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Chapter 1

Introduction

1.1 Overview

As of today, the Standard Model (SM) constitutes our best description of the particle

world. Based on the mathematics of quantum field theory, aided by experimentally

determined parameters, the predictions of the SM are in astonishingly good agreement

with experimental results. The basic structure of the SM in terms of forces and particle

content is covered in this introduction, while the more mathematical treatment is given

in Chapter 2.

Despite its tremendous success, there are good reasons to believe that there is more

to nature than is accounted for in the SM, a topic we return to at the end of Chapter 2.

Probably the most popular candidate for a theory going beyond the SM is the theory of

Supersymmetry (SUSY). Its main motivations, concepts and possible phenomenological

consequences are covered in Chapter 3.

If some form of SUSY is discovered experimentally, the next step will be to determine

the parameters of the theory, most notably the masses of any new supersymmetric

particles. For this purpose, studies of invariant mass distributions of SUSY decay

chains might become an important tool. The main results of this thesis are presented

in Chapters 4 – 6, in which analytical expressions for various such invariant mass

distributions are derived and discussed. Concluding remarks, along with comments on

possible expansions of the results given, can be found in Chapter 7.

Appendix A contains two supplementary results to the main result of Chapter 5,

while in Appendix B an alternative derivation related to the result of Chapter 6 is

1



1. Introduction

given. As all results in this thesis are in the form of differential decay rates, Appendix C

contains an outline of how such observable distributions appear from the rather abstract

language of quantum field theory.

We note that the results presented in this thesis are in principle independent of any

specific experimental setting. Nevertheless, they are both motivated by and interpreted

in the context of the proton-proton experiments currently running at the Large Hadron

Collider (LHC) in Geneva.

1.2 Fundamental forces

The SM contains a consistent quantum description of three of the four known funda-

mental forces: the electromagnetic, the weak and the strong force. Gravity is left out

of the picture, but this is of no direct consequence for the predictive power of the SM

as gravitational effects are expected to be negligible all the way up to Planck scale

energies, of the order of 1019 GeV. (In contrast, today’s highest energy experiments,

situated at the LHC, study particle collisions at energies around 104 GeV.) However,

as physics at the Planck scale might dictate the structure of the particle world at much

lower energies, it is a long-term goal of particle physics to obtain a complete theory

where all forces are included.

Of the forces described by the SM, the electromagnetic force is perhaps the best-

known. It binds atomic electrons to their nuclei and governs interactions between atoms

and molecules, thus explaining most physical phenomena at our ‘human length scale’.

The classic example of a phenomenon due to the weak force is the beta-decay of unstable

nuclei, in which a nuclear neutron decays into a proton, an electron and a neutrino.

The weak force is the only fundamental force that has been shown to distinguish a

particle interaction from its spatially inverted antiparticle interaction (CP violation),

a key ingredient in the quest to explain the dominance of matter over anti-matter in the

universe. Finally, the strong force is the force governing interactions of nuclear matter.

It binds quarks together to form protons and neutrons, along with a wide range of

more exotic composite particles known collectively as hadrons, and further dictates the

interactions between these bound states.

In the Standard Model, all the above forces are described in terms of exchanges of

spin-1 particles, called gauge bosons. The name refers to the mathematical description

2



1.3 Matter particles

Table 1.1: The gauge bosons of the Standard Model [1].

Interaction Gauge Boson Symbol Charge [e] Spin Mass [GeV]

Strong Gluon g 0 1 0

Electromagnetic Photon γ 0 1 0

Weak
W boson W± ± 1 1 80.4

Z boson Z0 0 1 91.2

in terms of gauge theories, which we cover in Chapter 2. The different gauge bosons

are listed in Table 1.1.

Although usually referred to as two different forces, one of the cornerstones of the

SM is the unified description of the electromagnetic and weak force in terms of a more

fundamental electroweak force. Due to electroweak symmetry breaking, describing how

the vacuum does not necessarily satisfy all the symmetries of the underlying theory (see

Section 2.5), electromagnetism and weak interactions appear as two separate forces

at low energies. This mechanism, thought to explain why the W and Z bosons are

massive, introduces another boson to the theory, namely the much sought-after spin-0

Higgs boson.

1.3 Matter particles

According to the SM, the building blocks of matter acted upon by the above forces are

spin-1/2 particles known as fermions. All ordinary atomic matter is build up of a few

light fermions, while the heavier fermions only appear as unstable products of particle

interactions. The set of known fermions can be divided into two subcategories: leptons

and quarks. The leptons include the charged electron and its neutral electron neutrino,

along with two ‘heavier versions’ of the electron (µ and τ) and their corresponding

neutrinos. While the charged leptons feel both the electromagnetic and weak force, the

neutrinos only interact through the weak force.

Similar to the leptons, the quarks can be grouped into three generations: The famil-

iar up- and down-quarks make up the first generation, while the next two generations

consist of heavier ‘up-type’ and ‘down-type’ quarks. Quarks are the only known parti-

cles to feel all three fundamental forces. The various types of quarks and leptons are

3



1. Introduction

Table 1.2: The Standard Model leptons [1].

Lepton Symbol Charge [e] Spin Mass [MeV]

Electron e −1 1/2 0.511

Electron neutrino νe 0 1/2 < 2× 10−6

Muon µ −1 1/2 105.659

Muon neutrino νµ 0 1/2 < 2× 10−6

Tau τ −1 1/2 1.776× 103

Tau neutrino ντ 0 1/2 < 2× 10−6

Table 1.3: The Standard Model quarks [1].

Quark Symbol Charge [e] Spin Mass [MeV]

Up u +2/3 1/2 (1.7 – 3.3)

Down d −1/3 1/2 (4.1 – 5.8)

Charm c +2/3 1/2 (1.18 – 1.34) ×103

Strange s −1/3 1/2 (80 – 130)

Top t +2/3 1/2 (169.8 – 174.2) ×103

Bottom b −1/3 1/2 (4.13 – 4.37) ×103

often referred to as different quark/lepton flavours. The SM leptons and quarks are

listed in Tables 1.2 and 1.3, along with a few of their basic properties. Finally, we note

that for every particle there exists a corresponding antiparticle of the same mass and

spin, but with opposite charge.1

1.4 Dynamics and kinematics

The observable results of particle interactions depend on the interplay of two concep-

tually different contributions: dynamics and kinematics. The dynamics constitutes

the interaction mechanism, and is related to questions like ‘what kind of particles are

interacting?’ and ‘what properties of the particles cause the interaction?’. It is due

1It is still an open question whether the neutrinos are Majorana particles, in which case they are

identical to the corresponding anti-neutrinos.
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1.5 Notation and units

to differences in their dynamics that we can separate between the fundamental forces.

Kinematics, on the other hand, governs the movement of initial- and final-state parti-

cles based on conservation laws for energy, momentum and angular momentum, without

caring for the (dynamical) cause of the interaction. The rules of both dynamics and

kinematics can be traced back to mathematical symmetries in the underlying theory,

but while the dynamics depends on internal symmetries specific for each fundamental

force, the kinematics is dictated by external (space-time) symmetries common for all

interactions.

We underline this distinction as the derivations presented in Chapters 4 – 6 will

be mostly of kinematical nature. The theoretical framework describing the interaction

dynamics is presented in Chapters 2 and 3.

1.5 Notation and units

Throughout this thesis natural units in which ~ = c = 1 are used. Further, the

relativistic notation of four-vectors will be employed, although Lorentz indices will often

be suppressed when there is no risk of ambiguity. The most important contravariant

four-vectors are the spacetime four-vector xµ and the energy-momentum four-vector

Pµ, defined as

xµ ≡
(
x0, x1, x2, x3

)
=
(
t ,x

)
(1.1)

Pµ ≡
(
P 0, P 1, P 2, P 3

)
=
(
E, p1, p2, p3

)
=
(
E,p

)
(1.2)

The metric tensor gµν is defined by the relations

g00 = −g11 = −g22 = −g33 = 1 (1.3)

gµν = 0 for µ 6= ν (1.4)

Covariant four-vectors are defined from the contravariant ones using the metric tensor:

xµ ≡ gµν x
ν =

(
x0,−x1,−x2,−x3

)
(1.5)

The convention that repeated indices are summed will be used throughout the thesis.

Furthermore, Greek indices run from 0 to 3 unless otherwise noted. For scalar products

of two four-vectors, Lorentz indices will usually be suppressed:

P1
µ P2µ = E1E2 − p1 · p2 ≡ P1 · P2 (1.6)

5



1. Introduction

Finally, we note that the following notation is used for the spacetime derivative:

∂µ ≡
∂

∂xµ
(1.7)
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Chapter 2

Gauge Theories and the

Standard Model

Elementary particle physics is formulated mathematically in the language of quantum

field theories. This framework successfully combines quantum mechanics and special

relativity, avoiding the problems of negative-energy solutions found in early formula-

tions of relativistic quantum theories. Simply put, quantum field theories describe the

behaviour of mathematical fields that, due to imposed (anti)commutation relations, are

interpreted as operators. By acting on states (e.g. the vacuum |0〉) these field operators

‘create’ and ‘annihilate’ particles, returning a final state that may differ in particle

content relative to the initial state.

Needless to say, the quantum field theories of the SM and their physical manifesta-

tions is a far too comprehensive subject to be adequately covered within a single chap-

ter. We therefore choose to focus on the key aspect of global and local symmetries, and

illustrate their importance for understanding the structure of the SM gauge theories.

The following chapter is largely based on Mandl & Shaw [2] and Barger & Phillips [3].

2.1 The gauge principle

The usual starting point of a quantum field theory is the Lagrangian density, L, which

for the theories considered here is restricted to being a function of the fields (ψr(x))

and their first spacetime derivatives (∂µψr(x)). Postulating a Lagrangian density is

equivalent to postulating the fields’ equations of motion, as the latter can be obtained

7



2. Gauge Theories and the Standard Model

from L through the Euler-Lagrange equation:

∂L

∂ψr
− ∂µ

(
∂L

∂(∂µψr)

)
= 0 r = 1, . . . , N (2.1)

The index r runs over all N fields contained in L.

When postulating Lagrangian densities (or simply ‘Lagrangians’), a prescription

known as the gauge principle has proven very successful for obtaining theories for

elementary particles. An important feature of such gauge theories is that observables

calculated in perturbation theory remain finite to all orders, a property known as

renormalisability. We will illustrate the gauge principle for the simplest of the quantum

field gauge theories, Quantum Electrodynamics (QED)1, describing the interactions of

photons with charged fermions.

The gauge principle can be summarised as follows: First, starting from a Lagrangian

L0 describing the free fermions, we identify global transformations of the fields that

leave L0 unchanged. Second, we promote these transformations to local (gauge) trans-

formations. Finally, we demand that the complete Lagrangian should still be invariant

under the local transformations, a criterion that forces us to introduce interactions with

spin-1 fields. In the QED case we will only need a single spin-1 field, namely the photon

field Aµ(x).

The Lagrangian describing free fermions is:

L0 = ψ(x)
(
iγµ∂µ −m

)
ψ(x) (2.2)

Through the Euler-Lagrange equation in (2.1) this Lagrangian reproduces the Dirac

equation of relativistic quantum mechanics. In the above expression, γµ represent four

4× 4 matrices defined by the relations{
γµ , γν

}
= 2 gµν (2.3)

γµ† = γ0γµγ0 (2.4)

Further, ψ(x) is known as the Dirac adjoint and is defined by

ψ(x) ≡ ψ†(x)γ0 (2.5)

1Historically, the gauge principle was inspired by QED, not the other way around.
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2.1 The gauge principle

Corresponding to the dimension of the gamma matrices, the fermion field ψ(x) is a

four-component spinor field. The four degrees of freedom can be attributed to the fact

that we are simultaneously describing both particles and antiparticles, with each type

having two possible spin states. Following the prescription of the gauge principle, we

observe that the global transformations

ψ(x) → ψ′(x) = U(α)ψ(x) ≡ e−iαψ(x)

ψ(x) → ψ
′
(x) = ψ(x)U †(α) ≡ ψ(x)eiα

(2.6)

leave L0 invariant. Here α is an arbitrary real number. In the terminology of group

theory, the above phase transformations belong to the group of global U(1) transfor-

mations, where the group name indicates that the elements U(α) are 1 × 1 ‘matrices’

satisfying the unitarity condition U †(α) = U−1(α). We now make the above transfor-

mations local:

ψ(x) → ψ′(x) = U(α(x))ψ(x) ≡ e−iqα(x)ψ(x)

ψ(x) → ψ
′
(x) = ψ(x)U †(α(x)) ≡ ψ(x)eiqα(x)

(2.7)

Note that due to the derivative ∂µ appearing in (2.2), L0 is not invariant under these

gauge transformations:

L0 → L′0 = ψ
′
(x)
(
iγµ∂µ −m

)
ψ′(x)

= ψ(x)eiqα(x)
(
iγµ∂µ −m

)
e−iqα(x)ψ(x)

= ψ(x)
(
iγµ[∂µ − iq∂µα(x)]−m

)
ψ(x)

6= L0

(2.8)

Now the invariance of the Lagrangian can be restored in two steps: First, we introduce

a vector field Aµ(x) through substituting the derivative ∂µ in (2.2) with the covariant

derivative Dµ ≡ ∂µ + iqAµ(x):

L0 → L = ψ(x)
(
iγµDµ −m

)
ψ(x) (2.9)

Second, we require the gauge transformation of Aµ(x) to be of such a form that

ψ(x)Dµψ(x) → ψ
′
(x)D′µψ

′(x) = ψ(x)Dµψ(x) (2.10)

which immediately implies invariance of L. By comparing the definition of Dµ with

the term −iq∂µα(x) upsetting the invariance of L0 in (2.8), we find that Aµ(x) must

9



2. Gauge Theories and the Standard Model

transform according to

Aµ(x) → A′µ(x) = Aµ(x) + ∂µα(x) (2.11)

With the electromagnetic strength tensor Fµν defined by

Fµν ≡ ∂νAµ(x)− ∂µAν(x) (2.12)

we can further add to L the gauge invariant term−(1/4)FµνFµν describing free photons.

We have thus arrived at the complete QED Lagrangian

LQED = ψ(x)
(
iγµDµ −m

)
ψ(x) − 1

4
FµνFµν

= ψ(x)
(
iγµ∂µ −m

)
ψ(x) − 1

4
FµνFµν − qψ(x)γµψ(x)Aµ(x)

(2.13)

which is left invariant under the coupled gauge transformations

ψ(x) → ψ′(x) = e−iqα(x)ψ(x) (2.14)

ψ(x) → ψ
′
(x) = ψ(x)eiqα(x) (2.15)

Aµ(x) → A′µ(x) = Aµ(x) + ∂µα(x) (2.16)

We note that a hypothetical photon mass term, which for the Hermitian (Aµ† = Aµ)

spin-1 field Aµ(x) would be of the form (1/2)m2Aµ(x)Aµ(x), is not gauge invariant.

To summarize the above derivation: By postulating invariance of the Lagrangian

under U(1) gauge transformations of the fermion fields, we were led to introduce in-

teractions with a massless, spin-1 field. The coupled transformation of the spin-1 field

was specified as a consequence of the invariance postulate. Finally, a gauge invariant

term describing the non-interacting spin-1 field was added. As we cover in Section 2.4,

gauge invariant theories for the strong and the unified electroweak interactions can be

obtained in a similar way.

2.2 Symmetries and conservation laws

There is an important link between mathematical symmetries and physical conservation

laws. The original result, proved by Emmy Noether in 1915, states that the invariance

of the Lagrangian under a continuous, one-parameter set of transformations implies a

conserved quantity. In field theory, where one usually works with a Lagrangian density,

10



2.2 Symmetries and conservation laws

the conservation law comes in the form of a continuity equation for a four-dimensional

current density :

∂µf
µ(x) = 0 (2.17)

The four-current density fµ(x) (usually referred to simply as a ‘four-current’) is a

function of the fields included in L, given by

fµ(x) =
∂L

∂(∂µψr(x))
δψr(x) (2.18)

where δψr(x) denotes the change in the field ψr(x) due to the symmetry transforma-

tion. The zeroth component, f0(x), is interpreted as a charge density over a three-

dimensional volume, while the components f1(x), f2(x) and f3(x) make up a three-

dimensional current density. If we define a charge F 0(t) as

F 0(t) ≡
∫

d3x f0(x) (2.19)

equation (2.17) implies that

∂

∂t
F 0(t) =

∫
d3x ∂0f

0(x)

= −
∫

d3x ∂kf
k(x)

= −
∮

S(∞)

d2S
(
n̂ · f(x)

)
= 0

(2.20)

Here we have used Gauss’ divergence theorem along with the common assumption that

the fields, and hence f(x), vanish at infinity. Thus we see that the charge F 0 defined

from the current density fµ(x) is conserved.

In the case of QED, studied in the previous section, the global transformations

defined in (2.46) are precisely such continuous, one-parameter (α) symmetry transfor-

mations as are covered by Noether’s theorem. The conserved four-current, denoted by

sµ(x), can be expressed as

sµ(x) = qψ(x)γµψ(x) (2.21)

and the corresponding conserved charge is the well-known electric charge:

Q = q

∫
d3x s0(x) = −e

∫
d3x ψ†(x)ψ(x) (2.22)

11



2. Gauge Theories and the Standard Model

Above we have used the relation ψ(x)γ0 = ψ†(x)γ0γ0 = ψ†(x), and e = −q denotes the

elementary electric charge. By expanding the fields in terms of creation and annihilation

operators and performing the x-integration over all space, the charge operator Q can

be re-expressed in terms of number operators for particles and antiparticles:

Q = −e
∑
r,p

[
Nr(p)−N r(p)

]
(2.23)

When acting on a state, the operators Nr(p) and N r(p) respectively return the number

of particles and antiparticles in spin state r (r = 1, 2) with three-momentum p. Thus, Q

operates in the intuitive way of counting the total number of particles and subtracting

the total number of antiparticles.

2.3 A note on chirality and helicity

Before taking on the unified electroweak theory (Section 2.4.1), we introduce the impor-

tant concepts of chirality and helicity in the context of fermion fields. These concepts

will also be important for the results presented in Chapter 6.

In order to explain experimental observations of parity (spatial inversion) violation,

the theory of weak interactions was developed as a chiral theory. This allows for an

asymmetric treatment of the left-chiral and right-chiral parts of a fermion field, defined

using the chirality projection operators PL and PR:

PL ≡
1

2
(1− γ5)

PR ≡
1

2
(1 + γ5)

(2.24)

With γ5 ≡ iγ0γ1γ2γ3, PL and PR satisfy the general requirements for projection oper-

ators:
P 2
L = PL

P 2
R = PR

PL + PR = 1

(2.25)

As γ5 satisfies the anticommutation relation {γ5, γ
µ} = 0, we obtain an additional

useful relation for PL and PR:

PLγ
µ = γµPR (2.26)

12



2.3 A note on chirality and helicity

Using the above operators, the left-chiral and right-chiral parts of a field ψ(x) are

simply given by

ψL(x) = PL ψ(x) ψR(x) = PR ψ(x) (2.27)

In terms of annihilation and creation operators, the field ψL(x) annihilates left-chiral

particles and creates left-chiral antiparticles. Correspondingly, ψR(x) annihilates right-

chiral particles and creates right-chiral antiparticles.

While chirality is a rather abstract concept, helicity is defined as the projection of a

particle’s spin along the direction of its three-momentum p. A spin projection parallel

to p is referred to as right-handed (or positive) helicity, while a projection antiparallel

to p is referred to as left-handed (or negative) helicity. Operators for projecting out

the right- and left-handed helicity components of a fermion field can be defined as

ΠR(p) =
1

2

(
1 +

σ · p
|p|

)
ΠL(p) =

1

2

(
1− σ · p

|p|

) (2.28)

where σ = (σ23, σ31, σ12) contains the four-dimensional generalisations of the two-

dimensional Pauli matrices (σk):

σij =

(
σk 0
0 σk

)
i, j, k = 1, 2, 3 (cyclic) (2.29)

From ΠL(p) and ΠR(p) the left- and right-helicity parts of a field are obtained as

ψLH (x) = ΠL(p)ψ(x) ψRH (x) = ΠR(p)ψ(x) (2.30)

Note that for these fields the helicity label corresponds to the helicity of the particle

annihilated by the field. The created antiparticle has the opposite helicity.

By using properties of the Dirac spinors ur(p) and vr(p) (r = 1, 2) contained in the

field ψ(x), along with the relation σij = −γ0γ5γ
k, it can be shown that in the limit of

a massless particle we have

σ · p
|p|

ur(p) = γ5 ur(p)
σ · p
|p|

vr(p) = γ5 vr(p) (2.31)

Thus, in the ultra-relativistic limit the effects of the chirality and helicity projection

operators acting on fermion fields are equivalent. With ψL = ψLH , the left-chiral and

13



2. Gauge Theories and the Standard Model

left-helicity particles destroyed by these fields are identical. Similarly, the left-chiral

antiparticle created by ψL is identical to the right-helicity antiparticle created by ψLH .

Consequently, in the limit v = c, chirality and helicity are of equal and opposite sign

for particles and antiparticles, respectively.

2.4 The gauge theories of the Standard Model

2.4.1 The unified electroweak theory

All fermions of the SM feel the weak force. However, we will in the following only

consider leptonic fields as this is sufficient to illustrate the structure of the electroweak

theory. In Section 2.1 we saw that the fermionic mass term of the QED Lagrangian

was U(1) gauge invariant, whereas this was not the case for a hypothetical photon mass

term. As electroweak theory is based on invariance under a larger SU(2)×U(1) group

of transformations, it turns out that not even fermionic mass terms are gauge invariant.

Therefore, all particles must initially be treated as massless. Non-zero masses will later

be introduced in a gauge invariant way through spontaneous symmetry breaking and

Yukawa couplings (Section 2.5).

In what follows we will derive the structure of the electroweak interactions using the

gauge principle presented in Section 2.1. We start from the Lagrangian L0 describing

free, massless leptons, now also including the neutrinos:

L0 = ψl(x)
(
iγµ∂µ

)
ψl(x) + ψνl(x)

(
iγµ∂µ

)
ψνl(x) (2.32)

For clarity, we will henceforth write the fields simply as ψ rather than ψ(x). The

properties of the chirality projection operators given in (2.25) and (2.26) allow us to

re-express each of the two terms of L0 as

ψ
(
iγµ∂µ

)
ψ = ψ

(
iγµ∂µ

)
(PL + PR)ψ

= ψ
(
iγµ∂µ

)
(P 2

L + P 2
R)ψ

= ψ
(
iγµ∂µ

)
P 2
Lψ + ψ

(
iγµ∂µ

)
P 2
Rψ

= ψPR
(
iγµ∂µ

)
PLψ + ψPL

(
iγµ∂µ

)
PRψ

= ψL
(
iγµ∂µ

)
ψL + ψR

(
iγµ∂µ

)
ψR

(2.33)

As mentioned in the previous section, the electroweak theory treats left- and right-

chiral fermion fields differently. By combining the left-chiral charged leptons with their

14



2.4 The gauge theories of the Standard Model

respective left-chiral neutrinos to form doublets, while keeping the right-chiral fields as

singlets, L0 becomes

L0 = Ψ
L
l

(
iγµ∂µ

)
ΨL
l + ψ

R
l

(
iγµ∂µ

)
ψRl + ψ

R
νl

(
iγµ∂µ

)
ψRνl (2.34)

where the doublet ΨL
l is defined as

ΨL
l ≡

(
ψLνl

ψLl

)
(2.35)

Next, we observe that L0 is invariant under the global SU(2)L
1 transformations

that transform the left-chiral doublets as

ΨL
l → ΨL

l
′
= U(α) ΨL

l ≡ exp

[
iαjσj

2

]
ΨL
l

Ψ
L
l → Ψ

L
l

′
= Ψ

L
l U
†(α)≡ Ψ

L
l exp

[
−iαjσj

2

] (2.36)

and leave the right-chiral singlets unchanged. Here αj are three arbitrary parameters,

while σj denotes the three Hermitian 2× 2 Pauli matrices

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(2.37)

The three Pauli matrices are referred to as the generators of the SU(2) group, meaning

that any group element can be constructed from combinations of these three matrices.

As the Pauli matrices do not commute, neither do two general SU(2) elements. In

group theory this property is referred to as SU(2) being non-Abelian. Due to their

transformation properties under SU(2), ΨL
l is often called a weak isospinor while the

right-chiral singlets are called weak isoscalars.

The transformations in (2.36) can be considered as three continuous, one-parameter

transformations, and are thus covered by Noether’s theorem. Consequently, there are

three conserved four-currents with three correspondingly conserved charges. The cur-

rents, which can be obtained from the general expression (2.18), are:

Jµi =
1

2
Ψ
L
l γ

µσiΨ
L
l i = 1, 2, 3 (2.38)

1The group name specifies that the elements U are ‘special’ (detU = 1) and unitary (U† = U−1).

