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PREFACH

An enduring preoccupation for quite a few years now with -
analysis of variance (ANOVA) as a descriptive data-analytic
technique, has lead to a firm conviction that ANOVA should be
looked at independent of the traditional linkage to experimen-
tal design and strict probabilistic (statistical) thinking.

Vhen at long last one has reached what seems g kind of fresh
insight that ANOVA can be used as a most powerfui correlational
technique, then great possibilities in data analysis seem to
open up in borderline cases where traditional taxonomies of
techniques could provide no guidelines for analysis.

The author experienced this in dealing with the convergence
of ANOVA on multiple regression (Fikeland 1971). The same
feeling is prevailing in dealing with the convergence of ANCVA
on FA (factor analysis).

While one feels happy on a’ conceptual level, the feelings
are mixed up when it comes to the presentation of the conver-
geace of concepts from different traditions. This is so because
one has to compromise as regards exact formulations, use of sym-
bols,etc., in an effort to make things understandable and meaning-
ful to people in the applied research field,

The compromise reached as to mode of presentation in this
monograph,is based on the author's experience of how difficult
it is to come across with the rationales for complex data analy-
sis techniques to colleagues that are not trained in the formal
aspects. Their reactions will show to what extent one has been

(S

successful.

Thanks are due to my friends and colleagues, Ola O, Bz, Tor-
leif Imnd, end Finn Tschudi, who encouraged and prompted me %o
communicate to others in written form on these issues,

Oslo, April 1972,

Hans-llagne Eikeland
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1. INTRODUCTION

Analysis of variance (ANOVA), multiple regression analysis
(MR), and factor analysis (FA)1), are by most researchers in
psychology and education regarded as nonoverlapping techniques,
having their own rationales and distinct functions in the
analysis of data. However, the formal system and the basic
logic underlying these techniques, and even others not men-
tioned here, are the same. Mathematicians call this common
foundation the general linear model. (See Fennessey (1968) as

a readable reference. )

1) Factor analysis (FA) will in this report be used as a
generic term, covering both data reduction techniques, like
the principal components analysis and the centroid solution
with 1's in the principal diagonal of the correlation matrix,
and classical factor analysis techniques with estimates of
communalities in the principal diagonal.

Excellent taxonomies df’statistical techniques can be found
in the literature. Notable among these is Tatsuocka & Tiedeman
(196%), where techniques are classified according to the role,
scale type, and number of variables involved, Certainly, such
taxonomies are extremely useful., However, when dispriminating
features are emphasized and convergent features ignéééd,too
rigid clagsifications of techniques are established, such that
possibilities of teasing out information in data are not ex-

ploited.

Tortunately, efforts have been made,and more and more ciforts

are being made, 1o make research workers aware of the relations



among the techniques in order to bring about more flexibility
in the analysis of data that do not fit the prerequisites per-
taining to traditional taxonomies of research techniques.
Recently, the convergence of ANOVA and MR has received con-
siderable attention. (See, for example, Jennings (1967),Cohen
(1968), Tikeland(1971a).) VWhen a metric dependent variable can
be regregcsed on both categoric and metric independent variables,

a much more general multiple regression system has emerged.

The relationship between ANOVA and FA has also been discussed

in the literature., Burt (1940) in his Factors of the Mind

devoted a whole chapter to this problem. Most likely, he was
the first to undertake such a comparison., Burt (1947), Creasy
(1957), Bock (1960), and Gollob (1968) have also paid attention
to overlappings of ANOVA and FA, All in all, these efforts do
not seem to have resulted in bringing about a change in the

way data are being analyzed, as judged by an almost complete
lack of applications and discussions in the literature subse-

quent to these papers.

The reason why ANOVA is lagging behind as a factor analytic
technique, and slso as a regression system, seems to the author
to be?result of the caprice of the historical development of
ANOVA. ANOVA as a mathematical system and the sophiéticated
logic of experimental design were developed simultanecously. As
a matter of fact, the same person, Ronald Fisher, is the father
of both. This coincidence may have left the impression that
ANOVA and experimental design are inseparable. ANOVA is to a

very great extent conceived solely as a technique for making

probabilistic statements about group differences. However,



there is nothing wrong in separating ANOVA and experimental
design. Rather, by seeing that the linkage is coincidental and
not necessary, onc is free to look for other uses of ANOVA in
the analysis of data that are not obtained strictly the way

the logic of experimental design prescribes.

ANOVA turns out to be a most powerful correlational tech--
nique, lMeasures of association can be developed, taking advan-
tage of ANNOVA as a machinery for assessing the possibility of
complex relational systems in analyzing dafa involving multiple
sources. of variance, The potentiality of applying ANOVA in
correlational enalyses of complex data systems is indeed great

and should be explored far more vigorously then hitherto.

Already XFisher himself realized that ANOVA could be used as
a correlational technique. The correlation ratio (eta) goes
back to his early work on ANOVA, as does the intraclass cor-
relation. These two concepts, commonly associated with simple
ANOVA designs, are basic to a further development of ANOVA as

a more general correlational language.

The bivariate product-moment correlation technique has been
used in the service of differential psychology for years. Onc
must admit though that it has not served its function too well.
The obvious drawback of this technigue is that it can handle
only two variables at a time, Differential psychology as con-
cerned with explaining individual differences is in bad need
for taking into account more than one source of variance at
a time, For this purpose ANOVA is extremely well suited, It is
so flexible that it can simultaneously decompose individual

differences into group differences and inter- and intraindivi-



dual differences provided enough information is available,

This is far more than FA can do. So far developed, FPA is
mostly concerned with decomposing within groups differences
into intraindividual sources of variance., That is: FA aims at
partitioning the variance of test scores into linear combina-
tions of observed variables or tests that can be interpreted as
meaningful sources of variance. This same function can also be
served by ANOVA, The difference between ANOVA and FA in this
respect is that the former makes a priori linear combinations

of tests, while the latter does this a posteriori,

Basic to an understanding of ANOVA as a correlational tech-
nique in differential psychology is to regard individual dif-
ferences as constituting a distinct mode of classification.
This mezns that individual differences have to be treated as
a systematic source of variance. This is contrary to what is
comon practice in most experimental work where, as a rule,
individual differences (within groups variance) are treated as
error, |

This report intends to make further explorations into ANOVA
as a correlational language with a special view to the con-
vergence on FA., Central to the discussion will be to show how
the ANOVA concepts of eta (the correlation ratio) aﬁd~§lpgg
(the ingiglass correlation) can be related to the two factor
analytic models commonly met in the literature. They are
variously named, like actual factors versus hypothetical factors
(Nunnally 1967), observed versus inferred factors (Rozeboom

1966), or data reduction models versus classical factor analy-

sis (Morrison 1967, Harman 1967). In the context of the present



discussion a crucial distinection is made between manifest

and latent covariance structures, It will be argued that the

two classes of covariance structures bear a close relationship

to the two factor analytic models.

