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Abstract

Dense water masses from Arctic shelf seas are an important part of the Arctic thermo-

haline system. We present previously unpublished observations from shallow banks in

the Barents Sea, which reveal large interannual variability in dense water temperature and

salinity. To examine the formation and circulation of dense water, and the processes gov-

erning interannual variability, a regional coupled ice-ocean model is applied to the Barents

Sea for the period 1948-2007. Volume and characteristics of dense water are investigated

with respect to the initial autumn surface salinity, atmospheric cooling, and sea-ice growth

(salt flux). In the southern Barents Sea (Spitsbergen Bank and Central Bank) dense water

formation is associated with advection of Atlantic Water into the Barents Sea and corre-

sponding variations in initial salinities and heat loss at the air-sea interface. The charac-

teristics of the dense water on the Spitsbergen Bank and Central Bank are thus determined

by the regional climate of the Barents Sea. Preconditioning is also important to dense

water variability on the northern banks, and can be related to local ice melt (Great Bank)

and properties of the Novaya Zemlya Coastal Current (Novaya Zemlya Bank). The dense
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water mainly exits the Barents Sea between Frans Josef Land and Novaya Zemlya, where

it constitutes 63% (1.2 Sv) of the net outflow and has an average density of 1028.07 kg

m−3. 0.4 Sv enters the Arctic Ocean between Svalbard and Frans Josef Land. Covering

9% of the ocean area, the banks contribute with approximately 1/3 of the exported dense

water. Formation on the banks is more important when the Barents Sea is in a cold state

(less Atlantic Water inflow, more sea-ice). During warm periods with high throughflow

more dense water is produced broadly over the shelf by general cooling of the northward

flowing Atlantic Water. However, our results indicate that during extremely warm peri-

ods (1950s and late 2000s) the total export of dense water to the Arctic Ocean becomes

strongly reduced.

Key words: Barents Sea, Dense water, Cold Deep Water, HAMSOM, Ocean modeling,

Water mass transformation, Sea-ice

1. Introduction

Dense water masses form in Arctic and Antarctic shelf seas through cooling and rejec-

tion of salt during sea-ice growth. Deep and bottom waters in the world can partly be ex-

plained by subsequent shelf convection (Killworth, 1983). In the Arctic Ocean large-scale

lateral advection from the adjoining continental shelves also maintains the cold halocline

layer (Aagaard et al., 1981). Hence, the brine enriched waters cascading off the continental

shelves are crucial for the global ocean circulation and climate (Meincke et al., 1997).

The Barents Sea (Fig. 1) is of particular interest for several reasons. The heat trans-

ported by the Barents Sea branch of the Norwegian Atlantic Current is effectively lost

through intense ocean-atmosphere heat exchange (e.g. Häkkinen and Cavalieri, 1989;

Årthun and Schrum, 2010), and according to estimates based on atmospheric observa-

tions and oceanic heat budgets about half of the heat loss in the entire Nordic Seas takes

place here (Simonsen and Haugan, 1996). It is also one of the largest shallow shelves ad-
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jacent to the Arctic Ocean (1.4×106 km2), and the deepest (230 m). The ice extent shows

large seasonal variations (Kvingedal, 2005), which provides favorable conditions for ice

formation and subsequent brine release. As a consequence there is seasonal formation of

dense water in the Barents Sea.

Dense water formation on the shallow shelves west of Novaya Zemlya was postulated

early last century by Knipowitsch (1905) and Nansen (1906). Observations confirming

this were presented by Midttun (1985). Localized dense water formation is often related to

opening of polynyas due to offshore winds and the influence of tides upon the ice pack (e.g.

Midttun, 1985; Martin and Cavalieri, 1989; Schauer, 1995; Skogseth et al., 2004). West of

Novaya Zemlya cold easterly winds during winter frequently open a polynya (Martin and

Cavalieri, 1989) and more than 10 m of ice forms in this polynya during an average winter

(Winsor and Björk, 2000). A recurring polynya is also known to form in Storfjorden (Fig.

1) producing 0.06-0.07 Sv (1 Sv ≡ 106 m3 s−1) of cold, dense water (often referred to as

brine-enriched shelf water) during winter (Skogseth et al., 2004). The Storfjorden dense

water formation is further described by e.g. Anderson et al. (1988) and Skogseth et al.

(2005), and its dense outflow by e.g. Quadfasel et al. (1988) and Schauer (1995). Dense

water formation in the Barents Sea has also been observed in shallow areas such as the

Spitsbergen Bank, Central Bank and Great Bank (Fig. 1, e.g. Midttun, 1985; Quadfasel

et al., 1992). Nansen (1906) speculated that dense water from the eastern Barents Sea

could reach the Arctic Ocean through the St. Anna Trough, and this has been supported

by observations (Midttun, 1985; Loeng et al., 1993; Schauer et al., 2002) and numerical

models (Maslowski et al., 2004; Gammelsrød et al., 2009). Dense water formed in the

western Barents Sea mainly descends into the Norwegian Sea/Fram Strait (Quadfasel et al.,

1988; Blindheim, 1989; Quadfasel et al., 1992).

Earlier studies have shown that interannual to decadal variability in dense water for-

mation is large (e.g. Midttun, 1985; Rudels and Friedrich, 2000; Schauer et al., 2002),

3



and potential sources of variability in dense water characteristics have been identified (e.g.

Rudels, 1987; Cavalieri and Martin, 1994; Schauer, 1995; Harms, 1997; Backhaus et al.,

1997; Schauer et al., 2002; Ellingsen et al., 2009). The surface salinity before the freezing

season has been found to be important, but the factors controlling the salinity depend on

the region being investigated. For the Novaya Zemlya Bank, freshwater carried with the

Norwegian/Novaya Zemlya Coastal Current has been suggested (Rudels, 1987; Schauer,

1995; Schauer et al., 2002). Harms (1997) argued that ice freezing/melting is more impor-

tant than the freshwater runoff, while Ellingsen et al. (2009) found that ice import through

the northern boundaries is of major importance to dense water characteristics. Water col-

umn stability is another source of variability (Backhaus et al., 1997; Harms, 1997; Maus,

2003; Skogseth et al., 2004). According to Harms (1997) the initial stratification is depen-

dent on the Atlantic influence on ice freezing or melting, and Backhaus et al. (1997) argued

that import of warm Atlantic Water (AW) onto the Barents Sea shelf may cause a nega-

tive feedback on both deep reaching convection and ice growth. The latter is important

for dense water formation through input of salt (Martin and Cavalieri, 1989; Winsor and

Björk, 2000; Schauer, 1995; Skogseth et al., 2004). Furthermore, it has been recognized

that as the climate of the region depends greatly on the Atlantic inflow, any variations in

the characteristics of this inflow would inevitably have consequences for the production

of dense water (Harms, 1997). He proposed that in a warm period high melting rates in

summer and strong Atlantic inflow would tend to amplify the stratification which would

reduce the bottom water formation during winter. Schauer et al. (2002) also outlined the

importance of variability in AW properties due to the substantial mixing/entrainment tak-

ing place when dense water formed on the banks cascade down to deeper depressions in

the Barents Sea and St. Anna Trough.

This demonstrates that in order to understand the variability in dense water formation it

is necessary to investigate the large scale circulation, hydrography, forcing conditions, and
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Figure 1: Model domain (black rectangle) and Barents Sea bathymetry (greyscale). The Kara Sea is not

included in the model setup. Dense water formation regions highlighted in the paper are shown (details in

Tab. 1). Abbreviations are SB: Spitsbergen Bank, CB: Central Bank, GB: Great Bank, NZB: Novaya Zemlya

Bank, BI: Bear Island. Arrows indicate modeled major in- and outflows (mean values in Sv.) through BSO

and BSX (dashed lines); the red arrow representing AW inflow (T>3◦C, S>35), green arrow being mostly

coastal- and surface water, while blue arrows are cold currents.

dominant mixing mechanisms preconditioning the shelf waters for dense water production.

