A A ¢ is a formula.
3. If ¢, ¢y, o are formulas, then (¢ V ¢2) A ¢ is a formula.

4. If 1, ¢y, o are formulas, then (¢1 A ¢2) A ¢ is a formula.

5. If 9, ¢1, ¢ are formulas, then (¢ — ¢2) A ¢ is a formula.

6. If ¢, 1 are formulas, then —¢ A v is a formula.

7. If ¢,v are formulas, then Jz ¢ A ¢ is a formula.

8. If ¢(x) is a formula, with = of integer type, and s and ¢ are terms of
integer type, and ® is a formula, then 3z € [s..t] ¢p(x) A ¢ is a formula.

9. If ¢(x) is a formula, with x of integer type, and s and ¢ are terms of
integer type, and ® is a formula, then Vz € [s..t] ¢(x) A ¢ is a formula.

If ¢ is a formula and « is a valuation, then we say that ¢ is a-closed, if for every
free variable x of ¢ and some domain element d, the pair x/d is an element of «.

Definition 3 (p-axiom). If p is an n-ary relation symbol, and ¢ is a formula
with free variables z1, 2o, ..., x,,, then the equivalence

p(T1, Ty ey) > P

13

CHAPTER 2. OPERATIONAL SEMANTICS

is called a p-aziom, where the equivalence <>connects the weakest with respect
to any other connectives. A p-axiom is always considered to be universally
closed w.r.t. the free variables z1, xg, ..., Tp,.

As we did not impose any restriction on ¢, apart from claiming x, zo, ..., 2,
to be free variables in ¢, such an axiom may not properly define p or even be
flat-out inconsistent, when, for example, 1) itself contains an atom of the form
p(tl, tQ, ceey tn)

The reader may consult several examples:

e p(r,y,2) > (x<yANy=2)V (zr>y Az =2z)is well-defined

e odd(z) <> x =1V (x>0 A even(x — 1))

and even(z) <>z =0V (x>0 A odd(z — 1))
odd(x) and even(x) are mutually recursive, well-defined on N

e p(z) <> p(z) is pathological: consistent, but p is ill-defined
e p(z) <> (p(z) — 0 = 2) is pathological: inconsistent
e p(z) <> —p(x) is pathological: inconsistent.

A p-axiom p(zq, %o, ..., 2,) <> 1 is called consistent, when p, if present in v
at all, doesn’t occur in the scope of a negation or the premise part of an
implication, that is, p appears only in strictly positive positions in).

Hereafter, we tacitly assume that all p-axioms are consistent. In our in-
terpretation, under the assumption of consistency, all such definitions become
true.

In general, the logical reading of an implementation I consists of a con-
junction of finitely many p-axioms (all with different relation symbols on the
left-hand side) and of a formula ¢ representing the main body of the imple-
mentation. This can be made rigorous by the following syntax:

I:=gp-axiom A I|¢ (2.1)

where the relation symbol on the left-hand side in the newly added g-axiom
is always fresh with respect to the the left-hand sides of the p-axioms already
added.

For a given implementation defined as in (2.1), we denote by @; the con-
junction of p-axioms, and by ¢; the formula, or when no ambiguity arises, g
and ¢, respectively.

Definition 4 (operational semantics). The operational semantics of a
formula will be defined in terms of a possibly infinite tree [¢] , depending on
the formula ¢, the (initial) valuation «, and the associated g in the given
implementation. The root of [¢], is labelled with the pair ¢, «. All internal
nodes of the tree [¢],, are labelled with pairs consisting of a formula and a
valuation. The leaves of the tree are labelled with either

14

2.1. COMPUTATION MECHANISM

e error (representing the occurrence of an error in this branch of the com-
putation), or

e fail (representing logical failure of the computation), or

e a valuation (representing logical success of the computation and yielding
values for the free variables of the formula that make the formula true
relative to).

Definition 5 (computation tree). The computation tree [¢], is defined
by using the structure of formulas given by Definition 2.

1. For the empty conjunction we define [d], to be the tree with the root
that has a success leaf « as its son:

L«

2. If ¢ is a formula and A is an atom, then we distinguish ten cases de-
pending on the form of A. In all the ten cases [A A ¢], is a tree with a
root of degree one.

e Atom A has the form s =, is a-closed and true. Then the root of
[A A], has [¢], as its subtree:

e Atom A has the the form s = t, is a-closed and false. Then the
root of [A A 9] has the failure leave fail as its son:

ANY,a

fail
e Atom A has the the form s = ¢, is not a-closed, but is not an

15

CHAPTER 2. OPERATIONAL SEMANTICS

a-assignment. Then the root of [A A 9] has the error leave as its
son:

ANY,«

error

Atom A is an a-assignment s = t, such that either s or ¢ is a
variable which is not a-closed, say s = x, with x not a-closed and
t a-closed. Then the root of [A A 9] has the [¢] , as its subtree,
where o' extends a with the pair z/t*:

ANY,a

[¢] o

The symmetrical case is analogous.

Atom A is an a-assignment s = t, such that s or ¢, say s, is a term
of the form alt, s, ..., t,], with each t; a-closed but alty,ts, ..., t,]
not a-closed, and ¢t a-closed. Then the root of [A A ¢] has [¢],
as its subtree, where o' extends « with the pair a[t$, 5, ..., t&]/t*:

!

AN,

[¢] o

The symmetrical case is analogous.

Atom A has the form p(ty,ts, ..., t,), where p is a predefined n-ary
relation symbol, t1,ts, ..., t, are a-closed, and p(t$, 15, ..., t%) is true,
then the root of [A A)], has [¢], as its subtree.

p(tla t27 ty tn) A wa a

[v].

16

2.1. COMPUTATION MECHANISM

(Typically some binary predefined relation symbols: <, <, >, >)

e Atom A has the form p(ty,ts, ..., t,), where p is a predefined n-ary
relation symbol, ¢y, to, ..., t,, are a-closed, and p(t{, 15, ..., t%) is false,
then the root of [A A 4], has the failure leaf fail as its son.

p(t17t27 7tn) A 77/}70[

fail

e Atom A has the form p(ty,ts, ..., t,), where p is a predefined n-ary
relation symbol, and at least one term from tq,1t,,...,%, is not a-
closed, then the root of [A A], has the error leaf error as its
son.

p(tla t27 ty tn) A wa a

error

e Atom A has the form p(ty,ts,...,t,), where p is an n-ary rela-
tion symbol, but not predefined. If p contains a g-axiom for
p, such that p(x1,2,,...,2,) <> ¢, then the root of [A A 4], has
[¢{x1/t1, ..., zn/ta} N 1)], asits subtree, where ¢ {z1/t1, z2/ts, ..., 2y /15 }
stands for the result of substituting in ¢ the free occurrences of
variables x1, xs, ..., , by tq,1s, ..., t, respectively:

p(tla t27 ty tn) A wa a

[[¢{$1/t1, ceey Ill'n/tn} A w]]a
e Atom A has the form p(ty,ts,...,t,), where p is an n-ary relation

symbol, but not predefined. If p doesn’t contain a g-axiom for p,
then the root of [A A 1], has the error leave as its son:

17

CHAPTER 2. OPERATIONAL SEMANTICS

p(t17t27 7tn) A 1/%04

error

3. If ¢, ¢1, P2 are formulas, then we put [(¢1 V ¢2) A 9] to be the tree with
a root of degree two and with left and right subtrees [¢ A], and

[p2 A 4], respectively:

(A1 V d2) N,

[pr AL, (o2 A Y,

4. If 1, ¢1, ¢o are formulas, then we put [(¢1 A ¢2) A], to be the tree with
a root of degree one with [¢1 A (¢2 A1))], as its subtree:

(1 A d2) N,

[61 A (92 AU,

This substantiates the association of conjunctions to the right as men-
tioned in Definition 2.

5. If ¢, ¢1, ¢o are formulas, then we put [(¢1 — ¢2) A 9], to be the tree
with a root of degree one. We distinguish three cases.

e Formula ¢, is a-closed and [¢],, is finite and contains only failure
leaves. Then the root of [(¢1 — ¢2) A2)],, has [¢], as its subtree:

(d)l — d)Q) A%“

[¥],

e Formula ¢ is a-closed and [¢;],, contains at least one success leaf.
Then the root of [(¢1 — ¢2) A ¢],, has [p2 A 9], as its subtree:

18

2.1. COMPUTATION MECHANISM

(d)l — d)Q) N 1/),04

[#2 A9,

e In all the other cases the root of [(¢1 — ¢2) A 9], has the error leaf
error as its son:

(1 = d2) N,

error

The above definition relies on the logical equivalence of ¢; — ¢o and
=1 V @9, but avoids unnecessary branching in the computation tree that
would be introduced by the disjunction.

6. If ¢, are formulas, then to define [-¢ A)], we distinguish three cases
w.r.t. ¢. In all of them [—¢ A 9], is a tree with a root of degree one.

e Formula ¢ is a-closed and [¢], is finite and contains only failure
leaves. Then the root of [-¢ A 4], has [¢], as its subtree:

AR

[¥],

e Formula ¢ is a-closed and [¢], contains at least one success leaf.

Then the root of [=¢ A 9], has the failure leaf fail as its son:

O AP,

fail

e In all other cases the root of [-¢ A 9], has the error leaf error as
its son:

19

CHAPTER 2. OPERATIONAL SEMANTICS

NP,

error

There are basically two classes of formulas ¢ in this contingency:
those that are not a-closed, and those for which [¢], contains no
success leaf, but either it contains an error leaf or an infinite path
or both.

7. The case of dx ¢ A 1) requires the usual care with bound variables to
avoid name clashes. Let a be a valuation. First, we require that the
variable x does not occur in the domain of a. Second, we require that
the variable x does not occur in ¢). Both requirements are summarized
by phrasing that z is fresh with respect to a and 1. They can be met
by appropriately renaming the bound variable z.

With x fresh as above we define [3z ¢ A 9], to be the tree with a root
of degree one and [¢ A 9], as its subtree:

(Fz P) N,

[o A,

Thus the operational semantics of dx ¢ A v is, apart from the root of
degree one, identical to that of A1. This should not come as a surprise,
as 3z ¢ A1 is logically equivalent to 3z (¢ A ¢) when 2 does not occur
in ¢). Observe that success leaves of [¢ A 9] ,, and hence of [3z ¢ A ¢/,
may or may not contain an assignment for x. For example, 4z x = 3A ¢
yields an assignment for x, but 4z 3 = 3 A ¢ does not. In any case
the assignment for x is not relevant for the formula as a whole, as the
bound variable x is assumed to be fresh. In an alternative approach, the
possible assignment for x could be deleted.

8. In the case of Jx € [s..t] ¢(x) A 1), we require again that the variable
x does not occur in the domain of . We distinguish three cases. In
each case the root of [3z € [s..t] ¢(x) A 9], has a root of degree one and
depends on s and t in the following way:

e If s or ¢ is not a-closed, then the root of [3z € [s..t] #(x) A] has
the error leaf error as its son.

20

2.1. COMPUTATION MECHANISM

Az € [s..t] p(x) AN,

error

e If s and t are a-closed and s* > t%, then the root of
[3z € [s..t] ¢(x) A1), has the failure leaf fail as its son:

dz € [s..t] p(x) AN,

fail
e If s and t are a-closed and s* < t%, then the root of

[Bz € [s..t] ¢(z) A], has [(¢(z) V Ty € [s+1..t] ¢(y)) A], p0/s0y
as its son, where y is a fresh variable with respect to «, in order to

avoid name clashes:

dz € [s..t] ¢(x) AN,

[(¢(z) V Iy € [s+1..t] 9(y) A V] ipa/sey

9. In the case of Vx € [s..t] ¢(z) A 1, we require that the variable x does
not occur in the domain of a. We distinguish three cases. In each case
the root of [Vz € [s..t] ¢(z) A 9], has a root of degree one and depends
on s and t in the following way:

e If 5 or ¢ is not a-closed, then the root of [Vz € [s..t] #(x) A 1] has
the error leaf error as its son.

Vo € [s..t] ¢(z) N, «

error

e If s and t are a-closed and s* > t%, then the root of
[Va € [s..t] ¢(x) A9], has a success leaf o as its son:

21

CHAPTER 2. OPERATIONAL SEMANTICS

Vr € [s.t] p(x) N,

(07

e If s and ¢ are a-closed and s* < t%, then the root of
[V € [5.] 6(x) A 4], has [(6(2) AVy € [s-+1.] (1)) Al
as its son, where y is a fresh variable with respect to «, in order to
avoid name clashes:

Vo € [s..t] ¢(x) N, «

[(6(2) AVy € [s+1.4] (1) A Pl augassny

This computation mechanism with the extensions now included, especially the
9th case of the second clause brings naturally the question of what parameter-
passing mechanism should be used when a gp-axiom is replaced by its body,
or using terminology from programming, when a procedure is called with its
actual parameters.

Consider the following example which illustrates well that depending on
the parameter-passing technique the computation mechanism is implemented
with, we may obtain different computation trees, that is, the program’s be-
haviours differ and so do then the computed results.

(p(z,y,z,w) > (zr<zAw=z)V (r>2Aw=y)) Ap(l0%x10,1 Div0,0,w)

where * and Div are predefined function symbols for multiplication and divi-
sion, respectively.

Say, that the computation mechanism upon encountering the atom p(10 x
10,1 Div 0,0, w) first evaluates every a-closed argument, and then, when ap-
plying the p-axiom, these values would be assigned to the corresponding free
variables (where values are available, of course, otherwise the occurrences of
free variables are replaced by actual terms). In this case, because of division
by zero, instantly a run-time error will arise, without having even called the
body of p.

On the other hand, if the computation mechanism upon encountering the
atom p(10 % 10,1 Div 0,0, w) just substitutes the occurrences of free variables
x,y, z,w with the expressions 10 10, 1 Div 0, 0, w, and simply proceeds, then
the computation tree will yield a success leaf {w/100} which validates the
formula.

22

2.2. EXAMPLES

In Chapter 3 we reflect to some extent on the parameter-passing mecha-
nism of Alma-0 when presenting briefly some general aspects of the language.

