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Chapter 1

Introduction

1.1 The Standard Model and Particle Physics Today

There are four known fundamental forces in nature: Electromagnetism, the weak and

strong nuclear forces and gravity. The three first are described by the Standard Model

of Particle Physics (SM), while the latter is described by the General Theory of Rel-

ativity (GR). GR is used to describe large-scale phenomena like the distribution of

matter in a galaxy, or whether or not a supernova will collapse into a black hole. On

the other hand we have the SM, which describes phenomena on the smallest scales. As

accelerators reach higher energies and can probe smaller distances, one expects that

something new will appear. Whether this will end up with a unification of the SM and

GR, a revision of the standard model or something else entirely, still remains to be

seen. In the framework of the SM there are also several reasons to suspect new physics

at higher energy scales.

The thesis will concern itself with a hypothetical experimental observation. We will

assume that the observation cannot be encompassed in the SM Higgs mechanism. This

means that we have to look elsewhere for explanations. The objective throughout the

thesis will be to look at theories beyond the Standard Model that can explain the ex-

perimental observation. Theories we will consider include a new neutral gauge boson,

Z ′ [1], the 2HDM [2], Technicolor[3] and extra-dimensional theories like ADD [4] and

Randall-Sundrum [5]. To state the objective of the thesis more clearly we need to go

through the experimental situation in some detail. This is the purpose of the next
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1. INTRODUCTION

chapter. The observation concerns an unknown state or particle decaying.
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Chapter 2

The experimental situation

In this section the hypothetical experimental situation is described. The thesis is meant

to be self-contained, so I will try to always describe the basic ideas and quantities I am

using.

2.1 Decays

After a particle is created it can break up into other particles (i.e. decay). The type of

particles that it can decay to is constrained by conservation laws. For instance, if the

decaying particle is electrically neutral, the other particles must have a total charge

of zero. If you specify which particles it decays to, it is called a decay mode or decay

channel. A decay mode of the Higgs boson is H → ZZ. This decay channel will be a

main theme in this thesis.

For different values of the Higgs-boson mass, it decays to different particles with dif-

ferent rates. The quantity used to characterize this is called the decay rate. The way

one does calculations in quantum field theory is by specifying initial and final states

and then do a lot of maths. To calculate the total decay rate, one specifies the initial

state as the decaying particle (e.g. Higgs) and sums over all possible decay products

(e.g. ZZ or W+ W− etc.). More specifically:

The differential decay rate of a particle P with four-momentum p = (E,p) decaying to

N particles with four-momenta pf = (Ef ,pf ) is given by [6]:

3



2. THE EXPERIMENTAL SITUATION

dΓ = (2π)4δ(4) (Σpf − p) 1
2E

(∏
l

(2ml)

)∏
f

d3pf
(2π)32Ef

 |M|2 (2.1)

The index f stands for “final” and refers to the outgoing particles. The decay rate

is then obtained by performing the phase-space integrals over the three-momenta. If

we label each of the different final states by r, we can write the total decay rate as

Γtot =
∑
r

Γr (2.2)

Here, the index r must not be confused with the index f that labels the final particles

for a given r. There are two other important quantities that are derived from the above

ones. First off the lifetime of a particle is defined as:

τ =
1

Γtot
(2.3)

Secondly, there is a quantity called the branching ratio. The branching ratio describes

how much one mode contributes to the total decay. It is defined as

Br =
Γr

Γtot
(2.4)

The branching ratio will also be denoted as BR(initial state→ state r)

2.2 Higgs Boson and my Thesis Approach

If we knew the mass of the Higgs boson we would know all couplings in the Standard

Model. Specifically, we would know the λ parameter which pops up in the quartic term

of the Higgs potential, see (3.46). An observation of the Higgs particle should then,

along with the assumption that the Standard Model is correct, enable us to calculate

the physical observables for any process. As mentioned, different values of the Higgs

mass would give different decay rates and branching ratios. In Figure 2.1 we see a

plot of branching ratios for different values of the Higgs mass. The thesis will be

mainly concerned with the region from 190-220 GeV, where decay to ZZ and W+ W−

dominates. I will look at the specific decay channel.

H → ZZ → 4 leptons (2.5)

4



2.2 Higgs Boson and my Thesis Approach

Figure 2.1: Higgs branching ratio, [7]

This channel is often called the golden channel for heavy (i.e.≥ 190 GeV) Higgs detec-

tion. The reason is that it has a low background, meaning that a standard model Higgs

boson would stand out. My thesis approach is roughly: We see some state or particle

decaying but we see more than we would expect. What can it be? More precisely:

We observe 4 leptons out of which we reconstruct a ZZ-pair (i.e. each lepton pair

came from a decaying Z). The ZZ-pair originates from the same point, has an invari-

ant mass round 200 GeV, but the production rate exceeds the theoretically expected

value. Could such an observation be encompassed in any version of the Higgs mecha-

nism? If not, what else could it be?

To be clear, theoretical expectations include:

1. Contributions from a Higgs with the mass equal to the ZZ-pair’s invariant mass

2. Other SM diagrams with ZZ → 4 leptons final state

5



2. THE EXPERIMENTAL SITUATION

Figure 2.2: Higgs contribution to the process H → ZZ → 4

Figure 2.3: Other SM contributions to the process H → ZZ → 4

6



2.3 Statistical fluctuation

The Feynman diagrams of the contributions are shown in Figures 2.2 and 2.3. Before

categorizing possible explanations, we will go through a calculation of the probability

that it’s just a statistical fluctuation.

2.3 Statistical fluctuation

Before doing the calculation we need some basic definitions. The expected number of

events from a particular process is the product of the luminosity and the cross section

for that process,

〈N〉 = Lσr (2.6)

The cross section σr is a quantity describing the likelihood of an interaction taking

place. The decay formula shown above is analogous to the cross section formula, but

for decay calculations you only have one initial particle. The cross section is the prod-

uct of two things: The phase-space factor and the dynamical factor (determined by the

Feynman amplitude). The phase-space factor incorporates the different configurations

the system can end up in, while the amplitude encodes the physics of the specific in-

teraction. The amplitude is obtained after specifying initial and final states. The cross

section has units of area.

On the other hand you have the luminosity, which is a machine-dependent quantity. It

can be thought of as how many particles go through some unit area per second1. The

product of the luminosity and the cross section is a number describing the expected

number of events per second. There is also the concept of integrated luminosity. The

luminosity is a time-dependent function and we usually need to know the time integral

of this function. This tells us how many particles have had a chance to interact in the

total time the experiment has been running.

To get the expected number of events we do the following: Integrate the luminos-

ity from start of the experiment till end and then multiply it with the cross section for

the initial and final states we specified. An easy example is: If one runs the accelerator

for an hour with constant luminosity, the expected number of events will be 3600 as
1Particle flux

7



2. THE EXPERIMENTAL SITUATION

many as if you would run it for one second.

Under the assumptions that the parent particle is the Higgs boson and that the Stan-

dard Model is correct we can now calculate the cross section for any process. We then

multiply it with the integrated luminosity and get the expected number of events. Let

us denote the theoretically expected number of events for this process by N th
4l . The

next step is to recognise that we have an expected number of ocurrences (events) in

a fixed interval (dataset), making the Poisson distribution applicable. The probability

distribution function for the Poisson distribution with x denoting the number of events

is:

P (X = x) =
N th

4l
x

x!
e−N

th
4l (2.7)

Our situation is one observation in the dataset. So P (X = 1) = N th
4l e
−Nth

4l is the

probability for having one such observation in the dataset. The probability for observing

one or more events (called p-value in statistics) is:

P (X ≥ 1) = 1− e−Nth (2.8)

2.4 Possible explanations

For a low value of the probability, it is highly unlikely that our observation can be

explained by the Standard Model alone. We will therefore assume that this probability

is low in the remainder of the thesis. Different explanations can be divided into the

three following categories

1. SM Higgs + New Physics

2. Other Higgs mechanism + New Physics

3. No Higgs

This is of course a rough categorization, but it will give us something to relate the dif-

ferent theories to. The key idea is that we somehow have to enhance the ZZ production

rate. Here follows a short explanation of each category:

8



2.5 A general restriction

2.4.1 SM Higgs + new physics

Assume that the Higgs of the Standard Model is correct. We would now have to explain

the excess in the cross section by some new physics. Examples that I will go through

include: A new neutral gauge boson Z ′ coupling to the Z boson or a graviton decaying

to ZZ. Both these mechanisms could enhance the production rate.

2.4.2 Other Higgs mechanism + new physics

A different version of the Higgs mechanism could give us larger freedom in adjusting

the Higgs coupling to the Z boson. An example is the 2HDM where we have more free

parameters to adjust in the Yukawa couplings [2]. In addition to this we could include

the above-mentioned examples of a Z’ or a graviton decaying.

2.4.3 No Higgs

There are theories that do not make use of the Higgs mechanism. An example of this

is Technicolor which generates masses for the Z and W bosons by introducing new

gauge interactions. The main problem with Technicolor is that Electroweak Precision

Measurements easily come into conflict with the theory. The possible candidates to

enhance the ZZ cross section are composite particles similar to ordinary vectormesons,

called technivectormesons.

2.5 A general restriction

If we are to explain the observation by some new particle decaying, we can say some-

thing about its spin. Since the particle decays to two Z bosons with intrinsic spin 1,

the parent particle can (by addition of angular momentum) have spin 0, 1 or 2. This

gives us another way of thinking about the possible explanations. Spin 0 corresponds

to the Higgs mechanism (e.g SM or 2HDM), spin 1 could be a new gauge boson or the

technipions and technirhos, while spin 2 would be a graviton decaying.

Enhancing the cross section for ZZ production with a particle, X (MX ∼ 200 GeV)

of spin 0, 1 or 2 that decays, can be laid out as follows: The cross section is,

σ(pp→ X → ZZ → 4l) (2.9)

9



2. THE EXPERIMENTAL SITUATION

which can be written

σ(pp→ X)×BR(X → ZZ)×BR2(Z → 2l) (2.10)

The branching ratio of Z → 2l is well known, so the alternatives left are:

1. Increase the production cross section σ(pp→ X)

2. Increase the branching ratio X → ZZ

3. Increase both of the above

Before discussing this any further, we go through some relevant SM theory.

10



Chapter 3

The Standard Model

Here I will go through the parts of the Standard Model that will be needed later on. I

will assume that the reader is familiar with some quantum field theory and Lagrangian

mechanics. First I will give a brief overview of the theoretical framework, then we will

look at the gauge principle and finish with a discussion of the Higgs mechanism. The

content of this section is largely based on [6], [8] and [9].

3.1 Quantum fields and Lagrangians

The Standard Model’s basic quantities are called quantum fields. They are abstract

quantities that we use to calculate physical observables. There are basically three dif-

ferent types of fields needed to describe fermions and bosons. The spin 1
2 field (Dirac

field), the spin 1 field (vector field) and the spin 0 field (scalar field). We construct

the quantum fields out of a procedure called “second quantization”, where we start out

with classical fields defined by their equations of motion. Each classical field is Fourier

expanded. The coefficients in the expansion are turned into creation and annihilation

operators by imposing commutation and anticommutation relations. The spin-half field

carries with it spinors and the spin-1 field four vectors. For each point in spacetime we

now have operators that create and annihilate particles.

We can compare the classical fields in field theory to our description of electricity

and magnetism. For each point in space-time we associate either a number (scalar

or spin 0), four-vector (spin 1) or spinor (spin 1
2). In electricity and magnetism we

11



3. THE STANDARD MODEL

associate a three-vector, which tells us about the strength and direction of the force a

test particle would experience. Sadly we can not lay out iron filaments to get a better

visualization of four vectors.

Lastly we write all the fields, appropriately combined, in the same function called

the Lagrangian. It is from these fields and Lagrangians that we calculate physical ob-

servables.

Up until now we have not discussed how one decides which Lagrangian to write down.

This is not an easy question to answer, because one basically has to take a guess. The

Lagrangian you write down is of course checked against its experimental consequences.

In modern physics there is a method of guessing Lagrangians that seems to work for

several different types of theories. It’s called the gauge principle. The gauge principle

is interesting for two main reasons. Firstly it seems to be a unified way of guessing

at interactions. Unified in the sense that one uses the same procedure for introducing

interactions in QED, EW theory and the theory of the strong interactions. Secondly

it is grounded in principles of symmetry which, if one looks at the history of physics,

seem to be important.

In addition, there is the problem of renormalization. Physical quantities are calcu-

lated through a perturbative expansion involving the Lagrangian. When calculating to

second order and more, divergent integrals appear. QED, Fermi’s theory of weak inter-

actions and EW theory are all examples of this. In QED and EW theory the divergences

can be dealt with through the procedure of renormalization. In the Fermi theory this

is not possible, so calculations beyond first order usually contain non-sensical infinities.

We summarize this by saying that the Fermi Lagrangian is non-renormalizable. Before

discussing renormalization any further, I will go through the gauge principle.

3.2 The gauge principle

I will begin by showing how the gauge principle is used to get the Lagrangian density

for QED. Afterwards we will see how one can implement it in EW theory. The total

12



3.2 The gauge principle

QED Lagrangian is:

LQED = ψ(iγµ∂µ −m)ψ + eψ∂µA
µψ − 1

4
FµνFµν (3.1)

Written out explicitly the tensor in the kinetic term is:

Fµν = ∂νAµ −Aν∂µ (3.2)

If we perform the coupled transformation:

Aµ → A′µ(x) = Aµ(x) + ∂µf(x)

ψ(x)→ ψ′(x) = ψe−ief(x)

ψ(x)→ ψ
′(x) = ψeief(x)

(3.3)

the Lagrangian density is invariant (i.e. it looks the same before and after the trans-

formation). This means that our adjustment of the fields Aµ and ψ has not changed

the physical content of the Lagrangian. This freedom is referred to as gauge freedom

and the coupled transformation is called a U(1) gauge transformation. Above we essen-

tially did two things: Postulated the Lagrangian and found the coupled transformation.

Now let us look at the alternate way of introducing the Lagrangian. I will illustrate

the procedure with the explicit example of QED, but the steps are quite general. They

are as follows:

1. Start with the free Lagrangian density

L0 = ψ(iγµ∂µ −m)ψ − 1
4F

µνFµν

2. Identify global transformations leaving L0 invariant

ψ(x)→ ψ′(x) = ψe−ief

ψ(x)→ ψ′(x) = ψeief

3. Make the global transformations local, i.e. f = f(x). The Langrangian is no

longer invariant due to the ∂µ term

4. Introduce the covariant derivative (through ∂µ → Dµ) and demand that the

resulting Lagrangian is invariant under the local transformation

L = ψ(iγµDµ −m)ψ

13



3. THE STANDARD MODEL

The demand that L be invariant under local transformations plus the requirement of

renormalizability, makes the covariant derivative take a specific form

Dµ = ∂µ − ieAµ (3.4)

Here the introduced field transforms as

A′µ(x) = Aµ(x) + ∂µf(x) (3.5)

under the local transformations. Finally if we write everything out:

L = ψ(iγµDµ −m)ψ = ψ(iγµ∂µ −m)ψ + eψ∂µA
µψ = LQED (3.6)

Let us pause for a moment and summarize what has happened. Through demanding

invariance of L under local transformations, we had to introduce a new field Aµ which

we call a gauge field. It is the photon field and it now couples to the Dirac field through

the QED interaction term in just the right way. An interesting point here is that by

enforcing invariance in the Lagrangian we had to introduce the interaction term. This

was once refered to by the theoretical physicist C.N. Yang as “...The principle that

symmetry dictates interaction.” [10]

When we introduce the gauge bosons of the EW theory we do it by the same proce-

dure, but we rewrite the free Lagrangian density such that the global transformations

are different. We now start with a free Lagrangian density of the form

L0 = i(ψlγµ∂µψl + ψνlγµ∂
µψνl) (3.7)

The indices l and νl refer to charged leptons and neutrinos respectively. l can be any

one of the three generations (l = e, µ, or τ). If we define the doublet:

Ψl =
(
ψνl
ψl

)
(3.8)

we can write the Lagrangian as

L0 = Ψliγµ∂
µΨl (3.9)

We identify the global transformation leaving L0 invariant as:

Ψl(x)→ Ψ′l(x) = UΨl(x)

Ψl(x)→ Ψ′l(x) = Ψl(x)U †

U = e
−igσjαj

2

(3.10)

14



3.2 The gauge principle

with

[σi, σj ] = 2iεijkσk (3.11)

Here U is a two by two matrix with determinant 1. It is an SU(2) transformation.

Since SU(2) is a simply connected group it is completely characterized by its Lie alge-

bra. This means that every SU(2) transformation can be written as the exponential of

an element of its Lie algebra. Each element of the Lie algebra can in turn be written as

a linear combination of the three generators σj . An SU(N) transformation has N2− 1

parameters needed to characterize the transformation. This will be important when we

make the transformation local (U = U(x)) and substitute the ordinary derivative for

the covariant one. To enforce invariance on the Lagrangian we will need to introduce

three gauge fields corresponding to the three free parameters in SU(2). These three

gauge fields are associated with the Z and W±. This is also the reason for having 8

gauge fields with their associated gluons in the SU(3)C theory of the strong interactions.

We now proceed as in the QED case:

1. Make the transformation local (i.e. U = U(x))

2. Replacing the ordinary derivative with the covariant derivative and demanding

invariance results in gauge fields

In EW theory the SU(2) transformation is implemented on such a doublet, but only

with the left-handed part of the fields organized in a doublet. The total gauge group of

EW theory is SU(2)L × U(1) which makes the total amount of gauge fields 3 + 1 = 4.

Two of the fields from SU(2)L combine to give W+ and W−, while the last SU(2)L
field and the U(1) field make up the Z and the γ. For the sake of completeness the

mathematical steps just described will be given here and we will add the kinetic terms

of the fields. If one is comfortable with these steps, feel free to skip down past (3.28)

Fair warning has been given, without further ado:

We start with the free Lagrangian density

L0 = Ψliγµ∂
µΨl (3.12)

15



3. THE STANDARD MODEL

We split the field into left and right-handed parts defined by the relations

ΨL
l = PLΨl =

1
2

(1− γ5)Ψl (3.13)

ΨR
l = PRΨl =

1
2

(1 + γ5)Ψl (3.14)

Using the relation PR + PL = 1 and the fact that γµ and γ5 anticommute results in

L0 = ΨL
l iγµ∂

µΨL
l + ΨR

l iγµ∂
µΨR

l (3.15)

The right-handed doublet is treated differently from the left-handed one. The free

Lagrangian density we will gauge is now:

L0 = ΨL
l iγµ∂

µΨL
l + ψRl iγµ∂

µψRl + ψRνliγµ∂
µψRνl (3.16)

The left-handed doublet is now invariant under a global SU(2) transformation (3.10).

Both the doublet and singlets are invariant under a global U(1) transformation. With-

out further detail regarding transformation properties, here is the result of applying

this procedure to (3.16).

L = ΨL
l iγµD

µΨL
l + ψRl iγµD

µψRl + ψRνliγµD
µψRνl (3.17)

The different covariant derivatives are:

DµΨL
l = [∂µ − igσjWµ

j /2 + ig′Bµ/2]ΨL
l (3.18)

DµψRl = [∂µ + ig′Bµ]ψRl (3.19)

DµψRνl = ∂µψRνl (3.20)

As mentioned the B field corresponds to the U(1) transformation and the three Wj

fields to the SU(2). Note that the Pauli matrices enter here as coefficients for the Wjµ

fields. The fields W3µ and Bµ are combined in an appropriate way:

W3µ(x) = cos θWZµ + sin θWAµ

Bµ(x) = − sin θWZµ + cos θWAµ
(3.21)

Here, the fields Aµ and Zµ are taken to be the photon field and Z boson field, respec-

tively. The angle, θW , is called the weak mixing (a.k.a. Weinberg angle). Similarly,

the W1µ and W2µ fields are combined through:

Wµ = W1µ − iW2µ

W †µ = W1µ + iW2µ

(3.22)
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3.2 The gauge principle

Note that these fields are not hermitian, indicating that they describe charged particles.