To do this we apply a new and improved setup of a regional coupled ice-ocean model to the

Barents Sea for the period 1948-2007. Dense water formation and circulation on shallow

banks as well as the general cooling of the AW throughflow are described, including the

processes and factors involved in determining the interannual variability. In addition, we
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present unpublished observations of bottom water temperature and salinity in key dense

water formation areas (Spitsbergen Bank, Central Bank, Great Bank, and Novaya Zemlya

Bank; Fig. 1) from 1970-2007. As earlier studies often have relied on sparse data, this

makes a unique data set. We will attempt to answer the following questions:

(1) What processes are most important to dense water formation on the different banks?

(2) How does variability on the banks influence the total export of dense water into the

Arctic Ocean?

(3) How does variability in the Atlantic Water throughflow influence the total export of

dense water into the Arctic Ocean?

The novelty to our approach lies in that all the earlier identified sources causing vari-

ability in dense water formation are included, and so are all areas. It also lies in the resolu-

tion of temporal and regional variability in water mass transformation processes within the

Barents Sea, and their influence on dense water properties on the banks and the total flow

of dense water out of the Barents Sea. The Barents Sea is one of two pathways in which

AW reaches the Arctic Ocean and the outflow waters are of major importance to the Arctic

Ocean with respect to heat and freshwater (Gerdes and Schauer, 1997; Rudels et al., 2004;

Aksenov et al., 2010), underlining the importance of water mass transformation processes

in the Barents Sea. Using a multi-decadal model run in combination with an extensive

set of observations we gain a better understanding of the mean state of the Barents Sea

ice-ocean system, which is a prerequisite for understanding the present and future regional

climate.

The paper is structured as follows: The observations and numerical model are pre-

sented in Sec. 2 together with an evaluation of the simulated mean circulation and main

water masses. Dense water formation is investigated in Sec. 3 and Sec. 4. The circulation

of dense water within the Barents Sea (Sec. 6) and its characteristics upon entering the
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Arctic Ocean (Sec. 7) are also described, and variability of the outflow is discussed with

respect to production on the banks compared to that produced broadly over the shelf. The

main findings are summarized in Sec. 8.

2. Data and Methods

2.1. Hydrographic data

Bottom water temperature and salinity have been sampled during annual regional sci-

entific surveys to the Barents Sea in August-October 1970-2007. Each year 4-5 Norwegian

(Institute of Marine Research) and Russian (Knipovich Polar Research Institute of Marine

Fisheries and Oceanography) vessels participated thus getting a regional coverage of most

of the Barents Sea in a relatively synoptic manner. The hydrographic data were sampled

using CTD or water bottle samples and the number of stations each year varied between

106 and 1144 with a total of more than 16500 stations over the period 1970-2007. To

capture the characteristics of the dense water, the lowermost measurement from each hy-

drographic station was examined. If the lowermost sample was above the sea bed by more

than 10% of the true depth it was rejected from the data set. The data are presented as

temperature and salinity at bottom (or at the deepest observation), and we use the original

samples without any interpolation.

Hydrographic data were also provided by the International Council for the Exploration

of the Sea (ICES) and from the Geophysical Institute, University of Bergen (GFI-UIB).

The data were processed according to Nilsen et al. (2008) and interpolated onto a 1◦ ×

0.5◦ grid between 18-36◦E and 70-74◦N. These observations are only used to evaluate the

model performance in the south-western Barents Sea.
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2.2. Numerical model

2.2.1. Setup

This study uses the coupled ice-ocean model HAMSOM (Hamburg Shelf Ocean Mo-

del), which has been developed at the Institute of Oceanography, University of Hamburg,

Germany. The model uses non-linear primitive equations of motion, which are discretized

as finite differences on an Arakawa C-grid with z-coordinates in the vertical direction. The

model domain is shown in Fig. 1. The horizontal resolution is 7 × 7 km and the vertical

dimension is resolved with 16 unevenly spaced levels with a free surface and interface

boundaries at 8, 16, 24, 32, 40, 50, 75, 100, 150, 200, 250, 300, 400, 500, 600 and 700 m.

The ocean model is coupled to a dynamic-thermodynamic sea-ice model. Thermodynamic

ice growth is calculated following Hibler (1979), whereas the ice dynamics are based upon

an viscous-plastic rheology described in Leppäranta and Zhang (1992) and Schrum and

Backhaus (1999). Ice fluxes through the open boundaries are estimated by applying a

zero-gradient condition normal to the boundary.

Atmospheric forcing data were obtained from NCEP/NCAR reanalysis (Kalnay et al.,

1996). 6 hourly air temperatures (2 m), specific humidity (2 m), air pressure, precipitation,

wind speed (10 m), and long- and shortwave radiation were applied as surface forcing. Tur-

bulent heat fluxes (sensible and latent) were calculated by the model itself using standard

bulk formula. Lateral boundary conditions for temperature and salinity were taken from

the Barents and Kara Seas Oceanographic Database (BarKode, Golubev and Zuyev, 1999).

A climatology from the global model C-HOPE (Marsland et al., 2003) was used in areas

without sufficient observations in the northern Barents Sea. Freshwater from land is added

through river runoff from four Russian rivers; Pechora, Mesen, Dvina, Onega (Lammers

and Shiklomanov, 2000). Further details on the model configuration are given by Schrum

and Backhaus (1999), Schrum et al. (2005) and Årthun and Schrum (2010).
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The current setup differs from that described in Årthun and Schrum (2010) by the usage

of new sea surface elevation and sea-ice boundary data from the Miami Isopycnic Coor-

dinate Ocean Model (MICOM, Bleck, 1998), and the implementation of a new advection

scheme. The MICOM setup from which the boundary data were generated is described

in Sandø et al. (2010). The new advection scheme, a total variation diminishing (TVD)

scheme, is monotonicity preserving and has very low numerical diffusion (Sweby, 1984),

thus providing a better representation of fronts in temperature and salinity. Hence, the

resolution of coastal currents (Norwegian Coastal Current and Novaya Zemlya Coastal

Current) and the Polar Front along the Bear Island slope are improved compared to the

earlier setup (Barthel et al., 2011).

The model was started from rest 01.01.1948 with temperature and salinity initial con-

ditions from BarKode. A simulation of the year 1948 was performed twice to spin-up the

model, after which the Barents Sea simulation was conducted for the period 1948-2007

using the model fields at 31.12.1948 as initial conditions.

2.2.2. Study area and model evaluation

The Barents Sea circulation is dominated by a warm inflow in the south-west and

colder water masses occupying the northern areas (Fig. 2a). AW enters mainly between

Norway and Bjørnøya (Bear Island), referred to as the Barents Sea Opening (BSO, Fig 1).