Definition 6 (status of a computation tree). A computation tree is:
e determined, if it is either:

— successful, when it contains at least one success leaf, or

— failed, when it is finite and contains only failure leaves,

e undetermined otherwise, that is, if it contains no success leaf, but either
it contains an error leaf or an infinite path (or both).

2.2 Examples

To make all the definitions and concepts of the previous section more concrete,
the reader may consult several cases.

Example 1. Consider the following implementation:
(p(z) >z =2Va=3)Ap(y) Ap(z) Ny#z

The computation tree for the formula ¢ = p(y) A p(z) A y # z, with the
empty valuation ¢, and the associated p-axiom p(r) <> x =2 V x = 3 can be
found on the next page.

The two valuations obtained as success leaves yield values for the free
variables y and z in ¢ that make ¢ true relative to g, as the evaluation of
¢ under (any) o« depends on . This can be made explicit by the following
formalism: if « is one of the two success leaves, then:

=p— 9"

that is, the expression p — ¢® is true in the fixed interpretation.
For the success leaf o = {y/2, z/3} for example, this can be spelt out as
follows: the formula

Ve(p(x) «<>x=2Vrx=3)—p2) ApB) AN2#3
is true, where we made explicit the fact that the p-axiom is universally closed

w.r.t. z.
Likewise, for @ = {y/3, 2/2} we obtain an other true formula.

23

CHAPTER 2. OPERATIONAL SEMANTICS

p(y) ANp(z) Ny# 2z, ¢

(y=2Vy=3)Aplz) Ny#zc¢

/\

y=2Ap) Ny#z¢

p(2) Ny # 2 {y/2}

(z=2Vz=3) ANy#z {y/2}

z2=2Ny # 2z,
{y/2}

z2=3ANy# z,
{y/2}

y# 2, y/2,2/2} y# 2z {y/2,2/3}

fail 0, {y/2,2/3}

{y/2,2/3}

y=3Aplz) Ny#ze

p(2) Ny # 2 {y/3}

(z=2Vz=3) Ay#2z{y/3}

2=2ANy# 2z,
{y/3}

z2=3ANy # z,
{y/3}

y#2,{y/3,2/2}y y# 2z {y/3,2/3}

0O, {y/3,z/2} fail

{y/3,2/2}

Example 2. The following implementation determines the maximum of two
elements:

(M(z,y,2) < (e <yAy=2))V(r>yAz=2)ANa=1Ab=2AM(a,b,c)

The computation tree for the formula, with the empty valuation ¢ is as
follows:

24

2.2. EXAMPLES

a=1ANb=2A M(a,b,c), e

b=2A M(a,b,c), {a/1}

M (a,b,c), {a/1,b/2}

(@<bAb=c¢c)V (a>bAa=c), {a/1,b/2}

(a<bAb=c),{a/1,b/2} (a>bA a=c),{a/1,b/2}

b=c, {a/1,b/2} fail

0O, {a/1,b/2,c/2}

{a/1,b/2,c/2}

The computation tree, though it has a failure leaf, is successful, the success
leaf o = {a/1,0/2,¢/2} yields values that make the formula a = 1 A b =
2 A M(a,b,c) true relative to the p-axiom that defines M, that is:

V(M(z,y,2) <> (x <yAy=2)V(ze>yAr=2)) > 1=1N2=2AM(1,2,2)
is true.

Example 3. Let’s consider now the following implementation: the p-axiom
and ¢ are given as:

(p(z,y) =y VpE+1ly+1) Aa=1A pa,b)

The computation tree for ¢, with the empty valuation ¢ is as follows:

25

CHAPTER 2. OPERATIONAL SEMANTICS

a=1A p(a,b), e

p(a;b), {a/1}

a=bVpla+1,b+1),{a/l}

a=b, ‘{a/l} pla+1,b+1), {a/1}
O, {a/1,b/1} a+1=b+1Vpla+20b+2),{a/1}
{a/1,b/1} a+1=b+1, {a/1} pla+2,b+2), {a/1}

In this case, we have to deal with an infinite computation tree, that pos-
sesses a success leaf o = {a/1,b/1} which validates the formula p — ¢“, that
is,

Vip(z,y) @ x=y Vplr+1ly+1) - 1=1Ap(,1)
is true.

The computation tree, though infinite, has an error leaf, is determined and
successful.

Example 4. In this case we consider an implementation with the same for-
mula as in example 3, but here we associate to it a different p-axiom:

(p(z,y) >z =y Ap(x+1Ly+1) Aa=1Apa,b)

The computation tree for the formula will be again infinite, but it will
possess no labels at all, resulting an undetermined computation tree:

26

2.3. SOUNDNESS AND COMPLETENESS

a=1A p(a,b), e

p(a;b), {a/1}

a=bApla+1,b+1),{a/1}

pla+1,0+1), {a/1,b/1}

a+1=b+1A pla+2,b+2), {a/1,b/1}

pla+2,b+2), {a/1,b/1}

2.3 Soundness and Completeness

For a given implementation I = p A ¢, the computation mechanism defined in
the previous section attempts to find a valuation « for the free variables of ¢
(possibly not for all its free variables) that makes the formula ¢ true relative
to g, if the formula is satisfiable, in which case this can be expressed by the
formalism:

= o= V()
or otherwise it reports a failure, that is p — 3(¢) is false.

It is worth noticing, that in case a gp-axiom contains free variables of ¢,
then obviously instead of o we should take in consideration o, that is:

F " — V(9%)

This corresponds to implementations where procedures have direct access
to global variables, a style usually avoided in programming, as procedures
should communicate with the environment via their interface alone. Therefore
we restrict our attention on cases when gp-axioms do not access free variables
of ¢.

We start with a lemma which is helpful to keep track of valuations during
a whole computation.

27

CHAPTER 2. OPERATIONAL SEMANTICS

Lemma 2.3.1. For a given implementation I = p A ¢, and initial valuation «,
[#], contains only valuations extending « with pairs z/d or a[t{, 15, ..., t2]/t®,
where x and array a occur free in ¢, or appear existentially or universally
bounded in ¢, or further formulas that evolve from ¢ along the tree-path that
leads to the extended valuation in case. Moreover, if ¢ is a-closed, then [¢],,
contains only valuations extending o with variables that appear existentially
or universally quantified in ¢ or further formulas that evolve from ¢ along the
tree-path that leads to the extended valuation in case.

Proof: By induction on the length of the path from the root to the ex-
tended valuation in case, based on the structure of the computation tree given
as in Definition 5. [J

The soundness of the computation mechanism is expressed by the follow-
ing theorem.

Theorem 2.3.2. (Soundness) Let I = p A ¢ be an implementation, and
a a valuation. Then:

1.) If [¢],, contains a success leaf labelled with o, then o' extends «, and
= o — Y(¢*). (In particular, = o — 3(¢%).)

2.) If [¢],, is failed, then p — 3(¢®) is false.

The proof of this theorem is far from being obvious. Due to the fact that
here we have to deal with possibly infinite computation trees, that may possi-
bly have infinite subsidiary trees when negations or implications are present,
and that the definition of the computation tree doesn’t necessarily refer to
lexicographically smaller formulas anymore, a simultaneous induction pattern
for the proof of soundness similar to that of Apt and Bezem [1]| cannot be
applied directly. Therefore the proof for the general case is left as a fur-
ther research topic. Basically, the problem arising here has a straightforward
connection with SLDNF-resolution, where SLDNF-trees (finitely branching
downward growing possibly infinite trees) are used to reason about soundness
and completeness when negation is incorporated as finite failure rule. (See
more in [5] and [3].)

The case studies of later chapters are based on formulas where the scope of
negations and the premise part of implications consist of non-procedural atoms,
that is, it is either of the form s = ¢, with s and ¢ terms, or p(ty, ts, ..., t,,) with
p, an n-ary predefined relation symbol (and not one defined by a p-axiom).

The following lemma states soundness of the computation mechanism over
non-procedural atoms.

Lemma 2.3.3. If A is a non-procedural atom, and « a valuation, then [A],
is a tree having as its only leaf either a success, a failure or an error leaf.
Moreover:

1.) If it is a success leaf labelled with o/, then o/ extends «, such that A
is a'-closed and A% is true. (In particular, 3(A%) is true in this case.)

28

2.3. SOUNDNESS AND COMPLETENESS

2.) If it is a failure leaf, then A is a-closed and A® is false.

Proof: We go through the cases of the clause 2. in Definition 5. of the
computation tree, as this clause deals with atomic conjuncts. It is the case
that the second conjunct v is the empty conjunction, ¢ = .

e Atom A has the form s = ¢, is a-closed and true, then A% is true. The
root of [A], has [O], as its only son, whose root, by clause 1. of the
definition, has its only son the success leaf a.

e Atom A has the form s = ¢, is a-closed and false, then is A® is false.
The root of [A],, has the failure leave fail as its only son.

e Atom A has the form s = ¢, is not a-closed, but is not an a-assignment.
Then the root of [A], has the error leave error as its only son.

e Atom A is an a-assignment s = t, such that either s or t is a variable
which is not a-closed, say s = x, with x not a-closed and t a-closed.
Then the root of [A],, has [(] , as its subtree, where o/ extends o with
the pair #/t*. According to this, A becomes a’-closed and A% is true,
and after expanding [O0],,, o will become the only leaf of [A],. The
symmetrical case is analogous.

e The case of the array element in an a-assignment follows the same pat-
tern as the previous one.

e Atom A has the form p(ty,ts,...,t,), where p is a predefined n-ary re-
lation symbol, ¢y, s, ..., t,, are a-closed, and p(t{,t9,...,t%) is true, then
A is a-closed and A® is true. The root of [A], has [[J], as its subtree,
which after being expanded, will have the only success leaf a.

e Atom A has the form p(t1, s, ..., t,), where p is a predefined n-ary rela-
tion symbol, t1, ts, ..., t, are a-closed, and p(t{, 13, ...,t%) is false, then A
is a-closed and obviously A® is false. The root of [A], has the failure
leaf failure as its only son.

e Atom A has the form p(t1, s, ..., t,), where p is a predefined n-ary rela-
tion symbol, and at least one of ¢y, s, ..., ¢, is not a-closed. Then root
of [A], has the error leaf error as its only son.

e The last two cases of clause 2. of the definition consider procedural
atomic formulas, so we don’t need to deal with them in this proof.

Having considered all the possible cases for non-procedural atomic formulas,
the proof of the lemma is complete now. [

Theorem 2.3.4. (Restricted Soundness) Let I = p A ¢ be an implemen-
tation, such that the scope of any negation and/or the premise part of any

29

CHAPTER 2. OPERATIONAL SEMANTICS

implication consist of only one non-procedural atom, and let o be a valuation.
Then:

1.) If [#], contains a success leaf labelled with o/, then o/ extends a, and
= o — Y(¢®). (In particular, | o — 3(¢%).)

2.) If [¢],, is failed, then p — 3(¢®) is false.

Proof:

1.) We have seen in Lemma 2.3.1. that o/ is an extension of «, moreover,
the definition of the computation tree also ensures us, that o/ is an extension
of any intermediate valuation to which a has been extended along the path
to the success leaf.

We use induction on the length of the path from the success leaf o' to the
root, based on the structure of the computation tree given as in Definition 5.

We denote this length by N. One has to prove that for any k£ with 1 <
k< N:

= o — V(o))

where ¢, denotes the formula at distance k from the success leaf o along the
path up to the root. In particular, oy = ¢.

Base case: k = 1. According to the structure of a computation tree, there
may be two cases:

e ¢, is the empty conjunction, in which case = p — V(¢¢") is trivial, or

e ¢ isof the form Vz € [s..t] 1(z) with s* > t'. ThenVz € [s*..t*'] ¢ (z)
is trivially true, which results = o — V(¢¢').

Thus, the base case holds. For the induction step, assume:
Hypothesis: We presume, that for £ =i with ¢ < N we have:

= — V()

We have to prove: = o — V(¢2,)

We follow the structure of the computation tree given as in Definition 5,
excluding, of course, all cases when the subtrees are leaves (failure or error
leaves), because it is the case that ¢; is a formula that corresponds to an
internal node of the tree along the success path from the success leaf towards
the root. (In particular, with the cases of success leaves we have dealt in the
base step.)

When necessary, we refer to the valuation at the node corresponding to

¢it1 by B.
e Clause 2

— ¢i1 = A A ¢;, where A is of the form s = ¢, is -closed and true.
As we have 8 C o, A is o/-closed and A%is true as well. By this
and by hypothesis we conclude p — V(¢%,) is true.

30

2.3. SOUNDNESS AND COMPLETENESS

— ¢ip1 = AN ¢;, where A is a S-assignment x = ¢, then (3 is extended
with the pair #/t%, and as § U {x/tﬂ} C o, we have that: A is
true. By this and by hypothesis we conclude: o — ‘v’(¢§il) is true.

— By analogous reasoning for the case ¢;;1 = A A ¢;, where A is a
B-assignment alt|,ts, ..., t,] = t, we obtain p — V(¢%,) is true.

— i1 = plty,ta, ...y ty) A and ¢; = 1, with p predefined n-ary
relation symbol, and p(t’f,tg, ., 12) true. Then (p(ti,ta,...,1,))" is
true as well, and as 3 C o/, we have (p(t1, 1, ...,t,))® true, which
together with the hypothesis results: p — V(¢2;,) is true.

- ¢i+1 = p(tl, tQ, ceey tn) A wl and ¢z = ’17/) {.’L‘l/tl, ceey l‘n/tn} A wl' Then
by the equivalence p(xy, z, ..., z,) <> 1 from p, we obtain (we call
again the reader’s attention that we requested v not to contain free
variables of ¢):

(W a1 [ty ooy 2t)V = O L J1 o 1)

<_>p(t%’7 tgla ety tgl)E (p(tla t27 teny tn))a C
Which by hypothesis results: p — V(¢%,,) is true.

e Clause 3: ¢;11 = (1 Viho) Ap and ¢; = 1ha A1), Then, by the distributive
law: (11 V h2) A) = (1 Ap) V (12 A) and hypothesis, we conclude
thatp — V(g2 ,) is true as well.

e Clause 4: ¢; 11 = (Y1 Ae) A and ¢; = Vi A(Pha A1), Tt is straightforward,
by the associativity of conjunction and hypothesis, that p — V(¢%,) is
true as well

e Clause 5: We distinguish two cases:

— ¢iy1 = (Y1 = o) A and ¢; = ¢, where 1)y is B-closed and [¢] is
finite and contains only failure leaves. Then under the assumption
of the theorem, it is the case that) is a non-procedural atom.
By Lemma 2.3.3. 1/)1’3 is false, in particular, as v, is S-closed and
B C a': 1y is o/-closed and false, which means that —)¢" is true.
Then p — V(= V ¢) is true as well. From here, by the logical
equivalence of ¢y — 19 and —); V 1o, and by hypothesis we can
conclude: p — V(¢2,,) is true as well.