Characteristic for ANOVA as an approch to factor analysis
is that factors are defined prior to the analysis. The linear
combinations of interest are fixed by the structure of the
variables or tests. This a priori structure implies that the
tests are grouped on a rational basis. Thus the-analysis of

such test designg can be seen as a hypothesis-testing procedure.

The conventional FA is based on a test design having the
form of an N x k data matrix, where N denotes persons, or more
generally observational units, and k denots tests. In an N x k
test design the k tests are ﬁndifferentiated, or not structured,
If a set of k tests (or items) are grouped in order to measure
one common btrait, then the k tests are structured on a rational
basis. A subsequent alpha analysis might well be called a

rationalistic factor analysis.,

An a priori structuring of test/could result in a test design
like N x r x k. Here r denotes groups of assumedly homogencous
tests (or items), while k denotes, say, tests (or items) nested

within each of the r groups of tests (or items).

Certainly, one could group observational units (persons) too,
say, groups of persons somehow categorized. However, in order
not to make the main features of the discussion too elaborate,
no design will be imposed on persons in this report.(For an
example of a worked-out multigroup-multifacet analysis, see

Eikeland 1971b.)



2. ON THE CONVERGENCE OF ANALYSIS OF VARIANCE
AND FACTOR ANALYSIS: SIMPLE CASE .

2.1. Test design: N x 2
2.1.1. Eta analysis

The simplest data matrix that can be factor analyzed is
an N x 2 matrix, say N persons and 2 tests. A .full-rank solution
means that one can form two orthogonal linear combinations of
the two tests, the sum of the variances of the two linear com-
binations exhausting total variance. Total variance is here
and in the following defined as the variance of the dats matrix
that is attributable to individual differences. In the case of
an‘N‘x 2 natrix, total variance will be the sum of the variances

of the sum scores and the difference scores.

For the purpose of the present exposition only the centroid
solution among several fgctor analytic techniques is of con-~
cern, The reason why is that the centroid solution applies the
same system of weights in forming linear combinations as does
ANOVA, namely +1 and -1, By this system of weights there cun
be formed only one set of two orthogonal linear combinatiocuns
for two tests. In contrast, by a principle componenﬁS.solution
the system of weighting tests in linear combinations is complete-
ly liberalized, such that more than one set of two linear com-
binations, orthogonal to each other, is obtainable when two
tests are being analyzed. By maximizing the variance of cach
linear combination extracted, the principle components analysis

will have a unique solution. However, the weights are nathe-



matically determined a posteriori, while the weights in the
centroid solution are rationally based a priori. This dis-
tinction is important to keep in mind when a matching of ANOVA

and FA is at issue,

a) Pactor analyzing the variance-covariance matrix.

Let a 5 persons by 2 tests data matrix provide the data for

subsequent analyses to be made, In TABLE 1 the 5 persons (P)

TABLET 1. 5 x 2 data matrix

P T1 T2 Sum Diff
a 5 4 9 +1
b 4 b ! +1
c 3 5 8 A
d 2 1 3 41
e 1 2 3 ”144

are identifled by small letters from a to d, the two tests are

denoted T, and T the sum is each person's score across the

1 27
two tests, and the difference (Diff) is each person's score on

TABLE 2, Variance-covariance matrix

T, T,
7, 2,5 1,5
T, 1,5 2,5

T1 minus his score on TQ. The variance-covariance matrix of the

data in TABLE 1 is presented in TABLE 2. Next,the two factors



will be extracted according to the centroid method., The reader
unfamiliar with this extraction procedure should consult a text-
book in factor analysis, for example,Rozeboom(1966) or Nunnally -
(1967). In factor analyzing a variance-covariance matrix Roze-

boom is parvticularly rclevant. The fector matrix is presented

TABLE %. Factor matrix of covariances

\
R, F,
1 i
T, 2" __(0,5)"
) '::l;"
T, 2 (0,5)"

in TABLE %, where the covariances of the tests with the first
and second normalized centroid factors are given. (Remember thet
a number raised Lo the power of % equals the root of the same

nunber. ) By squaring and summing the entries in TABLE 3 for

TABLE 4, Tactor variances and communalities

F1q . F2 ne
n, | (2%)? ((0,5)%)2 | 2,5
n, | (2%)2 ((0,5)%)2 | 2,5
VFj 4,0 1,0 5,0

) L 2 .
rows and columns, communalities (hj) and factor variances (VF )

J
are obtalned, The total variance of the two tests, which is

the sum of the principal diagonal in TABLE 2, also called the

trace, is wholly explained by the two factors.

Applying the criterion of per cent total variance explaincd,

or per cent trace, the first centroid factor accounts for 4/5



or 0,80; the second centroid factor accounting for 1/5 or 0,20,

b) Pactor smalyzing the correlation matrix. .

The corrclation between the two tests is given in TABIE 5.

By factor analyzing the correlation matrix with 1's in the

TABLE 5. Correlation matrix

T, T,
| %0 | 046
T, 0,6 1,0

principal diagonal, the factor matrix of TABLE 6 is obtained.

The entries in TABLE 6 are the correlations between the tests

TABIE 6, Pactor matrix

B R - S
& x
(0,8) (0,2),4

3 7
= (0,2)5
S—

i

T, (0,8)

N

and the factors. By squaring and summing columns one gets 1,6
and 0,4, which are the variances of the first and second factors,
the two .

or/linear combinations of the standardized data matrix. Again,

by using the criterion of per cent trace, or per cent of total
variance explained by the factors, the first centroid factor
accounts for (1,6)/2, which eguals 0,80, The sccond factor ac-
counts for (0,4)/2, or 0,20. From TABLE 5 it can be seen that
total variénce, the trace, is 2.The result obtained by factloring

the corrclation matrix in terms of per cent trace for the two



10

factors is the same as the result obtained by factoring the
variance-covariance matrix, 1t should be noted that this will
not generally be the case. Only when the test variances are .

equal can the same results be obtained.

¢) Variances of sum and difference scores.

In test theory the sum scorc for persons across bests is the
most intcresting linear combination. As a rule, it is the only
combination of interest. This combination, as a matter of fact,
ig the same linear combination that is used in defining the
first centroid factor, The variance of the sum scores in TABLE 1
is 8.