Based on measurements from 1997-2007 the mean AW inflow is 2.0 Sv, with a maximum

of 2.8 Sv in January and an April minimum of 1.1 Sv (Smedsrud et al., 2010). Higher

inflow during winter is related to stronger winds due to passing atmospheric lows (Ing-

valdsen et al., 2002). Closer to the Norwegian coast, the colder and fresher Norwegian

Coastal Current provides an additional 1.1 Sv (Skagseth et al., 2011). A fraction of the

AW recirculates within the Bear Island Trough and together with the cold Bear Island

Current forms a bottom intensified westward flow of 0.9 Sv (Skagseth, 2008). Consider-
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ing the entire water column yields a mean heat transport into the Barents Sea of 49±7 TW

(Skagseth, 2008). However, the heat transport from the Norwegian Coastal Current has

not been well quantified, and new calculations based on measurements suggest that the

contribution from the coastal current may be as much as 34 TW (Skagseth et al., 2011),

increasing the net heat transport by ∼50%. Following Gammelsrød et al. (2009), the out-

flow between Frans Josef Land and Novaya Zemlya (denoted Barents Sea Exit, BSX) for

1991-1992 is 2.2 Sv, including Cold Bottom Water (1.0 Sv), Arctic Water (0.4 Sv), AW

(0.2 Sv), Surface Water (0.1 Sv), and 0.5 Sv of remaining unspecified water types. Hence,

cold, dense water is one of the principal contributors to the outflow.

The model captures the principal features of the hydrographic structure in the Barents

Sea (Fig. 2a), and the model mean temperature distribution (0-200 m) during February

1981-2004 compare well with observations (ICES/GFI-UIB; filled circles). Based on these

observations an annual time series was also constructed for the period 1975-2004 (not

shown). The interannual variability is reproduced by the model when compared to annual

mean temperatures between 0-200 m; the correlation coefficient (r) being 0.91. The mean

observed temperature (T ) is 5.05◦C, while the simulated mean temperature is 4.97◦C. For

the simulated salinity (S ) the correlation is 0.66 with a small bias (0.07) towards higher

values. The interannual variability in integrated sea-ice area is also captured by the model

(Fig. 2b) compared to satellite derived data from the National Snow and Ice Data Center

(Cavalieri et al., 1996).

The modeled annual mean net inflow through BSO is 2.3 Sv (Fig. 1), with higher/lower

inflow during winter/summer (not shown). The inflow to the Barents Sea through this

section is 3.3 Sv dominated by 1.9 Sv of AW (T>3◦C and S>35). The rest of the inflow

(1.4 Sv) consists of fresher water (S<34.5) flowing along the Norwegian coast and surface
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Figure 2: a) Mean simulated temperature (color) and salinity (gray lines) during February 1981-2004 over

0-200 m depth. Only 34.5 and 35 salinity contours are shown to mark coastal waters and AW. The black box

indicates the area from where time series were extracted. Observations interpolated onto a 1◦×0.5◦ grid are

shown as colored circles. The February mean ice edge (concentration: 30%) is also included, indicated by

the dashed white line. b) Winter mean (November-April) sea-ice concentration from HAMSOM (black) and

from satellite data (SMMR/SSMI) between 70-81◦N and 15-60◦E.

water. The simulated net heat transport1 into the Barents Sea of 60 TW is within the range

of previous estimates, e.g. Zhang and Zhang (2001, 43 TW), Aksenov et al. (2010, 60

1Heat transport is calculated the traditional way using the simulated temperature, velocity, heat capacity

and water density (see e.g. Årthun and Schrum, 2010). Calculations are relative to -0.1◦C in order to compare

with cited literature.
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TW) and Sandø et al. (2010, 74 TW). The simulated flow through BSX also compares

well with the observations from Gammelsrød et al. (2009).

3. Dense water characteristics

Based on observations of dense water formation in the Barents Sea (e.g. Midttun, 1985;

Quadfasel et al., 1992) areas of special interest were defined (Fig. 1 and Tab. 1), and time

series of observed and modeled dense water properties were constructed. Although the ob-

servations are from late summer, they have signatures of dense water produced during the

previous winter because remnants are trapped on the shelves over summer (Midttun, 1985;

Ivanov et al., 2004). Using theory and observations to investigate cascading events Shapiro

et al. (2003) found that the estimated time for a dense water body to sink from the Novaya

Zemlya Bank would be 7 months, and the later stages of winter cascading can therefore

be observed the following summer. Identifying the dense water characteristics by using

vertical integrated values over the water column and over a specific temperature-salinity

domain would give more robust calculations. Unfortunately this can not be done due to

low and irregular vertical resolution in the historical data, and thus motivates and neces-

sitates the use of a numerical model. The strength of a modeling based approach is that

it allows for integration on a regular grid over a long period and hence accounts for vari-

ability on different time and spatial scales. Thus, it minimizes errors from undersampling,

in contrast to observational based investigations which can be subject to strong undersam-

pling errors. This is especially the case for wintertime processes in Polar Regions, such as

dense water formation.

3.1. Observed bottom water

The observed bottom water characteristics from Central Bank and Novaya Zemlya

Bank are shown in Fig. 3. The T -S properties on Central Bank show high salinities
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Table 1: Data selection criteria for dense water formation regions.

Region Lat. [◦N] Lon. [◦E] Depth [m] A [104km2] V [1012m3]

Spitsbergen Bank 74.8-76.5 18-27 <100 2.5 1.8

Central Bank 74.3-76 32-44 <200 3.1 6.2

Great Bank 76.25-78.8 32-40 <200 3.6 6.6

Novaya Zemlya Bank 73.8-77 51.2-60 <150 3.2 4.0

(S>34.75) and a narrow salinity range, but span a wide range (4◦C) in temperature. There

is also a (weak) indication that high salinity corresponds to high temperature. All of these

factors indicate that AW constitutes a major fraction of the bottom water. Due to the high

salinity of AW cooling alone is sufficient for densification of the surface waters, and only

minor signatures of freezing are evident. Mean bottom density on Central Bank based

on observations is 1028.1 kg m−3. On Novaya Zemlya Bank on the other hand, there are

numerous observations along the freezing line, and high salinity clearly corresponds to

low temperature. Densification by brine release is thus a common process in this area,

as previously noted by e.g. Midttun (1985). T -S properties are still variable, probably

reflecting both strong exchange since winter and influence of coastal water and modified

AW intruding on the bank. Due to the lower salinities the mean density on Novaya Zemlya

Bank (1028.0 kg m−3) is lower than on Central Bank.

Corresponding time series reveal large temporal variability in bottom water hydrogra-

phy (Fig. 4). On the Spitsbergen Bank the temperature range from -0.1◦C in 1975 to 5.0◦C

in 2006, while the salinity range is 1.07. The Central Bank has the most saline bottom wa-

ter (34.93) and displays less variability, particularly in salinity. The Great Bank also has

a narrow range in salinity (0.29), whereas temperatures vary from -0.9◦C to 1.2◦C. The

coldest water is found on Novaya Zemlya Bank with an average temperature of -1.2◦C.

The average salinity is 34.87.
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Figure 3: Temperature-salinity diagram of observed bottom water on the Central Bank (CB) and Novaya

Zemlya Bank (NZB) between 1970 and 2007. Dashed line shows the freezing point temperature.

3.2. Simulated bottom water

The simulated bottom water temperature and salinity are also included in Fig. 4. Com-

pared to the observed variability on the banks (indicated by the standard deviations) Spits-

bergen Bank is well represented in the model. The other banks tend to be biased compared

to observations. It should, however, be recognized that the model data are 3-month aver-

ages (August-October), which are being compared to irregular observations in both time

and space. The limited amount of observations implies that local spatial variability may

not be resolved. Hydrography on Spitsbergen Bank and Great Bank are strongly influenced

by the south-westward flowing Persey Current/Bear Island Current and East Spitsbergen

Current (Loeng, 1991; Maslowski et al., 2004), whose properties are affected by the inflow

between Svalbard and Frans Josef Land. The northern inflow consists mainly of cold and

fresh Arctic type waters, but also a branch of AW (Mosby, 1938; Pfirman et al., 1994).

In the northern Barents Sea this is a subsurface water mass, underlying the colder, less
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Figure 4: August-October averages and standard deviation of simulated (crosses) and observed (gray line)

bottom water temperature and salinity between 1970 and 2007. The annual data coverage is also included.

