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Preface

The thesis is produced as a part of the NFR project No. 801455/450224 “CO2 capture 

project phase 2”. The main focus of this project is to model the coupled thermal, 

hydraulic, geomechanical effect of CO2 storage in saline aquifers by using reactive 

transport code RetrasoCodeBright.  

Geological formations are currently considered the most promising carbon dioxide 

sequestration sites and the estimated storage capacities indicate a substantial potential 

for storing CO2 in saline aquifers. A general problem is that long term predictions 

about underground storage security are difficult and uncertain. CO2 injection will 

cause a mechanical impact due to changes in the stress field resulting from changes to 

the pore pressure, buoyant pressure, and volume of the rock. CO2 may lead to 

significant mineral dissolution in some areas of lowered pH and mineral deposition 

from dissolved ions in regions of higher pH. Further, since each reservoir changes 

dynamically as a function of the reactive flow, the geomechanical analysis needs to 

be coupled to flow simulations. A survey on the current reservoir simulators on CO2 

storage has been carried in this thesis showing that for now there are no verified 

codes with implicit solution of reactive flow, geomechanics, and heat flow in the CO2 

storage scenarios which has been an important motivation for the choice of platform 

for developing a new CO2-storage simulator, RetrasoCodeBright. 

In this thesis the development and application of RetrasoCodeBright is introduced. 

RetrasoCodeBright is the result of coupling of two codes, Retraso, which is designed 

to solve the reactive transport problems and CodeBright, which is designed for the 

thermo-hydraulic-mechanical analysis of multiphase saline media. Code 

RetrasoCodeBright, briefly called RCB, has been extended for coupled hydro-

thermal-geomechanical-geochemical modelling specified for CO2 storage 

simulations. 
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The thesis consists of eight papers of which three papers are accepted or submitted to 

international journals; one paper is contributed in book and four papers are 

conference proceedings, two published and two submitted. 
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1. Introduction

Measurements of the concentrations of CO2 and other greenhouse gases in the 

atmosphere show clearly the impact of the industrial revolution. The atmospheric 

concentration of CO2 has increased by approximately a third from the preindustrial-

age level of about 280 ppm to 370 ppm today, as a result of the burning of fossil 

fuels, cleaning of forests, and manufacturing of cement (Franklin M. Orr Jr., 2004). 

As CO2 is the greenhouse gas that leads to the largest reduction in the reflected heat 

radiation from the earth, the CO2 emissions associated with energy production is a 

substantial global concern. Thus, major actions are needed to reduce the 

accumulation of CO2 in the atmosphere (Wigley et. al., 1996). The technology of 

capture and storage of CO2 is likely to be one step towards meeting the challenge of 

stabilizing atmospheric CO2 concentrations (Hoffert et al., 2002). 

There are several options for underground storage of CO2, e.g. storage in depleted oil 

and gas reservoirs (see e.g. Parson and Keith, 1998; Holt et al., 2000; Gale, 2003; van 

der Meer, 2003), storage in un-mineable coal beds, and storage in deep saline 

aquifers.  

Parson and Keith (1998) estimate that saline aquifers have the largest storage capacity 

of the three options mentioned above, and they estimate the saline aquifers have a 

storage capacity of up to 3700 Gt CO2. A more recent study by Gale (2003), estimate 

the CO2 storage capacity of saline aquifers to be up to 10,000 Gt. These estimates 

inevitably involve significant uncertainties. Nevertheless, the estimated storage 

capacities indicate a substantial potential for storing CO2 in deep saline aquifers. 

More recent publications discuss different trapping mechanisms, of which trapping as 

tiny bubbles is likely to keep the injected CO2 safely stored in the briny porous rock 

for centuries (Juanes et al., 2009).  

Additional options to the above include the use of CO2 for enhanced oil recovery 

(EOR) purposes (Izgec et al., 2005) and the exchange of CO2 with natural gas 
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through CO2 injection into natural gas-hydrate reservoirs (Kvamme et. al., 2002, 

Graue et al., 2006, Kvamme et al., 2007). Worldwide, there are already ongoing EOR 

projects based on CO2 injection. A full-scale test of hydrate storage of CO2 through 

exchange with in situ natural hydrate will be performed in Alaska by ConocoPhillips, 

with partial funding from the Department of Energy (DOE).  

This thesis is limited to aspects related to the storage of CO2 in saline aquifers. Thus, 

the other alternatives listed above will not be discussed in further detail, although 

many of the features of the software developed through this work may also be useful 

when studying the other storage options.  

1.1 Storing CO2 in deep saline aquifers  

Saline aquifers are water bearing porous-layers sandstone or limestone in the 

subsurface, and they are by far the volumetrically largest and most widespread 

proposition for large-scale CO2 storage.  

The injected CO2 will flow through high-permeable paths and the flow will be 

dominated by gravity segregation. The density difference between injected CO2 and 

brine will lead to a preferential flow of CO2 towards the top of the aquifer (Kumar et 

al., 2005) and the CO2 will potentially accumulate below sealing layers of clay or 

shale.  

The injected CO2 will also dissolve in the brine, and the mixture of brine and CO2 

will be slightly denser than the brine alone (Ennis-King and Paterson, 2003). Thus a 

slow vertical flow of the denser brine will cause further dilution of the dissolved CO2.  

Due to geothermal gradients and corresponding higher temperature deeper in the 

reservoir there is always a potential of some CO2 to out gas again at certain depths. 

Other portions of the injected CO2 may be trapped in small pores, depending on the 

relative wetting properties of the minerals.  



 13

Injected CO2 imposes chemical reactions and dissolution of minerals in the regions of 

lowered pH. Most mineral reactions are slow (hundreds of years) while calcite and 

some other carbonates will dissolve in a matter of days under low pH influence close 

to injection. Dissolved ions, transported with the flow, may precipitate in regions of 

higher pH. Even though the content of rapidly dissolving carbonates may vary 

substantially, the distribution of these carbonates among other minerals plays a 

significant role. Fine distribution inside other minerals may lead to a release of 

smaller particles as these carbonates are dissolved. Depending on the chemical 

composition of the brine and the minerals present in the aquifer, some of the CO2 

may sequester as minerals (Johnson and Nitao, 2003) 

1.2 The current large scale aquifer-storage projects 

Currently, there are four ongoing CO2 sequestration projects worldwide; of which 

two are the Sleipner and Snøhvit projects in Norway.  

The Sleipner project has been running since 1996. Natural gas containing up to 9% 

CO2 is produced from the Heimdal formation. Every year, one million tones of CO2 

are captured from the Sleipner natural gas and stored in a sandstone formation called 

Utsira, located more than 800 m below the sea floor, above the Heimdal formation. A 

special platform was built in order to process the natural gas, where the CO2 is 

extracted and injected back into the Utsira formation.  

The second CO2 sequestration project in Norway is the Snøhvit project, located in the 

Barents Sea. This project is based on the liquefied natural gas (LNG) factory on the 

island of Melkøya. From the off-shore Snøhvit field, the natural gas is brought by 

pipelines to the LNG plant on Melkøya where it liquefied by cooling. Prior to the 

cooling the CO2 in the natural gas is extracted and sent back to the Snøhvit field 

where it is injected into a sandstone formation called the Tubåen formation, located 

2500 m below the sea floor and below the gas-containing layers. In this project more 



 14 

than 700,000 tones of CO2 are stored yearly. Snøhvit started production in October 

2007.   

In Algeria, Statoil, as well as Sonatrach and BP, are funding a CO2 sequestration 

project in connection with In Salah Gas that started in 2004. In this project, CO2 is 

stored in the same formation as where the natural gas is produced, but at a 

considerable distance away from the producing regions. Using this concept, the same 

caprock that keeps the natural gas from leaking will also function as a sealing for the 

injected CO2. The injection volume is expected to reach 1.2 million tones per year.  

The International Energy Agency (IEA) is, in the Weyburn CO2 Monitoring and 

Storage Project, investigating the technical and economic feasibility of CO2 storage in 

a partially depleted oil reservoir. The oil reservoir is located at Weyburn in the South-

Eastern Saskatchewan, Canada, near the U.S. border between Canada and North 

Dakota. The primary goal of this international research project is to investigate the 

storage integrity of an on-shore geological storage of CO2, during large-scale and 

commercial EOR operations. The final reports for Phase I were completed in mid-

2004. Phase II of the project includes the continuing monitoring of the movement of 

CO2 in the reservoir and the refinement of a risk/performance assessment to help 

determine the feasibility of CO2 geological storage over the long term, measured in 

thousands of years. The IEA Weyburn project intends to demonstrate, by 2010, that 

CO2-EOR is economically viable, environmentally responsible, and socially 

acceptable. 

1.3 Geomechanical stability and CO2 storage integrity 

Of importance for aquifer-injection projects is a good characterization of the aquifer.  

The aquifer’s regional extent, including its barriers to vertical flow, possible faults, 

and potential pathways for vertical migration, must be properly understood.  

Furthermore, the geomechanical response to changes in fluid fluxes is one of the key 

questions related to storage integrity and safety of a CO2 sequestration project. The 
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deep geological formations that receive and hold CO2 are located far below fresh 

water aquifers and below at least one sealing formation of extremely low 

permeability, normally clay or shale. Slow movement deep in the Earth will cause 

stresses to build up within its brittle outer crust. The stress that has accumulated over 

hundreds to thousands of years is relieved in a few seconds and may in a worst case 

lead to failure and slip, which on a fault can lead to earthquakes (Foxall and 

Friedmann, 2008). 

Effective design and implementation of geological CO2 sequestration also requires 

understanding of the storage capacity of a candidate site, the impact of the different 

trapping mechanisms for gas in the actual reservoir and the hydrodynamics of the 

system (Shipton et al., 2004). In some natural CO2 reservoirs gas leakage primarily 

occurs along faults and the consequences can be unpredictable. The CO2 leakage in 

the Colorado Plateau off east-central Utah is one of the most dramatic examples of 

natural CO2 blow out. In this reservoir the CO2 flows upward from one or more deep 

sources of CO2. These sources include the thermal de-carbonation of carbonates deep 

in the basin and discharges from the hydrocarbon-rich Paradox Basin. The CO2 

escapes along the Little Grand Wash and Salt Wash faults, where CO2 charged 

springs and geysers, travertine and carbonate-filled veins, are localized along the fault 

traces. Even small fractures and faults can generate local leakage which makes these 

types of reservoirs unsuitable for aquifer storage. Limitations of seismic resolution 

can even be a limitation in the selection of appropriate storage reservoirs.  