— i1 = (Y1 = o) Ap and ¢; = 1hy A 1), where 1y is [-closed and
[11]5 contains a success leaf. Then under the assumption of the
theorem, it is the case that ¢ is a non-procedural atom. By Lemma
2.3.3. wlﬁ is true, in particular, as ¢, is fS-closed and 8 C o':
is a/-closed and wf' is true, which means that —npf' is false. Then
we apply the logical equivalence of 1) — 15 and —); V 15 and we
have that: () — 1) = (=thy V 1) = ¢ v g = 9. This
by hypothesis results: o — V(¢ ;) is true as well.

31

CHAPTER 2. OPERATIONAL SEMANTICS

e Clause 6: ¢;j11 = =t A and ¢; = ¢, where ¥, is S-closed and [¢],
is finite and contains only failure leaves. Then under the assumption
of the theorem, it is the case that ¢ is a non-procedural atom. By
Lemma 2.3.3. wf is false, in particular, as 1, is S-closed and 3 C «':
Yy is o/-closed ¥ is false, which means that —n/)l' is true. This and the
hypothesis: = o — V(¢) results that p — V(¢%,) is true.

e Clause 7: ¢;11 = dx Yy A and ¢; = ;1 A ¢, under the assumption
that z is fresh w.r.t. § and . It is convenient to make the possible
occurrence of x in 1y explicit by writing v, (x) for ¢;. By hypothesis
© — V(1 (x) Ap)® is true, it follows that o — V(31 (2) A)® is true
as well, even in case, when x doesn’t occur in the domain of ', in which
case we can apply the logical consequence Vz ¢y (z) — Iz ¢ (z).

e Clause 8: ¢;11 = Iz € [s..t](x) A ¢y and
i = (Y(r) V Iy € [s+1..t](y)) A 11, where 3 is extended with the
pair {x/sﬁ}, but as f C o/, we may also write {x/so"}. We have the
following equivalences:

((x) v Iy €[s+1dloy) A)" =
(1/)“(“)\/33;6[+ 1.4 () AP =
(6 (') v Fy € [+ 14716 (y)) A v’ =

Sy € s 470 (5) A o =

(Fy € [s-t(y) A ¥1)*

Which by hypothesis results: p — ¥(¢g;,) is true as well.

Here we require the usual care with bound variables, as y may not be
fresh w.r.t. o, but it is for 3, and so is x, so substitution may be applied.

e Clause9: ¢;,1 =V € [s.t]Y(x) Ay and ¢; = (Y(z) A Vy € [s+ 1.t (y)) A
11, where (3 is extended with the pair {x/sﬂ}, but as f C o/, we may
write {2/s®}. Then we have:
(V(@) A Yy €[5+ 1A0() A)" =
(0 (x*) AWy € [s + 1.9 (1)) A Yff
(0 (™) A Vy € [s* + 1.7 (y) A ¢
Vy €[5t (y) A o' =

(Vy € [s.t]e(y) A tr)*

Which by hypothesis results: p — V(¢g;,) is true as well.

The induction step holds. Thus the property holds for any k with 1 < k£ < N,
in particular for £ = N, then we have:

= o — V(o)

2.) By induction on the structure of the computation tree, for which it is
the case that it is finite and it contains only failure leaves.

32

2.3. SOUNDNESS AND COMPLETENESS

Base case: this corresponds to those subtrees, for which the root itself has
a failure leaf as its only son. According to the definition of the tree there
may be four such cases (we refer by § to the valuation at the root of such a
subtree):

e the root has the form: A A, § with atom A of the form s = ¢, that
is B-closed and false, that is A? is false. This obviously results, that
o — (A Ap)P s false as well.

e the root has the form: p(t,ts, ..., t,) A1), B, where p is a predefined n-ary
relation symbol, and and p(tf, tg, ..., t9) is false. Then p?(t;,ty,...,t,) is
false as well, which results that o — 3(p(t1, 12, ..., tn) A 1)? is false.

e the root has the form: —wp; A ¢, B, where [¢1]; contains at least one
success leaf. Then by the assumption of the theorem, it is the case,
that 1, is a non-procedural atom, so Lemma 2.3.3. applies, that is
V(4?) is true. From here we conclude, that 3(—1)7) is false, and then
o — I(—y A)P is false as well.

e the root has the form: 3z € [s..t](x) A 1, B, where s# > t°. Then
Jw € [s7..4%]yP () is trivially false, and so is:p — 3(Iz € [s..t]p(x) Ar))P.

Induction step: This step consists of proving for any node of the tree,
say labelled by v, 3, that o — 3(z)? is false, by applying the induction
hypothesis to every subtree of this node, [¢1], (8 C ') , that is p — I(apy)
is false. (These subtrees are of course finite, containing only failure leaves, so
the induction hypothesis may be applied to them).

We again follow the structure of the computation tree given as in Definition
5., excluding of course all cases when the subtree would be an error or a success
leaf. We also call the reader’s attention, that with the cases of failure leaves
we have dealt in the base case.

e Clause 2

— ¢ = A A ¢, where A is of the form s = ¢, is S-closed and true.
By induction hypothesis, o — 3(¢,)? is false, which yields p —
(A A opy)P is false, even if AP is true.

— = A A ¢y, where A is a [-assignment x = ¢, then [is extended
with the pair z/t%, s.t. f/= U {z/t’}. By induction hypothesis,
o — ()" is false. If o doesn’t occur free in ¢, then it is
straightforward, that o — 3(¢)? is false as well, and so isp —
(A A)P . If 2 occur free in 1)y, it is the case, that the (-
assignment, resulting {z/t’} doesn’t validate 3(¢1)?, and then it
wouldn’t validate A A (¢1)?, and so p — J(A A ¢;)P is false as
well.

33

CHAPTER 2. OPERATIONAL SEMANTICS

— By analogous reasoning for the case v = A A 1, where A is a
B-assignment alt|, ty, ..., 1,] = t, we obtain o — I(A A 11)? is false
as well.

— ¢ = p(ty, tay ..., tn) A1, with p predefined n-ary relation symbol. By
hypothesis, o — 3(¢1)? is false, which yields o — J(p(t1, ta, ..., 1) A
1)P is false as well, even if p(t? 45, ... 1F) is true.

— ¢ = p(ty, ta, ..., t,) A 1, with p, an n-ary relation symbol defined
by the equivalence p(x1, s, ..., Z,) <> ¢ from p. We obtain (we call
again the reader’s attention that we requested 1) not to contain free
variables of ¢):

W /b1, s it} = 0 1]}

<_>p(t/f: tg:) tg)E (p(tla t2a) tn))ﬂ
Which by hypothesis results: © — 3(p(ti,t2, ..., tn) A1py)? is false
as well.

e Clause 3: ¢ = (11 V 1) A 1)3. Applying the hypothesis to the subtrees,
we obtain: — 3(¢y A 3)? and p — I(12 A 13)? are false. Then, by
the distributive law: (¢ V 1b9) Aths = (11 Ah3) V (e Atb3), we conclude
that — J((¢1 V 1) A 1p3)P is false as well.

e Clause 4: ¢ = (1 Ahy) Atbs. Tt is straightforward, by the associativity
of conjunction and applying the hypothesis o — J(11 A (g A 13)) is
false, that p — 3((v1 A 1) A 1p3)? will be false as well.

e Clause 5: We distinguish two cases:

— 1) = (Y1 —) Atps. By induction hypothesis, p — J(1)3)” is false,
then so is: o — 3((Y1 — o) Ahz)P.

— 1p = (11 — y) A1bs. By induction hypothesis, o — J(1hy A 13)? is
false. It is also the case, that ¢ is a [-closed non-procedural atom.
Lemma 2.3.3. is applied: wlﬁ is true, which means that —wﬂ‘f" is false.
Then we apply the logical equivalence of ¢y — 5 and =)y V 1
and we have that: (1 — 15)% = (mahy V h)? = = v o = b,
This, by hypothesis results: o — 3((1); — 1) A1p3)? is false.

e Clause 6: ¢ = =)y A1)y, and by hypothesis o — 3(1)5)? is false, then so
is: o — (=1 A)",

e Clause 7: 1 = 3z ¢ (x) A . By hypothesis, o — J(¢1(x) A)P is
false. Then it is straightforward, that o — 3(3x () A 1) is false as
well.

e Clause 8 ¢ = Jx € [s..t]1(x) A)9, with x fresh w.r.t 3, and by
hypothesis ¢ — 3 (¢ (x) V Ty € [s + 1 ..t]e1(y)) A h)? is false, where

34

2.3. SOUNDNESS AND COMPLETENESS

g = puU {m/sﬁ}, and y is fresh w.r.t. . We have the following
equivalences:

((a(0) v 3y € [s+ 1.tln(y) A)"
(v'@) v 3y e[+ 1.7 (1) A
(00" v By e " + 1,270 () A ol =
Fy € [7 7Tl (y) A v =

Ty € [sti(y) A)’ ,
Which by hypothesis results: o — 3 (Jy € [s..t]1(y) A wg)’g is false as
well. As yis fresh w.r.t. ', we also have: p — 3(Jy € [s..t]1(y) A wg)’g

is false, and as z is fresh w.r.t. 3, we conclude:
o — 3Tz € [s.4]hy(2) A 1)’ is false.

bl
Y
I

e Clause 9: ¢ = Vx € [s..t]¢1(z) A)9, with x fresh w.r.t /3, and by
hypothesis o — 3 ((¢1(x) V Ty € [s+ 1..tJe1(y)) A h)? is false, where
g = B U {x/sﬁ}, and y is fresh w.r.t. 3. We have the following
equivalences: ,

(r(x) A Vy € [s+Lotla(y) A vh)” =
(07 @) A vy e s + 1710 () A o] =

(v0'(") AWy els” +1.8770]) Al =

vy € [7. 471 () A v =

(Vy € [s-thr(y) A ¢)”

Which by hypothesis results: o — 3 (Vy € [s..t]1(y) A 1/)2)’3, is false as
well. Asyis fresh w.r.t. 3/, we also have: p — 3 (Vy € [s..t]t1(y) A 1)°
is false, and as x is fresh w.r.t. 3, we conclude:

o — I(Vz € [s.t]ihy(z) A 1)’ is false.

The induction step holds, thus the property is true for any node in the tree,
in particular, for the root itself: @, «, that is p — 3(¢*) is false.]

The computation mechanism defined in Section 2.1 is obviously incomplete
due to the possibility of errors. The following results state, that in the ab-
sence of errors, and with the restriction made on negation and implication,
the computation mechanism is complete.

Theorem 2.3.5. (Restricted Completeness) Let I = o A ¢ be an im-
plementation, such that the scope of any negation and/or the premise part
of any implication consist of only one non-procedural atom, and let a be a
valuation, such that [¢],, is determined. Then:

1.) Suppose p — 3(¢®) is true. Then the tree [¢], is successful.

2.) Suppose p — (¢*) is false. Then the tree [¢] , is failed.

Proof: The proof is by reductio ad absurdum, using the results of the
restricted soundness theorem, and basically it follows the proof pattern of the

35

CHAPTER 2. OPERATIONAL SEMANTICS

restricted completeness theorem provided in Apt and Bezem [1].

2.4 Soundness Results Applied to Specifications

First, we show through a simple example how these soundness results can be
applied to specifications.

Consider the problem of finding the maximum of two elements. This prob-
lem may be specified as follows:

S(a,b,c) =gy cisthemaximumof a and b &
(c=aVe=b ANc>aNc>Db

The following Alma-0 program represents an implementation for this prob-
lem for given a and b input data (see more on Alma-0 in Chapter 3):

VAR
a,b,c : INTEGER;

PROCEDURE Max (MIX x,y,z: INTEGER);

BEGIN
IF x <= y THEN y
ELSE x

Z
Z

END;
END Max;

BEGIN
a=1;
b = 2;
Max(a,b,c);
END;

This program segment has a declarative semantics, consequently it has a
dual reading as a formula. In Section 2.2, the implementation of Example 2.
(page 24) constitutes the translation of this program segment into a formula
in the fixed interpretation. (In preliminary the reader may consult the Trans-
lation Process Table of Alma-0 in Section 3.2, on page 42.) We recall this
formula:

L(a,b,¢) =ges(M(z,y,2) & (x <y ANy=2)V (2>y A r=2)A
a=1ANb=2A M(a,b,c)

We have seen that the computation mechanism yielded a success leaf o =
{a/1,b/2,¢/2} which validated the formula above, or expressed in the defined
formalism:

V(M(z,y,2) <> (x <yAy=2z)V(z>yAr=2)) > 1=1A2=2AM(1,2,2)

is true, this being a straightforward result of the restricted soundness theorem.

36

2.4. SOUNDNESS RESULTS APPLIED TO SPECIFICATIONS

This means, that in case the following implication is true:
Va,b,c ((I(a,b,c) — S(a,b,c))

the valuation o = {a/1,b/2,¢/2} validates the specification as well, that is,
our computational problem for the given input data is solved, the output data
being delivered in ¢. We disregard now from a detailed proof of this implica-
tion, this relying only on basic logical reasoning. (Proofs of such implications
for complex cases may be found in the case studies of Chapters 5-7.)