Note the different scales. Observed standard deviations were calculated based on all available data from

individual years, whereas the simulated standard deviations are based on August-October averages from all

model gridpoints within the specific domains (Tab. 1).

saline water. Due to lack of observations no temperature or salinity anomalies are pre-
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scribed at the northern open boundary to account for interannual variability in water mass

properties. Boundary values are also partly based on model climatology. Not resolved

variability in the characteristics of inflowing water in the north-western Barents Sea, and

hence the stratification, can therefore partly explain the colder simulated bottom water on

Great Bank. Potentially overestimated vertical mixing as a result of weak stratification

will also influence bottom water properties in this area (e.g. the higher simulated salinities

on Great Bank).

On Novaya Zemlya Bank the simulated bottom water temperature and salinity are

biased too high and too low, respectively. From Fig. 1 and Fig. 2 it is seen that Novaya

Zemlya Bank is located at the boundary between the fresh Novaya Zemlya Coastal Current

and the warmer, more salineWest Novaya Zemlya Current, indicated by the 34.5 isohaline.

Across the frontal zone salinity varies by more than 1 (Ivanov and Shapiro, 2005). The

salinity on Novaya Zemlya Bank is thus sensitive to both the position of the front and

place of measurement. Considering only years with more than 10 observations on Novaya

Zemlya Bank results in a much reduced bias.

The Central Bank is located close to the position of the Polar Front, which separates

AW in the south from Arctic Water in the north (Loeng, 1991). Warmer and more saline

bottom water thus indicates excessive AW influence in the model. This can be related to

the properties and strength of the BSO inflow, but also underestimated mixing between the

subsurface AW and overlying Arctic Water. The latter is discussed with respect to turbu-

lence closure schemes and horizontal resolution in Sundfjord et al. (2008). Furthermore,

deficiencies in atmospheric forcing data exist, including underestimation of NCEP surface

wind speeds (Smith et al., 2001) and, hence, ocean mixing.

Consequently, a direct comparison is not straightforward and one can not expect the

model averages to match observed snapshots obtained over typically shorter periods. The

observed and simulated time series still display similar interannual variability; correlation
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coefficients between simulated and observed temperature and salinity time series being

significant for all locations except Great Bank. Together with the presented model evalua-

tion (Sec. 2.2.2) this gives confidence in the general model performance and that the model

provides adequate skill to investigate dense water variability on interannual timescales,

although there is a bias in the simulated bottom water characteristics. Previous studies

(Harms et al., 2005; Schrum et al., 2005) also concluded that HAMSOM is suitable to

study climatic variability of water mass transformation processes in the Barents Sea.

3.3. Cold Deep Water

To utilize the vertical resolution of the model results, we hereafter define dense wa-

ter by T<0◦C and S>34.75. This corresponds to densities above 1027.9 kg m−3, and is

referred to as Cold Deep Water (CDW).

Time series of simulated winter mean (November-April) CDW temperature, salinity

and the corresponding density from the banks show pronounced interannual variability

(Fig. 5). Salinities above 35 are found on all banks. The average salinity is highest on

Central Bank (35.00), whereas the highest monthly mean salinities are found on Spitsber-

gen Bank and Novaya Zemlya Bank, being 35.30 and 35.31, respectively. These banks are

also associated with the lowest average temperatures (T=-1.3/-0.8◦C). Significant (neg-

ative) correlation is found between temperature and salinity on Novaya Zemlya Bank,

indicative of ice growth and salt input. At the end of winter (April) the average integrated

volume of CDW varies from 6·1011 m3 on Spitsbergen Bank to 38·1011 m3 on Central

Bank. Assuming that all the CDW is formed locally during winter this amounts to a winter

average of 0.04 (Spitsbergen Bank), 0.24 (Central Bank), 0.21 (Great Bank), and 0.06 Sv

(Novaya Zemlya Bank), respectively (Fig. 5). These values are similar to the amount pro-

duced in the Storfjorden polynya (Skogseth et al., 2004) and in Arctic polynyas (Cavalieri

and Martin, 1994; Winsor and Björk, 2000). On Central Bank and Great Bank the vol-
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Figure 5: Upper: Simulated winter mean (November-April) CDW (T<0◦C and S>34.75) temperatures

(colorscale) and salinities between 1948 and 2007. Lower: CDW volume flux and density (red line) during

winter. Fluxes are estimated based on April mean CDW volume.

ume and density of the CDW are positively correlated (r=0.71 and r=0.55, respectively).

Thus, during periods of high formation the CDW is also denser. This is not the case for

Spitsbergen Bank and Novaya Zemlya Bank where the correlation between volume and

density is not significant. The total contribution from the banks (0.55 Sv) is influenced

by quasi-regular fluctuations with periods of about 5-8 years, in agreement with observed

variability in the Barents Sea climate (warm/cold periods; Ingvaldsen et al., 2003). This
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will be elaborated on in Sec. 5 and Sec. 7.

4. Dense water formation processes and regional variability

Variability in properties and amount of CDW on the banks are governed by the com-

bination of initial conditions, atmospheric forcing (oceanic heat loss) and ice production.

The following results and discussion identify and address the differences in these processes

among the different banks. Local forcing such as tides may influence CDW formation

through redistribution of sea-ice and, hence, increased ice production, and will also be

discussed.

4.1. Initial salinity - Preconditioning

CDW formation is driven from the surface, and the initial surface salinity is important

for the volume formed during winter. With low initial salinity more salt must be rejected

for the surface water to become sufficiently saline for CDW. To investigate the sensitiv-

ity of the different banks to this preconditioning parameter, the simulated surface salinity

anomalies in November (S 0) are displayed in Fig. 6 and compared to salinities in April

(S 1). Highest initial salinities are found on Central Bank (34.71), which also has the low-

est salinity increase during winter (ΔS=S 1-S 0). Lowest mean initial salinities are found

on Great Bank (33.13), but this bank has the highest interannual variability (range=2.5)

and the largest surface salinity increase during winter (1.1). Great Bank also shows a clear

increase in initial salinities during the last decades, which is reflected in the amount of

CDW (Fig. 5). Spitsbergen Bank, Central Bank and Great Bank show a positive corre-

lation (r∼0.6) between November and April salinities. Positive correlation indicates that

variations in initial salinity are more important for the April salinities than variations in

local ice growth and salt rejection. Thus on these banks the initial salinity is an impor-

tant preconditioning factor for CDW formation during winter, and significant correlation
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to CDW volume is found (r=0.35-0.44). On Novaya Zemlya Bank there is no statistical

significant correlation between November and April salinities, although it is important to

the maximum salinity reached during winter (not shown). CDW formation is also less

sensitive to the initial salinity (r=0.27).

Low initial salinity also tends to give a stable water column in fall. This can cause

early ice formation and brine rejection (Rudels, 1987), but normally inhibit CDW forma-

tion (Harms, 1997). The importance of stratification is evaluated by correlation between

the initial surface salinity and the salinity increase during winter (ΔS ). Strong negative

correlations (r∼-0.9) are found on Central Bank and Novaya Zemlya Bank. On these

banks the stratification associated with low initial salinity can increase the brine rejection,

but the stratification is still strong enough to prevent deep-reaching convection.

The above results indicate that on Spitsbergen Bank and Great Bank the initial salinity

is important mostly because low initial salinity requires higher salt input for the surface

water to become CDW. On Central Bank and Novaya Zemlya Bank on the other hand, the

initial salinity is most important through its effect on the stratification.