In the interaction Lagrangian the fields will couple through the currents:

sµ(x) = −eψl(x)γµψl(x)

Jµ(x) = ψl(x)γµ(1− γ5)ψνl(x)

Jµ†(x) = ψνl(x)γµ(1− γ5)ψl(x)

Jµ3 (x) =
1
2

[
ψLνl(x)γµψLνl(x)− ψLl (x)γµψLl (x)

] (3.23)

The last current, Jµ3 , is a neutral current. That is, it only couples particles of no

charge or particles of opposite charge, consequently the mediating particle is neutral.

The second term in the bracket is similar to the electromagnetic current, which is also

neutral (the photon has no charge). Demanding that the electromagnetic field only

couples to charged particles in the ordinary way (i.e. through sµAµ) we need to put:

g sin θW = g′ cos θW = e (3.24)

The constants g and g′ were introduced through the covariant derivative in (3.17).

Writing the Lagrangian as a sum of the free part and an interaction part,

LEW = L0
EW + LIEW (3.25)

where the interaction part, written by the above currents is [6]:

LIEW =− sµ(x)Aµ(x)− g

2
√

2

[
Jµ†(x)Wµ(x) + Jµ(x)W †µ(x)

]
− g

cos θW

[
Jµ3 (x)− sin2 θW s

µ(x)/e
]
Zµ(x)

(3.26)

The above Lagrangian describes free, massless leptons and their interactions with the

gauge bosons. We still need to add kinetic terms for the gauge bosons. The U(1)

kinetic term for the B will be the same as for QED, but the Wj kinetic term is a bit

different. Due to SU(2) transformation properties we get an extra term in the kinetic

tensor Gµνi . The kinetic terms are

− 1
4
BµνB

µν

− 1
4
GiµνG

µν
i

(3.27)
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3. THE STANDARD MODEL

where the tensors above expressed in terms of the fields are

Bµν = ∂νBµ − ∂µBν

Gµνi = Fµνi + gεijkW
µ
j W

ν
k

Fµνi = ∂νWµ
i − ∂µW ν

i

(3.28)

The term gεijkW
µ
j W

ν
k will, when multiplied with Gµνi , give new interaction terms.

These interaction terms describe the self coupling of the gauge bosons.

This is not the whole story though. The attentive reader will notice that, in con-

trast to the QED example, we did not include mass terms for the leptons in the free

Lagrangian density. The masses of the gauge bosons are not included either. This is

closely related to the problem of divergent loop integrals and renormalization.

3.3 Mass and renormalizability

We now have an SU(2)L ×U(1) invariant theory (gauge invariant), but all particles in

it are massless. At this point we could simply add mass terms for the gauge-bosons

and leptons. They look like:

m2
WW

†
µW

µ (3.29)
1
2
m2
ZZ

µZµ (3.30)

mlψlψl (3.31)

These mass terms are not gauge invariant. This does not seem like a problem yet,

because as long as the theory gives sensible results, gauge invariance is not needed.

Unfortunately the resulting model (Glashow model) is non-renormalizable. The resolu-

tion of this problem is the Higgs mechanism. We will retain gauge invariance by adding

a scalar field in an SU(2)L × U(1) invariant way. The scalar field will generate masses

through the mechanism of spontaneous symmetry breaking. This will be the topic of

the next section.
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3.4 Higgs mechanism

3.4 Higgs mechanism

The Higgs mechanism is most easily explained by first considering a simple model called

the Goldstone model. The reason is that the Goldstone model is a good illustration of

spontaneous symmetry breaking (SSB). We will go on to consider the Higgs model and

briefly show its implementation in the Weinberg-Salam theory. The development will

follow closely that of Mandl and Shaw [6]. We keep in mind that the problem we are

trying to solve is how to add mass terms without spoiling the calculability of the theory.

3.4.1 Spontaneous Symmetry Breaking

The arguments for SSB are a bit abstract if one has not gone through some example

first. I will first state the abstract arguments, then go through the Goldstone example

and make the abstract a bit more concrete.

1. In field theory the lowest-energy state is the vacuum state

2. SSB is relevant if the vacuum state is non-unique

3. Non-uniqueness means that we have some way of distinguishing one vacuum state

from another

4. In the quantum theory, we assume this distinguishing label to be a vacuum ex-

pectation value (VEV) of some field

5. Lorentz invariance ensures that it is the VEV of a scalar field

6. The assumption that the vacuum is the same everywhere (translational invari-

ance) ensures that the VEV is constant

In the Goldstone model, we will look at the Lagrangian of a scalar field. It will possess

a certain symmetry. The lowest-energy state of the system will not share the symmetry.

This is what is called spontaneous symmetry breaking.

The Goldstone model is described by the Lagrangian

L = [∂µφ∗][∂µφ]− V (φ) (3.32)

V (φ) = µ2|φ|2 + λ|φ|4 (3.33)
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3. THE STANDARD MODEL

Here, φ is to be considered as a classical, complex-valued, scalar field. The Hamiltonian

of the system is:

H = [∂0φ
∗][∂0φ] + [∇φ∗][∇φ] + V (φ) (3.34)

Minimizing the Hamiltonian w.r.t. φ, means solving the equation

∂H

∂φ
= 0 (3.35)

Since the derivative of φ and φ itself, are independent normal coordinates we get:

∂H

∂φ
=
∂V

∂φ
= 0 (3.36)

Minimizing H is therefore the same as minimizing V (φ).

We write φ as the sum of two real-valued fields in the following way:

φ =
1√
2

[φ1 + iφ2] (3.37)

Before we attempt to quantize the field we will look at the potential part. The quartic

term must have a positive constant to be bounded from below. For the quadratic term

we have two situations:

1. µ2 > 0

2. µ2 < 0

In Figure 3.1 a plot for the case µ2 < 0 in the φ1, φ2 space is shown. In each case we

have rotational invariance of the potential. This is reflected in the Lagrangian by the

invariance under φ′ = eiθφ (Since multiplying by eiθ rotates by θ). An energy level will

correspond to a point along the V -axis, while an energy state corresponds to a point

in the φ1, φ2 plane. One can think of a marble rolling around on the potential surface,

the marble’s position will define the energy state and the height is the energy level.

1. For the µ2 > 0 case, we have a unique lowest-energy state and the energy state

is also invariant under rotation.
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3.4 Higgs mechanism

Figure 3.1: The Higgs potential for the case µ2 < 0

2. In the µ2 < 0 case, we have several lowest-energy states corresponding to the

lowest-energy level. If we rotate the potential, a lowest-energy state will rotate

into another state with the same energy. So the lowest-energy state does not

share the symmetry of L.

More generally, if a Lagrangian possesses a particular symmetry, we have two possible

situations that can occur when classifying energy levels. If an energy level is non-

degenerate the corresponding energy state is unique and invariant under the symmetry

transformations of L. If it is degenerate the energy eigenstates are not invariant, but

transform linearly among themselves.

Now I will relate the above abstract concepts to the Goldstone example. We will

choose µ2 < 0 so that the vacuum state is non-unique. Each point on the circle of

minima φ0 =
√
−µ2

2λ e
iθ corresponds to a different vacuum state with the same energy.

θ is now our label to distinguish vacuum states. The idea is that once we choose a

specific state (e.g. θ = 0) we have spontaneously broken the symmetry. This is be-

cause under the transformation φ‘ = eiθφ, the Lagrangian is invariant, but the specific

vacuum state is transformed into another vacuum state. We will now choose θ = 0

and define v√
2

=
√
−µ2

2λ as the label of THE vacuum state. Just to be clear here: The

specific value of θ chosen is not important, but choosing one is.

So far we have been treating this as a classical field theory. We will now try relat-
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3. THE STANDARD MODEL

ing this to the quantum theory by relating the VEV of φ to the labelling quantity v.

First we make a coordinate change

φ =
1√
2

[v + σ(x) + iη(x)] (3.38)

The quantum criterion for SSB is expressed in the relation of the VEV to v, which

is: 〈
0
∣∣φ(x)

∣∣0〉 =
v√
2

(3.39)

We get a new Lagrangian density, which is equivalent to the Lagrangian density before

the variable change (3.33)

L =
1
2

[∂µσ][∂µσ]− 1
2

(2λv2)σ2

+
1
2

[∂µη][∂µη]− λvσ[σ2 + η2]

−1
4
λ[σ2 + η2]2 + const

(3.40)

The reason for making the variable change is, in short, because perturbation about

φ = 0 gives non-sensical results.

We instead perturb about v√
2

with the free Lagrangian density

L0 =
1
2

[∂µσ][∂µσ]− 1
2

(2λv2)σ2 +
1
2

[∂µη][∂µη] (3.41)

Upon quantization the fields η and σ lead to spin-0 particles. The particle associ-

ated with σ has a mass
√

2λv2, while the η particle is massless (no η2 term). This can

be interpreted by looking at small displacements from the equilibrium configuration.

Small displacements along the σ direction correspond to climbing the potential valley,

where V goes as σ2 (like the mass term) while small displacements in the η direction

do not change the potential. The quantum excitations of η are consequently massless.

These massless bosons pop up everywhere in theories with SSB and are called Gold-

stone bosons. In the next section we will get rid of these Goldstone bosons by retaining

gauge invariance in the SSB model. This is the Higgs model.
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3.4 Higgs mechanism

3.4.2 The Higgs Model

The Lagrangian for the Higgs model is

L = [Dµφ]∗[Dµφ]− µ2|φ|2 − λ|φ|4 − 1
4
FµνFµν (3.42)

Here, φ is again to be considered as a classical, complex-valued, scalar field. Comparing

this to the Goldstone model the differences are:

1. We have made the substitution ∂µ → Dµ, where Dµ = ∂µ + igAµ

2. We have added the kinetic term of Aµ

This is similar to what we did when we obtained the Lagrangian density for QED by

the gauge principle. The Langrangian density is invariant under the U(1) gauge trans-

formation (3.3).

We now proceed similarly as in the Goldstone case:

1. Classical field theory

2. λ > 0, µ2 < 0

3. We obtain the circle of minima and choose θ = 0

4. Make the variable change (3.38)

Neglecting higher-order interaction terms, the Lagrangian density has the form:

L =
1
2

[∂µσ][∂µσ]− 1
2

(2λv2)σ2 − 1
4
FµνFµν

+
1
2

(qv)2AµA
µ +

1
2

[∂µη][∂µη] + qvAµ∂µη

(3.43)

By inspection the Lagrangian seems to describes a massive real scalar field σ, a real

massless scalar field η and a massive vector field Aµ. Upon counting degrees of freedom

(d.o.f.) in the Lagrangian before and after the variable change (3.38) we find that they

are different. Before changing variables (3.42) the d.o.f. are four. Two for the complex

field φ and two for the massless vector field Aµ. Afterwards (3.43) the d.o.f. are five.

One each for η and σ and three for the now massive vector field Aµ.
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3. THE STANDARD MODEL

Since the degrees of freedom cannot be changed by a change of variables, one concludes

that something is amiss. We now use the gauge invariance we insisted on retaining for

what it’s worth. For every point in space-time we can choose the function f(x) in (3.3)

such that the φ field is real. In other words we use gauge invariance to get rid of η

making φ = 1√
2
[v + σ(x)]. This restriction on the function f(x) is called the unitary

gauge.

The free Lagrangian density now takes the form

L0 =
1
2

[∂µσ][∂µσ]− 1
2

(2λv2)σ2 − 1
4
FµνFµν +

1
2

(qv)2AµA
µ (3.44)

We now see that we have a free Lagrangian density describing a massive vector field

and a massive spin-0 particle. There are also higher-order interaction terms coupling

σ to itself and Aµ. Let’s summarize what we just did:

1. Started from (3.42), containing a complex field and a massless vector field

2. SSB

3. Unitary gauge

4. Ended up with (3.43), containing a massive scalar field and a massless vector field

This is often summarized as the vector field “eating” a d.o.f. from the complex field,

becoming massive in the process.

Now we come back to the renormalizability of the theory, which was the problem we

started with. An added bonus of retaining gauge invariance is being able to show that

the theory is renormalizable. A renormalizable theory has the property that physical

observables are finite and computable. Gauge-invariant theories have the same physical

content no matter which gauge is chosen (unitary or otherwise). This means that if we

can show that the theory is renormalizable in one gauge it will apply in every gauge.

Fortunately, one can do this both for this theory and for the SU(2)L × U(1) invariant

Weinberg-Salam theory. When Weinberg first published his theory he didn’t prove that

it was renormalizable. He talks about this in his Nobel lecture and it is related to the

above:
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3.4 Higgs mechanism

“With hindsight, my main difficulty was that in quantizing the vector fields I adopted a

gauge now known as the unitarity gauge [30]: this gauge has several wonderful advan-

tages, it exhibits the true particle spectrum of the theory, but it has the disadvantage

of making renormalizability totally obscure.”

3.4.3 Weinberg-Salam model

The Weinberg-Salam theory is the successful implementation of the Higgs mechanism

to the SU(2)L × U(1) invariant theory. Since one wants to break an SU(2) symmetry,

we must at least introduce a doublet field. It is of course possible to introduce more

doublets as is done in the 2HDM. In the Standard Model, the mathematically simplest

choice is made. One adds the doublet

Φ =
(
φa
φb

)
(3.45)

through the Lagrangian

LH = [DµΦ]†[DµΦ]− µ2Φ†Φ− λ[Φ†Φ]2

= [DµΦ]†[DµΦ]− V (Φ)
(3.46)

The doublet transforms under both SU(2) and U(1) gauge transformations. The co-

variant derivative is

DµΦ = [∂µ − igσjWµ
j /2− ig′Bµ/2]Φ (3.47)

We repeat the procedure we used in the Higgs model. Taking λ > 0, µ2 < 0, the

classical field has a minimum for a constant value of Φ. The SSB relations for the

doublet become: 〈
Φ†0Φ0

〉
=
∣∣φ0
a

∣∣2 +
∣∣φ0
a

∣∣2 =
−µ2

2λ〈
Φ0

〉
=
(
φ0
a

φ0
b

)
=

(
0
v√
2

)

v =

√
−µ2

λ
(> 0)

(3.48)

We make the coordinate change

Φ =
1√
2

(
η1 + iη2

v + σ + iη3

)
(3.49)
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3. THE STANDARD MODEL

Once again we can exploit the gauge invariance of the theory. We employ the unitary

gauge and rid ourselves of the Goldstone bosons ηi

Φ =
1√
2

(
0

v + σ

)
(3.50)

For future reference, this gauge will be employed when calculating amplitudes in chapter

5. The gauge bosons will aquire mass terms, when they are multiplied by the v term

in the lower component of Φ. This happens through the term [DµΦ]† [DµΦ] in (3.46).

Doing this we obtain terms quadratic in the W and Z fields. Their coefficients give a

mass for each of the bosons,

MW =
1
2
gvMZ =

1
2

√
g2 + g′2v (3.51)

This (3.24) leads to the relation,

MW = MZ cos θW (3.52)

The last thing we have to consider is the mass of the leptons, they will be introduced

through Yukawa couplings. A Yukawa coupling is a term containing a product of two

spinors and a scalar. The Yukawa term for the charged leptons is gauge invariant and

looks like

−gl
[
ΨL
l ψ

R
l Φ + Φ†ψRl ΨL

l

]
(3.53)

In the unitary gauge this reduces to

− gl√
2

[
ψ
L
l ψ

R
l (v + σ) + ψ

R
l ψ

L
l (v + σ)

]
= − gl√

2
(v + σ)

[
ψlψl

]
= − gl√

2
vψlψl −

gl√
2
σψlψl

(3.54)

This enables us to identify the mass of the charged leptons as ml = glv√
2
. Similar

couplings can be added in the quark case.
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Chapter 4

Electroweak Precision Tests

The main task of the thesis is to enhance the ZZ cross-section in accordance with our

experimental observation (chapter 2). Before we look at theories beyond the Stan-

dard Model, we will look at the Electroweak Precision Tests (EWPT). The EWPT are

high-precision measurements of the properties and parameters in the EW part of the

Standard Model. The high accuracy of the EWPT makes them crucial for ruling out

Beyond-SM theories (BSM). Any extension of the Standard Model must yield results

that are compatible with these measurements. This section will follow [11] closely. The

references [8], [9] and [6] will also be used.

Since the discovery of the massive gauge bosons 30 years ago, their properties have

been extensively measured. To get a good idea of how they were measured, we will

look at the reaction: e+e− → µ+µ−, then generalize to e+e− → ff̄ , where the f stands

for fermion. We will end up with the total cross-section formula for any fermion final

state. This formula together with measurements made at LEP (Large Electron Positron

collider) was used to confirm predictions in the EW theory and set bounds on BSM

theories.

Because of conservation of electric charge, the mediating particle must be neutral.

Viable candidates are the photon, Z boson and Higgs boson. To lowest order we then

have the diagrams (4.1) (4.2) and (4.3). The amplitude looks like:

M = Mγ + MZ + MH (4.1)
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4. ELECTROWEAK PRECISION TESTS

e+

e−

µ+

µ−

H

Figure 4.1: Higgs contribution

Figure 4.2: Photon contribution

e+

e−

µ+

µ−

Z

Figure 4.3: Z contribution
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where [6]

Mγ = ie2[ūµγαvµ]
1

k2 + iε
[v̄eγαue] (4.2)

MZ =
ig2

4 cos2 θW
[ūµγα(vl − alγ5)vµ]

1
k2 −M2

Z + iε
[v̄eγα(vl − alγ5)ue] (4.3)

MH =
−i
v2
memµ[ūµvµ]

1
k2 −M2

H + iε
[v̄eue] (4.4)

vl = t3l − 2Ql sin2 θW (4.5)

al = t3l (4.6)

Here, t3l is the lepton’s third component of isospin. We observe that MH/MZ is of the

order:

memµ

m2
Z

k2 −M2
Z

k2 −M2
H

(4.7)

The lepton masses make this contribution vanishingly small unless k2 ≈ M2
H . The

amplitude then becomes:

M = Mγ + MZ (4.8)

Based on this we end up with a cross section of the form [11]:

σ =
4πα2

3s
[1 + a1] (4.9)

where a1 and fZ are given by

a1 = 2v2
l fZ + (v2

l + a2
l )

2f2
Z

fZ =
s

s−M2
Z

1
sin2 2θW

(4.10)

We note the following points:

1. If a1 = 0, we have the QED case and the only mediator is the photon, Feynman

diagram shown in Figure 4.2

2. The term proportional to f2
Z is the pure Z contribution, Feynman diagram shown

in Figure 4.3

3. The term proportional to fZ is due to interference between the photon 4.2 and

the Z 4.3
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4. ELECTROWEAK PRECISION TESTS

For charged leptons vl = 1
2(1 − 4 sin2 θW ), which is close to zero. In this limit, the

interference term vanishes and we have:

σ(e+e−
γ,Z−−→ µ+µ−) ' 4πα2

3s

[
1 +

1
16 sin4 2θW

s2

(s−M2
Z)2

]
(4.11)

We see that the cross section diverges at
√
s = MZ , but this is not really what happens.

The Z has a finite decay width, this is accounted for by the propagator substitution:

1
(s−M2

Z)
→ 1

(s−M2
Z) + iMZΓZ

(4.12)

This is an ad hoc way of taking into account higher order effects on the propagator.

(Ad hoc in the sense that one skips all the formalism and calculations involved in taking

higher orders.) The cross section after the substitution will have its maximum value at

s = M2
Z and looks like:

σ(e+e− → µ+µ−) ' 4πα2

3s

[
1 +

1
16 sin4 2θW

s2

(s−M2
Z)2 + Γ2

ZM
2
Z

]
(4.13)

Now we make the promised generalizations to e+e− → ff̄ . Substituting:

(v2
l + a2

l )
2 → (v2

l + a2
l )(v

2
f + a2

f ) (4.14)

The values of the coefficients are computed by means of (4.5) and (4.6), with f substi-

tuted for l. Observe that vf is non-zero for quarks (fractional charge). Our integrated

cross section evaluated at the Z mass is now:

σmax ' 4πα2

3M2
Z

[
1 +

(v2
e + a2

e)(v
2
f + a2

f )

sin4 2θW

M2
Z

Γ2
Z

]
(4.15)

With the substitution [11]

ΓZ→ff̄ ≡ Γf = αM2
Z

v2
f + a2

f

3 sin2 2θW
(4.16)

we get

σmax(e+e− → ff̄) ' 4πα2

3M2
Z

[
1 +

9ΓeΓf
α2Γ2

Z

]
(4.17)

The numerical value of the parenthesis in (4.17) is � 1. Neglecting the 1 in the

parenthesis we arrive at the formula used to confirm the predictions of the SM.