The assessment of geomechanical constraints on long term CO2 sequestration in deep 

saline aquifers is discussed in Zoback’s GCEP technical report 2006 “Geomechanics 

and CO2 sequestration”. He emphasizes the two general concerns related to the 

geomechanical stability of the CO2-storage formation. The first concern is whether 

the injection rates can be maintained at a pressure consistent with the geomechanical 

constraints, i.e. at a condition where the effective stress in all principal directions is 

below the tensile strength of the material in these individual directions. The second 

concern is whether leakage and vertical migration of CO2 can result in pressure 
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changes that may lead to a collapse of the cap rock. Local mineral dissolution around 

injection zones may also enhance the possibilities of possible sand reorganization and 

a corresponding collapse. These two aspects should be evaluated for all potential 

CO2-sequestration formations, to assess the risk of CO2 leakage, before committing to 

CO2 disposal. Cap rock failure assessment, either tensile fracturing or shear 

reactivation of pre-existing fault, is therefore a key issue for preventing CO2 leakage 

from deep aquifer reservoir up the surface. In this dissertation cap rock failure 

analysis on tensile fracturing by effective stress will be discussed in section 2.1.4.1. 

CO2 injection will cause a mechanical impact due to changes in the stress field 

resulting from changes to the pore pressure, buoyant pressure, and volume of the rock 

(Orlic, 2009). Changes in stress and the associated deformation may lead to damage 

of the top seal or reactivation of preexisting sealed faults, possibly leading to reduced 

sealing capacity of the formation. In addition to the mechanical impact on seals and 

faults, which may lead to leakage, the CO2 injection may induce ground movement, 

which can be either aseismic, in the form of ground subsidence and/or ground uplift, 

or seismic. Induced seismic movement is caused by a sudden slip on the fault 

surfaces and discontinuities present in the subsurface. Such a movement results in an 

induced micro-seismic or seismic event. Unlike flow of non-reactive fluids CO2 may, 

as briefly indicated above, lead to significant mineral dissolution in some areas of 

lowered pH and mineral deposition from dissolved ions in regions of higher pH. In 

view of the effects above are dynamically changing risk factors which require 

continuous evaluation of geomechanical stability during the injection period as well 

as long periods after injection period is completed. Some carbonates like calcite and 

magnesite dissolve rapidly while quartz and many silicates dissolve very slowly. 

These processes are not only dependent on the percentage of rapidly dissolving 

minerals, but they also depend on how the rapidly-dissolving minerals are distributed 

among other minerals. If the minerals are more evenly spread in a composite mineral, 

the dissolution may lead to fracturing of larger particles, as the "glue" of rapidly 

dissolving minerals disappears.  
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The discussion above clearly illustrates that the geomechanical properties of storage 

sites must be examined as a necessary part of the qualification of storage safety. 

Further, since each reservoir changes dynamically as a function of the reactive flow, 

the geomechanical analysis needs to be coupled to flow simulations. Preferably an 

implicit algorithm should be used to properly handle the different time scales of the 

various processes, including the potentially rapid reactions and instant consequences 

of these reactions on the geomechanical stability of the formation. This becomes even 

more critical in reservoirs where temperature and pressure in parts of the reservoir is 

inside the region where CO2 hydrates can form. Formation of hydrate involves 

roughly 10% volume increase compared to liquid water and hydrate can form rapidly 

(microseconds to minutes). 

1.4 Status of current reservoir simulators for CO2 storage  

Requirements of storage integrity are not unique for all countries in the world. In 

Europe there seem to be a consensus that verification of safe storage for 10,000 years 

is reasonable, while a corresponding time scale in USA is more on the level of 

hundred years or more. Common to all requirements is that the consequences are 

futuristic and the only possible way to "verify" the storage integrity for a selected site 

is by a combination of experiments and theoretical modelling at different levels. In 

this work the focus is limited to theoretical modelling of the reactive transport 

involved in CO2 storage, with special emphasis on the coupled geochemical and 

geomechanical processes.  

Mathematical models and numerical simulators are essential tools in addressing 

problems and questions that arise in the context of CO2 storage in the deep 

subsurface. From the perspective of functions of reservoir simulation codes, we can 

divide the current codes into two categories: 1) codes that don’t include the 

functionality of geomechanical calculation, and 2) codes that include geomechanical 

calculations, either implicitly or explicitly coupled to geochemical and hydraulic 

calculations (Celia et al., 2005). 
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Codes that belong to the first category include ATHENA developed by Department 

of Mathematics and Department of Physics and Technology, University of Bergen;  

CSLS (Compositional Streamline Simulator) developed by Stanford University 

Petroleum Research Institute–C; and Elsa developed by Department of Civil and 

Environmental Engineering at Princeton University and Department of Mathematics 

at University of Bergen. Some other codes like GEM-GHG by Computer Modelling 

Group at University of Texas, MUFTE_UG by Institute of Hydraulic Engineering, 

University of Stuttgart and University of Heidelberg, also belong to this group that 

does not incorporate geomechanical effects in hydraulic, and geochemical and 

reactive transport calculations. This list is not complete and additional codes are 

available in the open community as well as internally in companies and research 

institutions. 

Of most relevance to this project are the codes that address coupled hydro-

geochemistry-geomechanics problems. During a literature survey we found that the 

list of codes that include geomechanics is more limited, at least within open codes 

and/or published codes. These codes are NUFT/LDEC, developed at Lawrence 

Livermore National Laboratory (LLNL); DYNAFLOW, developed by Princeton 

University; and TOUGH-FLAC developed at Lawrence Berkeley National 

Laboratory.  

To our knowledge, or at least what was available in open scientific literature, there 

are no publications related to simulations of CO2 storage, where DYNAFLOW is 

applied to problems that cover modelling of both reactive-transport and 

geomechanics.  

NUFT is currently a flow/transport-only version and contains no reactive chemistry. 

In NUFT/LDEC explicit account is taken of the coupling between geochemical and 

geomechanical process by dependence of permeability on porosity change.  

The TOUGH-FLAC simulator (Rutqvist et al., 2002) is based on a coupling of the 

two existing computer codes TOUGH2 (Pruess et al., 1999) and FLAC3D (Itasca 
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Consulting Group, 1997). TOUGH2 was developed for geo-hydrological analysis 

with multiphase, multi-component fluid flow and heat transport, while FLAC3D is 

designed for estimation of rock and soil mechanics. The TOUGH2 and FLAC3D are 

linked through external coupling modules. Moreover, TOUGH-FLAC has not been 

coupled with chemical reactive transport modelling. There is a reactive transport 

version of TOUGH called TOUGHREACT but no published literature on extended 

version of TOUGHREACT coupled with geo-mechanics is found. 

A more recent benchmark study on CO2 storage in geological formations (Class et al., 

2009) compares the current models by their simulation results from a synthetic 

example. Results show that different models give divergent description and 

prediction on CO2 migration. The study reveals that different models have different 

interpretation of the given conditions, by using different assumptions and 

simplifications, and also significant differences in their numerical performance. There 

is undoubtedly a need to improve existing codes and/or develop new numerical 

simulation tools that are capable to, more rigorously, incorporate the different 

trapping mechanisms. Furthermore, due to the many different time scales involved in 

the processes related to CO2 storage in geological formations (CO2 dissolution, 

dissociation, and reactions), implicit couplings of flow transport, chemical reactions, 

and geomechanics, is desirable.  

Some relevant reservoirs for storage of CO2 have zones of low temperatures and 

sufficient pressure to result in the formation of hydrates from CO2 and water. The 

increased volume of hydrates compared to liquid water, imposes a potential local 

geomechanical issue. The process of hydrate formation is very fast, typically seconds 

to minutes (Kvamme et al., 2007). The hydrate dynamics is even more complex since 

formed hydrate may dissociate towards under-saturated water in contact with mineral 

surfaces. Stresses induced by formation and dissociation of hydrates are therefore 

clearly an issue that requires an implicit solution due to the short time scales of these 

dynamic processes. 
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In view of the above discussion it appears that even today there are no verified codes 

with implicit solution of reactive flow, geomechanics, and heat flow, and this has 

been an important motivation for the choice of platform for developing a new CO2-

storage simulator.  
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2. RetrasoCodeBright (RCB) 

RetrasoCodeBright (RCB) is the result of a coupling of two codes: CodeBright and 

Retraso. CodeBright (COupled DEformormation of BRIne Gas and Heat Transport) 

was designed for the thermo-hydraulic-mechanical analysis of three-dimensional 

multiphase saline media (Olivella et al., 1996). Retraso (REactive TRAnsport of 

SOlutes) is a code for solving two-dimensional reactive transport problems (Saaltink 

et al., 1997). The combination of the two codes is aimed to model complex problems 

consisting of coupled thermal, hydraulic, geomechanical, and geochemical processes. 

The two parts of the code will be separately introduced in this section.  

2.1 CodeBright 

CodeBright has its independent history of applications and corresponding 

publications from different case studies, and the code is still being used 

independently for non-reactive systems. A brief summary from a literature survey on 

applications of the code is given in Section 2.1.1. In Section 2.1.2 we give a more 

detailed description of the governing equations of CodeBright. The numerical 

approach for mechanical problems is dictated in section 2.1.3, while different rock-

failure criteria and the failure equation used in CodeBright is described in section 

2.1.4.   

2.1.1 Introduction and some applications of CodeBright 

CodeBright was originally developed to model the long-term behaviour of a sealing 

system for the assess galleries of high-level radioactive-waste repositories in rock 

salt. In rock-salt systems, long-term sealing is sometimes ensured by crushed salt 

bricks, which become nearly impervious under the compression by the overlaying 

rocks. However, the basic nature of the investigations makes the results applicable 

well beyond their original motivation (Olivella, 1996). CodeBright couples the 
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thermal (multiphase heat transport in porous media), hydraulic (two phase flow of 

liquid and gas in porous media including vapour), mechanical (unsaturated soil 

mechanics under isothermal conditions), problems and the solute transport. A number 

of improvements have been made to the code since its early development (Olivella et 

al., 1996). One of them is the construction/excavation that is handled by activating 

and deactivating sub domains (Olivella et al., 2008).  

