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Abstract

Knowledge about the spatial distribution of the fracture density and the azimuthal 

fracture orientation can greatly help in optimizing production from fractured reservoirs. 

Frequency-dependent seismic velocity and attenuation anisotropy data contain information 

about the fractures present in the reservoir. In this study, we use the measurements of velocity 

and attenuation anisotropy data corresponding to different seismic frequencies and azimuths 

to infer information about the multiple fracture sets present in the reservoir. We consider a 

reservoir model with two sets of vertical fractures characterized by unknown azimuthal 

fracture orientations and fracture densities. Frequency-dependent seismic velocity and 

attenuation anisotropy data is computed using the effective viscoelastic stiffness tensor and 

solving the Christoffel equation. A Bayesian inversion method is then applied to 

measurements of velocity and attenuation anisotropy data corresponding to different seismic 

frequencies and azimuth to estimate the azimuthal fracture orientations and the fracture 

densities, as well as their uncertainties. Our numerical examples suggest that velocity 

anisotropy data alone cannot recover the unknown fracture parameters. However, an 

improved estimation of the unknown fracture parameters can be obtained by joint inversion of 

velocity and attenuation anisotropy data.   
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1 Introduction

The successful management of fractured reservoirs depends upon improved 

characterization of fracture systems which often provide pathways for fluid flow during 

production. Alignment of these fracture systems to preferred orientations will lead to 

anisotropic wave characteristics and permeability in the reservoir. This suggests the use of 

seismic anisotropy to determine the orientation of fractures (Sayers, 2009). Knowledge about 

the spatial distribution of fracture density and azimuthal fracture orientation can greatly help 

in optimizing production from fractured reservoirs (Sayers, 2009). Frequency-dependence of 

seismic velocity and attenuation anisotropy data can potentially give important information 

about the fracture systems (Chapman, 2003; Liu et al., 2006; Liu et al., 2007a, b; Maultzsch et 

al., 2007a, b; Chapman, 2009; Gurevich et al., 2009).   

Wave induced fluid flow and multiple scattering are believed to be the main driving 

mechanisms behind the attenuation of seismic waves. Scattering attenuation can be safely 

ignored in the long wavelength domain i.e. when fractures are much smaller than the seismic 

wavelength. This is due to the fact that the propagating seismic wave or flowing fluid only 

sees a homogenized structure and not the individual pores, micro-cracks or mesoscopic 

fractures. Wave induced fluid flow can occur at microscopic scale of pores and micro-cracks, 

the mesoscopic scale of fractures and the macroscopic scale of seismic wavelengths 

(Chapman, 2003; Gurevich et al., 2009). In particular, wave induced fluid flow caused by the 

pressure gradients at the microscopic or mesoscopic scale and in a direction potentially 

different from that of the wave propagation is known as squirt flow, whereas the wave 

induced fluid flow caused by the pressure gradients at the scale of the acoustic wavelength 

and in the direction of the wave propagation is known as global or Darcy flow.    
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The objective of this study is to infer more information about multiple fracture 

systems using measurements of velocity and attenuation anisotropy data corresponding to 

different seismic frequencies and azimuths. This has been done by some authors before in the 

context of forward modelling (see Liu et al., 2006; Liu et al., 2007a, b; Chapman, 2009). In 

this paper we study the inverse as well as the forward modelling.  

We use the viscoelastic T-matrix approach of Jakobsen et al. (2003b) and Jakobsen 

and Chapman (2009), which is the most general model among the inclusion models, because 

it allows for non-dilute concentration of cavities characterized by different shapes, 

orientations and spatial distributions (see Gurevich et al., 2009; Müller et al., 2010). In 

addition to that the theory of Jakobsen and Chapman (2009) takes into account global and 

squirt flow in a consistent manner. We have also given attention to the discrimination of 

micro-cracks and mesoscopic fractures. The discrimination of micro-cracks and mesoscopic 

fractures is very important, because the analysis of seismic anisotropy data based upon static 

effective medium theories always assumes frequency-independence and cannot discriminate 

between them (Maultzsch et al., 2003). Numerical examples are presented about the inverse 

problem of estimating the fracture parameters (azimuthal fracture orientations and the fracture 

densities) from measurements of velocity and attenuation anisotropy corresponding to 

different seismic frequencies and azimuths using a Monte Carlo Markov chain (MCMc) 

inversion in a Bayesian setting.  

2 The effective viscoelastic stiffness tensor 

We depict a fractured reservoir as being composed of a solid matrix with a population 

of cavities. The population of cavities is divided into N families, where members in each 

family have the same shape, orientation, scale-size and volume concentration )(rv labeled by 

Rr ,...,1= . The different families of the cavities considered in this study are pores, randomly 

oriented micro-cracks and two sets of aligned mesoscopic fractures. Formally, randomly 
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oriented micro-cracks mean infinitely many families or sets, but we perform an averaging 

over the different orientations (see Jakobsen et al. 2003a, b). The fracture volume 

concentration )(rv  is related to the fracture density )(rε by )()()( )3/4( rrrv απε= , where )(rα  is 

aspect ratio for fractures of type r . The aspect ratio of a spheroidal cavity with long (short) 

axis )(ra  ( )(rc ) is given by )()( / rr ac . The fracture density )(rε  is defined by 3)()( )( rr aN=ε , 

where N is the number density of fractures of type r within a representative volume element. 