Further, they can be expressed as 2 × 2 matrices in the fundamental representation of SU(2).
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2. Gauge Theories and the Standard Model

The above (Hermitian) currents are referred to as weak isospin currents, and the con-

served weak isospin charges are

IWi =

∫
d3x J0

i =
1

2

∫
d3x ΨL

l
†
σiΨ

L
l i = 1, 2, 3 (2.39)

The first two currents of (2.38) can be combined to form the currents Jµ and Jµ† given

by

Jµ = 2
(
Jµ1 − iJ

µ
2

)
= ψlγ

µ(1− γ5)ψνl (2.40)

Jµ† = 2
(
Jµ1 + iJµ2

)
= ψνlγ

µ(1− γ5)ψl (2.41)

while the third current can be expanded in the form

Jµ3 =
1

2

(
ψ
L
νl
γµψLνl − ψ

L
l γ

µψLl

)
(2.42)

The currents Jµ and Jµ† mix electrically charged and neutral fields, thus implying that

any interaction must occur through a charged force carrier to satisfy overall charge

conservation. Jµ3 , on the other hand, couples only fields of the same particle type, a

consequence of σ3 being diagonal. Therefore, Jµ and Jµ† are referred to as charged

currents, while Jµ3 is called a neutral current. The observation that Jµ3 exhibits a

structure similar to the QED current sµ in (2.21) serves as a first hint of the coming

unification.

Analogously to equation (2.23) for the electrical charge operator Q, the third weak

isospin charge IW3 can be expanded in terms of number operators for the charged leptons

(N lL
r (p)) and neutrinos (NνL

r (p)):

IW3 =
1

2

∑
r,p

{[
NνL
r (p)−NνL

r (p)
]
−
[
N lL
r (p)−N lL

r (p)
]}

(2.43)

By letting IW3 act on the single particle states |l−, L〉, |νl , L〉, |l−, R〉 and |νl , R〉 we

obtain the IW3 eigenvalues for the various chiral particle states:

IW3
∣∣l−, L〉 = − 1

2

∣∣l−, L〉
IW3 |νl , L〉 =

1

2
|νl , L〉

IW3
∣∣l−, R〉 = 0

IW3 |νl , R〉 = 0

(2.44)
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2.4 The gauge theories of the Standard Model

As we also know the eigenvalues for the electrical charge operator Q acting on these

states, we can define a new charge operator known as hypercharge:

Y ≡ Q/e− IW3 (2.45)

With Y defined this way, the left-chiral particle states both have eigenvalue −1/2, while

the right-chiral l− and νl states have eigenvalues −1 and 0, respectively. Next, consider

the global U(1)Y transformations (given for a general lepton field)

ψ → ψ′ = U(β)ψ ≡ exp
[
iβY

]
ψ

ψ → ψ
′

= ψ U †(β) ≡ ψ exp
[
− iβY

] (2.46)

where β is an arbitrary real number and Y is the hypercharge of the particle state an-

nihilated by the field ψ. Under these transformations the free field Lagrangian in (2.34)

is invariant. Thus, L0 is left invariant under the combined SU(2)L × U(1)Y transfor-

mations, implying that both IW3 and Y are conserved charges. The well-known conser-

vation of electric charge Q can therefore be viewed as a consequence of the combined

SU(2)L × U(1)Y invariance of L0.

Following the general prescription presented in Section 2.1 we now promote the

symmetry transformations of L0 from global to local transformations. The resulting

SU(2)L gauge transformations can be expressed as

ΨL
l → ΨL

l
′
= U(α(x)) ΨL

l ≡ exp

[
igσjαj(x)

2

]
ΨL
l

Ψ
L
l → Ψ

L
l

′
= Ψ

L
l U
†(α(x))≡ Ψ

L
l exp

[
−igσjαj(x)

2

] (2.47)

where we recall that right-chiral fields are left unchanged by SU(2)L. Similarly, the

U(1)Y gauge transformations for a general lepton field are given by

ψ → ψ′ = U(β(x))ψ ≡ exp
[
ig′Y β(x)

]
ψ

ψ → ψ
′

= ψ U †(β(x)) ≡ ψ exp
[
− ig′Y β(x)

] (2.48)

In the above transformations, αj(x) and β(x) are four arbitrary real differentiable

functions, while g and g′ are constant parameters. We note that L0 is not invariant

under the above gauge transformations.

An invariant Lagrangian can now be regained by introducing spin-1 fields through

covariant derivatives Dµ, and further require that the spin-1 fields transform such that
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2. Gauge Theories and the Standard Model

the following SU(2)L × U(1)Y invariance relations are satisfied:

Ψ
L
l D

µ ΨL
l → Ψ

L
l

′
Dµ′ΨL

l
′

= Ψ
L
l D

µ ΨL
l (2.49)

ψ
R
l D

µ ψRl → ψ
R
l

′
Dµ′ ψRl

′
= ψ

R
l D

µ ψRl (2.50)

ψ
R
νl
Dµ ψRνl → ψ

R
νl

′
Dµ′ ψRνl

′
= ψ

R
νl
Dµ ψRνl (2.51)

Corresponding to the number of group generators, we introduce three spin-1 fields, Wµ
j ,

for the SU(2)L transformations and one spin-1 field, Bµ, for the U(1)Y transformation.

Analogous to the QED case, the covariant derivatives are given the form

Dµ ΨL
l =

(
∂µ +

igσj
2
Wµ
j + ig′Y Bµ

)
ΨL
l (2.52)

Dµ ψRl =

(
∂µ + ig′Y Bµ

)
ψRl (2.53)

Dµ ψRνl =

(
∂µ + ig′Y Bµ

)
ψRνl (2.54)

In order to satisfy (2.49) – (2.51), the three fields Wµ
j must be invariant under U(1)Y

and transform under SU(2)L (with infinitesimal αj(x)) according to

Wµ
i → Wµ

i
′

= Wµ
i − ∂

µαi(x)− gεijkαj(x)Wµ
k (2.55)

Comparing this transformation to the U(1) transformation of Aµ in (2.11), we note

that the last term in the above expression appears as a consequence of SU(2) being

non-Abelian, in contrast to the Abelian group U(1). Here εijk is the completely an-

tisymmetric structure constant of SU(2)1. Similarly, the field Bµ is required to be

invariant under SU(2)L and transform under U(1)Y as

Bµ → Bµ′ = Bµ − ∂µβ(x) (2.56)

We have now arrived at an SU(2)L×U(1)Y gauge invariant Lagrangian describing

massless leptons and lepton-boson interactions:

LL = Ψ
L
l

(
iγµDµ

)
ΨL
l + ψ

R
l

(
iγµDµ

)
ψRl + ψ

R
νl

(
iγµDµ

)
ψRνl (2.57)

1The Pauli matrices satisfy the commutation relation [σi, σj ] = 2iεijkσk.
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2.4 The gauge theories of the Standard Model

From (2.52) – (2.54) we see that the form of the covariant derivative depends on the

hypercharge of the field it is acting on:

Dµ ΨL
l =

(
∂µ +

igσj
2
Wµ
j −

ig′

2
Bµ

)
ΨL
l (2.58)

Dµ ψRl =

(
∂µ − ig′Bµ

)
ψRl (2.59)

Dµ ψRνl = ∂µψRνl (2.60)

To complete the process outlined in Section 2.1, we now add gauge invariant terms

describing the free boson fields. For Bµ this term is

−1

4
Bµν B

µν (2.61)

with Bµν defined as

Bµν ≡ ∂νBµ − ∂µBν (2.62)

This is completely analogous to the U(1) gauge invariant term−(1/4)FµνFµν describing

free photons in QED. Due to the occurrence of the last term in (2.55), the invariant

Lagrangian term describing the free Wµ
i fields has a more complicated structure:

−1

4
Fi µν F

µν
i (2.63)

where Fµνi is defined to be

Fµνi ≡ ∂νWµ
i − ∂µW ν

i + gεijkW
µ
j W

µ
k (2.64)

Consequently, −1
4 Fi µν F

µν
i includes terms that in perturbation theory will be inter-

preted as interactions involving three or four gauge bosons. The complete electroweak

Lagrangian for massless leptons and gauge bosons can now be written as:

L = Ψ
L
l

(
iγµDµ

)
ΨL
l + ψ

R
l

(
iγµDµ

)
ψRl + ψ

R
νl

(
iγµDµ

)
ψRνl

− 1

4
Bµν B

µν − 1

4
Fi µν F

µν
i

(2.65)

In equations (2.40) and (2.41) the weak isospin currents Jµ1 and Jµ2 were combined

into the charged currents Jµ and Jµ†. Correspondingly, the Hermitian fields Wµ
1 and
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2. Gauge Theories and the Standard Model

Wµ
2 can be combined to form the non-Hermitian fields Wµ and Wµ† representing the

physical W± bosons:

Wµ =
1√
2

(
Wµ

1 − iW
µ
2

)
(2.66)

Wµ† =
1√
2

(
Wµ

1 + iWµ
2

)
(2.67)

Further, we define two Hermitian fields Aµ and Zµ by the linear combinations

Wµ
3 = cos θW Zµ + sin θW Aµ (2.68)

Bµ = − sin θW Zµ + cos θW Aµ (2.69)

where the mixing angle θW is known as the Weinberg angle. By rewriting the lepton-

boson interaction terms of L using the gauge fields Wµ, Wµ†, Aµ, Zµ and the currents

Jµ, Jµ†, sµ, Jµ3 , it can be shown that Aµ can be interpreted as the QED photon field

given that

g sin θW = g′cos θW = e (2.70)

Finally, the Zµ field represents the physical Z0 boson.

2.4.2 Quantum chromodynamics

The mathematical description of the strong force in terms of a gauge theory is known as

Quantum Chromodynamics (QCD). In the SM the strong force is restricted to interac-

tions of quarks and gluons. Inspired by the results of scattering experiments performed

during the 1950’s and 60’s, the quark model was introduced to explain the observed

spectra of produced hadrons. Further, to solve an apparent conflict with the Pauli

exclusion principle for some of the hadron states, as well as explain why no free quarks

were observed, the concept of colour was introduced. The basic assumption is that all

quarks can exist in one of three colour states - red, green or blue - with antiquarks

existing in anticolour states. By introducing these additional quantum numbers, the

problem related to the Pauli principle was solved. Furthermore, the non-observation of

free quarks was alleviated by postulating that hadrons only can exist in colour neutral

states. Such states can be formed either by three quarks with one quark of each colour,

or by a quark and an antiquark forming a colour-anticolour state.
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2.4 The gauge theories of the Standard Model

Based on the above ideas, QCD was formulated as a theory invariant under SU(3)

transformations. Using the fundamental representation in which the group elements

are 3× 3 matrices, this enables a description of quark fields in terms of colour triplets

Ψf ≡

ψfr

ψfg

ψfb

 (2.71)

where the index f refers to quark flavour. The free quark fields are described by the

Lagrangian

L0 = Ψ
f(
iγµ∂µ −mf

)
Ψf (2.72)

Here we include the quark mass term −mfΨ
f
Ψf since this term will remain invariant

under SU(3)C transformations. However, as the complete SM requires invariance under

U(1)Y × SU(2)L × SU(3)C and such fermion mass terms violate SU(2)L, also quark

masses must eventually be introduced through Yukawa couplings with the Higgs field.

The above Lagrangian is invariant under the global SU(3)C transformations given

by

Ψf → Ψf ′ = U(α) Ψf ≡ exp

[
iαiλi

2

]
Ψf

Ψ
f → Ψ

f ′
= Ψ

f
U †(α)≡ Ψ

f
exp

[
−iαiλi

2

] (2.73)

Here ai are eight arbitrary real parameters while λi are the eight SU(3) group gener-

ators in the form of 3 × 3 matrices1. According to Noether’s theorem, the invariance

of L0 under the above transformations imply eight conserved currents and charges.

Using (2.18) we find the currents to be of the form

Sµi =
1

2
Ψ
f
γµλiΨ

f i = 1, 2, . . . , 8 (2.74)

The conserved charges are correspondingly given by

F̂i =

∫
d3x S0

i =
1

2

∫
d3x Ψf †λiΨ

f i = 1, 2, . . . , 8 (2.75)

1Analogous to the Pauli matrices of SU(2), the eight matrices λi satisfy the commutation relation

[λi, λj ] = 2ifijkλk. Here a sum over the repeated index k = 1, 2, . . . , 8 is implied and fijk are the

totally antisymmetric structure constants of SU(3).
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We here take a moment to comment on the connection between these eight colour

charges and the postulate that hadrons only exist in colour neutral states. This as-

sumption, known as confinement, can be expressed mathematically as the requirement

F̂i |nr, ng, nb, nr, ng, nb〉 = 0 (2.76)

where
∣∣nr, ng, . . . , nb〉 is a general hadron state consisting of nr red quarks, ng green

quarks, etc. As the two matrices λ3 and λ8 are diagonal and thus do not mix dif-

ferent colour states, the corresponding charge operators F̂3 and F̂8 can be interpreted

straightforwardly in terms of number operators:

F̂3 =
1

2

∑
f,s,p

[
(Nr −N r)− (Ng −Ng)

]
(2.77)

F̂8 =
1

2
√

3

∑
f,s,p

[
(Nr −N r) + (Ng −Ng)− 2(Nb −N b)

]
(2.78)

Here the summation indices f , s, p denote flavour, spin, and three-momentum, respec-

tively. In order for F̂3 and F̂8 to both satisfy the constraint in (2.76), we note that

single quark states, qq diquark states and other states which sum to a fractional electric

charge are excluded. On the other hand, the colour neutral baryon states of the form

qrqgqb and qrqgqb, and meson states of the form qcqc are allowed, in agreement with

observations.

Although here presented as a postulate, colour confinement is widely believed to

result from the property that the strong force does not decrease with distance. As a

consequence, the effective potential between two quarks moving apart increases propor-

tional to their separation r. In the case of two high-energy quarks, it will at some point

be energetically favourable to create a quark-antiquark pair from the vacuum mak-

ing the overall state colour neutral, and as this process repeats jets of colour neutral

hadrons are formed from the original quarks.

To obtain the desired SU(3) gauge theory we first make the transformations in (2.79)

local:

Ψf → Ψf ′ = U(α(x)) Ψf ≡ exp

[
igsλiαi(x)

2

]
Ψf

Ψ
f → Ψ

f ′
= Ψ

f
U †(α(x))≡ Ψ

f
exp

[
−igsλiαi(x)

2

] (2.79)
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Next, we introduce eight vector fields Gµi (gluon fields) through substituting the deriva-

tive in L0 with the covariant derivative

Dµ = ∂µ +
igsλi

2
Gµi (2.80)

To regain invariance of the Lagrangian the (infinitesimal) transformations of the gluon

fields must be of the form

Gµi → Gµi
′

= Gµi − ∂
µαi(x)− gsfijkαj(x)Gµk (2.81)

where fijk are the structure constants of SU(3). Similar to the transformations of the

Wµ
i fields in (2.55), the last term in the above expression appears as a consequence of

SU(3) being non-Abelian. Finally, a SU(3) gauge invariant term describing the free

gluon fields is given by

−1

4
Gi µν G

µν
i (2.82)

where Gµνi is defined as

Gµνi ≡ ∂νGµi − ∂µGνi + gsfijkG
µ
jG

ν
k (2.83)

The SU(3) gauge invariant Lagrangian defining QCD is thus

L = Ψ
f(
iγµDµ −mf

)
Ψf − 1

4
Gi µν G

µν
i (2.84)

Several aspects of the strong interaction can be inferred directly from the above

Lagrangian. First, the quark-gluon interaction terms depend on the matrices λi. As

these matrices in general are not diagonal they will mix different quark colour fields.

Thus, in a quark-gluon interaction a quark of a given colour state can be annihilated

while a quark of different colour state is created. Since the eight colour charges F̂i are

to be conserved in any such interaction, the gluons can be viewed as representing colour

states defined by the λi matrices. This colour property of the gluons is also evident in

the term−(1/4)Gi µνG
µν
i which includes three- and four-gluon self-interactions. Finally,

we note that the strong interaction is flavour independent in that it treats all quark

flavours identically.
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2.5 Electroweak symmetry breaking

In the previous sections the U(1)Y × SU(2)L invariant electroweak theory and the

SU(3)C invariant theory of QCD have been studied. In order to obtain invariant

Lagrangians, all gauge bosons, and for the electroweak theory also the fermions, were

assumed massless. Nevertheless, it is known from experiments that both the fermions

and the W± and Z0 bosons are indeed massive. A gauge invariant way of introducing

particle masses is therefore needed if the SM is to remain U(1)Y × SU(2)L × SU(3)C

invariant.

A mechanism known as spontaneous symmetry breaking provides a solution to this

problem. The main concept is that the physical vacuum needs not satisfy all the

symmetries of the underlying theory. It turns out that when a symmetry is sponta-

neously broken, the gauge bosons corresponding to that particular symmetry acquire

mass. As the photon is massless while the W± and Z0 are massive, we seek to break

U(1)Y × SU(2)L down to the U(1)em symmetry of QED. Similarly, the SU(3)C sym-

metry is kept unbroken as gluons are believed to be massless.

For spontaneous symmetry breaking to occur in a system, the ground state must

be degenerate. Under the transformations that leave the underlying theory unchanged,

the degenerate ground states transform amongst themselves. Further, each ground

state must have an associated non-zero quantity that enables us to distinguish the

degenerate states. (Otherwise there would be no way of telling they were degenerate

in the first place.) In quantum field theory, the lowest energy state is per definition

the vacuum state |0〉, and the quantity discriminating various vacuum states is taken

to be the vacuum expectation value (vev) 〈0|Φ(x)|0〉 of a quantum field Φ(x). As the

vacuum states are required to be Lorentz-invariant and the vev must be non-zero, Φ(x)

must necessarily be a scalar (spin-0) field. Further, requiring that the vacuum states

are invariant under spacetime translations, the vev of Φ(x) must be a constant:

〈0|Φ(x)|0〉 = c 6= 0 (2.85)

For simplicity, we will in the following consider classical field theory, in which the

fields are not operators and the ground states are classified by the corresponding field

values. The fields can later be quantised in order to regain the interpretation in terms

of operator fields.
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2.5 Electroweak symmetry breaking

To be able to break the SU(2) symmetry, the scalar field Φ(x) is defined to be a

doublet

Φ(x) ≡

(
φa(x)

φb(x)

)
(2.86)

where φa(x) and φb(x) are two complex scalar fields. This doublet is known as the

Higgs field. Similar to the transformations of the lepton doublet ΨL
l (x), the Higgs field

transforms under SU(2)L and U(1)Y respectively as

Φ(x) → Φ′(x) = U(α(x)) Φ(x) ≡ exp

[
igσjαj(x)

2

]
Φ(x)

Φ†(x) → Φ†
′
(x) = Φ†(x)U †(α(x))≡ Φ†(x) exp

[
−igσjαj(x)

2

] (2.87)

and
Φ(x) → Φ′(x) = U(β(x)) Φ(x) ≡ exp

[
ig′Y β(x)

]
Φ

Φ†(x) → Φ†
′
(x) = Φ†(x)U †(β(x)) ≡ Φ†(x) exp

[
− ig′Y β(x)

] (2.88)

Next, Φ(x) is introduced in the overall theory by including the SU(2)L ×U(1)Y gauge

invariant Lagrangian:

LH =
[
DµΦ(x)

]†[
DµΦ(x)

]
− V (2.89)

Here the covariant derivative is given by

Dµ ΨL
l =

(
∂µ +

igσj
2
Wµ
j + ig′Y Bµ

)
ΨL
l (2.90)

while the Higgs potential V is defined as

V ≡ µ2Φ†(x)Φ(x) + λ
[
Φ†(x)Φ(x)

]2
(2.91)

with µ2 and λ as constant parameters. As we are doing classical field theory, the ground

state corresponds to the field values that minimise the total energy density H = T +V,

where the kinetic term T is the first term of LH . From the requirement that the ground

state should be Lorentz invariant, we know that the fields Wµ
j and Bµ of T must vanish.

Further, as the ground state value of Φ(x) should be constant to ensure translational

invariance, the derivative ∂µΦ(x) must disappear. Therefore, the overall lowest energy
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2. Gauge Theories and the Standard Model

state corresponds to the constant field value Φ0 that minimises the potential V. With

Φ0 expressed as

Φ0 =

(
φa0

φb0

)
(2.92)

V(Φ0) can be expanded as

V(Φ0) = µ2
[
|φa0|2 + |φb0|2

]
+ λ

[
|φa0|2 + |φb0|2

]2
(2.93)

If both parameters µ2 and λ are positive, V has a unique minimum for φa0 = φb0 = 0,

and spontaneous symmetry breaking cannot occur. However, if µ2 is taken to be

negative (despite the confusing notation), the potential takes on a ‘Mexican hat’ shape

over the (|φa0|, |φb0|)-plane, with a circle of degenerate minima defined by

|φa0|2 + |φb0|2 =
−µ2

2λ
≡ v2

2
(2.94)

With all ground states being equivalent, we now choose the particular ground state

situated on the |φb0|-axis, with Re(φb0) = v/
√

2 and Im(φb0) = 0:

Φ0 =

(
0

v/
√

2

)
(2.95)

As Φ0 clearly is not invariant under SU(2)L × U(1)Y transformations this symmetry

has been spontaneously broken.

Analogous to the ΨL
l (x) doublet, the upper and lower components of Φ(x) corre-

spond to the IW3 values +1/2 and −1/2, respectively. The U(1)em symmetry can now

be kept unbroken by assigning hypercharge Y = 1/2 to the Higgs field. Due to the

definition of Y in (2.45), this is equivalent to assigning the electric charge Q/e = +1 to

the upper component and Q/e = 0 to the lower component. Consequently, Φ0 is left

invariant under U(1)em gauge transformations of the form

U(α(x)) = exp
[
− iQα(x)

]
(2.96)

Next, we perform a coordinate change by rewriting the general Higgs field Φ(x) in

terms of its deviation from Φ0

Φ(x) =
1√
2

(
η1(x) + iη2(x)

v + σ(x) + iη3(x)

)
(2.97)
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2.5 Electroweak symmetry breaking

where σ(x) and ηi(x) are four real scalar fields. Expanding LH in terms of these

fields gives rise to a multitude of terms, whereas several of the terms containing the

ηi(x) fields lead to problems in light of quantisation and perturbation theory. A closer

examination shows that these fields are ‘unphysical’ in the sense that they do not

correspond to physical particles in the quantised theory. The resolution to this problem

is to choose a particular gauge where these fields vanish. That is, we perform the SU(2)

transformation needed to bring the upper component of Φ(x) to zero, followed by the

U(1) transformation that makes the lower component real. This gauge is known as

unitary gauge, and the resulting Higgs field is given as

Φ(x) =
1√
2

(
0

v + σ(x)

)
(2.98)

Of course, all other fields are also transformed according to their respective transforma-

tion properties. By expanding LH in terms of the transformed fields, and additionally

rewriting the gauge fields Wµ
i and Bµ

i in terms of the ‘physical’ fields Wµ†, Wµ, Zµ

and Aµ, the resulting Lagrangian contains the following second order terms:

LH =
1

2

[
∂µσ(x)

][
∂µσ(x)

]
− 1

2

(
− 2µ2

)[
σ(x)

]2
+
(vg

2

)2
W †µ(x)Wµ(x) +

1

2

(
vg

2 cos θW

)2

Zµ(x)Zµ(x)

+
(
higher order terms

)
(2.99)

The first line is interpreted as the kinetic term and the mass term of a neutral scalar

particle σ known as the Higgs particle, while the second line is interpreted as mass

terms for the W± and Z0 particles, respectively. The masses are given explicitly as

mH =
√
−2µ2 mW =

vg

2
mZ =

vg

2 cos θW
=

mW

cos θW
(2.100)

To summarise: By introducing a complex scalar doublet Φ(x) with a non-vanishing

vev, the SU(2)L × U(1)Y symmetry was spontaneously broken down to the U(1)em

symmetry. Combining this with a transformation to the unitary gauge, we obtained

a theory where three of the four degrees of freedom originally contained in Φ(x) were

‘converted’ to give masses to the W± and Z0 bosons. Due to the non-zero masses of

W± and Z0, measured respectively to 80.4 GeV and 91.2 GeV, interactions mediated

by these particles are suppressed at energies below this mass scale. This suppression
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2. Gauge Theories and the Standard Model

explains why the electromagnetic and weak interactions appear as two separate forces

at low energies. The last degree of freedom in Φ(x) predicts the existence of the famous

Higgs particle, which so far has eluded detection.