In general, we may formalise this approach as follows: given a specification
S, let I = p A ¢ be a declarative implementation for S in the fixed interpre-
tation, such that I also satisfies the requirements of the restricted soundness
theorem. Then applying the restricted soundness theorem, we obtain that
the implementation I is sound, that is, if o’ is a success leaf delivered by the
computation mechanism (e.g. result obtained by running the corresponding
program), then

- p - (6"). (2.2
If we can prove by some formal logic reasoning:
=VY(pA¢—S) (2.3)
then (2.2) and (2.3) imply:
= —V(S")

that is

= V(S%)
as the specification itself doesn’t depend on the p-axioms, that is, o validates
the specification.

Therefore, in each case taken in consideration, our only task remains to
prove the implication V(I — S).

Note: This approach of reasoning about the correctness of implementations
is to some extent the counterpart of the approach “correct-by-construction”
program design, which is the discipline of calculating programs from their spec-
ifications, where correctness of an implementation is assured by self-evident
steps along which the implementation has been developed. (See more in [4].)

37

CHAPTER 2. OPERATIONAL SEMANTICS

38

Chapter 3

Alma-0 Programming Language

3.1 General Aspects of the Language

The Alma-0 programming language is an implemented programming language
that supports declarative programming, and which combines the advantages
of logic and imperative programming.

Basically, the language is an extension of a subset of Modula-2 that in-
cludes several new features inspired by the logic programming paradigm.

The implementation of the language is based on the Alma Abstract Ar-
chitecture (AAA), a virtual architecture used during the intermediate code
generation phase for the Alma-0 compiler. This combines the features of a
RISC architecture and the WAM abstract machine [13]. AAA entails trans-
lating the AAA instructions into C statements, but its design is such, that it
should be possible to translate them into machine code. A complete presen-
tation of the implementation can be found in [9].

We recall in this chapter only a few of the new language features, relevant
for declarative semantics, some of them being used in the case studies of
Chapters 5-7 and refer to [2| for a detailed presentation of the language.

e Boolean expressions can be used as statements. If an expression evalu-
ates to TRUE, the execution continues after the statement; if it evaluates
to FALSE, we say that the statement fails, or a failure has occurred; and
if no failure occurs during the execution of a sequence of statements, we
say that the sequence of statements succeeds, otherwise it fails.

e Statements can be used as boolean expressions. If the sequence of state-
ments succeeds, the expression evaluates to TRUE; if it fails, the expres-
sion evaluates to FALSE.

e Choice points can be created by the non-deterministic statements ORELSE
and SOME. The former is a dual of the statement composition and the
latter is a dual of the FOR statement. Upon failure the control returns
to the most recent choice point, possibly within a procedure body, and

39

CHAPTER 3. ALMA-0 PROGRAMMING LANGUAGE

the computation resumes with the next branch in the state in which the
previous branch was entered.

e The notion of initialised variable is introduced and the equality test is
generalised to an assignment statement in case one side is an uninitialised
variable, and the other side is an expression with known value. For
example, the behaviour of the comparison s = t depends upon s and t:

— if s and t are expressions with known values, a regular comparison
is performed;

— if s is uninitialised, and t is an expression with a known value, the
value of t is assigned to s;

— if t is uninitialised, and s is an expression with a known value, the
value of s is assigned to t;

— All remaining cases generate a run-time error.

e A new parameter-passing mechanism is introduced for variables of sim-
ple types, that makes it possible to use a procedure both for testing and
computing. We call this parameter mechanism call by mized form, and
denote its use by the keyword MIX. Assume that the formal parameter
is of a simple type. Then:

— if the actual parameter is a variable, then it is passed by variable

— if the actual parameter is an expression that is not a variable, its
value is computed and assigned to a new variable v (generated by
the compiler): it is v that is then passed by variable. So in this
case the call by mixed form boils down to call by value.

Using this parameter mechanism we can pass both expressions with
known values and uninitialised variables as actual parameters. (Note: if
the actual parameter is an expression that is not a variable, but contains
an uninitialised variable, that is, the expression is without a known value,
a run-time error occurs.)

The Alma-0 implementation does not realise faithfully the computation mech-
anism of section 2.1 in the sense that it may miss solutions, and it may proceed
over cases where the computation mechanism reports an error.

Regarding the first case, there exists formulas for which the computation
tree yields success leaves whereas the execution of the corresponding Alma-0
program gives a run-time error. In this respect, we can say that Alma-0 is
incomplete. Consider the following examples:

e the computation tree of the formula + = y V x = 0 for the empty
valuation, besides an error leaf, will also yield a success leaf {/0}, that
validates the formula, whereas the corresponding Alma-0 sequence (see
next section): EITHER x=y ORELSE x=0 END gives a run-time error.

40

3.2. DECLARATIVE INTERPRETATION

e the formula p(y+1), where p is defined by the p-axiom: p(z) < (T Vz =
1). The computation tree, besides an error leaf, will also yield the empty
valuation as success leaf, which shouldn’t come as a surprise, as p(y+1) is
true independent of . Unfortunately, the execution of the corresponding
Alma-0 program gives a run-time error.

As long as errors are concerned, on one hand, as the use of insufficiently
instantiated atoms in Alma-0 programs is to be discouraged, the Alma-0 im-
plementation follows the computation mechanism of section 2.1 in cases: an
evaluation of an atom that is not a-closed but is not an a-assignment yields a
run-time error, and so do: the evaluation of an atom consisting of a predefined
relation symbol with at least one not a-closed argument, and the cases of ex-
istentially or universally bounded formulas with not a-closed boundaries. The
evaluation of an atom consisting of a relation symbol that is not predefined
nor there exists a p-axiom for it, a compiling error arises.

On the other hand, according to [1], in the remaining two cases when the
evaluation (of the computation mechanism) ends with the error leaf, in the
cases of negation and implication, the computation process of Alma-0 sim-
ply proceeds. This is not always the case. Consider the following example:
NOT(x=y); x=0; y=1. Ideally, the whole computation should succeed, but
the execution of the program gives a run-time error, and so does the compu-
tation mechanism, so in this case Alma-0 follows the computation mechanism.
But in the following case Alma-0 indeed diverges from the computation mech-
anism: NOT(x=0); x=0. The computation mechanism reports an error (the
scope of the negation is not a-closed), whereas the execution of the corre-
sponding Alma-0 program fails, which is correct. Yet, Alma-0 doesn’t follow
exactly the same compromise here as the implementations of Prolog, unlike
[1] suggests. For example in case NOT(NOT(x=0)); x=1, Alma-0 fails whereas
Prolog, wrongly, succeeds. In this respect we can say, that Alma-0 is sound,
unlike Prolog.

3.2 Declarative Interpretation

Alma-0 has been designed with the view of promoting declarative program-
ming. Recall again that in our context we consider a program declarative if
its meaning can be described by means of a logical formula that can be ob-
tained by means of a syntax directed translation. We call then this formula
the declarative interpretation of the program.

By assigning to this formula its semantic meaning that agrees with the
operational semantics of the original program we obtain declarative semantics
of the program under consideration. Alma-0 programs built out of a limited
number of language constructs that do not involve assignment have declarative
semantics.

41

CHAPTER 3. ALMA-0 PROGRAMMING LANGUAGE

The following Translation Process Table associates with each such a lan-
guage construct a corresponding formula of Definition 2. We denote by 7(.S)
the translation of the sequence of statements S, where B denotes boolean
values (TRUE or FALSE), and A an atomic statement, such as an equality or a
relation symbol (with arguments):

Alma-0 Construct Formula
B B
A A (atom)
NOT S -T(S5)
51; 52 T(Sl) A T(SQ)
IF T THEN S END T(T) — T(S)
IF T THEN S; ELSE Sy END | (T(T) A T(S1)) V (=T(T) A T(S3))
EITHER S, ORELSE S, END T(S1) V T(S2)
PROCEDURE p(MIX i : Ty); p(y) < Az T(S)

VAR T : Ty;

BEGIN

S
END;

(where T; and T, are the
types of variables in y
and Z, respectively.)
SOME i:=s TO ¢t DO S END | 3i € [s..t] T(S)
FOR 7:=s TO ¢t DO S END |Vi€ [s..t] T

We call the reader’s attention here, that the p-axiom obtained by the trans-
lation of a procedure definition is considered universally closed with respect
to the arguments of the left hand side ().

In the following, this translation allows us to work with specific formulas
that represent Alma-0 programs.

There are several interesting remarks made explicit in [2| regarding this
translation, from which we are recalling here only one that the reader may
find relevant. Namely, that due to the use of generalised equality the se-
quences of statements x = 0; y = xandy = x; x = 0; are not equivalent.
Consequently, the conjunction A is not commutative either, property being
accomplished by the semantics of our formulas, as the computation tree of
the formula x = 0 A y = x for the empty valuation yields a success leaf,
whereas the computation tree of the formula y = A x = 0 for the empty
valuation yields an error leaf.

42

Chapter 4

Tail-recursion

4.1 About Recursion

Recursion is a fundamental concept in mathematics and computer science and
many practical computations can be fitted to a recursive framework. Simply,
a recursive function (program or algorithm) is one which calls itself as part of
the function body. An essential ingredient of recursion is that there must be
a “termination condition”, i.e. the call to oneself must be conditional to some
test or predicate condition which will cease the recursive calling. A recursive
program must cease the recursion on some condition or be in a circular state,
i.e. an endless loop.

In a computer implementation of a recursive algorithm, a function will
conditionally call itself. When any function call is performed, a new complete
copy of the function’s “information”, such as parameters, return addresses, etc.,
is placed into general data and/or stack memory. When a function returns
or exits, this information is returned to the free memory pool and the func-
tion ceases to actively exist. In recursive algorithms, many levels of function
calls can be initiated resulting in many copies of the function being currently
active and copies of the different functions’ information residing in the mem-
ory spaces. Thus recursion provides no savings in storage nor will it be faster
than a good non-recursive implementation. However, recursive code will often
be more compact, easier to design, develop, implement, integrate, test, and
debug.

The canonical example of a recursive function is factorial on N, the follow-
ing C-code represents an implementation for it:

int factorial (int n) {
if (n == 0) return 1;
else return n * factorial(n-1);

}

Functional programming languages rely heavily on recursion, using it where
a procedural language would use iteration.

43

CHAPTER 4. TAIL-RECURSION

According to [12], when the last statement executed in the body of a
procedure is a recursive call, this call is said to be tail-recursive. A procedure
may make several recursive calls but a call is only tail-recursive if the caller
returns immediately after it. A procedure as a whole is tail-recursive if all its
recursive calls are tail-recursive.

We mention here that the function factorial from above is not tail-recursive.
The following code presents a tail-recursive factorial function:

int factorial (int n) {
return fact(n,1);
}
int fact (int n, int product) {
if (n == 0) return product;
else return fact(n-1,n * product);

}

The following code for determining the greatest common divisor of integers
v and v is also tail-recursive (taken from [8]).

int ged (int u, int v) {
if (v == 0) return u;
else return gcd(v,u¥v);

}

4.2 Tail-recursion Optimisation

In case of a tail-recursive procedure or function, it is not necessary to retain the
calling environment. This is important when a procedure calls itself recursively
many times for, as without tail-recursion optimisation, the environments of
earlier invocations would fill up the memory only to be discarded when (if)
the last call terminated.

Normally when a procedure A calls procedures B,C, ..., Z, the environment
of procedure A is only discarded when procedure Z returns and procedure A
itself terminates. Using last call optimisation, A’s environment is discarded
as 7 is called. This allows arbitrarily deep nesting of procedure calls without
consuming memory to store useless environments.

Tail-recursion optimisation is a special case of last call optimisation but it
allows the further optimisation that some arguments may be passed in situ,
possibly in registers. It allows recursive functions to be compiled into iterative
loops.

In general, when code is generated for a program, one operation that can
sometimes be relatively expensive is procedure call, where many calling se-
quence operations must be performed. Modern processors have reduced this
cost substantially by offering hardware support for standard calling sequences,

44

4.3. ALMA-0 AND TAIL-RECURSION

but the removal of frequent calls to small procedures can still produce mea-
surable speedups. There are two standard ways to remove procedure calls.
One is to replace the procedure call with the code for the procedure body
(with suitable replacement of parameters by arguments). This is called proce-
dure inlining, and sometimes is even a language option (as in C+-+). Another
possible way to eliminate a procedure call is to recognize tail-recursion.

Tail-recursion is equivalent to assigning the values of the new arguments
to the parameters and performing a jump to the beginning of the body of the
procedure. For example the tail-recursive factorial function can be rewritten
by the compiler to the equivalent code:

int fact (int n, int product) {

begin:
if (n == 0) return product;
else {
n = n-1; product = n*product
goto begin;
X
3

This process is called tail-recursion removal. This example illustrates also
very well that the memory usage can be optimised when a procedure is tail-
recursive.

We can assume without any loss of generality that a compiler theoretically
can be “smart” enough to recognize tail-recursion, and to proceed with tail-
recursion optimisation, the practical question of “how to do it” remaining a
pure technical matter rooted in the techniques of compiler construction.|8]

4.3 Alma-0 and Tail-recursion

The case studies of the following chapters present declarative solutions for well-
known computational problems. All these solutions are written in the Alma-0
programming language that supports declarative programming. As the reader
will see, in many cases when arguing about the possibility of reduced space-
complexity we argue under the assumption of tail-recursion optimisation.

Unfortunately, the Alma-0 compiler [9] doesn’t implement tail-recursion
optimization.

In practice this optimisation technique for declarative programming (and
in particular for the Alma-0 compiler) hasn’t been implemented, but this
remains only a technical matter to sort out, whereas its absence doesn’t affect
the overall theoretical results obtained in the following chapters.

45

CHAPTER 4. TAIL-RECURSION

46

Chapter 5

Maximum Element

Our first case study is concerned with the classical problem of finding a max-
imum element in a set of objects, A, with respect to a given total order:
< C A x A, defined over this set.

In our case we assume that A consists of a finite set of objects, |[A| = N,
with N > 0, and thus without any loss of generality we assume further on that
we are able to refer to the these objects via indexing: A = {ay,as,...,an},
this having the only purpose to ease the reference to these objects, but not
stating anything about the ordering between the objects.