The other linear combination of the two tesl scores, the
difference, is in test theory commonly used as a basis for de-
fining exwror variance. This can be done only under the assuup-
tion that the two tests measure the same construect. Under this
assumption the expected difference score should bhe zero. There-
fore, an observed differeﬁbe score iz taken tc mean random error
of measurement, It was Rulon (1939) who first used the difference
score for this purpose.

In TA, where a deterministic model is adopted, a difference
score defines a linear combination of the tests end meets an
acknowledged definition of a factor. In FA the difference score
is interesting for the possibility of conveying information on
individual differences,

Vhen test variances are equal, the sum of raw scores and the
difference of raw scores are uncorrelated. They thus define two

orthogonal linear combinations, or factors, This is the casc



with the illusirating data in TABLL 1, where the sum of the
varianccs ol the two orthogonal linear combinations of test
scores can be added to yileld total variance. The variance of
the difference scores in TABIE 1 is 2, and by adding the sum

score varliance of 8, the total variance equals 10,

The proporticn of variance accounted for by the two linear
combinations is 8/10, or 0,80, for the sum score and 2/10, or
0,20, for the difference score., It should be recalled that this
is exactly the result obtained by the factor analytic procedure

performed above,

d) Analysis of variance approach.

Next an ANOVA of the 5 x 2 data matrix in TABLE 1 will be
performed in order to compare resultis obtained by this approach

to results obltained by other methods above. The data matrix to

TABLE 7. ANOVA of 5 x 2 data matrix

Sources SIS ar S
Persons 16 4 4

Tests 0 1 o)

PxT 4 4 1

Total 20 9

be analyzed is in ANOVA terms a repeated measures design. The

analysis is presented in TABLE 7 where SS is the sum of squares
¢ olumn, df degrees of freedom, and MS the mean squares for the
three sources of variance. As there is no variation between the

two tests across persons in the data, all variation is due
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to sources of variance connectcd with persons., Thus all vari-
ation ig descriptive of individual differences. PFrom TABLE 7
one can seec that total sum of squares has been partitioned into

an anong persons sum of squares and an interaction sum of squares

involving persons and tests.

In ANOVA the criterion score is partitioned into orthogonal
effects. In the present case the score is explained by two
effects that are linear combinations of the observed tests, The
first one, an effect due to persons, is ildentified by summing
the two tests. The second one, an effect due to a person by test
interaction, is identified as a linear combination of the two
tests foxmed by subtraction. That is,the interaction effect can
be traced back to the difference score between the two tests.
Here interactlion and difference coalesce., This observation, how-
ever, is not easily made,

The data matrix in TABLE 1 can be decomposed into effect
scores. This decomposition wiil be performed in order to show

how the sums of squares in TABLE 7 are generated as the vari-

ation among partial criterion scores., The completely decomposed

TABLE 8, Decomposed data matrix

T T
8 D Pt g P pt
a 5+ 1,5 + 0,5 3+ 1,5 - 0,5
b 5 + 0,50 + 0,5 3+ 0,5 - 0,5
¢ |3+ 1,0=-1,0 5 41,0 + 1,0
a | 3-1,5+0,5 3~ 1,5 ~ 0,5
e | %3-1,5~0,5 5 - 1,5 + 0,5

data matrix is shown in TABLE 8., Here the observed scores are

partitiorned into three effect scores. The g effect is due to
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the grand mean. A common sense way of making this effect meaning-
ful would be to say that the grand mecan is the best prediction
of each score in the set,provided no information is available .
such that persons end tests can be identified. The p effect is
the difference between each perscn's average score across the

two tests minus the grand mean. lLastly, the vt effect can here

be regarded as the residual after having subtracted the g and

the p effects from the observed score, The absolute values of

the pt effects cen also be seen as the average difference score.

It should be noted thait since the g elffect is & constant, it
does not contribute teo variance and is therefore ignored in the
following, While the p effect naturally enough is equal for the
two tests for each person, the pt effect has the same magnitude
for the two tests for each perscn, bubt different signs, This
can be interpreted to mean that the two tesls measure something
in common and something speciflic to each test. The specificity
represenéawhat ie often called a bipolar factor. The bipolar
characteristic is refleclteéd in the fact that, say, person a
gscores relatively high on specificity in TT; on the other hand,

he scores relatively low on specificity in T2.

From TARLE 8 one can compute directly the sums of squares
attributable to each of the two effects by squaring and summing
the partial scores, as they are all deviation scores, The two
sums of sqguares add to total sum of squares of the data matrix.
Thus all of the varigtion in the data matrix is taken care of
by the p and the pt effects. The two sums of squares are 16 for
p and 4 for pt, the total sum of squares being 20, This result

is obtained by the ordinary procedure in TABLE 7 as well as by



taking the sums of squares of the decomposed matrix in TABLE 8,
By now taking the proportion of ESP to SSJ(OJC g one gets 16/20,

or 0,80, which is the same per cent explained total variance .
for persons as Found For the first centroid factor. Further, by
talking the proportion of SSpt to Sstotal one gebs 4/20, or 0,20,
which is per cent total variance explained by the pcrson by test
interaction., This is the seme amount of total varlanC& a8 Cx--
plained by the second centroid factor in the previous analysis,

The sum of squares analysis performed here will be of particuler

interest as the discussion proceeds,

e) Conceptls of variance of linear combinations.

In the N x 2 test design presently considered, the variance
associatbed with persons is explained by two linear combinations,

the sun and the difference of the two scores.

There are three conventional ways of computing the variance
atiributable Lo these sources. They yield different results, but

are functionally related.

Consider the particular linear combination called the sum. In
a psychometric tradition one usually computes the sum score

variance,
N ) S
e 5 + Xn: )T = - -+ 2¢cov
= (1/¢ 1)) % 15+ Xpq) vy o+ Vo b 200V,
where VX is the sum score variance, N number of persons, X144 and

Xnq each person's deviation score for the two tests, V4 and V5
the variances for T, and TZ’ and cov,, the covariance between

the two tests.



In an ANOVA tradition the cum score variance is defined

somewhat differently,

H (x it %oy z
5. = -1)) 2.5 (k. g . 420
1 . (1/(8--1)) ii1g 5 ; (1/2)(v1+\2+2cov12)

where symbols are used as above., In addition, the multiplier of

2 and the denominator of 2 designale the two tests.