Without going into much detail, we note that mass terms for the SM fermions are

introduced in the Lagrangian by adding gauge invariant Yukawa couplings which couple

the fermion fields to the Higgs field. For example, the Yukawa couplings for the leptons

are given by

−λl
[
Ψ
L
l (x)ψRl (x) Φ(x) + Φ†(x)ψ

R
l (x) ΨL

l (x)
]

(2.101)

where λl is a coupling constant. By expanding the doublets and combining the chiral

fields using the properties of the projection operators PL and PR, these terms can be

seen to yield a lepton mass term and an interaction term with the physical Higgs boson:

− λlv√
2
ψl(x)ψl(x) − λl√

2
σ(x)ψl(x)ψl(x)

≡ − ml ψl(x)ψl(x) − ml

v
σ(x)ψl(x)ψl(x)

(2.102)

2.6 Shortcomings of the Standard Model

Although a most successful theory for the energies probed by experiments so far, the

SM is still troubled with several theoretical shortcomings. In the following a few of

the most important such problems will be introduced, with special emphasis on the

hierarchy problem.

The hierarchy problem: Assuming the SM is correct, fits of the unknown Higgs

mass using constraints from electroweak precision data (e.g. MW , MZ) indicate a mH

value below ∼ 200 GeV at 99% confidence level (Fig. 2.1) [4]. Theoretically the physical

Higgs mass squared can be expressed as

m2
H =

(
m0
H

)2
+ ∆m2

H (2.103)

where m0
H denotes the ‘bare’ (non-renormalised) Higgs mass as given by the Lagrangian

parameter µ2 in (2.100). Further, ∆m2
H represents corrections due to loop diagrams

for all the massive fermions and bosons in the SM, including the Higgs itself. For a
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2.6 Shortcomings of the Standard Model

Figure 2.1: Fit of the SM Higgs mass to electroweak precision data, excluding direct

Higgs searches. The figure is taken from [4].

fermion loop with the loop integral cut off at a momentum scale Λ, the contribution to

m2
H takes the form [5]

(
∆m2

H

)
f

= −
|λf |2

8π2
Λ2 + . . . (2.104)

Here λf =
√

2ml/v is the strength of the fermion-Higgs coupling, as seen in (2.102), and

the terms left out are at most logarithmically dependent on Λ. (The largest fermion

contribution is due to the top quark for which λt ∼ 1.) The contribution from a boson

loop exhibits the same quadratic dependence on Λ but with an opposite overall sign.

The cut-off parameter Λ can be interpreted as the energy scale at which physics

beyond the SM becomes important, rendering further ‘extrapolation’ invalid. If this

scale is large compared to the weak scale of ∼ 100 GeV, e.g. with Λ being the Planck

scale (∼ 1019 GeV), the radiative corrections will naturally bring mH up to the order

of Λ. There is no apparent symmetry between the fermion and boson masses of the SM

that could lead to an internal cancellation of the contributions to ∆m2
H . Therefore, in

order to cancel the radiative corrections and end up with a physical Higgs mass around

the experimentally preferred scale, the value of the bare mass m0
H would have to be

extremely fine-tuned. This seemingly unnatural requirement is often referred to as the

fine-tuning problem.
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2. Gauge Theories and the Standard Model

Free parameters: The SM depends on at least 19 parameters to be determined

experimentally. From the theoretical point of view a theory with fewer free parameters

seems preferable.

CP violation: Some processes are observed to differ in probability relative to the

parity transformed antiparticle processes, a phenomenon known as CP violation. In

the SM this is a well-established feature of the weak interaction. According to the

Sakharov conditions, CP violation is one of three ingredients necessary to produce a

matter-dominated universe, starting from equal amounts of matter and antimatter [6].

However, relative to the observed matter-antimatter discrepancy, the small amount of

CP violation in the SM seems insufficient. A related problem, known as the strong CP

problem, is the question why strong interactions do not seem to violate CP .

Dark matter: Astrophysical and cosmological observations indicate that the uni-

verse consists of large amounts of a weakly-interacting and presumably non-baryonic

form of matter. This dark matter is believed to make up ∼ 22% of the energy density

of the universe. The observational evidence for the existence of dark matter includes

measurements of galactic rotational curves [7], gravitational lensing effects [8] and mea-

surements of the cosmic background radiation [9]. The neutrinos, being both massive

and only weakly interacting, constitute the only SM candidate for particle dark matter.

SM neutrinos are, however, very low in mass, and can thus only account for a small

fraction of the total dark matter. Moreover, the relativistic velocities of neutrinos come

in conflict with the dark matter properties required for structure formation on small

cosmological scales [10]. The existence of dark matter therefore hints towards a form

of matter not described by the SM.

Grand unification: Grand Unified Theories (GUTs) are based on the postulate that

the U(1)Y ×SU(2)L×SU(3)c gauge group of the SM is a subgroup of some larger sym-

metry group. A general prediction of such theories is that the gauge couplings describing

the strengths of the various interactions should unify at some high energy scale ΛGUT ,

usually around 1016 – 1019 GeV. Extrapolations of the SM gauge couplings towards

ΛGUT show that such unification cannot occur with SM physics alone [11]. Although

not a direct problem for the SM itself, this is by many viewed as an indication for
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2.6 Shortcomings of the Standard Model

physics beyond the SM.

Further shortcomings: If indeed it is possible to formulate a ‘theory of everything’

one would need a consistent description of quantum gravity, which the SM does not

include. Further, there is no SM explanation for the expansion-driving dark energy

thought to make up ∼ 73% of the total energy density of the universe [9].
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Chapter 3

Supersymmetry and Cascade

Decays

In Section 2.6 the need for theories that go beyond the SM was motivated. Numer-

ous alternative theories have been proposed, but perhaps the most popular candidates

are theories based on the idea of supersymmetry (SUSY). This chapter will form a

phenomenological introduction to SUSY, with special emphasis on decay chains of su-

persymmetric particles. First, however, the general principle behind SUSY is presented,

along with some important motivations for expecting that SUSY might be realised at

energies within experimental reach. Sections 3.1 – 3.5 are mainly based on Martin [5]

and Aitchison [12].

3.1 General concept

As noted in Section 1.4, the SM obeys both internal symmetries, namely invariance

under the U(1)Y ×SU(2)L×SU(3)C gauge group, and external spacetime symmetries

of translation and change of reference frame. The spacetime symmetry group, known

as the Poincaré group, is defined as the group of all transformations of the form

xµ → xµ′ = Λµν x
ν + aµ (3.1)

that leaves the spacetime interval (x − y)2 invariant. Here Λµν represents a Lorentz

transformation while aµ is a constant translation. The generators of Lorentz transfor-
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3. Supersymmetry and Cascade Decays

mations, Mµν , and spacetime translations, Pµ, satisfy the Poincaré algebra:[
Pµ , P ν

]
= 0 (3.2)[

Mµν , P ρ
]

= i
(
gνρPµ − gµρP ν

)
(3.3)[

Mµν ,Mρσ
]

= i
(
gνρMµσ + gµσMνρ − gνσMµρ − gµρMνσ

)
(3.4)

Further, these generators commute with the generators of the internal SM symmetries 1.

The concept of SUSY evolved from attempts at extending the Poincaré group by

including additional internal symmetries in a non-trivial way, that is, without all gener-

ators of the internal transformations commuting with the Poincaré generators. Through

the work of Coleman, Mandula [13] and Haag, Lopuszanski, Sohnius [14], it became

clear that the only way a non-trivial extension can be obtained is by allowing the

additional symmetry group to be defined from anticommutation relations. Conse-

quently, the group generators are fermionic operators described by spinors. In the

following we consider a minimal extension of the Poincaré algebra in terms of a single,

two-component SUSY generator Qa (Weyl spinor) and its Hermitian conjugate Qȧ.

(The bar and dotted indices are used to indicate that the Hermitian conjugate of Qa

is a right-handed Weyl spinor.) The supersymmetric Poincaré algebra is then given by

the anticommutation relations{
Qa , Qb

}
=
{
Qȧ , Qḃ

}
= 0 (3.5){

Qa , Qȧ
}

= 2
(
σµ
)
aȧ
Pµ (3.6)

and the commutation relations[
Qa , P

µ
]

=
[
Qȧ , P

µ
]

= 0 (3.7)[
Qa ,M

µν
]

=
1

2

(
σµν
) b
a
Qb (3.8)[

Qȧ,M
µν
]

=
1

2

(
σµν
) ḃ
ȧ
Qḃ (3.9)

1We recall that the generators of the U(1)Y , SU(2)L and SU(3)C groups satisfy the following

commutation relations:

U(1)Y : [Y, Y ] = 0 SU(2)L: [σi , σj ] = 2iεijkσk SU(3)C : [λa , λb] = 2ifabcλc

where i, j, k = 1, 2, 3 and a, b, c = 1, . . . , 8.
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3.1 General concept

In addition, the SUSY generators commute with the generators of the SM gauge group.

In the above notation, a, b = 1, 2 and ȧ, ḃ = 1, 2 are distinct indices and Hermitian

conjugation is defined as

Qȧ ≡ (Qa)
† = (Q†)ȧ (3.10)

Qa = (Q
ȧ
)† (3.11)

The two-dimensional σµ and σµν are given by

σµ =
(
1 , σ1 , σ2 , σ3

)
σµ =

(
1 ,−σ1 ,−σ2 ,−σ3

)
(3.12)

σµν ≡ i

2

(
σµσν − σνσµ

)
σµν ≡ i

2

(
σµσν − σνσµ

)
(3.13)

where σi are the usual two-dimensional Pauli matrices, written out explicitly in (2.37).

Without going into detail concerning the above algebra, we illustrate a few central

properties of the SUSY generators: Let |m,+1/2〉 denote a fermion state of mass m

and spin +1/2 along the z-axis. With M12 = J3 being the z-component of the angular

momentum operator and assuming the fermion is on mass-shell, we have

J3 |m,+1/2〉 =
1

2
|m,+1/2〉 (3.14)

PµPµ |m,+1/2〉 = m2 |m,+1/2〉 (3.15)

From the definition of σµν in (3.13) it follows that σ12 = σ3. Thus, for J3 the commu-

tator in (3.8) becomes [
Qa , J

3
]

=
1

2

(
σ3
) b
a
Qb (3.16)

By choosing a = 1 and summing over b we obtain[
Q1 , J

3
]

=
1

2
Q1 (3.17)

The spin effect of Q1 can now be deduced by acting with J3 on the state Q1 |m,+1/2〉:

J3
(
Q1 |m,+1/2〉

)
=

(
Q1J

3 − 1

2
Q1

)
|m,+1/2〉

=

(
1

2
− 1

2

)(
Q1 |m,+1/2〉

) (3.18)
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Evidently, the effect of the SUSY operator Q1 is to lower the spin by 1/2. Further,

since Q1 commutes with the generators of the gauge group, we know that all other

quantum numbers remain unchanged. From the commutator in (3.7) it follows that[
Qa , P

µPµ
]

= 0 (3.19)

By letting PµPµ act on the state Q1 |m,+1/2〉 and using the on-shell relation (3.15),

we find

PµPµQ1 |m,+1/2〉 = Q1P
µPµ |m,+1/2〉 (3.20)

= m2Q1 |m,+1/2〉 (3.21)

Clearly the two states |m,+1/2〉 and Q1 |m,+1/2〉 have identical mass, implying that

Q1 |m,+1/2〉 ∝ |m, 0〉. For consistency with the limit m→ 0 we note that the resulting

state |m, 0〉 must be interpreted as a scalar, since a massless spin-1 state only can have

spin eigenvalues ±1.

The above example illustrates the general effect of the SUSY operators: A state

is transformed to a mass degenerate state with spin altered by ±1/2. This can be

illustrated schematically as

Q |fermion〉 = |boson〉 Q |boson〉 = |fermion〉 (3.22)

Now two important observations can be made: First, there are no two SM particles

that differ in spin by 1/2 with the remaining quantum numbers being equal. Therefore,

any theory invariant under SUSY transformations necessarily predicts the existence of

several new particles. Second, as unbroken SUSY predicts that a particle and its

‘supersymmetric partner’ are mass degenerate, SUSY must be a broken symmetry if it

is to exist. This is analogous to the broken SU(2)L × U(1)Y symmetry of the SM.

To keep track of all the new states predicted by SUSY some categorisation and

naming conventions are needed: Fermions and bosons that can be transformed into

each other by some combination of the SUSY operators Q and Q are referred to as

superpartners, and they are combined to form supermultiplets. Since the SUSY op-

erators commute with the gauge group generators, the SM and SUSY members of a

supermultiplet will have identical gauge quantum numbers. This implies that the left-

and right-chiral fermion states of the SM form separate supermultiplets. It can further
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be shown that the number of fermionic and bosonic degrees of freedom balance within

a supermultiplet. As the left-chiral electron (eL) represents two fermionic degrees of

freedom, it is consequently accompanied by a complex scalar (ẽL), representing two

bosonic degrees of freedom. Here we have introduced the common notation of using

a tilde to denote a superpartner of a SM particle. Two types of supermultiplets are

differentiated: Chiral supermultiplets are formed from a two-component (Weyl) fermion

and the corresponding complex scalar, e.g. eL and ẽL. Gauge supermultiplets contain a

spin-1 gauge boson and its fermionic superpartner. Note that the bosonic and fermionic

degrees of freedom balance as the gauge bosons are massless before spontaneous sym-

metry breaking.

The naming convention for scalar superpartners of SM fermions is to add the prefix

“s-” to the name of the SM particle, e.g. the superpartner of the electron is the selectron.

For fermionic superpartners of SM bosons it is customary to use the suffix “-ino”

together with the boson name, e.g. the superpartner of the W boson is the wino while

the Higgs bosons are partnered by the Higgsinos. (Note that more than one scalar

Higgs particle is present in SUSY theories.) In addition, the term sparticle is used as

a general label for any new ‘supersymmetric particle’.

3.2 Motivations

Although no sparticles have yet been discovered, there are good reasons to expect that

SUSY might be a symmetry of nature. This is due to the fact that SUSY theories offer

viable solutions to several of the SM problems presented in Section 2.6. Furthermore, it

can be motivated that if SUSY exists it should be manifest around the experimentally

accessible TeV scale. A few of the most important such motivations are presented

below, but the list is far from exhaustive.

The most common argument for the realisation of SUSY is that it presents a natural

solution to the SM hierarchy problem. We recall that radiative corrections to the

squared Higgs mass depend quadratically on the cut-off parameter Λ, which can be

interpreted as the scale where physics beyond the SM becomes important. Unless there

is an extreme fine-tuning of parameters, such corrections will bring the Higgs mass up

to the order of Λ, in conflict with the weak-scale Higgs mass preferred by experimental
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data. For diagrams containing a fermion loop the contributions to m2
H are of the general

form (
∆m2

H

)
f

= −
|λf |2

8π2
Λ2 + . . . (3.23)

where the ellipsis represents terms that grow logarithmically with Λ. Contributions

from diagrams with a boson loop are of the same general structure, but with opposite

sign. For example, the contribution from a scalar loop is:(
∆m2

H

)
s

=
λs

16π2
Λ2 + . . . (3.24)

The quadratically divergent terms of (3.23) and (3.24) will cancel exactly if there for

every fermion exists two scalars with the coupling λs satisfying

λs = |λf |2 (3.25)

This is precisely what happens with unbroken SUSY, and the cancellation holds to

all orders of perturbation theory. The cancellation of quadratic terms also holds for

theories with softly broken SUSY, in which relation (3.25) still holds although mf 6= ms.

However, with the masses no longer being degenerate, the logarithmic terms from(
∆m2

H

)
f

and
(
∆m2

H

)
s

yield contributions of the form

∝
(
m2
f −m2

s) ln Λ (3.26)

Thus, the mass differences between SM particles and their superpartners cannot be

too large if theories with softly broken SUSY is to avoid fine-tuning. This is generally

regarded as the main motivation for SUSY to be manifest around the TeV energy

scale. (Nevertheless, if SUSY particles are discovered around 1 TeV it still remains to

be explained why their mass scale is so close to the weak scale.)

Further arguments in favour of TeV-scale SUSY is found in the evolution of the

SM gauge couplings. Introducing superpartners for the SM particles around the scale

of 1 TeV affects the evolution of the gauge couplings such that an apparent unification

takes place around the scale Q ∼ 1016 GeV (Fig. 3.1). Although this may well be

accidental, it is generally regarded as a strong hint towards grand unified theories

incorporating SUSY.

Additionally, SUSY theories provide several candidates for particle dark matter,

including the neutralino — a mass state mixture of the neutral wino, bino and higgsi-

nos — and the gravitino — the spin-3/2 partner of a spin-2 graviton in theories with

local supersymmetry.
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Figure 3.1: Example of unification of gauge couplings within the MSSM (Section 3.4).

Evolution of inverse gauge couplings are shown for the SM (dashed lines) and the MSSM

(solid lines). Double solid lines are due to variation of both the initial value of the strong

coupling (α3(MZ)) and the lower mass scale for SUSY particles. The figure is taken

from [5].

3.3 Supersymmetry breaking

As already noted, SUSY must be broken in order to produce the mass differences

between SM and SUSY particles required by experiment. In Section 2.5 we saw an

example of spontaneous symmetry breaking, in which the vacuum state does not obey

the full symmetry of the L. An alternative way of breaking a symmetry, known as

explicit symmetry breaking, is to introduce additional terms in L that do not satisfy the

given symmetry. Explicit symmetry breaking can be used to construct effective phe-

nomenological theories in cases where the underlying symmetry-breaking mechanism is

unknown.

There are several alternative theories concerning how SUSY can be broken. How-

ever, a common assumption is that SUSY breaking takes place in a hidden sector of

fields that, at most, have very small direct couplings to the fields of our detectable

visible sector. With SUSY spontaneously broken by a non-zero vev in the hidden sec-

tor, the effects are mediated to the visible sector through some interaction common for

both sectors. Below we mention two of the most popular such theories: Planck-scale-

mediated supersymmetry breaking (PMSB) is based on the postulate that interactions

39



3. Supersymmetry and Cascade Decays

common to both sectors are gravitationally sized, that is, suppressed by powers of the

Planck mass, MP ∼ 1018 GeV. Another alternative is Gauge-mediated supersymmetry

breaking (GMSB), in which the common interaction is assumed to be the gauge inter-

actions known from the SM. A postulated messenger field interacting with the gauge

bosons and gauginos can thus connect the non-zero vev of the hidden sector to the

fields of the visible sector. This way, interactions with messenger fields at one- and

two-loop level can give contributions to the gaugino and sfermion masses, respectively.

The masses of the SM particles, however, are protected by the SM gauge invariance

and only gain masses through electroweak symmetry breaking.

Whichever mechanism is responsible for breaking SUSY, an effective phenomeno-

logical theory can be constructed from an originally invariant theory by adding terms

that explicitly violate SUSY. This is done in the minimal supersymmetric standard

model (MSSM), which we introduce next.

3.4 The Minimal Supersymmetric Standard Model

The MSSM is based on a minimal extension of the Poincaré algebra by including one

SUSY generator and its conjugate. This is known as N = 1 supersymmetry. The

Lagrangian density is divided in a SUSY invariant part (LSUSY) and a part containing

the SUSY breaking terms (Lsoft):

LMSSM = LSUSY + Lsoft (3.27)

As the mechanism for breaking SUSY is unknown, LMSSM includes all viable SUSY

breaking terms that satisfy a few phenomenologically motivated constraints: First,

only terms that softly break SUSY are allowed in Lsoft. This includes the sfermion

and gaugino mass terms needed to produce mass splittings within the supermultiplets.

Second, the complete LMSSM is required to be U(1)Y ×SU(2)L×SU(3)C gauge invari-

ant. Finally, only interactions conserving R-parity (PR) are allowed. The concept of

R-parity and its important phenomenological consequences will be introduced in the

following section.

The terms in LSUSY are highly constrained by the requirements of both gauge and

SUSY invariance, with parameters mostly determined by already measured SM pa-

rameters. On the other hand, the terms in Lsoft introduce ∼ 120 new parameters,
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3.4 The Minimal Supersymmetric Standard Model

Table 3.1: The particle spectrum of the MSSM. Mixing is assumed to be negligible for

the first two sfermion generations. SM fermions and bosons are not included.

Name Spin PR Gauge Eigenstates Mass Eigenstates

Higgs bosons 0 +1 H0
u H0

d H+
u H−d h0 H0 A0 H±

ũL ũR d̃L d̃R (same)

squarks 0 -1 s̃L s̃R c̃L c̃R (same)

t̃L t̃R b̃L b̃R t̃1 t̃2 b̃1 b̃2

ẽL ẽR ν̃e (same)

sleptons 0 -1 µ̃L µ̃R ν̃µ (same)

τ̃L τ̃R ν̃τ τ̃1 τ̃2 ν̃τ

neutralinos 1/2 -1 B̃0 W̃ 0 H̃0
u H̃0

d χ̃0
1 χ̃0

2 χ̃0
3 χ̃0

4

charginos 1/2 -1 W̃± H̃+
u H̃−d χ̃±1 χ̃±2

gluino 1/2 -1 g̃ (same)

goldstino 1/2
-1 G̃ (same)

(gravitino) (3/2)

so further assumptions on the nature of SUSY breaking are usually employed to im-

prove predictability. A much studied such theory is known as minimal supergravity

(mSUGRA) in which PMSB is invoked with the additional assumption of parameter

unification at the Planck scale. This leads to a highly predictive theory completely

determined by four Planck-scale parameters and a sign.

All presently undiscovered particles within the MSSM are listed in Table 3.1, along

with their corresponding spin and RP eigenvalues. Due to effects from SUSY breaking

and electroweak symmetry breaking, the mass eigenstates are in general mixtures of

the gauge eigenstates. This is evident for third-generation sleptons and squarks, as well

as for the gauginos. As the amount of L-R mixing for sfermions can be shown to be

proportional to the mass (or more precisely, the Yukawa coupling) of the corresponding

SM fermion, mixing is assumed negligible for the first two generations. All mixed mass
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3. Supersymmetry and Cascade Decays

eigenstates are numbered according to increasing mass, e.g., t̃1 being the lighter of the

two stops.

For the Higgs bosons the four gauge eigenstates represent complex fields, i.e. eight

real degrees of freedom. This is due to the fact that two complex SU(2)L doublets are

needed in order to obtain all the Yukawa couplings necessary to produce the SM masses.

Through spontaneous symmetry breaking three degrees of freedom are absorbed into

mass terms for the W± and Z0 bosons, leaving five physical degrees of freedom. These

are manifest as the three neutral scalars h0, H0 and A0, and the charged scalar H±.

Although the rich parameter space of the MSSM will not be treated in detail, we note

that the parameter tanβ is defined as

tanβ ≡ vu
vd

(3.28)

Here vu and vd are the non-zero vevs of the two Higgs doublets Hu = (H+
u , H

0
u) and

Hd = (H0
d , H

−
d ), respectively. Further, vu and vd are related to the SM Higgs vev

by v =
√
v2
u + v2

d ∼ 246 GeV. For the staus, which will be central in our further

discussion, the amount of L-R mixing in the mass eigenstates depends on tanβ. For

low tanβ (. 10), τ̃1 is predominantly τ̃R, analogous to the two lighter slepton families

which generally have ẽ1 ' ẽR and µ̃1 ' µ̃R as the lighter mass states [5]. For larger

tanβ the amount of τ̃L-τ̃R mixing in τ̃1 is increased, with the additional effect that τ̃1

becomes lighter.

The mass eigenstates of the neutral and charged gauginos are respectively named

neutralinos and charginos. For our analysis the lighter two neutralinos are of impor-

tance. The phenomenology of the neutralinos is affected by the the amount of bino,

wino and higgsino mixing in the various mass states. For example, in mSUGRA sce-

narios one often finds that χ̃0
1 ∼ B̃ and χ̃0

2 ∼ W̃ 0, with the consequence that χ̃0
2

predominantly couples to left-chiral states1.

3.5 R-parity

In the SM there are no renormalisable terms that violate baryon number (B) or lepton

number (L), and indeed no B or L violating processes have been seen experimentally.

1For the scalar sfermions, ‘chirality’ is simply a convenient label that refers to the chirality of their

fermionic superpartner.
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3.5 R-parity

With only the general requirements of gauge and SUSY invariance the MSSM would

allow several L- and B-violating interaction terms, leading to unacceptable predictions.

For example, given unsuppressed couplings, the squark-mediated proton decays p+ →
e+ π0 and p+ → µ+ π0 would result in a far too low prediction for the proton lifetime.

For these two processes experimental lower limits on the partial lifetime has been set

to 8.2 × 1033 years for the e+-mode and 6.6 × 1033 years for the µ+-mode, at 90%

confidence level [15].