σfmax '
12π
M2
Z

ΓeΓf
Γ2
Z

(4.18)

Here are some comments concerning what we can measure from this formula and the

LEP data. They are adapted from the article [11].
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1. If we plot the cross-section against the C.O.M. energy, we will have a Breit-Wigner

resonance with peak around s = M2
Z for any final state. This means that we can

determine the mass of the Z by measuring any final state.

2. The half-width at the maximum of the Breit-Wigner shape gives the total width

ΓZ for any final state

3. By measuring the Bhabha scattering (i.e ff̄ = e+e−) cross section, we have

σfmax ' 12π
M2
Z

Γ2
e

Γ2
Z

and can calculate Γe, since we know σfmax and ΓZ

4. By measuring the peak of the cross-section for other final states we can now

determine Γf

5. The neutrinos are not detected in experiments, but their decay width can be

inferred from the total width ΓZ and the rest of the visible decay widths. Γinvis =

ΓZ − Γvis

6. The Standard Model prediction of three neutrinos can then be confirmed by notic-

ing that the number of neutrinos should be Γinvis
Γν

, where Γν is the SM prediction.

This number is measured to be 2.984± 0.008 [11]

Other measurements involve the differential cross section (C.O.M.) of the process

e+e−
γ,Z−−→ l+l−, where l = µ, τ . The differential cross section can be written as a

sum of two terms, one proportional to cos θ and one proportional to (1 + cos2 θ). The

term proportional to cos θ gives rise to forward-backward asymmetries (i.e. there is an

excess production in one direction). From experiments such as above1 the value of the

parameters of the electroweak theory are accurately measured. For instance [8],

MZ = 91.1875± 0.0021 GeV

MW = 80.396± 0.029 GeV

sin2 θW = 0.23150± 0.00016

(4.19)

Since these values are so accurately known one defines the parameter ρ through:

ρ =
M2
W

M2
Z cos2 θW

(4.20)

1Other experiments of course also perform these measurements. The mass of the W , given below,

is an average over measurements from LEPII and the Tevatron at Fermilab [8]
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At the tree level, the Standard model predicts ρ = 1. The parameter describes how

much the difference in self energy of the W and Z can deviate from the SM value.

Measurements from LEP give the restriction [12]:

ρ = 1.005± 0.001 (4.21)

It is a very useful parameter, when looking for new physics. For instance if we choose

to add more more scalar particles through multiplets, the demand that ρ is equal to

1 at tree level sets restrictions on the allowed quantum numbers (weak isospin and

hypercharge) of the multiplet [8]. The parameter ρ is modified through loop diagrams

when calculating beyond first order in pertubation theory. Within the Standard Model,

the parameter ρ recieves a correction from the top-bottom mass splitting [11]. The cor-

rections to ρ are an effective way of probing for new physics. If a theory predicts new

particles, they would typically contribute to the ρ parameter through loops. If the

contribution is too large compared to the measured value, something is wrong with the

theory.

More generally these corrections are often parametrized by the three quantities S,

U and T , introduced by Peskin [13]1. The variable T is essentially the same as the

corrections to the parameter ρ, described above. They differ only by the fine structure

constant, ∆ρ = αT [11]. These parameters both form an obstacle and provide guidance

when guessing at new theories.

1In this paper, only the S parameter is introduced
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Chapter 5

A New Z′ Gauge Boson?

5.1 A Neutral, Massive Gauge Boson Z’

Ever since the prediction and discovery of the W and Z gauge bosons of EW the-

ory, speculations on the existence of other massive gauge bosons have been abundant.

Many theories beyond the Standard Model predict such bosons (e.g. E6, Kaluza-Klein

theories etc.). The different gauge bosons differ by how they are introduced into the

theories. One introduces them by means of the gauge principle and uses the mechanism

of spontaneous symmetry breaking to generate masses. More technically, it is done in

the following way:

First one enlarges the SM gauge group from SU(3)C × SU(2)L × U(1)Y to

SU(3)C × SU(2)L × U(1)Y × G, where G is the new gauge group. The form of

the couplings and the number of fields to be introduced is decided by the gauge group.

Now we have to decide which particles we associate with which field. A typical exam-

ple is where the group G is U(1) (not to be confused with the U(1)Y from electroweak

theory). The U(1) introduces 1 new field, which is associated with the Z ′ boson.

Other theories predicting Z ′ bosons already have an enlarged gauge sector, which is

broken at some scale. The resulting theory can be broken again at another scale and

so on. This procedure continues all the way down to the Standard Model and the

Electroweak symmetry breaking. Diagramatically we can represent it by:

1. G1 −→ G2 at scale Λ1
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2. G2 −→ G3 at scale Λ2

3. ...

4. Gk −→ SU(3)C × SU(2)L × U(1)Y at scale Λnew physics (∼ 1 TeV?)

In this sense one can imagine the enlargement described in the above paragraph as a

bottom to top approach. That is, without knowing the governing theory one can take

a guess at how it breaks to the SM gauge group at the scale Λnew physics. If the LHC

reaches such energies, we could develop an effective-field description beyond the SM

one and perhaps get some pointers for which theory describes nature.

Following the philosophy outlined at the end of chapter 2, we will calculate an es-

timate on the cross section for Z ′ production at the LHC. Such an estimate involves

using the quark-parton model and parton distribution functions.

5.2 Quark-parton model and deep-inelastic scattering

The proton is normally said to be composed of three quarks, namely two up quarks

and one down quark. This is only an approximate picture. A more accurate descrip-

tion would be that the proton is a swarming sea of point-like gluons and quarks (also

called partons), continuously changing because of the interactions between them. In

the quark-parton model, we imagine the proton as being in a superposition of these

point-like states. We use what is called parton distribution functions (p.d.f.) to de-

scribe this. A parton distribution function fi tells you how often you can find particle

i carrying a fraction xi of the protons momentum (P ), when a collision happens at

momentum transfer Q2. In other words, it is a function of the momentum fraction and

the momentum transfer, fi(xi, Q2). The analytical form of the p.d.f.s are not known,

but are obtained through numerically analysing data from high-energy scattering ex-

periments 1.

When we probe hadrons at high enough energies (small distances), we observe point-

like interactions between the constituents. This is interpreted as interactions involving
1There are collaborations devoted to measuring these p.d.f.s. Two of them are CTEQ, mainly

based in U.S.A. and MRST, based in England.
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quarks [14]. The amplitudes we calculate from theory describe free quarks coming

together to interact for a short time, producing new particles that exit. Quarks are

confined in the proton due to their strong interactions and are not free. Treating the

quarks as free is justified by the following argument which is borrowed from [15]: Imag-

ine the proton dissociating into virtual states of free partons where one parton carries

the momentum xP and the others carry the momentum (1 − x)P . The lifetime of

these states can by the uncertainty principle be expressed as τlifetime ∼ 1
∆E , where ∆E

is the difference in energy of the virtual state and the physical proton. The collision

time can be estimated by τcollision ∼ 1
∆Et

, where ∆Et is the energy transfered during

the collision. If we are in a Lorentz frame where τcollision � τlifetime we can treat the

quarks as free. This is a typical situation in high-energy physics. A more intuitive way

of thinking about it is:

If we are in a Lorentz frame where the proton clock runs slowly enough, the relative

motions of the partons will be become effectively frozen. This means that the internal

strong interactions, which are the cause of the relative motion, can be neglected. This

is called the “impulse approximation”.

The objective of this chapter is to calculate a production cross section and we need

to use the quark-parton model. In the next section we will consider how to calculate

proton-proton cross sections at the LHC.

5.3 Cross section at parton and proton level

We now assume that a parton-level cross section has been calculated and show how to

turn it into a measurable cross section. The cross section for the quarks (or partons)

is denoted by σ̂(ŝ) and the cross section for protons by σ. The relationship between

them is [15].

σ =
∑
ab

Cab

∫
dxadxbF (xa, xb, Q2)σ̂(ŝ) (5.1)

This is called a convolution integral. The Cab are color-averaging factors, but we will

only be interested in the qq̄ case where Cqq̄ = 1
9 . Summing over colours in the cross
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section gives a factor three, since each type of incoming quark (red, green, blue) can

annihilate. The overall factor is then 1
3 , which gives:

σ =
1
3

∫
dxqdxq̄F (xq, xq̄, Q2)σ̂(ŝ) (5.2)

Here, F is a weight function involving the p.d.f.s and in our case looks like:

F (xq, xq̄, Q2) = fqP1(xq)fq̄P2(xq̄) + fqP2(xq)fq̄P1(xq̄) (5.3)

The first term represents the probability of a quark from the first proton carrying

the momentum fraction xq annihilating with an antiquark carrying the momentum

fraction xq̄ from the second proton. The second term represents the probability of

a quark from proton 2 carrying a momentum fraction xq, annihilating with an anti-

quark carrying a momentum fraction xq̄ from proton 1. Since the quark and antiquark

distributions are equal for each proton we denote them by: q(x) = fqP1(x) = fqP2(x)

and q̄(x) = fq̄P1(x) = fq̄P2(x). We then sum over up and down quark flavours and

evaluate the functions at the momentum transfer Q2 = M2. The weight function, F ,

is then of the form:

F (xq, xq̄,M2) = 2u(xq)ū(xq̄) + 2d(xq)d̄(xq̄) (5.4)

The symbols s and ŝ denote the square of the C.O.M. energy of the protons and partons

respectively. They are defined by:

s ≡ (P1 + P2)2 (5.5)

ŝ ≡ (p1 + p2)2 (5.6)

See Figure 5.1 for notation. Forgetting about the integral in (5.2) for a while, we write

the convolution integrand as:

d2σ

dxqdxq̄
=

1
3
F (xq, xq̄,M2)σ̂(ŝ) (5.7)

We will evaluate the parton-level cross section σ̂(ŝ) in the C.O.M. frame of the Z ′.

Since it is invariant, we can then look at everything from the proton-proton C.O.M.

frame. In the latter frame the four-momenta of the particles are related by:

p1 = xqP1 (5.8)

p2 = xq̄P2 (5.9)
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5.3 Cross section at parton and proton level

P1 P2

p1 = xqP1 p2 = xq̄P2

q
q̄

Figure 5.1: Quarks carry part of proton momentum

This is illustrated in Figure 5.1. In a frame where the masses of the particles can be

neglected we have:
s ' 2(P1 · P2)

' 1
xqxq̄

ŝ
(5.10)

Now we make a change of variables from (xq,xq̄) to (τ, y). The variable τ is the product

of the momentum fractions and y is a quantity called rapidity. The rapidity of a system

can be related to a Lorentz boost along the beam axis.1 The change of variables is

defined by:
τ = xqxq̄

xq =
√
τe+y

xq̄ =
√
τe−y

(5.11)

In our case we look at the rapidity of the qq̄ system. Its definition is [15]:

y =
1
2

ln
[
Eqq̄ + |pqq̄|L
Eqq̄ − |pqq̄|L

]
(5.12)

Eqq̄ = Eq + Eq̄ (5.13)

pqq̄ = pq + pq̄ (5.14)

The L stands for the longitudinal component of the vector (i.e. along the beam axis).

In the proton-proton C.O.M. frame it reduces to:

y =
1
2

ln
[

2Eq
2Eq̄

]
=

1
2

ln
[
xq
xq̄

]
(5.15)

Notice that a high absolute value of rapidity corresponds to a situation where the quarks

carry widely different fractions of their respective protons momentum2. A nice thing
1 The original reason for defining rapidity was that it is additive also when v is close to c.
2A high rapidity of the qq̄ system translates into the system moving with a high velocity along the

beam axis. We will come back to this when discussing the limits on the integral over rapidity

37



5. A NEW Z′ GAUGE BOSON?

about the variable change (xq,xq̄) to (τ, y) is that the Jacobian of the transformation

is 1. That is [15]:

d2σ

dxqdxq̄
=

d2σ

dτdy
=

1
3
F (τ, y,M2)σ̂(ŝ) (5.16)

Our relationship between the proton C.O.M. energy (
√
s) and the parton C.O.M. energy

(
√
ŝ) is now:

ŝ = τs (5.17)

Proton-proton collisions at the LHC occur at s = 7 TeV presently. Exploiting that this

is constant for our purposes we multiply each side of (5.16) by 1
s and obtain

1
s

d2σ

dτdy
=

d2σ

dŝdy
=

1
3s
F (τ, y,M2)σ̂(ŝ) (5.18)

Before we go on to calculate production cross sections we need to calculate the parton

cross sections. For that we need amplitudes. We will evaluate two different amplitudes

in the next two sections and then go on to calculate their cross sections. The first

amplitude is for the qq̄ −→ Z ′ process, while the second is for the qq̄ −→ Z ′ −→ ZZ

for on-shell Z bosons.

5.4 The amplitude for Z’ production

In this section we calculate the amplitude for the process qq̄ −→ Z ′. The tree-level

Feynman diagram for this is shown in Figure 5.2.

The most general coupling between two fermions and a spin-1 particle can be written:

(qq̄Z ′)coupling = γα(gV − gAγ5) (5.19)

Here, gV and gA are constants characterizing the magnitude of the vector and axial

coupling strength, respectively. These coupling constants are dimensionless. This is

an important point, since a coupling constant with dimensions would indicate a char-

acteristic interaction energy. Let us discuss this some more, before writing down the

amplitude and doing spin sums.
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5.4 The amplitude for Z’ production

q

q̄

p2

p1 Z’

q

γα(gV − gAγ5)

Figure 5.2: Feynman diagram for the process qq̄ → Z ′

The dimension of the coupling constants gV and gA are derived by counting powers

of the fields involved in the coupling. Each coupling comes from a term in the La-

grangian density. By doing some dimensional analysis we can find the dimension of the

Lagrangian density and of each type of field (fermion, vector, scalar). We utilize the

action, S, to find this.

The action is the time integral of the Lagrangian, which is in turn a three-dimensional

integral of the Lagrangian density. The action is just a number and consequently has

no dimension. Time and length have the same dimensions in natural units. This means

that the Lagrangian density should have dimensions of inverse length to the power 4

(l−4). Length is inversely proportional to mass and the Lagrangian density therefore

has dimensions of mass to the power 4 (mass dimension 4).

We can find the dimension of each type of field by looking at known terms from the

Lagrangian density. As an example consider the fermion mass term mΨ̄Ψ. This term

appears in the Lagrangian density and should have a mass dimension of 4. There is

already a mass factor there, which means that Ψ̄Ψ should have mass dimension 3. This

implies that the fermion field, Ψ, has mass dimension 3
2 . Applying this procedure to
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the other fields results in:

Dim(Ψ) = M
3
2 (fermion)

Dim(Z ′µ) = M1 (vector)

Dim(Φ) = M1 (scalar)

(5.20)

We have a coupling between two fermion fields and a vector field, which give a mass

dimension of 3
2 + 3

2 +1 = 4. The gamma matrices in the coupling (5.19) have no dimen-

sion. To ensure that the Lagrangian density has the correct dimension, the coupling

constants must also be dimensionless.

It was mentioned above that a coupling constant with dimensions implies a charac-

teristic interaction energy. An example of this is Fermi’s theory of beta decay. He

wrote down a Lagrangian which had an overall coupling constant GF . By power count-

ing as above one finds that GF has mass dimension −2. The value of the constant was

known from experiment. Taking the inverse square root of this number one obtains,

G
− 1

2
F ∼ 300 GeV (5.21)

which is termed the “Fermi scale” and is around the electroweak scale. We end our

discussion of coupling-constant dimension here and go on to consider the process

qq̄ −→ Z ′ as promised. If one is not interested in the calculation, the amplitude

evaluated in the C.O.M. frame of the Z ′, is given in (5.39). The Feynman amplitude

for this process is:

Mqq̄→Z′ ≡M = [v̄rγα(gV − gAγ5)us]εαk (5.22)

where u,v are the spinors corresponding to p1, p2, respectively, and εαk is the polarization

vector of the Z ′. Squaring the amplitude yields:

|M|2 = εαkε
β
k [v̄rγα(gV − gAγ5)us][ūsγβ(gV − gAγ5)vr] (5.23)

Next, we label the spinors with indices and average over the incoming particle spins,

X =

(
1
2

∑
r

)(
1
2

∑
s

)
|M|2 (5.24)

=
1
4
εαkε

β
kCαβ (5.25)
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with

Cαβ = Tr[( /p2 −m)γα(gV − gAγ5)( /p1 +m)γβ(gV − gAγ5)] (5.26)

Note that each of the energy projection operators is missing a factor 1
2m . In the cross

section calculation we compensate for this by omitting the factor 2m which accompanies

each external fermion. To calculate the trace we first use the identities

Tr[odd # of gamma matrices] = 0 (5.27)

Tr[(odd # of gamma matrices)γ5] = 0 (5.28)

{γα, γ5} = 0 (5.29)

which simplify the trace to:

Cαβ = Tr[ /p2γα(gV − gAγ5) /p1γβ(gV − gAγ5)]−m2Tr[γα(gV − gAγ5)γβ(gV − gAγ5)]
(5.30)

By using the identities

Tr[ /p2γα /p1γβ] = 4 (p1αp2β + p1βp2α − (p1 · p2)gαβ) (5.31)

Tr[ /p2γα /p1γβγ5] = −4ipµ1p
ν
2εναµβ (5.32)

we end up with the final result:

Cαβ =4(g2
V + g2

A)(p1αp2β + p1βp2α − (p1 · p2)gαβ)

+8igAgV p
µ
1p

ν
2εναµβ − 4m2(g2

V − g2
A)gαβ

(5.33)

Two comments should be made here. Firstly the symbol εναµβ (the Levi-Cevita tensor

density) is defined by

εναµβ = +1, (ν, α, µ, β) = even permutation of (0, 1, 2, 3)

= −1, (ν, α, µ, β) = odd permutation of (0, 1, 2, 3)

= 0, otherwise

(5.34)

Secondly the factor i that appears is rather unnerving. This is after all something

that appears when we square an amplitude and should be real-valued. The term only

contributes if one looks at other types of polarization (e.g. circular) where the polar-

ization vectors are complex. We will not worry about this at all since we will sum over
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outgoing polarizations. This means that we will only consider calculations where we

contract the Levi-Cevita tensor with rank-two symmetric (rank = number of indices)

tensors. This contraction makes the term vanish:

If sαβ = sβα (s is symmetric in α β)

then sαβεµναβ = sβαεµνβα (changed dummy indices)

= sαβεµνβα (changed indices of s)

= −sαβεµναβ (changed α and β in ε)

(5.35)

Now we use the relation ∑
k

= εαkε
β
k = −gαβ +

qαqβ

M2
(5.36)

and sum over the polarization of the Z ′. The M will denote the mass of the Z ′

throughout this chapter. Note that the above expression is symmetric in the indices

and will make the epsilon term vanish. X ′ is now:

X ′ ≡
∑
k

X =
1
4

(
−gαβ +

qαqβ

M2

)
Cαβ

=
[

2(g2
V + g2

V )
M2

(p1 · q)(p2 · q) + (g2
V + g2

A)(p1 · p2) + 12m2(g2
V − g2

A)
]

(5.37)

In the Z ′ C.O.M. system with the fermions approximated as massless (Eq = |pq|) and

the +z-axis along the quark direction, the four-vectors can be expressed:

p1 = (Eq, 0, 0, Eq)

p2 = (Eq, 0, 0,−Eq)
q = (M, 0, 0, 0)

(5.38)

The four-vector identities reduce the amplitude to:

X ′ = 4(g2
V + g2

A)E2
q (5.39)

Before calculating production cross sections we take a detour to obtain a coupling

between three spin-1 particles, needed to calculate the qq̄ → Z ′ → ZZ amplitude. This

involves looking at the “Landau-Yang theorem” and its generalization. The original

theorem was obtained independently by Lev Landau and C.N. Yang [16] in 1948-1949

and the paper generalizing it is from 2008 [1].
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5.5 Landau-Yang Theorem and its Generalization

In 1949 C.N. Yang wrote a paper called “Selection Rules for the Dematerialization

of a Particle into Two Photons”. It was motivated by an observation made by John

Archibald Wheeler that positronium in the S-triplet state can not decay into two pho-

tons. Positronium is a bound state of an electron and a positron, the S refers to the

fact that they have no relative orbital angular momentum and the triplet state means

that they have their intrinsic spins aligned. It is therefore a state with total angular

momentum J = 1. We will see that such a decay (J = 1 initial particle) is forbidden

by selection rules. The selection rules are derived from principles of invariance under

rotations in space and inversion (parity).