There is a third way to conceive the variance of the sum

score, the variance of the average suu score,

Tofxgg ¥ X?igg

where no noew symbols are dintroauced, It should be noted that
the denomineztor in the multiplier of 1/4 in the derived formula

s the number of tests sguared,

In the context of the present discussion it is important to
obgerve that MSD in an ANOVA approach is 1,/2 of. the sum score

variance, V.., when two tests are used. The same relation will

X

of course hold for the difference score variance, M5 _, is 1/2

of VD‘
Generally, the functional relationship among the three con-

cepts of variance can be observed from the following equalities,

v

o 2

Vo = XUS .= kavﬁ

D~ pt
Being familiar with these relationships should make the
subsequent development of convergent features of ANOVA and FA

more easilly undersiandable,
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) Sums _of sauares and variances in a colum-—centered

N x 2 nmatrix.

Taking propoxrtiions of swns of squares in order to find
explained veriance, as was done in section 2.1.1.d) above,
seems somewnal strange, and ought to be explicated further.
With & refercnce to the relationships established in the pre-

vious section, consider the ANOVA table of a column-centercd

TABLE 9, ANOVA of a column-—centered N x 2 dats matrix.

Source 885 ar us 55

Persons S V- 1S =Vicov vicov) ({-1) = 88
Person S 5 (N-1) Il)p VHCOV (vicov) {l-1) 8,
5 aa \ IS | =V OV Vo2 7l ) =

P ox T 5804 (N—1)l Mopth_fox (Y_ifv)(h 1) = SSpt
Total. ! 554, 2(N-1) 2v(N-1) = 88,

N x 2 data natrix as presented in TABLE 9. By a column-centercd
N x 2 matrix is here meant a matrix where the variatlion due to
tests is partialled out. Tn doing this, 1 degree of freedom is
uvsed, and total degreen of frecdom left is 2(N=1). In order to

show that it is a partialled data matrix that is of concern,

total sumn of squares is denoted(SSt,).

It should be noted that NS+ Mspt # MS., . However, the

two 1iS's can be added to yield the total variance of the two

tests, or trace, the sum of the principal diagonal of the
variance-covariance matrix.

It should also be noted that MSP can be written as 1/2 of
the variance--covariance matrix of the sum of the two tests,

wnich is VX: HSP = ;VX = 2(2V + 2cov) = v + cov.



It is not dmmediately obvious that MSpT = V -cov. A proof
. I
of this identity was first given by Gulliksen (1950)., The sane

proof is also given by Winer (1962). .

Prom TABLE 9 1t can be observed that if MSP and MSpt

each multipliced by (M-1), sums of sguares are obtained, SSP and

arc

55 respectively. Also,by adding MSp and Mspt’ and multiplying

pt’
the sun by (1-1) SSt, , or the tetal sum of sguares for the

colum~centered N x 2 data matrix, 1s obtalned,
How much the variances of ecach of the two linear combinations
of the ftwo tests in TABLE 9 explain of the total variance can

be found by taking the ratios of the lS's to total variance.

1S MS_ (-1 S5 MS_ ., Mus_, (11 59
—L = ;2( ) = and EE:: ?ﬁx ) = Rl
2V 2v(i-1) 85, v 2V (1) S8,

In the language of PA, 2V or v, + Vv, is a central concept,
but not of muchh concern in an ANOVA conbtext. It is the concept
of trace, or the sum of the principsal diagonal in the varisnce-
covariance matrix, as mentioned before, Therefore, taking the
proportions of the sumg of squares of the lwo linear combinations
of the two tests to the sum of squares of the column--centerad
data matrix, the corrected total sum of sguares, amounts €
finding per cent trace, which is an almost standardized pro-

cedurc in FA,



g) Tne sum of scuares end suwn of products malrices for an

N x 2 test degien.

By a variance-—covariance matrix in a test theoretic context

is alnost always meant a matrix for the sum of the tests . This
mist not necessarily be so. In the present discussion it will
prove useful 1o extend the concept of a variance-covariance
matrix to include matrices that asre formed by any linear com-
bination of the observed tests., For an N x 2 test design this
means that one may have a variance-covarisnce matrix based on

the difference scores as well. In TABLE 10 are presented

TABLE 10. S8 & SP matrices for sum and difference scores

Sum Difference
x X -
2 7 *5

10 %

1
g 6 10 ~¥5 -6 10

Total=3%2 . Total=8

X
X, 10 10 -6

o

the sum of squares and the sum of products matrices (S35 & SP
matrices) for the two linear combinations of the two tests in
the 1ix 2 design, the sum and the differcnce. SS & SP matrices
are here chosen in stead of varience-~covariance matrices becausec
a sums of squaves analysis is at issue. The sum of the matrices
in TABLE 10 is 32 and 8 for the sum and the difference, respec-
tively. These are the sums of squares that one might obtain
directly from the sum and difference scores in TABLE 1. By
adding the twe natrices the total sum of sguares for the data

matrix is oblained. This sum is 40, which compares to the 55 .



for ANOVA in TABLE 7, According to the relationships found
in 2.1.1.e) above the 58, . in ANGVA should be % of 40, which
is verified by TABLE 7.

By taking the proportions of the 5SS & SP matrices to the
sum of the two matrices, 32/40 and 8/40, the same values obbain,
0,80 and 0,20, which arc the per cent trace values obtained by

the centroid A procedure.

TABLE 11. 89 & 5P motrix for linear combinationg

(X1+X2) (x1~x2)

(zqtxp) | 32 | 0 -
(g0 O | 8 |

Total = 40

Notice Tthat by forming a 55 & SP matrix of the two linear
combinations, one obtains a diagonal matrix with a total sum

of 40, That the matrix is diagonal obviously reflects the fact
that the two linear combinations are orthogonal to each other,
Again 1t should be recalled that orthcgonality on the raw

1

deviation score level is dependent on equal test variances. For
convenience of illustrating purposes, homoscedasticity in

hypothetical data has been deliberately sought.

h) Per cent trace and eta squared.

A squared correlatlion ratio, or an eta coefficient squared,
is defined as the ratio of sum of squares among groups and total
sum of squares in a simple ANOVA design. However, the concept of

eta can be gencralized to complex ANOVA designs, as shown by



l7--'

Kennedy {(1270) and Zikeland (1971a). The gencrality of +the

eta concept scems also to be corroborated by its applicability
an
in /it contexl, ag closely related to more conventional mea-

sures within that tradition.