In order to prevent such problematic predictions, all interactions of the MSSM are

required to conserve the discrete and multiplicative R-parity, defined at the particle

level as:

PR ≡ (−1)3(B−L)+2s (3.29)

Here s denotes particle spin. From this definition it follows that all SM particles and

the additional Higgs bosons of the MSSM have PR = +1, while all sparticles have

PR = −1 (Table 3.1). The postulate that all interactions conserve R-parity has three

important phenomenological consequences:

- When produced from SM particles, sparticles must be produced in even numbers.

- A sparticle decay must result in an odd number of lighter sparticles.

- The lightest sparticle (LSP) must be absolutely stable, implying that all sparticle

decay chains end with the LSP.

One of the most attractive features of R-parity conservation (RPC) is that it pro-

motes an electrically neutral LSP to a candidate for particle dark matter. The MSSM

contains three such candidates, namely the lightest sneutrino, the lightest neutralino

and the gravitino, with the neutralino and gravitino being the most popular candi-

dates. For our analysis the lightest neutralino is assumed to be the LSP, or at least the

‘effective LSP’ at the scales of particle detectors1.

1In GMSB models the gravitino is nearly always the LSP. However, if χ̃0
1 is the next-to-lightest

sparticle (NSLP) it can well be the effective LSP for collider experiments given that its decay length is

greater than the detector radius.
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3. Supersymmetry and Cascade Decays

Figure 3.2: Example diagram of a complete SUSY event.

3.6 SUSY cascade decays

Due to R-parity conservation, a non-LSP sparticle will preferably decay through a

kinematically allowed two-body decay into one lighter sparticle and one SM particle.

Starting from a heavy sparticle produced in a collider experiment, one therefore expects

a chain of sequential two-body decays, where each sub-decay results in one particle and

one sparticle. Any such cascade decay (or simply cascade) must eventually terminate

with the LSP. In the case where a given two-body decay is not kinematically allowed, the

cascade can proceed by three-body decay through some off-shell sparticle or particle.

At the LHC, gluon-gluon and quark-gluon fusion to g̃g̃, g̃q̃ and q̃q̃ pairs are expected

to constitute the main SUSY production, given these sparticles are not heavier than

∼ 1 TeV. The preferred decay modes of the squarks and gluinos depend on the mass

hierarchy, couplings and mass state mixtures of the lighter sparticles. An example of a

‘complete event’ topology is given in Fig. 3.2.

With sparticles pair-produced due to RPC, there will consequently be two separate

cascades taking place in the detector. In an experimental search for a specific cascade

signal, the second cascade may constitute a significant SUSY background. The typical
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detector signature of a SUSY event is large amounts of missing (transverse) energy

combined with n jets and m leptons, where n or m can be zero. The missing energy is

mainly due to the two escaping LSPs, but may also get contributions from neutrinos

produced either in the cascade or in subsequent decays of SM taus and bosons. The

main SM background comes from production of W and Z bosons combined with QCD

jets. Upon decay, the gauge bosons produce final states with neutrinos that reproduce

the missing energy signal.

3.7 Mass determination from cascade kinematics

If evidence for supersymmetry is found, the next challenge will be to determine the

parameters of the underlying theory, including the masses of new particles. In addition

to being interesting in itself, a well-measured mass spectrum can give important hints

on the nature of SUSY breaking and dark matter. As the LSP escapes undetected, it is

not possible to determine the sparticle masses from reconstructed invariant mass peaks.

Instead, constraints on various sparticle masses can be obtained from kinematic features

in the distributions of the detected SM particles1. One particular well-studied method

is based on measuring distinct endpoints in observable invariant mass distributions [16,

17, 18, 19, 20]. As these endpoints correspond to extreme kinematic configurations,

their position can be expressed solely in terms of the masses of the ‘parent’ sparticles.

By measuring various such endpoints it is in principle possible to extract the values of

the individual sparticles.

For a simple illustration of the above method, we consider the much-studied ‘dilep-

ton cascade’

χ̃0
2 → l±n l̃∓ → l±n l∓f χ̃0

1 , l = e, µ (3.30)

The two visible SM leptons are labelled n (‘near’) and f (‘far’) referring to their position

in the cascade relative to χ̃0
2. There is no spin correlation between the two leptons

due to the intermediate scalar slepton. Consequently, the distribution of the dilepton

invariant mass mll is determined by phase space alone. It can be shown to have a simple

linear shape, often referred to as a ‘triangle distribution’ (Fig. 3.3, first column). The

1For an outline of how such observable distributions are related to the more abstract field theories,

the reader is referred to Appendix C.
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3. Supersymmetry and Cascade Decays

distinct endpoint should enable a quite clean experimental measurement, as have been

demonstrated for various SUSY scenarios [19, 20] (among others).

The invariant mass value at the endpoint can be related to the sparticle masses by

straightforward kinematics: If we take the leptons to be approximately massless, the

squared dilepton invariant mass is given by

m2
ll =

(
Pln + Plf

)2
= 2

(
Pln · Plf

)
= 2ElnElf

(
1− cos θ

)
(3.31)

Here θ is the angle between the three-momenta of the two leptons. For simplicity we now

choose to work in the rest frame of the intermediate slepton. As we are only interested

in the maximum invariant mass (mll)max, we set cos θ = −1. This corresponds to

the leptons going back-to-back. An expression for Eln is found by squaring the four-

momentum conservation relation Pχ̃0
2

= P
l̃
+ Pln :

m2
χ̃0
2

= P 2
χ̃0
2

=
(
P
l̃
+ Plf

)2
= m2

l̃
+ 2Elnml̃

(3.32)

Thus, we obtain

Eln =
m2
χ̃0
2
−m2

l̃

2m
l̃

(3.33)

Similarly, we find an expression for Elf from the four-momentum relation P
l̃

= Pχ̃0
1

+ Plf :

Elf =
m2
l̃
−m2

χ̃0
1

2m
l̃

(3.34)

By combining the above results the invariant mass value at the endpoint is found to be

(mll)max =

√√√√√
(
m2
χ̃0
2
−m2

l̃

)(
m2
l̃
−m2

χ̃0
1

)
m2
l̃

(3.35)

An experimental measurement of the endpoint position can therefore provide a relation

between the masses of χ̃2
0, l̃ and χ̃2

0.

In the above example there were three unknown masses but only one observable

endpoint. The situation changes if we consider an ‘extended’ dilepton cascade where a

parent squark decay is included (lower cascade in Fig. 3.2):

q̃ → q χ̃0
2 → q l±n l̃∓ → q l±n l∓f χ̃0

1 , l = e, µ (3.36)
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3.7 Mass determination from cascade kinematics

There are now four unknown sparticle masses (mq̃,mχ̃0
2
,m

l̃
,mχ̃0

1
) and four ‘visible’

invariant masses (mqln ,mqlf ,mll,mqll). Thus, by expressing the endpoints of the addi-

tional invariant mass distributions in terms of the sparticle masses, one can in principle

obtain a system of equations that are exactly solvable for the unknown masses.

3.7.1 Complications

In the above example several complicating aspects were ignored: First, in a collider

experiment it will not be possible to distinguish the ‘near’ from the ‘far’ lepton. This

problem can be overcome by relating mqln and mqlf to two invariant mass distribu-

tions that are experimentally unambiguous. One possible choice is to use the variables

mql(high) and mql(low) defined on an event-by-event basis as [18]:

mql(high) ≡ max
{
mqln ,mqlf

}
mql(low) ≡ min

{
mqln ,mqlf

} (3.37)

Expressions for the various endpoints of in terms of sparticle masses (including the

mql(high) and mql(low) distributions) are given in [18]. Inverted formulas expressing the

sparticle masses in terms of endpoints can be found in [20].

A second complication arises due to the general form of the endpoint expressions.

As is illustrated by (3.35), endpoint expressions depend strongly on mass differences, re-

sulting in a more precise determination of these differences than the individual masses.

A related difficulty is that of degenerate solutions: The inverted expressions for the

sparticle masses are not necessarily single-valued functions, and there is a high prob-

ability that a given set of endpoint values is consistent with several sets of sparticle

masses. This ambiguity is still present if one chooses to do a numerical fit of the masses

to the endpoint values rather than using analytical inversion formulas. With an equal

number of measured endpoints and masses there is in principle no way of discriminating

two different solutions. If more endpoints are measured than there are unknown masses

in the cascade, the system is overconstrained and the real solution would be preferred

by a numerical fit. Nevertheless, with measurement uncertainties taken into account it

is not given that a false solution can be safely rejected. A detailed discussion of such

degenerate solutions can be found in [20].

Finally, we note that the shapes of the invariant mass distributions vary greatly

with sparticle mass values (Fig. 3.3). (The exception is the simple triangle distribution
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Figure 3.3: The theoretical distributions of mll, mql(low), mql(high) and mqll for the

extended dilepton cascade in (3.36). Each distribution is shown for two sets of benchmark

masses. The figure is taken from [21].

of mll, whose intrinsic shape is the same for all on-shell mass configurations.) The

variety of shapes may lead to additional difficulties when an endpoint, or some other

distribution feature, is to be determined as precisely as possible from an experimental

distribution. Specifically, for a given mass scenario the underlying distributions might

exhibit structure close to the endpoint (like a sudden ‘drop’ or an extended ‘foot’) that

is easily missed in an experimental study due to background.

The above mentioned complications are all on a rather conceptual level. When the

endpoint method is applied to data there will be additional uncertainties related to

backgrounds, statistics and correctly linking detector objects with cascade particles.

3.7.2 The need for analytical shape formulas

In order to measure an endpoint experimentally a fit must be performed to the end-

point region of the distribution. For such a fit to return an accurate endpoint value it is

necessary have a realistic ‘signal hypothesis’, that is, choose a fit shape in good corre-

spondence with the underlying distribution. This is especially important for scenarios

in which the distribution exhibits some structure close to the endpoint that may become

hidden by background. High accuracy in endpoint measurements is important as errors

might get enlarged in the process of extracting sparticle mass values. Consequently,

knowing the full analytical distribution shape would be a great advantage.
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3.7 Mass determination from cascade kinematics

In addition to providing the correct signal shapes for endpoint determination, an-

alytical shape formulas might help to solve some of the problems presented in the

previous section. With the shape formulas expressed in terms of sparticle masses,

performing fits to complete observed distributions would in principle return the mass

values directly. Although such distributions can be obtained numerically for a given

set of sparticle masses, this approach is computationally too expensive for use in fit-

ting. Further, in scenarios where the endpoint method returns multiple solutions, a

complete shape fit might provide the extra information needed to lift the degeneracy.

These aspects are demonstrated in [22, 23].

3.7.3 The ditau cascade

For the extended dilepton cascade in (3.36) the leptons were assumed to be either

electrons or muons. Shape formulas for this cascade have been derived in [24] and [25].

In our analysis we focus on the similar cascade where the leptons are taus. Due to their

short lifetime of only τ0 ' 2.9×10−13 s [1], the taus will always decay before detection.

This makes for a more complicated cascade topology, including neutrinos that escape

detection. Assuming both taus decay as τ → ν π leaves us with the following cascade:

q̃ → q χ̃0
2 → q τ±n τ̃∓ → q (π±n ν) (τ∓f χ̃0

1) → q π±n ν π∓f ν χ̃0
1 (3.38)

The assumption of tau decay into pions will only be of direct importance for the analysis

in Chapter 6. For the derivations presented in Chapters 4 and 5 any hadronic tau decay

will be equally valid. Of course, at the LHC experiments the hadronically decaying taus

will appear as tau jets.

A good understanding of the above cascade might be important for several reasons:

First, it provides information on the mass of τ̃1, which due to stau mixing may be quite

different from the masses of the lightest selectron and smuon. Further, in scenarios with

non-negligible stau mixing, the branching fraction for χ̃0
2 into final states with taus is

often larger than for final states with electrons or muons [5]. The tau cascade might

therefore prove important also in the determination of neutralino and squark masses.

Finally, due to their in-detector decays, the polarisation of the taus might result in

observable effects in the invariant mass distributions of the visible particles. Although

complicating mass measurements, these effects provide a possible way of measuring the
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mixing parameters of the stau and gaugino sectors [26, 27]. We comment briefly on

this topic in Section 6.5.

The above ‘extended ditau cascade’ will be studied in Chapter 5, while Chapters 4

and 6 will only treat the shorter ‘ditau cascade’:

χ̃0
2 → τ±n τ̃∓ → (π±n ν) (τ∓f χ̃0

1) → π±n ν π∓f ν χ̃0
1 (3.39)
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Chapter 4

The mab Distribution in the

Spin-0 Approximation

4.1 General remarks and assumptions

We study the ditau cascade decay (Fig. 4.1)

C → τb B → (b ν) (τa A)→ b ν a ν A (4.1)

corresponding to the SUSY cascade

χ̃0
2 → τ±n τ̃∓ → (π±n ν) (τ∓f χ̃0

1) → π±n ν π∓f ν χ̃0
1 (4.2)

In the following we will derive an analytical expression for the differential decay rate

dΓ/dmab, where mab is the invariant mass of particles a and b. The derivation is based

on a few simplifying assumptions:

- all particles are treated as spin-0

- particles a, b and ν are assumed massless

- all massive particles are taken to be on-shell and satisfying the hierarchy

mτ < mA < mB < mC

The spin-0 assumption ensures that a decay can be treated as isotropic in the decaying

particle’s rest frame. This is of course a considerable simplification as several of the

particles involved clearly are not spin-0. However, as particle B is taken to be a scalar

(stau) regardless of the spin-0 assumption, we know that there will be no spin depen-

dent correlation between the two tau production vertices. With particles A and C not
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Figure 4.1: The ditau cascade decay

being observed, all we are leaving out with the spin-0 assumption are the effects of the

tau spins on the energy spectra of a and b. Such effects will be included in Chapter 6,

thus providing a more realistic result. The distribution derived here will only be strictly

correct if right- and left-handed taus are produced with equal probability in the two

vertices and all final states are summed, cancelling the spin effects. As these produc-

tion probabilities depend on the τ̃L-τ̃R mixture of the stau mass eigenstates and the

W̃ 0-B̃0-H̃0 mixture of the neutralinos, the distributions derived here will consequently

only be valid for certain values of the theoretical mixing parameters. Nevertheless, the

following derivation will be valuable as an introduction to the general method used, as

well as a clean way to illustrate the effects coming from kinematics alone.

The assumption of massless a and b is more accurate in the rest frames of B and C

(masses of the order order 102 − 103 GeV in most scenarios) than in the rest frames of

τa and τb (mτ = 1.78 GeV), but for simplicity this assumption is used in all reference

frames. It should also be noted that in taking all massive particles on-shell we neglect

the effect of particle widths that generally will lead to a smearing of the distribution.

4.2 The derivation

We employ the same method as used in [24], adapted for the decay topology in Fig. 4.1.

The derivation can be outlined as follows: From kinematical considerations we obtain

an expression for m2
ab in terms of cosines for which the differential decay rate is flat.

Then we perform a change of variables to a set that includes m2
ab, before integrating

over any extra variables. The resulting expression for dΓ/ dm2
ab is related to the desired

52



4.2 The derivation

mab distribution through the simple relation

dΓ

dmab
= 2mab

dΓ

dm2
ab

(4.3)

4.2.1 Kinematics

We start by expressing m2
ab in terms of flat angular variables. Treating a and b as

massless, the squared invariant mass is given by

m2
ab = (Pa + Pb)

2 = 2 (Pa · Pb) = 2EaEb (1− cos θab) (4.4)

As cos θab will have a flat distribution in the rest frame of B, this frame is a suitable

choice for the evaluation of m2
ab. Introducing a notation where upper indices specify

reference frames, we write

m2
ab = 2EBa E

B
b

(
1− cos θBab

)
(4.5)

To obtain an expression for EBb depending on flat angular variables we make use of the

invariance relation

(Pb · PB)B = (Pb · PB)τb (4.6)

which for a massless b gives

EBb =
1

mB
Eτbb

(
EτbB − p

τb
B cos θτbbB

)
=

1

mB

(mτ

2

) (
EτbB − p

τb
B cos θτbbB

) (4.7)

Four-momentum conservation in the two-body decay C → B τb can be expressed as

PC = PB + Pτb (4.8)

Squaring this relation and evaluating the cross term 2 (PB · Pτb) in the rest frame of τb

gives the following expression for EτbB :

EτbB =
m2
C −m2

B −m2
τ

2mτ
(4.9)
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Using (4.9) we can now express pτBB as

pτbB =
√

(EτbB )2 − m2
B

=
1

2mτ

√(
m2
C −m2

B −m2
τ

)2 − 4m2
Bm

2
τ

=

√
λCτB
2mτ

(4.10)

where we have introduced the Källen function λ defined by

λXY Z ≡ m4
X +m4

Y +m4
Z − 2m2

Xm
2
Y − 2m2

Xm
2
Z − 2m2

Ym
2
Z (4.11)

Inserting the results of (4.9) and (4.10) into (4.7) we get

EBb =
1

4mB

(
(m2

C −m2
B −m2

τ )−
√
λCτB cos θτbbB

)
(4.12)

where cos θτbbB has a flat distribution by the spin-0 assumption.

In a completely analogous way we can express EBa in terms of the flat variable cos θτaaB:

From the invariance relation

(Pa · PB)B = (Pa · PB)τa (4.13)

we obtain

EBa =
1

mB
Eτaa

(
EτaB − p

τa
B cos θτaaB

)
=

1

mB

(mτ

2

) (
EτaB − p

τa
B cos θτaaB

) (4.14)

An expression for EτaB can be found from the four-momentum relation

PA = PB − Pτa (4.15)

which by squaring and evaluating the cross term in the rest frame of τa gives

EτaB =
m2
B −m2

A +m2
τ

2mτ
(4.16)

From (4.16) it follows that

pτaB =
√

(EτaB )2 −m2
B

=

√
λBτA

2mτ

(4.17)
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Combining (4.16) and (4.17) with (4.14) we find EBa given by

EBa =
1

4mB

(
(m2

B −m2
A +m2

τ )−
√
λBτA cos θτaaB

)
(4.18)

Finally, by inserting the results of (4.12) and (4.18) into (4.5) we arrive at the desired

expression for m2
ab:

m2
ab =

1

8m2
B

(
(m2

C −m2
B −m2

τ )−
√
λCτB cos θτbbB

)
×
(

(m2
B −m2

A +m2
τ )−

√
λBτA cos θτaaB

)(
1− cos θBab

) (4.19)

Treating all particles as spin-0 implies that cos θτbbB, cos θτaaB and cos θBab all have flat

distributions. From these cosines we define three variables u, v and w:

u ≡
1− cos θτbbB

2

v ≡
1− cos θτaaB

2

w ≡
1− cos θBab

2

(4.20)

To simplify notation we also define three parameters completely determined by the

involved masses:

bC ≡
1

2

(
m2
C −m2

B −m2
τ√

λCτB
− 1

)
bB ≡

1

2

(
m2
B −m2

A +m2
τ√

λBτA
− 1

)
M2 ≡

√
λCτB

√
λBτA

m2
B

(4.21)

We note that these parameters are positive for any choice of masses allowed by the

on-shell kinematics (mC > mB +mτ and mB > mA+mτ ). Using the above definitions

m2
ab can be expressed as

m2
ab = M2 (bC + u) (bB + v)w , 0 ≤ (u, v, w) ≤ 1 (4.22)

4.2.2 Variable changes and integrations

Due to the flat distributions of cos θτbbB, cos θτaaB, cos θBab, the differential decay rate with

respect to the variables u, v, w will be flat and non-zero in the range 0 ≤ (u, v, w) ≤ 1.
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4. The mab Distribution in the Spin-0 Approximation

This can be expressed using the step function θ(x):

1

Γ

d3Γ

dudv dw
= θ(u) θ(1− u) θ(v) θ(1− v) θ(w)θ(1− w) (4.23)

Using (4.22) we now perform a change of variables from (u, v, w) to (u, v,m2
ab)

1

Γ

d3Γ

dudv dm2
ab

=

∣∣∣∣ ∂(u, v, w)

∂(u, v,m2
ab)

∣∣∣∣ 1

Γ

d3Γ

dudv dw

=
∂w

∂m2
ab

1

Γ

d3Γ

dudv dw

=
1

M2(bC + u)(bB + v)
θ̂(u) θ̂(v) θ̂

(
m2
ab

M2(bC + u)(bB + v)

) (4.24)

where we have defined

θ̂(x) ≡ θ(x) θ(1− x) (4.25)

To obtain dΓ/ dm2
ab we must integrate over u and v. To keep expressions as simple as

possible we make another change of variables:

x ≡ bC + u (4.26)

y ≡ bB + v (4.27)

In terms of these new variables we can write

1

Γ

dΓ

dm2
ab

=
1

M2

x2∫
x1

y2∫
y1

1

x y
θ̂

(
m2
ab

M2x y

)
dy dx (4.28)

with the limits of integration

x1 = bC y1 = bB

x2 = bC + 1 y2 = bB + 1

obtained from the two step functions θ̂(u) and θ̂(v). The remaining step function

provides a non-zero integrand as long as the following constraint is satisfied:

y ≥ ymin(x) ≡
m2
ab

M2x
(4.29)

Depending on the relative size of ymin(x1) to y1 and y2, and similarly for ymin(x2),

five different integration regions giving non-zero results can be constructed (Fig. 4.2).
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4.2 The derivation

(a) (b) (c) (d) (e)

Figure 4.2: The five integration regions of the xy plane (grey).

Table 4.1: Integration regions and corresponding m2
ab ranges for mass scenario I

Integration region Bounds on ymin(x) Range of m2
ab

Region (a)
ymin(x1) < y1

0 < m2
ab < bBbCM

2

ymin(x2) < y1

Region (b)
y1 < ymin(x1) < y2

bBbCM
2 < m2

ab < (bB + 1)bCM
2

ymin(x2) < y1

Region (c)
ymin(x1) > y2

(bB + 1)bCM
2 < m2

ab < bB(bC + 1)M2

ymin(x2) < y1

Region (e)
ymin(x1) > y2

bB(bC + 1)M2 < m2
ab < (bB + 1)(bC + 1)M2

y1 < ymin(x2) < y2

These regions correspond to different ranges for m2
ab. Two separate mass scenarios

must be considered:

bC < bB Scenario I

bB < bC Scenario II

The integration regions, with corresponding m2
ab ranges, for scenario I and II are given

in Tables 4.1 and 4.2, respectively. All integrations are of the form∫∫
region (x)

1

M2x y
dy dx

Performing all integrals and using the relation

dΓ

dmab
= 2mab

dΓ

dm2
ab

(4.30)

we arrive at the final result for the differential decay rate.
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4. The mab Distribution in the Spin-0 Approximation

Table 4.2: Integration regions and corresponding m2
ab ranges for mass scenario II

Integration region Bounds on ymin(x) Range of m2
ab

Region (a)
ymin(x1) < y1

0 < m2
ab < bBbCM

2

ymin(x2) < y1

Region (b)
y1 < ymin(x1) < y2

bBbCM
2 < m2

ab < bB(bC + 1)M2

ymin(x2) < y1

Region (d)
y1 < ymin(x1) < y2

bB(bC + 1)M2 < m2
ab < (bB + 1)bCM

2

y1 < ymin(x2) < y2

Region (e)
ymin(x1) > y2

(bB + 1)bCM
2 < m2

ab < (bB + 1)(bC + 1)M2

y1 < ymin(x2) < y2

4.3 Results and discussion

Scenario I

1

Γ

dΓ

dmab
=



mab
M2

{
2 ln
(
bB+1
bB

)
ln
(
bC+1
bC

)}
for (1)

mab
M2

{[
ln
(
bB+1
bB

)]2
−
[
ln
(

(bB+1)bCM
2

m2
ab

)]2

+ 2 ln
(
bB+1
bB

)
ln
(
bB(bC+1)M2

m2
ab

)} for (2)

mab
M2

{[
ln
(
bB+1
bB

)]2
+ 2 ln

(
bB+1
bB

)
ln
(
bB(bC+1)M2

m2
ab

)}
for (3)

mab
M2

{[
ln
(

(bB+1)(bC+1)M2

m2
ab

)]2
}

for (4)

with the ranges

(1) 0 < mab <
√
bBbCM2

(2)
√
bBbCM2 < mab <

√
(bB + 1)bCM2

(3)
√

(bB + 1)bCM2 < mab <
√
bB(bC + 1)M2

(4)
√
bB(bC + 1)M2 < mab <

√
(bB + 1)(bC + 1)M2
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4.3 Results and discussion

Scenario II

1

Γ

dΓ

dmab
=



mab
M2

{
2 ln
(
bB+1
bB

)
ln
(
bC+1
bC

)}
for (1)

mab
M2

{[
ln
(
bB+1
bB

)]2
−
[
ln
(

(bB+1)bCM
2

m2
ab

)]2

+ 2 ln
(
bB+1
bB

)
ln
(
bB(bC+1)M2

m2
ab

)} for (2)

mab
M2

{[
ln
(

(bB+1)(bC+1)M2

m2
ab

)]2
−
[
ln
(

(bB+1)bCM
2

m2
ab

)]2
}

for (3)

mab
M2

{[
ln
(

(bB+1)(bC+1)M2

m2
ab

)]2
}

for (4)

with the ranges

(1) 0 < mab <
√
bBbCM2

(2)
√
bBbCM2 < mab <

√
bB(bC + 1)M2

(3)
√
bB(bC + 1)M2 < mab <

√
(bB + 1)bCM2

(4)
√

(bB + 1)bCM2 < mab <
√

(bB + 1)(bC + 1)M2

We recall that

bC =
1

2

(
m2
C −m2

B −m2
τ√

λCτB
− 1

)
bB =

1

2

(
m2
B −m2

A +m2
τ√

λBτA
− 1

)
M2 =

√
λCτB

√
λBτA

m2
B

λXY Z = m4
X +m4

Y +m4
Z − 2m2

Xm
2
Y − 2m2

Xm
2
Z − 2m2

Ym
2
Z

Figure 4.3(b) depicts the distribution for a set of masses corresponding to the

mSUGRA benchmark point SPS1a, while Figures 4.3(a) and 4.3(c) represent scenarios

with (mB −mA) ∼ mτ and (mC −mB) ∼ mτ , respectively. For Fig. 4.3(d) a set of

masses where both these mass differences are small is chosen in order to illustrate the

behaviour of all four parts of the analytical expression. The grey triangle represents

the corresponding dilepton invariant mass distribution for the cascade in (3.30).
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4. The mab Distribution in the Spin-0 Approximation

Due to the energy lost to the neutrinos, the mab distribution derived here is more

rounded and shifted towards lower invariant masses compared to the dilepton distri-

bution. In addition, as the dilepton distribution was derived assuming massless final

state leptons while our result include massive taus, the mab endpoint is lower than the

dilepton endpoint. This difference disappears if both (mC −mB) and (mB −mA) are

large compared to mτ , as will be shown in the next section.