The maximum problem for this set of elements is specified as follows: we
are looking for an index m € [1..N] s.t. a,, is a maximum element w.r.t. the
ordering, that is:

S =4es Vj€[L.N] a; <ay (5.1)

In the following we present three ALMA implementations that solve this
problem in a purely declarative manner. The objects in this case are elements
of an array of integer type, the total order is the one “less than or equal”
relation on integer numbers. In each of the cases it is also provided a formal
proof for the implication: T — S, where I stands for the dual reading of the
implementation as a formula.

5.1 Naive Solution

As a first approach we take advantage of the built-in backtracking mechanism
of ALMA. The following program segment takes each element and compares it
to all the other elements of the array. Upon encountering the first index that
satisfies the specification, the program succeeds resulting the desired index in
variable m.

TYPE Vect = ARRAY [1..N] OF INTEGER;
VAR i, j, m : INTEGER;
a : Vect;

47

CHAPTER 5. MAXIMUM ELEMENT

BEGIN

SOME i := 1 TO N DO
FOR j := 1 TO N DO

aljl <= alil

END;
m=i;

END;

END;

The dual reading of the program defines the formula:
Jie [1.N] (Vj€[l.N]aj <a; A m=1)
which immediately implies the specification (5.1):
Vje[l.N] aj <ap

Unfortunately, the worst-case running time of this approach is O(N?),
whereas the space complexity is O(N), the same as in the case of the imper-
ative solution.

5.2 Reduced Time Complexity

We worked out an other declarative solution that uses an auxiliary array for
storing some temporary information, namely the index of a “candidate” max-
imum element, thus increasing the space complexity to some extent, but that
still being linear: O(N), the worst-case running time in this case is O(N).
The required index is provided in variable m.

TYPE Vect = ARRAY [1..N] OF INTEGER;
Index = ARRAY [1..N] OF [1..N];

VAR i,m : INTEGER;

a : Vect;
b : Index;
BEGIN
b[1] = 1;

FOR i := 2 TO N DO
IF a[b[i-1]] <= a[i] THEN b[il
ELSE b[i]

]
[N

bli-1]
END

END;

b[N] = m;

END;

48

5.2. REDUCED TIME COMPLEXITY

The formula defined by this program is as follows:

I —def b1 =1
AV e [QN] [(abH <a; N b= Z) \% (abH >a; N\ b= bifl)] (52)
A\ bN =m

We have to prove that:
I - Vje[l.N]a; <ay,,

First we state and prove the following Lemma:

Lemma 5.2.1 With I defined as in (5.2) we have:
I— Vie[l.N]Vjell.i]a; <a,

Proof: We follow mathematical induction on the range of i:
Base case: 1 =1

I - hh=1)—ar=a, a1 <ap, =>Vje[l.l] a; <ap
—Vie[l.1]Vj e [l.d] a; < a,

Thus the base case holds.
Induction step:
Hypothesis: We presume it is true for any i < k, k < N:

I = Vie[l.k]Vje[l.]a <ay, (5.3)
and we prove for i = k + 1, that:
I—Vjie[lk+1]a; <ay,,, (5.4)
From I with 7 = k£ + 1 we have:
I— (ap, < apgr Abppr =k+1)V (ap, > agpr A by =)

We distinguish two cases according to the disjunction from above:
(a) From (5.3) we have: Vj € [1..k] a; < ap, then by the first part of the
disjunction:
V] € [1]{7] a; < agpr < Qb y (55)

forj=k+1
U1 < Qpy1 = Qo (5.6)

By (5.5) and (5.6) we conclude (5.4).

(b) From (5.3) and the second part of the disjunction we have:

VJ € [11{1] a; < Qp, = Qb (57)

49

CHAPTER 5. MAXIMUM ELEMENT

for j =k +1:
g1 < Qp, = by y (58)

By (5.7) and (5.8) we conclude (5.4).
As both cases imply (5.4) the induction step holds, thus the property holds
for any 1 < N. [

Proposition 5.2.2. With I defined as in (5.2) we have:
I— Vje[l.N]a; <ay,

Proof: Directly from Lemma 5.2.1. with ¢ = N, and from I we have
bN =m.
Thus we have our proof for I — S complete.

5.3 Tail-recursive Approach

In this case we are using a tail-recursive procedure. Considering the possi-
bility of optimized memory usage when tail-recursive procedures are present,
this solution will have a reduced space complexity compared to the previous
solution, in the sense that it is still O(N), but the asymptotic constant here is
much closer to the one of the imperative solution, whereas the time complexity
is still O(N).

Here instead of storing the indices of all the elements that were once “can-
didate” maximum elements, we pass the current one on to the next procedure
call, this latter in the same time getting the value of 7 increased, the parameter
by which we parse the whole array during the successive calls of the procedure.

TYPE Vect = ARRAY [1..N] OF INTEGER;
VAR m : INTEGER;
a : Vect;

PROCEDURE Maxim(b : Vect; i,j : INTEGER; VAR p : INTEGER);
BEGIN
IF i = N+1 THEN p = j
ELSE IF b[i] > b[j] THEN Maxim(b,i+1,i,p)
ELSE Maxim(b,i+1,j,p)
END;
END

END Maxim;
The problem is solved by calling:
Maxim(a,1,1,m);

the requested index being provided in variable m, which has been accumulated
during the recursive calls.

50

5.3. TAIL-RECURSIVE APPROACH

We call the reader’s attention that this is a terminating recursive proce-
dure. It is easy to verify that when the procedure is called for a parameter
i € [1..N] recursion takes place until the actual parameter i hits the value
N + 1. In all the other cases a runtime error will arise.

The following formula constitutes the declarative interpretation of the def-
inition of procedure Maxim:

M(b,i,j,p) < (i=N+1Ap=j)V (i#N+1A (5.9)
A ((bi > bj A M(byi+1,4,p)) V (b < bj A M(b,i+ 1,7, p)))

Then the declarative interpretation of the whole implementation is defined
as follows:

I=4;M(bi,j,p) <> (i=N+1Ap=j)V (i#N+1A
A ((bl > bj A M(b7i+ Liap)) v (bl < bj A M(b,l + 1:j:p)) (510)
A
M(a,1,1,m) (5.11)
Proposition 5.3.1. With I defined as in (5.10) we have:
I - Vie[l.N] a; <ay

Proof: We follow induction on N:
Base case: N =1

I - (M(a,1,1,m) — M(a,2,1,m))
M(a,2,1,m) < 2=2Am=1)V (2#2) A [..]=m=1
We conclude: Vi € [1..1] a; < a,,, that is a; < a;, which is true. The base
case holds.

Induction step:
Hypothesis: Presume that for N = k (k > 0) we have:

I Viell.k] a <ay
We prove for N =k + 1:
I->Vie[l.k+1] a; < ay

By definition (5.10), applying the formula M(a, 1,1, m) will result in ap-
plying a series of M(a, i, j, m)’s with variables 7, j, m accumulated and /or up-
dated during the recursion. This series up to « = k£ will be the very same as
in case when N would equal k£, and thus the resulting m would get the value
of j, where M(a,k + 1, j,m) is the last application of M.

Then by (5.9): M(a,k + 1,j,m) — m = j, which by hypothesis leads to:

[
As now we have n =k + 1, M(a,k + 1,7, m) will yield a new application
of M, that is M(a,k + 2,1, m), where

ol

CHAPTER 5. MAXIMUM ELEMENT

l=3j,if a4 < ajor
l=k+1, ifak+1>aj

As this will be the last application, we get m = [, and so by (5.12) we
conclude that the induction step holds.
Thus for any N > 1 we have:

I->Vie[l.N] a; < ap.

52

Chapter 6

Bubblesort

In this chapter we have elaborated purely declarative solutions for the popular
sorting algorithm “Bubblesort”.

Just as in the previous section we are working with elements of a finite
set endowed with a total ordering, being able to refer to these elements via
indexing. The following implementations work on an array of integer type,
and the total order is the one “less than or equal” relation on integer numbers.

Under these assumptions we specify the sorting problem as follows:

Given the input data, array ali], i € [1..N], we are looking for the output
data, array b[i], i € [1..N], such that b is a sorted permutation of a.

S(a,b) =4 'bisasorted permutationofa’ <
Vie[l.N—1]: b[i] <bli+1] A
dbijective mapping 7 : [1..N] — [1..N] : (6.1)
bli] = a[x[d]], Vi € [1..N]

Bubblesort works by repeatedly swapping adjacent elements that are out
of order. The classical imperative solution can be expressed by the following
pseudo-code:

fori=1to N —1do
for j=1to N —i do
if a[j] > a[j + 1] then swap(alj], alj + 1])

The algorithm has a time complexity of O(N?), and the space required is
O(N).

If we analyse a little bit this imperative pseudo-code, we can easily convince
ourselves, that the procedure swap(x,y)as its name suggests, will contain de-
structive assignments. Just simply by the fact, that it will make x have the
value of y, and y have the value of x. Such assignments are not allowed in
declarative programming, as there we abstract from a computational notion
like state, therefore during the whole computation a variable will not change

23

CHAPTER 6. BUBBLESORT

its value. This is indeed essential, as otherwise the formula-reading of the pro-
gram would have truth value False. To make it more explicit, let’s consider
the following program segment:

x := 3;
x := b5;

Its translation into a formula would be: x = 3 A x = 5, which is obviously
False, whereas the program segment simply assigns first 3 to x, and then 5.

On the other hand, it is also worth pointing out, that in the imperative
version this swapping procedure is essential, as the original Bubblesort is an
in-situ sorting algorithm, which cannot be the case in declarative style, as we
have seen.

So, in our declarative implementations we cannot use such a procedure,
nor can we sort in place, but we can always require more space in order to
be able to avoid destructive assignments, which, unfortunately, may increase
space complexity.

The following implementations also give some hints on how to achieve
optimal space complexity and yet insisting on declarative semantics.

6.1 Using Matrices

In the above pseudo-code after each iteration of the outer loop at the (i +
1)th position there will be placed the maximum of the elements from before
and including the (i + 1)th element itself, this being achieved by repeatedly
swapping adjacent elements that are out of order. In our solution instead of
swapping, we require a new array at each iteration of the outer loop in order
to “simulate” Bubblesort, and also an array to be able to store maximum
values, as follows: at each iteration of the inner loop we will store in this
array the maximum of the elements already visited in that line. This will be
compared to the next element, obtaining this way the new maximum element
to be placed to the next position in this auxiliary array. Once we have finished
with the (N — i)th iteration of the inner loop, we will be able to place the
maximum element of the N — 7 + 1 elements in its proper place in the array
used for simulating.

So altogether, we require an N x N-sized matrix a to imitate Bubblesort,
and an auxiliary N x N-sized matrix b to store the maximum elements as
discussed above. The initial array to be sorted is given in a[l], whereas in
a[N] we will get the sorted permutation of a[l].

TYPE Vect = ARRAY [1..N] OF INTEGER;
Mat = ARRAY [1..N] OF Vect;

VAR i, j : INTEGER;

54

6.1. USING MATRICES

a,b : Mat;

PROCEDURE Min_Max(x,y : INTEGER; VAR min,max : INTEGER);
BEGIN

IF x <= y THEN min = x;
max =y
ELSE min = y;
max = x
END;
END Min_Max;
BEGIN
FOR i := 1 TO N-1 DO
ali,1] = b[i,1];
FOR j := 2 TO N-i+1 DO
Min_Max(b[i,j-1],ali,jl,ali+1,j-11,b[i,j1);
END;
ali+1,N-i+1] = b[i,N-i+1];
END;

FOR i := 3 TO N DO
a[N,i] = a[N-i+2,i];
END;
END.

Note, that we do not waste time for copying into the next line of the matrix
the maximum elements already placed at their proper place, instead we leave
this operation as a last step, when the final sorted array a[N] is completed.

The following matrix shows how the implementation works on a[l1], an ar-
ray of 12 elements:

all) 10 2 4 -5 <11 -1 9 -20 105 0 75 -8
al2): 5 4 5 -11 -1 9 20 10 0 75 -8 105
al3): 5 5 <11 -1 4 20 9 0 10 -8 75
a4 5 <11 -1 2 20 4 0 9 -8 10

a3 <11 -5 -1 20 2 0 4 -8 9

al6) 11 5 20 1 0 2 8 4

a7 11 20 5 -1 0 -8 2

a[8]: 20 -11 5 -1 -8 0

alo: 20 -11 -5 -8 -1

[0, -20 -11 -8 -5

alll: 20 -11 -8

a[12: 20 -11 -8 5 -1 0 2 4 9 10 75 105

and the auxiliary matrix b corresponding to a:

95

CHAPTER 6. BUBBLESORT

p1: 10 10 10 10 10 10 10 10 105 105 105 105
b[2]: 2 4 4 4 4 9 910 10 7 75
b[3]: 2 2 2 2 4 4 9 9 10 10
b[4): 5 05 -1 2 2 4 4 9 9

b5 <11 5 -1 -1 2 2 4 4

p6: 11 5 5 -1 0 2 2

b7l 11 11 5 -1 0 0

b8: 20 -11 -5 -1 -1

ol: -20 -11 -5 -5

p10]: -20 -11 -8

p11]: 20 -11

Space complexity is therefore O(N?), as well as time complexity, this latter
being the same as in the imperative solution.

Note: in case we have to deal with big-sized objects for which it would
be costly copying array elements, the whole algorithm can be easily rewritten
to manipulate on indices instead of whole elements. In that case, we would
require matrices a and b to be index matrices.

This implementation contains no destructive assignments and has a pure
declarative semantics, its declarative interpretation being the formula:

I =4 M(z,y, min,mazx) <> (x <y A min =z A max =y)V

(x>y A min=y A mar =) (6.2)
A
Vi e [1.N — 1]
lali, 1] = b[i, 1] A (6.3)
Vj € [2.N —i +1]
M(bli,j — 1], a[i, j],ali + 1,5 — 1], b[i, j]) A (6.4)
ali +1,N —i+1] = bli, N — i +1]] (6.5)
A
Vi € [3..N]
a[N,i] = a[N — i+ 2,1] (6.6)

We have to prove the implication:
Va : Mat (I — S(a[l], a[N]))

First, we need to prove several lemmas.