4.2. Atmospheric cooling

Oceanic heat loss contributes to CDW formation by cooling the inflowing AW and

lowering the temperature in the northern Barents Sea to the freezing point, initiating ice

growth. In the Barents Sea oceanic heat loss to the atmosphere is high and the north-

eastward flowing water is cooled considerably before it enters the Arctic Ocean (e.g. Si-

monsen and Haugan, 1996; Schauer et al., 2002). Of the four regions Central Bank ex-

periences the strongest atmospheric cooling with a simulated winter mean/max heat loss

of 143/215 W m−2, which will cool the upper 100 m by ∼4.5/7◦C. The mean heat loss

on Spitsbergen Bank, Great Bank and Novaya Zemlya Bank is 91, 44, and 108 W m−2,

respectively. Spitsbergen Bank and Central Bank have positive correlations between the
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Figure 6: Simulated surface initial- (November (S 0); gray bar) and spring (April (S 1); open bar) salinity

anomalies relative to respective mean values (<S 0>,<S 1>). Numbers next to the bars indicate the salinity

increase during the freezing season (ΔS ). Correlation coefficients between S 0 and S 1, and S 0 and ΔS are

also displayed. N.S. indicate not significant at 95% confidence level.
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local heat flux and the volume of CDW formed during winter; r=0.60 and r=0.53, respec-

tively. On Great Bank and Novaya Zemlya Bank the correlation between heat flux and

CDW volume is not statistically significant indicating that other processes are more dom-

inant for the variability. For more details on the air-sea heat exchange in the Barents Sea

we refer to recent works by Sandø et al. (2010), Smedsrud et al. (2010), and Årthun and

Schrum (2010).

4.3. Sea-ice formation and salt fluxes

Accumulated salt release during winter from sea-ice growth and the associated water

column salinity increase are shown in Fig. 7. Salt input is on average highest on No-

vaya Zemlya Bank (1·1012 kg ∼ 0.2 kg m−2 day−1), and the simulated salt flux from this

bank agrees with estimates from Martin and Cavalieri (1989) based on open water regions

(polynyas) along the west coast of Novaya Zemlya. Largest variability is found on Central

Bank which may be almost completely ice free during some winters. Thermodynamic ice

growth is not part of the model output and can not be estimated directly. The modeled

mean April ice thicknesses, however, vary from 0.2 m on Central Bank to 1.5 m on Great

Bank, which concurs with estimates of local first-year ice growth in the Barents Sea (Vinje,

2009).

Without water exchange, the total released mass of salt is able to increase the overall

salinity on Spitsbergen Bank by up to ∼0.5 and by ∼0.3 on Novaya Zemlya Bank (Fig.

7). Due to greater depths (Tab. 1) the salinity increase is smaller on Central Bank and

Great Bank and a stronger salt input is needed for increasing the CDW volume on these

banks. However, only Central Bank has a positive correlation between salt input and

CDW volume (r=0.45). Salt input anomalies are often opposite to surface salinities and

heat loss. On Spitsbergen Bank and Central Bank this points to the influence of AW,

with higher AW inflow leading to higher sea surface temperature and salinity, less ice,
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and higher heat loss (e.g. Ådlandsvik and Loeng, 1991). Less ice also implies a higher

surface salinity the following year due to less ice melt. The connection between dense

water (CDW) formation and regional climate variability is further discussed in Sec. 5.
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Figure 7: Released mass of salt from ice growth during winter (left axis) and corresponding salinity increase

in entire water column using the mean depth on each bank.

4.4. Wind and tidal forcing

Winds and tides act to create motion in the ice pack (divergence, convergence and

ridging), which influences the open water area and thus the air-sea heat exchange and

ice production under freezing conditions (Kowalik and Proshutinsky, 1994). Tides also

influence the temperature and salinity distribution in the Barents Sea due to increased
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mixing and changes in the mean current structure (Parsons, 1995). In the Barents Sea

areas of strong tidal currents are found north of Bear Island (close to Spitsbergen Bank)

and near the entrance to the White Sea (Padman and Erofeeva, 2004). The semidiurnal

lunar tide (M2) is included in HAMSOM. This is the dominant tidal constituent in the

Arctic Ocean and surrounding shelf seas, accounting for 79% of the tidal potential energy

(Padman and Erofeeva, 2004). The prescribed tidal solution has earlier been evaluated in

terms of amplitude and phase and agreed well with observations and tidal models (Harms

et al., 2005).

To investigate the impact of tides the model was run without tides for the period 1979

to 1984, which corresponds to a period with average ice extent (Fig. 2b). On Spitsbergen

Bank including tides increases the winter mean open water fraction by 7%. This leads to

14 W m−2 additional heat loss (not shown), and the corresponding additional ice growth

increases the salt rejection by ∼3% (2·1010 kg). During some months the tidal induced heat

loss is >30Wm−2 causing a decrease in ice concentration by 10-15%, which is comparable

to values obtained in the Weddell Sea (Koentopp et al., 2005). Central Bank and Novaya

Zemlya Bank also show a reduced sea-ice cover during winter (∼5%) and similar heat flux

anomalies due to tides. No response in terms of salt input is visible, in agreement with

Kowalik and Proshutinsky (1994). Ice divergence and salt rejection on Novaya Zemlya

Bank are seemingly more wind related. During winter the dominant surface winds along

the northwest coast of Novaya Zemlya are from east/south-east (NCEP data, not shown),

which is favorable for polynya activity and localized sea-ice formation (Martin and Cava-

lieri, 1989). It is, however, the strength of the alongshelf (rotated coordinate system) wind

component which is most important for the simulated ice growth variability (r=-0.46).

This is probably related to Ekman drift which pushes the ice away from the coast during

northerly winds.
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4.5. CDW sensitivity to temperature and salinity classification

The choice of CDW definition is, although based on previous studies in the Barents

Sea (e.g. Gammelsrød et al., 2009), somewhat arbitrary. Water mass characteristics are

also slightly different in the model compared to the bottom water observations (Fig. 4).

To evaluate to what extent this influences estimates of CDW volume the model mean error

(bias) at the respective regions was calculated and the CDW definition adjusted accord-

ingly (e.g. SCDW>34.89 on Central Bank based on simulated values being 0.14 higher

than observations). In total this does not change the CDW volume estimate noteworthy.

The combined contribution from Great Bank and Novaya Zemlya Bank remains close to

constant; the respective values being 0.08 Sv and 0.18 Sv compared to 0.21 Sv and 0.06

Sv in the previous calculation. CDW formation on Central Bank increases from 0.24 to

0.32 Sv and remains low on Spitsbergen Bank (0.03 Sv). On Spitsbergen Bank and No-

vaya Zemlya Bank the sensitivity in CDW volume is mostly due to changes in the salinity

criteria for CDW, whereas Central Bank and Great Bank estimates are more influenced by

the temperature limit. The interannual variability in CDW volume on each bank is nearly

independent of water mass definition, and our discussion on CDW variability remains

valid.