The effective stiffness tensor *C  is given by (Jakobsen et al., 2003a, b) 
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Here, )0(C represents the elastic properties of the solid matrix, : denotes the double scalar 

product (see Auld 1990), 4I  is the (symmetric) identity for fourth-rank tensors and )(rs
dG  is 

given by the strain Green’s function integrated over an ellipsoid having the same aspect ratio 

as )()( xx ′−rsp , which in turn gives the probability density for finding an inclusion of type s

at x′ , given that there is an inclusion of type r  at point x  (Jakobsen et al., 2003a, b). It is 

generally assumed that the correlation function has ellipsoidal or spherical symmetry 

represented by the choice of aspect ratios. In this study, we have also assumed the aspect ratio 

of the correlation function equal to 1 i.e. 1=dα . This represents a uniform spatial distribution 

of fractures with spherically symmetric correlation function.  

  The t-matrix for a cavity of type r  fully saturated with a homogenous fluid can be 

written as (Jakobsen et al., 2003b; Jakobsen and Chapman, 2009; Appendix-A) 

),,,,,,()()( �K��vtt ∗= ff
rr k η  ;  ),...,1( Rr = ,   (4) 
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where ),...,( )()1( nvv=v is a vector with the volume concentration for each cavity set, 

=ΩΩΩΩ ),...,( )()1( nΩΩ  denotes the Euler’s angles determining the orientation of each cavity set 

relative to the crystallographic axes of the material with properties given by ( )0C , 

=αααα ),...,( )()1( nαα  is a vector with the aspect ratios for each cavity set, fk  is the bulk modulus 

of the saturating fluid, fη  is the viscosity of the fluid, *K is the effective permeability tensor 

and =ττττ ),...,( )()1( nττ  is a vector with  the relaxation time constants for each cavity set.  

For a reservoir model consisting of two aligned mesoscopic fracture sets with 

unknown azimuthal fracture orientations and fracture densities (as assumed in this study), we 

can write )(rt  as  

  ),,,( 2121
)()( εεψψrr tt = .       (5) 

Here, 1ψ and 2ψ  represent the azimuthal fracture orientation of each fracture set and 1ε  and 

2ε  represent the fracture density of each fracture set. The viscoelastic T-matrix approach of 

Jakobsen et al. (2003b) and Jakobsen and Chapman (2009) to cracked/fractured porous media 

with an improvement is given in appendix-A. This improvement is related to relaxing on the 

assumption that the inclusions or cavities are of the same scale-size (see appendix-A). The 

relaxation time of fractures fτ can be calculated according to their size from the following 

equation (Chapman 2003; Agersborg et al., 2007) 

   mf
r τ
ξ

τ = .        (6) 

Here, r  is the radius of fractures, ξ  is the size of the grains and mτ  is the relaxation time for 

the micro-porosity. The theory of Jakobsen and Chapman (2009) predicts a frequency 

dependence of the seismic anisotropy by modelling the velocity dispersion and attenuation 

caused by squirt and global flow mechanisms for micro-porosity and mesoscopic fractures.  
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 In general, ∗C depends on effective wave vector ∗k  and angular frequency ω . 

However, following Hudson et al., 1996, Pointer et al., 2000, Tod, 2001, Jakobsen et al., 

2003b and Jakobsen and Chapman (2009), we eliminate the dependency of ∗C on the 

effective wave vector ∗k  by using the approximation )0(/Vkk ω≈=∗ , where )0(V is the speed 

of the wave mode under consideration in the solid matrix and k  is the length of k . In this 

approach of using an approximation for effective wave vector, the effective permeability 

tensor *K of the fractured reservoir is taken equal to the matrix permeability of the reservoir.  

For the two mesoscopic fracture sets embedded in the solid matrix with different 

orientations, the symmetry of the rock is monoclinic and therefore characterized by 13 

independent viscoelastic stiffness coefficients. The components of the effective viscoelastic 

stiffness tensor are a function of the fracture parameters, which is given by viscoelastic rock 

physics modelling as discussed above. The non-vanishing viscoelastic stiffness constants of a 

medium of monoclinic symmetry (see appendix-B) in the usual two-index notation are 11c , 

22c , 33c , 2112 cc = , 3113 cc = , 3223 cc = , 44c , 55c , 66c , 6116 cc = , 6226 cc = , 6336 cc =  and 

5445 cc = . The presence of mesoscopic fractures present in a reservoir can produce significant 

dispersion and attenuation at seismic frequencies (Maultzsch et al., 2003; Liu et al., 2007a, b; 

Gurevich et al., 2009).  