Lemma 6.1.1. Assuming I, this implies the following:

I 5 Yie[l.N—1]Vje€[1l.N—i+1]
bli, j] = max {ali, 1], ali, 2], ..., ali, j|}

26

6.1. USING MATRICES

Proof:

For an arbitrary but fixed ¢+ we follow induction on j:
Base case: j = 1. From (6.3) it is straightforward.
Induction step:

Hypothesis: Presume for j =k < N — i+ 1:

bi, k| = max {ali, 1], ali, 2], ..., ali, k] }

We prove it for j =k + 1:
From (6.2) and (6.4) we conclude:
bli,k+1] = max{b[i,k],ali,k + 1]}
=y maz {ali,1],a[,2],...,ali, k + 1]}

which yields that the induction step holds.

Thus the property holds for any j € [1..N — i + 1] and arbitrary i €
[1.N —1]. O

Corollary 6.1.2. Assuming I, this implies the following
I - Vie[l.N—-1]
ali + 1, N —i+ 1] = max {a[i, 1], a[i, 2], ..., a[i, N —i + 1]}

Proof:
Directly from Lemma 6.1.1. with j = N —i+1 and (6.5). O

Lemma 6.1.3. Assuming I, this implies the following:

I+ Vie[l.N-1]Vje[l.N—i+1]
ali +1,1],...,a[i + 1,7 — 1], b[i, j] is a permutation of
ali, 1], ..., ali, 7 — 1], ali, j]

Proof:

For an arbitrary but fixed 7 we follow induction on j:

Base case: j = 1. From (6.3), it’s trivial.

Induction step:

Hypothesis: Presume it is true for j = k < N — 1 + 1, that is:

ali +1,1],...,a[i + 1,k — 1], b[i, k] is a permutation of
ali, 1], ...,ali, k — 1], a[i, k]

We prove for j = k + 1 that:

ali +1,1],...;a[i + 1,k — 1], a[i + 1, k], b[i, k + 1] is a permutation of
ali, 1), ..., ali, k — 1], ali, k], afi, k + 1]

57

CHAPTER 6. BUBBLESORT

From (6.2) and (6.4) we have that the set of elements{a[i + 1, k], b[i, k + 1]}is
the same set as {b[i, k], a[i, k + 1]}. This and the assumption of the hypothesis
yields directly the induction step.

Thus the property holds for any j € [1..N — i + 1] and arbitrary i €
1.N —1]. O

Corollary 6.1.4. Assuming I, this implies the following:

I - Vie[l.N—-1]
ali + 1,1],...,afi + 1, N —i],a[i + 1, N — i+ 1]
is a permutation of
ali, 1], ...,ali, N —i],a[i, N — i + 1]

Proof:
Straightforward from (6.5) and Lemma 6.1.3. with j = N —i+ 1. O

Corollary 6.1.5. Assuming I, this implies the following, Vi € [1..N — 1]:

a)

ali +1,1],yali+ 1, N —i+1],a[i, N — i +2], ..., a[2, N]
is a permutation of a[1]

b)
ai+1,N—i]<ali+,N—i+1]<ali, N —i+2],...,a[2, N]

Proof:

a) Induction on i:

Base case: i = 1. Directly from Cor. 6.1.4. with ; = 1.
Induction step:

Hypothesis: Assume, the property is true for e = k < N — 1:

alk +1,1],...;alk + 1, N — k 4+ 1],a[k, N — k + 2], ..., a[2, N]

is a permutation of a[1]
We have to prove for i = k£ + 1 that:

alk +2,1],...;ak + 2, N — k],alk + 1, N — k + 1],a[k, N — k + 2], ..., a[2, N]

is a permutation of a[1]
From Cor. 6.1.4. with i = k + 1 we have that:

alk +2,1], ..., a[k + 2, N — k] isa permutation of
alk +1,1],...,a[k + 1, N — k]

28

6.1. USING MATRICES

Adding the elements a[k +1, N — k+1],alk, N — k+2],...,a[2, N] to both
series, under the assumption of the hypothesis we have that the induction step
holds.

The property holds for any i € [1..N — 1].

b) We follow again induction on i:

Base case: i = 1. From Cor. 6.1.2. and 6.1.4. with + = 1 we have

a[2, N] = maz{a[l,1],a[l,2],...,a[l, N]} =
= mazx{a[2,1],a[2,2],...,a[2, N]}

From this we conclude a[2, N — 1] < a[2, N], thus the base case holds.

Induction step:
Hypothesis: We presume it is true for i = k < N — 1:

alk+1,N —k]<alk+1,N—k+1] <alk,N —k+2],...,a[2, N]
We have to prove it for i = k + 1:
alk+2,N —k—1]<alk+2,N—k] <alk+1,N —k+1],...,a[2, N]
From Cor. 6.1.2. with i = k£ + 1 and Cor. 6.1.4. with ¢ = k£ + 1 we have:
alk+2,N —k] = max{alk+1,1],...,alk +1,N — k]} =
= max {a[k +2,1],...,a[k + 2, N — k]}
— alk+2,N—k—1] <a[k+2,N — k] (6.7)
From Cor. 6.1.2. with ¢ = k and Cor. 6.1.4. with ¢ = k and lateri = k+1
we have:
alk +1,N —k+1] = max{alk,1],...;alk,N —k+ 1]} =
= maz{alk +1,1],...,alk + 1, N — k + 1]}

—alk+1,N—k+1] > max{alk+1,1],...;a[k +1, N — k]}
= maz{alk +2,1],...,alk + 2, N — k]}

S ak+2,N—k <alk+1,N—Fk+1] (6.8)

(6.7), (6.8), and the hypothesis yield the induction step.
Thus the property is true for any i € [1..N — 1]. O

Theorem 6.1.6. Assuming I, this implies that a[N] is a sorted permutation
of a[l].
Proof:
From Cor.6.1.5. with : = N — 1 we have:
a[N,1],a[N,2],a[N —1,3], ...,a[2, N]
is a sorted permutation of a[1]

This and (6.6) yield that a[N] is a sorted permutation of a[1]. O]
Thus we have our proof for I — S(a[1], a[N]) complete.

29

CHAPTER 6. BUBBLESORT

6.2 Reducing Space

As Lemma 6.1.1. clearly stated, in each line of the auxiliary matrix, b, there
are stored maximum values of elements up to a certain index from the same
line of the main matrix a. Using a whole matrix to store these values has
proved inefficient. We have seen that each line of this main matrix is used to
“simulate” Bubblesort, so apparently we would need just one auxiliary array
of dimension N, for each new line to be computed of the main matrix, and
for this job we may reuse this array. In this present proposal we hide the
computation of a new line in a procedure (Calculate_New_Line), requesting
here a local variable of dimension N, array b.

Though this way we may reduce to some extent the space needed, however
its magnitude is still quadratic in N (because of the matrix a), and so is the
time complexity.

This implementation uses procedure Min_Max, as well, defined as in the
previous section.

TYPE Vect = ARRAY [1..N] OF INTEGER;
Mat = ARRAY [1..N] OF Vect;
VAR i, j : INTEGER; a : Mat;

[PROCEDURE Min_Max...]

PROCEDURE Calculate_New_Line (c: Mat; i: INTEGER);
VAR b: Vect;
BEGIN
cli,1] = bl[1];
FOR j := 2 TO N-i+1 DO
Min_Max(b[j-11,c[i,jl,cl[i+1,j-11,b[j1);
END;
cli+1,N-i+1] = b[N-i+1];
END Calculate_New_Line;

BEGIN
FOR i := 1 TO N-1 DO
Calculate_New_Line(a,i);
END;
FOR i := 3 TO N DO
a[N,i] = a[N-i+2,i];
END;
END.

60

6.2. REDUCING SPACE

This implementation gets translated into the following formula:

I =gesM(z,y,min,mazr) < (x <y A min =z A max =y)V
(x >y A min=y A max = x)
N
C(e,i) <> 3b](ci, 1] = b[1]) A
Vj € [2.N —i+1]
M@bj — 1, ¢li, 5], cli + 1,5 — 1],b[j]) A
cli+1,N—i+1]=b[N —i+1])]
A
Vie[l.N —1]
Cla,i

S
~

Y

A\
Vi € [3..N]
a[N,i] = a[N — i+ 2, 1]

Again, in terms of formulae we have to prove the following:

Va : Mat (I — S(a[1], a[N]))

where S is the specification for sorting defined in (6.1).
Lemma 6.2.1. Assuming I, this implies the following:

I - Vie[l.N—1]3b: Vect
Vj € [1.N —i+1]
b[j] = max {ali, 1], ali, 2], ..., a[i, j]}
A
ali+1,N—i+1]=b[N —i+1]

(6.13)

(6.14)

Proof: For an arbitrary but fixed i applying the definition of C(a,7)(6.10)
we may follow mathematical induction on j similar to that of the proof of
Lemma 6.1.1. We call the reader’s attention of the semantical analogy between

(6.3) and (6.10), (6.4) and (6.11), (6.5) and (6.12). O

This directly leads us to the result of Cor. 6.1.2. on page 56. Note that
this result doesn’t depend anymore on the existentially quantified variable b.

Likewise, we can formulate the counterpart of Lemma 6.1.3. which leads

again directly to Cor. 6.1.4.

61

CHAPTER 6. BUBBLESORT

Lemma 6.2.2. Assuming I, this implies the following:

I= Vie[l.N—-1]3b: Vect
Vi€ [L.N —i+1]
ali +1,1],...,a[i + 1, j — 1], b[j] is a permutation of

ali, 1], ..., ali, j — 1], ali, j]
A
afi+1,N—i+1] =b[N —i+1]

Proof: For an arbitrary but fixed i applying the definition of C(a,7)(6.10)
we may follow mathematical induction on j similar to that of the proof of
Lemma 6.1.3. [J

We can conclude therefore that the properties formulated in Cor. 6.1.2. and
Cor. 6.1.4. hold in this case as well, both are being “free” of the existential
quantifier.

Therefore from this point on, the proof for I — S is identical to the
one provided in section 6.1., as the second part of the proof there provided
(Cor. 6.1.5. and Theorem 6.1.6.) is based exclusively on the results of these
two corollaries and (6.6) which happens to be the very same formula as (6.14).

6.3 Optimization by Tail Recursion

In the following we are organising the procedure Calculate_New_Line into a
tail-recursive one. Under the assumption of optimized memory usage by tail-
recursive procedures, we can achieve a space complexity linear in N, similar
to the one of imperative solution.

The new procedure is called Recursive_Calculate_New_Line with pa-
rameters ¢, a, a_sorted. The main matrix used in the previous sections be-
comes “virtual” in the sense, that we will always focus just on one specific line
of it at a time, and forget about the lines above. In the parameter list 7 indi-
cates the number of this line, a is the actual array we work on, and a_ sorted
is an accumulated parameter, in which, when recursion finishes, the desired
sorted permutation of the original array will be provided. The procedure has
two local variables: array a_next, used to compute in it the next line of the
“virtual” matrix for which the procedure will call itself, and an array b with
similar task as before.

TYPE Vect = ARRAY [1..N] OF INTEGER;
VAR j : INTEGER; a,a_sorted : Vect;

[PROCEDURE Min_Max...]

62

6.3. OPTIMIZATION BY TAIL RECURSION

PROCEDURE Recursive_Calculate_New_Lines (i:INTEGER; c: Vect;
VAR a_sorted: Vect);

VAR
a_next, b: Vect;

BEGIN
IF i <= N THEN
c[1] = b[1];
FOR j := 2 TO N-i+1 DO
Min_Max(b[j-1]1,c[jl,a_next[j-1]1,b[j]1);
END;
a_sorted[N-i+1] = b[N-i+1];
Recursive_Calculate_New_Lines(i+1,a_next,a_sorted);
END;
END Recursive_Calculate_New_Lines;

BEGIN
Recursive_Calculate_New_Lines(1,a,a_sorted);
END;

The array to be sorted is in a, this is given as actual parameter in the first call
of the procedure, 1 indicates that this is the first line in the virtual matrix.
It is easy to verify that we have to deal here with a terminating recursive
procedure: when it is called for a parameter i € [1..N] recursion takes place,
and eventually when ¢ hits the value N +1, recursion stops, as for values i > N
nothing happens. For values 7 < 1 runtime error will arise.

The implementation gets translated into the following formula:

I=4; M(z,y,min,maz) < (x <y Amin=z A max=y)V (6.15)
(x >y A min=y A mar = x)

A
R(i,c,a_sorted) <» Ja_next,b [i < N — (6.16)
c[1] = b[1] A (6.17)

Vi€ [2.N —i+1]

M(b[j — 1],], a_next[j — 1], b[j]) A (6.18)
a_sorted]N —i+ 1] =b[N — i+ 1] A (6.19)
R(i+1,a_next,a_sorted)] (6.20)

A

R(1,a,a_sorted)
which leaves for us to prove the following implication:
Va,a sorted : Vect (I — S(a,a_sorted))

The following lemma is the counterpart of Lemma 6.2.1., its proof follows
the same pattern, page 61.

63

CHAPTER 6. BUBBLESORT

Lemma 6.3.1. Assuming I, this implies the following:

R(i,c,a_sorted) — 3b i < N —
Vie[l.N—it1]:
blj] = maz {c[1], c[2], ..., ¢l5]}
A
a_sorted]N — i+ 1] = b[N —i+1]|

Corollary 6.3.2. Assuming I, this implies the following:

R(i,c,a_sorted) — [<N —
a_sorted[N — i + 1] = max {c[1], c[2], ..., ([N — i + 1]}]

Proof: Directly from Lemma 6.3.1. [J

The following lemma is the counterpart of Lemma 6.2.2., its proof follows
the same pattern as there provided.

Lemma 6.3.3. Assuming I, this implies the following:

R(i,c,a_sorted) — Ja_next,b

[i<N —
Vje[l.N—i+1]:
a_next[l],...,a_next[j — 1], b[j] is a permutation of

c[1],...,c[j — 1], ¢[y]
A\
a_sorted]N —i+1] = b[N — i+ 1]]

Corollary 6.3.4. Assuming I, this implies the following:
R(i,c,a_sorted) — Ja_next
[i<N —

a_next[l],...,a_next[N —i],a_sorted[N — i+ 1]
isa permutation of ¢[1..N — i + 1]]

Proof: Directly from Lemma 6.3.3. [J

64

6.3. OPTIMIZATION BY TAIL RECURSION

Theorem 6.3.5. Assuming I, this implies the following:!