5. Sensitivity to regional climate variability

The Barents Sea climate is known to fluctuate between a warm and a cold state with

periods from 3-4 years to several decades (Ådlandsvik and Loeng, 1991; Ingvaldsen et al.,

2003; Levitus et al., 2009). Cold periods are characterized by extensive ice cover (Fig. 2b,

Vinje, 2009) and low surface salinities due to ice melt (Maus, 2003). Warm periods are

characterized by higher salinities, less ice (short freezing season) and higher air-sea heat

fluxes (Årthun and Schrum, 2010). To evaluate the sensitivity of the different banks to
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Table 2: Correlation coefficients and time lags (@years) between properties of the inflow between Norway

and Bear Island (BSOt,s), CDW temperature and salinity in April (CDWt,s), Barents Sea ice extent (Iw),

initial salinity (S 0), and salt input due to ice formation (S i). Time series of ice extent and inflow are July-

June averages. N.S: Not significant at the 95% confidence level based on the Student t-test.
Region BSOt-CDWt BSOs-CDWs BSOs-S 0 Iw-CDWt Iw-CDWs Iw-S 0 Iw-S i

Spitsbergen Bank N.S 0.31 0.41 N.S N.S -0.27@1 0.44

Central Bank 0.62 0.63@2 0.31@1 -0.63 N.S -0.29@1 0.63

Great Bank N.S N.S 0.28@1 N.S N.S N.S N.S

Novaya Zemlya Bank 0.52@1 N.S N.S -0.54 0.30 N.S 0.50

regional climate variability, CDW characteristics are compared to properties of the BSO

inflow and the integrated ice extent (Tab. 2) which are good indicators of the climatic state

of the area (e.g. Ådlandsvik and Loeng, 1991; Sandø et al., 2010).

On Spitsbergen Bank and Central Bank the properties of CDW are closely linked to

the inflow characteristics through BSO and corresponding heat loss at the air-sea interface.

Their location near the mean ice edge also makes them sensitive to fluctuations in regional

ice extent, affecting both the surface preconditioning and CDW temperature and salinity.

Low initial surface salinities coincide with periods with an extensive ice cover the previous

spring and a fresher inflow (less AW) through BSO. Thus on these southern banks the

CDW production is closely linked to the regional climate of the Barents Sea.

On Great Bank the CDW variability can not be related to any of the regional climate

indicators used here (Tab. 2) except for salinity anomalies from BSO which influence

the surface salinity. The more localized variability in the north-western Barents Sea is

supported by an empirical orthogonal function (EOF) analysis of monthly sea-ice concen-

trations (Fig. 8). The dominant mode of variability reflects the fluctuations in the ice edge

and in the north-eastern Barents Sea, whereas the second mode has the largest amplitudes

in the north-west and accounts for >40% of the local variance on Great Bank. The pat-

tern of the second mode also suggests that ice transport between Svalbard and Frans Josef
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Land is of importance to Great Bank ice variability. A comparison between winter ice

concentration on Great Bank and simulated ice transport yields significant co-variability.

Stronger ice import causes more ice melt locally and consequently lower initial salinity the

following year. The CDW variability on Great Bank is thus more affected by ice import

from the north than regional climate indicators. Ice import and the associated freshwater

input have been found by earlier studies to have a large influence on salinity anomalies

in the Barents Sea (Maus, 2003; Ellingsen et al., 2009), and to contribute to the stronger

stratification in the northern Barents Sea which is important to water mass transformations

(Steele et al., 1995; Harms, 1997). The most dominant signal in the the initial salinity on

Great Bank is the long term increase over almost the entire simulation period (Fig. 6).

Such a trend is also visible, but less dominant on the other banks. Higher surface salinities

are consistent with the observed decline in sea-ice extent, due in large part to increasing sea

surface temperatures and southerly winds (Francis and Hunter, 2007). A trend in outflow

of Arctic Ocean sea-ice into the Barents Sea has not been observed (Kwok, 2009).
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Figure 8: Local explained variance of monthly sea-ice concentration by EOF #1 and #2. Contour interval is

10%. See e.g. Schrum et al. (2006) for description of the statistical method.
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On Novaya Zemlya Bank local ice growth is reflected in the regional ice extent, which

affects the temperature and salinity (Tab. 2) and therefore the density of CDW. Surface

salinity variability is, on the other hand, not captured by regional variability. The fresh-

water content west of Novaya Zemlya is affected by the characteristics of the Novaya

Zemlya Coastal Current (Schauer et al., 2002). Fig. 9 shows how the freshwater input in

the southern Barents Sea is advected east and north toward Novaya Zemlya Bank during

winter. Highest correlation coefficients in the Pechora Sea indicate that freshwater from

the major Russian rivers (model input from R-ArcticNET; Lammers and Shiklomanov,

2000) is highly important, although the freshwater transport by the Norwegian/Murmansk

Coastal Current may also contribute. The simulated mean northward freshwater transport

west of Novaya Zemlya (section depicted in Fig. 9) is 6.9 mSv for a reference salinity of

34.8. Higher freshwater fluxes are associated with lower initial salinities and less CDW

formation on Novaya Zemlya Bank. The importance of the freshwater carried by the

coastal currents to the thermohaline conditions and dense water cascades west of Novaya

Zemlya was examined by Ivanov and Shapiro (2005), and was also suggested by Rudels

(1987) to be the cause of the early ice formation and brine rejection in this area.

6. Cold Deep Water circulation

To investigate the circulation of CDW within the Barents Sea and toward the Arctic

Ocean, an Eulerian advection model, which utilizes the simulated daily transport fields

from HAMSOM, is used. The bottom layer of the selected regions was filled with a pas-

sive tracer. The tracer was then released as a pulse and transported and diffused by the

simulated transports and vertical turbulence, enabling tracking of the individual paths. In

Fig. 10 the tracer concentrations are shown for the initial state, taken as April 1, 2000, and

then after 3 months (July 1) and 7 months (November 1). The main paths of CDW from

the different banks at the given dates are indicated with arrows.
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Figure 9: Lagged correlation between surface initial salinity (November) and Novaya Zemlya Bank salinity

in April. The bank area is shaded black (Tab. 1). Isolines are drawn for significant (95%) correlations, and

contour interval is 0.1. Numbers in gray boxes are annual mean river runoff from Pechora (4.4 mSv) and

Dvina/Mezen/Onega (3.7 mSv), arrows indicate location of the rivers, and the solid black line indicates the

section used for freshwater flux calculation.

We first focus on the waters leaving in the BSX, which include CDW formed on Central

Bank, Great Bank and Novaya Zemlya Bank (Fig. 10). The Novaya Zemlya Bank is

closest to the BSX and the water has the most direct path out of the Barents Sea. The

CDW is thus less influenced by along-path mixing, and contributing to the densest fraction

in BSX and St. Anna Trough despite having smaller volume and lower density than the

two other banks (Fig. 5). Some water from this bank is also seen to flow west into the

Northeast Basin and the Novaya Zemlya Canyon. This agrees with correlations between

observed bottom salinity on the bank and horizontal fields of bottom salinity (not shown).
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Midttun (1985) and Schauer et al. (2002) also observed dense water from the bank area

spreading west into the deeper depressions of the eastern Barents Sea. The westward flow

is more pronounced if the simulation is performed for 1979 (time of survey in Midttun,

1985), a year with lower inflow through BSO and corresponding northward flow along

Novaya Zemlya. However, in neither year did the bottom water reach the Central Basin as

reported in Schauer et al. (2002). This is sensitive to our Novaya Zemlya Bank definition,

and expanding the area southward to 72◦N yields more south-westward flowing tracers

(not shown). Contribution from Central Bank to the BSX comes from two branches (Fig.

10). A northern branch exits the Barents Sea together with a branch from Great Bank,

while a southward branch goes into a cyclonic circulation around the Central Basin. The

latter was also reported by Ozhigin et al. (2000).

Due to different distances and paths, CDW from the different banks do no reach BSX

simultaneously. Analysis of deseasoned monthly data (Fig. 11a) indicates that CDW on

Novaya Zemlya Bank mainly reaches BSX within 1-7 months, which is consistent with the

estimated time for cascading from this area (Shapiro et al., 2003). The contribution from

Great Bank shows highest correlation with the BSX outflow between 1-8 months, whereas

water from Central Bank seems to reach BSX within ∼1.5 years. Export of CDW in the

BSX is thus rather a continuous than a seasonal feature. Significant correlations are also

found at larger lags due to remnants on the banks or in the deeper basins. Loeng (1991)

suggested that in some periods the Central Basin would gradually fill up with high density

water accumulated over several years. Eventually a flushing of the basin could occur. Such

flushing events would be in addition to the annual contributions of CDW from the banks,

and could result in significant episodic signals in the dense flow leaving the Barents Sea

toward the Arctic Ocean.