Figure 1 and 2 show the real and imaginary parts of the 13 independent effective 

stiffness constants as a function of seismic frequency for three different combinations of 

azimuthal fracture orientations and fracture densities of each individual fracture set. Both the 

real and imaginary parts of independent effective stiffness constants show a high sensitivity to 

changes in azimuthal fracture orientations and fracture densities of both the fracture sets. We 

observe squirt flow characterized by positive dispersion (figure 1) and corresponding 

attenuation (figure 2) at seismic frequencies ( 210≤  Hz) for the effects associated with the 
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presence of mesoscopic fracture sets, and at higher frequencies (between 310  to 510  Hz ) for 

the effects associated with micro-porosity (pores and micro-cracks) for effective stiffness 

constants 11c , 22c , 33c , 12c , 13c , 23c , 66c . We only observe positive dispersion (figure 1) and 

corresponding attenuation (figure 2) associated with the effects of micro-porosity for the 

effective stiffness constants 44c  and 55c . For the effective stiffness constants 16c , 26c  and 

36c , we observe both positive and negative dispersion (figure 1) and corresponding 

attenuation (figure 2) at seismic frequencies. No dispersion either positive or negative is 

observed for the effective stiffness constant 45c . The values of effective stiffness constants 

16c , 26c , 36c  and 45c  can be both positive or negative, depending on the azimuthal orientation 

of the coordinate system relative to the fracture normal.  

Figures 3 and 4 show the real and imaginary parts of the independent effective 

stiffness constants as a function of azimuthal fracture orientations of two fracture sets for a 

fixed frequency of 40 Hz. Both the real and imaginary parts of the effective stiffness constants 

vary more or less periodic with the azimuthal fracture orientations, in accordance with the 

transformation laws for fourth-rank tensors (Auld, 1990).  

Figures 5 and 6 shows the real and imaginary parts of the independent effective 

stiffness constants as a function of fracture densities of two fracture sets for a fixed frequency 

of 40 Hz. The real parts of effective stiffness constants decrease with increasing fracture 

density except the effective stiffness constants 16c , 26c , 36c  and 45c  that can increase or 

decrease with increasing fracture density depending on the azimuthal orientation of the 

coordinate system relative to the fracture normal. The imaginary parts of effective stiffness 

constants increase with increasing fracture density except the effective stiffness constants 44c , 

55c , 16c , 26c , 36c  and 45c  that can increase or decrease with increasing fracture density 

depending on the azimuthal orientation of the coordinate system relative to the fracture 

normal. 
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3 Forward modelling of seismic velocity and attenuation anisotropy 

3.1 The non-linear forward model 

The non-linear forward model can be written as: 

   d = G (m).         (7) 

Here m is a vector of model parameters related to the fractures (the azimuthal fracture 

orientations ( 1ψ  and 2ψ ) and the fracture densities ( 1ε  and 2ε )). The function G is based on a 

combination of the viscoelastic rock physics model and seismic attribute generation 

(predictions of velocity and attenuation anisotropy data corresponding to different seismic 

frequencies and azimuths). d is a vector of observable quantities (measurements of velocity 

and attenuation anisotropy data corresponding to different seismic frequencies and azimuths). 

The azimuthal variation of frequency-dependent velocity and attenuation anisotropy 

data can provide useful information about the fracture systems present in the reservoir (Liu et 

al., 2006; Liu et al., 2007a, b; Maultzsch et al., 2007a, b; Chapman, 2009). But first we need 

to discuss how to obtain real-valued phase velocities and attenuation spectra from the 

frequency-dependent and complex-valued effective stiffness tensor ∗C . The real-valued phase 

velocities and attenuation factors can be obtained by inserting the effective stiffness tensor ∗C

into the Christoffel equation (see appendix-C), which can be solved by computing the 

eigenvectors and eigenvalues (Jakobsen et al., 2003b; Carcione, 1995, 2007). More detailed 

information about the plane waves in viscoelastic anisotropic media can be obtained from 

Cerveny and Psencik (2005). The phase velocity is the reciprocal of the slowness and in 

component form is given by (Carcione, 1995, 2007) 

  .ˆ1Re
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The quality factor Q  is defined as the ratio of the peak strain energy to the average loss 

energy density (Auld, 1990), and is defined by (Carcione, 1995, 2007) 
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3.2 Forward modelling results and discussion 

In this section we show some forward numerical calculations to infer important 

information about multiple fracture sets using velocity and attenuation anisotropy data for 

different seismic frequencies and azimuths. For the background elastic parameters, the 

properties of the calcite are used to obtain the stiffness tensor for the solid matrix )0(C . The 

porosity for spherical pores is 8%, while crack density for randomly oriented micro-cracks is 

0.05, respectively. The rock is assumed to be fully saturated with water. The mechanical 

properties of the solid matrix and fluid (brine/water) are given in Table 1. The viscosity of 

water (the saturating fluid) is 310− Pa s (see Pointer et al., 2000) and matrix permeability is100 

mD. The relaxation time constant mτ  is same for the pores and micro-cracks in the micro-

porosity which can be found from the core plug velocity and attenuation measurements and 

set to 7102 −× s. The size of the grainsξ  is assumed to be known and set to 610200 −×  m.   