4.4 The limit mτ = 0

In deriving the above results we made use of the fact that taus were massive by exploit-

ing their rest frames. However, the same (invariant) expressions for dΓ/ dmab could in

principle have been derived using any other set of reference frames, for which it would

not be necessary to treat the taus as massive. Therefore we can be confident that

taking the limit mτ = 0 in the above expressions will not cause any conflict with the

fact that the taus’ rest frames were used in the derivation.

From the definition of the Källen function in (4.11) we find that setting mτ = 0

corresponds to

λCτB =
(
m2
C −m2

B

)2
λBτA =

(
m2
B −m2

A

)2 (4.31)

By (4.21) it then follows that

bC = 0

bB = 0 (4.32)

M2 =
(m2

C −m2
B)(m2

B −m2
A)

m2
B

The above relations imply several simplifications: First, the distinction between mass

scenarios I and II disappears as both bB and bC vanishes. Second, the contribution

from integration region (e) of the xy plane now covers the entire mab range, given by

0 < mab < M (4.33)

Third, the shape of the distribution is now independent of the masses mA, mB and

mC , as M only determines the upper limit for mab. Thus, in the limit of massless taus
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4.4 The limit mτ = 0

(a) mC = 180, mB = 100, mA = 97 (GeV)

scenario I

(b) mC = 180, mB = 135, mA = 97 (GeV)

scenario I

(c) mC = 180, mB = 177, mA = 97 (GeV)

scenario II

(d) mC = 180, mB = 176, mA = 174 (GeV)

scenario I

Figure 4.3: (1/Γ)( dΓ/ dmab) plotted for four different sets of masses. Dotted vertical

lines mark the points where the functional form of the distribution changes. All plots use

mτ = 1.78 GeV.
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4. The mab Distribution in the Spin-0 Approximation

the mab distribution simplifies to

1

Γ

dΓ

dmab
=

mab

M2

[
ln

(
m2
ab

M2

)]2

for 0 < mab < M (4.34)

As can be seen in Fig. 4.4 the non-zero tau mass only affects the distribution shape

when (mC −mB) and/or (mB−mA) are close to mτ . For a wide range of mA, mB and

mC values the limit mτ = 0 will thus be a very reasonable approximation. A point to

notice is that with the distribution shape fixed, the position of the peak is given solely

in terms of the endpoint M :

mpeak
ab = Me−2 ' 0.135M (4.35)

In Fig. 4.4 we also note that the massless tau approximation leads to a broader

distribution compared to the exact result. This can be understood by observing how

the limit mτ = 0 affects the maximum and minimum allowed energies of particles a

and b. In (4.12) we found the energy of b in the rest frame of B to be

EBb =
1

4mB

((
m2
C −m2

B −m2
τ

)
−
√
λCτB cos θτbbB

)
(4.36)

By taking cos θτbbB = ±1 and writing out λCτB in terms of mC , mB and mτ , we find the

minimum and maximum energies of b:

(EBb )min =
1

4mB

((
m2
C −m2

B −m2
τ

)
−
√(

m2
C −m2

B −m2
τ

)2 − 4m2
Bm

2
τ

)

=
1

4mB

(
m2
C −m2

B −m2
τ

)(
1 −

√
1−

4m2
Bm

2
τ(

m2
C −m2

B −m2
τ

)2
) (4.37)

and similarly

(EBb )max =
1

4mB

(
m2
C −m2

B −m2
τ

)(
1 +

√
1−

4m2
Bm

2
τ(

m2
C −m2

B −m2
τ

)2
)

(4.38)

Evidently, (EBb )min decreases and (EBb )max increases as we let mτ go to zero. As similar

behaviour holds for (EBa )min and (EBa )max, minimal and maximal mab values are made

more probable by the massless tau approximation.
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4.4 The limit mτ = 0

(a) mC = 180, mB = 100, mA = 97 (GeV)

scenario I

(b) mC = 180, mB = 135, mA = 97 (GeV)

scenario I

(c) mC = 180, mB = 177, mA = 97 (GeV)

scenario II

(d) mC = 180, mB = 176, mA = 174 (GeV)

scenario I

Figure 4.4: (1/Γ)( dΓ/dmab) in the limit mτ = 0 (red) compared to the exact distribution

(black). The shape of the red distribution is independent of the chosen masses for particles

A, B and C.
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Chapter 5

The mhigh Distribution in the

Spin-0 Approximation

5.1 General remarks and assumptions

Following the derivation of the mab distribution, we now go on to study the extended

decay chain

D → c C → c τb B → c (b ν) (τa A)→ c b ν a ν A (5.1)

In most SUSY studies the particles D and c are assumed to be a squark and a quark,

respectively. In terms of particle and sparticle labels, the cascade is

q̃ → q χ̃0
2 → q τ±n τ̃∓ → q (π±n ν) (τ∓f χ̃0

1) → q π±n ν π∓f ν χ̃0
1 (5.2)

With c as an additional visible final state particle, we can combine particles into the

invariant mass distributions mac, mbc and mabc in addition to the previously studied

mab distribution. However, as noted in Section 3.7.1, it is not possible experimentally to

determine which is the ‘near’ (b) and which is the ‘far’ (a) particle relative to c. To avoid

this problem the mac and mbc distributions must be replaced by two experimentally

distinguishable distributions, the usual choice being mhigh and mlow:

mhigh ≡ max{mac , mbc} (5.3)

mlow ≡ min{mac , mbc} (5.4)
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5. The mhigh Distribution in the Spin-0 Approximation

Figure 5.1: The extended ditau cascade decay

In the following we will derive an analytical expression for the distribution dΓ/dmhigh.

Derivations of the underlying mac and mbc distributions follow in close analogy to the

mab derivation, and the resulting expressions are given in Appendix A.

For the mhigh distribution we will employ a similar set of assumptions as used in the

previous chapter: treating all particles as spin-0, treating a, b, c, ν as massless, taking

all massive particles on-shell and assuming the hierarchy mτ < mA < mB < mC < mD.

Similar to the mab case, treating a, b and c as massless is more accurate in the rest

frames of B, C, D than in the rest frames of τa and τb, and the on-shell assumption

neglects a certain amount of smearing of the distribution. The spin-0 assumption

requires some further comments as extending the cascade to include particles D and c

allows for additional spin correlations.

As D is a scalar, the spins of c and C will be oppositely directed. This correlation

may result in observable charge asymmetries in the invariant mass distributions, as

discussed for dilepton cascades in [28, 29], among others. In order to illustrate this

effect we consider the following scenario: First, χ̃0
2 (C) is assumed to be mostly wino,

implying that both the initial squark (D) and the resulting quark (c) are left-chiral.

Second, we choose a scenario with low tanβ. This results in the lightest stau being

almost purely ‘right-chiral’, that is, B = τ̃1 ∼ τ̃R. (τ̃2 ∼ τ̃L is assumed to be heavier

than χ̃0
2.) Treating the taus as being approximately massless implies that τb is either a

τ− with right-helicity or a τ+ with left-helicity. To conserve angular momentum in the

rest frame of C, a right-helicity τ− will prefer to go along the direction of c, while the

opposite direction is preferred by a left-helicity τ+. Therefore, as the invariant mass of

two particles depend on their internal angle, there will be a clear asymmetry between

the invariant mass distributions of c τ−b and c τ+
b .1

1Also, with B and τb going back-to-back in the rest frame of C, the boost of B relative to c

will depend on the helicity, and thus the charge, of τb. This dependence will translate into a small

asymmetry in the c τ−a and c τ+a invariant mass distributions.
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5.2 The derivation

As we study more closely in Chapter 6, a τ− will in its rest frame preferably emit the

scalar b along its spin direction. Consequently, for the decay of a boosted right-helicity

τ−, b will usually be emitted along the tau direction and carry the major fraction

of the original tau energy. Due to CP invariance of tau decays, the same conclusion

holds for the decay of a boosted left-helicity τ+. With the original tau direction and

energy being approximately ‘inherited’ by b, the charge asymmetry of the c τb invariant

mass distribution can be expected to still be evident after being passed down to the c b

distribution.

A non-negligible amount of L-R stau mixing will diminish the above charge asym-

metry, as the link between charge and helicity for the taus is weakened. Additionally,

cascades starting with an anti-squark (decaying into an anti-quark) exhibit the opposite

correlations. With the charge of a quark jet being very difficult to measure, an observed

distribution would be a sum of contributions from both squark and anti-squark cas-

cades, leading to a reduction of the observable asymmetry. (Still, detection of such

charge asymmetries may be possible as more squarks than anti-squarks are expected

from the proton-proton collisions at LHC.)

Nevertheless, the above considerations are based on observation of final state charges.

If charges are summed, the asymmetries cancel and the invariant mass distributions of

c τb and c τa are returned to the shapes determined by phase space alone [29]. There-

fore, the only spin effects that are truly neglected by treating all particles as spin-0 are

the effects on the directions and energies of particles a and b due to the handedness of

τa and τb, respectively. In the special case where the L-R mixing of the staus is such

that taus with left- and right-handed helicity are produced with equal probability, even

these effects would cancel.

5.2 The derivation

We will follow the general steps of the mab derivation, expressing m2
ac and m2

bc in terms

of cosines for which the differential decay rate is flat, then changing variables to a set

that includes m2
high before integrating dΓ over the extra variables. As we will see, the

main difficulty lies in keeping track of all the different integration regions that must be

covered in order to obtain a complete result.
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5. The mhigh Distribution in the Spin-0 Approximation

5.2.1 Kinematics

We start by obtaining expressions for m2
ac and m2

bc in terms of ‘flat’ cosines. To keep

the number of extra variables at a minimum, we look for cosines that can be used in

both expressions. As the following kinematical considerations closely resemble those

for the mab distribution, we will go through them in a slightly less detailed manner

here. For massless a and c, m2
ac can be expressed in the rest frame of τa as

m2
ac = (Pa · Pc)2 = 2Eτaa E

τa
c (1− cos θτaac)

= 2
(mτ

2

)
Eτac (1− cos θτaac)

(5.5)

Solving the invariance relation

(Pc · Pτa)τa = (Pc · Pτa)B (5.6)

for Eτac we find

Eτac =
1

mτa

EBc
[
EBτa − pBτa cos θBcτa

]
=

1

2mBmτ
EBc

[
(m2

B +m2
τ −m2

A)−
√
λBτA cos θBcτa

] (5.7)

where we recall that the Källen function λ is defined as

λXY Z ≡ m4
X +m4

Y +m4
Z − 2m2

Xm
2
Y − 2m2

Xm
2
Z − 2m2

Ym
2
Z (5.8)

An expression for EBc can be obtained from

P 2
D = (Pc + Pτb + PB)2 (5.9)

by evaluating the cross terms as (Pc ·Pτb)C , (Pc ·PB)B and (Pτb ·PB)B. Solving for EBc

and using that

ECc =
m2
D −m2

C

2mC

ECτb =
m2
C +m2

τ −m2
B

2mC

EBτb =
m2
C −m2

τ −m2
B

2mB

(5.10)

we find

EBc =
m2
D −m2

C

2mB

{
1− 1

2m2
C

[
(m2

C +m2
τ −m2

B)−
√
λCτB cos θCcτb

]}
(5.11)
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5.2 The derivation

Combining the results from (5.7) and (5.11) with (5.5) we find thatm2
ac can be expressed

as

m2
ac =

(m2
D −m2

C)
√
λCτB

√
λBτA

m2
Bm

2
C

×
[

m2
C√

λCτB
− 1

2

(
m2
C +m2

τ −m2
B√

λCτB
− cos θCcτb

)]
× 1

2

(
m2
B +m2

τ −m2
A√

λBτA
− cos θBcτa

)
× 1

2

(
1− cos θτaac

)
(5.12)

Here all cosines have flat distributions under the spin-0 assumption. Using these cosines

we define three variables u, v and w:

u ≡ 1

2

(
1− cos θBcτa

)
v ≡ 1

2

(
1− cos θCcτb

)
w ≡ 1

2
(1− cos θτaac)

(5.13)

In order to simplify notation we define a set of parameters completely determined by

the involved masses:

aB ≡
m2
B√

λBτA

aC ≡
m2
C√

λCτB

bB ≡
1

2

(
m2
B +m2

τ −m2
A√

λBτA
− 1

)
bC ≡

1

2

(
m2
C +m2

τ −m2
B√

λCτB
− 1

)
M2 ≡

(m2
D −m2

C)
√
λBτA

√
λCτB

m2
Bm

2
C

=
m2
D −m2

C

aB aC

(5.14)

Using the definitions above we can now write m2
ac as

m2
ac =

[
aC − (bC + v)

]
(bB + u)wM2 , 0 ≤ (u, v, w) ≤ 1 (5.15)

Having obtained the desired expression for m2
ac we must now find a corresponding

expression for m2
bc. This task is somewhat simpler due to the fact that b and c are

closer to each other in the decay chain compared to a and c. We must however keep in
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5. The mhigh Distribution in the Spin-0 Approximation

mind that we would like to reuse cosines used for m2
ac if possible. In the rest frame of

τb we know that m2
bc is given by

m2
bc = 2Eτbb E

τb
c

(
1− cos θτbbc

)
= 2

(mτ

2

)
Eτbc

(
1− cos θτbbc

) (5.16)

An expression for Eτbc can be found by expanding the invariance relation

(Pc · Pτb)
τb = (Pc · Pτb)

C (5.17)

noting that

ECc =
m2
D −m2

C

2mC

ECτb =
m2
C +m2

τ −m2
B

2mC

pCτb =

√
λCτB

2mC

(5.18)

This way we obtain

Eτbc =
m2
D −m2

C

4m2
C mτ

[
(m2

C +m2
τ −m2

B)−
√
λCτB cos θCcτb

]
(5.19)

Combining (5.19) with (5.16) we find that m2
bc can be written as

m2
bc =

(m2
D −m2

C)
√
λCτB

m2
C

× 1

2

(
m2
C +m2

τ −m2
B√

λCτB
− cos θCcτb

)
× 1

2

(
1− cos θτbbc

) (5.20)

where we note that cos θCcτb now has been used in expressing both m2
ac and m2

bc. For

cos θτbbc we define yet another variable t as

t ≡ 1

2

(
1− cos θτbbc

)
(5.21)

Using the definitions in (5.13) and (5.14) we can now express m2
bc in the simple form

m2
bc = aB (bC + v) tM2 , 0 ≤ (t, v) ≤ 1 (5.22)
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5.2.2 Variable changes

Equations (5.15) and (5.22) express m2
ac and m2

bc in terms of the variables t, u, v and w.

As these variables are linearly dependent on the cosines the differential decay rate will

be a flat distribution in the range 0 ≤ (t, u, v, w) ≤ 1. This can be expressed as

1

Γ

d4Γ

dtdudv dw
= θ̂(t) θ̂(u) θ̂(v) θ̂(w) (5.23)

where we have used the notation

θ̂(x) ≡ θ(x) θ(1− x) (5.24)

Our next task is to perform a change of variables from (t, u, v, w) to a set that includes

m2
high. In order to do this we must first relate the expressions for m2

ac and m2
bc to m2

high.

We recall that

mhigh ≡ max{mac , mbc} (5.25)

and introduce a new variable x defined by

x ≡ m2
bc −m2

ac

=
{
aB (bC + v) tM2

}
−
{[
aC − (bC + v)

]
(bB + u)wM2

} (5.26)

As the sign of x is determined by which of mac and mbc is greater, this enables us to

combine m2
ac, m

2
bc and m2

high in a single expression using the step function θ(x):

m2
high = θ(x)m2

bc + θ(−x)m2
ac

= θ(x)
{
aB (bC + v) tM2

}
+ θ(−x)

{[
aC − (bC + v)

]
(bB + u)wM2

} (5.27)

Now a possible change of variables is to go from (t, u, v, w) to (u, v, x,m2
high). Solving

(5.26) and (5.27) for t and w and using that

θ(x) + θ(−x) = 1 (5.28)

x − θ(x)x = θ(−x)x (5.29)
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5. The mhigh Distribution in the Spin-0 Approximation

we obtain

t =
m2

high + θ(−x)x

aB (bC + v)M2
(5.30)

w =
m2

high − θ(x)x[
aC − (bC + v)

]
(bB + u)M2

(5.31)

From these relations we can specify the Jacobian for the variable change:

∂(u, v, w, t)

∂(u, v, x,m2
high)

=
∂w

∂x

∂t

∂m2
high

− ∂w

∂m2
high

∂t

∂x

= − 1

aB(bB + u)(bC + v)
[
aC − (bC + v)

]
M4

(5.32)

It should be noted that aC > bC+v for all values of v given the assumed mass hierarchy.

We can now write out the variable change

1

Γ

d4Γ

dudv dx dm2
high

=

∣∣∣∣∣ ∂(u, v, w, t)

∂(u, v, x,m2
high)

∣∣∣∣∣ 1

Γ

d4Γ

dtdudv dw
(5.33)

which by using (5.23) and (5.32) becomes

1

Γ

d4Γ

dudv dx dm2
high

=
1

aB(bB + u)(bC + v)
[
aC − (bC + v)

]
M4

× θ̂(u) θ̂(v) θ̂

(
m2

high + θ(−x)x

aB(bC + v)M2

)

× θ̂

(
m2

high − θ(x)x[
aC − (bC + v)

]
(bB + u)M2

) (5.34)

To further simplify notation we perform yet another variable change, introducing the

variables y and z defined by
y ≡ bB + u

z ≡ bC + v
(5.35)

The differential decay rate in terms of the variables (x, y, z,m2
high) is thus

1

Γ

d4Γ

dx dy dz dm2
high

=
1

aB y z (aC − z)M4

× θ̂(y − bB) θ̂(z − bC) θ̂

(
m2

high + θ(−x)x

aB zM2

)

× θ̂

(
m2

high − θ(x)x

y (aC − z)M2

) (5.36)
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5.2 The derivation

5.2.3 Integrations

To obtain the m2
high distribution we must integrate (5.36) over all regions of x, y and z

giving non-zero contributions. As mhigh is the only invariant mass involved in the rest

of the derivation we set mhigh ≡ m to keep notation as simple as possible. We start

by integrating over x. Splitting the integral into two parts, one for x > 0 and one for

x < 0, we can write

1

Γ

d3Γ

dy dz dm2
= Ix+ + Ix− (5.37)

where

Ix+ =

∞∫
0

dx
θ̂(y − bB) θ̂(z − bC)

aB y z (aC − z)M4
θ̂

(
m2

aB zM2

)
θ̂

(
m2 − x

y (aC − z)M2

)
(5.38)

Ix− =

0∫
−∞

dx
θ̂(y − bB) θ̂(z − bC)

aB y z (aC − z)M4
θ̂

(
m2 + x

aB zM2

)
θ̂

(
m2

y (aC − z)M2

)
(5.39)

Solving Ix+ first we note that the only x dependence of the integrand is through the last

step function. In order for Ix+ to give a non-zero result the following two constraints

on x must be satisfied:

0 < x < ∞ (5.40)

m2 − y (aC − z)M2 < x < m2 (5.41)

From these constraints we obtain the limits of integration

x1 = max
{

0 , m2 − y (aC − z)M2
}

x2 = m2
(5.42)

where the two possible values for x1 correspond to two different constraints on the

remaining variables y, z and m2. The solution of Ix+ can be expressed as

Ix+ = θ
(
y (aC − z)M2 −m2

) m2∫
0

f
(
y, z,m2

)
dx

+ θ
(
m2 − y (aC − z)M2

) m2∫
m2−y (aC−z)M2

f
(
y, z,m2

)
dx

(5.43)
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where

f
(
y, z,m2

)
=

θ̂(y − bB) θ̂(z − bC)

aB y z (aC − z)M4
θ̂

(
m2

aB zM2

)
(5.44)

and the step functions in front of the integrals enforce the constraints on y, z and m2

corresponding to the limits of integration. As f
(
y, z,m2

)
is independent of x, writing

out the final expression for Ix+ is straightforward:

Ix+ = θ
(
y (aC − z)M2 −m2

)
θ̂

(
m2

aB zM2

)
θ̂(y − bB) θ̂(z − bC)

× m2

aB y z (aC − z)M4

+ θ
(
m2 − y (aC − z)M2

)
θ̂

(
m2

aB zM2

)
θ̂(y − bB) θ̂(z − bC)

× 1

aB zM2

(5.45)

Doing the integration over negative x values (Ix−) in a completely analogous way, we

obtain the result

Ix− = θ
(
aB zM

2 −m2
)
θ̂

(
m2

y (aC − z)M2

)
θ̂(y − bB) θ̂(z − bC)

× m2

aB y z (aC − z)M4

+ θ
(
m2 − aB zM2

)
θ̂

(
m2

y (aC − z)M2

)
θ̂(y − bB) θ̂(z − bC)

× 1

y (aC − z)M2

(5.46)

Before combining Ix+ and Ix− into a single expression, we comment on the equivalence

of some of the step functions involved: In order for θ̂
(

m2

aB zM2

)
to be non-zero we must

have

0 ≤ m2

aB zM2
≤ 1 (5.47)

Keeping in mind that m2 and all constant parameters are positive, this reduces to the

constraint

m2 ≤ aB zM
2 (5.48)
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5.2 The derivation

which can be expressed by the step function θ
(
aB zM

2 −m2
)
. A similar equivalence

relates θ̂
(

m2

y (aC−z)M2

)
to θ

(
y (aC − z)M2 −m2

)
. Performing the substitutions

θ̂

(
m2

aB zM2

)
⇒ θ

(
aB zM

2 −m2
)

θ̂

(
m2

y (aC − z)M2

)
⇒ θ

(
y (aC − z)M2 −m2

)
in (5.45) and (5.46) we note that the first terms in the two equations become identical.

We can now write out the final result of the x integration:

1

Γ

d3Γ

dy dz dm2
= Ix+ + Ix−

= θ
(
y (aC − z)M2 −m2

)
θ
(
aB zM

2 −m2
)

× θ̂(y − bB) θ̂(z − bC)
2m2

aB y z (aC − z)M4

+ θ
(
m2 − y (aC − z)M2

)
θ
(
aB zM

2 −m2
)

× θ̂(y − bB) θ̂(z − bC)
1

aB zM2

+ θ
(
y (aC − z)M2 −m2

)
θ
(
m2 − aB zM2

)
× θ̂(y − bB) θ̂(z − bC)

1

y (aC − z)M2

(5.49)

In performing the integration over x the differential decay rate split into three terms,

each with its own set of step functions that determine for what ranges of y, z, and m2

the term is non-vanishing. This general pattern repeats as we integrate over y and z.