CodeBright has so far been applied to study different geotechnical engineering 

problems at the Department of Geotechnical Engineering and Geosciences at UPC-

BARCELONA TECH (UPC) in Barcelona.  

Olivella and Gens (2005) reported on the environmental impact from storage of 

radioactive waste in unsaturated rock. Temperature up to 200°C implies evaporation 

of water around the drift in amounts sufficiently high to result in out drying of the 

rock. The different properties of the rock matrix and the rock fractures produce 

different de-saturation of the pores and correspondingly different permeability. The 

heating also induces volumetric (compressive and dilative) changes and shear 

deformation in the rock. These deformations result in changes of the intrinsic 

permeability. As such both hydraulic and mechanical processes lead to changes in the 

permeability that affect the flow of water and gas, which in turn influences the heat 

transport and the temperature. 

Alonso et al., (2005) discussed improved consititutive modelling of rockfill as 

applied to the Beliche Dam in Algarve (Portugal). This is a a zoned earth dam with 

rockfill shoulders and a central clay core which experienced large collapse 

settlements due to reservoir impounding and direct action of rainfall. Long-term field 

records of vertical and horizontal displacements are available as well as a set of large 

scale laboratory tests on rockfill specimens. Several previous numerical analyses had 

failed to capture the relevant effect of weather conditions on the behaviour of the 

dam. This study was the first published numerical study that was able to capture a 

more complete history of dam constructions, impoundment and rainfall using the 

coupled flow-deformation model CodeBright. Deformations during construction and 
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impoundment have been reproduced. In general, long-term deformations are 

controlled by the varying wetting history of the dam shoulders and by an intrinsic 

deformations component. The wetting action comes to an end when the relative 

humidity of the rockfill reaches 100% for the first time. The paper also discusses 

scale effects and the role of rockfill permeability in the development of deformation. 

CodeBright was also used by Olivella and Alonso (2004) to model a case related to 

disposal of radioactive waste. The Gas Migration Test (GMT) at the Grimsel Test 

Site (GTS) underground laboratory in central Switzerland was designed to investigate 

gas migration through an Engineered Barrier System (EBS). The EBS consists of a 

concrete silo embedded in a sand/bentonite buffer emplaced in silo cavern that 

intersects a shear zone in the surrounding granite host rock. The GMT was operated 

by the National Cooperative for the Disposal of Radioactive Waste (NAGRA) and 

the modelling studies have used coupled two-phase geomechanical codes, 

CodeBright. Gas generated in the waste can migrate by diffusion and advection. In 

the case of two-phase flow, the generated pore pressure may reach sufficient levels to 

induce opening of discontinuities. In the gas injection test phase the inferred pressure-

dependent permeability change no longer strictly corresponds to an effective stress 

change because the pressure in the upper cavern and the total stress in the EBS 

increase. However, the pressure-dependent permeability increases along the 

interfaces which may correspond changes in the minimum effective stress at the top 

of the silo and minimum horizontal stress at the granite interface. 

Simulation of coupled problems is also carried out for laboratory experiments. 

Harrington and Horseman (2003) use CodeBright to model the injection of gas in 

initially saturated soil with permeability variations induced by changes in the degree 

of saturation and deformation.  

Garitte et al. (2008) show analyses for placing heat sources in the Callovo-Oxfordian 

mudstone, in order to study the intrinsic thermal properties of the rock and to 

examine the thermo-hydro-mechanical (THM) couplings. An experiment will be 

launched after the excavation of the GED gallery, an extension of the existing GMR 
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gallery. The excavation of a small niche is planned in the GED drift, from which the 

heater boreholes and instrumentation boreholes will be drilled. One of the objectives 

of the design work is also the determination of the optimal instrumentation pattern.  

2.1.2 The governing equations 

CodeBright is a numerical finite-element model for non-isothermal multiphase flow 

of brine and gas through porous deformable saline media. The governing equations 

for non-isothermal multiphase flow of water and gas, through porous and deformable 

saline media, are presented by Olivella et al., 1996. The equations can be categorized 

into four major groups, i.e. balance equations, constitutive equations, equilibrium 

relationships, and definition constraints. 

Equations for mass balance are established following the compositional approach. 

That is, mass balance is performed for water, gas, and salt, rather than using phases of 

solid, liquid, and gas. An equation for the balance of energy is established for the 

medium as a whole. The momentum-balance equation for the porous medium is 

reduced to that of stress equilibrium. These equations give a full description of the 

hydro-thermo-mechanical state of the medium, in terms of the velocity  of the 

solid in three spatial dimensions, the liquid pressure , the gas pressure 

u

lP gP , and the 

temperature . T

The mass balance of the solid is given by 

               (1) 

where s�  is the mass of the solid per unit volume, sj  is the flux of solid and �  is 

porosity. From this equation, an expression for porosity variation is obtained as 

           (2) 

where = (u xu , , ) is the vector of solid displacements. yu zu
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The water mass balance is described by    

        (3) 

where w
l�  and w

g�  are respectively the mass fraction of water in liquid and gas 

phases, while Sl and Sg are the degrees of saturation of the liquid and gaseous phases, 

i.e. the fraction of pore volume occupied by each phase, and 
wf  is the external 

supply of water. 

The gas mass balance is described by  

   (4) 

where a
l�  and a

g�  are respectively the masses of gas in liquid and gaseous phases, 

 and 'a
lj

'a
gj  are the total mass fluxes of gas in liquid and gaseous phases relative to 

the solid phases, and af  is gas supply. 

The balance of momentum for the porous medium reduces to the equilibrium 

equation for macroscopic total stresses if the inertial terms are neglected (Bear and 

Bachmat, 1986): 

                (5) 

where �  is the stress tensor and  is the vector of body forces. The assumption 

that the inertial terms can be neglected is usually accepted, because both velocities 

and accelerations are small, resulting in inertial terms that are negligible in 

comparison with the stress terms. Bear and Bachmat (1986) also show that under 

certain simplifications, the Terzaghi’s concept of effective stress, i.e. the total stress 

minus fluid pressure for saturated conditions (Terzaghi, 1925), can be obtained. 

Providing an adequate mechanical constitutive model, the equilibrium equation is 

b
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transformed into a form, in terms of the solid velocities, fluid pressures, and 

temperature. A possible decomposition of the strains is 

 
v pe c o

� � � � �
�� � � �

� � � �          (6) 

where 
e
�
�

 is the elastic strain rate due to stress, 
vp
�
�

 is the viscoplastic strain rate 

(except creep), 
c
�
�

 is the creep strain rate, and 
o
�
�

 is the deformation due to 

temperature or fluid pressure changes. Hence, �
�

 is the total strain rate, which is 

related to solid velocities through the compatibility conditions, which can be written 

as 

1 (
2

t
u u�

� �

� 	 �	 )
�

          (7) 

where  and  is respectively the net and total solid-velocity vector. u
� t

u
�

Obviously, the simplest description for a porous material is the elastic one, written as 

eC� �
�

�
�

, where �
�

 is the stress-rate tensor and  is the elastic compliance matrix 

(inverse of the stiffness matrix). 

eC

The equation for internal energy balance for the porous medium is established taking 

into account the internal energy in each of the phases Es, El, and Eg, 

          (8) 

where  is the energy flux due to conduction through the porous medium, the fluxes 

(

ci

, ,Es El Egj j j ) are advective fluxes of energy caused by mass motions, and Qf  is an 

internal/external energy supply. In this case, this source term accounts, for instance, 

for energy dissipation due to deformation of the medium, which is negligible in most 

cases. The use of the material derivative allows for obtaining an equation formally 
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similar to the mass balance for water. The reason for the similarity is that both water 

and internal energy are considered present in the three phases. 

2.1.3 Computational approach for coupled Thermo-Hydro-
Mechanical problems 

This section is divided into two subsections in which the first sub-section describes 

the mechanical problem and integration algorithms while the second sub-section is 

devoted to the handling of the mass and energy balance equations. The partial 

differential equations together with constitutive laws are strongly coupled and 

nonlinear. In section 2.1.3.1 the mechanical constitutive model is discretized. This 

produces a vectorial nonlinear function to be accomplished at every grid point of the 

medium. In section 2.1.3.2 the model is incorporated in the equation of equilibrium of 

stresses. The Newton-Raphson method is used to obtain an iterative scheme to solve 

for the nonlinearities.  Details about the treatment of the different terms 

(accumulation, advective and nonadvective fluxes and volumetric strain) are 

presented in section 2.1.3.3. The Newton-Raphson method is applied to the residual 

form of these mass and energy equation.  

2.1.3.1 Discrized form of the linear elastic-mechanic model 
In Section 2.1.2 the general model to reproduce the stress-strain behaviour is shown 

as Equation (6). The assumption of only elasticity deformations is, from a 

numerically point of view, convenient and practical for CO2-storage scenarios. An 

elastic linear model for the instantaneous deformation is written as 

'
( , , , )

e
s T e� � �

� � � � �

� ,         (9) 

where 
'

�
�

 is the effective stress-rate tensor,  is the difference between gas and 

liquid pressure,  is the rate of temperature change, and e  is the void ratio. 

Equation (9) expresses that the strain rate depends on the rate of stress, the rate of 

s

T
�
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variation of the difference between gas and liquid pressures, and the rate of 

temperature variations. 

If strain is written in terms of the displacement-field , and a finite difference along 

time is performed, Equation (9) can be rewritten as 

u

1 0
e

k k k kh B u m T� 

�

� � � � � � � � �         (10) 

where B  is a tensor of spatial derivatives that transforms the displacement 

component  into the strain components u � , k�  represents an increment between 

time  and , kt 1k�t
e

k �
�

�  is an increment of the elastic strain,  is an auxiliary 

vector defined as , and 

m

(Tm � 1,1,1,0,0,0) 
  is a thermal expansion coefficient (the 

thermal expansion is assumed to be linear). Thus, 1kh �  is a nonlinear function of 

stresses, fluid pressure, temperature, void ratio, and displacements. At each point of 

the medium, this function should vanish in order for the material to behave according 

to the constitutive equations (Olivella, 1995). 