Model 0.  Single set of aligned mesoscopic fractures 

We first consider the model where we have one set of aligned mesoscopic fractures 

along with pores and randomly oriented micro-cracks (micro porosity) having a fracture 

density of 0.08 and aspect ratio of 0.001. The fracture radius is 0.1m and from equation (6), 

the relaxation time fτ  for one fracture set will be equal to 410−  s. Figure 7 shows the 

azimuthal variation of P-wave velocity and attenuation for 4 different seismic frequencies and 

a fixed polar angle of incidence (40o) in a medium with one mesoscopic fracture set. There is 

a correlation between the maximum and minimum of velocity and attenuation spectra as a 

function of azimuth. The azimuthal orientation of the mesoscopic fracture set is 40o (see 

appendix-B). The azimuth of maximum velocity coincides with the azimuth of minimum 
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attenuation i.e. around 40o. The azimuth of minimum velocity observed at an azimuth of 

around 130o will again correspond to the azimuth of maximum attenuation.  

Model 1. Two sets of aligned mesoscopic fractures  

 We now consider the model where we have two sets of aligned mesoscopic fractures 

along with pores and randomly oriented micro-cracks (micro-porosity) having the same 

fracture density and aspect ratio of 0.08 and 0.001, respectively. The fracture radius of both 

the mesoscopic fracture sets is 0.1 m, corresponding to the squirt flow relaxation time for each 

of the fracture sets equal to 410−  s (equation (6)).  

Figure 8 shows the azimuthal variation of P-wave velocity and attenuation for 4 

different seismic frequencies and a fixed polar angle of incidence (40o) in a medium with two 

mesoscopic fracture sets. The azimuthal orientations of the two mesoscopic fracture sets are 

40o and 110o (see appendix-B). Again we note the correlation between the maximum and 

minimum azimuth of velocity and attenuation. The maximum velocity and minimum 

attenuation occurs at an azimuth of around 75o which is the weighted average of the azimuthal 

orientations of both the mesoscopic fracture sets. This result also has an important implication 

in the context of seismic fracture characterization in a sense that the analysis of seismic data 

based on a model assuming a single set of aligned mesoscopic fracture set can sometimes give 

the misleading results.   

The forward modelling performed using model 2 can also predict qualitatively same 

behavior for velocity and attenuation spectra in the absence of randomly oriented micro-

cracks as obtained by Chapman (2009) for pores and two sets of aligned mesoscopic fracture 

sets. 

Model 2. Aligned micro-cracks and mesoscopic fractures

  In this model, we let one mesoscopic fracture set having an azimuthal orientation of 

110o in model 2 to become aligned micro-cracks by setting its relaxation time same as for the 
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micro-porosity. This is an interesting case because now there is no correlation between 

maximum and minimum of velocity and attenuation as a function of azimuth (figure 9). We 

observe a maximum velocity around 75o-100o azimuth and minimum attenuation around 40o

azimuth depending on the frequency. The azimuthal variation of attenuation is now only 

sensitive to the mesoscopic fracture set having an azimuthal orientation of 40o. This also 

indicates that attenuation data can help in solving the non-uniqueness in the azimuthal 

orientations for this particular case.  

The forward modelling performed using model 3 can also be used to model the open 

(supports fluid communication) and sealed fracture sets (no fluid communication) as 

discussed by the Chapman (2009). The azimuthal variation of attenuation will only be 

sensitive to the open fracture set, while directional variation of velocity as a function of 

azimuth will be observed, respectively. The presence of open and sealed fracture sets will 

qualitatively give the same behavior for azimuthal variation of velocity and attenuation as 

obtained by the presence of aligned micro-cracks and a mesoscopic fracture set. 

4 Inversion of velocity and attenuation anisotropy data 

4.1 Bayesian approach 

We define the non-linear inverse problem by 

   ( ) �dmG +≈ .        (10) 

Here d is a vector of observable quantities (measurements of velocity and attenuation data 

corresponding to different seismic frequencies and azimuths) and G is a combination of 

viscoelastic rock physics modelling and the relations of velocity and attenuation to obtain the 

predictions of velocity and attenuation anisotropy data corresponding to different seismic 

frequencies and azimuths. m is a vector of model parameters related with fractures (the 

azimuthal fracture orientations ( 1ψ  and 2ψ ) and the fracture densities ( 1ε  and 2ε ) and in the 
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inverse problem estimated using  G and d. �  is the noise vector and normally it is assumed to 

be Gaussian. 