Yang starts the paper with saying “Consider two photons of equal wavelength λ0 trav-

eling in opposite directions along a z-axis”. This is the same physical situation as if a

particle X decayed into two photons. The different two-particle states of the system

are denoted by Ψλ1λ2 , where λ1,2 takes the values R and L. The first index refers to

the photon propagating in the +z direction and the second to the photon propagating

along the −z direction. R means that the photon has polarization along its direction

of motion, while L means polarization opposite the direction of motion. There are

four different states to be considered, namely ΨRR, ΨRL, ΨLR and ΨLL. Figure 5.3

illustrates this. Yang goes on to see how these states are changed under the following

operations:

1. Rθ, rotation by θ around z-axis

2. Rφ 180 degrees rotation around x-axis

3. P , reflection

Remembering that states are transformed by unitary operators under symmetry oper-

ations, we take a look at the result. It is summarized in table 5.1, which is reproduced

from the original paper. In the C.O.M. frame the following arguments for the selection

rules are made:

1. For an odd initial state (- under parity), the initial particle must decay to ΨRR −ΨLL,

since it is the only odd final state
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+z

ΨRR

ΨLR

ΨRL

ΨLL

Figure 5.3: Two-photon helicity states
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ΨRR + ΨLL ΨRR - ΨLL ΨRL ΨLR

Rθ rotation by θ around z-axis 1 1 e2iθ e−2iθ

Rφ 180 degrees rotation around x-axis 1 1

P , reflection 1 -1 1 1

Table 5.1: Eigenvalues of symmetry operators on two-photon helicity states

Parity(O) J(B) 0 1 2,4,6 ... 3,5,7 ...

even ΨRR + ΨLL forbidden ΨRR + ΨLL, ΨRL, ΨLR ΨRL, ΨLR

odd ΨRR −ΨLL forbidden ΨRR −ΨLL forbidden

Table 5.2: Selection rules for two-photon helicity states

2. An even initial state must go into one of the three final states ΨRL, ΨLR or

ΨRR + ΨLL

3. For an initial state with angular momentum J = 1, 3, 5..., the only possible final

states are ΨRL and ΨLR. We can rule out the other two because: ΨRR + ΨLL

and ΨRR - ΨLL are simultaneous eigenstates of Rθ and Rφ with eigenvalue 1,

while an initial state with eigenvalue 1 under Rθ will have eigenvalue -1 under

Rφ
1

4. For an initial state with J = 0, 1 the only possible final states are ΨRR + ΨLL

and ΨRR - ΨLL. This is because the other two states have angular momentum

J = ±2~, which is to large for J = 0 or J = 1

Looking at the J = 1 case, argument 3 rules out ΨRR + ΨLL and ΨRR - ΨLL as final

states, while argument 4 rules out ΨRL and ΨLR as final states. Therefore no such

decays should take place. These results are summarized here as table 5.2.

In the paper written in 2008, a similar analysis is made, but with two Z bosons

instead of photons. The difference now is that massive particles have one extra degree

1Yang mentions that such a state has the rotational properties of the spherical harmonics. The

spherical harmonics of odd powers of angular momentum, have a factor eimφ, where φ is the azimuthal

angle and m is the projection of spin along the z-axis (odd number). Rotating about the x-axis means

φ′ → φ+ π, which gives a factor of -1

45



5. A NEW Z′ GAUGE BOSON?

Parity(O) J(B) 0 1

even Ψ++ + Ψ−−, Ψ00 Ψ+0 −Ψ0−, Ψ0+ −Ψ−0

odd Ψ++ −Ψ−− Ψ+0 + Ψ0−, Ψ0+ + Ψ−0

Table 5.3: Selection rules for two-Z helicity states

of freedom in terms of longitudinal polarization. Instead of R,L we have (−, 0,+) de-

noting the polarization states of the final particles. Decay of a spin-1 parent particle

can now result in two spin-1 final states. The symmetry of the situation does however

limit the possible couplings. Their result is reproduced here as table 5.3. A result

obtained in the paper is that if the three particles involved (Z ′ and ZZ) are on-shell,

they have a momentum-space vertex factor of the form:

iΓναβZ′→ZZ = if4(qα3 g
νβ + qβ2 g

να)− if5ε
ναβρ(q3 − q2)ρ (5.40)

Here, q2 and q3 denote the Z boson momenta, the indices α and β are related to the

polarization vector of the Z boson with four momentum q3 and q2, respectively. By

power counting we have a mass dimension of three from the spin-1 fields. In the vertex-

factor we have an additional mass dimension from the momentum factors. Therefore

f4 and f5 are dimensionless coupling constants. Another interesting point is that the

coupling does not change if we make the substitutions:

(α, 2)→ (β, 3) (5.41)

These substitutions are the same as switching the two Z bosons and reflects the fact

that they are bosons. From the spin-statistics theorem such a switch should yield no

change1.

This vertex factor will be used when obtaining the amplitude and polarization sum

in the next section. Before we go on to consider polarization sums, it’s instructive to

calculate some helicity amplitudes to see how this coupling relates to the generalized

Landau-Yang theorem. In particular the theorem states that for the spin-1 case only

polarization states from column two in table 5.3 contribute. We will now use the part

of the coupling proportional to f4 to illustrate this.
1In contrast to switching two fermions which gives a minus sign.
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Consider the process qq̄ → Z ′ → ZZ. The Feynman diagram is shown in Figure

5.4. The amplitude looks like,

M = [spinor factor][Z ′propagator]ε∗αk ε
∗β
l iΓναβ (5.42)

where iΓναβ is temporarily set to

iΓναβ = if4(qα3 g
νβ + qβ2 g

να) (5.43)

The polarization vectors are complex since we do not look at linear polarization. Let

us ignore the spinor and Z ′ parts of the amplitude for a moment and look at the ZZ

part:
Pν ≡ ε∗αk ε

∗β
l (q3αgνβ + q2βgνα)

= [ε∗lν(ε∗k · q3) + ε∗kν(ε∗l · q2)] (5.44)

In the C.O.M. frame with +z-direction pointing along Z(q2) we have the four vector

relations:
q1 = (M, 0, 0, 0)

q2 = (E, 0, 0,+p)

q3 = (E, 0, 0,−p)
(5.45)

There are nine different helicity states for the two Zs, they can each have +, − and 0.

For the helicity states of interest (+, − and 0) the polarization vectors can be written

[1]:

ε(k=0) = γ(β, 0, 0, 1) =
MZ′

2MZ
(β, 0, 0, 1)

ε(l=0) = γ(−β, 0, 0, 1) =
MZ′

2MZ
(−β, 0, 0, 1)

ε(k=±) =
1√
2

(0,∓1,−i, 0) = ε(l=∓)

(5.46)

For the case where both Zs are transversely polarized (i.e. l = ± and k = ±) , both

dot-products in (5.44) vanish since q2 and q3 do not have x-y components. This elimi-

nates four cases, namely +−, −+, ++ and −−.

This means that we are left with the cases 00, 0+, +0, 0− and −0. The 00 ampli-

tude vanishes when we contract with the Z ′ propagator: The propagator of a massive
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particle in the unitary gauge is:

Dµν
F =

−gµν + qµ1 q
ν
1

M2

q2
1 −M2 + iMΓZ′

(5.47)

When k and l are zero, we have the following dot-products:

(ε(k=0) · q3) = 2γβE ≡ A
(ε(l=0) · q2) = −2γβE = −A

(5.48)

Ignoring the denominator of the propagator we calculate for the 00 case:(
−gµν +

qµ1 q
ν
1

M2

)[
Aε∗(l=0)ν −Aε∗(k=0)ν

]
= A(ε∗µ(k=0) − ε

∗µ
(l=0))−

2Aγβ
M

qµ1 = 0 (5.49)

To see that the last expression is zero, look at the four-vector relations above.

Now we are left with 0+, +0, 0− and −0, which do not vanish, but contribute. A

similar analysis can be made for the f5 term. We can see more clearly how the cou-

pling (f4 and f5 part) is related to the generalised Landau-Yang theorem. It picks out

the polarization states that contribute (compare with table 5.3). Now we move on to

the next section where we find the polarization sum of the squared amplitude.

5.6 Amplitude for ZZ production

Here we calculate the amplitude for the process qq̄ −→ Z ′ −→ ZZ. The Feynman

diagram is shown in Figure 5.4. The amplitude is given by:

M = [v̄rγµ(gV − gAγ5)us]iD
µν
F iΓναβεαkε

β
l (5.50)

The propagator of the massive gauge boson, Dµν
F , is taken to be in the unitary gauge

as in (5.47), where ΓZ′ is the decay rate of the Z ′ boson and will be discussed later on.

Squaring the amplitude gives:

|M|2 = Dµν
F D∗ρσF ΓναβΓ∗σθξε

α
kεθkε

β
l ε
ξ
l [v̄rγµ(gV − gAγ5)us][ūsγρ(gV − gAγ5)vr] (5.51)

Averaging over initial spins yields the same trace as before (5.33) :

X =
1
4

∑
s,r

|M|2

=
1
4
CµρD

µν
F D∗ρσF εαkεθkε

β
l ε
ξ
lΓναβΓ∗σθξ

(5.52)
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q

q̄

p2

p1 Z’

q1

γα(gV − gAγ5)

(µ) (ν)

(α)

(β)

iΓναβ

Z

Z

q3

q2

Figure 5.4: Feynman diagram for the process qq̄ → Z ′ → ZZ

Summing over final polarization gives:

X ′ =
∑
k

∑
l

X

=
1
4
CµρD

µν
F D∗ρσF (−gαθ +

qα3 q
θ
3

M2
Z

)(−gβξ +
qβ2 q

ξ
2

M2
Z

)ΓναβΓ∗σθξ

(5.53)

Writing out the propagator and gathering all terms to be contracted with ΓναβΓ∗σθξ we

have:

X ′ =
1
4

1
(q2

1 −M2)2 + Γ2
Z′M

2
CµρH

µρ (5.54)

The tensor Hµρ is short for

Hµρ =

[(
−gµν +

qµ1 q
ν
1

M2

)(
−gρσ +

qρ1q
σ
1

M2

)(
−gαθ +

qα3 q
θ
3

M2
Z

)(
−gβξ +

qβ2 q
ξ
2

M2
Z

)]
×ΓναβΓ∗σθξ

(5.55)

The vertex factor becomes:

ΓναβΓ∗σθξ = f2
4 (q3θgσξ + q2ξgσθ)(q3αgνβ + q2βgνα)

− f4f5(q3θgσξ + q2ξgσθ)εναβγ(q3 − q2)γ

− f4f5(q3αgνβ + q2βgνα)εσθξφ(q3 − q2)φ

+ f2
5 εναβγεσθξφ(q3 − q2)γ(q3 − q2)φ

(5.56)

In evaluating the spin sum, the program REDUCE is used. It is a program which

manipulates algebraic expressions (and can apparently contract 30 hours of work into 3).
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REDUCE typically gives a list of terms that are not fully factored. After doing some

algebra with these terms, the result was:

Hµρ =
M2

2M2
Z

[
f2

4 + β2f2
5

]
Iµρ (5.57)

with
Iµρ = (β2 + 1) [(qµ2 q

ρ
3 + qρ2q

µ
3 )]

+ (β2 − 1) [(qµ2 q
ρ
2 + qρ3q

µ
3 )]

− β2gµρM2

(5.58)

and

β2 =
(

1− 4M2
Z

M2

)
(5.59)

Note that Hµρ is symmetric in the indices so when we contract it with Cµρ the anti-

symmetric part of Cµρ (the scary i term) vanishes. Neglecting the term proportional

to m2 in Cµρ and contracting gives:

CµρH
µρ =

4M2

M2
Z

(g2
V + g2

A)
[
f2

4 + β2f2
5

]
×
{

[(p1 · q2)(p2 · q3) + (p1 · q3)(p2 · q2)− (p1 · p2)(q2 · q3)](β2 + 1)

+ [(p1 · q2)(p2 · q2) + (p1 · q3)(p2 · q3)−M2
Z(p1 · p2)](β2 − 1)

+M2(p1 · p2)β2

}
(5.60)

In the C.O.M. system with massless quarks (i.e. Eq = |pq|) we have the following

relations:
q1 = (M, 0, 0, 0)

q2 = (EZ ,q2)

q3 = (EZ ,−q2)

p1 = (Eq,pq)

p2 = (Eq,−pq)

(5.61)

Substituting these relations in 5.60 and manipulating the result we get:

CµρH
µρ =

4M2

M2
Z

(g2
V + g2

A)
[
f2

4 + β2f2
5

]
×2E2

q

{[|q2|2(cos2 θ − 1)
]

(β2 + 1)

+
[|q2|2(1− cos2 θ)

]
(β2 − 1) +M2β2

} (5.62)
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Using the relation
|q2|2 = E2

Z −M2
Z

=
M2

4
−M2

Z

=
M2

4
β2

(5.63)

we get the result:

CµρH
µρ =

4M4β2

M2
Z

(g2
V + g2

A)
[
f2

4 + β2f2
5

] [
1 + cos2 θ

]
(5.64)

The squared amplitude summed over polarization (5.54) is now

X ′ =
M4β2

M2
Z

[
f2

4 + β2f2
5

]
(g2
V + g2

A)
(q2

1 −M2)2 + Γ2
Z′M

2
E2
q [1 + cos2 θ]

(5.65)

Here, θ is the angle between the direction of motion of the quarks and the Z bosons in

the Z ′ C.O.M. frame. For later convenience we define the quantity

AZZ(q1) =
M4β2

M2
Z

[
f2

4 + β2f2
5

]
(g2
V + g2

A)
(q2

1 −M2)2 + Γ2
Z′M

2
(5.66)

and write the polarization sum as:

X ′ = AZZ(q1)E2
q [1 + cos2 θ] (5.67)

5.7 Production cross sections

This section includes two subsections, one for each of the amplitudes calculated above.

Although varying in calculational detail, the purpose of each section is the same:

1. Calculate total parton-level cross section σ̂(ŝ) from the polarization sums X’

2. Express the total proton-level cross section σ in terms of the parton-level one

3. Write σ as an integral, which is to be numerically integrated.

Before we begin, we need the formula for the differential cross section in a frame where

the colliding particles are moving collinearly:

dσ̂ = (2π)4δ(4)

(∑
i

pi −
∑
i

pf

)
1

4E1E2vrel

∏
f

d3pf
(2π)32Ef

X ′ (5.68)
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In the C.O.M. frame of the quarks, where vrel = 2 and E1 = E2 = Eq, it reduces to:

dσ̂ = (2π)4δ(4)

p1 + p2 −
∑
f

pf

 1
8E2

q

∏
f

d3pf
(2π)32Ef

X ′ (5.69)

5.7.1 Production cross section for Z’

We here make use of the amplitude (5.39) substituted into (5.69). Here we have only

one final particle, which gives the result:

dσ̂(ŝ) =
(g2
V + g2

A)π
2M

δ(4) (p1 + p2 − q) d3q (5.70)

Integrating and exploiting three of the delta functions we get:

σ̂(ŝ) =
(g2
V + g2

A)π
2M

δ (2Eq −M) (5.71)

The C.O.M. energy squared in this frame is ŝ = (p1 + p2)2 = 4E2
q . Now we have the

parton-level cross section.

σ̂(ŝ) =
(g2
V + g2

A)π
2M

δ
(√

ŝ−M
)

(5.72)

We utilize (5.18) from the discussion of cross sections and convolution,

d2σ

dŝdy
=

(g2
V + g2

A)π
6Ms

F (τ, y,Q2)δ
(√

ŝ−M
)

(5.73)

For the integration over ŝ we need to transform the delta-function:

δ(f(x)) =
∑
i

1
|f ′(xi)|δ(x− xi), where xi are the values where f(xi) = 0 (5.74)

In our case this means:

δ(
√
ŝ−M) = 2Mδ(ŝ−M2) (5.75)

Integrating over ŝ yields:

dσ
dy

=
(g2
V + g2

A)π
3s

F (τ =
M2

s
, y,Q2) (5.76)

52



5.7 Production cross sections

As mentioned before, the p.d.f.s are not analytically known so we have to do the last

integral over rapidity numerically. The limits on the integral are decided in the following

way:

y =
1
2

ln

[
x2
q

τ

]
(5.77)

Here, τ is held constant throughout the integration, with a value determined by the

C.O.M. energies s and ŝ:

τ =
ŝ

s
=

2002

70002
=

1
352

(5.78)

The maximum value of the variables are xqmax = 1, therefore:

a ≡ ymax = −ymin ≡ −b =
1
2

ln

[
x2
qmax

τ

]
=

1
2

ln
[

1
τ

]
(5.79)

This gives limits on the rapidity between

−a = 3.55 = b (5.80)

Having introduced the limits we will now modify them based on the following argument:

We are considering the rapidity of the qq̄ system in the proton-proton C.O.M. frame.

Keeping τ constant corresponds to fixing the C.O.M. energy of the colliding quarks√
ŝ. Let us, with τ constant, define the term “quark configuration” to mean that each

quark carries a definite fraction of their respective proton’s momentum, but the quark

energies still sum to
√
ŝ. For instance the situation where quark a has |pa| = 250

GeV along +z and quark1 b has |pb| = 50 GeV along −z is one quark configuration.

Using this terminology, the integral over rapidity corresponds to integrating over all

different quark configurations. Remembering that a high absolute value for rapidity

corresponds to a situation where the quarks have widely different fractions2 of their

respective proton’s momentum, we see the following: For a high value of the rapidity

the qq̄ C.O.M. system tends to go with a sizable momentum in either the +z or −z
direction. This means that the scattering products tend to align with the beam axis

for high values of rapidity. Detectors, although extremely well built, have a hard time
1Strictly speaking, they are massless in this example and one should be an antiquark
2For example |pa| = 1 GeV |pb| = 201 GeV
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covering small angles1. This means that we do not detect the cases of high rapidity

and so should subtract it from our proton-level cross section. We do this by using the

so-called pseudorapidity. The pseudorapidity is a measure of the angle between the

beam axis and particle momentum direction. For highly energetic collisions the numer-

ical value of the rapidity is nearly equal to the numerical value of the pseudorapidity,

η. A high value of η corresponds to a small angle (i.e. close to the beam axis). A good

rule of thumb is η ∼ 2.45 → θ ∼ 10◦. Typical values of pseudorapidity that can be

detected are |η| ≤ 2.5. The inner detector at ATLAS at the LHC has this kind of limit

on detection [17]. We therefore modify our limits to be

a = −2.5 = −b (5.81)

and go on to evaluate the integral.