2.1.3.2 Mechanical problem analysis 
The weighted residual method is applied to the stress equilibrium Equation (5) by the 

Green’s theorem, which can be written as 

         (11) 1 1( )k T k k

v

r B dv b� �� � �� � 1 0�

)where  represents the residual corresponding to the mechanical problem and 1( kr � �

1k� �  is the stress vector at time 1kt � . The matrix B  is defined in a way such that the 

stress is formally a vector and not a tensor. The body-force terms and the boundary-

traction terms are both represented by the vector 1kb � .  

The Newton-Raphson method is used to solve Equation (11). The vector of residuals 

at the nodal points should vanish at the next iteration ( 1l � ), thus using a Taylor 

expansion of the residual gives 
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1 1( )l l T l l

v

r r B dv� �� �� � � � 0 .        (12) 

Further, by introducing a Taylor expansion of the constitutive Equation (10) with 

respect to the independent variables , u gP , , and , the equation becomes lP T

1 1 1 1 1 1( ) ( ) ( ) ( ) ( )
l l l l l

l l l l l l l l l l l l
g g l l

g l

h h h h hh h u u P P P P T T
u P P T

� �
�

� � � � � �� � � � �
� � � � � � � � � � � �

� � � � �
0  (13) 

where the superscript  refers to the iteration process. Equation (13) allows us to 

obtain the stress correction at any point in the continuum as: 

l

1 1 1 1( ( ) ( ) ( ) (
l l l l

l l l l l l l l l l l
g g l l

g l

h h h hD h u u P P P P T T
u P P T

� �� � � �� � � �
� � � � � � � � � � �

� � � �
1 ))�  (14) 

where the stiffness matrix for elasticity is defined as 1( )
l

ehD D
�

��
� �

�
. 

Combination of Equations (12) and (14) leads to: 

1 1

1
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� �

  (15) 

where . Thus, the residual  is expressed by two terms; the equilibrium 

of stresses and the constitutive equations which should be accomplished at every 

point. 

/lh u B� � � r

2.1.3.3 Mass and energy balance equations 
It is assumed that the weighted-residual method is applied followed by the use of 

Green’s theorem. After doing so, the discrete form of the equations is obtained, every 

equation representing the balance in a cell associated to a node. Four main types of 

mass and energy balances can be distinguished among the terms in each balance 

equation. In order to explain details of the numerical treatment of mass and energy 
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balance equations, the water mass balance equation is used as an example (Olivella, 

1995). 

Type 1: Storage changes of mass or energy at constant porosity is described by 

( ) ( ) ( )w w k
s g g g g g gk

i i i k
e e e

D S S S
N dv N dv N

Dt t t
� � �

� � �
� �

� �
�  

w

dv
�

    (16) 

where the integral over the element  represents the contribution of node  (see 

Figure 1). Equation (16) describes that the material derivative with respect to the 

solid velocities is approximated and represented as a time derivative by assuming that 

the advective terms caused by the solid motion are small. A finite difference 

approximation in time is then introduced for the partial derivative. It should be 

computed only once for a given mesh, which gives rise to a concentrated matrix, i.e., 

the storage corresponding to node  only depends on state variables at this node. 

e i

i

 

Fig. 1 Representation of a cell in a finite element mesh 

Type 2: Advective flux due to phase motion: 
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where j  indicates a sum over the element nodes and k ��  and k ��  are two 

different intermediate time points between  and kt 1kt � . A generalized Darcy’s law is 

used and written as 

(rg
g g

g

kk
q P �

�
� � 	 � )g g          (18) 

where  is the tensor of intrinsic permeability,  is the relative permeability of 

the gas phase, 

k rgk

g�  is the dynamic viscosity of gas, and  is a vector of gravity 

forces. All the variables that appear inside the integral are considered element-wise. 

g

Type 3: The nonadvective flux due to motion of species is written 

[ ( ) ( ) ]( )T w T k w k w k
i g i g g g j g j

e

N i dv N S D I N dv� ��� � �� �� 	 � 	 	       (19) 

where j  indicates a sum over the element nodes. Fick’s law is also used and can be 

written as: 

w w w
g g g g gi S D I��� �� � 	          (20) 

where �  is a tortuosity parameter, w
gD  is the molecular diffusion coefficient, which 

is a function of temperature and gas pressure, and I  is the identity matrix. Here, a 

diffusive term is used. The tensor of mechanical dispersion is defined in terms of 

phase velocities, which are also considered element-wise, and is computed at the 

intermediated time kt �� . 

Type 4: storage changes caused by volumetric deformation of the medium 
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where j  indicates a sum over element nodes and jB  is the sub matrix j  of B .   
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With all terms transformed into their discrete forms, the partial differential equations 

are converted into a set of nodal balance equations. 

2.1.4 Uncertainties in caprock failure assessment 

Deep aquifers are open geological systems which commonly lack structural 

confinement; cap rock layers are sealing and confining geological units for such CO2 

geological storage sites (Rohmer and Bouc, 2010). The CO2-injection operations lead 

to an increase in the reservoir fluid pressure and changes in mechanical stresses that 

might potentially induce creation of new fractures or reactivation of pre-existing 

faults in the cap rock layers (Hawkes et al., 2005; Rutqvist et al., 2007, 2008; Vidal-

Gilbert et al., 2009). These mechanical discontinuities represent leakage pathways 

(Wiprut and Zoback, 2000) for CO2 to escape from the deep aquifer reservoir, hence 

generating potential risks for the humans and environment (Holloway, 1997), and 

also reducing the efficiency of the storage to mitigate climate change. From a 

practical point of view, cap rock-failure assessment is carried out using predictive 

models which involves a large number of parameters. The models are 

correspondingly computationally time consuming (Rohmer and Bouc, 2010). 

Replacing the complex model by a simplified analytical model is an alternative which 

can be solved easily and fast (Bouc et al., 2009).  

Section 2.1.4.1 gives an overview of the conventional approach for caprock failure 

assessment. The failure criteria used in the CodeBright module is introduced in 

Section 2.1.4.2.  

2.1.4.1 Caprock failure assessment by the effective stress 'ij�

To study geomechanics of the system, effective stress calculation has been 

implemented into RCB according to Terzaghi’s Principle (Terzaghi, 1943). 

According to this principle, effective stress controls the mechanical failure of rock 

and is defined as: 

'ij ij ijP� �� � �           (22) 
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where �  is the Kronecker symbol ( 0ij� �  if i j�  and 1ij� �  otherwise),  is 

pore pressure and 

P

�  is the total stress. 

According to this definition, a tensile fracture will happen if the minimal effective 

stress is negative and its absolute value is greater than tensile strength of the 

formation: 

'm 0� �  & | ' |m� �� , where 'm�  is minimal effective stress and �  is Tensile 

strength. 

CO2 injection will lead to an increase in the pore pressure inside and around the host 

reservoir that results in a general decrease of the effective stress (Hawkes et al., 2005; 

Rutqvist et al., 2007, 2008; Vidal-Gilbert et al., 2009). Two main mechanical failure 

mechanisms must be taken into account when predicting the performance of a 

particular site for CO2 sequestration (Rutqvist et al., 2007, 2008), i.e., tensile 

fracturing and shear-slip reactivation of pre-existing fractures and faults.  

2.1.4.1.1 Tensile fracturing 

A tensile fracture can be induced provided that the minimal effective stress min '�  

becomes negative (compressive stress is positive by convention) and its absolute 

magnitude exceeds the tensile strength either of the rock matrix or of the fracture TR . 

In risk management, we consider that the most critical tensile fracture is vertical, as it 

represents a direct conduit from the host reservoir to the surface (Rohmer and Bouc, 

2010). The tensile failure criterion  is defined such that tF min ' h '� �� , i.e., 

( , ') ( ')t T h T hF R R� �� � �           (23) 

Tensile fracturing appears if .  0tF �

2.1.4.1.2 Shear slip fault reactivation 

The potential for shear slip along pre-existing faults or fractures can be defined based 

on the Coulomb criterion, using the maximum shear stress � , which acts along the 
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fault plane and on the mean effective stress 'm�  (Jaeger and Cook, 1969). We 

assume that a cohesion less fault can exit at any point of the studied zone and with an 

arbitrary orientation, following the methodology described in (Rutqvist et al., 2007, 

2008). The Coulomb criterion can be written in the principal stress plane (Jaeger and 

Cook, 1969) as 

| | 'sin( ') 'cos( ')m c� � �� � �  

where  is the fault coefficient of internal cohesion and 'c '�  is the fault angle of 

internal friction. In the present study, we consider that the most critical faults are 

cohesion less, i.e. , hence the shear-slip failure criterion ' 0c � sF  is defined such 

that 3 ' h '� ��  and '1 ' v� ��  as follows: 

( ', ', ') ( ' ') ( ' ') sin( ')s h v v h v hF � � � � � � � �� � � �       (24) 

A pre-existing cohesion less fault is reactivated if . 0�sF

2.1.4.2 The failure criteria 
A major challenge in estimating the capacity of reservoirs/aquifers for geological 

storage of CO2 is the geological heterogeneity in the reservoir, in particular the 

presence of sub-seismic fractures, faults, and deformation structures. CO2 injection 

increases the fluid pressure, which leads to changes in the stress state of the reservoir 

and also in the sealing rocks above and below the reservoir. Under high strain rates, 

sealing rocks may become brittle but it is difficult to establish general failure criteria. 

The use of empirical criteria requires attention to the original conditions and systems 

they were derived from and limitations in extrapolability (Olivella, 1994).  

The general form for computation of fracture strains is written as 

1f

ìj

ij

FF�
� �

� �
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�
          (25) 
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where  is the extended Drucker-Prager criterion (Drucker and Prager, 

1952) where  equals 0 if 

1 2( , )F F I I�

F� � 0F �  and equals , otherwise. HereF
f

ij�
�

 is the 

strain-rate tensor at failure, 1I  is the first invariant of the stress tensor,  is the 

second invariant of the deviatoric stress tensor, and 

2J

�  is a viscous parameter that 

may depend on the state variables. 