Part of the CDW formed in the Barents Sea also leaves between Svalbard and Frans

Josef Land. The main contributors to this flow are Central Bank and Great Bank (Fig. 10),
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Figure 10: Bottom water circulation during year 2000 calculated using an Eulerian advection model (see

details in text). The upper panel shows the initial distribution of the tracer on 1 April, 2000, whereas the

middle and bottom panels show the tracer distribution after 3 and 7 months of integration. Concentrations

(colorbar) are shown for depths below 50 m.

and maximum correlations between these sources and the outflow are found at lags from

5-6 months (Fig. 11b). The model also indicates that CDW from Spitsbergen Bank leaves

in this area, as there is a north-eastward flow which splits into two branches south of Great

Bank. This slow northward flow of dense water is supported by Fig. 11b, which shows a

significant peak after 21 months.

Outflow of CDW also occur through the western Barents Sea, and both Spitsbergen
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Bank and Central Bank contribute to this flow (Fig. 10). Most of the Spitsbergen Bank

CDW leaves north of Bear Island, but there is also a fraction going to the south of the

island. Central Bank contributes with a branch following the rim of the Hopen Trench

exiting south of Bear Island in agreement with Quadfasel et al. (1992). This flow reaches

the BSO within 7-10 months (not shown).

The branches of bottom water circulation are confirmed by observations (not shown),

and are also consistent with the circulation scheme of Aksenov et al. (2010). The col-

orscale in Fig. 10 is an indicator of mixing showing that dense water on Central Bank and

Great Bank is more stationary or less diffused compared to Spitsbergen Bank and Novaya

Zemlya Bank.
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Figure 11: Lagged correlation analysis of CDW export in the northern Barents Sea with respect to CDW

volume on the banks. Positive lags indicate that CDW formation on the banks leads the export. Time series

have been deseasoned and detrended. Thin lines show the 95% significance levels. Autocorrelation has been

taken into account by adjusting the effective number of independent observations.
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7. Cold Deep Water export

Dense water formed in Arctic shelf seas influences the water mass properties and ther-

mohaline circulation of the Arctic Ocean (e.g. Nansen, 1906; Aagaard et al., 1985; Jones

et al., 1995; Meincke et al., 1997). The majority of the CDW exits the Barents Sea in the

BSX where it constitutes 63% (1.2 Sv) of the simulated mean net flow of 1.9 Sv. An ad-

ditional 0.4 Sv of CDW leaves between Svalbard and Frans Josef Land, making the total

contribution of CDW directly from the Barents Sea to the Arctic Ocean 1.6 Sv. In the

west, 0.02 Sv leaves between Svalbard and Bear Island, and 0.1 Sv south of Bear Island.

The simulated annual mean CDW outflow density at BSX is 1028.07 kg m−3 (T=-0.78◦C,

S=34.91). This density is matched in the Eurasian Basin at around 1000 m (observations

from the Environmental Working Group; Swift et al., 2005). Higher densities (>1028.10

kg m−3) in the BSX occur in e.g. 1975-76 and in the late 1980s, and this water would be

able to descend to 2000 m depth in the Arctic Ocean. The density variability is mainly

determined by salinity (r>0.9), ranging from 34.85 (1028.00 kg m−3) in 1950 to 34.97

(1028.13 kg m−3) in 1988. The latter corresponds to a period of both maximum CDW

formation and density on Novaya Zemlya Bank (Fig. 5). The impact of Barents Sea dense

water on the intermediate depth waters (between 700 m and 1700 m) of the Arctic Ocean

is described by e.g. Rudels et al. (1994) and Schauer et al. (1997). Aagaard et al. (1981)

argued that the cold halocline of the Arctic Ocean is maintained by lateral advection of

water near the freezing point with a salinity of 34.75 from the surrounding continental

shelves. Our results indicate that most of the outflowing water from the Barents Sea is

more saline, and thus support the view that the contribution to the Arctic halocline from

the Barents Sea is rather supplied by the winter mixed layer (Rudels et al., 1991; Steele

et al., 1995; Rudels et al., 2004).

The contribution from the three banks supplying CDW to the flow between Svalbard
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and Novaya Zemlya (Central Bank, Great Bank and Novaya Zemlya Bank) is on average

0.52 Sv (Fig. 12). The estimate is possibly larger as renewal rates and entrainment is not

considered. Still, covering only ∼7% (9% including Spitsbergen Bank) of the total ocean

area, these banks on average contribute with approximately 1/3 of the net CDW export

from the Barents Sea. The remaining CDW is produced either broadly over the shelf or on

banks not considered here (Fig. 12, termed CDW non-banks). Variation in the CDW net

flow is mostly governed by variations in CDW non-banks, while the banks produce CDW

at a more stable rate. In some periods the relative contribution from the banks is larger due

to low amounts of CDW non-banks (early 1960s, the late 1970s and the late 1990s). All

CDW time series in Fig. 12 have positive correlation (r=0.62-0.82) between volume flux

and density, meaning that during periods of high export the CDW is also denser.

A prominent feature in the CDW transport, related to the CDW non-banks contribu-

tion, is multi-year cycles of persistent high/low outflow (Fig. 12). Maximum CDW export

during the early 1970s and the late 1980s/early 1990s correspond to relatively warm peri-

ods with high inflow through the BSO. The local minimum (late 1970s) occurred during

a cold period with low inflow (Fig. 12 and Ingvaldsen et al., 2003; Levitus et al., 2009).

Warm periods are characterized by higher salinities (Skagseth et al., 2008; Levitus et al.,

2009), lower ice cover (Vinje, 2009) and higher overall heat loss of the AW throughflow

(Smedsrud et al., 2010; Årthun and Schrum, 2010), which all favor CDW formation by

general cooling of AW. CDW non-banks is strongly linked to the heat loss in the region

of the main AW throughflow (Fig. 13). The eastern Barents Sea seems to be a key area

with correlation coefficients of 0.6-0.8 and a 15 times increase of CDW transport (from

0.04 to 0.6 Sv) over the region. This area corresponds to the extent of the winter mean

0◦C surface isotherm, indicative of the position of the Polar Front and size of cooling area

(Smedsrud et al., 2010). Changes in cooling area are associated with changes in ocean

heat transport (Smedsrud et al., 2010), driving large interannual heat loss variability west
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Figure 12: Simulated net outflow of CDW (dashed black line) and other water masses (dashed gray line)

between Svalbard and Novaya Zemlya. The CDW export is partitioned into CDW formed on the banks

(solid black line) and CDW formed broadly over the shelf (CDW non-banks, gray). The net inflow to the

Barents Sea in the BSO is also included (dotted black line). All series have been filtered using a 3 year

running mean.

of Novaya Zemlya (Årthun and Schrum, 2010). Hence, during warm periods with high

throughflow enhanced heat loss in the eastern Barents Sea provides sufficient cooling of

AW to produce CDW, and the result is increased export of CDW to the Arctic Ocean. In

cold periods the opposite occurs and conditions on the banks and dense water formation

by brine rejection become more important (Fig. 12).