The integral is done in C++ with a program provided by my supervisor Per Osland. It

was made by Alan Martin, who is a member of the MRST collaboration and a professor

of physics at Durham University. With some small modifications it could be used to

evaluate the integral over rapidity. The integral to be evaluated is:

σ =
(g2
V + g2

A)π
3s

∫ b

a
F (
M2

s
, y,Q2)dy (5.82)

Using the weight function (5.4), we obtain the final expression for the production cross

section:

σ =
(g2
V + g2

A)π
3s

∫ b

a
[2u(y)ū(y) + 2d(y)d̄(y)]dy (5.83)

This integral will come up again when we evaluate the other cross section. We will

therefore give the value of the expression

I =
1
s

∫ b

a
F (
M2

s
, y,Q2)dy =

1
s

∫ b

a
[2u(y)ū(y) + 2d(y)d̄(y)]dy

= 6.233× 10−5 1
GeV2

(5.84)

This is given in natural units. The conversion to cm2 is given by multiplying by

appropriate factors of ~c. Given a number a of dimension 1
GeV2 we do the following:

~c = 1.97× 10−11 MeV cm

= 1.97× 10−14 GeV cm
(5.85)

1There must be room for the beam pipe!
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and so

a

[
1

GeV2

]
= a(1.97× 10−14)2 cm2

= a× 3.8910−28 cm2

= a× 3.8910−4 barn

(5.86)

The value of the integral in units of nanobarn is then:

I = 6.23× 10−5 × 3.89× 10−4 ∼ 24 nb (5.87)

5.7.2 Production cross section for ZZ

We here make use of the amplitude (5.67) substituted in (5.69). There are two final

particles which gives:

dσ̂(ŝ) = AZZ(q1)
(2π)4

8
δ(4) (p1 + p2 − q2 − q3)

×[1 + cos2 θ]
d3q2

(2π)32EZ
d3q3

(2π)32EZ

(5.88)

Arranging factors and using three of the four-delta functions we get:

dσ̂(ŝ) = AZZ(q1)
1

32(2π)2
δ (2Eq − 2EZ)

1
E2
Z

[1 + cos2 θ]d3q2 (5.89)

To use the final delta function we need to express the differential in an appropriate way.

This will be done in spherical coordinates where the differential can be expressed:

d3q2 = |q2|2d|q2|d(cos θ)dϕ

=
1
2
|q2|d(|q2|2)d(cos θ)dϕ

=
1
2
|q2|d(E2

Z −M2
Z)d(cos θ)dϕ

=
1
2
|q2|EZd(2EZ)d(cos θ)dϕ

(5.90)

Substituting this for the differential and integrating out the last delta function yields:

dσ̂(ŝ) = AZZ(q1)
1

64(2π)2

|q2|
EZ

[1 + cos2 θ]d(cos θ)dϕ (5.91)

Using the identity ∫ 1

−1
dx(1 + x2) =

8
3

(5.92)
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and integrating out θ and ϕ we obtain:

σ̂(ŝ) = AZZ(q1)
1

48π
|q2|
EZ

= AZZ(q1)
1

48π
β

(5.93)

The relations for the squared C.O.M. energy in this frame are:

ŝ = (p1 + p2)2

= q2
1

(5.94)

We then have:

σ̂(ŝ) = AZZ(ŝ)
1

48π
β (5.95)

Collecting the function, AZZ(ŝ), from (5.65), gives the parton-level cross section:

σ̂(ŝ) =
M4β3

48πM2
Z

[
f2

4 + β2f2
5

]
(g2
V + g2

A)
(ŝ−M2)2 + Γ2

Z′M
2

(5.96)

If we had used this function in our numerical integration of rapidity, we would have a

function of ŝ. This function would have the characteristic Breit-Wigner shape (a peak

indicating a resonance) for values around ŝ = M2. We are interested in a production

cross section, meaning a number equal (approximately) to the area under this peak.

If we assume the Z-peak to be narrow, we can use the so-called the narrow-width

approximation. It involves substituting the factor which comes from the propagator

for a delta-function multiplied by a number. The delta function collapses the integral

over ŝ, while the number is the correct area in the limit of an infinitely narrow peak.

Mathematically we make the substitution:

1
(ŝ−M2)2 + Γ2

Z′M
2
−→ π

MΓZ′
δ(ŝ−M2) (5.97)

The error in the approximation is usually assumed to be of order ∼ Γ
M , although this

is a topic of debate in the literature [18]. Using the narrow-width approximation we

get:

σ̂(ŝ) =
M3β3

[
f2

4 + β2f2
5

]
(g2
V + g2

A)
48M2

ZΓZ′
δ(ŝ−M2) (5.98)

Now we go on to consider the convolution integrand which takes the form:

d2σ

dŝdy
=
M3β3

[
f2

4 + β2f2
5

]
(g2
V + g2

A)
48M2

ZΓZ′
1
s
F (τ, y,Q2)δ(ŝ−M2) (5.99)
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Integrating out ŝ and writing this as an integral over rapidity we obtain.

σ =
M3β3

[
f2

4 + β2f2
5

]
(g2
V + g2

A)
48M2

ZΓZ′
1
s

∫ b

a
F (τ =

M2

s
, y,Q2)dy (5.100)

Observe that this is the same integral as we evaluated in the previous section.

5.8 Limits and experimental constraints

For this section we denote the production cross sections of Z ′ and ZZ by σqq̄→Z′ and

σqq̄→Z′→ZZ , respectively. We will also compare the production cross section with the

production cross section of a Higgs with mass 200 GeV. This cross section is of the order

10-20 fb (see section 6.1). To state something about the production cross sections and

related quantities we need to have an overview of input versus output. Looking at the

formulas (5.83) and (5.100) we see the following:

1. For given values of gV and gA, we know σqq̄→Z′

2. For given values of gV , gA, f5, f4 and ΓZ′ we know σqq̄→Z′→ZZ

There is also another quantity that we can look at, which is the ratio of the two

production cross sections:

BR(Z ′ → ZZ) =
σqq̄→Z′→ZZ
σqq̄→Z′

=
ΓZ′→ZZ

ΓZ′
(5.101)

Inserting the expressions for the production cross sections (5.99) and (5.82) in (5.101)

we see that all the information needed to obtain BR(Z ′ → ZZ) are the values of f4

and f5.

BR(Z ′ → ZZ) =

[
f2

4 + β2f2
5

]
M3β3

16πM2
ZΓZ′

(5.102)

We find the production cross section for qq̄ → Z ′ → ZZ → 4l by multiplying σqq̄→Z′ by

the branching ratio for Z ′ → ZZ and the square of the branching ratio for Z → ZZ:

σqq̄→Z′→ZZ→4l = σqq̄→Z′ ×BR(Z ′ → ZZ)×BR2(Z → 2l) (5.103)

The branching ratio for Z → 2l is universal (i.e. equal for all generations) and has the

value BR(Z → 2l) ∼ 0.034 [19]. One should note here that all leptons are equal in

our case. We now want to estimate an upper limit on this cross-section derived from
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experimental constraints.

We start with the branching ratio BR(Z ′ → ZZ). Plugging the masses

M = 200 GeV

MZ = 91 GeV
(5.104)

into (5.102) results in

BR(Z ′ → ZZ) ∼ 1.37

[
f2

4 + 0.172f2
5

]
ΓZ′

(5.105)

We do not know much about the total decay width of the Z ′ and so will use a result

from the paper on the Landau-Yang theorem [1]. Simulations are done using MAD-

EVENT1, followed by hadronization and showering in PYTHIA. Using a Z ′ mass of

240 GeV, they estimate the decay-width to be around 12 GeV. We will assume the

decay width to be in this neighbourhood, but lower. Looking back to (2.1) we see that

the total decay width of a particle depends on both its interactions with other particles

(Feynman amplitude) and its mass (phase-space factor). If two particles have the same

interactions, but different mass, the one with the highest mass has the largest width.

Based on this and the fact that we want to overestimate the cross section, we set the

decay width to ΓZ′ = 4 GeV.

We will also consider another assumption, namely that the constants f4 and f5 are

constrained from analysing LEP data by the so-called anomalous Triple Gauge Boson

(TGB) couplings.2 The TGB couplings have the same Lorentz structure as our cou-

plings, on account of it being three spin-1 particles, but they differ in that they are

multiplied by a factor dependent on the C.O.M. energy. This factor makes the coupling

disappear for on-shell particles on account of Bose symmetry (i.e. all three particles

are Zs). The constraints are [20]3:

|f4| ≤ 0.30

|f5| ≤ 0.38
(5.106)

1A program that produces parton-level events in accordance with SM and BSM theories and inter-

faces with PYTHIA
2Warning: This is not necessarily a valid assumption!
3 In [20] they estimate expected bounds from Atlas on f4 and f5 to be ∼ 0.01 at 1 fb−1.
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Letting these values be maximal and using the decay width above we get:

BR(Z ′ → ZZ) ≤ 0.04 (5.107)

If we now insert the value of the convolution integral (5.84) of 24.3 nb into (5.83)

and collect everything with (5.103) and the known branching ratios, we get the final

production cross section as a function of gV and gA:

σqq̄→Z′→ZZ→4l ≤ (g2
V + g2

A)× 0.7 fb (5.108)

For comparison: If we do the same procedure, but assume that the LEPII constraints

are not valid for the TGBs and that the coupling constants f4, f5 are of order 1, we

get:

σqq̄→Z′→ZZ→4l ≤ (g2
V + g2

A)11.2× fb (5.109)

Considering for a moment, the case of a Z ′ that mixes with the Z there are additional

constraints from the EWPT measurements at LEP. This is because the mixing dis-

torts the Z properties, which are well measured. In general constraints on Z ′ from

EWPT at electron-positron colliders fall into two categories: Precision measurements

at the Z-pole and measurements of e+e− → ff̄ at C.O.M. energies up to s = 209 GeV

(LEPII)[21] (see chapter 4).

Now we come to the question of the strength of the fermion couplings. If these were

sizable, the Z ′ would couple strongly to all fermions1. This would mean that it could

be produced in significant amounts at electron-positron colliders. Consequently it be

would easy to detect for instance at LEPII, which had a C.O.M. energy of about 209

GeV. If we assume it to act as the SM Z boson with regards to fermions, the mass limit

as given in [19] exceeds 1 TeV, which is not good for our case. So we further assume

that the couplings cannot be of the SM type.

In [22], they estimate the LEPII bounds on a Z ′ from a U(1)-type model with slightly

larger couplings to leptons than quarks. Their result is that the lepton coupling is at

most of the order 10−2 for Z ′ masses between MZ = 91 GeV and 213 GeV. Adopting

this attitude results in a negligible cross section compared to the Higgs one and is
1Assuming universality of couplings as in SM
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therefore not desirable.

There are some U(1) theories that yield what is referred to as a leptophobic Z ′, which

couples weakly to leptons, but not quarks [23]. In such theories we could set the cou-

pling constants higher and blame non-observation on the fact that it could not be

produced at electron-positron colliders. This type of theory falls under the more gen-

eral case where the Z ′ couples non-universally to fermions. In [22], they comment on

the fact that it is possible to have a zero coupling between Z ′ and the electron1. This

would invalidate the LEP-II bounds since the electron does not couple to Z ′. Here

we could in principle adjust the couplings to larger values for the other fermions and

enhance the cross section. This could again be constrained by the fact that there would

be an excess of jets at hadron colliders2. This, because the stronger (Z ′qq̄) coupling

both increases the production and decay of Z ′s from and to qq̄.

In summary we see that SM-like Z ′s are unlikely, while leptophobic or non-universal

Z ′s could in principle enhance the cross section. If we assume that the (Zqq̄) coupling

constants can be made to be of order ∼ 1 and make an order-of-magnitude comparison

between the Z ′ and Higgs production cross sections we get:

1. If LEPII bounds on f4, f5 apply, they imply a negligible cross section, σ
σH
∼ 0.1

2. If f4, f5 are ≈ 1, they are of the same order, σ
σH
∼ 1

As a last option, we could consider the case where f4 and f5 are stronger. To increase

the production by one order of magnitude compared to the Higgs cross section they

would have to be ≈ 3. This would probably modify the Z pole measurements at LEP

by a large amount, since the numerical value of the couplings are quite high.

1They consider a Minimal Supersymmetric Model in this case
2A comment, with regards to the “bump” reported at 150 GeV at the Tevatron: This could be such

an excess of jet signals. The measurement concerns an excess in the total amount of states decaying

to one W boson and two jets. An example of a leptophobic explanation for this can be found in [24]
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Chapter 6

A Scalar Signature

We will now consider the process S → ZZ → 4l, where S is some scalar particle,

but we will not calculate a production cross section. Instead we will look at how a

Two-Higgs-Doublet-Model (2HDM) could enhance the total production cross section.

In the SM we have only one such scalar particle, namely the Higgs boson. First we will

go through the SM Higgs, then consider the 2HDM enhancement of our “golden cross

section”.

6.1 The SM Higgs in the Golden Channel

Considering a SM Higgs in the golden channel with the Higgs mass set to 200 GeV, we

have three quantities, besides BR(Z → 2l), that are known:

1. The branching ratio of the Higgs, BR(H → ZZ)

2. The total production cross section of the Higgs, σ(pp→ H)

3. The total decay width of the Higgs, ΓH

The above branching ratio can be found from Figure 2.1 and is approximately ∼ 1
3 .

One should note that this branching fraction does not vary significantly as the Higgs

mass increases.

Higgs-fermion-fermion couplings are important when considering the production of
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t, b
H

g

g

Figure 6.1: Gluon fusion, the dominant contribution to Higgs production at the LHC
[25]

the Higgs at the LHC. The (Hff̄) couplings are proportional to the fermion mass.

Specifically their vertex factor is given by [6]

(Hff̄) =
−i
v
mf (f = l, q) (6.1)

Naively, this suggests that the dominant contribution to Higgs production from fermion

couplings should come from the top quark, since it is the heaviest fermion (mt = 172 GeV

[19]). This is what happens, but not via a direct coupling1 as one might assume. The

p.d.f.s described in chapter 5 give a negligible top-quark content for protons and so the

direct production from top quarks is vanishingly small. This means that the lighter

quarks should produce more Higgs bosons directly than the top quark. The dominance

of the top-quark contribution comes from a so-called triangle diagram for gluon fusion.

Figure 6.12 shows the Feynman diagram for gluon fusion. . Even though such 1-loop

diagrams usually contribute less than the tree level diagrams, the top mass is a factor

40000 larger than the light quarks The top-quark therefore provides the dominant con-

tribution to Higgs production. In fact, for Higgs production at the LHC, the dominant

production mechanism for all Higgs masses is through the gluon fusion diagram with a

top triangle loop [6].

1Direct coupling here meaning coupling between colliding quarks and produced Higgs
2Had to use photon lines for gluons, due to a bug in jaxodraw
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Figure 6.2: The total production cross section for pp̄→ H +X at the LHC [25]

The total production cross section of the Higgs at the LHC, stems from reactions

of the type,

p+ p −→ H +X (6.2)

where X is some hadron final state that satisfies appropriate conservation laws [6]. Cal-

culations of the total production cross sections as a function of the Higgs mass results

in plots as in Figure 6.2.

The Higgs boson can in principle decay into both fermions and gauge bosons. As men-

tioned in chapter 2 though, the mass region we are interested in (190 GeV ≤MH ≤ 300

GeV) is completely dominated by the W+W− and ZZ modes (compare Figure 2.1).

The total decay width is therefore to a good approximation, Γ(H → ZZ) + Γ(H → W+W−).

In Figure 6.3 the total decay width as a function of the Higgs mass is shown.

Using these plots we can read off values that enable us to estimate the SM cross

section in the golden channel for a 200 GeV Higgs. We estimate it by the expression:

σ = σ(pp→ H)×BR(H → ZZ)×BR2(Z → 2l) (6.3)
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Figure 6.3: The total decay rate as a function of the Higgs mass [25]

The values
σ(pp→ H) = 4.5± 1 pb

BR(H → ZZ) =
1
3
± 0.05

BR(Z → 2l) = 0.034

(6.4)

result in

∼ 11 fb ≤ σ ≤ 24 fb (6.5)

Now that we have a rough understanding of how the SM Higgs behaves in the golden

channel, we take a look at the 2HDM and possibilities for enhancing this cross section.

6.2 The Two-Higgs-Doublet Model

The Two-Higgs-Doublet model (2HDM) is an extension of the SM Higgs sector. As

the name implies one adds a second complex scalar doublet in the Weinberg-Salam po-

tential (3.46). A feature of theories with electroweak Higgs singlets or doublets is that

the parameter ρ, discussed in chapter 4, is equal to 1 at tree level [26]. This makes the

relationship between the 2HDM and the EWPT somewhat less strained. In addition to

this property, some theoretical motivation can be found in the following consideration.
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One can compare the 2HDM to the Minimal Supersymmetric Standard Model (MSSM),

which also has a Higgs sector with two complex scalar doublets [12]. One of the dif-

ferences is that at tree level, the MSSM Higgs sector can be parametrized by two

independent quantities, while the 2HDM has more free parameters. In MSSM though,

Supersymmetry leads to relations between Higgs masses and couplings. However, due

to the fact that Supersymmetry (if valid) must be broken, these relations can change.

Beyond tree level there are effects of Supersymmetry breaking that can enter through

loop corrections and modify these relations [27]. The philosophy could therefore be

that the 2HDM is an effective way of parametrizing the MSSM.1

6.2.1 The 2HDM Potential

To get a grip on the 2HDM potential, we will write down the most general potential

possible for two scalar doublets and make some comments. The justification for doing

it this way is that in the literature, different parametrizations arise and one is easily

distracted by thinking about where these parametrizations come from. The constants

λi and mij i, j = 1, 2, which are typically used, often differ slightly. This means that the

comments regarding the terms made below, should be thought of as a comment of the

specific term, not including the constant. The most general gauge-invariant potential

for two scalar doublets is [26]:

V (Φ1,Φ2) = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 − [m2
12Φ†1Φ2 + H.c.]

+
λ1

2

(
Φ†1Φ1

)2
+
λ2

2

(
Φ†2Φ2

)2
+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+
{
λ5

2

(
Φ†1Φ2

)2
+
[
λ6Φ†1Φ1 + λ7Φ†2Φ2

]
Φ†1Φ2 + H.c.

} (6.6)

In general the parameters m2
12, λ5, λ6 and λ7 can be complex, while the rest are real.

Some remarks regarding the different terms in the potential will now be made:

1. The terms proportional to λ6 and λ7 cause Flavour Changing Neutral Currents

(FCNC). FCNCs change fermion flavour, without changing the electric charge.

1 It does not have to be, the 2HDM does well enough on its own
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They are severly constrained by experiment and consequently λ6 and λ7 must be

small enough to incorporate this [12]1.

2. Demanding that the potential be bounded from below (since we need a lowest-

energy state), one extracts a number of inequalities the parameters must satisfy

[26], thereby constraining the parameters of the model.

3. Explicit and spontaneous2 CP violation can be avoided by constraining param-

eters. For instance, a sufficient condition for not having explicit CP violation is

taking all coefficients to be real [26].

These constraints are typically applied in different ways, depending on what properties

one wants in the model (e.g. CP violating, small FCNC etc.). The literature therefore

often contains a wide variety of different potentials. Before moving on, we should

mention one more thing: Sometimes, the parameters in the potential are exchanged

with a set of more physical parameters like the mass of a Higgs particle or the ratio

of the VEVs of the two fields (named tanβ). This will be the case, when we look at

an example of a 2HDM. Having gained a few insights into the 2HDM-potential and its

appearance, we now move on to the Yukawa couplings.

6.2.2 Yukawa Couplings

There are several ways Yukawa couplings enter in the literature. The most popular

are quite nondescriptively referred to as model I, II and III. Model III contains the

most general Yukawa couplings for two complex scalar doublets. [27]. The distinction

between model I and II lies in how quarks aquire mass. In model I, the quarks of up

and down type couple to only one of the Higgs doublets. In model II, the quarks of up

type couple to one doublet and the quarks of down type to the other. Additionally the

model II reproduces the Higgs-fermion coupling structure in the MSSM [2].