The extended Drucker-Prager criterion is given by Hunsche and Albrecht (1990). The 

criterion is a function of a failure octahedral shear stress, which is temperature 

dependent, octahedral normal stress, and Lode’s parameter. Hambley et al (1989) 

propose a combined failure criterion. Juvinal and Marshek (1991) pointed out that 

this criterion is an extension of the Mohr-Coulomb criterion. Colmenares and Zoback 

(2002), examined seven different failure criteria by minimizing the mean standard 

deviation between the predicted failure stress and corresponding experimental data 

for five different rock types at a variety of stress states. They find that the polyaxial 

criterium, the Modified Wiebols and Cook criterium, and the Modified Lade 

criterium  all achieve a good fit to most of the test data. 

Among the available mechanical constitutive laws, the thermo-elastoplastic law is 

based on the Basic Barcelona Model (Alonso et al. 1990) which was developed to 

describe the hydro-mechanical behaviour of partially saturated soils. The relevance of 

this model for highly expansive clays is investigated. An extension of the Mohr-

Coulomb failure criteria for partial saturated soil has been used to model stress-strain 

behaviour in CodeBright.  

 

2.2 Retraso

A brief literature survey on the use of the RetrasoCodeBright is given in section 

2.2.1, followed by a more detailed description of the Retraso part of the code in 

Section 2.2.2. 
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2.2.1 Introduction of Retraso 

Retraso models the interactions between transport processes and chemical reactions 

of solutes in the groundwater. The transport processes include advection, dispersion, 

and diffusion. Chemical reactions include acid-base reactions, redox reactions, 

complexation, biodegradation, adsorption, cation exchange, and 

precipitation/dissolution of minerals. The simulator is therefore capable of describing 

the main processes which are relevant for soil and groundwater contamination 

problems, including studies of groundwater quality and water-rock interaction.  

In a study on the impact of a mine-tailing spill at Aznalcóllar in south-western Spain 

Saaltink et al. (2002) investigate the oxidation of pyrite and other sulphides using a 

two column experiments and reactive transport modelling. The columns were filled 

with pyritic sludge mixed up with a sandy and a clayey soil, respectively. Prior to 

simulating reactive transport, the flow model, CodeBright, is applied which permitted 

a detailed description of the behaviour of the column at a daily time scale. The most 

important parameter extracted was the hydraulic saturation. This parameter controlled 

the amount of O2 that could diffuse into the soil, which affected the rate of pyrite 

oxidation. Two types of models were developed: (1) transient flow and heat transport 

without solute transport and chemical reactions; and (2) steady-state flow and 

reactive transport. The sandy and clayey columns behaved very differently. Finally, 

the model was used to predict the behaviour of other soil types and other sludge 

contents. 

The alluvial deposits of the Agrio River, in south-western Spain, are studied using 

terrace mapping, boreholes, trenching, and vertical electrical sounding, to select an 

adequate location for a permeable reactive barrier. Permeable Reactive Barriers 

(PRBs) are deep trenches excavated into an aquifer and filled with a permeable 

material that causes pollutants to either degrade or precipitate. Design of the reactive-

barrier material is aided by laboratory column experiments. These experiments are 

qualitatively reproduced by means of Retraso (Salvany, et al. 2004), which allows for 
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simulation of the long-term behaviour of the barrier, and also support the design of 

the width of the PRB. 

There has been considerable progress on reactive transport modelling during the last 

twenty years. Reactive transport involves many chemical species that together 

undergo complex interactions and chemical reactions. Saaltink et al. (1998) used 

algebraic manipulations to reduce the number of variables to the minimum, i.e. to the 

actual degrees of freedom according to the phase rule. As algorithm for solving the 

highly non-linear mathematical equations for reactive transport in Retraso the one-

step global implicit, or Direct Substitution Approach in implemented. In the 

algorithm chemical equations and transport equations are solved separately. One, 

two, and three-dimensional finite elements can be used for the spatial discretization.   

2.2.2 The governing equations 

Aqueous complexation reactions 

The continuous motions of dissolved ions, together with their large number per unit 

volume that causes numerous collisions, make the formation of ion pairs and 

dissolved complexes possible. Since these reactions are almost instantaneous, they 

can be effectively considered as equilibrium reactions, i.e. 

log log log ( )a a a a a aK S c S c�� �         (26) 

where  is the equilibrium-constant vector, which only depends on temperature 

and pressure,  is the stoichiometric coefficient matrix for aqueous complexation 

reactions,  is the molar concentration vector of aqueous species, and 

aK

aS

ac a�  is the 

vector of thermodynamic activity coefficients.  

Gas-liquid interactions under equilibrium conditions 

Assuming that all gas-liquid reactions are sufficiently fast with respect to the flow, 

the equilibrium condition is 
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1log log log log log 1f f f f a fp K S c S a� �� � � � �       (27) 

where fp  is the vector of partial pressure of the gas species in the gas phase, f�  is 

the vector of activity coefficients for gas, fS  is the submatrix of stoichiometric 

coefficients for the gas-dissolution reactions 1( )f aN N� , and fK  is the vector of 

equilibrium constants (Saaltink et al., 2005). 

Solid-liquid interactions under equilibrium conditions 

Under equilibrium conditions, dissolution-precipitation reactions can be described as 

1log log log log logm m m m a mX K S c S 1a� �� � � �       (28) 

where mX  is the vector of molar fraction of the th species in a solid phase, with 

its thermodynamic activity coefficient

m

m� ,  is the submatrix of stoichiometric 

coefficients of the dissolution reactions (

mS

mN 1aN� , with  being the number of 

minerals), and  is the vector of equilibrium constant. 

mN

mK

Kinetic rate laws 

In RetrasoCodeBright, the rates of mineral dissolution or precipitation, is calculated 

according to the general expression of Lasaga (1984) 
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where  is the mineral dissolution rate (moles of mineral per volume of rock 

and unit time), is the experimental rate constant (in the same units). The 

saturation ration  is the ratio between the ion-activity product and the 

solubility product, 
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where 
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� �) )                           (31)      

The log  value is known as the saturation index . The system reaches the 

minimum free energy at equilibrium when 

m# mSI

m#  = 1 or  = 0. The parameters mSI �  

and �  must be determined from experiments. The term inside the parenthesis in 

Equation (29) are called the far-from-equilibrium function, and decreases the reaction 

rate in a non-linear way as the solution approaches equilibrium. The extra subscript 

"actual" on the activity a in Equation (30) distinguishes the actual non-equilibrium 

activity for the equilibrium activity in Equation (31).  The c in Equation (31), is 

either the concentration or mole-fractions, depending on the actual units used for the 

K-values. A similar consistent formulation will occur in Equation (30), for the real 

concentrations and corresponding activity coefficients �, for actual non-equilibrium 

conditions. The term accounts for the catalytic effect of some species 

(particularly of H+) and the value of pi is determined by fitting experimental data. For 

reactions that are slow at ambient conditions, the experiments are carried out at 

temperatures that are sufficiently high to result in dissolution within reasonable 

reaction times. Scaling of the rate constants are normally done through the Arrhenius 

equation 

ip
iacc

,
0 exp( )a m

m

E
k k

RT
�

�
                                      (32)          

where  is a constant and 0k ,a mE  is the apparent activation energy of the overall 

reaction process that for most minerals range from 30 to 80 kJ/mol. The parameters 

 and  are determined from experiments performed at different temperatures. 0k ,a mE
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2.3 The coupling of CodeBright and Retraso 

The coupling of Retraso and CodeBright is described as follows: In one time step, 

which is pre-described by user, the CodeBright module first calculates the mass flow, 

heat transport and geomechanical deformation. All these properties, as well as 

physical properties and state conditions like liquid pressures (Pl), gas pressures (Pg), 

temperatures (T), deformations ( ), flux of liquid, flux of gas, and hydraulic 

saturation, are transferred to Retraso. The initial integration time step defined in 

CodeBright, is divided into a smaller subdivision for integration over the fluxes of 

individual molecules and ions, taking into account possible reactions between fluids 

and solid, in either an equilibrium approximation or reaction kinetic formulation 

(Lasaga et al., 1984). Porosity is updated according to mineral erosion or mineral 

precipitation, and permeability is updated according to a commonly used correlation 

(Kozeny, 1927). All detailed results from the individual fluxes and phase properties 

are then transferred back to CodeBright for next time step. Both CodeBright and 

Retraso adopt the Newton-Raphson iterations to solve the non-linear algebraic 

systems of governing equations. Since extensive modifications of the original code 

are implemented through this project, the current algorithms will be described in 

sufficient detail below for future reference. The coupling of the two modules is 

schematically illustrated in Fig. 2.   

u
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CodeBright: Flow/Heat/Geomechanics 

Independent Variables: 
Temperature(T), gas  pressure(Pg), l iquid pressure(Pl), 
deformation(u)

Dependent Variables and Features:
Flux of liquid, flux of gas, hydraulic saturation, porosity ...

Newton Raphson iteration(1)

Retraso: Reactive transport module

Update flow properties affected by reactive transport, including 
porosity and salinity.

Copy relative  variables 
for Retraso if iteration(1)
succeeds

Newton Raphson iteration(2)
If iteration(2) 
succeeds, 
go to 
next time step

 
Fig. 2 RCB solves the integrated equations sequentially in one time step 

2.4 The graphical user interfaces 

The software VisualRetraso by Saaltink et al. (2005) and a software called GiD by  

the International Center For Numerical Methods In Engineering (CIMNE), are the 

two interactive graphical user interfaces, for pre- and post-processing, i.e., for the 

definition, preparation, and visualization, of all the data related to the numerical 

simulator RetrasoCodeBright. VisualRetraso reads all the data, including a definition 

of the geometry, the geochemical data, and the thermal-hydraulic-geomechanical 

data. The program then generates a mesh for finite-element analysis and output the 

information for RetrasoCodeBright in its desired format. Then the output 

information, together with the chemical equilibrium database and the kinetics 

database, are read by RetrasoCodeBright for numerical simulation. When the 

simulation finishes, the mesh with all the results are sent to GiD for visualization. 