There are different approaches to solve an inverse problem and in this study we have used 

Bayesian approach (Aster et al., 2005; Tarantola, 2005). The solution to the inverse problem 

is given by the posterior distribution )( dmq  over the model space M. We use Bayes’ theorem 

to define the posterior distribution, which relates the prior and posterior distributions in a way 

that makes the computation of )( dmq  possible. Bayes’ theorem can be stated as follows 

(Aster et al., 2005) 

    ),()|()|( mmddm pfq ∝       (11) 

where )|( mdf is the likelihood that given a particular model m, a data vector, d, will be 

observed and )(mp  is the prior distribution of the model parameters. The velocity and 

attenuation data enter into the formulation through the likelihood )|( mdf , which determines 

the conditional probability density for the observed data given the values of the model 

parameters. The prior probability density )(mp is based on the information which is found 

independently of the seismic velocities and attenuation data. Limited information about the 

fracture density about the fracture densities and azimuthal orientations at inter-well locations 

can be obtained from observations and interpolation of borehole data. Also, the use of outcrop 

analogues can provide limited (a priori) information about the parameters of fractures. In 

addition, information about in-situ stress field may provide some clues to the orientation and 

density of the open fractures within a fractured reservoir. If we have an uninformative prior as 

assumed in this study also, then equation (11) becomes (Aster et al., 2005)  

    ),|()|( mddm fq ∝        (12) 
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 and the posterior distribution is precisely the likelihood function, )|( dmL . The likelihood 

)|( dmL of a given model m is measured through its misfit or objective function )(mJ  which 

in the case of Gaussian statistics is given by (Aster et al., 2005)    

   ( ) ( )( ) ( )( )[ ]dmGCdmGm −−= −1

2
1

D
TJ  ,     (13) 

where the covariance matrix DC  contains information about the measurement errors.  The 

following solution of posterior distribution is now obtained from the above equations (Aster et 

al., 2005) 

   ))(exp()|( mdm Jq −∝ .       (14) 

 To quantify the uncertainty in the inverted model parameters the exploration of the 

posterior PDF can be done by Monte Carlo sampling. We have adapted the Metropolis 

algorithm (Tarantola, 2005) to the problem of sampling the posterior probability density in 

this study.  

 Suppose that at a given step, the random walker is at point im , and the application to 

rules would lead to a transition to point jm . Sometimes we reject this proposed transition by 

using the following rule (Tarantola, 2005): 

(1) If ),|()|( dmdm ij LL ≥  then accept the proposed transition to jm . 

(2) If )|()|( dmdm ij LL < , then decide randomly to move to jm , or to stay at im , with the 

following probability of accepting to move to jm . 

   
)|(
)|(

dm
dm

i

j
ji L

L
P =→ .        (15) 

 Then the random walker samples the posteriori probability density )|( dmq . There is no 

general rule for obtaining the independent posterior samples, as this strongly depends on the 

particular problem at hand. The other important point to emphasize is the acceptance rate of 

the Metropolis criterion, which should not be too small and too large (Tarantola, 2005). This 
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acceptance rate determines the efficiency of the Monte Carlo Markov chain (MCMc). If the 

acceptance rate is larger, we are not moving fast enough in the model space; if it is smaller, 

we are wasting our resources to test models that are not accepted (Tarantola, 2005). 

4.2 Inverse modelling results and discussion 

In this section we perform inverse numerical experiments to investigate to what extent 

one can recover fracture parameters (the azimuthal fracture orientations ( 1ψ  and 2ψ ) and 

fracture densities ( 1ε  and 2ε ) using the measurements of velocity and attenuation anisotropy 

data corresponding to different seismic frequencies and azimuths. The different background 

parameters are same as discussed in the section 3. The lengths of the two mesoscopic fracture 

sets are assumed to be known from geologic outcrops field analogues and well log data and 

set to 0.2 m. The aspect ratios of the two mesoscopic fracture sets are set to 0.001. For the 

calculated velocity and attenuation data we have used the rock physics model discussed in 

section 2.1 to obtain the viscoelastic stiffness tensor and then used the relations of velocity 

and attenuation discussed in section 3 to obtain the measurements of velocity and attenuation 

anisotropy data corresponding to different seismic frequencies and azimuths for a fixed polar 

angle of incidence (40o).  

Figure 10 shows an example of predictions of velocity and attenuation as a function of 

fracture parameters for a fixed seismic frequency (40 Hz) and azimuth (45o). Figure 11 shows 

an example of synthetic velocity and attenuation data as a function of seismic frequency and 

azimuth used for inversion in this study.  

Model 1. Two sets of aligned mesoscopic fractures

Our first inverse numerical example deals with the model 1 of the forward modelling 

section. We invert for the azimuthal fracture orientations ( 1ψ  and 2ψ ) and fracture densities 

( 1ε  and 2ε ) of the two aligned mesoscopic fracture sets using measurements of velocity 
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anisotropy data alone and using both velocity and attenuation anisotropy data corresponding 

to different seismic frequencies and azimuths. The true azimuthal fracture orientations ( 1ψ

and 2ψ ) and fracture densities ( 1ε  and 2ε ) are taken to be (35o, 108o) and (0.03, 0.05), 

respectively. The objective function ),,,( 2121 εεψψJ of azimuthal fracture orientations 

),( 21 ψψ  and fracture densities ( 21,εε ) is defined as: 
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The first term on the right-hand side of the objective function (equation 16) is the misfit 

between the observed and calculated velocity data summed over 10 different seismic 

frequencies and 12 azimuths, while the second term on the right-hand side is the misfit 

between observed and calculated attenuation data summed 10 different seismic frequencies 

and 12 azimuths. The velocity and attenuation data are weighted according to uncertainties in 

the measurements. The source of uncertainty in velocity and attenuation data is linked to 

measurement and processing of the seismic data.  