An eta coeffliclent can also be defined as the correlation
between observed and predicted scores, the prediction being
based on average values of score groups. In the test design
presently consldered, predicted scores are elther an average
sum or an average difference score. It is dimportant to realize
that thewe averages are lineary combinations of the tests and
are per definition factor scores. Thevelore, the eta coeffici-
ent defincd as thi@orrelation between obscrved and predicted
score, can also be considered a factor loading, i.e. the cor-
relation between a test (observed score) and a linear combina-
tion of the tests (predicted score). By squaring and summing
columns ol the Tactor matrix, the variances of the lincar
combinations (factors) are obbained. Ve have shoym for a very

mple data matrix that the proportion of explained variance
contributed by the linear combinations, per cent trace, is the
ratio of sum of sguarce for groups Lo the total sum of sguares
for a column-ccntered matrix, Theae ratios arve in effect eta
gsquared coefficients. In the following much more will be sald

about eta as a relevant concept in FA,
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1) ANOVA of a standardized ¥ x 2 dota matrix,

FA is usually performed on a standardized data matrix., Tois
means that the tests are transformed to a scale with X = O and
g = 1., It also means that variances of linear combinations of
the tests con be expressed in terms of 1'g and r's, as thesec

are the variances and covariances of the transformaed tests.

ANOVA can also be applied to a standardized ¥ x 2 dala mat-

rix, Before doing that, the variances of the two linear combi--

L

nations of the two tests will be derived,
! ? 2
V., = 1 e v AR S A = 4 Nee 2 S I/ - ;)5:41 )
Vy = (V01002 (g + 250" = (1/(0-1)) (Zef + Zag, + 272, 2,

= 2 + 2r

v
i

N
o . 2 - 2 2 o
o ‘\T... }, Pone w Hl. o . ‘s NN - " }.—v" 7
(1/0 1))i:1( 14 /21) (1/(F-1)) (% 15t Bagy~ 2Rz,

.
-3

=
i

= 2 - 21

According to what was sald about the relation between the
variances of the sum and difference scores and the the corres-
ponding MS's in ANOVA (sce section 2.1.1.e)), it should be clear
that the varliances derived above have to be divided by 2 in
order to obtain the IS's in an ANOVA table, which is prescnicd

TABLE 12. ANOVA of standardized N x 2 daeta matrix

Source SH arf 58/(N-1) 55

PYersons SS Iy MSD =1 + r (14+r) (10--1)
Px T SIS N H-1 I L S (1-r)(N-1)

Total! S9 2(N-1) 2 2(-1)

-



in TABLE 12. Again it should be noted that total variance,which
in the context of the present discussion means trace, is 2, i.e,
the sum of the principal diagonal in the correlation matrix.The -
MSt, certainly would be (2(N-1))/(2(W-1)) = 1, bul this measure

is of mno concorm here,

From TABLI: 12 the proportions of variance explained by the
linear combinations can be found. In the Tollowing the concept
of eta sguared will be substituted for per cent trace, or ex-

plained total wvariance.

eta 2 = p - (4w ) (N-1) . 4
Poss, 2(1i~1) 2

“Sp (e P

eta tQ: et (Qer)(W-1)  dem
FYossy, 2(11=1) o

J) The W x 2 test design: Summory so Tar.

Two linear combinations can be formed of two tests when the
use of weignts is restricted to +1 and -1, TFor the sum scoxre
the socalled design vector is +1 41, for the difference score
+1 1. I the two tests have equal variances, the two linear
combinations will be uncorrelated, or orthogonal to cach other,
By standardizing tests, homoscedasticity is imposed, and the
sum and difference scores will be uncorrelated eveh&ﬁhen the

tests in raw score form have uncqual variances.

The convergence of the ANOVA concept of eta squared on the
PA concept of per cent lrace has been explicated. For this
particular test design it has been shown that FA (as a data
reduction model ) corresponds to ANOVA on the level of a sums

of squares analysis.



2.1.2, Alpha analysis

So far the concern has been to form linear combinations of
observed test scores and to partition total variance into
obgserved variance-~covariance matrices based on these linear
combinations (se Section 2.1.1.g)). This is characteristic for
ANOVA on the sums of squares level as well as for FA when actual
factors, or straighiforward linear combinations of tests, arc
involved, and not hypothetical factors. The I'A method of con-
cern in the preceding scctlons has been the centroid solution
with variances in the principal diagonal of the variance-
covariance matrix, or 1,s in the principal diagonal of the

correlaticn matrix.

The A model as used in a more strict sense, however, is
more concerned with inferred variables, rather than observed
varia_llseThis means anong other things that one igs trying 1o

explain observed covarisnces among variables by making inferern-
ces 1o underlying common Jtraits. This ds the Spearman~-Thurstone
tradition in PA, The analysis starte with making estimates of
communalities in the principal diagonzal of the varisnce-
covariance mabtrix, or the correlation matrix, in order to iry
the
to separate what the variables (tests) share with/other vari-

ables (tests) from what is unique to each variable (test).

While the analysis discussed in Section 2.1.1. may be said
to be concerned with manifest variance-covariance matrices, the
present section will be concerned with developing the concept
of a latent variance-covariance matrix, which seems to underly

the theory of making infcerences both in ANOVA and in FA. I+4 will
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a/

be nrgued thal plnha as an intrelass correlation coefficient
can be used as o general measure in exploring the latent

covariance structures to be dealt with in the following., The
intention is also to coatrast alpha as & generic concept for
latent covariance structures toc eta as a generic concept for

menifest covariance structures.

a) A verisnce components enalysis of a 2 x 2 vayiancoe-

covaricnce matri

There seems Lo be an ANOVA parallel to FA in the Spearman-
Thurstone sence., In what is called a variance components
analysis, one ig concernced wilh partitioning observed varian-
ces into inferred sources of variance,

gain it may prove frultful to bring in Rulon's (19%9)
partition of total test variance into sum and differcnce score
variance, Rulon defined difference score variance as random
variance, or erxror of measurement variance, as concoived within
the theory of humogencous tests. In classical test theory one
has been almost exclusively concernced with one-factor compo-
sites. In that context Rulon imposcd the random component
variance on the observed sum score variance to separabe what
might be considered signal and what noise in this séﬁfoe of
variance, Ags 1s well known, in test theory the observed score
variance is conceptually composed of a true score component and

an error component,

A variance components analysis of an N x 2 data maitrix is

performed in TABLE 1%, where some modifications are made com-



pared to wiatl ils conventionally done in writing out an ANQVA
table. The table do identical to TARLE 9 ag far as the first
TABLE 13. Variance components analysis of an N x 2 matrix

n@lt“ﬂ 55 ar JEhS Iodel VG

N
N
A
Q

N

Persons S5 (W~-1) 1S

b=
©
&
s
C‘%v
S
ke

Px T 553

-

Total S5 2 (Iﬂr—"'] ) O, 4 0

tl

four coluwms are concerned. Vhile the HS's in TABLE 9 were

adentificd with obgerved variance-covarionce matbrices, the

M3's din TABIE 13 have been modelled according to an inferrad

variance strueture, In an orvdinary ANOVA context, where proba-

L.