Fig. 3 illustrates the whole workflow.        
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Fig. 3 The workflow of the pre-process VisualRetraso, code RCB and post-process GiD 
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3. Extended code RCB for coupled Thermo-Hydro-
Mechanical-Chemical transport problems in CO2
storage in saline aquifers modeling 

As discussed in the introduction in Chapter 2, RCB is a numerical tool developed for 

coupled hydro-thermal-geomechanical-geochemical modelling. However, to be able 

to simulate CO2-storage scenarios, RCB must be further extended. The extensions 

include an improvement of the Newton-Raphson scheme to strengthen the robustness 

of the numerical iterations in CodeBright and the possibility of specifying CO2 gas 

properties in Retraso, i.e. the CO2 gas-density correction and corrections on solubility 

of CO2. These extensions will be introduced in Sections 3.1 and 3.2 respectively. 

3.1 Improved Newton-Raphson iteration method in 
CodeBright module 

The original RCB applies the ideal-gas assumptions, which is far from the state of the 

CO2 that is injected and then migrates under high temperature and high pressure 

conditions in deep saline aquifers. The extension of a hydro-geological simulator 

from ideal-gas assumption into a high-pressure CO2-storage simulator turned out to 

be far more challenging than just implementing corrections for densities and gas 

solubility. The numerical algorithms have been extensively rewritten in order to 

increase the convergence qualities of the code.    

The governing equations for non-isothermal multiphase flow of liquid and gas, 

through porous deformable saline media, have been established. Variables and 

corresponding equations are listed in Table 1. 
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Equation Variable name Variable 

Equilibrium of stresses Displacements u  

Balance of liquid mass Liquid pressure Pl 

Balance of gas mass Gas pressure Pg 

Balance of internal energy Temperature T 

Table 1 Equations and independent variables

After the spatial discretization of the partial differential equations, the residuals 

obtained can be written (for one finite element) as 

0
0
0
0

u u u u

Pl Pl Pl Pl

Pg Pg Pg Pg

T T T T

r d a b
r d a bd
r d a bdt
r d a b

! " ! " ! " ! " ! "
$ % $ % $ % $ % $ %
$ % $ % $ % $ % $ %� � � �$ % $ % $ % $ % $ %
$ % $ % $ % $ % $ %$ % $ % $ % $ % & '& ' & ' & ' & '

        (33)            

where r is the vector of residuals, dd/dt contains the storage or accumulation terms, a 

is the vector of conductance terms, and b contains the sink/source terms and 

boundary conditions. After discretization in time, a more compact form is 

� � � � � �
1

1 0
k k

k k k
k

d dr X A X X b X
t

� � �
�

� � ��
� � �

�
k� �        (34)            

where k is the time step index, : X=[(ux,uy,uz,Pl,Pg,T)(1), ..., (ux,uy,uz,Pl,Pg,T)(n)], is 

the vector of unknowns (i.e. a maximum of six degrees of freedom per node), and A 

represents the conductance matrix. The Newton-Raphson scheme for solution of this 

non-linear system of AE's is 
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where l indicates iteration. In the present approach, the standard Galerkin method is 

used with some variations in order to facilitate computations. 

The mathematical equations for the system are highly non-linear and they will be 

solved numerically. The numerical approach can be viewed as divided into a spatial 

and a temporal discretization. A finite element method is used for the spatial 

discretization while finite differences are used for the temporal discretization. The 

discretization in time is linear and the implicit scheme uses two intermediate points, 
kt �� and kt �� between the initial and final kt 1kt �  times.  

The Newton-Raphson method is adopted to derive the iterative scheme. This scheme 

is been modified through the introduction of a relaxation factor according to the 

algorithms of Nakata and Fujiwara (Nakata et al., 1993), in which we obtain the 

proper relaxation factors, denoted by + , combining the general-tendency method 

and time-step-reduction method. 

The Newton-Raphson iteration scheme is rewritten as  

       (36) 

where l is the iteration number, +  is between 0 and 1, and + is not unique.  

Commonly, if the relaxation factor that minimizes the total square residual for the 

Galerkin method, then this relaxation factor is introduced at each step of the 

nonlinear iteration, a convergent solution can be always obtained (Nakata et al., 

1993). Therefore, we name the relaxation factor, the optimum relaxation factor, 

marked as m+ . However, usually it is computationally very expensive to determine 

it, because a large number of repeated square-residual calculations is required. 

Therefore, the time-step-reduction algorithm is adopted to iteratively find m+ . The 

algorithm always starts with a conventional Newton method with 1+ � , and the value 

is reduced to half of the previous value, following 
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( ) 1/ 2k n+ �        (37) ( 1,2,... 0,1,2,...)k n� �

where is the iteration number. Following each iteration the total square residual of 

the Galerkin method is calculated and compared with the previous value. The 

relaxation factor 

k

k+  is selected, when following criterion is satisfied, 

, - , -21

1 1

nu nu
k
i

i i
G �

� �

�( (
2k

iG         (38) 

This robust method ensures, not only, that the optimal factor can be determined, but 

also, that it can be determined with a significantly less computational effort.  

3.2 Estimation of CO2 properties in code Retraso 

The properties of carbon dioxide are important in the calculation of the rate of gas-

flow through the reservoir rock, in material balance calculations, for evaluation of gas 

reserves, and in reservoir simulations. In the CO2-storage scenarios, gas mixtures, 

including CO2 gas and other non-CO2 gases, are injected into the storage formations. 

The methods available in the literature, for the calculation of the properties of CO2 

gas, can be classified into three groups. The first group uses gas composition or gas 

gravity to calculate pseudo-critical properties of gases and predicts gas properties 

from empirical correlations. The second group uses gas composition to estimate gas 

properties via the method of corresponding states. The third group is based on the 

equations of state (EOS) approach and has the advantage of using a single equation to 

calculate the k-value, compressibility, density, and viscosity (Guo et al., 2001). The 

use of an EOS also ensures stable convergence in the vicinity of the critical point. 

Furthermore, in EOS-based viscosity models the density calculation is not required 

for computation of viscosity. 

At the current stage the primary goal of this project is to demonstrate features of 

Retraso, and the Soave-Redlich-Kwong EOS (Soave, 1972) that is used to calculate 

the compressibility factor of CO2 fluid, and details are presented in Sections 3.2.1 and 
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3.2.2. The corrected mass-balance equation for CO2 reactive transport is presented in 

Section 3.2.3. Even though SRK-EOS is not the best equation for this purpose, 

corrections can be applied to improve the accuracy of this EOS for gas-property 

prediction. At the current stage the primary goal is to demonstrate the features of 

Retraso. The functions for thermodynamic and transport property calculations can be 

easily changed in the code at later stages later. 

3.2.1 Gas density correction 

The gas equation is written as 

PV ZnRT�            (39) 

where  is the pressure, is the volume, P V Z  is the compressibility factor for the 

gas,  is the number of moles, n R  is the ideal gas constant, and  is the 

temperature. The compressibility factor for CO2 is calculated using the SRK-EOS 

tabulated as function of temperature  and pressure , and estimated by bilinear 

interpolation (Hellevang and Kvamme, 2007). 

T

T P

The concentration of CO2 in gas phase ( ) is expressed in mole per unit of volume 

as 

2COc

2CO
Pc

ZRT
�            (40) 

The gas density of CO2 is: 

2
2

CO
CO

PM
ZRT

� �           (41) 

where  is the molar weight of CO2 (44.01 ), 2COM /g mol R  is the gas constant 

(8.3143 ). The units of  and T , are respectively in bar and Kelvin.  1 mol�. . 1�J K P
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3.2.2 Correction on CO2 solubility 

The bubble-point mole fraction of CO2 is calculated according to 

2
2

exp (1 )b
CO

CO

P vx P
H RT
�

/0 12� 3
2 24 5

2� 6         (42) 

where � is the fugacity coefficient for CO2 estimated from the SRK-EOS,  is 

the Henrys-law coefficient for CO2, P is pressure (bar), T is temperature (K), R is the 

gas constant, and 

2COH

v/  is the partial molar volume of CO2 at infinite dilution. The 

fugacity coefficient is calculated as a function of temperature and pressure by a 

polynomial that is interpolated from SRK data. The Henrys-law coefficient is found 

from a polynomial that is interpolated as a function of temperature and salinity from 

listed experimental data (Zheng et al., 1997). Finally, 2
b
COx  is the Poynting correction 

to the Henrys-law coefficient. 

3.2.3 mass balance equation for CO2 reactive transport 

The chemistry of CO2-gaseous species is added to the reactive transport equation, 

which becomes 

2

2

2

(1 ) ( ) ( ) ( )

g
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co tl l a s m
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� � �
  (43)    

This equation constitutes the  reactive-transport equations, where means the 

numbers of primary species in the system. Vectors , (mol kg-1) are the 

concentrations of aqueous species, and mineral species, and is the partial pressure 

of CO2. The matrices , , and

Nc

mU

Nc

ac mc

2coP

aU gU , are named the component matrices for 

aqueous, mineral, and gaseous species, and the matrices relate the concentrations of 

the species to the total concentrations of the components. The variable �  is the 

porosity of the media, while  andlS gS  are respectively the liquid and gas 
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saturation, R  is the gas constant, T  is the temperature, and 
2coZ is the 

compressibility factor for CO2. The matrix  is the component matrix for all the 

species. Together with , , and 

U

aU mU gU , all these matrices can be calculated from 

the stoichiometric coefficient of the chemical reactions. The matrix  and vector 

 contains the stoichiometric coefficients and the rates of the kinetic reactions, 

which can be considered as functions of all aqueous concentrations. We have also 

defined  and 

kS

kr

lL gL

l l

 as linear operators for the advection and dispersion/diffusion as  

( ) ( ( ( ) )l l( ) )l l lL q D S m        (44) � � �� � 	 � � � �	 	

1() ()( )( ())g g g g gL q m
T T

� � �
i i

S
Z R

D 	
Z R

�	 � � 	 �             (45) 

where  and lm gm  are the non-chemical source-sink terms (mol m-3 s-1) and  

and 

lD

gD  are the dispersion/diffusion tensors (m2 s-1), for the liquid and gas phase. 