It turns out the final expression for dΓ/dm2 consists of 28 terms in total, where each

term comes with a set of step functions limiting it to a certain range of m2. Due to

this large number of terms and the fact that all derivations follow a similar pattern, we

will in the following only give a detailed derivation of the first few terms. The complete

result with all terms included will then be discussed at the end.

We continue by integrating (5.49) over y. This can be expressed as

1

Γ

d2Γ

dz dm2
= IA + IB + IC (5.50)
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where IA is the y integral of the first term of (5.49)

IA = θ
(
aB zM

2 −m2
)
θ̂(z − bC)

×

y2∫
y1

θ
(
y (aC − z)M2 −m2

)
θ̂(y − bB)

2m2

aB y z (aC − z)M4
dy

(5.51)

and IB and IC are similar integrals with the second and third term of (5.49) as their re-

spective integrands. From the two y-depending step functions we see that the following

constraints must be satisfied for IA to be non-zero:

bB < y < bB + 1 (5.52)

m2

(aC − z)M2
< y (5.53)

These constraints also imply that

m2 < (aC − z)(bB + 1)M2 (5.54)

As for the integration over x this leaves us with two sets of integration limits:

y1 = max

{
bB ,

m2

(aC − z)M2

}
y2 = bB + 1

(5.55)

Analogously to (5.43) for Ix+, we can now express IA as

IA = θ
(
(aC − z) (bB + 1)M2 −m2

)
θ
(
(aC − z) bBM2 −m2

)
×

bB+1∫
bB

g
(
y, z,m2

)
dy

+ θ
(
(aC − z) (bB + 1)M2 −m2

)
θ
(
m2 − (aC − z) bBM2

)
×

bB+1∫
m2

(aC−z)M2

g
(
y, z,m2

)
dy

(5.56)

with g
(
y, z,m2

)
given by

g
(
y, z,m2

)
= θ

(
aB zM

2 −m2
)
θ̂(z − bC)

2m2

aB y z (aC − z)M4
(5.57)
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5.2 The derivation

In each term of (5.56) two new step functions have been introduced to enforce the

additional constraints on z and m2 coming from (5.54) and the integration limits.

Looking at the first term we see that the step function θ
(
(aC − z) (bB + 1)M2 −m2

)
is redundant due to the stronger constraint of the second step function. Nevertheless

we include both step functions in what follows as this will illustrate the origin of some

restrictions on m2 that are important for the final terms not derived in detail here. On

performing the integration over y we can write

IA = A1(z,m2) + A2(z,m2) (5.58)

where A1 and A2 correspond to the first and second term of (5.56), respectively. As

integrating g
(
y, z,m2

)
over y only gives a logarithmic factor, A1 is given by

A1(z,m2) = θ
(
(aC − z) (bB + 1)M2 −m2

)
θ
(
(aC − z) bBM2 −m2

)
× θ
(
aB zM

2 −m2
)
θ̂(z − bC)

× 2m2

aB z (aC − z)M4
ln

(
bB + 1

bB

) (5.59)

In the following we will derive all the final terms originating from A1(z,m2), while

terms from A2(z,m2) as well as from IB and IC are left out.

We are now left with the task of integrating A1(z,m2) over z. From the four step

functions in (5.59) we find that z must satisfy

bC < z < bC + 1 (5.60)

z < aC −
m2

bBM2
(5.61)

m2

aBM2
< z (5.62)

z < aC −
m2

(bB + 1)M2
(5.63)

We note that the constraint in (5.63) will have no impact as (5.61) obviously is more

restrictive. Satisfying (5.60) – (5.63) all at once implies that the following relations
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must hold:

m2 < aB (bC + 1)M2 (5.64)

m2 < (aC − bC) (bB + 1)M2 (5.65)

m2 < (aC − bC) bBM
2 (5.66)

m2 <
aB aC (bB + 1)

aB + (bB + 1)
M2 (5.67)

m2 <
aB aC bB
aB + bB

M2 (5.68)

Thus, the final terms being derived here will contribute only to the lower end of the

invariant mass distribution. Inequalities (5.65) and (5.67) originate from the redundant

step function in (5.56) and are clearly rendered unnecessary by the more restrictive con-

straints (5.66) and (5.68). However, for final terms derived from A2(z,m2), IB and IC

the constraints (5.65) and (5.67) come about in the same way as above but will in these

cases put important restrictions on the allowed invariant mass values. The require-

ments of (5.60), (5.61) and (5.62) leaves us with four possible sets of integration limits,

given by

z1 = max

{
bC ,

m2

aBM2

}
z2 = min

{
bC + 1 , aC −

m2

bBM2

} (5.69)

The integration of A1(z,m2) over z can thus be expressed as

∞∫
0

A1(z,m2) dz

= θ
(
aB (bC + 1)M2 −m2

)
θ
(

(aC − bC) bBM
2 −m2

)
θ

(
aB aC bB
aB + bB

−m2

)

×

{
θ(α) θ(β)

bC+1∫
bC

h
(
z,m2

)
dz + θ(α) θ(−β)

aC− m2

bB M2∫
bC

h
(
z,m2

)
dz

+ θ(−α) θ(β)

bC+1∫
m2

aB M2

h
(
z,m2

)
dz + θ(−α) θ(−β)

aC− m2

bB M2∫
m2

aB M2

h
(
z,m2

)
dz

}

(5.70)
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where the integrand h
(
z,m2

)
and the step functions θ(α), θ(β) are given by

h
(
z,m2

)
=

2m2

aB z (aC − z)M4
ln

(
bB + 1

bB

)
(5.71)

θ(α) = θ
(
aB bCM

2 −m2
)

(5.72)

θ(β) = θ
((
aC − (bC + 1)

)
bBM

2 −m2
)

(5.73)

The first three step functions of (5.70) enforce the constraints from (5.64), (5.66) and

(5.68) common for all terms derived from A1(z,m2). As the integration of h
(
z,m2

)
has the general solution

z2∫
z1

h
(
z,m2

)
dz =

2m2

aB aCM4
ln

(
bB + 1

bB

)
ln

(
z2 (aC − z1)

z1 (aC − z2)

)
(5.74)

writing out the four terms of (5.70) is just a matter of substituting the correct in-

tegration limits. Referring to the these terms as A11

(
m2
)
, A12

(
m2
)
, A13

(
m2
)

and

A14

(
m2
)
, we have found that the four first terms of (1/Γ)( dΓ/dm2) are:

A11(m2) =
2m2

aB aCM4
ln

(
bB + 1

bB

)
ln

(
(bC + 1) (aC − bC)

bC (aC − (bC + 1))

)

for


m2 < aB bCM

2

m2 < (aC − (bC + 1)) bBM
2

m2 <
aB aC bB
aB + bB

M2

A12(m2) =
2m2

aB aCM4
ln

(
bB + 1

bB

)
ln

(
(aC bBM

2 −m2) (aC − bC)

bC m2

)

for



m2 < aB bCM
2

m2 > (aC − (bC + 1)) bBM
2

m2 < (aC − bC) bBM
2

m2 <
aB aC bB
aB + bB

M2
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A13(m2) =
2m2

aB aCM4
ln

(
bB + 1

bB

)
ln

(
(bC + 1) (aB aCM

2 −m2)

(aC − (bC + 1))m2

)

for



m2 > aB bCM
2

m2 < (aC − (bC + 1)) bBM
2

m2 < aB (bC + 1)M2

m2 <
aB aC bB
aB + bB

M2

A14(m2) =
2m2

aB aCM4
ln

(
bB + 1

bB

)
ln

(
(aC bBM

2 −m2) (aB aCM
2 −m2)

m4

)

for



m2 > aB bCM
2

m2 > (aC − (bC + 1)) bBM
2

m2 < aB (bC + 1)M2

m2 < (aC − bC) bBM
2

m2 < aB aC bB
aB+bB

M2

For clarity we have replaced the step functions with inequalities, keeping in mind that

a term vanishes unless all constraints on m2 are satisfied.

5.3 Results and discussion

Summarizing the derivation so far we have found that

1

Γ

dΓ

dm2
= A11 + A12 + A13 + A14 + (. . .) (5.75)

where (. . . ) denotes the 24 terms originating from A2

(
z,m2

)
, IB and IC . A complete

list of all terms is given at the end of this derivation. Studying the constraints on m2 for

all these terms, we find that the functional form of dΓ/ dm2 changes at the following

eight points (normalised to M2):

m2

M2
=

{
aBbC , (aC − (bC + 1)) bB , (aC − (bC + 1)) (bB + 1) ,

aB aC bB
aB + bB

,
aB aC (bB + 1)

aB + (bB + 1)
, (aC − bC)bB ,

(aC − bC)(bB + 1) , aB(bC + 1)

} (5.76)
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Apart from some obvious relations like aB bC < aB (bC + 1), the order in which

these points appear along the m2-axis depends on the relative sizes of the parame-

ters aB, aC , bB and bC . As can be seen from (5.14) these parameters are completely

determined by the masses mA, mB, mC and mτ . By varying mB within the kinemat-

ically allowed range (mA+mτ , mC−mτ ) we find that the ‘split points’ of (5.76) can

be arranged in six different orders. We refer to these orders as ‘mass scenarios’ one to

six, covering the range of allowed mB values from lowest to highest, respectively. The

correct order of split points for each scenario is written out in Tables 5.1 and 5.2.

Due to mτ being very small compared to any viable choice of values for mA, mB

and mC , mass scenarios 1, 2 and 3 cover only a very narrow range of mB values close to

the kinematical limit mB = mA+mτ . In Fig. 5.2 we illustrate this behaviour by taking

mC = 180 GeV and mA = 97 GeV, and plot the eight split points as functions of mB in

the range (mA+mτ , mC−mτ ). Vertical lines mark the borders between ‘neighbouring’

mass scenarios. In Fig. 5.2(a), where the entire allowed mB range is shown, only the

four largest split points are clearly visible. In order to illustrate the evolution of the

smaller split points Fig. 5.2(b) depicts the region close to mB = mA + mτ . For the

chosen mass values mC = 180 GeV, mA = 97 GeV and mτ = 1.78 GeV the mB ranges

of the different mass scenarios are:

Scenario 1: mB ∈ ( 98.7800 , 98.7801 ) (GeV)

Scenario 2: mB ∈ ( 98.7801 , 99.1073 ) (GeV)

Scenario 3: mB ∈ ( 99.1073 , 99.1128 ) (GeV)

Scenario 4: mB ∈ ( 99.1128 , 132.1483 ) (GeV)

Scenario 5: mB ∈ ( 132.1483 , 144.5729 ) (GeV)

Scenario 6: mB ∈ ( 144.5729 , 178.2200 ) (GeV)

In Tables 5.3 – 5.8 the final results for (1/Γ)( dΓ/dm2) are given for the six mass

scenarios. As can been seen in these tables, for a given scenario about half of the 28

terms do not contribute. (In fact, due to the constraints set by the assumed mass hier-

archy and on-shell kinematics, the terms A24, B11, B22, C11 and A24 vanish everywhere

for all six mass scenarios.)
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(a) The larger m2
high split points shown for the entire allowed mB range.

(b) The smaller m2
high split points shown near the lower limit

mB = mA +mτ = 98.78 GeV. The range of scenario 1 is too

narrow to be seen in this figure.

Figure 5.2: The m2
high split points as functions of mB , with mC = 180, mA = 97

and mτ = 1.78 (GeV)
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5.3 Results and discussion

Table 5.1: Order of split points for mass scenarios 1 – 3 (normalised to M2)

scenario 1 scenario 2 scenario 3

aBbC aBbC aBbC

(aC − (bC + 1)) bB (aC − (bC + 1)) bB (aC − (bC + 1)) bB

(aC − (bC + 1)) (bB + 1) (aC − (bC + 1)) (bB + 1) aB aC bB
aB+bB

aB aC bB
aB+bB

aB aC bB
aB+bB

(aC − (bC + 1)) (bB + 1)

aB aC (bB+1)
aB+(bB+1) (aC − bC)bB (aC − bC)bB

(aC − bC)bB
aB aC (bB+1)
aB+(bB+1)

aB aC (bB+1)
aB+(bB+1)

(aC − bC)(bB + 1) (aC − bC)(bB + 1) (aC − bC)(bB + 1)

aB(bC + 1) aB(bC + 1) aB(bC + 1)

Table 5.2: Order of split points for mass scenarios 4 – 6 (normalised to M2)

scenario 4 scenario 5 scenario 6

aBbC (aC − (bC + 1)) bB (aC − (bC + 1)) bB

(aC − (bC + 1)) bB aBbC (aC − bC)bB

aB aC bB
aB+bB

aB aC bB
aB+bB

aB aC bB
aB+bB

(aC − bC)bB (aC − bC)bB aBbC

(aC − (bC + 1)) (bB + 1) (aC − (bC + 1)) (bB + 1) aB(bC + 1)

aB aC (bB+1)
aB+(bB+1)

aB aC (bB+1)
aB+(bB+1)

aB aC (bB+1)
aB+(bB+1)

(aC − bC)(bB + 1) aB(bC + 1) (aC − (bC + 1)) (bB + 1)

aB(bC + 1) (aC − bC)(bB + 1) (aC − bC)(bB + 1)
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5. The mhigh Distribution in the Spin-0 Approximation

In Figure 5.3 the resulting distribution is plotted (black) along with the correspond-

ing distribution for a dilepton cascade (grey) [24]. For Figures 5.3(a) – 5.3(e) the values

of mA, mC and mD are kept fixed while different mB values are chosen to sample mass

scenarios 4, 5 and 6. In Fig. 5.3(f) a set of masses with both (mC−mB) and (mB−mA)

close to mτ is chosen. While the values of mA, mB and mC determine the shape of

the distribution, the value of mD has no other effect than setting the overall energy

scale through the factor (m2
D − m2

C) in the definition of M2. As the tables give the

expressions for dΓ/dm2
high while the plots depict dΓ/dmhigh, we recall that the two

distributions are related through

1

Γ

dΓ

dmhigh
= 2mhigh

1

Γ

dΓ

dm2
high

(5.77)

As for the mab distribution, the escaping neutrinos leave the mhigh distribution

rounded and shifted towards lower invariant masses compared to the dilepton distribu-

tion. The shape of the mhigh distribution can be further explained by comparison with

the underlying mac and mbc distributions (Fig. 5.4). As mhigh is defined to prefer high

invariant masses, whichever of the two distributions dΓ/ dmac and dΓ/dmbc is larger

at high mass values will also have the greatest impact on the shape of dΓ/ dmhigh. For

invariant masses above the endpoint of either dΓ/ dmac or dΓ/dmbc, the mhigh distri-

bution will by definition be identical to the remaining one. (Analytical expressions for

the mac and mbc distributions are given in Appendix A.)

We also note the appearance of extended ‘feet’ near the endpoints of the distribu-

tions in Figs. 5.3(c), 5.3(d) and 5.3(e) (barely visible). The foot appears as mB enters

mass scenario 5. The length of the foot increases with higher mB values, before de-

creasing again once mB is within the range of mass scenario 6. This behaviour can be

understood from Fig. 5.2(a) showing the evolution of the upper split points as mB is

increased. From the lower limit of scenario 5 and upwards, the length of the distribu-

tion foot is determined by the difference between the endpoint (aC − bC)(bB + 1) and

the closest split point. From Fig. 5.4 it can be seen that the foot is a feature of the

mac distribution.

Below we list all the 28 terms resulting from the integration of (5.36) over x, y and

z. The terms A11, A12, A13 and A14 have already been given, and the terms A24, B11,

B22, C11 and C24 do not contribute to the mhigh distribution in any of the six mass

scenarios, yet for completeness they are all included here. We recall that the simplified
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5.3 Results and discussion

notation mhigh ≡ m is used, and note that Li2(x) is the dilogarithm function, defined

for real arguments x by

Li2(x) ≡
∞∑
n=1

xn

n2
= −

x∫
0

ln(1− u)

u
du , |x| ≤ 1 (5.78)
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5. The mhigh Distribution in the Spin-0 Approximation

Table 5.3:
1

Γ

dΓ

dm2
high

for mass scenario 1

m2
high

M2 range 1
dΓ

dΓ
dm2

high
=

0 <
m2

high

M2 < aBbC A11

aBbC <
m2

high

M2 < (aC − (bC + 1)) bB A13 + C12

(aC − (bC + 1)) bB <
m2

high

M2 < (aC − (bC + 1)) (bB + 1) A14 +A23 +B25 + C12

(aC − (bC + 1)) (bB + 1) <
m2

high

M2 < aB aC bB
aB+bB

A14 +A26 +B13 +B26 + C12

aB aC bB
aB+bB

<
m2

high

M2 < aB aC (bB+1)
aB+(bB+1) A25 +B13 +B24 + C13 + C25

aB aC (bB+1)
aB+(bB+1) <

m2
high

M2 < (aC − bC)bB B12 + C13 + C26

(aC − bC)bB <
m2

high

M2 < (aC − bC)(bB + 1) B12 + C23

(aC − bC)(bB + 1) <
m2

high

M2 < aB(bC + 1) B12

Table 5.4:
1

Γ

dΓ

dm2
high

for mass scenario 2

m2
high

M2 range 1
dΓ

dΓ
dm2

high
=

0 <
m2

high

M2 < aBbC A11

aBbC <
m2

high

M2 < (aC − (bC + 1)) bB A13 + C12

(aC − (bC + 1)) bB <
m2

high

M2 < (aC − (bC + 1)) (bB + 1) A14 +A23 +B25 + C12

(aC − (bC + 1)) (bB + 1) <
m2

high

M2 < aB aC bB
aB+bB

A14 +A26 +B13 +B26 + C12

aB aC bB
aB+bB

<
m2

high

M2 < (aC − bC)bB A25 +B13 +B24 + C13 + C25

(aC − bC)bB <
m2

high

M2 < aB aC (bB+1)
aB+(bB+1) A25 +B13 +B24 + C22

aB aC (bB+1)
aB+(bB+1) <

m2
high

M2 < (aC − bC)(bB + 1) B12 + C23

(aC − bC)(bB + 1) <
m2

high

M2 < aB(bC + 1) B12
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5.3 Results and discussion

Table 5.5:
1

Γ

dΓ

dm2
high

for mass scenario 3

m2
high

M2 range 1
dΓ

dΓ
dm2

high
=

0 <
m2

high

M2 < aBbC A11

aBbC <
m2

high

M2 < (aC − (bC + 1)) bB A13 + C12

(aC − (bC + 1)) bB <
m2

high

M2 < aB aC bB
aB+bB

A14 +A23 +B25 + C12

aB aC bB
aB+bB

<
m2

high

M2 < (aC − (bC + 1)) (bB + 1) A22 +B23 + C13 + C25

(aC − (bC + 1)) (bB + 1) <
m2

high

M2 < (aC − bC)bB A25 +B13 +B24 + C13 + C25

(aC − bC)bB <
m2

high

M2 < aB aC (bB+1)
aB+(bB+1) A25 +B13 +B24 + C22

aB aC (bB+1)
aB+(bB+1) <

m2
high

M2 < (aC − bC)(bB + 1) B12 + C23

(aC − bC)(bB + 1) <
m2

high

M2 < aB(bC + 1) B12

Table 5.6:
1

Γ

dΓ

dm2
high

for mass scenario 4

m2
high

M2 range 1
dΓ

dΓ
dm2

high
=

0 <
m2

high

M2 < aBbC A11

aBbC <
m2

high

M2 < (aC − (bC + 1)) bB A13 + C12

(aC − (bC + 1)) bB <
m2

high

M2 < aB aC bB
aB+bB

A14 +A23 +B25 + C12

aB aC bB
aB+bB

<
m2

high

M2 < (aC − bC)bB A22 +B23 + C13 + C25

(aC − bC)bB <
m2

high

M2 < (aC − (bC + 1)) (bB + 1) A22 +B23 + C22

(aC − (bC + 1)) (bB + 1) <
m2

high

M2 < aB aC (bB+1)
aB+(bB+1) A25 +B13 +B24 + C22

aB aC (bB+1)
aB+(bB+1) <

m2
high

M2 < (aC − bC)(bB + 1) B12 + C23

(aC − bC)(bB + 1) <
m2

high

M2 < aB(bC + 1) B12
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5. The mhigh Distribution in the Spin-0 Approximation

Table 5.7:
1

Γ

dΓ

dm2
high

for mass scenario 5

m2
high

M2 range 1
dΓ

dΓ
dm2

high
=

0 <
m2

high

M2 < (aC − (bC + 1)) bB A11

(aC − (bC + 1)) bB <
m2

high

M2 < aBbC A12 +A23 +B25

aBbC <
m2

high

M2 < aB aC bB
aB+bB

A14 +A23 +B25 + C12

aB aC bB
aB+bB

<
m2

high

M2 < (aC − bC)bB A22 +B23 + C13 + C25

(aC − bC)bB <
m2

high

M2 < (aC − (bC + 1)) (bB + 1) A22 +B23 + C22

(aC − (bC + 1)) (bB + 1) <
m2

high

M2 < aB aC (bB+1)
aB+(bB+1) A25 +B13 +B24 + C22

aB aC (bB+1)
aB+(bB+1) <

m2
high

M2 < aB(bC + 1) B12 + C23

aB(bC + 1) <
m2

high

M2 < (aC − bC)(bB + 1) C23

Table 5.8:
1

Γ

dΓ

dm2
high

for mass scenario 6

m2
high

M2 range 1
dΓ

dΓ
dm2

high
=

0 <
m2

high

M2 < (aC − (bC + 1)) bB A11

(aC − (bC + 1)) bB <
m2

high

M2 < (aC − bC)bB A12 +A23 +B25

(aC − bC)bB <
m2

high

M2 < aB aC bB
aB+bB

A21 +B21

aB aC bB
aB+bB

<
m2

high

M2 < aBbC A21 +B21

aBbC <
m2

high

M2 < aB(bC + 1) A22 +B23 + C22

aB(bC + 1) <
m2

high

M2 < aB aC (bB+1)
aB+(bB+1) C21

aB aC (bB+1)
aB+(bB+1) <

m2
high

M2 < (aC − (bC + 1)) (bB + 1) C21

(aC − (bC + 1)) (bB + 1) <
m2

high

M2 < (aC − bC)(bB + 1) C23
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5.3 Results and discussion

(a) mD = 550, mC = 180,

mB = 100, mA = 97 (GeV)

scenario 4

(b) mD = 550, mC = 180,

mB = 110, mA = 97 (GeV)

scenario 4

(c) mD = 550, mC = 180,

mB = 135, mA = 97 (GeV)

scenario 5

(d) mD = 550, mC = 180,

mB = 160, mA = 97 (GeV)

scenario 6

(e) mD = 550, mC = 180,

mB = 177, mA = 97 (GeV)

scenario 6

(f) mD = 550, mC = 180,

mB = 176, mA = 174 (GeV)

scenario 4

Figure 5.3: (1/Γ)( dΓ/dmhigh) (black) for six different sets of masses. Dotted vertical

lines mark the split points where the functional form of the distribution changes. The

corresponding distribution for a dilepton cascade is shown in grey.
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5. The mhigh Distribution in the Spin-0 Approximation

(a) mD = 550, mC = 180, mB = 110,

mA = 97 (GeV), scenario 4

(b) mD = 550, mC = 180, mB = 135,

mA = 97 (GeV), scenario 5

(c) mD = 550, mC = 180, mB = 160,

mA = 97 (GeV), scenario 6

(d) mD = 550, mC = 180, mB = 176,

mA = 174 (GeV), scenario 4

Figure 5.4: (1/Γ)( dΓ/ dmhigh) (dark grey) compared to (1/Γ)( dΓ/ dmac) (orange) and

(1/Γ)( dΓ/ dmbc) (blue) for four different sets of masses.
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5.3 Results and discussion

A11(m2) =
2m2

aB aCM4
ln

(
bB + 1

bB

)
ln

(
(bC + 1) (aC − bC)

bC (aC − (bC + 1))

)

for


m2 < aB bCM

2

m2 < (aC − (bC + 1)) bBM
2

m2 < aB aC bB
aB+bB

M2

A12(m2) =
2m2

aB aCM4
ln

(
bB + 1

bB

)
ln

(
(aC bBM

2 −m2) (aC − bC)

bC m2

)

for



m2 < aB bCM
2

m2 > (aC − (bC + 1)) bBM
2

m2 < (aC − bC) bBM
2

m2 < aB aC bB
aB+bB

M2

A13(m2) =
2m2

aB aCM4
ln

(
bB + 1

bB

)
ln

(
(bC + 1) (aB aCM

2 −m2)