These different choices of models are related to the Flavour Changing Neutral Cur-

rents. It has been shown that FCNCs do not appear in the Yukawa couplings if the
1 Introducing a discrete symmetry in the potential Φ1 → −Φ1 makes these terms and the m12 term

vanish. The m12 term can be allowed under certain conditions [26].
2One has a formal definition of a CP transformation. If the Lagrangian is not invariant under this

transformation we have explicit symmetry breaking. The idea of spontaneous CP-violation is analogous

to SSB in EW theory, namely that the solution is not invariant under this transformation.
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following condition is satisfied [28]: Quarks of one flavour couple at most to one of the

Higgs doublets. This is automatically satisfied by models of type I and II. The more

general type-III model have such FCNC terms and consequently one must be careful

to keep the contributions small enough [27]. Now we will look at a specific 2HDM(II)

and its phenomenology.

6.2.3 A 2HDM(II) Example

If we let the Higgs potential have real parameters, no FCNC terms and the type-

II Yukawa couplings, the following phenomenological1, picture arises. There are five

physical particles associated with the Higgs field. Two charged H±, two neutral h0, H0

(CP even) and another neutral A0 (CP odd), called a pseudoscalar. The charged pair

has the same mass, while the neutral pair has a mass hierarchy Mh0 ≤M0
H . The model

has six independent parameters, they are:

1. Light, neutral Higgs mass, Mh0

2. Heavy, neutral Higgs mass, MH0

3. Pseudoscalar mass, MA0

4. Charged Higgs mass, MH±

5. The ratio of the VEV’s of the two fields tanβ = v2
v1

6. A Higgs mixing angle, α

In general, having more free parameters than these does not change the amount of par-

ticles associated with the Higgs fields. The reason is that two complex scalar doublets

has 8 degrees of freedom before SSB. After SSB, three of these are eaten by the gauge

bosons. This leaves five scalar particles to be associated with the doublet. Two must be

charged, for consistency with EW charge assignment. The remaining three are neutral.

We here make some notes regarding tanβ. Before choosing Yukawa couplings it is

a physically meaningless quantity. This is because it does not appear in any couplings

and therefore does not affect particle interactions. On the other hand, when one chooses
1All the facts presented in this paragraph can be found in [2]
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the type-II Yukawa couplings one picks out a preferred direction in Φ1, Φ2 space, which

makes tanβ appear in the couplings [27]. Another important fact is that the parameter

is equal to the ratio of the two VEVs of each Higgs doublet, but the expression

v =
√
v2

1 + v2
2 = 246 GeV (6.7)

is fixed and equal to the usual SM VEV. This means that we can in principle, take

tanβ as large (v2 � v1) or small (v1 � v2) as we like. We can also write this as,

v1 = v cosβ

v2 = v sinβ
(6.8)

where the effects on sinβ and cosβ in the limits described above, are easier to see.

Explicitly they are:
sinβ ≈ 1, cosβ ≈ 0, for tanβ � 1

sinβ ≈ 0, cosβ ≈ 1, for tanβ � 1
(6.9)

The choice of tanβ is also constrained by experimental measurements, an issue we will

return to later on. We will now pick the next-to lightest, neutral Higgs boson as the

golden channel candidate and investigate its couplings to quarks in a type II model.

6.3 Neutral Higgs Couplings and Higgs Production

In a 2HDM(II) the neutral Higgses can couple with different strengths to fermions in

a way that depends on the parameter tanβ and some mixing angles. The example we

will use is from [12, 29], where a 2HDM of type II is considered. In these papers, the

Higgses (denoted as Hi) couple to the top and bottom quarks through:

(Hitt̄) =
1

sinβ
[Ri2 − iγ5 cosβRi3] (6.10)

(Hibb̄) =
1

cosβ
[Ri1 − iγ5 sinβRi3] (6.11)

Here, the couplings are given relative to the SM ones. The Rij are the i’th and j’th com-

ponent of a rotation matrix R, responsible for diagonalizing the mass-squared matrix of

the neutral sector. More explicitly, the neutral sector contains the three fields η1, η2 and

η3. The rotation matrix R transform the basis of weak eigenbasis (η1, η2, η3)T into the

basis of mass eigenstates (H1, H2, H3)T . We see that the top-quark coupling (ignoring

the mixing angles for now) is inversely proportional to tanβ, while the bottom-quark
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coupling is proportional to it.

At first glance this seems like a neat way of increasing the Higgs-production cross sec-

tion in the golden channel. The idea is simply that the SM vertex between quarks and

Higgs in the gluon-fusion diagram shown in 6.1 gets multiplied by the above couplings.

For the top-triangle case the factor varies as cotβ, while the bottom-quark varies as

tanβ. We could now make tanβ small (large) and thereby enhance the top(bottom)-

quarks production of the light Higgs. Let us investigate this more closely:

Since the coupling Hff̄ is proportional to the fermion mass in the SM, the cross

section for Higgs production through gluon fusion is proportional to the square of the

fermion mass. In our case we have the modified couplings (6.10) and (6.11). Intro-

ducing these couplings in the (Hqq̄) vertex of Figure 6.1 changes the spinor structure

of the amplitude because of γ5. Making an estimate on the enhancement of the cross

section is therefore a tricky job, since it involves the spinor structure of the triangle

diagrams. We will therefore make a simplifying assumption with regards to the mixing

angles. The assumption will make the spinor structure “factorizable”, meaning that

the 2HDM(II) amplitude will just be a complex number times the SM amplitude. We

will choose the heaviest of the CP even Higgses, H2 as our candidate for enhancing the

cross section. As a simple choice of mixing angles that makes the coupling factorizable

we choose the mixing angle constraint sinα3 = 0 (which implies cosα3 = 1). We are

also interested in the H2s coupling to the Z as this will be needed to estimate the

enhancement. Taking α3 = 0, the relevant couplings of H2 become:

(H2tt̄) =
1

sinβ
cosα1 ≡ c1

sβ
(6.12)

(H2bb̄) = − 1
cosβ

sinα1 ≡ −s1

cβ
(6.13)

(H2ZZ) = [− cosβ sinα1 + sinβ cosα1] ≡ [sβc1 − cβs1] (6.14)

Equipped with a set of new and more managable couplings we go on to consider the

top and bottom contributions to gluon fusion.

In the SM, couplings between Higgs and fermion are, as mentioned before, propor-

tional to the mass of the fermions. Within the SM, the top-quark triangle diagram is
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the dominant contribution to Higgs production through gluon fusion. In our scenario

this is not necessarily so. For instance, a large value of tanβ (i.e. cosβ → 0) makes

the down type quarks couple more strongly than the up type. One could then imagine

that as tanβ is increased, the bottom contribution will at some point be comparable

to the top contribution. In fact, for a large enough value of tanβ even the light down

type quarks could contribute more than the top (it would have to be very large for

this to occur1). If the two amplitudes (top and bottom) are comparable in magnitude,

the interference terms will give a significant contribution. Therefore we would like to

introduce some measure, which would enable us to estimate the relative contribution

of the top and bottom quarks. The ratio of the top and bottom squared amplitudes

for gluon fusion should do. It is equal to:

|Mtop|2
|Mbottom|2 =

|H1tt̄|2m2
t

|H1bb̄|2m2
b

∼ 1600
|H1tt̄|2
|H1bb̄|2

=
1600

tan2 β

cos2 α1

sin2 α1

≡ 1600
c2

1

t2βs
2
1

(6.15)

Some comments on this expression are in order:

1. The expression (6.15) only measures the relative contribution of the top and

bottom Higgs production from gluon fusion2.

2. If (6.15) ∼ 1600, we adopt the same attidude as in the SM, which is that the

top-quark contribution dominates

3. If (6.15) is of order ∼ 1, interference effects between the two triangle diagrams

become important in calculating the total production cross section from gluon

fusion

1In this case tanβ must enhance the couplings by a factor
m2

t

m2
down-quark

, to make triangle contributions

of light quarks comparable to the top ones. The larger p.d.f. contribution of light quarks would lower

this tanβ value because of direct production. In any case the bottom quark would probably dominate

through gluon fusion.
2For instance the case tβ = 1, s1 = c1, gives the same ratio as in the standard model, but the

couplings are clearly not the SM ones.
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4. In the limit tβ � 1, the bottom-quark production dominates

5. In the limit tβ � 1, the top-quark production dominates

6. The choice of mixing angles that make tanα1 →∞ and tanα1 = 0, just reflects

the fact that the couplings to one of the quarks are turned off and our measure

is not very useful in these limits.

The third comment is related to the fact alluded to above: We can no longer assume the

dominant contribution to come from the top quark, because the bottom quark might

very well couple more strongly to H2 than the top in this framework. The two limiting

results above is what one would expect as the two cases correspond to enhancing one

of the couplings in (6.13) or (6.12), while simultaneously decreasing the other. Armed

with these facts we go on to investigate the charged Higgs and some limitations on

tanβ.

6.4 Experimental restrictions on tanβ

Restrictions on the 2HDM can be divided into three categories [30]:

1. Theoretical consistency constraints

2. Experimental restrictions on the charged section

3. Experimental restrictions on the neutral sector

We will here go through the experimental restrictions on the charged and neutral sector.

The charged Higgs has couplings to the heavy quarks given by1:

(H+bt̄) =
ig

2
√

2mW

[mb(1− γ5) tanβ +mt(1 + γ5) cotβ]

(H−tb̄) =
ig

2
√

2mW

[mb(1 + γ5) tanβ +mt(1− γ5) cotβ]
(6.16)

Note that the charged sector contains no mixing angles since these are associated with

the neutral sector. On the other hand, the sector does contain factors of tanβ and cotβ.

For small or large tanβ the charged Higgs’s couplings are enhanced. This contributes
1Couplings in (6.16) and (6.14) are still from [12]a [29]
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Figure 6.4: Experimental constraints on the charged Higgs sector, from [30] The white
areas are not excluded. Solid lines: 95% C.L., Dashed lines: 90% C.L., Colored: Joint
exclusion at 90% and 95% C.L. Figure from [30]

to effects that are well measured in experiments. They therefore provide constraints

for the 2HDM(II). All constraints on the charged sector come from B physics. In

particular, contributions from:

1. B0
d − B̄0

d mixing

2. The process B → τν

3. The process B → Xsγ, where Xs is a meson containing an s quark

constrain the charged sector of the theory. These constraints can typically be relaxed

if we choose the charged Higgs to have a large mass [12]. Also, they depend on the

parameter tanβ, which decides the quark couplings to the charged Higgs. The Figure

6.4 shows a plot of tanβ versus the charged Higgs mass, with excluded regions. As one

can see, the data for B mixing and B → Xsγ, typically constrain the theory at low
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tanβ, while B → τν constrain it at high tanβ1.

In [28] a global fit of parameters was made for such a 2HDM(II). The model seemed to

prefer rather low values for the two lightest Higgs. Based on this we want to pick the

next to lightest neutral Higgs as our 200 GeV resonance and keep the lightest Higgs

around 100 GeV. We now take into account neutral sector constraints and deal with

them in due order. These constraints come from:

1. Lack of discovery at LEPII

2. Decay width of Z → bb̄, measured by the branching ratio often denoted Rb

3. ∆ρ

4. The muon anomalous magnetic moment, (g − 2)µ

If we want to have a small mass for the lightest neutral Higgs we have to explain the

non-discovery of this at LEP. Which means that we must look at its couplings to Z.

Also the common decay channel H1 → bb̄ must be taken into account. In [12], the

expression

σZ(h→X) = σewZh × C2
Z(h→X) (6.17)

is used to exclude or allow values for different parameters. Here, σewZh is the SM cross

section for Higgs-Strahlung2 for a particular value of the Higgs mass, while C2
Z(h→X)

is a dilution3 factor, that can account for the wanted reduction of the Higgs-Strahlung

cross section. The effects described above are effectively parametrized by this dilution

factor. It is defined as [12]:

C2
Z(h→X) = [cβR11 + sβR12]2

1
c2
β

[
R2

11 + s2
βR

2
13

]
(6.18)

For us this reduces to:

C2
Z(h→X) = [cβc1c2 + sβs1c2]2

1
c2
β

[
c2

1c
2
2 + s2

βs
2
2

]
(6.19)

1Even though this curve is off the particular plot
2Alongside W+W− fusion, the most important channel for potential Higgs discovery at LEPII[31]
3Since it, for the right choice of mixing angles and tanβ, can dilute the 2HDM Higgs-Strahlung

cross section compared with the SM one.
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This expression will be used to incorporate the LEP measurements. In [12] a rough

estimate gives:
C2
Z(h→X) ∼ 0.2 at MH1 = 100 GeV

C2
Z(h→X) ∼ 0.1 at MH1 = 80 GeV

(6.20)

We adopt their philosophy and exclude parameters which do not satisfy this constraint.

Furthermore, we will look at three limits, namely tanβ � 1, tanβ � 1 and tanβ = 1.

In these limits the above expression reduces to [12]:

1. For tanβ � 1

C2
Z(h→X) = c4

1c
4
2 � 1 (6.21)

which requires that one of the angles be close to ±π
2

2. For tanβ � 1

C2
Z(h→X) = t2βs

2
1c

2
2

[
c2

1c
2
2 + s2

βc2

]� 1 (6.22)

which requires α1/α2 → 0 and α2/α1 → ±π
2

3. tanβ = 1

C2
Z(h→X) = [(c1 + s1)c2]2

[
c2

1c
2
2 +

1
2
s2

2

]
� 1 (6.23)

which requires that α2 be close to ±π
2 or α1 close to −π

4

Lastly there are constraints related to corrections to the ρ parameter1 (see end of chap-

ter 4) and the muon anomalous magnetic moment, which we will effectively ignore.

A word on their effects is nevertheless instructive. The additional contributions to ρ

within the 2HDM come from the Higgses coupling to W and Z and the mass splitting

in the Higgs sector (i.e. difference in mass of Higgses). It typically prefers a low mass

splitting of the neutral Higgses. For the muon magnetic moment, the situation can be

succintly summarized by saying that new physics effects can either be used to obtain

better agreement between theory and experiment or made to be non-negligible.

We now go on to look at ZZ production and enhancement of the “golden cross section”

1For the ρ parameter, they are not necessarily very precise because an assumption on the SM Higgs

must be made to use EW fits. In [12], they of course comment on this.
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Figure 6.5: Feynmandiagram for ZZ production from H, where H = HSM , H1

6.5 Enhancing ZZ production

We will now look at the process gg → H1 → ZZ relative to gg → HSM → ZZ.

The Feynman diagram of this process is shown in Figure (6.5) Let us first write down

the cross section for the pure top and bottom contributions to gluon fusion:

σ(gg → H1 → ZZ)top = |(H1tt̄)|2|(H1ZZ)|2σ(gg → HSM → ZZ)top

σ(gg → H1 → ZZ)bottom = |(H1bb̄)|2|(H1ZZ)|2σ(gg → HSM → ZZ)bottom

(6.24)

When we insert the expressions (6.12), (6.13) and (6.14) we get

σtop ≡ σ(gg → H1 → ZZ)top =
[
c2
βs

2
1 − 2cβsβc1s1 + s2

βc
2
1

] c2
1

s2
β

× σSM-top (6.25)

and

σbot ≡ σ(gg → H1 → ZZ)bottom =
[
c2
βs

2
1 − 2cβsβc1s1 + s2

βc
2
1

] s2
1

c2
β

× σSM-bot (6.26)

First we look at the small tanβ limit. Here the top cross section dominates completely.

This because it, in addition to having a much greater mass1, couples more strongly

than the bottom quark. The top contribution becomes:

σtop =
c2

1s
2
1

t2β
× σSM-top =

1
4

1
t2β

[
1− cos4 2α1

]× σSM-top (6.27)

1Which already makes it dominant in the SM case.

75



6. A SCALAR SIGNATURE

We see that small values of tanβ can indeed enhance the cross section considerably. Let

us look at the mixing angle dependence of this expression. With the choice of mixing

angles α1 = 0,±π
2 the bottom cross section vanish. On the other hand a mixing angle

choice of α1 = ±π
4 maximizes the cross section. Looking back to the expressions of the

couplings (6.12), (6.13) and (6.14), we can understand these results as follows:

1. In the case α1 → 0, the (H2ZZ) coupling vanishes1 and kills the cross section in

the process.

2. In the case α1 → ±π
2 the (H2tt̄) coupling vanishes and the cross section disap-

pears.

3. The cases of maximum cross section (i.e. α1 → ±π
4 ) are in-between these three

extremes.

In the large tanβ limit (i.e. sβ ∼ 1, cβ ∼ 0). The cross section can be dominated by

bottom or top production from gluon fusion. Alternatively they can be of comparable

magnitude and interfere. The cross sections become:

σbot = t2βs
2
1c

2
1 × σSM-bot

=
1
4
t2β
[
1− cos4 2α1

]× σSM-bot

(6.28)

and

σtop = c4
1 × σSM-top (6.29)

Some comments on the mixing angle dependence are in order:

1. As α1 → 0, the H2bb̄ coupling vanishes and only σtop = σSM-top contributes,

which is not of interest for our analysis

2. As α1 → ±π
4 , the bottom cross section is maximized σtop = 1

4 × σSM-top

The second case here could be of interest. In this case interference can be non-negligible.

This could lead, in the case of maximum interference, to an additional factor 4. Check-

ing with our measure (6.15) we find that the ratio of the amplitudes is ∼ 1600
t2β

and the

value of tanβ would have to be somewhat high for this to happen. We will return to

1Remember that sβ ∼ 0
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these two cross sections and see how much we can enhance them with respect to exper-

imental constraints in the next section. Before we do that we check the intermediate

case, namely tanβ = 1.

In the tanβ = 1 case we have

sinβ = cosβ =
1√
2

(6.30)

The two cross sections for pure top and bottom contributions become:

σtop = (c1 − s1)2 c2
1 × σSM-top

σbot = (c1 − s1)2 s2
1 × σSM-bot

(6.31)

Let us make our usual mixing angle comments:

1. The case α1 → π
4 the H2ZZ coupling vanishes, which is not interesting

2. The case α1 → 0 makes the bottom coupling vanish and is therefore not interesting

3. In the case α1 → −π
4 the H2ZZ is maximized and the bottom and top couplings

are equal. This is not interesting as the cross sections become the SM ones.

If we look at our measure for the case α1 → −π
4 it is clear that the top-quark contribu-

tion still dominates and interference cannot enhance this any further. Given the above

results we restrict our discussion to the cases tanβ � 1 and tanβ � 1.

6.6 Possible Limits

We now look at the limits discussed in the previous section and compare them with

experimental constraints. Our goal is to constrain the maximal possible theoretical

enhancement. We divide our discussion into the two limiting cases, namely

1. The case tanβ � 1

2. The case tanβ � 1

The relevant formulas will, for the reader’s convenience, be reproduced in this section1

1To avoid the undesirable activity of page flipping!
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For the tanβ � 1, the relevant equations are:

σtop =
1
4

1
t2β

[
1− cos4 2α1

]× σSM-top

C2
Z(h→X) = c4

1c
4
2 � 1

(6.32)

We are interested in maximizing this cross section, which corresponds to putting α1 →
±π

4 . We then get

σtop =
1
4

1
t2β
× σSM-top (6.33)

For the constraint to be satisfied we need

C2
Z(h→X) =

1
4
c4

2 � 1 (6.34)

To increase the cross section by an order of magnitude we need tanβ ∼ 0.16. The

mixing angle is free to vary as long as it satisfies the constraint. We note that in [12] a

mixing angle α2 → 0 corresponds to no CP violation, which makes this easier to satisfy

if there is more CP violation.

For the tanβ � 1, the relevant equations are:

σbot =
1
4
t2β
[
1− cos4 2α1

]× σSM-bot

σtop = c4
1 × σSM-top

C2
Z(h→X) = t2βs

2
1c

2
2

[
c2

1c
2
2 + s2

βs2

]� 1

(6.35)

We note, once again, that in order for the constraints to be satisfied we need α1/α2 → 0

and α2/α1 → ±π
2 . These demands make our cross section vanish. If we let the mix-

ing angles be close enough to these points so that they satisfy the constraints, tanβ

would have to be enormously large to enhance the cross section. Here, the constraints

from B → τν would probably restrict it somewhat We also note that if tanβ is enor-

mously large, the bottom production would probably dominate. But just in case it does

not, the case of maximal interference could provide us with an enhancement factor four.