Figure 12 shows the result of MCMc inversion for the fracture parameters using only 

measurements of velocity anisotropy data corresponding to different seismic frequencies and 

azimuths. Clearly, velocity data alone cannot recover the fracture parameters. Figure 13 

shows the result of MCMc inversion for the fracture parameters, using measurements of both 

velocity and attenuation data corresponding to different seismic frequencies and azimuths 

producing the results with significantly improved certainty. 

The presence of communicating aligned mesoscopic fracture sets greatly influence the 

anisotropic permeability on a large scale. This example shows that for the case of a fractured 

reservoir containing two sets of aligned mesoscopic fractures, the inverse problem does not 

have a unique solution if only velocity anisotropy data is used. The addition of attenuation 
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anisotropy data helps to resolve the non-uniqueness in the inverse problem and hence 

improved estimates of anisotropic permeability can be obtained. 

Model 2. Aligned micro-cracks and mesoscopic fractures

The second inverse numerical example deals with the model 2 of the forward 

modelling section. In this case, the azimuthal variation of attenuation was only sensitive to the 

presence of the mesoscopic fracture set and we observed a directional variation of velocity 

with azimuth. In other words, the azimuthal variation of attenuation anisotropy in this case 

was not providing any information about the aligned micro-cracks. This suggests that the joint 

inversion of measurements of velocity and attenuation data corresponding to different seismic 

frequencies and azimuths will not be able to recover the fracture and crack density of the 

aligned mesoscopic fracture set and aligned set of micro-cracks, respectively.  

In this example, we only demonstrate how measurements of attenuation data 

corresponding to different seismic frequencies and azimuths helps to resolve the non-

uniqueness associated with estimation of azimuthal orientations of the mesoscopic fracture set 

and a set of aligned micro-cracks. The true azimuthal orientations of the mesoscopic fracture 

set ( 1ψ ) and aligned micro-cracks ( cψ ) are 35o and 108o, respectively. The fracture density 

and crack density in this example are assumed to be known and set to 0.03 and 0.05. The true 

values of the azimuthal orientations are estimated using the calculated velocity anisotropy 

data alone and also using both velocity and attenuation anisotropy data. Our objective 

function ),( 1 cJ ψψ  of the two azimuthal orientations ),( 1 cψψ  is defined as: 
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The first and second term on the right-hand side of the objective function (equation 16) are 

again the misfit between the calculated and observed seismic velocity and attenuation data 
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summed over 10 seismic frequencies and 12 azimuths weighted according to uncertainties in 

the measurements and processing of the seismic data.  

Figure 14 show the MCMc inversion result in the form of posterior PDFs using either 

the velocity data alone or both velocity and attenuation data. The upper plots of figure 14 

clearly show that the velocity anisotropy data alone cannot recover the azimuthal orientations 

of mesoscopic fracture set and aligned micro-cracks. The lower plots of figure 14 clearly 

show that using both velocity and attenuation anisotropy data resolve the non-uniqueness 

associated with the velocity anisotropy data alone and produces the results with considerably 

improved certainty.  

5 Concluding Remarks

For fractured reservoir containing two sets of aligned mesoscopic fractures, one can in 

principle estimate the azimuthal fracture orientations and fracture densities from 

measurements of seismic velocity and attenuation anisotropy data corresponding to different 

seismic frequencies and azimuths, provided that one has priori information about the porous 

matrix, saturating fluid(s) and fracture geometry. 

 Measurements of seismic velocity anisotropy data corresponding to different seismic 

frequencies and azimuths may contain information about the fracture densities, but that 

information alone produce highly uncertain estimates and also is unable to differentiate 

between azimuthal fracture orientations. Joint inversion of measurements of seismic velocity 

and attenuation anisotropy data corresponding to different seismic frequencies and azimuths 

leads to improved estimates of fracture parameters and better management of fractured 

reservoirs.  

Models consisting of aligned micro-cracks are more difficult to characterize, as 

azimuthal variation of attenuation is only sensitive to the presence of mesoscopic fracture sets 

and it can only help in resolving the non-uniqueness in azimuthal orientations of aligned 
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micro-cracks and mesoscopic fractures. The presence of mesoscopic fractures is more 

important for the reservoir scale fluid flow simulations (anisotropic permeability at large 

scale). 