bilistic statements ave sougnt, the table would have asn H(U

[y

)
coluwmm,. Instecad of the commonly used B(HS) column,TABLE 1% has

a column called HModel to emphasize that the analysis is being
performed for a des bvlptwvc purpose, thus the models, as will be
shown showrtly, can be regarded as theoretically structured
variance-covaeriance matrices in lerms of varisnce components,

The E5's of TABLE 9§ desceibe veriance-covariance

nmatrices. Mo S's of TABLE 1% descyibe latent varience-
ovariance watrices,; in that they are not observed, but inferred.
Nhe VO colunn of TABLE 1% designates the unwelghted variance

,
/ (,)

components. fhe swa of the two wweighted comnoncents, d§t+ (ﬁ’

is the inferred structure of one aversge testtls varisance,
Vhat the nmodels in DPARLE 135 imply, cen be made quile concrete

4 3

by precenting the variance-covariance matrices based on the



theoretical stuructures of the variances For the two Llincar

combinations ol the two tests, the sum score and the difference

score. The latent variance-~covariasnce matrix for the sum is pre-.

TADIY 14, DLotent variance-coveriance nabtirix of sum

2
AT = V.

1

N
O\
N

h P p P I 7otal -

e FaS 2 4 .,}
o, On 6PP. Cp

b

TABLE 15, Tatent varisnce—covaeriarnce matrix of dilfcerence

sented in TADLD 14, The corresponding matrix for the difference

is presented in TABLE 15,

a/

In order to see the reoltionshilp between the two latent
"\\‘(

variance--covarionce matrices of TABLES 14 and 15 and the models
for the ¥M3's in TABLE 1%, 11 should be rccalled what was found
in Section 2.1.1.e concerning the functional relatibnships
between the different ways of compuling variances of lineax
combinstions, There it was shown that the gsum of the variance-
covariance maltrix, i.e., the variasnce of the sum score, is k times
Z

MSU. Thus by multiplying the model for MSD in TABLE 13 by 2, the

-~

follovwing result ig obtained

- ¢ 2 P oy 22 2
A 2 RS, o= 2 + 26 = EV
Uy = HMSP (dpt + up) gdpb ¢ 4ép
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which is thne total of the latent varisnce-covaeriarice matrix of
ERRPON
AT T 4 [ s [ o . LIl e
TABLE 14. The same will of course hold for MS % and the total of /
P

~latent varionce-covariance matrix for the difference score.

Vhat is most interesting about TARLE 14 (and TADLE 15) is +the
partitioning of the test varisnce into a covariasnce comnonent,
2 - . 2 .
D, and a wnique compouent, 67,. In this particular 1 the
6w nd a vnique component, 6”1 [n th ticular design the
unigue component is conceptually a confounding of specificity
and error of measurencnt as the design i1s an unreplicatced one:
There is only one messure within each person-by--test cell. The

decompositicn of the test varisnce thus satislfy the requirement

g

of PA proper that the veriance should be conceived as being com-
posed of a common source and & unigue source. (For a comparison

between the A ana the clascical test theory decomposition of

varisnce, see Loxd & Novick 1968, Chapter 24.)

i

By now tine parallcl to FA shovld be relatively easy to grasp.

-

rom TABLE 14 one should be able Lo sce that in order 4o find

{
EANNS =

the proportion of variance that is explained by the covariance

component, he can toke the. ratio

o y
62 265 MSF - Msnt
—P o B R B Py = aLLplla‘<1 )

2 o o R
+ 6 2¢ 4+ 24 WS o 4+ MO
opt p pt p p T pt

o * [

which in effectl is /'961 cent trace measure. Thig means thatl for
the average test onc asks how mach of the variance is explsined
by the covariasnce, the component, or the factor. Certainly,one
could do the same for the interaction component to see how much
that component explains, (However, this is not too interesting

Trom a subgsltantive point of view as the interaction comporent



,,,,,,

is a confounding of speciiicity and crror.) From the Tormuls
above one can see that I'A 1s being linked +o the concept of
the intraclass corralation, Prs &8 the first part of it would
be the defining formula of thal concept. It should also be
recognized that what is here token as a per cent trace measure
is aleso the deflinition of the relisbility of one average lest,
alpha (1)

b) PA and the Spearman-Srown raticnale,

In TABLE 14 there is ecven more information on explained veiri-~
snce than is conmonly cextlracted by an ordinazry YA procedure, 1f
one asks how ruch of the sum score varisnce, instead of how much
of the avorage ccore variance, is explained by the first cen-

troid factor, he obviously should he interested in the ratio

f) e I') 77
ok 468 85, + 25;

While the formuls in S@ction 2.1.2.a (the preceding section) is
concerned with cxplained variance in one test, or more correctly,
one average test, the present formwla is concerned with a pos-
sibly even more interesting walio, the proportion of explained
sum score variance, since the sum score very often is the acitual
measure uscd in making decision about people., The above formula
will be recognized by the informed rveader as the well-known

Hoyt-Cronbach coefficient alpha.

In the present context 1t should be extremely useful to trons-
late thie traditional aleiha forn as an estimate of reliability
into an PA langusge: Coelficient alpha is a measure of how much

Y 1D

the first centroid Tactor cxplains of the sum score variance,



It is dmportant to be aware of the fTect that PA, as far as
the author knows, never paid aibention to this aspect of an
N x 2 or, move generally, an N x k matrix, It seems that FA hag
net been able to ineclude in its theory the Spearman--Brown ra-
tionale, i,c. how to account for auﬁ score variance, Nelther in

the very siuple case off an N x 2 matrix, nor in the case of an

e

N x It matrix ils there o vraditiconal machinery avallsble to tease

out this information.

¢) Varisnce components snalysis of a 2 % 2 corrvelavion matrix.

fecording to what 1o sald so far concerning en W x 2 matrix,

there are threoe diffcrent ways of considering sn FA of a

variance-covariance natrix. The three modes of ernslysis can be

2

TABIE 16, Variance componenis annlysis of an N x 2

rm

standardized matrix.