R(1,a,a_sorted) — Vi< N 3Fd

a_sorted[N — i + 1..N]issorted

A
a'[1..N — 4] together witha_sorted[N — i + 1..N]
is a permutation of a[1..N]

A
a_sorted[N — i+ 1] > max {da'[1..N —i]}

A
R(i+1,d',a_sorted)

Proof: we follow induction on :.

Base case: i = 1, then first, a_ sorted[N..N] is trivially sorted.
Second, by Cor.6.3.4. 3a_ next such that

a_next[1..N — 1] together with a_ sorted|N..N]

is a permutation of a[1..N].
Third, by Cor.6.3.2. and Cor.6.3.4. with i =1, ¢ = a we have:
a_sorted[N] = max {a[l..N]} = max {a_next[1..N — 1],a_sorted[N]}
Which results:
a_sorted[N] > maz {a_next[l.N — 1]}

Fourth, R(2,a_next,a_sorted) follows directly from R(1, a,a_ sorted) (6.16).
Thus, the base case holds.

Induction step:

Hypothesis: we presume that the implication is true for i = k < N:

R(1,a,a_sorted) — 3d

a_sorted[N — k + 1..N]is sorted (6.21)
A
a'[1..N — k] together with a_sorted[N — k + 1..N]
is a permutation of a[1..N] (6.22)
A
a_sortedN — k + 1] > max {d'[1..N — K]}
A (6.23)
R(k+1,d,a_sorted) (6.24)

Note: when the elements of an array, say b, are denoted by b[z..y] with > ¥, then
b[z..y] denotes no elements of b.

65

CHAPTER 6. BUBBLESORT

We have prove that it is true for k& + 1:

By hypothesis, R(1,a,a_sorted) — R(k + 1,a’,a_sorted), which implies
that 9a_next with several properties listed below, they follow directly from
Cor.6.3.2. and Cor.6.3.4. with R(k +1,d',a_sorted):

First, by hypothesis we have:

a_sorted[N — k + 1] > max {d'[1..N — k|} =
max {a_next[l],...,a_next[N —k —1],a_sorted|N — kl|}

This implies, that:
a_sorted[N — k] < a_sorted[N — k + 1]

therefore by hypothesis (6.21) we conclude a_sorted[N — k..N] is sorted.

Second, as a'[1..N — k] together with a_ sorted[N —k+1..N] is a permuta-
tion of a[l..N] by hypothesis (6.22), and that a_next[1],...,a_next|N — k —
1],a_sorted[N — k] is a permutation of a/[1..N — k] (by Cor.6.3.4.), we can
conclude that a_next[1..N — k — 1] together with a_sorted[N — k..N] is a
permutation of the original array, a[l..N].

Third, by Cor.6.3.2. and Cor.6.3.4. with R(k + 1,d’,a_sorted) we have:

a_sorted[N — k] = max {d'[1..N — k]} =
mazx {a_next[]1.N —k —1],a_sorted|N — k]}

Which results:
a_sorted[N — k] > max {a_next[]l.N — k —1]}.
Fourth, R(k+2,a_next,a_sorted) follows directly from R(k+1,a',a_sorted)
(6.16).

Thus, the induction step holds.
The implication is true for any : < N. [J

Corollary 6.3.6. Assuming I, this implies the following:
R(1,a,a_sorted) — a_sorted[1..N]isasorted permutation of a[l.. V]

Proof: Directly by Theorem 6.3.5. for i = N, as a'[1..0] is empty. [J

Thus we have proved:

Va,a_sorted : Vect (I — S(a,a_sorted)).

66

Chapter 7

Quicksort

Many useful algorithms are recursive in structure: to solve a given problem,
they call themselves recursively one or more times to deal with closely re-
lated subproblems. These algorithms typically follow a divide-and-conquer
approach: they break the problem into several subproblems that are similar
to the original problem but smaller in size, solve the subproblems recursively,
and then combine these solutions to create a solution to the original problem.

Quicksort is another popular in-situ sorting algorithm that is based on
the divide-and-conquer paradigm. Here is the three-step divide-and-conquer
process for sorting a typical subarray a[p..r].

e Divide: Partition the array a[p..r] around a pivot element into two
(possibly empty) subarrays a[p..k — 1] and a[k + 1..r] such that each
element of a[p.. k — 1] is less than or equal to a[k], which is, in turn, less
than or equal to each element of a[k + 1..r]. Compute the index k as
part of this partitioning procedure.

e Conquer: Sort the two subarrays a[p.. k—1] and a[k+1 ..r| by recursive
calls to Quicksort.

e Combine: Since the subarrays are sorted in place, no work is needed
to combine them: the entire array a[p..r] is now sorted.

The following procedure implements Quicksort:

Procedure Quicksort (a,p,r) is
if p<r then
k = Partition(a,p,r)
Quicksort(a,p,k-1)
Quicksort(a,k+1,r)

To sort an entire array a[l..N], the initial call is Quicksort (a,1, N), where
N is the length of the array.

67

CHAPTER 7. QUICKSORT

Quicksort has a running time of O(NN?) in the worst case, but it is typically
O(NlgN). In practical situations, a fine-tuned implementation of Quicksort
beats most sorting algorithms, including sorting algorithms whose theoretical
complexity is O(N Ig N) in the worst case.

Though in the partitioning phase selection algorithms can be used to pick
up good pivots, thus giving a variant with O(N lg N) worst-case running time,
however we did not go into the details of such algorithms in order to analyse
them and to elaborate declarative implementations for them.

As we have seen in declarative implementations we need to avoid in situ
sorting, and in order to be able to do so we need to require more space. The
first solution with pure declarative semantics will have a space complexity
linear in time complexity, in the sense that if the algorithm runs in O(N lg N),
then the space required will be O(Nl1gN) as well, and so on, whereas the
second solution, using space optimization by tail-recursion, will have a space
complexity of O(N), the same as the imperative solution’s.

7.1 Using a Matrix

Just as we did in the case of Bubblesort, in order to avoid sorting in-situ,
and thus avoiding destructive assignments, we will simulate Quicksort using
a matrix. We will refer to each line of the matrix via the parameter j at
each call of the recursive procedure Quicksort, which apart from this and the
matrix itself as parameters, is also given the left and right bounds, p and r,
and the accumulated parameter a_ sorted, in which at the final position of
the current pivot, once found, the pivot is placed.

It is worth mentioning that not every element of the matrix will be ac-
cessed, and possibly nor each line of it will be accessed at all. That is why we
defined the Mat as an open array of Vect type. All will depend on the time
complexity of the recursion, which if it’s O(Nlg N), then the space required
will be O(N'1g N) as well, and not O(N?), as we don’t need a whole matrix
for simulation. This discussion is of course purely theoretic, and it still leaves
the question open on the compiler side, how to allocate memory in run-time
for such open arrays.

TYPE Vect = ARRAY [1..N] OF INTEGER;
Mat = ARRAY OF Vect;
Index = ARRAY [0..N] OF [0..N+1];

VAR
i : INTEGER;
a_sorted : Vect;
a : Mat;

68

7.1. USING A MATRIX

PROCEDURE partitioning (c:Vect; p,r:INTEGER;
VAR b : Vect; VAR k: INTEGER);
VAR 1: Index;
BEGIN
1[p-1]1 = p-1;
FOR i:=p TO r-1 DO
IF c[i] <= c[r] THEN
1[i] = 1[i-1]+1;
b[1[i]l] = c[il;
ELSE
1[i] = 1[i-1];
blr+1+1[i]-i] = c[i];

END;
END;

k = 1[r-1]1+1;

clr] = blk]l;

END partitioning;

PROCEDURE quicksort (VAR b: Mat; j:INTEGER; p,r: INTEGER;
VAR a_sorted : Vect);
VAR k : INTEGER;
BEGIN
IF p<r THEN
partitioning (b[j],p,r,b[j+1],k);
blj,r] = a_sorted[k];
quicksort (b,j+1,p,k-1,a_sorted);
quicksort (b,j+1,k+1,r,a_sorted);
ELSE
IF p = r THEN b[j,p] = a_sorted[p];
END;
END;
END quicksort;

BEGIN
quicksort (a,1,1,N,a_sorted);
END.

The procedure partitioning for the input c[p..r] will always choose as
pivot the element ¢[r], and will return in b[p..r] the rearranged elements of
¢[p..r] around this pivot which will have position k in b[p..r]. Basically the
procedure works as follows: it parses c[p..r], at each step comparing the current
element with the pivot, and depending on this comparison the current element
will be placed either to the beginning or the end of b[p..r], at the position
calculated with the help of the index counter [. We require here that the actual
parameters p and r should satisfy p < r, which in our case is always achieved
as in quicksort the procedure partitioning is called only for parameters p
and r such that p < r.

The input array to be sorted is the first line of the global matrix a, which
is given as actual parameter in the first call of quicksort, also indicating that
we start with the first line of the matrix, and boundaries: 1 and N.

69

CHAPTER 7. QUICKSORT

The following two matrices show how the implementation works on two
different arrays. In each case the array to be sorted is given in a[l].

2 2 2 2 2 2
Ot

=)

a

a_sorted:

[1]:
2]:
3]:
[4]:
[5]:
[6]:
7]
8]
9]
]

=2}

7|

oo

91
al10|:

100 -5 -8 5 5 3 9
100 -5 -8 5 5 3 9
-8 -10 25 9 3 5 O
259 3 5 9
-5 9 39
> 5 3 9
> 5 3 9

3 5 9

5 9

-8 -10 -5 3 5 5 9

Or as a second example:

a__sorted:

8§ -5 -58 50 5 13
8§ -5 -8 5 13 19
-0 -98 1 25 19 13
-08 -5 5> 8 13
13

13

-08 -5 1 5 8 13

25
25
-9
-9
25
25

25

19
25

19

19
19

19

-10 1000
-10 1000
100

100

100 1000
25 1 30
1 30 50
8
25
25
25 30 50

The blank positions of the matrix illustrate well that the space complexity
grows linear with the time complexity.

The implementation has a pure declarative semantics, its declarative in-

70

7.1. USING A MATRIX

terpretation being the formula:

I =4 Plc,p,r, b, k) <> 31 :Index

p—1)=p—1
A
Vielp.r—1] (7.1)
(cfi] <efr] ANl[i) =1t — 1]+ 1 A D[Ii]] = ¢[i]) V
(ci] > c[r] AN I[E) =1[i — 1] A blr + 1+ 1[z] — 4] = c[i])
A
k=1 —1+1 (7.2)
c[r] = b[k] (7.3)
VAN
Q(b, j,p,r,a_sorted) <> Ik (7.4)
p<r A P([j],p,rbj+1],k) A
A blj,r] = a_sorted[k] A (7.5)
AQDb,J+1,p,k—1,a sorted) N Q(b,j+ 1,k +1,r,a_sorted)]
\%
p>r A (p=r—bjp] =a_sorted[p])
VAN

Q(a,1,1, N,a_sorted)
We have to prove that:
Va:Mat, a_sorted : Vect (I — S(a[l],a_sorted))

where S is the specification for sorting defined in (6.1).

Lemma 7.1.1. Assuming I, this implies the following:

P(c,p,r,b, k) — if p < r then
a) p<k<rand
b) b[p..r|is a permutation of ¢[p..r] s.t.
blp..k — 1] < b[k] < blk + 1 ..r]

Proof:
a) Using (7.1), under the assumption that p < r, by straightforward in-
duction it can be proved easily the following:

P(c,p,r,b,k) — 3l :Index (Vi € [p..r —1] p—1<I[i] <)
Then for : = r — 1 we have:

P(e,p,ryb k) — Jl:Index (p—1<Ir—1]<r—1)

71

CHAPTER 7. QUICKSORT

which by (7.2) results p < k <.
b) Using (7.1), under the assumption that p < r, by straightforward in-
duction it can be proved:

P(c,p,r,b,k) — 3Jl:Index: Vi € [p..r — 1] the series
blp], ..., b[l[7]], b[r + 1 + I[i] — 1], .., b[r] is a permutation
of ¢[p..i]s.t. b[p.. I[i]] < c[r] < blr + 1+ 1[i] —i..r]

Then for i = — 1 and by (7.2), (7.3) we conclude b). O

Lemma 7.1.2. Assuming I, this implies the following:
Q(b,j,p,r,a_sorted) — a_ sorted[p..r] isasorted permutation of b[j, p..r]

Proof: We follow induction on the length of the segment: r —p + 1.
Base case: r—p+1=1,thatisr =p
Then we have:

Q(b, j,p,p,a_sorted) <+ Tk
[...false..] V

p>p A (p=p)—blj,p| = a_sorted]p]

thus the base case holds.

Induction step:

Hypothesis: We presume it is true for any segment of b[j] of length at most
k, that is, forr —p+1 <k < N.

We prove that the property holds for any segment of length k& + 1, that is,
forr—p+1=Fk+1

Then it is the case that p < r, therefore the first branch of the disjunction
will be applied in (7.4):

Q(b, j,p,p,a_sorted) — Tk :
p<r A PO[j],p,rbj+1],k) A
blj,r] = a_sorted[k] A
Qb,j+1,p,k—1,a sorted) A
Qb,j+1,k+1,r,a_ sorted)

which by Lemma 7.1.1.b), hypothesis, (7.3) and (7.5) leads to:

bj+1,p. k=1 <bj+ 1Lkl <bj+1,k+1.r] A

b[j + 1,p..r]isapermutation of b[j, p..r] A

blj + 1,k] = a_sorted[k] A

a_sorted[p.. k — 1]isasorted permutationof b[j + 1, p..k — 1] A

a_sorted[k + 1..r]isasorted permutationof b[j + 1,k + 1 ..7]

72

7.2. TAIL-RECURSIVE QUICKSORT

which results that a_ sorted[p..r] is a sorted permutation of b[j, p..r].
Thus the induction step holds.
The implication is true for any segment [p..r]. OJ

Corollary 7.1.3. Assuming I, this implies the following:
Q(a,1,1, N,a_sorted) — a_ sorted[1..N]isasorted permutationofa[l, 1..N]

Proof: Directly from Lemma 7.1.2. withb=a, j=1,p=1,r=N.