(aC − (bC + 1))m2

)

for



m2 > aB bCM
2

m2 < (aC − (bC + 1)) bBM
2

m2 < aB (bC + 1)M2

m2 < aB aC bB
aB+bB

M2

A14(m2) =
2m2

aB aCM4
ln

(
bB + 1

bB

)
ln

(
(aC bBM

2 −m2) (aB aCM
2 −m2)

m4

)

for



m2 > aB bCM
2

m2 > (aC − (bC + 1)) bBM
2

m2 < aB (bC + 1)M2

m2 < (aC − bC) bBM
2

m2 < aB aC bB
aB+bB

M2
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5. The mhigh Distribution in the Spin-0 Approximation

A21(m2) =
2m2

aB aCM4

{
1

2

[
ln

(
(aC − bC) (bB + 1)M2

m2

)]2

− 1

2

[
ln

(
(aC − (bC + 1)) (bB + 1)M2

m2

)]2

+ ln

(
aC (bB + 1)M2

m2

)
ln

(
bC + 1

bC

)
+ Li2

(
bC
aC

)
− Li2

(
bC + 1

aC

) }

for



m2 < aB bCM
2

m2 > (aC − bC) bBM
2

m2 < (aC − (bC + 1)) (bB + 1)M2

m2 < (aC − bC) (bB + 1)M2

m2 < aB aC (bB+1)
aB+(bB+1) M2

A22(m2) =
2m2

aB aCM4

{
1

2

[
ln

(
(aB aCM

2 −m2) (bB + 1)

aBm2

)]2

− 1

2

[
ln

(
(aC − (bC + 1)) (bB + 1)M2

m2

)]2

+ ln

(
aC (bB + 1)M2

m2

)
ln

(
aB (bC + 1)M2

m2

)
+ Li2

(
m2

aB aCM2

)
− Li2

(
bC + 1

aC

) }

for



m2 > aB bCM
2

m2 > aB aC bB
aB+bB

M2

m2 < (aC − (bC + 1)) (bB + 1)M2

m2 < (aC − bC) (bB + 1)M2

m2 < aB aC (bB+1)
aB+(bB+1) M2

m2 < aB (bC + 1)M2

m2 > (aC − (bC + 1)) bBM
2
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5.3 Results and discussion

A23(m2) =
2m2

aB aCM4

{
1

2

[
ln

(
bB + 1

bB

)]2

− 1

2

[
ln

(
(aC − (bC + 1)) (bB + 1)M2

m2

)]2

+ ln

(
aC (bB + 1)M2

m2

)
ln

(
(bC + 1) bBM

2

aC bBM2 −m2

)
+ Li2

(
aC bBM

2 −m2

aC bBM2

)
− Li2

(
bC + 1

aC

) }

for



m2 < (aC − bC) bBM
2

m2 < aB aC bB
aB+bB

M2

m2 < (aC − (bC + 1)) (bB + 1)M2

m2 < aB (bC + 1)M2

m2 > (aC − (bC + 1)) bBM
2

A24(m2) =
2m2

aB aCM4

{
1

2

[
ln

(
(aC − bC) (bB + 1)M2)

m2

)]2

+ ln

(
aC (bB + 1)M2

m2

)
ln

(
aC (bB + 1)M2 −m2

bC (bB + 1)M2

)
+ Li2

(
bC
aC

)
− Li2

(
aC (bB + 1)M2 −m2

aC (bB + 1)M2

) }

for



m2 < aB bCM
2

m2 > (aC − bC) bBM
2

m2 > (aC − (bC + 1)) (bB + 1)M2

m2 < aB aC (bB+1)
aB+(bB+1) M2

m2 < (aC − bC) (bB + 1)M2
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5. The mhigh Distribution in the Spin-0 Approximation

A25(m2) =
2m2

aB aCM4

{
1

2

[
ln

(
(aB aCM

2 −m2) (bB + 1)

aBm2

)]2

+ ln

(
aC (bB + 1)M2

m2

)
ln

(
aB
(
aC (bB + 1)M2 −m2

)
(bB + 1)m2

)

+ Li2

(
m2

aB aCM2

)
− Li2

(
aC (bB + 1)M2 −m2

aC (bB + 1)M2

) }

for



m2 > aB bCM
2

m2 > aB aC bB
aB+bB

M2

m2 > (aC − (bC + 1)) (bB + 1)M2

m2 < aB aC (bB+1)
aB+(bB+1) M2

m2 < aB (bC + 1)M2

m2 < (aC − bC) (bB + 1)M2

A26(m2) =
2m2

aB aCM4

{
1

2

[
ln

(
bB + 1

bB

)]2

+ ln

(
aC (bB + 1)M2

m2

)
ln

((
aC (bB + 1)M2 −m2

)
bB

(aC bBM2 −m2) (bB + 1)

)

+ Li2

(
aC bBM

2 −m2

aC bBM2

)
− Li2

(
aC (bB + 1)M2 −m2

aC (bB + 1)M2

) }

for


m2 < (aC − bC) bBM

2

m2 < aB aC bB
aB+bB

M2

m2 > (aC − (bC + 1)) (bB + 1)M2

m2 < aB (bC + 1)M2
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B11(m2) =
1

aBM2
ln

(
bC + 1

bC

)

for

{
m2 < aB bCM

2

m2 > (aC − bC) (bB + 1)M2

B12(m2) =
1

aBM2
ln

(
aB (bC + 1)M2

m2

)

for



m2 > aB bCM
2

m2 > aB aC (bB+1)
aB+(bB+1) M2

m2 > (aC − (bC + 1)) bBM
2

m2 < aB (bC + 1)M2

m2 > (aC − (bC + 1)) (bB + 1)M2

B13(m2) =
1

aBM2
ln

(
(bC + 1) (bB + 1)M2

aC (bB + 1)M2 −m2

)

for



m2 < (aC − bC) (bB + 1)M2

m2 < aB aC (bB+1)
aB+(bB+1) M2

m2 > (aC − (bC + 1)) bBM
2

m2 < aB (bC + 1)M2

m2 > (aC − (bC + 1)) (bB + 1)M2
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5. The mhigh Distribution in the Spin-0 Approximation

B21(m2) =
m2

aB aCM4

{ (
1− aC bBM

2

m2

)
ln

(
bC + 1

bC

)

+ ln

(
aC − bC

aC − (bC + 1)

) }

for



m2 < aB bCM
2

m2 > (aC − bC) bBM
2

m2 < (aC − (bC + 1)) (bB + 1)M2

m2 < aB aC (bB+1)
aB+(bB+1) M2

B22(m2) =
m2

aB aCM4

{ (
1− aC bBM

2

m2

)
ln

(
aC (bB + 1)M2 −m2

bC (bB + 1)M2

)

+ ln

(
(aC − bC) (bB + 1)M2

m2

) }

for



m2 < aB bCM
2

m2 > (aC − bC) bBM
2

m2 > (aC − (bC + 1)) (bB + 1)M2

m2 < aB aC (bB+1)
aB+(bB+1) M2

m2 < (aC − bC) (bB + 1)M2

B23(m2) =
m2

aB aCM4

{ (
1− aC bBM

2

m2

)
ln

(
aB (bC + 1)M2

m2

)

+ ln

(
aB aCM

2 −m2

aB (aC − (bC + 1))M2

) }

for



m2 > aB bCM
2

m2 > aB aC bB
aB+bB

M2

m2 < (aC − (bC + 1)) (bB + 1)M2

m2 > (aC − (bC + 1)) bBM
2

m2 < aB (bC + 1)M2

m2 < aB aC (bB+1)
aB+(bB+1) M2
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B24(m2) =
m2

aB aCM4

{ (
1− aC bBM

2

m2

)
ln

(
aB
(
aC (bB + 1)M2 −m2

)
(bB + 1)m2

)

+ ln

(
(bB + 1) (aB aCM

2 −m2)

aBm2

) }

for



m2 > aB bCM
2

m2 > aB aC bB
aB+bB

M2

m2 > (aC − (bC + 1)) (bB + 1)M2

m2 < aB (bC + 1)M2

m2 < aB aC (bB+1)
aB+(bB+1) M2

m2 < (aC − bC) (bB + 1)M2

B25(m2) =
m2

aB aCM4

{ (
1− aC bBM

2

m2

)
ln

(
(bC + 1) bBM

2

aC bBM2 −m2

)

+ ln

(
m2

(aC − (bC + 1)) bBM2

) }

for



m2 < (aC − bC) bBM
2

m2 < aB aC bB
aB+bB

M2

m2 < (aC − (bC + 1)) (bB + 1)M2

m2 > (aC − (bC + 1)) bBM
2

m2 < aB (bC + 1)M2

B26(m2) =
m2

aB aCM4

{ (
1− aC bBM

2

m2

)
ln

((
aC (bB + 1)M2 −m2

)
bB

(aC bBM2 −m2) (bB + 1)

)

+ ln

(
bB + 1

bB

) }

for


m2 < (aC − bC) bBM

2

m2 < aB aC bB
aB+bB

M2

m2 > (aC − (bC + 1)) (bB + 1)M2

m2 < aB (bC + 1)M2
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C11(m2) =
1

M2
ln

(
bB + 1

bB

)
ln

(
aC − bC

aC − (bC + 1)

)

for

{
m2 > aB (bC + 1)M2

m2 < (aC − (bC + 1)) bBM
2

C12(m2) =
1

M2
ln

(
bB + 1

bB

)
ln

(
aB (aC − bC)M2

aB aCM2 −m2

)

for


m2 < aB (bC + 1)M2

m2 < aB aC bB
aB+bB

M2

m2 > aB bCM
2

m2 < (aC − bC) bBM
2

C13(m2) =
1

M2
ln

(
bB + 1

bB

)
ln

(
(aC − bC) bBM

2

m2

)

for


m2 > (aC − (bC + 1)) bBM

2

m2 > aB aC bB
aB+bB

M2

m2 > aB bCM
2

m2 < (aC − bC) bBM
2
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C21(m2) =
1

2M2

{ [
ln

(
(aC − bC) (bB + 1)M2

m2

)]2

−
[
ln

(
(aC − (bC + 1)) (bB + 1)M2

m2

)]2
}

for



m2 > (aC − bC) bBM
2

m2 > aB (bC + 1)M2

m2 < (aC − (bC + 1)) (bB + 1)M2

m2 > aB aC bB
aB+bB

M2

C22(m2) =
1

2M2

{ [
ln

(
(aC − bC) (bB + 1)M2

m2

)]2

−
[
ln

(
(aB aCM

2 −m2) (bB + 1)

aBm2

)]2
}

for



m2 > (aC − bC) bBM
2

m2 < aB (bC + 1)M2

m2 < aB aC (bB+1)
aB+(bB+1) M2

m2 < (aC − bC) (bB + 1)M2

m2 > aB bCM
2

m2 > aB aC bB
aB+bB

M2

C23(m2) =
1

2M2

{ [
ln

(
(aC − bC) (bB + 1)M2

m2

)]2
}

for



m2 > (aC − bC) bBM
2

m2 > (aC − (bC + 1)) (bB + 1)M2

m2 > aB aC (bB+1)
aB+(bB+1) M2

m2 < (aC − bC) (bB + 1)M2

m2 > aB bCM
2
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5. The mhigh Distribution in the Spin-0 Approximation

C24(m2) =
1

2M2

{ [
ln

(
bB + 1

bB

)]2

−
[
ln

(
(aC − (bC + 1)) (bB + 1)M2

m2

)]2
}

for



m2 < (aC − bC) bBM
2

m2 > aB (bC + 1)M2

m2 < (aC − (bC + 1)) (bB + 1)M2

m2 > aB aC bB
aB+bB

M2

m2 > (aC − (bC + 1)) bBM
2

C25(m2) =
1

2M2

{ [
ln

(
bB + 1

bB

)]2

−
[
ln

(
(aB aCM

2 −m2) (bB + 1)

aBm2

)]2
}

for



m2 < (aC − bC) bBM
2

m2 < aB (bC + 1)M2

m2 < aB aC (bB+1)
aB+(bB+1) M2

m2 > aB bCM
2

m2 > aB aC bB
aB+bB

M2

m2 > (aC − (bC + 1)) bBM
2

C26(m2) =
1

2M2

{ [
ln

(
bB + 1

bB

)]2
}

for


m2 < (aC − bC) bBM

2

m2 > (aC − (bC + 1)) (bB + 1)M2

m2 > aB aC (bB+1)
aB+(bB+1) M2

m2 > aB bCM
2
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5.4 The limit mτ = 0

5.4 The limit mτ = 0

Taking mτ = 0 corresponds to

λCτB =
(
m2
C −m2

B

)2
λBτA =

(
m2
B −m2

A

)2 (5.79)

which has the following implications for the mass parameters defined in (5.14):

aB =
m2
B

m2
B −m2

A

bB = 0

aC =
m2
C

m2
C −m2

B

bC = 0 (5.80)

M2 =
(m2

D −m2
C)(m2

C −m2
B)(m2

B −m2
A)

m2
Bm

2
C

Analogous to what we found for the mab distribution, the above relations imply a much

simplified result: First, four of the eight split points vanish along with bB and bC ,

leaving the non-zero split points at

m2
high

M2
=

{
(aC − 1) ,

aB aC
aB + 1

, aC , aB

}
(5.81)

This means we are left only with mass scenarios 4, 5 and 6 which correspond to the

following orders of split points:

Scenario 4: (aC − 1) <
aB aC
aB + 1

< aC < aB

Scenario 5: (aC − 1) <
aB aC
aB + 1

< aB < aC

Scenario 6: aB <
aB aC
aB + 1

< (aC − 1) < aC

Second, only nine of the final terms now contribute to the mhigh distribution, and

several of these terms are greatly simplified due to the vanishing of parameters bB

and bC . Taking the above results into account, we can now write out dΓ/ dmhigh for

mass scenarios 4–6 in the limit of massless taus. A list of the nine contributing terms

is given at the end of this section.
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5. The mhigh Distribution in the Spin-0 Approximation

Scenario 4

1

Γ

dΓ

dmhigh

∣∣∣∣∣
mτ=0

=



2mhigh

[
A22 +B23 + C22

]
mτ=0

for (1)

2mhigh

[
A25 +B13 +B24 + C22

]
mτ=0

for (2)

2mhigh

[
B12 + C23

]
mτ=0

for (3)

2mhigh

[
B12

]
mτ=0

for (4)

(1) 0 < mhigh <
√

(aC − 1)M2

(2)
√

(aC − 1)M2 < mhigh <

√
aB aC
aB + 1

M2

(3)

√
aB aC
aB + 1

M2 < mhigh <
√
aCM2

(4)
√
aCM2 < mhigh <

√
aBM2

Scenario 5

1

Γ

dΓ

dmhigh

∣∣∣∣∣
mτ=0

=



2mhigh

[
A22 +B23 + C22

]
mτ=0

for (1)

2mhigh

[
A25 +B13 +B24 + C22

]
mτ=0

for (2)

2mhigh

[
B12 + C23

]
mτ=0

for (3)

2mhigh

[
C23

]
mτ=0

for (4)

(1) 0 < mhigh <
√

(aC − 1)M2

(2)
√

(aC − 1)M2 < mhigh <

√
aB aC
aB + 1

M2

(3)

√
aB aC
aB + 1

M2 < mhigh <
√
aBM2

(4)
√
aBM2 < mhigh <

√
aCM2
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5.4 The limit mτ = 0

Scenario 6

1

Γ

dΓ

dmhigh

∣∣∣∣∣
mτ=0

=



2mhigh

[
A22 +B23 + C22

]
mτ=0

for (1)

2mhigh

[
C21

]
mτ=0

for (2)

2mhigh

[
C21

]
mτ=0

for (3)

2mhigh

[
C23

]
mτ=0

for (4)

(1) 0 < mhigh <
√
aBM2

(2)
√
aBM2 < mhigh <

√
aB aC
aB + 1

M2

(3)

√
aB aC
aB + 1

M2 < mhigh <
√

(aC − 1)M2

(4)
√

(aC − 1)M2 < mhigh <
√
aCM2

In Figure 5.5 these approximate distributions (red) are compared to the complete

results of Section 5.3 (black). Not surprisingly there is very good agreement between

the distributions as long as the mass differences (mC −mB) and (mB −mA) are not

close to mτ . The deviations can be understood by considering how the underlying mbc

and mac distributions are affected by taking mτ = 0, which is shown in Appendix A

(Figures A.1 and A.2). The general picture, however, is the same as for the mab distri-

bution: taking mτ = 0 leads to a broader distribution as the ranges of allowed energies

for particles a and b are expanded in both directions. As the mac distribution deviates

from the mτ = 0 approximation when mB is close to mA, while this only happens for

the mbc distribution if mB is close to mC , the approximate mhigh distribution shows

relatively good agreement even with one of these mass differences being small.

Below we list all terms contributing to dΓ/dmhigh in the limit of massless taus.

Once again the simplified notation mhigh ≡ m is used.
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5. The mhigh Distribution in the Spin-0 Approximation

(a) mD = 550, mC = 180,

mB = 100, mA = 97 (GeV)

scenario 4

(b) mD = 550, mC = 180,

mB = 110, mA = 97 (GeV)

scenario 4

(c) mD = 550, mC = 180,

mB = 135, mA = 97 (GeV)

scenario 5

(d) mD = 550, mC = 180,

mB = 160, mA = 97 (GeV)

scenario 6

(e) mD = 550, mC = 180,

mB = 177, mA = 97 (GeV)

scenario 6

(f) mD = 550, mC = 180,

mB = 176, mA = 174 (GeV)

scenario 4

Figure 5.5: (1/Γ)( dΓ/ dmhigh) in the limit mτ = 0 (red) compared to the exact distri-

bution (black).
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5.4 The limit mτ = 0

A22(m2)

∣∣∣∣
mτ=0

=
2m2

aB aCM4

{
1

2

[
ln

(
(aB aCM

2 −m2

aBm2

)]2

− 1

2

[
ln

(
(aC − 1)M2

m2

)]2

+ ln

(
aCM

2

m2

)
ln

(
aBM

2

m2

)
+ Li2

(
m2

aB aCM2

)
− Li2

(
1

aC

) }

for


m2 < (aC − 1)M2

m2 < aB aC
aB+1 M

2

m2 < aBM
2

A25(m2)

∣∣∣∣
mτ=0

=
2m2

aB aCM4

{
1

2

[
ln

(
aB aCM

2 −m2

aBm2

)]2

+ ln

(
aCM

2

m2

)
ln

(
aB (aCM

2 −m2)

m2

)
+ Li2

(
m2

aB aCM2

)
− Li2

(
aCM

2 −m2

aCM2

) }

for


m2 > (aC − 1)M2

m2 < aB aC
aB+1 M

2

m2 < aBM
2
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B12(m2)

∣∣∣∣
mτ=0

=
1

aBM2

{
ln

(
aBM

2

m2

)}

for


m2 > (aC − 1)M2

m2 > aB aC
aB+1 M

2

m2 < aBM
2

B13(m2)

∣∣∣∣
mτ=0

=
1

aBM2

{
ln

(
M2

aCM2 −m2

)}

for


m2 > (aC − 1)M2

m2 < aB aC
aB+1 M

2

m2 < aBM
2

B23(m2)

∣∣∣∣
mτ=0

=
m2

aB aCM4

{
ln

(
aB aCM

2 −m2

(aC − 1)m2

)}

for


m2 < (aC − 1)M2

m2 < aB aC
aB+1 M

2

m2 < aBM
2

B24(m2)

∣∣∣∣
mτ=0

=
m2

aB aCM4

{
ln

(
aB (aCM

2 −m2)

m2

)
+ ln

(
aB aCM

2 −m2

aBm2

)}

for


m2 > (aC − 1)M2

m2 < aB aC
aB+1 M

2

m2 < aBM
2
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C21(m2)

∣∣∣∣
mτ=0

=
1

2M2

{ [
ln

(
aCM

2

m2

)]2

−
[
ln

(
(aC − 1)M2

m2

)]2
}

for

{
m2 < (aC − 1)M2

m2 > aBM
2

C22(m2)

∣∣∣∣
mτ=0

=
1

2M2

{ [
ln

(
aCM

2

m2

)]2

−
[
ln

(
aB aCM

2 −m2

aBm2

)]2
}

for

{
m2 < aB aC

aB+1 M
2

m2 < aBM
2

C23(m2)

∣∣∣∣
mτ=0

=
1

2M2

{ [
ln

(
aCM

2

m2

)]2
}

for


m2 > (aC − 1)M2

m2 > aB aC
aB+1 M

2

m2 < aCM
2
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Chapter 6

The Spin Dependent mab

Distribution

6.1 General remarks and assumptions

Here we expand on the result for the mab distribution of the ditau decay

C → τb B → (b ν) (τa A) → b ν a ν A (6.1)

by incorporating the effects of particle spins. The results so far have been derived

under the assumption of all particles being spin-0. This has resulted in distributions

that are strictly valid only when summing all final states and assuming that positive

and negative helicity taus are produced with equal probability at the two vertices.

In a SUSY scenario this would only be true for a specific set of mixing parameters

determining the τ̃L-τ̃R mixture of the stau mass eigenstates and the W̃ 0-B̃0-H̃0 mixture

of the neutralinos. Therefore, the spin dependent distributions will not only reveal the

underlying structure of the mab distribution we found in the spin-0 approximation, but

also allow us to study much more general scenarios with arbitrary mixing for staus and

neutralinos. The prospects of probing these mixing effects using such spin dependent

distributions from tau cascades have been studied in [26, 27]. We will return to this

topic in Section 6.5.

In the lab frame τa and τb will generally be highly boosted. For this reason one can

make use of the ‘collinear approximation’ in which the visible decay products a and b

are assumed to move in the same directions as their parent taus. A derivation of the
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6. The Spin Dependent mab Distribution

Figure 6.1: The ditau cascade decay

desired mab-distributions making use of this approximation is given in Appendix B. As

it turns out, the different combinations of τa and τb chiralities give rise to three different

mab distributions.

The following derivation is kept slightly more general as the collinear approximation

is not employed. This implies that the various tau helicities, rather than chiralities,

must be be differentiated. The final result will consist of four different distributions

corresponding to the four possible combinations of τa and τb helicities. As expected,

when taking the limit mτ = 0 we find that two of the helicity dependent distributions

merge and the results from the collinear approximation are reproduced. The reason

why we choose not to invoke the collinear approximation right away is twofold: First,

it ensures that most of the derivation follows in close analogy with the previous deriva-

tions, thus illustrating how spin effects can be included in this framework. Second, it

allows us to better understand the distributions found in the collinear limit and the

possible effects missed by this approximation.

In correspondence with the SUSY cascade

χ̃0
2 → τ±n τ̃∓ → (π±n ν) (τ∓f χ̃0

1) → π±n ν π∓f ν χ̃0
1 (6.2)

spins are assigned in the following way:

fermions: C, A, τ , ν

scalars: B, b, a

We will still assume that particles a, b and ν are massless, and all massive particles

are taken to be on-shell and satisfying the hierarchy mτ < mA < mB < mC . In the

following all L/R indices and statements about particle ‘handedness’ refer to helicity,

not chirality, unless otherwise noted.
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6.2 The derivation

Figure 6.2: The angle θτbb τb as defined in the rest frame of the decaying τb. Double arrows

indicate spin/helicity direction, while the dashed axis represents the direction of τb as seen

from the frame S′.

The invariant mass of particles a and b depends on their energies and the angle

between their three-momenta. As any angular correlation between a and b due to

spin is erased by the intermediate scalar B, only spin effects in the particles’ energy

spectra will alter the mab distribution relative to the distribution found in the spin-0

approximation.

6.2 The derivation

The derivation of dΓ/ dmab can be outlined as follows: We begin by studying the

angular distribution for the decay τb → b ν (the decay of τa is identical). Then we

express mab in terms of the angular variables that we now know the distributions of.

The rest of the derivation then follows the familiar pattern of variable changes and

integrations.

6.2.1 Angular distributions in tau decays

In the weak decay τ−b → b− ν we can define an angle θτbb τb in the rest frame of τb as the

angle between the τ spin quantization axis and the momentum of the outgoing scalar b.

This spin axis can be chosen to coincide with the τ momentum direction in some other

reference frame S′. Thus, θτbb τb is the angle between the direction of τb in S′ and the

direction of b in the τb rest frame, as shown in Fig. 6.2. In S′ the two spin states of τb

are interpreted in terms of positive and negative helicity.
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6. The Spin Dependent mab Distribution

The matrix element for τ−b → b− ν depends on the polarisation of the decaying τb.