Finally, is the compressibility factor for th gas. iiZ
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4. Two examples for demonstrating geomechanical 
effects of CO2 injection in cold aquifers with 
possibility of hydrate formation and sandstone 

Two 2D hydro-chemical-mechanical models are presented in this section. Both of the 

two models are created which have 3 layers (2 layers with aquifers and 1 layer with 

cap rock on which two fractures are introduced). The differences between these two 

models are most on temperature. In the first example where the formation 

temperature is low and hydrate formation possibility is included in the model. The 

temperature in the second example is relatively high and the conditions in the 

example below are outside hydrate stability region. RetrasoCodeBright has been used 

to simulate the storage of CO2 in this model. For this purpose hydrate has been added 

as a pseudo-mineral component and the hydrate phase transition dynamics have been 

implemented into RetrasoCodeBright along with kinetic description of ordinary 

mineral/fluid reaction kinetic models. Corrections for effects of porosity changes on 

permeability are included but so far based on traditional correlations for 

mineral/fluid. We focus on the implications of the dissociation or precipitation of 

minerals as well as hydrate formation or dissociation (according to the value of pH) 

on geomechanical properties of the reservoir (Kvamme B. et al., 2011). 

4.1 CO2 injection in cold aquifers with the possibility of 
hydrate formation 

We study the hydro-mechanical changes associated with CO2-injection into a brine 

formation. The geometry of the 2D domain is 1000m x 250m rectangle. There are 2 

aquifers, 3 cap rocks and 2 fracture zones in the geometry. The area in the bottom and 

top are aquifers. Bottom aquifer is a 1000m x 150m rectangle and top aquifer is 

1000m x 50m rectangle. The three zones between two aquifers are cap rocks with 

dimension of 298m x 50m in both sides and 396m x 50m in the middle. There are 

two fracture zones, one between left and middle side cap rocks, the other between 
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middle and right side cap rocks. These fractures have dimensions 4m x 50m each. 

CO2 is injected at 50 meter height from the bottom in the bottom aquifer as shown in 

the Fig. 4. 

 

Fig. 4 Schematic of the model  

Composition of rocks in each zone is as follows; aquifers have a porosity of 0.1 and 

among minerals it has 10% calcite, 80% quartz. Pressure and temperature at each 

node are defined in one of the input files. In reservoir pressure gradient is 1.0 

MPa/100m and temperature gradient is 3.6 °C/100m. CO2 injection pressure is 4.6 

MPa. Pressure boundaries are also defined at top and bottom of the reservoir, at the 

top 2.5 MPa and at the bottom 5 MPa. Pressure boundaries enclose the reservoir. The 

initial stresses are given in absolute values in a range from 5.67 MPa on upper 

boundary to 11 MPa on the bottom boundary. The initial temperature at the upper 

boundary is 4°C and 11.2°C at the bottom. The summary of this model and properties 

are presented in Table 2 to 6. 
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Aquifers  Cap rock and fractures

Ca+2 
H2O 

HCO3- 
H+ 

SiO2(aq) 
CaCO3(aq) 

CaH2SiO4(aq) 
CaHCO3+ 

CaOH+ 
CO2(aq) 
CO3-2 
OH- 

H2SiO4-2 
HSiO3- 

Ca+2 
H2O 

HCO3- 
H+ 

SiO2(aq) 
CaCO3(aq) 

CaH2SiO4(aq) 
CaHCO3+ 

CaOH+ 
CO2(aq) 
CO3-2 
OH- 

H2SiO4-2 
HSiO3- 

Table 2 chemical species (primary and secondary aqueous species) in different 

formations 

 

Mineral volume fraction 

with 11.1% calcite 

[m3/m3] 

Mineral reactive surface 

with 11.1% calcite, [m2/m3] 

Aquifers; 10% porosity Calcite (0.1) 
Quartz (0.8)   

Calcite (100) 
Quartz (800)   

Cap rock; 1% porosity Calcite (0.1)  
Quartz (0.89)  

Calcite (100)  
Quartz (890)  

Fractures; 

5% porosity 
Calcite (0.1)  
Quartz (0.85)  

Calcite (100)  
Quartz (850)  

Table 3 Initial composition of minerals 

Zone Aquifers Cap rocks Fractures 
Permeability ( ) 2m 1e-13  1e-17  1e-12  
Longitude dispersion factor ( m ) 11  11  11  
Molecular diffusion ( m ) 1e-10  1e-10  1e-10  

Table 4 Permeability, dispersion and molecular diffusion 
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Property Aquifers Cap rocks Fractures 
Young’s modulus, E [GPa] 0.3  0.3  0.3  
Poisson’s ratio 0.2  0.2  0.2  
Porosity 0.1  0.01  0.05  
Zero stress porosity, �0 0.1  0.01  0.05  
Zero stress permeability,  
K0 [m2] 1.0e-13  1.0e-17  1.0e-12  

Irreducible gas and liquid saturation, 

Srg 0  0  0  

Van Genuchten’s gas-entry pressure, 

P0 [MPa], (at zero stress) 0.0196  0.196  0.196  

Van Genuchten’s exponent [m] 
0.457  0.457  0.457  

Table 5 Material properties 

Parameter Bottom Boundary Top Boundary 

Pressure, P(MPa) 
5  2.5  

Mean Stress, �(MPa) 
11  5.67  

CO2 initial injection pressure, Pg (MPa) 
4.6* -  

CO2 final injection pressure, Pg (MPa) 
4.6* -  

Gas and liquid outgoing pressure (MPa) 
5  2.5  

Temperature(°C) 
11.2 4 

* at the injection point 

Table 6 Initial and boundary conditions 

Simulation results for different time steps are presented in the following. Liquid and 

gas phase fluxes, porosity and effective stress are the parameters of interest. Each 

figure shows the results at three time steps: results for starting day at the top, after 

280 days at the middle and results after 563 days at the bottom, which for effective 

stress figure it is 320 days. 
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Fig. 5 Liquid phase flux (m/s) at starting day (top), after 280 days (middle) and 563 

days 

 

Fig. 6 Gas phase flux (m/s) at starting day (top), after 280 days (middle) and 563 days 
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Fig. 7 Porosity changes at starting day (top), after 280 days (middle) and 563 days 

  

Fig. 8 Effective stress at starting day (top), after 280 days (middle) and 320 days 

Figure 5 and 6 show the liquid and gas phase fluxes respectively. These figures 

clearly show that because of the fractures flow will reach the upper aquifer in a 
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relatively short time. As soon as CO2 reaches the top aquifer, it will start forming 

hydrate due to suitable temperature and pressure conditions as shown in figure 7. 

Figure 8 shows the effective stress in yy direction in the reservoir. According to this 

figure, minimum effective stress is -4.9074 MPa. A comparison between tensile 

strength of sand stone is in the literature (Huang S. et al, 2010) and the minimum 

effective stress in this simulation suggests that it might be in the range of tensile 

strength for similar material. 

4.2 CO2 injection in sandstone 

The geometry of the second model has 2D domain which is 1000m x 500m rectangle. 

There are 2 aquifers, 3 cap rocks and 2 fracture zones in the geometry. The area in the 

bottom and top are aquifers. Bottom aquifer and top aquifer are 1000m x 200m 

rectangular. The three zones between two aquifers are cap rocks with dimension of 

300m x 100m in both sides and 392m x 100m in the middle. There are two fracture 

zones, one between left and middle side cap rocks, the other between middle and 

right side cap rocks. These fractures have dimensions 4m x 100m each. CO2 is 

injected at 30 meter height from the bottom in the bottom aquifer as shown in the Fig. 

8. 

 

Fig. 8 Schematic of the model  
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Composition of rocks in each zone is as follows; aquifers have a porosity of 0.1 and 

among minerals it has 4% calcite. Pressure and temperature at each node are defined 

in one of the input files. In reservoir pressure gradient is 1.0 MPa/100m and 

temperature gradient is 3.6 °C/100m. CO2 injection pressure is 14.5 MPa. Pressure 

boundaries are also defined at top and bottom of the reservoir, at the top 10 MPa and 

at the bottom 15 MPa. Pressure boundaries enclose the reservoir. The initial stresses 

are given in absolute values in a range from 22.28 MPa on upper boundary to 33.14 

MPa on the bottom boundary. The initial temperature is 36°C at the top and 54°C at 

the bottom. The summary of this model and properties are presented in Table 7 to 10. 

Property  Aquifers Cap rocks Fractures  

Young’s modulus, E 

[GPa]  
0.5  0.5  0.25  

Poisson’s ratio 0.2 5 0.2 5 0.2 5 

Porosity  0.1  0.01  0.05 

Zero stress porosity, 0 0.1  0.01  0.05 

Zero stress permeability, 

k0 [m2]  
1.0e-13  1.0e-17 1.0e-12 

Irreducible gas and 

liquid saturation, Srg  
0  0  0  

Van Genuchten’s gas-

entry pressure, P0 

[MPa], (at zero stress)  

0.0196  0.196  0.196  

Van Genuchten’s 

exponent [m] 
0.457  0.457  0.457  

Table 7 Material properties 
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Species  
Aquifers: 10% 

porosity  

Cap rock:  1% 

porosity  

Fractures: 5% 

porosity  

Mineral volume 

fraction with 4% 

calcite [m3/m3]  

Calcite (0.036) 

Quartz (0.864)  

Calcite (0.04) 

Quartz (0.95)  

Calcite (0.038) 

Quartz (0.912)  

Mineral reactive 

surface with 4% 

calcite, [m2/m3]  

Calcite (36)  

Quartz (864)  

Calcite (40) 

Quartz (950)  

Calcite (38) 

Quartz (912)  

Table 8 Initial composition of minerals 

Parameter Bottom Boundary Top Boundary 

Pressure, (MPa) 15 10 

Mean Stress, (MPa) 33.14 22.28 

Temperature (°C) 54 36 

CO2 initial injection 

pressure, (MPa)  
14.5 (at the injection point) - 

CO2 final injection 

pressure, (MPa) 
14.7 (at the injection point) - 

Gas and liquid outgoing 

pressure (MPa) 
15 10 

Table 9 Initial and boundary conditions 
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Zone Aquifers Cap rocks Fractures 

Permeability ( m2) 1e-13 1e-17 1e-12 

Longitude dispersion 

factor ( m ) 
11 11 11 

Molecular diffusion (

m ) 
1e-10 1e-10 1e-10 

Table 10 Permeability, dispersion and molecular diffusion 

Simulation results for different time steps are presented in the following. Gas phase 

fluxes, effective stress, liquid pressure, gas pressure and liquid saturation are the 

parameters of interest. Each figure shows the results at two time steps: results after 12 

months at the top and results after 27 months at the bottom. 