Although the net CDW export from the Barents Sea increased by increasing tempera-

tures during the 1970s to the 1990s, it was particularly low during the periods of maximum

temperatures in the early 1950s and late 2000s (Fig. 12; Levitus et al., 2009). The last

decade has been especially warm with subsurface temperatures in the central Barents Sea
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Figure 13: Correlation between annual oceanic heat loss (sensible, latent, and longwave heat fluxes) and net

CDW transport (non-banks) between Svalbard and Novaya Zemlya. 200 m and 300 m isobaths are indicated

by gray lines. Numbers give net CDW transport through different sections (black lines).

(11-57◦E, 69-78◦N) of 6.6◦C between 2002 and 2006 compared to 4.2◦C in 1968-1972

(Levitus et al., 2009). Thus, despite the large oceanic heat loss within the Barents Sea the

additional heat in the warmest years can prevent formation of CDW, and export of CDW

to the Arctic Ocean is strongly reduced. This result is consistent with the results of Harms

(1997) who argued that in warm periods with high AW inflow the CDW production would

be reduced, and Backhaus et al. (1997) who proposed that increasing import of warm AW

onto the Barents Sea shelf might cause a negative feedback on both deep reaching con-

vection and ice growth. It is also noteworthy that the strong reduction of net CDW export

during the extremely warm periods corresponds to an increase in export of water masses

having temperatures above 0◦C (Fig. 12). This might have a profound impact on the heat

transport to the Arctic Ocean.

The volume of CDW from the banks has a negative correlation to the variations in

export of waters warmer than 0◦C (Fig. 12, r=-0.62 for annual values and r=-0.71 for 3
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year moving averages). This implies that strong CDW formation on the banks gives less

net export of warmer (T>0◦C) water from the Barents Sea. When flowing off the banks

substantial mixing between CDW and the surrounding water takes place and mixing will

also occur en route from the bank to the outflow area. Schauer et al. (2002) explained the

relatively high (-0.5◦C) observed temperatures in the deeper layers in BSXwith substantial

mixing between brine-enriched water at the freezing point and AW. Mixing is likely to be

most dominant for CDW being close to the warmest AW and/or having the longest trans-

port route, i.e. the CDW flowing southwards from Central Bank (Fig. 10). Mixing will

increase the temperature of the CDW, but also decrease the temperature of the surrounding

water. Large volumes of CDW on the banks therefore likely results in less export of water

warmer than 0◦C. Our results indicate that the substantial cooling and water mass transfor-

mations occurring on the banks modify the warmer throughflow by downstream mixing.

Consequently, CDW formed on the banks acts as a cooler for the AW throughflow and is

important also for the net export of waters warmer than 0◦C.

From Fig. 13 it is evident that increased heat loss in a narrow band along the southern

coast of Novaya Zemlya will increase the volume of CDW non-banks. This area is part of

the shallow shelf along Novaya Zemlya, but due to our geographical definition of the bank

(Fig. 1 and Tab. 1) CDW formed in this region is classified as CDW non-banks. CDW for-

mation in this region has been documented by earlier studies (Ivanov and Shapiro, 2005).

Furthermore, the discrepancy between simulated and observed bottom water temperature

and salinity (Fig. 4), and the corresponding sensitivity in CDW formation to a corrected

local water mass definition (Sec. 4.5) can influence the relative strength of the different

outflows. For instance, colder and more saline bottom waters on Great Bank could imply a

potential overestimation of CDW export between Svalbard and Frans Josef Land. Limited

measurements of dense water transports exist for the northern Barents Sea, although the

characteristics of the outflow through the Victoria Channel have been discussed by Rudels
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(1986), Schauer et al. (1997) and Rudels and Friedrich (2000). The simulated net through-

flow between Svalbard and Frans Josef Land is 0.3 Sv (outflow), in close agreement with

Maslowski et al. (2004, 0.36 Sv) and Aksenov et al. (2010, 0.4 Sv).

8. Summary and Conclusions

Previously unpublished hydrographic observations during late summer (August-October

1970-2007) demonstrate substantial interannual variability in dense water properties on

shallow banks in the Barents Sea (Spitsbergen Bank, Central Bank, Great Bank, Novaya

Zemlya Bank). Between 1970 and 2007 the mean bottom water temperature on Novaya

Zemlya Bank varied by 2.0◦C, while the salinity variation was 0.44. The temperature and

salinity ranges on Spitsbergen Bank were even larger; 5.1◦C and 1.07, respectively. These

waters condition the intermediate waters of the Arctic Ocean (e.g. Rudels et al., 1994), and

understanding the variability and processes involved are therefore of great interest.

To investigate formation of dense Cold Deep Water (CDW: T<0◦C and S>34.75) and

processes important to its interannual variability, a new and improved setup of the regional

coupled ice-ocean model HAMSOM (Hamburg Shelf Ocean Model) was applied to the

Barents Sea for the period 1948 to 2007. An advection algorithm was also applied to

elucidate the paths of dense water within the Barents Sea. The model identifies several

distinct branches, which has implications for the residence time of dense water and thus

mixing with ambient waters en route to the outflow areas.

The main findings from our study are:

(1) CDW variability on Spitsbergen Bank and Central Bank is associated with advection

of Atlantic Water, which modifies the initial (November) surface salinity and oceanic

heat loss. The high salinities on Central Bank imply that atmospheric cooling is

enough to produce CDW, but initial salinities have a strong influence through the
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effect on water column stability. Strong tidal currents also influence heat loss and

salt input on Spitsbergen Bank. CDW anomalies on Great Bank and Novaya Zemlya

Bank are also related to the initial salinity which is affected by ice import from the

Arctic Ocean and the fresh Novaya Zemlya Coastal Current, respectively. Novaya

Zemlya Bank has the highest salt input from ice growth during winter (∼0.2 kg m−2

day−1) and variations in ice extent are important for dense water temperatures and

salinities.

(2) The main net CDW export is between Frans Josef Land and Novaya Zemlya (1.2 Sv).

Part of the CDW also exits the Barents Sea to the Arctic Ocean between Svalbard and

Frans Josef Land (0.4 Sv), whereas smaller amounts exit into the Norwegian Sea. The

mean density of the outflowing CDW north of Novaya Zemlya is 1028.07 kg m−3,

which compares to observed densities below 1000 m in the Arctic Ocean. Compared

to the total outflow 1/3 of the CDW originates from the banks, which represent 9% of

the Barents Sea area. During cold periods with reduced AW inflow conditions on the

banks become more important and dense water formation by brine rejection plays a

larger role. Strong CDW formation on the banks also gives less net export of warmer

water (T>0◦C) from the Barents Sea, suggesting that water mass transformations

occurring on the banks modify the warmer throughflow by downstream mixing.

(3) Cooling of northward flowing Atlantic Water and general ice growth in the north-

ern Barents Sea is the most important driver of CDW formation, and therefore also

CDW export to the Arctic Ocean. The dense outflow into the Arctic Ocean displays

large interannual and quasi-decadal variability, corresponding with variations in the

Atlantic Water inflow. Warm periods tend to have high Atlantic inflow, a larger heat

loss to the atmosphere, and high CDW export.

We have found that the Barents sea produces and exports CDW effectively for a large
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range of forcing, sending ∼70% of the shallow inflowing water to depths below 1000 m

in the Arctic Ocean. However, the last ten years have been anomalously warm, both in

the world oceans in general and in the Barents Sea. This recent warming has decreased

the CDW production and export. While this might suggest a general shift due to a gradual

global warming, the recent warming has similar characteristics to a warm period in the

1950s. Future observations of the Atlantic inflow and dense outflow should remain a high

priority to follow the ongoing changes, and determine whether the Barents Sea will return

to a colder state once again. What now seems to be clear is that the banks in the Barents

Sea are very steady contributors to the CDW production, and may thus turn out to be even

more important in the future.
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