Source 5 .oaf ¥ V@

Persons 35 (N--1) IS 1T + i

Pox o5 (N-1) WS e T o 1T - x

oW SSt, 2(N-1) 2 1

sumnarized by examining a corrvelation matrix instesd ol a

¥

variance~covariance matrix of raw scores. The parallel between
analyzing a corrclation matrix and e variance-~covariance mel-
rix should be understood. In TABLE 16 the varisnce components
analysis of & stendardized N = 2 matrix is presented, In that

table one has gone onc step further compared to TABLE 12, in



compunents have beoen dex

\ s) t t}l’} (\

the correlation matriz. This has

on the structural model for this

TADLE 15, 1T
y e

P
g .
components, 0n and O!L, are wiritten

sented dn should he

in order Lo Leep close to the

rolation watrixe

anove,

on an inforred varis

obhserved variances of

revical shruclture on the obser

styucture can boe in

Tor each of the two

been done in TABLES 14 and 15 with

matrices Lor the gonce linear combin

TABIY 17. Lotent correlatiorn mati
%
1

% (1~%)+T

AT

’1‘ Z’Z

matrices are shown i TABRLE 17.

of the matlrices arc unchanged:

the variance for the difference 2 -~

variances by 2, the number o

the M5's sined in TABLE 12

are

asnce 1s the swan of tac two matlrices

ived
been accompli
particular lest des

noted

conventionsl langu

a variance components
snce structure in that one goes beyond
lineoxr combinalions by imposing
vations.
constructing a
Linear combinationgs,
the

ationg., The 1

ices

(TMr)%r -

The wvariance
21,
hCn US §

and

in terms of functions of

shed by drawing
i1En as

16

pre-

that in TADLE ihe

ag r and 1-r, regpecltively,

age for e cor-

-

analysis claborates

the
a theo~
The inferred variance

latent corwelalion

like vihiat nas
varLence—~covaiiance

atent correlation
and difference.

for sum

Z1 -~'Z2

7 (1-1)+re -7

Zr) -1 ( 1 -1 ) -1
e

It should be noted fh&t the sums

for the sum is 2 + 21,

By dividing each of those

one gets 1+r and 1-r, which

PABLE 16. The total vari-~

in TABIE 17,(2 + 2r) 1 {2 -2r)



195
ra
N

(J‘ Ciin ‘_.." . ﬂ. [P S YOI IS h: ‘ L G i' Se t O .i & lL' ‘ (35 $ l ].. .}Wlt N '[::r:) JI €2 d .bv“» L‘:h e Gaue
15 - ~

- A T T S 17 < N vt 2
o : ) E »] ( C Lap )

220 1mx 04 g oo ST
. . = 0,20 (e 62, )

4 2 2
Here ig firsv shown the ratio ol observed gum score varisnceo ©o

total varisnce, or tracce. This enalysis may be regerdcd as to-

()
oD
Q_:

king the watio oif 8f 4}) 1o :ﬁiﬁtc)ﬁ,,f yielding an efu sqguared coel-
. SRS |

Ticient, as shown in the discussion following TABLD 12. The

“
3
4

Secan

[y

rebio anvolves the difference gcoro variance: 114 eguvaly

the ratio of 55 to OS5, 4y« Also, the two ratlos esro sguared
R EAS IRV L

produci-momnent correlstions among obgerved scored sud predicloed

ceorven, the prediclions being based on two orthogonsl lincsar

combinations ol the obsaerved scorosn.

Congider next another gset of ratios,based on unweighted

variance components:

- AR 0960 (zi Ll)llfip(.i))

1 - lﬂ -, J o T - "3. ts ’
N i = 0,40 (¢~.Lph:1p“.l ))

—~
-—
~—
t
=
—

Here are ghown the ratios of inferrcd common and unique vari-
ances to the ohserved variance of cne test. As 1lgs evident from
TATTE 17 the one-test variance of uniliy has been decomposed into
a common component and o unigue one, In teet theory the two

vatios are the reliabilitics of onc (average) test and the dil

{Terence score botween thoe two teste. In the case of the dil-
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Teronee cceore reliobility, the measure is not too meaningful

)

for the preseat test design, which is an unreplicated one such

that specificity and error are confounded.

Consider a third get of ratios forwed from TABLE 17:

— 2y o by 13
b OS {H (ul_pllm.p ( 2) )

N
.}
N
S
,
— —
he.
N

-
N

2(1 L 3‘7) - 1 —-‘j: - .Q.Lﬁ‘. - 0925 (dj p“d L("ﬁ\}

2 4+ 2r 14+ 1,6

The first cocllicient 1s the proportion of the tobtal correlation
matrix, i.c.,fthe sum score veriasnce of standardized tests, that
is dinferrved common veriance. This coelficient is the reliability
of the eum acore, 75 % of sum scoie variance 1g the estimated
proportion of variance accounled for by the ceommon compoaent.The

¥

unique component accounts for 25 % of sum score varisnce,

Hotice that the first Lfommwla above is the Spesriman--DRrown
prophecy formule (for double length), derdved from the latent

structuire of the correlatlion matrix.

2.2, Test design: W x k

Wext, we are goilng 1o sce to whatl extent the results obtained

so far for an I x 2 test design can be generalized to an N x k

2.2.1. Lta analysis

Y e8! PO . o ey e e e Aol e o i s e - -
@) Mo variancoe-covariance walrix of an W ow ko tegl design.,

Considoer a colunn-—-centered dets nabrix with N rows and k

columng, where N designates persons and k tests or variables,
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Tn a column~centered Iz k data matrix the varisnce among tects

has been partialled out. Therefore, the total'test variznce that

o

is leit ds the sum of the test variancces, 1.0Q9§3vj or kv. Vhat

TABLE 18, ANOVA of an N x k data mabrix,

[

IR Aoy y ey
S P SR g QLructural
LoUrce ] ¢t e
b = /< ) model

Persons 89 (um’k) Msp = Vi{k-1)cov = G

. | vy , = TACY - .- - L..:': . N “ o L.
P 55, (101 ) (=1 ) (]».w‘])J:Iupi_;_».-(l\.--l)('V*(,Ov )- (]"""*)51;)—1;

ST S k(1) kv ko

in evident Trom TABLL 18 is ihatl there are (1o-1) linear combi-
nations in the interaction term. These Linear combinations cun
be regarded as (I -1) differcnces or contrasts. A set of (k-1)
orthogornal contrastse cen be found anong many others theat will
completely account For the variasnce obttrihuteble to the PU
source of varlance.