In summary, we have tried to maximize the “golden cross section” for a next to light-

est Higgs within the 2HDM(II). Constraints on the lightest Higgs from LEPII direct

searches were applied. For the case of small tanβ, the top-quark triangle loop dia-

gram provides the dominant contribution. In fact, it dominates even more than in the
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standard model, because the coupling (H2tt̄) is enhanced by tanβ. At low tanβ, the

constraints from B0
d − B̄0

d mixing, B → Xsγ and the effective Zbb̄ vertex (Rb in [28])

must be taken into account. On the other hand for the large tanβ limit, where bottom-

quark contribution dominates, it seems harder to obtain a sizable enhancement. This

is because of the B → τν constraint. For both cases we could always push the charged

Higgs mass up to avoid the constraint. The top-quark enhancement does not require as

high a value for the charged Higgs as the bottom-quark enhancement an easier mech-

anism to enhance the cross section. We conclude with saying that enhancement of the

“golden cross section” seems most feasible at small values of tanβ with the top-quark

providing the dominant contribution.

We end our discussion of the 2HDM here and move on to the chapters that deal with

extra dimensions and Technicolor. These chapters are of a somewhat different nature

than the preceeding ones. More precisely, they do not contain explicit calculations as

in the Z ′ and 2HDM case. Rather, they aim to introduce enough concepts to under-

stand where the different phenomenological signatures come from. Phenomenological

signatures relevant to our experimental situation (and some others) are summarized in

a section contained at the very end of each chapter.
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Chapter 7

Kaluza-Klein Theories and the

Graviton

Out of the different theories of physics that exist, there are none more sacred to physi-

cist than the unifying ones. Newton was one of the first to create such a theory. He

identified the everyday forces we experience with the ones governing celestial motion

of planets and stars. Boltzmann drew attention to the fact that the laws of ther-

modynamics can be understood through a statistical analysis of atoms and molecules

moving about. Maxwell and Faraday unified the electric and magnetic forces through

the electromagnetic field and Dirac arranged his “wedding” of Special Relativity and

Quantum Mechanics. Today we have four known forces, namely Electromagnetic, Weak

and Strong nuclear forces and Gravity. Unification of the three first have seen great

progress during the last part of the twentieth century and are described by the Stan-

dard Model of particle physics. Many attempts have been made to unify Gravity with

the three forces of the SM, but it has eluded every attempt so far. Most of the unify-

ing theories include the introduction of extra spatial dimensions. In this chapter we’ll

see how extra-dimensional theories were first contrived and end up with some modern

theories and their phenomenological consequences.
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7.1 What are Kaluza-Klein Theories?

The story starts in 1914 with Gunnar Nordström, who looked at a five-dimensional

vector potential Aµ̂. The potential can be written in 4 + 1 dimensions as [32]:

Aµ̂ = Aµ + φ (7.1)

Here, Aµ is the four-dimensional electromagnetic field and φ is a scalar potential de-

scribing gravity. However in 1915 Einstein came with his extraordinarily successful

tensor theory of gravity (general relativity). As a consequence Nordström abandoned

his scalar theory of gravity, but the idea of an extra spatial dimension stuck.

In 1921 Theodor Franz Eduard Kaluza tried to unite general relativity (GR) and elec-

tromagnetism. By the introduction of a fifth spatial dimension, he could show that

the fields describing GR and electromagnetism came from the same tensor. With y

denoting the extra spatial dimensions the five-dimensional line element becomes1:

dŝ2 = ĝµ̂ν̂(xµ, y)dx̂µ̂dx̂ν̂ (7.2)

To reproduce the equations of general relativity Kaluza had to make an additional as-

sumption. That the fields should not vary in the extra dimension or that their variation

was small. This assumption is called the cylindrical condition. Once a spacetime metric

is obtained, one can construct the other quantities appearing in general relativity. For

a more thourough, but pedagogical review of this theory see [32].

Although Kaluza’s theory neatly unifies GR and EM, it had some issues. Most promi-

nently2

1. Where was the extra dimension?

2. Why should the ordinary fields not vary in the extra dimension?

3. The electric charge of a particle was explained by its velocity in the fifth dimen-

sion. This description worked only in the small velocity approximation.
1The hat over the symbols indicates that there are 5 dimensions to consider, consequently the

indices such as û can have values 0, 1, 2, 3, 4
2Adapted from [32]
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Five years after Kaluza’s theory, Oscar Klein came up with an explanation for the

cylindrical condition. He suggested that the extra dimension was curled up. The new

dimension has circular topology. Physically it means that at each spacetime point (4D)

there is a circle. Particle motion in this dimension does not change the position in

four-dimensional space-time. The topology of the space is expressed mathematically

as R4× S1, where R4 denotes the usual Minkowski space. A cylinder has the topology

R × S1, which explains the name of Kaluza’s assumption1. If the radius of this extra

dimension is small it provides a natural explanation for why we haven’t seen it yet. An

analogy can be drawn to an ant walking on a wire:

You stand far off and observe an ant walking along an apparently 1-dimensional wire.

Suddenly the ant disappears and you have no idea where it has gone. You are confused.

The confusion only lasts till you get close enough and discover that the ant can move

around the wire as well as along it. By getting closer you have unveiled the extra

dimension.

This curling up of dimensions is called Kaluza-Klein compactification. The radius

of compactification was taken to be around the Planck length, where gravity effects

were expected to become non-negligible. The circular topology of the extra dimension,

means that any function of the extra dimension is 2πR periodic2 in the y coordinate

(i.e f(y) = f(y + 2πR)). This theory results in three fields that can be expanded in a

Fourier series in the periodic coordinate y:

gµν(x, y) =
n=+∞∑
n=−∞

gµνn(x)e
iny
R (7.3)

Aµ(x, y) =
n=+∞∑
n=−∞

Aµn(x)e
iny
R (7.4)

φ(x, y) =
n=+∞∑
n=−∞

φn(x)e
iny
R (7.5)

1R is the degree of freedom corresponding to moving along the “height” of the cylinder, while S

represents that we can move around it
2If you go around a cylinder you end up where you started after having moved a distance equal to

the circumference
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The equations of motion for each of these fields become:

(∂µ∂µ − ∂y∂y) gµν(x, y) =
n=+∞∑
n=−∞

(
∂µ∂

µ +
n2

R2

)
gµνn(x) = 0 (7.6)

(∂µ∂µ − ∂y∂y)Aµ(x, y) =
n=+∞∑
n=−∞

(
∂µ∂

µ +
n2

R2

)
Aµn(x) = 0 (7.7)

(∂µ∂µ − ∂y∂y)φ(x, y) =
n=+∞∑
n=−∞

(
∂µ∂

µ +
n2

R2

)
φn(x) = 0 (7.8)

The three fields that appear represent the graviton gµν , the photon Aµ and a scalar φ.

We recognize the equations as Klein-Gordon equations with particles of mass n
R . For

different values of n, there are different values of the mass. These mass states are called

Kaluza-Klein excitations. Different values of n yield different mass states and all the

mass states are collectively referred to as a Kaluza-Klein tower of states.

The extra-dimensional theories we’ll consider use the compactification scheme in Kaluza-

Klein theories. One difference is that they consider different kinds of spaces than S1

to be compactified. On a historical note: Pauli actually considered compactifying S2

in R4 × S2. He did not publish anything since he didn’t know what to do with the

resulting massless vector fields from the S2 compactification. [33]

In addition the theories use the concept of “branes” (mathematically speaking a mani-

fold) from string theory. The branes are embedded into some higher dimensional space.

The full space (brane + higher dimensions) is referred to as the bulk. The branes ef-

fectively localize particles in different parts of the universe. The basic idea in both

scenarios is that we live on a four-dimensional manifold (brane) where all SM particles

and interactions take place. The mediator of gravitational interactions, the graviton,

is free to propagate throughout the extra dimensions.

The motivation behind such models is that gravity has not been probed on small

scales (presently about 0.1 mm). Originally, the rationale behind taking the compacti-

fication scale R ∼ 1
MPlanck

in KK theories was dimensional analysis involving Newton’s

gravitational constant. The fundamental mass and length scales of the EW theory and
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gravitation obtained this way are:

MPlanck =
√

~c
GN
' 1019 GeV

c2

MEW =

√
~3

cGEW
' 300 GeV

lPlanck =

√
~GN
c3
' 10−35 m

lEW =

√
GEW

~c
' 10−19 m

(7.9)

The widely different mass-scales (or length if you’d like) are problematic when trying

to unify the SM forces with gravitation. If one assumes that no new physics arises

in-between these scales, the masses one calculates for the Higgs boson shoot up to

the Planck mass. This constitutes the hierarchy problem (explained in more detail in

section 8.1). If the extra-dimensional models are true, the Newtonian gravitational

potential would be modified at small scales and the hierarchy problem could be cir-

cumvented.

7.2 ADD, Large Extra Dimensions

The ADD model [4] is named after Arkani-Hamed, Dimopoulos and Dvali, which first

proposed it. They suggest that there is only one fundamental scale in nature, the

experimentally well documented MEW . The reason for the apparent weakness (i.e.

large mass scale) of gravitational interactions are n extra compact spatial dimensions

of radius R. The total space (universe) has the topology R4 ×Mn, with Mn denoting

the space to be compactified. If one places two test masses m1, m2 at a distance

r � R, the gravitational potential as decided by Gauss’ law of flux conservation (in

4+n dimensions) is:

V (r) ∼ m1m2

Mn+2
Pl(4+n)

1
rn+1

, r � R (7.10)

At a distance r � R, the flux lines do not penetrate the extra dimensions and we get

the ordinary potential:
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V (r) ∼ m1m2

Mn+2
Pl(4+n)R

n

1
r
, r � R (7.11)

The constant MPl(4+n) is the “real” Planck mass. It is postulated to be of the same

order as the electroweak mass (i.e. MPl(4+n) ∼ MEW ). The value we observe is the

effective one M2
Pl ∼Mn+2

Pl(4+n)R
n. If R is chosen to reproduce the Planck scale, choosing

n = 1 gives an extra dimension R ∼ 1013, which is in the original paper, quite dryly,

commented to be “empirically excluded”. For larger values of n (i.e. more dimen-

sions) the extra dimensions are smaller, in particular for n = 2, it is of the order of

R ∼ 100µm− 1mm. Since 1mm� lplanck, the theory is often referred to as a theory of

Large Extra Dimensions.

SM particles live on the brane and have the characteristic interaction energy MEW .

The characteristic interaction energies of the ordinary particles are related to the

thickness (δ) of the brane in the extra dimensions (MEW ∼ 1
δ ). The phenomeno-

logical consequence of this will be among other things KK-modes of the graviton and

mini-black holes. In fact, these mini black holes have a very real possibility of being

observed at the LHC. This is because the strenghtening of gravitational interactions at

small distances (see (7.10)) could lead to an abundance of mini black hole formation.

Let us now go on to consider another popular extra-dimensional theory, namely the RS

model. Here, the extra dimensions need not be as ’large’ as in the above theory.

7.3 RS, a warped geometry

The Randall-Sundrum (RS) model [5] inherits its name from the creators, Lisa Randall

and Raman Sundrum. There are two versions of the theory, namely RS1 and RS2. In

RS1 (which we will deal with) there is a bounded, extra dimension, while the RS2 has

an unbounded dimension. It is an extra-dimensional theory using the same theoretical

concepts as in ADD1, but differs from ADD in three main aspects:

1. It has only one extra dimension

2. The dimension need not be ’large’
1That is, branes and KK compactification
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3. It has two branes, namely the “Planck brane” and the “TeV brane”

4. The geometry of the extra dimension is “warped”1

In the paper [5], Randall and Sundrum argue that although the hierarchy problem is

solved in Large Extra Dimensional theories, it is replaced by another difficulty. The

tuning of the thickness of the brane (i.e. the MEW scale) versus the size of the extra

dimensions R. This has a natural explanation in the RS models, which is related to

the “warped” geometry.

In the RS1 model two branes are placed in a new dimension with coordinate y. The

space is bounded by y = 0 and y = 1
kW . The constant k is around the Planck scale and

W multiplied by k is around the TeV scale. In this set-up the constant W is referred to

as the “warp factor”. This is because its value says something about how the geometry

of spacetime changes as one moves in the new dimension. The two branes are placed

at the points y = 1
k (Planck brane) and 1

kW (TeV brane). In this scenario they obtain

a new metric (which “measure” the distance between to points infinitesimally close

to each other) as a solution of Einstein’s equations. The new metric is the ordinary

Minkowski metric multiplied by a function of the extra dimension y. It looks like:

ds2 =
1

k2y2
(dy2 + gµνdxµdxν) (7.12)

If we make the coordinate change

φ ≡ −π ln(ky)
ln(W )

, 0 < φ < π (7.13)

and define rc through W = eπkrc we get:

ds2 = e−2krcφgµνdxµdxν + r2
cdφ

2 (7.14)

This coordinate representation shows more clearly what happens as we wander out

through the extra dimension. The spacetime part of the metric (gµνdxµdxν) is mul-

tiplied by a rapidly changing number. This changes the measure which we (ordinary
1In contrast to the flat geometry of ADD
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mortals confined to the TeV brane) use to decide the geometry of spacetime and effec-

tively “warps” the geometry at one point in y-space relative to another. In contrast to

the ADD model the four-dimensional planck mass in this scenario is[34]:

M2
Pl(4) =

M3
5

k

[
1− e−2krcπ

]
(7.15)

where M5 is the five-dimensional planck mass. For a small warp factor we see that

kM2
Pl(4) = M3

5 (7.16)

so that k, MPl(4) and M5 are comparable in magnitude. This means that warp factor

can effectively generate a low energy scale on the TeV brane from a high energy scale

on the Planck brane, which solves the hierarchy problem. We can in fact generate an

energy scale of 1 TeV (weak scale)[34]

ΛEW = MPl(4)e
−krcπ (7.17)

by choosing krc ∼ 12.

Having gained a basic understanding of the two extra dimensional theories we move on

to the phenomenology section.

7.4 Phenomenology

Firstly we should say that the models described above are presented in their most basic

form. Extensions of both of these models exist, which can produce phenomenological

signatures of a wide variety[34]1. For instance, in the ADD scenario one can let some

or all of the SM fields propagate throughout the bulk. Allowing this leads to problems

with renormalization. This can again be fixed by multiplying the fields by a rapidly

vanishing function of the extra dimension (e.g. a gaussian). In effect this gives SM

fields that, to a certain extent, are allowed to propagate in the extra dimension. Upon

compactifying the extra dimensions these fields also have KK excitations. Since particle

signatures are dependent on the particular choices made in the model it is hard to give

a brief and concise overview of all of them. We will therefore stick to the characteristic

signatures of extra dimensions, namely the KK excitations of the graviton.
1RS-type models can produce some of the Z′ gauge bosons of chapter 5
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For our experimental situation the prime candidate for enhancing the cross section

are the KK excitations of the spin-2 Graviton. Luckily the ADD and RS model have

certain characteristic differences in this regards, which is related to the flat vs. warped

geometry. There are two main differences [35]:

1. The spectrum of the Graviton KK states in ADD are evenly spaced and can

effectively be treated as continous, while the RS scenario predicts unevenly spaced

states that must be treated as discrete

2. The couplings to matter in ADD comes from the collective strength of the whole

KK tower and is of order 1 TeV, while in the RS model each resonance has a

coupling of order 1 TeV

Let us make a comment on the relation of spacing of states to the extra dimensions.

The even spacing of the KK excitations in ADD simply result from the fourier expan-

sion (7.8), which gives particles of mass n
R . In the RS scenario this is more complicated

because of the geometry of the space 1. Mathematically the KK-modes of RS are given

by a linear combination of Bessel functions 2. The consequence of this is the uneven

spacing mentioned above and mass modes given by xn = ke−krcπ, where xn are the

roots of the Bessel functions.

At the LHC a KK Graviton in the ADD scenario could be produced in association

with a jet from quarks or gluons, together with a γ or a Z. This leads to signals with

either jet +γ+ missing energy or Z+ missing energy, where the missing energy is the

elusive Graviton. There are sizable production cross sections for this, which in the ADD

scenario are directly related to the number of extra dimensions and the energy scale

of the theory[34] Another possibility is indirect search through production of fermion

or boson pairs. This is the situation we find ourselves in. In this situation the funda-

mental scale of the theory are not directly related to increasing the production cross

sections[34] and could, possibly, be hard to adjust to a sizable value.

1Technically called an Anti-de-Sitter space[5]
2Bessel functions are the solutions of a particular differential equation. Since differential equations

often appear in physics they are common. Examples include the radial schröedinger equation, heat

conduction, vibration modes etc.
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Within the confines of RS, Gravitons are resonantly produced and decay predomi-

nantly into two jets. Excesses can then be found in for instance diboson channels[34].

In other words an RS graviton suits our situation well.

If a KK Graviton were the decaying particle, it would be important to distinguish

this spin-2 particle from a spin-1 resonance. In the study [35] they look at a method

of distinguishing the spin-1 case from the spin-2 case at Hadron Colliders in both the

RS and ADD scenarios.

I would like to make an additional comment on the black-hole production discussed

in section 7.2. In a study published in late 2010 from the CMS collaboration at the

LHC [36], they investigate this possibility within the framework of ADD. They de-

mand that black hole formation should occur if the impact parameter is less than the

Schwarzschild radius1. Lower mass bounds for the black holes are set to about 3.5 to

4.5 TeV for a wide variety of parameters.

Leaving the extra-dimensional scenarios here, we go on to look at Technicolor and

the possibility of a composite Higgs.

1The radius where some amount of non-rotating mass collapses into a black hole in GR
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Chapter 8

Technicolor

The Standard Model Higgs is assumed to be a fundamental scalar particle. It is respon-

sible for SSB and for generating particle masses. In Technicolor one imagines that the

Higgs is a composite object or what is termed a fermion condensate. Instead of being

fundamental, the Higgs is some bound fermion state. This does not make the Higgs

mechanism obsolete since the fermion state would effectively be the scalar responsible

for SSB in the EW sector. Symmetry breaking is now caused by some interacting

fermions and is therefore referred to as “Dynamical Electroweak Symmetry Breaking”

(DEWSB).

The idea of bound fermion states acting as scalars can be compared with pions in

QCD and indeed early Technicolor models were essentially scaled up versions of QCD.

The phenomenom of asymptotic freedom, exhibited by non-abelian gauge theories, can

be used to describe such a bound fermion state1. Theoretical aspects and phenomeno-

logical consequences of this theory, will be laid out more plainly in the next section.

First I would like to give some motivation for taking this approach.

The Technicolor approach is mostly motivated by the principle of naturalness. Natu-

ralness means that the theoretical predictions of a theory should be stable under small

variations of the input parameters (e.g. the mass of a particle shouldn’t be changed

significantly upon varying the input slightly). In the Standard Model the assumption

of a fundamental scalar field (Higgs field) gives rise to such a problem. It is termed the

1As is the case for QCD and pions
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hierarchy problem. To explain the hierarchy problem we must get a bit technical.

8.1 Hierarchy problem

The SM can be considered as a low-energy effective field theory, meaning that it’s only

valid up to some cut-off energy Λ. Grand Unified Theories predict a unification of

forces at about 1016 GeV. Assuming that the SM is valid up to this scale (a.k.a. the

“big desert” assumption) introduces a problem concerning quantum corrections to the

squared Higgs mass (m2
h). Corrections involve calculations with loops and different

loops give rise to different contributions to the squared Higgs mass. The contributions

are typically proportional to the square of the cut-off energy. If the different Λ2 correc-

tions do not cancel out it means that the Higgs mass should be of order Λ (remember

that Λ ∼ 1016 GeV). The fine-tuning problem that arises can be thought of in the

following way:

1. The corrections (∆m2
h) are proportional to Λ2

2. We remove them at the one-loop level by choosing (tuning) the parameters such

that the different contributions cancel

3. Calculate corrections at the two-loop level

4. Realize that we have to tune the parameters again to simultaneously cancel the

one and two loop corrections

5. Calculate corrections at the three-loop level

6. ....

This behaviour goes on in all orders of pertubation theory and is hard to get rid of.