A satisfactory characterization of complex fractured reservoirs requires a model 

accounting for frequency-dependent anisotropy. We hope that the results obtained here should 

help in obtaining improved estimates of anisotropic permeability in complex fractured 

reservoirs systems.  
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Appendix-A Viscoelastic T-matrix approach to cracked porous media 

The t-matrix for a cavity of type r  fully saturated with a homogenous fluid is given by 

(Jakobsen and Chapman, 2009) 
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Here, 1)0()0( )( −= CS is the compliance tensor of the solid matrix material; 2I  is the identity 

tensor for second-rank tensors; ⊗  is the dyadic tensor product (see Jakobsen et al., 2003), 

( )rG  is a fourth-rank tensor given by the strain Green’s function (for a material with 

properties given by ( )0C ) integrated over a characteristic spheroid having the same shape as 

cavities of type r  (Jakobsen and Chapman, 2009) and )(r�  is a second-rank tensor (fluid 

polarization tensor) that relates the fluid pressure to the applied stress. The fluid polarization 

tensor )(r� is given by Jakobsen and Chapman (2009) under the assumption that the cavities 

are of the same scale-size and the τ -constant (squirt flow relaxation constant) is independent 

of shape and orientation index r . The analysis of Chapman et al., (2002) suggests that τ

depends on the scale-size of the cavity, suggesting that the theory can easily be extended to 

model the cracked/fractured porous media under the assumption that the scale-size of 

fractures is much larger than that of pores and cracks. After letting the τ  having an index 
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where, 
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Here ∗Γij  are the components of the effective permeability tensor of the fractured reservoir and  

∗
ik  represents the component of the effective wave number vector, where 3,2,1, =ji , fκ  is the 

bulk modulus for the fluid, fη  is the viscosity of the fluid, φ  is the total porosity and ω  is the 

angular frequency of the wave, respectively. In this study we have implemented the Jakobsen 

and Chapman (2009) theory with a small modification in which the τ -constant is now 

dependent on scale-size of the inclusions and also with a modified ΘΘΘΘ~  term which corrects for 

an error related to conservation of fluid mass in Jakobsen et al., (2003b).The correction term 

related to global flow is given in the equation (A-7). 

Appendix-B Bond transformation of the tensors 
If the z-axis is parallel to the short axis of the spheroidal mesoscopic fractures or 

micro-cracks, then the resulting effective tensor will have the following form typical for 

transversely isotropic media, characterized by five independent constants: 
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where 
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   661112 2ccc −= .       (B-2) 

If we perform a rotation of the coordinate system then the effective tensor will transform in 

accordance with the so-called Bond transformation law (e.g., Auld, 1990) 
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and ija ( 3,2,1, =ji ) are the elements of the rotation matrix a, depending the three Euler angles 

describing the orientation of the rotated coordinate system with respect to the original 

coordinate system. In a coordinate system where the fracture normal lies in the x-y plane, and 

the azimuthal fracture orientation (the angle between the fracture normal and the x-axis) is not 

identical to zero, we will need two successive rotations and two rotation matrices to obtain the 

corresponding effective tensor. The first one will be counterclockwise 90o rotation around the 

y-axis with the following rotation matrix  
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The second one will be a counterclockwise arbitrary ϕ  degree rotation around the new z-axis 

with the following rotation matrix 
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The resulting effective tensor will have the form typical for media of monoclinic symmetry, 

characterized by 13 independent constants 
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It is important to note that the above definition of the Bond transformation is based on 

the Voigt representation of the fourth-rank tensors, rather than the Kelvin representation. 

Appendix-C Christoffel equation for viscoelastic media

 From Hooke’s law the stress-strain relation can be written as using the matrix notation 

(Carcione, 2007) 

   eC ⋅=σσσσ         (C-1) 

where σσσσ  is the stress tensor, e  is the strain tensor and C  is the stiffness tensor. The equation 

of motion in the absence of body forces can be written as (Carcione, 2007) 
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where  

   T∇⋅⋅∇=∇ CΓΓΓΓ ,        (C-3) 

where u  is the displacement vector and the symmetric gradient operator ∇ using the matrix 

representation is given by (Auld, 1990; Carcione, 2007) 
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The strain displacement relation is given by (Carcione, 2007) 

   ue ⋅∇= T .        (C-5) 

A general plane wave solution for the displacement vector of the body waves is given by 

(Carcione, 2007) 

   [ ])(exp0 xkuu ⋅−= ti ω ,      (C-6) 
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where 0u  represents a constant complex vector, ω  is the angular frequency and k  is the 

wave-number vector. The particle velocity is given by time derivative of equation (C-6) given 

by 

   uuv ωit =∂= .         (C-7) 

In the absence of body forces )0( =f , we consider plane waves propagating along the direction 

given by (Carcione, 2007) 

   332211 ˆˆˆˆ eeek lll ++= ,       (C-8) 

where 1l , 1l  and 1l  are the direction cosines. The wave-number vector k  can be written as 

(Carcione, 2007) 
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where k is the magnitude of the wave-number vector. The spatial differential operator in 

equation (C-4) can be replaced by 
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Now substituting the time derivative as ωit →∂ and using equation (C-10) in equation (C-2), 

we get (Carcione, 2007) 

  ,22 uu ρω=⋅ΓΓΓΓk                  (C-11) 

where 

  TLCL ⋅⋅=ΓΓΓΓ ,                  (C-12) 

is the Christoffel matrix. The dispersion relation is given by (Carcione, 2007) 
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is the complex velocity. 

The equation (C-13) is known as the Christoffel equation. Using equation (C-14), the 

components of the slowness and attenuation vectors can be expressed in terms of the complex 

velocity as (given by Carcione, 1995, 2007) 
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Table 1. Mechanical properties associated with the solid matrix and fluid (brine/water) (first 
and second row).  