Thus we have proved that:
Va:Mat,a_sorted : Vect (I — S(a[l],a_sorted)).

7.2 Tail-recursive Quicksort

The general Quicksort algorithm (both the imperative and declarative version)
contains two recursive calls to itself. After the call to partitioning, the left
subarray is recursively sorted and then the right subarray is recursively sorted.
Of these two calls, the second recursive call is a tail-recursive call, which in
the case of the imperative solution, according to [6], could be simulated by
the compiler using an iterative control structure. The following version of the
imperative solution simulates this tail-recursive call:

Procedure Quicksort’ (a,p,r) is
while p<r do
k = Partition(a,p,r)
Quicksort’(a,p,k-1)
p=k+1

The so obtained algorithm itself is still not a tail-recursive algorithm for
Quicksort. It reduces to some extent the stack space needed, but this doesn’t
have a significant effect on the overall time nor on the space complexity, on
the other hand, because of the state-dependent while-loop, it is far from being
obvious to elaborate an efficient declarative solution for it.

However, we aimed to develop a tail-recursive algorithm for Quicksort in
the hope that its declarative version would have a reduced space complexity
compared to the one in the previous section, as this approach seemed to work
well in the experiments of earlier case studies.

First of all we provide here an imperative tail-recursive pseudo-code for
Quicksort, followed by a declarative implementation for it.

The basic idea of this algorithm was to somehow combine the two recursive
calls into one in a way that the new recursive call would do both jobs at once.
In order to be able to keep in track of the left and right boundaries of sub-
segments to be sorted during one call (initially the whole array), we maintain

73

CHAPTER 7. QUICKSORT

an auxiliary array aux, this having the following structure: when aux[i] has
a non-negative value, then ali..aux[i]] will be one of the subsegments to be
sorted during the actual call. When aux[i] has the value -1, this denotes the
position of an earlier already placed in place pivot. In the remaining positions
auzx[i] has the value 0. At the first call aux is initialized as follows (in case
when N = 8):

aur [1] 2] [3] [4] [5] [6] [7] 8]
(8]0fofofofofo[oO]

which means, that during the first call the only segment to be sorted is a[1..8],
that is the whole array.
After several calls, aux may have the following values:

avr [1] 2] [3] [4] 5] [6] [7] 8]
(2]O0]-1]-1]7[O[O]-1]

In this case, the subsegments to be sorted are a[1..2], a[5..7], whereas a[3],
a[4] and a[8] are already elements placed in their proper positions with respect
to the finally sorted whole array a.

Recursion will stop when no segments to be sorted are found, case in which
aux has all its values set to -1:

ave [1] [2] [3] [4] [5] [6] [7] [8]
ENEIEIEIEIEIENEN

Assuming the existence of the same partitioning procedure as before, the
tail-recursive Quicksort has the following pseudo-code:

Procedure Quicksort_ TR (a,auz) is
nr.seq =0
for i =1to N do
if auz[i] > i then
nr.seq = nr.seqg + 1
left[nr.seg|=i
if nr.seg > 0 then
for i =1 to nr.seg do
k[i] = Partition(a,left|i],auz|left]i]])
Update auzx(auz,left,k)
Quicksort TR (a,aux)

where left is an array to store the left boundaries of the subsegments to be
sorted during a call, and k is an other array for storing the new (final) positions
of the pivots, one for each subsegment is case.

The reader may easily convince himself that running such an algorithm it
would basically make the same steps in transforming a as the original Quick-

74

7.2. TAIL-RECURSIVE QUICKSORT

sort, does, the only difference would be the order of the steps, but the final
cost of the summed up steps is the same for both cases. Using terminologies
of graph-theory, the original Quicksort is a “depth-first” algorithm, whereas
the tail-recursive is “breadth-first”. The effect is the same: every element of a,
once being chosen as a pivot, finds its proper final place, and it is not being
bothered anymore. Of course, Quicksort TR as a whole will need more time
to maintain the auxiliary variable, but this requires at most O(N) during one
call, the same as Partition does, so the leading magnitude will not be affected
by it.

As far as the space complexity is concerned, we cannot economise on the
space either with imperative tail-recursive Quicksort: we save space by tail-
recursion removal from the stack (at most O(N)), but we need to memorise
the auxiliary array, which basically “does the work” of the stack.

The following Alma-0 code is a declarative implementation for tail-recursive
Quicksort:

TYPE Vect = ARRAY [1..N] OF INTEGER;
Index = ARRAY [0..N] OF [0..N+1];
Boundaries = ARRAY [1..N+1] OF [-1..N];
Pivots = ARRAY [1..N] OF INTEGER;
VAR i,j : INTEGER;
aux : Boundaries;
a,a_sorted : Vect;

[PROCEDURE partitioning...]

PROCEDURE update_aux(aux,left,right : Boundaries; k : Pivots;
m : INTEGER; VAR n_aux: Boundaries);
BEGIN
FOR i := 1 TO m DO
IF left[i] < k[i] THEN
n_aux[left[i]] = k[i]-1

END;

FOR j := left[i]+1 TO k[i]-1 DO
n_aux[j] = 0;

END;

n_aux[k[i]] = -1;
IF k[i] < right[i] THEN
n_aux[k[i]+1] = right[i]

END;
FOR j := k[i]+2 TO right[i] DO
n_aux[j] = 0;
END;
END;

FOR i :=1 TO N DO
IF aux[i] = -1 THEN n_aux[i] = -1;
END;
END;
END update_aux;

75

CHAPTER 7. QUICKSORT

PROCEDURE quicksort_tr (a: Vect; aux : Boundaries; VAR a_sorted : Vect);
VAR left,right,nr_seg,n_aux : Boundaries;
k : Pivots;
a_next : Vect;
BEGIN
nr_segl[1] = 0;
FOR i := 1 TO N DO
IF aux[i] >= i THEN nr_segl[i+1] = nr_seg[i] + 1;
left[nr_segl[i+1]] = i;
right [nr_seg[i+1]] = aux[i];
ELSE nr_seg[i+1] = nr_segl[i];
END;
END;

IF nr_seg[N+1] > 0 THEN
FOR i :=1 TO nr_seg[N+1] DO
partitioning(a,left[i] ,right[i],a_next,k[i]);
END;
update_aux(aux,left,right,k,nr_seg[N+1] ,n_aux);
FOR i := 1 TO N DO
IF aux[i] = -1 THEN a_next[i] = al[il;

END;
END;
quicksort_tr(a_next,n_aux,a_sorted);
ELSE
FOR i := 1 TO N DO
al[i] = a_sorted[il;
END;
END;

END quicksort_tr;

BEGIN
FOR i := 2 TO N DO
aux[i] = 0;
END;
aux[1] = N;
quicksort_tr (a,aux,a_sorted);
END.

Procedure quicksort_tr has in addition as parameter the accumulated
variable a_ sorted, and as locals: right, n_ auxr and a_ next arrays. The array
right, for storing the right boundaries of the subsegments to be sorted, has
the only purpose to increase readability, whereas arrays n_ aur and a_next
are variables for the updated auxiliary and the actual array, respectively, to
be passed to the next recursive call.

The following tables illustrate the actual parameters for which quicksort_tr
is called during the recursion for an array of 8 elements, given as in a (note
that a_ sorted will be accumulated during the calls, getting values only in the
last recursive call):

76

7.2. TAIL-RECURSIVE QUICKSORT

auzr:| 8 [0]0]0[0|10]0]|0

a next: | 1123589710
n auxr: |3[0]0]-1]8]0]0| 0

a next: | 11235 [8]9|7]|10
n auxr: [2]0]-1]-1[7]0]0]-1

a next: |12 (3|5]71]9]8]10
n_ auxr: |1 |-1[-1|-1|-1]7]0]-1

a next:| 1123 |5 |7 |8]|9]|10
n_auxr: |-1|-1|-1|-1]-1]-1]7]-1

a next: | 123 |5|7|8]|9]10
n auxr: |-1|-1]-1]-1]-1]-1]-1]|-1

In the last call, as no subsegments to be sorted are found, a_sorted will
be made equal with a_next from the previous call.

The time complexity of the declarative version has the same magnitude
as of the imperative version, that is, when choosing good pivots (as men-
tioned at the beginning of this chapter) is O(N log N), whereas with optimized
memory usage due to tail-recursion, the space complexity of the declarative
tail-recursive Quicksort will be reduced from O(Nlog N) to O(N).

We can conclude that there exists a declarative implementation for Quick-
sort, that has the same time and space complexity as the imperative solu-
tion. However, due to limited expressivity of declarative programming, the
implementation itself manifests a far more complicated code than the original
imperative solution, which would result an even more complicated, though
achievable logical proof for the implication I — S(a,a_ sorted).

This is a very critical landmark in declarative programming, as the declar-
ative semantics here does not outweigh the lesser expressivity by offering pro-
grams easy to understand, modify or verify, but the other way around. Under
this consideration we didn’t find it relevant to pursue a detailed correctness
proof for this case.

7

CHAPTER 7. QUICKSORT

78

Chapter 8

Conclusions

Throughout this project our attention has been set on two main goals: first, we
aimed to extend the computation mechanism introduced by Apt and Bezem
[1] and to formulate soundness and completeness results for this extension,
and second, to explore declarative programming by examining declarative im-
plementations of non-trivial computational problems, providing formal proofs
for the implication I — S.

As far as the achieved theoretical results are concerned, the computation
mechanism has been extended for possibly recursive, but consistent proce-
dures. Restricted soundness and completeness results were formulated and
proved for implementations where the scope of any negation and /or the premise
part of any implication consists of only one non-procedural atom. Soundness
and completeness proofs for the general case have been left as a further re-
search topic as, because of both negation and/or recursion may be present,
they have to deal with possibly infinite subsidiary trees, this latter causing
difficulties in our inductive proof.

The case studies of Chapters 57 provide declarative implementations writ-
ten in the Alma-0 programming language. This experimental language follows
the computation mechanism spelled out in Chapter 2., though it doesn’t re-
alise it faithfully as we have seen through the examples of some extreme cases.
But this shouldn’t concern us, as the implementations are safe in this respect,
they do not contain negations, and the premise part of the implications are
a-closed, so Alma-0 will compute likewise our computation mechanism does.
These implementations also satisfy the requirements of the restricted sound-
ness theorem (Theorem 2.3.4.), hence soundness results may apply. Therefore
the only task left behind in each case study is the formal proof for the impli-
cation I — S.

We find it important to emphasize that these declarative implementations
didn’t aim “to win” against their imperative counterparts, this would be ob-
viously a naive endeavour in the world of von Neumann computers, but as an
experiment it was edifying and instructive to see and analyse their behaviour
and performance.

79

CHAPTER 8. CONCLUSIONS

In each of the cases we did elaborate declarative versions of known algo-
rithms (i.e. finding a maximum of an array, Bubblesort and Quicksort) which
have the same time complexity as their imperative counterparts, though we
had to require more space, hence their space complexity is increased. We
have also seen, that in case we can “rephrase” our formulas, so that program
parts responsible for increased space complexity are organised in tail-recursive
procedures, then by tail-recursion optimisation the space complexity can the-
oretically be reduced to the the imperative counterparts’ space complexity.

This approach seemed to work well in the cases of Maximum element
and Bubblesort, where the declarative programs were “bearable” in the sense
of readability both as programs and as formulas. In the case of Quicksort,
unfortunately, the obtained code became overly complicated. In our view,
this is primarily caused by the underlying abstraction from machine state, and
secondary because the declarative code simulates an imperative algorithm —
maybe it is not the most fortunate enterprise.

Despite these inconveniences, we still consider declarative programming
an interesting open field to explore, as it may steal the show in more logic
oriented computational problems or some areas of artificial intelligence.

80

Bibliography

[1] Apt, Krzysztof and Bezem, Marc (1998): Formulas as Programs,
in: The Logic Programming Paradigm. Springer. Also available under:
http://xxx.lanl.gov/archives/cs (as cs. LO/9811017)

[2] Apt, K., Brunekreef, J., Partington, V. and Schaerf, A.(1998): Alma-0.
An Imperative Language that Supports Declarative Programming. ACM
Toplas. Also available under: http://www.cwi.nl/~apt

[3] Apt, K. and Doets, K: A New Definition of SLDNF-resolution. Also avail-
able under: http://www.cwi.nl/"apt/sldnf.ps

[4] Backhouse, Roland (2003): Program Construction. Calculating Imple-
mentations from Specifications. Wiley.

[5] Buchholz, W. (1998): A note on SLDNF-resolution. Journal of Logic and
Computation, 8(2)

[6] Cormen, Th. H., Leiserson, Ch.E.; Rivest, R.L. and Stein, C. (2001):
Introduction to Algorithms. 2nd Ed. The MIT Press.

[7] Doets, Kees (1994): From Logic to Logic Programming. The MIT Press.

[8] Louden, Kenneth C. (1997): Compiler Construction. Principles and
Practice. PWS Publishing Company.

[9] Partington, V. (1997): Implementation of an Imperative Programming
Language with Backtracking. Tech. Rep P9712, Departments of Mathe-
matics, Computer Science, Physisc & Astronomy, Univ. of Amsterdam,
The Netherlands. Also available under: http://www.cwi.nl/~apt

[10] Robinson, J.A. (1965): A Machine-Oriented Logic Based on the Resolu-
tion Principle. Journal of ACM, Vol 12.

[11] Sebesta, Robert W. (2002): Concepts of Programming Languages. 5th
Ed. Addison-Wesley.

[12] Sethi, Ravi (1996): Programming Languages. Concepts and Constructs.
2nd Ed. Addison-Wesley.

81

BIBLIOGRAPHY

[13] Warren, David H.D (1983): An Abstract Prolog Instruction Set. Technical
Note 309, SRI International, Menlo Park.

[14] Webber, Adam (2002): Modern Programming Languages. A Practical
Introduction. Franklin, Beedle & Associates, Inc.

82