In the present test design a full.-renk solution will mean
that one casn exbract k faclors < linear combinations, say, one
suwn (the P source of variation) and (k-1) contrasts (the PT
source of variation). The total variance in the column-centered

cen thus be btrensformed to the sum of 1 + (k=1)

N x k matris
variances of orthogonal linear combinations of the k original
tests.

In AWMOVA the (k-1) contrusts are conventionslly lumped to-

1 FA one would be interested in the scparate contrascts

s

gether, 1
for possible dnteresting intormatiocn, Certainly, this can elso

be accompliched din ANOVA, 1T nced be.
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con be dound how mueh of botsl varianece s

accounted Toi+ by the sum score, or person verionce; and how

wueh by the (k1) contrasts, or the person by teost interaction.

In terns of variances and covarlances, the following ratios ave

Qe [
LT OO v vVe

(RN E?*.p 1t

£

The ralios obove are obviously per cent trace measurves since
v cquals trace, T should aloo be clear thaet the ratlios exc

ol dents, as they can be written,

o e
MELrL Y.

Congider he ¥ x b correlation mateiss 0F an M x It teut

desigan. The parallel to analysing the vavisnce-covariencc met-

iz should be relatlive

TARLE 19, ANOVA of standardirzed N x k nadrlx.

Source 38 arf S5/ (1-1)

i

(=1)7v
Pox T S5 . (W (k-1) 0 (1008 L= () (1-30)

. s : \ e
Persons LD, (F-1) 5]

Sum S9 ke (1—1) k



Anclywing the k7 k corrvelation molriz can be done by per-
forming asn ALOYVA of the standardigzed N x k data natrix, Yhic
means that cach off the test scales de transformed to a standard
score scnle. Dy this trounsformalticon the dats matrix is being
colw-centered, and there will be no verisnce among tests.

The variances of the linear combinaitlons can be found in
TABLE 19. Again we have partitioned the sum of the test vari-

o . I S [P N o py N g R AN . L.t
ances (lotal verisnce) into varisuces of k Linear cosnbinations,
one suwn and (1) contrasts or differences. In order not to com-

i

plicate matters too much at this moment, the (k-1) contrasts

are lumpcd togoether. Loter 1t will be showa how they can be

The bero proportions of varience accounted for, or the per

cent trace ccoeliicients arce aow,

2 4t (k-)x

(“'t"' < ARSIV ST Wt M.

p I

2 (Je-)(12) .

}’).L ) jis

Trom TABLE 19 it should be pretty clcecar that fthe ratios above

are eta sguored coclficicntes, as they can be ghown to be ratios

2.2.2. N x k test desipgn: Relation of ANCVA to I"A.

The M,ap T above, L.e., the proportion ol wvariance accounted
for by the sun score, will be cxawmined gomewhat cloger in order

to explore the relation to FA; cenirold solution.
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vhe s of the covrelation matriz; ond Zr,  the
n e

&
suit ol thne correlations of cach of the tests with the sum of

bece, the sum oof the columms in the correlation

e
=

Phe develonment of

i following releticnship belween

ANOVA and A seans to be of & fundanentsl characther:

The deravation zaows that obae (SIS ARREN AR S]
. WP ) Ty e e oy w ey e A i oy 4 ey 1y 1 v N ]
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] pt B :
conposed ol o unigue and & conmon component, whe proporiion

cach of {them contributes Lo the aversge test verdiance is casi-
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On thoe other hsad, when the contribution to the sum score
voriance made by the uvndoue and common components la involwved,
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conmon couponcent lnecreascos muelh Tesster than the contribhbution

of the uuni gquo corponent. s oa mattiter of jfaCt, the common COrLD o~
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nent will dincrease by a factor of k%, while the unique compornent
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JX képL

where VX’ the sum of the matrix, is the obgerved variance of
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ﬁSp is 1/k of Vg,
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In giving thoe nroportions of unique and common components

to the sum score variance, once has to use welighted components
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The Loadings in tormg of covan

arve Tound by the tradi.-
tional procedure,

hj

P 5,5/(15*)
i 4 (/(1“3

When these loadings are sguared ond sumned, one gelts 4,58,
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7

which 1o the variagnce of the firct centroid Tector.

e -

Orie could conbiauo

order to have a full-raul: solution, However, instesd of dolng
this we are going to Lwep the vorlancess of the three factors
varls This 1o o way of simplifyving the

analvais. Mothing da Loss for our Allugtbrating vurpose
o T L4

ol the columu-centered date matrix is 7,79,
Thig do the trace of the veriance-covariance matrix of TABLD 21.
With o veriance of 4,58 due to the Tirst centroid fanctor, there

4

remaing 7,50 « 4,58 = 2,72 as residunl variance,

In terms of per cent twace, the Lellowing resultls are

B, = 4558/7,3 = 0,627

B o= 2502/ Ty% = 0,573

These regults will be coupared bto the subseguent analyses to

ormed.,

be pew

of couares enolvels),

is vrescnted dn TABLE 22, It should be

remnenbered that total cuws of suvares marked means thatb the
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metrix the concern is only the variance attributable to indivi-

st dnter-

dual diftorencoen, Remenber also that

22, AHOVA of the 5 x 4 doto wabric,

Soaree 55 df 515,
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i 2 I oy s Ea I r Pa “ra
Bta ,© = 2,8/7,3 = 11,2/29,2 = 0,584

As can be secn, the results obisined by the two Lactor ennly-
zing procedures arve not exactly equal. The discrepancy observoed,

however small, was cxpoected according to the relations revealed
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comnponents analvysis).

A variance components analysis implics that one ig conside-
ring inferrved verlables reather thon observod ones. A theoretical

slructure ds impesed on the obscrved Gest varisnce., Thus,
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overage best variance of 1,825 in

nLw 25, Variance components analysis of 5 x 4 dota matyix,
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1 cempoaent and how much by the unic

Co

The abovae results sre 1)1 od on an unwelghted components ang-
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.2 T, e e .
dodivbed oy

be pewformed for the

vedtance, or the poro variance. From TABLE 2% onc

can see thot according Lo the sltiuvetural model {he observed S

p

is componcd off & wnlgue component with welgn® 1 and & common

component with weight 4. Thus, the structural model gives the

clue Lo Ffinding how much of this observed variance is estim

due to the cowmon factor and how much doe to the vnigue factor:
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AN 0,9)/)/4,5 = 0,207
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to the one formed by the sum score. Congider the Lollowing dooign
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four linear combinations of the four testbs:
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I +1 11 +1 +1
I + + 1 -1 -
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prescac apnroach, ANOVA.
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