Material Bulk Modulus (GPa) Shear Modulus (GPa) Density (kg/ m3)
Solid matrix (calcite) 
Fluid (Water/Brine) 

70 
2.2 

          29 
          0.0 

2710 
1000 
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Figure 1 Real part of the independent stiffness constants as a function of frequency for 
different combinations of azimuthal fracture orientation and fracture densities of each 
individual fracture set. Black lines: ( 1ψ , 2ψ , 1ε , 2ε ) = (30o, 50o, 0.01, 0.03), blue lines: ( 1ψ , 

2ψ , 1ε , 2ε ) = (50o, 75o, 0.04, 0.06) and red lines: ( 1ψ , 2ψ , 1ε , 2ε ) = (110o, 130o, 0.08,  0.1). 
The fracture radius of both the aligned mesoscopic fracture sets and matrix permeability was 
set to 0.1 m and 100 mD. 

Figure 2 Same as Figure 1, but for the imaginary parts of the effective stiffness constants.
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Figure 3 Real part of the independent effective stiffness constants as a function of azimuthal 
fracture orientations ( 1ψ , 2ψ ) for two fracture sets for a frequency of 40 Hz. The fracture 
densities for the fracture set 1 and 2 are equal to 0.03 and 0.05. The fracture radius of both the 
aligned mesoscopic fracture sets and matrix permeability was set to 0.1 m and 100 mD. 

Figure 4 Same as Figure 4, but for the imaginary parts of the effective stiffness constants. 
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Figure 5 Real part of the independent effective stiffness constants as a function of fracture 
densities ( 1ε , 2ε ) for two fracture sets for a frequency of 40 Hz. The azimuthal orientations 
for fracture set 1 and 2 are equal to 35o and 108o. The fracture radius of both the aligned 
mesoscopic fracture sets and matrix permeability was set to 0.1 m and 100 mD. 

Figure 6 Same as Figure 6, but for the imaginary parts of the effective stiffness constants. 
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Figure 7 Azimuthal variation of P-wave velocity (left) and attenuation (right) for different 
seismic frequencies and a fixed polar angle of incidence (40o) in a medium with one fracture 
set. The azimuthal orientation of the mesoscopic fracture is 40o. Black lines: 20 Hz, blue 
lines: 45 Hz, red lines: 65 Hz and green lines: 90 Hz.  
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Figure 8 Azimuthal variation of P-wave velocity (left) and attenuation (right) for different 
seismic frequencies and a fixed polar angle of incidence (40o) in a medium with two fracture 
sets. The azimuthal orientations of the two mesoscopic fracture sets are 40o and 110o. Black 
lines: 20 Hz, blue lines: 45 Hz, red lines: 65 Hz and green lines: 90 Hz.  
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Figure 9 Same as Figure 9, but the relaxation time for one the fracture set was set equal to 
micro-porosity. Black lines: 20 Hz, blue lines: 45 Hz, red lines: 65 Hz and green lines: 90 Hz.  

Figure 10 Predictions of velocity and attenuation as a function of fracture parameters. Upper 
left and right plots: predictions of velocity and attenuation as a function of two azimuthal 
fracture orientations ( 1ψ  and 2ψ ) with fracture densities of both the fracture sets equal to 0.03 
and 0.05, respectively. Lower left and right plots: predictions of velocity and attenuation data 
as a function of two fracture densities ( 1ε  and 2ε ) with azimuthal fracture orientations of both 
the fracture sets equal to 35o and 108o, respectively. 



34

Figure 11 Seismic velocity and attenuation data as a function of seismic frequency and 
azimuth for a fixed polar angle of incidence (40o). The azimuthal fracture orientations ( 1ψ  and 

2ψ ) and fracture densities ( 1ε  and 2ε ) of the two mesoscopic fracture sets are equal to (35o, 
108o) and (0.03, 0.05) in this particular example. 

Figure 12 Samples of the marginal posterior PDF’s for azimuthal fracture orientations ( 1ψ
and 2ψ ) and fracture densities ( 1ε  and 2ε ) using only measurements of seismic velocity 
anisotropy data corresponding to different seismic frequencies and azimuths. The standard 
deviation of measured seismic velocity data was set to 25%. 
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Figure 13 Samples of the marginal posterior PDF’s for azimuthal fracture orientations ( 1ψ
and 2ψ ) and fracture densities ( 1ε  and 2ε ) using measurements of both seismic velocity and 
attenuation anisotropy data corresponding to different seismic frequencies and azimuths. The 
standard deviation of measured seismic velocity and attenuation data was set to 25%. 

Figure 14 Samples of the marginal posterior PDF’s for azimuthal orientations of mesoscopic 
fracture set ( 1ψ ) and a set of aligned cracks ( cψ ). Upper left and right plots: using only 
measurements of seismic velocity anisotropy data corresponding to different seismic 
frequencies and azimuths. Lower left and right plots: using measurements of both velocity 
and attenuation anisotropy data corresponding to different seismic frequencies and azimuths. 
The standard deviation of measured seismic velocity and attenuation data was set to 25%. 