Of course many physicists (e.g. promoters of Technicolor and Supersymmetry) remain

skeptical about the big desert assumption. A concrete example of this fine-tuning is

found in the diagrams 8.1 and 8.2.
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H H

f̄

f

Figure 8.1: Higgs mass correction through fermion loop

H H

H

Figure 8.2: Higgs mass correction through self-coupling
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The corrections to the squared Higgs mass that emerge are calculated in [11]. They

are

∆m2
h1 =

Λ2

16π2
(−2gf ) (8.1)

∆m2
h2 =

Λ2

16π2
(λ) (8.2)

where gf is the Yukawa coupling constant and λ is the quartic coupling of the Higgs.

If we naively choose λ = 2hf , the sum of the corrections disappears. This relation

does not make the Λ2 term disappear in the next order of perturbation theory. Here

the gauge-boson contributions are neglected, but the situation is similar when they are

included.

Instead of trying to relate λ to different parameters to cancel the terms, this quadratic

divergence can be absorbed in a redefinition of the bare mass (renormalization). One

still has a residual term from the fermion loop causing problems [11]. Supersymmetry

is a scheme which cancels out these divergences by relations as above. They do this

by introducing new particles and therefore new loops. It is not an entirely successful

procedure as new heavy particles push the mass corrections up.

Taking the SM as given and valid up to some energy cut off, we can now understand

why the ADD and RS models fix the hierarchy problem.

8.2 Composite Higgs and Dynamical Electroweak Sym-

metry Breaking

Now we will look more closely at the DEWSB mechanism.1. In this scenario we do

not have any fundamental scalar field that aquires a non-zero VEV. Instead we will

introduce a new strong force called Technicolor (TC), which acts on new fermions.

Technicolor is responsible for the bound fermion-antifermion pair, which acts as the

effective Higgs. Before introducing the minimal Technicolor model, we will go through

a toy model that Susskind looked at in 1978 [38]. This will hopefully make the mecha-

nism of DEWSB more transparent.

1These following sections follow closely the development in [3] with some material from [37]
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8.2.1 Toy model

Starting with the SM we remove the Higgs doublet, all leptons and the two heaviest

families of quarks. The only fermions in the theory are now the lightest quark doublet.

In this model the quarks (u,d) remain massless down to the QCD confinement scale

250 MeV. They then combine with gluons into hadrons with masses round 1 GeV. [3].

An interesting thing happens to the pions, they act like the Goldstone bosons of the

Higgs model. They get eaten by the W and Z and give the gauge bosons their masses.

Let’s examine this mechanism more closely. The first thing we do is to turn off the

EW SU(2)L×U(1) interaction. The fermions are still massless, because the Higgs field

isn’t there. With Ψ̄ = (ū, d̄), the fermionic lagrangian is

Lf = Ψ̄i /DΨ (8.3)

This is invariant under SU(2)V (inserting two by two constant unitary matrices between

doublets). Invariance under SU(2)V is called isospin or isotopic spin symmetry. Using

the chiral projection operators we can write this as

Lf = Ψ̄Li /DΨL + Ψ̄Ri /DΨR (8.4)

This expression is equivalent to the other and invariant under the group SU(2)L ×
SU(2)R (Inserting two by two constant unitary matrices between left and right handed

doublets). This symmetry is often refered to as chiral symmetry. We now choose the

VEV’s 〈
0
∣∣ūu∣∣0〉 =

〈
0
∣∣d̄d∣∣0〉 6= 0 (8.5)

This spontaneously breaks the symmetry from SU(2)L × SU(2)R to SU(2)V . To see

this more clearly observe that:〈
0
∣∣Ψ̄Ψ

∣∣0〉 =
〈
0
∣∣ūu+ d̄d

∣∣0〉 6= 0 (8.6)

Ψ̄Ψ = Ψ̄LΨR + Ψ̄RΨL (8.7)

Here, ΨL and ΨR transform differently under SU(2)L × SU(2)R, implying that (8.7)

is not invariant under this transformation. It is invariant under the SU(2)V operation

though. This is a spontaneous breakdown of the symmetry SU(2)L × SU(2)R → SU(2)V .

The parameter
〈
0
∣∣Ψ̄Ψ

∣∣0〉 is a so-called order parameter, that are used to characterize
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W± π± W±

Figure 8.3: Pion-W coupling

W± π± W±
+ + .....

W±

Figure 8.4: Higgs contribution

a spontaneous breakdown of symmetry1. Accompanying this SSB are three massless

Goldstone bosons2, which we identify with the pions. The pions are associated with

the axial currents [3]:

jµAa = fπ∂
µπa = q̄γµγ5σ

a

2
q (8.8)

where the σa are the Pauli matrices and fπ the pion decay constant. The pion fields

are taken to be

π± =
1√
2

(π1 ∓ iπ2) (8.9)

When we switch on the Electroweak interactions the pions get eaten by the W and Z

bosons. This happens through the kinetic terms for the quarks in (8.4). The resulting

couplings between pions and gauge bosons are [3]:

1
2
g(fπ+W+

µ ∂
µπ+ + fπ−W

−
µ ∂

µπ− + fπ0W 0
µ∂

µπ0) +
1
2
g′fπ0Bµπ

0 (8.10)

The W±µ − ∂µπ± couplings give rise to diagrams as in 8.3.

If we make a geometric series out of this diagram as in Figure 8.4, we will modify

the W propagator by
1Analogous to the VEV of the SM
2Goldstone’s theorem: The number of goldstone bosons are equal to the number of broken gener-

ators. Effectively if the group G with N free parameters is broken down to the group H with M free

parameters we get N −M free parameters.
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1
p2
→ 1

p2 −
(
gfπ±

2

)2 (8.11)

This implies that the W particle has gained a mass MW = gfπ±
2 . Similarly, the Z

boson gets a mass through the W 0 and B couplings. This gives a mass-squared mixing

matrix in the (W0, B) basis [3]:

f2
π0

4

(
g2 gg′

gg′ g′2

)
(8.12)

As in the Standard Model, we identify the eigenvectors and corresponding eigenvalues

Z =
gW3 − g′B√
g2 + g′2

(8.13)

A =
g′W3 + gB√
g2 + g′2

(8.14)

MZ =
(g2 + g′2)f2

π0

4
(8.15)

MA = 0 (8.16)

The tree-level relation

MW

MZ
=
fπ±

fπ0

cos θW (8.17)

is the same as in the Standard Model since fπ± = fπ0 . The problem is that the pion

decay constant is ≈ 93 MeV and is too small to account for the gauge boson masses. If

we could enhance this constant up to v ≈ 246 GeV, we would get the value for gauge

boson masses. Technicolor does exactly this job.

8.2.2 Minimal Technicolor

In the minimal technicolor model that Susskind and Weinberg introduced, one expands

the gauge group of the SM with a QCD like group SU(N)TC , with a coupling that

grows strong around ΛTC = 500 GeV.

SU(3)C × SU(2)L × U(1)Y → SU(N)TC × SU(3)C × SU(2)L × U(1)Y (8.18)

In addition to the new gauge interactions there are new fermions that feel this force.

They are called technifermions. In the minimal model one adds a techniquark doublet.

97



8. TECHNICOLOR

The techniquarks will carry Technicolor, but not ordinary color. SM particles do not

carry Technicolor. The new doublet is as denoted in [3]:(
pL
mL

)α
∼ (N, 1, 2, 0) (8.19)

Here, the three first numbers in the parenthesis describe which k-plets particles are un-

der various forces. The numbers describe Technicolor, color and EW force respectively.

The last number is the hypercharge. The index α = 1, 2, 3...N labels the techniquark

representation and the subscript L refers to the fact that only the left-handed part of

the fields are included. To have a working example the quark doublet(
u
d

)
(8.20)

has the numbers (TC = 1, C = 3, EW = 2, Y = 1
6). Quarks do not carry Technicolor

so they are singlets under TC. They form a triplet under color, doublet under EW and

this doublet has hypercharge 1
6 .

One also adds right-handed electroweak singlets:

pR ∼ (N, 1, 1,
1
2

) (8.21)

mR ∼ (N, 1, 1,−1
2

) (8.22)

From the hypercharge of the electroweak singlets we see that p and m have electric

charge ±1
2 .

The Technicolor dynamics is just a scaled-up version of QCD with the technipion decay

constant set to Fπ = 246 GeV. The symmetry will be spontaneously broken as in the

toy model above. When the EW force is turned on, an approximate picture is that

three technipions will be eaten by the Z and W± and three pions will aquire mass. In

reality it’s a linear combination of technipion and pion states that get eaten or appear

as physical pions.

∣∣eaten pion
〉

=
Fπ
∣∣technipion

〉
+ fπ

∣∣QCD pion
〉√

F 2
π + f2

π

(8.23)

∣∣physical pion
〉

=
Fπ
∣∣QCDpion

〉− fπ∣∣technipion
〉√

F 2
π + f2

π

(8.24)
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Since Fπ � fπ, technipions constitute the majority of the meal and QCD pions appear

in the physical spectrum. Analougous to the toy model we get mass for the W± and

Z:

MW =
1
2
gFπ (8.25)

MZ =
gFπ

2 cos θW
(8.26)

With Fπ = v = 246 GeV, the W and Z bosons have the right mass. This is a nice

way of generating the gauge boson masses, but now we must explain the quark and

lepton masses. The minimal Technicolor scheme only introduces couplings between SM

particles of the same chirality (i.e. ūL couples to uL and ūR couples to uR). A mass

term would be a mixture of right and left handed fields:

ūu = ūLuR + ūRuL (8.27)

There are different approaches to giving the fermions their masses in Technicolor. A

typical feature they have in common is that they all run into phenomenological prob-

lems of some kind. The phenomenological problems are highly model dependent and

therefore also the ways of getting rid of them. One of these approaches is Extended

Technicolor (ETC). We will focus on this and briefly its extension to Walking Techni-

color.

8.3 Beyond the minimal Technicolor model

Discussing ETC, Walking TC and their associated particle spectrum is a rather tech-

nical one. A complete treatment is beyond the scope of this thesis. An attempt at

a non-technical discussion is made. Hopefully, enough theoretical concepts will be

introduced to understand the following points:

1. Roughly what ETC and walking TC are about

2. Some phenomenological problems these kinds of theories encounter

3. Some theoretical basis for the phenomenological signatures to be discussed in the

following section
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Figure 8.5: Fermion mass generated by a heavy ETC gauge boson X

f

X

f

Figure 8.6: fermion-fermion couplings in ETC

8.3.1 Extended Technicolor

Throughout this subsection one should keep in mind that ETCs objective is giving

fermions mass. In technicolor this mass is generated the technifermions. In ETC

theories one extends the TC gauge sector in such a way that fermions can couple to

technifermions. The way one does this it can be summarized as follows:

1. EmbedGTC in a larger gauge groupGETC , symbolically represented byGTC ⊂ GETC

2. Break GETC to GTC at the scale ΛETC > ΛTC ∼ 500 GeV, symbolically repre-

sented by

GETC
ΛETC−→ GTC × SU(3)C × SU(2)L × U(1)Y

In general this enlargement of the gauge group gives couplings between fermion-fermion,

technifermion-fermion and technifermion-technifermion as in Figures 8.6, 8.7 and 8.8.

The technifermion-fermion coupling allows the fermion masses to be generated through
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f T

X

Figure 8.7: fermion-technifermion couplings in ETC

X

T T

Figure 8.8: technifermion-technifermion couplings in ETC
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radiative corrections shown in Figure 8.5. This diagram gives the fermion a mass given

by[3]:

mf ∼
〈
T̄ T
〉

ΛETC

Λ2
ETC

(8.28)

〈
T̄ T
〉

ΛETC
is the technifermion condensate. A naive estimate based on dimensional

analysis gives:

〈
T̄ T
〉

ΛETC
∼ Λ3

TC (8.29)

It’s here that ETC runs into its first phenomenological troubles. The fermion-fermion

couplings illustrated in Figure 8.6 introduce Flavour Changing Neutral Currents (FCNC).

There are experimental restrictions on these FCNCs. An example is the well studied

KL, KS mesons, which provide one of the strongest constraints [3]. These mesons are

linear combinations of the states d̄s and s̄d which are composed of strange and down

quarks (and their anti particles). In the ETC scheme operators of the form

1
Λ2
ETC

s̄ds̄d (8.30)

appear. These operators give diagrams such as 8.9. The difference in the mass of KL

and KS gives the constraint:

ΛETC > 500 TeV (8.31)

Combining this constraint with (8.28) and ΛTC ∼ 500 GeV leads to a fermion mass

bound of mf <
1
2MeV (which is rather small compared to e.g. the top quark mass).

The theories of Walking Technicolor and strong ETC are attempts to remedy this

restriction. In the next subsection, we’ll go through walking technicolor somewhat

briefly.

8.3.2 Walking Technicolor

As we saw in (8.28), the fermion mass is proportional to the technifermion conden-

sate. The quark-mass bound mf <
1
2MeV was estimated from dimensional analysis,
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d s

s d

X

Figure 8.9: Example of flavour changing neutral currents in ETC, MX ∼ ΛETC

〈
T̄ T
〉

ΛETC
∼ Λ3

TC . If one had a greater value for the technifermion condensate this

bound could be changed. In the end the condensate will take the values[3]:

〈
T̄ T
〉

ΛETC
∼ Λ3

TC

(
ΛETC
ΛTC

)γ
(8.32)

Here, γ is a real number with values between 0 and 2. Putting γ = 0, reproduces

the estimate
〈
T̄ T
〉

ΛETC
∼ Λ3

TC . An approximate picture is that Walking Technicolor

gives γ ≈ 1 and strong ETC theories γ ≈ 2. This can produce fermion masses of

the desired magnitude. As an example, consider γ = 1. Using ΛETC ∼ 500 TeV and

ΛTC ∼ 500 GeV results in an enhancement factor ΛETC
ΛTC

∼ 103

To get a glimpse of why it’s called walking Technicolor we will look at how the tech-

nifermion condensate is calculated. Using the diagram 8.5 together with the propagator

approximation

−gµν + pµpν

M2
X

M2
X − p2 + iε

−→ −g
µν

M2
X

(8.33)

results in a fermion mass of[3]:

mf =
g2
ETC

M2
X

N

4π2

∫ Λ2
ETC

0
dp2p2 Σ(p2)

p2 + Σ2(p2)
(8.34)

Here, gETC is the ETC coupling at the scale ΛETC , N the number of Technicolors and

the upper limit of the integral is a UV cut-off energy. Comparing (8.34) with (8.28) we
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can understand the convention of defining

〈
T̄ T
〉

ΛETC
=

N

4π2

∫ Λ2
ETC

0
dp2p2 Σ(p2)

p2 + Σ2(p2)
(8.35)

The function Σ(p2) is important for the final value of the fermion mass. In particular

its behaviour for large p influences the value of the condensate. For instance, if one

assumes that Σ(0) ≈ ΛTC and that Σ(p2) falls off as 1
p2

or 1
p , one reproduces (8.32) with

γ = 0 and γ ∼ 1 respectively [3]. The 1
p result is, as alluded to earlier, what happens

in walking Technicolor.

To get to the bottom of the walking in Walking Technicolor we have to investigate

the function, Σ. This function may be estimated from what is called the Schwinger-

Dyson equation. This equation involves an integral with a running coupling constant

αTC(p2). The behaviour of Σ turns out to be sensitive to how the coupling changes for

high-values of p (i.e. p > ΛTC). In QCD the coupling “runs” (i.e. decreases fast) above

the QCD scale ΛQCD ∼ 200 MeV and we get the Σ ∼ 1
p2

case with γ ≈ 0. Walking

Technicolour is the suggestion that the coupling “walks” (i.e. decreases more slowly)

instead of “running”. This gives the Σ ∼ 1
p case and γ ≈ 1.

Leaving this rather technical non-technical discussion of the walking coupling to more

qualified men (and women), we proceed to pseudo-Goldstone bosons (PGB), which are

candidates for observation in TC theories.

8.3.3 Pseudo-Goldstone bosons

In ETC theories one typically adds more than one technidoublet as is done in the

minimal Technicolor doublet. When the chiral symmetry is spontaneously broken one

gets more Goldstone bosons than are eaten. In the toy model, the symmetry break-

ing SU(2)L×SU(2)R→SU(2)V were accompanied by 22 − 1 = 3 massless Goldstone

bosons (MGB), which were eaten by the gauge bosons. Naively, if one has two dou-

blets that break in the same fashion, we’ll have 6 MGBs out of which 3 will be eaten

and 3 left. Massless Goldstone bosons are not observed so one does not want this in

a theory. The resolution is that they appear as what is called pseudo-Goldstone bosons.
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In the toy model and the minimal Technicolor model the MGBs that appear are mass-

less only because the quarks are massless. When one generates fermion masses via ETC

this is no longer true. A quark mass term explicitly breaks the chiral symmetry since

it can be written:

Ψ̄Ψ = Ψ̄LΨR + Ψ̄RΨL (8.36)

As a result of this we get pseudo-Goldstone bosons. A familiar example of PGBs is the

pions of ordinary QCD. We will not go into further detail concerning how they appear

theoretically (through explicit chiral symmetry breaking), but instead state a way of

thinking about them: A pseudo-Goldstone boson is associated with a chiral-symmetry

breaking and appear in the physical spectrum as massive particles.

8.4 Phenomenology

Since there is no generally accepted version of ETC, we give the phenomenology of a

minimal TC theory as presented in[3]. Here the TC group is taken to be SU(3), this

means that it is easy to list the phenomenological signatures as it is basically just a

scaled up version of QCD. Of course there are some differences:

1. There is a scalar resonance at the TeV scale instead of the Higgs

2. The masses of the techniparticles are higher

3. They have techni-isospin instead of isospin

Even though such a model can not be a realistic one, it introduces enough particles for

our sake. The ones we could be interested in are the analogues of the vectormesons,

specifically the technirho (ρT ) could provide us with a spin-1 resonance of 200 GeV. In

the above model this is not the case. Since it is just a scaled up version of QCD the

mass of the rho is also scaled up, which gives about 3.5 TeV, this is too large for us.

This could perhaps be adjusted to fit with our situation in some versions of Walking

and Running Technicolor theories. For instance In [39], the recently reported bump in

the Tevatron experiment was attributed to a ρT of mass 290 GeV decaying.
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Chapter 9

Conclusion

In this thesis a hypothetical, experimental observation was analysed. The experimental

observation concerned an unknown particle X of mass 200 GeV that decayed through

the mode X → ZZ → 4l, which is also known as the “Higgs golden channel” for masses

above 200 GeV. There was assumed to be an excess in the production cross section.

The further analysis centered on how we could enhance the production cross section of

two Zs, relative to the SM Higgs contribution, with beyond the Standard Model effects.

In chapter five we investigated the possibility that the particle X was a new, neu-

tral gauge boson Z ′. We calculated production cross sections for both Z ′ and ZZ

production. The result was that experimental constraints seem to make enhancement

difficult. With an overestimate on the Z ′ coupling to fermions in a ’leptophobic’ sce-

nario we could enhance the cross section to about the same order of magnitude as the

SM Higgs.

In chapter six we looked at the possibility that the next to lightest Higgs of a 2HDM(II)

could be the perpetrator. We took into account constraints from B physics on the

charged sector and the LEP non-observation. The result was that enhancement of the

production cross section seems feasible. The enhancement was most easily obtained

through gluon fusion, with a top quark present in the loop diagram. Compared to

the previous case of Z ′, an order-of-magnitude enhancement is easier to accomodate.

In chapters 7 and 8 a review of theoretical concepts and some phenomenological sig-

natures were presented. Chapter 7 dealt with two extra-dimensional theories. ’Large

107



9. CONCLUSION

extra dimensions’ of Arkani-Hamed, Dimopoulos and Dvali and the Randall-Sundrum

model. In particular, the treatment emphasized the theoretical foundations of the two

models and their different characteristic phenomenological signature as regards the

Graviton. Chapter 8 dealt with the theory of Technicolor. The treatment emphasized

somewhat the development of theoretical concepts as the theory is highly technical. A

small summary was also included on phenomenology.
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