 

Fig 9 Liquid pressure after 12 months and 27 months 
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Fig 10 Gas pressure after 12 months and 27 months 

 

Fig 11 Liquid saturation after 12 months and 27 months 
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Fig 12 Effective stress in “yy” direction after 12 months and 27 months 

 

Fig 13 Gas phase flux (m/s) after 12 months and 27 months 
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5. Introduction to the papers 

The main part of this thesis consists of a collection of published papers concerning 

modelling of CO2 storage in saline aquifers by using the simulator 

RetrasoCodeBright. 

Paper1 has introduced the extended version of a geomechanical reactive transport 

simulator RetrasoCodeBright which can handle high pressures relevant for reservoir 

storage of CO2. Corrections for non-ideal gas have been based upon the SRK 

equation of state which can be easily replaced by similar results from any equation of 

state since the necessary data are interpolated from calculated tables of 

compressibility factors and fugacity as function of temperature and pressure. The 

convergence of the Newton-Raphson iterative solution has been improved through 

implementation of an algorithm that minimizes the total square residual from the 

Galerkin method after each iteration step. The corrected version has been applied to a 

simple test case where the reservoir only has aquifers without any cap rock sealing.  

Paper2 has also introduced the new CO2 storage simulator on the RetrasoCodeBright 

platform by inclusion of non-ideal gas description using an equation of state for 

calculation of gas solubility and incorporation of realistic fluid densities as function 

of local pressure and temperature. A test case has been used to illustrate numerical 

solution from the new CO2 simulator. In this case the geological size of the reservoir 

has been enlarged and a cap rock layer has been put on the top of aquifer. 

Paper3 is a chapter of book “Carbon Dioxide Capture for Storage in Deep Geological 

Formation”, volume 3. This book is a summary of results from the Carbon Capture 

Project stage 2 (CCP2) which was a Joint Industrial Program headed by Chevron and 

BP. In this paper we have reported the motivation of developing a CO2 storage 

simulator which is able to address geochemical and geomechanical reservoir stability 

concerns within one implicit software package. All the equations in the original code 

RetrasoCodeBright and the extensions which haven been made into this code have 
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been introduced in detail. Two 2D hydro-chemical-mechanical problems are used to 

illustrate the modified RCB code. The purpose of the first case is to demonstrate 

implications of geochemical buffering in systems containing high portions of rapidly 

dissolving calcite, while the second test case gives examples of fracture description 

using the classical approach of defining a fracture through extremely high 

permeability. 

Paper4 focus on explaining the improved Newton-Raphson iteration method which 

has been included in code RetrasoCodeBright. The traditional Newton-Raphson 

method can tend to diverge due to a number of causes. Reactive flow simulations in 

porous medium with implicit geomechanical analysis are very complex problems 

which require more robust iteration method. By adding an optimum relaxation factor 

the solutions of the equations can be successfully found even when the conditions are 

extreme. 

Paper5 focus on the importance of geomechanical implications of the changes on the 

stability of the reservoir in the evaluation of potential injection reservoirs. In cold 

aquifers the formation of CO2 hydrate will affect flow paths and may also have 

implications on the geomechanical stability due to the increase in volume of the 

formed hydrate. In this paper a 2D hydro-chemical-mechanical problem is solved by 

the improved RCB code. The results are presented and compared. Strategies for using 

the simulator for hydrate exploitation purposes have also been discussed. 

Paper6 has given a detailed introduction on the current on-going geological CO2 

storage projects worldwide, of which two are the Sleipner and Snøhvit projects in 

Norway. The Slepner project has been running since 1996. One million tones of CO2 

are captured and stored in a sandstone formation Utsira. The Snøhvit project is 

located in the Barents Sea. It started in October 2007 and more than 700,000 tones of 

CO2 are stored yearly. In Algeria a CO2 sequestration project in connection with In 

Salah Gas has started in 2004. The injection volume is expected to reach 1.2 million 

tones per year. The IEA Weyburn project intends to demonstrate that CO2-EOR is 

economically viable.  
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Paper7 focus on the importance of geomechanical stability to CO2 sequestration and 

pointed out the advanced implicit geomechanical coupling in the CO2 storage 

simulator RetrasoCodeBright. A literature survey of alternative current codes for CO2 

storage modelling has been conducted in this paper, revealing that different models 

have different interpretation of the given conditions by different assumptions and 

simplifications and strong differences in their numerical performance. In particular 

the importance of an implicit algorithm for geo mechanics is stressed. Some chemical 

reactions with minerals under low pH are fast and in addition some storage reservoirs 

offshore Norway may contain regions of hydrate formation - which is orders of 

magnitude faster. An implicit algorithm for geomechanics is therefore highly 

recommended to ensure that dynamic information is not lost between the flow 

evaluation and a time shifted evaluation of the geomechanics. A test case with 

aquifer, cap rock and a fracture has been setup in this paper. By varying the initial 

composition of minerals, sensitivity test has been carried out on the test case. 
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6. Proposed future work 

Non-isothermal effect 
 
In the RCB code, the internal-energy-balance equations constitute an important part 

of the computational tool, and are used to model the three main processes of energy 

transfer, i.e.  heat conduction, advection of heat (due to mass flux), and phase 

changes. Evaluations of the code so far have not considered temperature changes 

since emphasis have been on increasing the numerical stability of the simulator and 

implementation of more critical aspects of non-ideal gas (solubility, gas density). For 

further use of the code there are some phenomena which depend sensitively on 

temperature, in particular the potential of degassing of dissolved CO2 from the 

aqueous solution at high temperatures deeper in the reservoir. Non-polar or slightly 

polar gas phase (CO2) is a thermal insulator but higher density will still make a 

difference from ideal gas. Enthalpy changes of CO2 can be derived directly from the 

same equation of state which is used for other properties or alternative correlations 

which may be more accurate. Some experimental data as well as correlations for 

efficient heat conductivity (also taking into account some impact of heat convection) 

is available in the open literature but have not been evaluated at this point. 

Implementation should be fairly straightforward.  

Geochemical data 
 
The mineralogical composition of the Utsira formation consists of mainly of quartz, 

K-feldspars, plagioclase, mica, and calcite (Pearce et al. 1999). Dissolution of 

original minerals in low pH zone (close to injection) and transport of ions with flow 

to regions of higher pH leads to precipitation of same type of minerals as well as 

other secondary minerals like for instance magnesite, dawsonite, and gypsum. At the 

current stage of the simplified examples we have not considered all possible 

precipitation minerals although there are some new available kinetic data on minerals 

like for instance dawsonite which might shed light on possible precipitation effects in 

reservoirs like Utsira. dawsonite can benefit from aluminium dissolved from silicates 
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and sodium from groundwater so it would be interesting to evaluate the potential 

impact and stability of dawsonite precipitation at Utsira 

Hydrodynamic fracture description  
 
An important extension of the code would be the inclusion of a hydrodynamic 

description of flow through fractures and faults as hydrodynamic conduits described 

by Navier-Stokes equation, and with velocities between the conduit and the reservoir 

flow (Darcy flow) as the boundaries between the two different flow regimes. This 

hydrodynamic fracture description will also open up for realistic description of 

injection wells rather than treating these as point sources.  

Relative permeability hysteresis 

Unlike many other academic codes, RCB has built-in capabilities of changing 

permeability and relative permeability, in every time step. In the current version, 

permeability is updated as function of porosities that change due to mineral 

dissolution or mineral precipitation. As such, it should be possible to include relative- 

permeability hysteresis effects. The built-in adsorption facility will also enable a 

more realistic description of surface reactions as well as wetting preference 

characteristics of different minerals on residual pore saturations.  

Hydrate sealing effects  
 
Some relevant reservoirs for storage of CO2 are located in regions of low seafloor 

temperatures and at depths that facilitates the formation of hydrate (ice-like solid with 

up to 12 mole percent CO2) between CO2 and water. These hydrates do not close the 

pore space since they are unable to attach to mineral surfaces due to hydrogen-

bonding limitations. I.e., the partial charges on the surfaces of minerals are not 

compatible with the hydrogen bonded structure on the surfaces of hydrates. 

Thermodynamics will therefore induce a necessary bridging of more or less 

structured water, separating the hydrates from the mineral surfaces. The thickness of 

a minimum bridging layer corresponds to 4 - 6 water layers (or in the order of 2 nm), 

which may practically reduce the permeability to a very low level, and it may as such 
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provide more time for the CO2 plume to dissolve into the surrounding groundwater 

and sink. As such, the extra sealing achieved may actually promote the search for 

storage reservoirs in which hydrates may form. Within RCB, this sealing process can 

be treated as a pseudo mineral reaction in which hydrates form at the CO2-water 

interface and then the hydrates may dissolve again in water with lower concentration 

of CO2. This dynamic process is often controlled by mass transport, as investigated 

and published in several papers from the group led by Professor Bjørn Kvamme. 

Another reason for implementing hydrate sealing effects is to capture the dynamics of 

the formation (roughly 10% volume increase compared to liquid water) and 

dissociation and the potential geomechanical impact on the geological structure. The 

further implementation of hydrate sealing effects is a future research area that should 

be given high priority. Offshore Norway, Utsira is too warm for hydrate formation 

while Snøhvit injection is cold enough in the upper section if the CO2 plume reaches 

the upper layers. The injection location on Snøhvit is very deep, and due to the lack 

of openly available data on the formation, it has so far not been possible to simulate 

possible migration patterns for the injected CO2.   
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