For positive polarisation we have [27]

M+ ∝ cos
θτbb τb
2

(6.3)

while negative polarisation gives

M− ∝ sin
θτbb τb
2

(6.4)

Squaring the matrix element and integrating over all phase space variables except

cos θτbb τb , we find the normalised differential decay rate to be

1

Γ

dΓ

d cos θτbb τb

∣∣∣∣∣
τ−

=
1

2

(
1 + Pβ cos θτbb τb

)
(6.5)

where Pβ = ± correspond to positive and negative tau polarisation, respectively. This

distribution can qualitatively be understood by considering angular momentum conser-

vation: As b is a scalar, the neutrino must carry the total angular momentum after the

decay. Since the massless neutrino is always left-handed it will preferably be emitted

in direction opposite to the tau spin. Conservation of momentum in the tau rest frame

thus implies that b will be emitted along the tau spin direction.

A CP transformation of this process corresponds to the decay τ+
b → b+ ν̄ with all

three-momenta inverted and all spin directions unchanged, relative to Fig. 6.2. As tau

decays are CP invariant we immediately find that decays of positively polarised τ+ and

negatively polarised τ− give rise to identical angular distributions. Similarly it must

hold that decays of negatively polarised τ+ and positively polarised τ− have identical

distributions. Thus, we can describe the τ±b decays with the distribution

1

Γ

dΓ

d cos θτbb τb
=

1

2

(
1− β Pβ cos θτbb τb

)
(6.6)

where β = ± denotes the charge and Pβ = ± the polarisation of τb. Similarly, the

decay τa → a ν is described by the distribution

1

Γ

dΓ

d cos θτaa τa
=

1

2

(
1− αPα cos θτaa τa

)
(6.7)

with α = ± and Pα = ± specifying the τa charge and polarisation, respectively.
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6.2 The derivation

6.2.2 Kinematics

We now turn to the problem of expressing m2
ab by a set of variables including cos θτbb τb

and cos θτaa τa . When deriving the spin-0 mab-distribution in Chapter 4 we found through

kinematical considerations that m2
ab can be expressed as (Equation 4.19)

m2
ab =

1

8m2
B

(
(m2

C −m2
B −m2

τ )−
√
λCτB cos θτbbB

)
×
(

(m2
B −m2

A +m2
τ )−

√
λBτA cos θτaaB

)(
1− cos θBab

) (6.8)

The angles θτbb τb and θτaa τa used for the tau decay distributions (6.6) and (6.7) were

defined based on the taus’ directions in some reference frame S′, which we now choose

to be the rest frame of B. Since the direction of τb (τa) in the rest frame of B is opposite

to the direction of B in the rest frame of τb (τa), we obtain

cos θτbb τb = − cos θτbbB (6.9)

cos θτaa τa = − cos θτaaB (6.10)

Thus, m2
ab in terms of cos θτbb τb and cos θτaa τa simply becomes

m2
ab =

1

8m2
B

(
(m2

C −m2
B −m2

τ ) +
√
λCτB cos θτbb τb

)
×
(

(m2
B −m2

A +m2
τ ) +

√
λBτA cos θτaa τa

)(
1− cos θBab

) (6.11)

As B is a scalar, cos θBab will still have a flat distribution when spins are taken into

account. The non-flat distributions of cos θτbb τb and cos θτaa τa are given by (6.6) and (6.7),

respectively.

It is important to note that choosing S′ as the rest frame of B implies that tau

helicities are defined relative to this frame. As helicity is a frame dependent quantity,

an observer in the rest frame of B might disagree with an observer in the lab frame

as to what helicity distribution an observed event belongs to. (They will, of course,

always agree on the invariant mass value.) However, assuming that the distribution of

B directions in the lab frame is symmetric under reflection through the origin, any such

‘helicity disagreement’ should cancel statistically, making the distributions derived here

valid also in the lab frame. In the limit mτ = 0 the derived distributions are valid in

all frames as tau helicity corresponds to chirality, which is frame independent.

113



6. The Spin Dependent mab Distribution

The rest of the dΓ/dmab derivation follows in close analogy with the spin-0 deriva-

tion. To keep notation simple we define the variables

u ≡
1 + cos θτbbτb

2

v ≡
1 + cos θτaaτa

2

w ≡
1− cos θBab

2

(6.12)

along with the mass dependent parameters

bC ≡
1

2

(
m2
C −m2

B −m2
τ√

λCτB
− 1

)
bB ≡

1

2

(
m2
B −m2

A +m2
τ√

λBτA
− 1

)
M2 ≡

√
λCτB

√
λBτA

m2
B

(6.13)

We note that the variables defined in (6.12) are different from the variables defined

in (4.20), while the mass parameters of (6.13) are identical to those defined in (4.21).

These parameters are positive for any choice of masses allowed by on-shell kinematics

(mC > mB + mτ and mB > mA + mτ ). In terms of the variables and parameters

defined above, m2
ab can be expressed as

m2
ab = M2 (bC + u) (bB + v)w , 0 ≤ (u, v, w) ≤ 1 (6.14)

6.2.3 Variable changes and integrations

While the spin-0 approximation ensured that all of the variables u, v and w had flat

distributions, this is now only true for w. By change of variables in (6.6) and (6.7) we

find the distributions for u and v to be

1

Γ

dΓ

du
= 1− β Pβ(2u− 1) ≡ fβ Pβ (u) (6.15)

1

Γ

dΓ

dv
= 1− αPα(2v − 1) ≡ gαPα(v) (6.16)
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6.2 The derivation

Using indices β, α = ± and Pβ,Pα = R/L, and keeping in mind that fβ Pβ (u) and gαPα(v)

describe the decays of τb and τa respectively, we write out the explicit distributions

τb =

 τ−L , τ
+
R ⇒ f−L(u) = f+R(u) = 2(1− u)

τ−R , τ
+
L ⇒ f−R(u) = f+L(u) = 2u

(6.17)

τa =

 τ−L , τ
+
R ⇒ g−L(v) = g+R(v) = 2(1− v)

τ−R , τ
+
L ⇒ g−R(v) = g+L(v) = 2v

(6.18)

For a given choice of charges and helicities for τa and τb the differential decay rate w.r.t.

the variables (u, v, w) can now be expressed as

1

Γ

d3Γ

dudv dw
= θ̂(u) θ̂(v) θ̂(w) fβ Pβ (u) gαPα(v) (6.19)

Here we once again make use of the simplified step function notation

θ̂(x) ≡ θ(x)θ(1− x) (6.20)

By (6.14) we now perform the variable change from (u, v, w) to (u, v,m2
ab), resulting in

the distribution

1

Γ

d3Γ

dudv dm2
ab

= θ̂(u) θ̂(v) θ̂

(
m2
ab

(bC + u)(bB + v)M2

)
fβ Pβ (u) gαPα(v)

(bC + u)(bB + v)M2
(6.21)

Finally, by defining the variables x and y as

x ≡ bC + u (6.22)

y ≡ bB + v (6.23)

and performing yet another variable change, we end up with the expression

1

Γ

d3Γ

dx dy dm2
ab

= θ̂(x− bC) θ̂(y − bB) θ̂

(
m2
ab

xyM2

)
fβ Pβ (x− bC) gαPα(y − bB)

xyM2
(6.24)

To obtain the mab distribution for a specific choice of tau charges (β, α) and helic-

ities (Pβ,Pα) we must integrate (6.24) over x and y. Just as for the spin-0 derivation,

the step functions impose the following constraints on the ranges of x and y:

bC < x < bC + 1 (6.25)

bB < y < bB + 1 (6.26)

m2
ab

xM2
< y (6.27)
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6. The Spin Dependent mab Distribution

(a) (b) (c) (d) (e)

Figure 6.3: The five integration regions of the xy plane (grey).

In other words, when including spin in the derivation the integrand changes relative to

the spin-0 case while the integration limits remain the same. The integration regions

of the xy plane are illustrated in fig 6.3, where

x1 = bC y1 = bB

x2 = bC + 1 y2 = bB + 1

and they grey areas represent the regions satisfying (6.27). As before we must consider

the two mass scenarios

bC < bB Scenario I

bB < bC Scenario II

The correspondence between different integration regions and m2
ab ranges for the re-

sulting dΓ/dm2
ab expressions can be found in Tables 4.1 and 4.2 for scenarios I and II,

respectively. All integrations take the general form∫∫
region (x)

fβ Pβ (x− bC) gαPα(y − bB)

x yM2
dy dx (6.28)

As particles C and A are taken to be neutral (corresponding to (6.2)), charge con-

servation implies that τa and τb are oppositely charged. We therefore only solve (6.28)

for choices of fβ Pβ and gαPα that satisfy α = −β. Performing all necessary integra-

tions is straightforward but somewhat tedious, so further details will be omitted. The

resulting m2
ab distributions for the two mass scenarios are given in Tables 6.1 and 6.2.

All terms referred to in the tables are collected in a list following the discussion of the

results. The terms’ lower-case indices refer back to what xy integration region they

result from. Since each term is zero outside the mab range dictated by its integration

region, for any mab value only one of the four terms will contribute to dΓ/ dm2
ab.
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6.2 The derivation

Table 6.1:
1

Γ

dΓ

dm2
ab

for mass scenario I (bC < bB)

(τb , τa) fβ Pβ (u) gαPα(v) 1
Γ

dΓ
dm2

ab

(τ−L , τ
+
R ) (τ+

R , τ
−
L ) 2(1− u) 2(1− v) Aa +Ab +Ac +Ae

(τ−L , τ
+
L ) (τ+

R , τ
−
R ) 2(1− u) 2v Ba +Bb +Bc +Be

(τ−R , τ
+
R ) (τ+

L , τ
−
L ) 2u 2(1− v) Ca + Cb + Cc + Ce

(τ−R , τ
+
L ) (τ+

L , τ
−
R ) 2u 2v Da +Db +Dc +De

Table 6.2:
1

Γ

dΓ

dm2
ab

for mass scenario II (bB < bC)

(τb , τa) fβ Pβ (u) gαPα(v) 1
Γ

dΓ
dm2

ab

(τ−L , τ
+
R ) (τ+

R , τ
−
L ) 2(1− u) 2(1− v) Aa +Ab +Ad +Ae

(τ−L , τ
+
L ) (τ+

R , τ
−
R ) 2(1− u) 2v Ba +Bb +Bd +Be

(τ−R , τ
+
R ) (τ+

L , τ
−
L ) 2u 2(1− v) Ca + Cb + Cd + Ce

(τ−R , τ
+
L ) (τ+

L , τ
−
R ) 2u 2v Da +Db +Dd +De
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6. The Spin Dependent mab Distribution

6.3 Results and discussion

The invariant mass distributions are plotted in Figures 6.4 and 6.5, along with the

familiar triangle distribution of a corresponding dilepton cascade (identical for all lepton

helicities). Once again we note that there is a factor 2mab relating the mab distributions

plotted in the figures to the m2
ab distributions given in the tables. All distributions have

associated labels of the general form (τb , τa), specifying the exact tau content of the

cascade. Due to the CP invariance of tau decays each distribution represents two

possible choices for (τb , τa).

Studying the plots in Fig. 6.4 we first note that cascades with right-handed taus

and left-handed antitaus result in relatively high invariant masses (red distribution).

This is what one would expect as the scalar (a, b) is primarily emitted along the tau

direction in such decays, leading to large scalar energies. Correspondingly, in decays of

left-handed taus and right-handed antitaus the scalar is usually emitted opposite to the

tau direction, resulting in a distribution shifted towards lower invariant masses (light

blue distribution).

For the two distributions containing taus from both ‘categories’ mentioned above,

the difference is generally much smaller (yellow and dark blue distributions). Their

relative separation is mostly due to the helicity of the highest energy tau as seen from

the rest frame of B. Which of the two taus is the most energetic one is given by the

mass scenario: In the rest frame of B the energies of τb and τa are

EBτb =
m2
C −m2

B −m2
τ

2mB
(6.29)

EBτa =
m2
B −m2

A +m2
τ

2mB
(6.30)

Thus, for mass scenario I we have

bC < bB ⇔ m2
B <

1

2
(m2

C +m2
A)−m2

τ ⇔ EBτa < EBτb (6.31)

while mass scenario II gives

bC > bB ⇔ m2
B >

1

2
(m2

C +m2
A)−m2

τ ⇔ EBτa > EBτb (6.32)

This explains why the yellow and dark blue distributions ‘switch places’ when going

from low to high values of mB. The relative difference between these two distributions
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6.3 Results and discussion

vanishes when both (mC −mB) and (mB −mA) are large compared to mτ , as can be

seen in Fig. 6.4(b)

In order to illustrate the behaviour of the analytical expressions in all four mab

ranges, a set of masses where all mass differences are small has been chosen for Fig. 6.5(a).

Finally we note that an unweighted, normalised sum of all four distributions reproduce

the result obtained in the spin-0 approximation (Fig. 6.5(b)). Below we give a list of

all terms contributing to dΓ/ dm2
ab, as referred to in Tables 6.1 and 6.2.
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6. The Spin Dependent mab Distribution

(a) mC = 180, mB = 100, mA = 97 (GeV)

scenario I

(b) mC = 180, mB = 135, mA = 97 (GeV)

scenario I

(c) mC = 180, mB = 177, mA = 97 (GeV)

scenario II

Figure 6.4: (1/Γ)( dΓ/dmab) plotted for three different sets of masses. The labels specify-

ing the tau content are of the general form (τb , τa) and L/R indices refer to helicity. Dotted

vertical lines mark the points where the functional form of the distributions change. In (b)

the yellow and dark blue distributions are almost identical. All plots use mτ = 1.78 GeV.
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6.3 Results and discussion

(a) mC = 180, mB = 176, mA = 174 (GeV)

scenario I

(b) mC = 180, mB = 100, mA = 97 (GeV)

scenario I

Figure 6.5: In (a) the set of masses is chosen such that the general behaviour of

(1/Γ)( dΓ/dmab) for all four mab ranges is illustrated. In (b) an unweighted sum of the

four helicity dependent distributions is included (black), reproducing the spin-0 distribu-

tion. Both plots use mτ = 1.78 GeV.
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6. The Spin Dependent mab Distribution

Aa =
4

M2

{
(bB + 1)(bC + 1) ln

(
bB + 1

bB

)
ln

(
bC + 1

bC

)

− (bB + 1) ln

(
bB + 1

bB

)
− (bC + 1) ln

(
bC + 1

bC

)
+ 1

}

for

{
0 < m2

ab < bB bCM
2 scenario I

0 < m2
ab < bB bCM

2 scenario II

Ab =
4

M2

{
1

2
(bB + 1)(bC + 1)

([
ln

(
bB + 1

bB

)]2

−
[
ln

(
(bB + 1)bCM

2

m2
ab

)]2
)

+ (bB + 1)(bC + 1) ln

(
bB + 1

bB

)
ln

(
bB(bC + 1)M2

m2
ab

)
+
(m2

ab

M2
+ 2bBbC + bB + bC

)
ln

(
bBbCM

2

m2
ab

)
− (bC + 1) ln

(
bC + 1

bC

)
− (bB + 1) ln

(
bB + 1

bB

)
+
( m2

ab

bBbCM2
− 1
)(

3bBbC + bB + bC

)
+ 1

}

for

{
bB bCM

2 < m2
ab < (bB + 1) bCM

2 scenario I

bB bCM
2 < m2

ab < bB (bC + 1)M2 scenario II

Ac =
4

M2

{
1

2
(bB + 1)(bC + 1)

[
ln

(
bB + 1

bB

)]2

+ (bB + 1)(bC + 1) ln

(
bB + 1

bB

)
ln

(
bB(bC + 1)M2

m2
ab

)
− (bC + 1) ln

(
bB(bC + 1)M2

m2
ab

)
−
(m2

ab

M2
+ 2(bB + 1)(bC + 1)

)
ln

(
bB + 1

bB

)
+

m2
ab

bBM2
+ 2(bC + 1)

}

for
{

(bB + 1) bCM
2 < m2

ab < bB (bC + 1)M2 scenario I

122



6.3 Results and discussion

Ad =
4

M2

{
1

2
(bB + 1)(bC + 1)

[
ln

(
(bB + 1)(bC + 1)M2

m2
ab

)]2

− 1

2
(bB + 1)(bC + 1)

[
ln

(
(bB + 1)bCM

2

m2
ab

)]2

−
(m2

ab

M2
+ 2bBbC + bB + 2bC + 1

)
ln

(
bC + 1

bC

)
− (bB + 1) ln

(
(bB + 1)(bC + 1)M2

m2
ab

)
+

m2
ab

bCM2
+ 2(bB + 1)

}

for
{
bB (bC + 1)M2 < m2

ab < (bB + 1) bCM
2 scenario II

Ae =
4

M2

{
1

2
(bB + 1)(bC + 1)

[
ln

(
(bB + 1)(bC + 1)M2

m2
ab

)]2

−
(m2

ab

M2
+ 2(bB + 1)(bC + 1)

)
ln

(
(bB + 1)(bC + 1)M2

m2
ab

)
+ 3
(

(bB + 1)(bC + 1)−
m2
ab

M2

) }

for

{
bB (bC + 1)M2 < m2

ab < (bB + 1) (bC + 1)M2 scenario I

(bB + 1) bCM
2 < m2

ab < (bB + 1) (bC + 1)M2 scenario II
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Ba =
4

M2

{
(bC + 1) ln

(
bC + 1

bC

)
+ bB ln

(
bB + 1

bB

)

− bB(bC + 1) ln

(
bB + 1

bB

)
ln

(
bC + 1

bC

)
− 1

}

for

{
0 < m2

ab < bB bCM
2 scenario I

0 < m2
ab < bB bCM

2 scenario II

Bb =
4

M2

{
1

2
bB(bC + 1)

([
ln

(
(bB + 1)bCM

2

m2
ab

)]2

−
[
ln

(
bB + 1

bB

)]2
)

− bB(bC + 1) ln

(
bB + 1

bB

)
ln

(
bB(bC + 1)M2

m2
ab

)
−
(m2

ab

M2
+ 2bBbC + bB

)
ln

(
bBbCM

2

m2
ab

)
+ (bC + 1) ln

(
bC + 1

bC

)
+ bB ln

(
bB + 1

bB

)
+ 3
(
bBbC −

m2
ab

M2

)
−

m2
ab

bCM2
+ bB − 1

}

for

{
bB bCM

2 < m2
ab < (bB + 1) bCM

2 scenario I

bB bCM
2 < m2

ab < bB (bC + 1)M2 scenario II

Bc =
4

M2

{
− 1

2
bB(bC + 1)

[
ln

(
bB + 1

bB

)]2

− bB(bC + 1) ln

(
bB + 1

bB

)
ln

(
bB(bC + 1)M2

m2
ab

)
+ (bC + 1) ln

(
bB(bC + 1)M2

m2
ab

)
+
(m2

ab

M2
+ 2bBbC + 2bB + bC + 1

)
ln

(
bB + 1

bB

)
−

m2
ab

(bB + 1)M2
− 2(bC + 1)

}

for
{

(bB + 1) bCM
2 < m2

ab < bB (bC + 1)M2 scenario I
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Bd =
4

M2

{
1

2
bB(bC + 1)

[
ln

(
(bB + 1)bCM

2

m2
ab

)]2

− 1

2
bB(bC + 1)

[
ln

(
(bB + 1)(bC + 1)M2

m2
ab

)]2

+
(m2

ab

M2
+ 2bBbC + bB + bC + 1

)
ln

(
bC + 1

bC

)
+ bB ln

(
(bB + 1)(bC + 1)M2

m2
ab

)
−

m2
ab

bCM2
− 2bB − 1

}

for
{
bB (bC + 1)M2 < m2

ab < (bB + 1) bCM
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Be =
4

M2

{
− 1

2
bB(bC + 1)

[
ln

(
(bB + 1)(bC + 1)M2

m2
ab

)]2

+
(m2

ab

M2
+ 2bBbC + 2bB + bC + 1

)
ln

(
(bB + 1)(bC + 1)M2

m2
ab

)
+ 2
(m2

ab

M2
− (bB + 1)(bC + 1)

)
+ bB

( m2
ab

(bB + 1)M2
− (bC + 1)

) }

for

{
bB (bC + 1)M2 < m2

ab < (bB + 1) (bC + 1)M2 scenario I

(bB + 1) bCM
2 < m2

ab < (bB + 1) (bC + 1)M2 scenario II
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Ca =
4

M2

{
(bB + 1) ln

(
bB + 1

bB
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+ bC ln
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bC + 1
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)

− (bB + 1)bC ln
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− 1
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2 < m2
ab < (bB + 1) bCM

2 scenario I

bB bCM
2 < m2

ab < bB (bC + 1)M2 scenario II

Cc =
4

M2

{
− 1

2
(bB + 1)bC

[
ln

(
bB + 1

bB

)]2

− (bB + 1)bC ln

(
bB + 1

bB

)
ln

(
bB(bC + 1)M2

m2
ab

)
+ bC ln

(
bB(bC + 1)M2

m2
ab

)
+
(m2

ab

M2
+ 2bBbC + bB + 2bC + 1

)
ln

(
bB + 1

bB

)
−

m2
ab

bBM2
− 2bC − 1

}

for
{

(bB + 1) bCM
2 < m2

ab < bB (bC + 1)M2 scenario I
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Cd =
4

M2

{
1

2
(bB + 1)bC

[
ln

(
(bB + 1)bCM

2

m2
ab

)]2

− 1

2
(bB + 1)bC

[
ln

(
(bB + 1)(bC + 1)M2

m2
ab

)]2

+
(m2

ab

M2
+ 2bBbC + 2bC

)
ln

(
bC + 1

bC

)
+ (bB + 1) ln

(
(bB + 1)(bC + 1)M2

m2
ab

)
−

m2
ab

(bC + 1)M2
− 2(bB + 1)

}

for
{
bB (bC + 1)M2 < m2

ab < (bB + 1) bCM
2 scenario II

Ce =
4

M2

{
− 1

2
(bB + 1)bC

[
ln

(
(bB + 1)(bC + 1)M2

m2
ab

)]2

+
(m2

ab

M2
+ 2bBbC + bB + 2bC + 1

)
ln

(
(bB + 1)(bC + 1)M2

m2
ab

)
+ 2
(m2

ab

M2
− (bB + 1)(bC + 1)

)
+ bC

( m2
ab

(bC + 1)M2
− (bB + 1)

) }

for

{
bB (bC + 1)M2 < m2

ab < (bB + 1) (bC + 1)M2 scenario I

(bB + 1) bCM
2 < m2

ab < (bB + 1) (bC + 1)M2 scenario II

127



6. The Spin Dependent mab Distribution

Da =
4

M2

{
bBbC ln

(
bB + 1

bB

)
ln

(
bC + 1

bC

)

− bB ln

(
bB + 1

bB

)
− bC ln

(
bC + 1

bC

)
+ 1

}

for

{
0 < m2

ab < bB bCM
2 scenario I

0 < m2
ab < bB bCM

2 scenario II

Db =
4

M2

{
1

2
bBbC

([
ln

(
bB + 1

bB

)]2

−
[
ln

(
(bB + 1)bCM

2

mab

)]2
)

+ bBbC ln

(
bB + 1

bB

)
ln

(
bB(bC + 1)M2

m2
ab

)
+
(m2

ab

M2
+ 2bBbC

)
ln

(
bBbCM

2

m2
ab

)
− bB ln

(
bB + 1

bB

)
− bC ln

(
bC + 1

bC

)
+ 3
(m2

ab

M2
− bBbC

)
+ 1

}

for

{
bB bCM

2 < m2
ab < (bB + 1) bCM

2 scenario I

bB bCM
2 < m2

ab < bB (bC + 1)M2 scenario II

Dc =
4

M2

{
1

2
bBbC

[
ln

(
bB + 1

bB

)]2

+ bBbC ln

(
bB + 1

bB

)
ln

(
bB(bC + 1)M2

m2
ab

)
− bC ln

(
bB(bC + 1)M2

m2
ab

)
−
(m2

ab

M2
+ 2bBbC + bB + bC

)
ln

(
bB + 1

bB

)
+

m2
ab

(bB + 1)M2
+ 2bC + 1

}

for
{

(bB + 1) bCM
2 < m2

ab < bB (bC + 1)M2 scenario I
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Dd =
4

M2

{
1

2
bBbC

[
ln

(
(bB + 1)(bC + 1)M2

m2
ab

)]2

− 1

2
bBbC

[
ln

(
(bB + 1)bCM

2

m2
ab

)]2

−
(m2

ab

M2
+ 2bBbC + bC

)
ln

(
bC + 1

bC

)
− bB ln

(
(bB + 1)(bC + 1)M2

m2
ab

)
+

m2
ab

(bC + 1)M2
+ 2bB + 1

}

for
{
bB (bC + 1)M2 < m2

ab < (bB + 1) bCM
2 scenario II

De =
4

M2

{
1

2
bBbC

[
ln

(
(bB + 1)(bC + 1)M2

m2
ab

)]2

−
(m2

ab

M2
+ 2bBbC + bB + bC

)
ln

(
(bB + 1)(bC + 1)M2

m2
ab

)
+
(

3bBbC + 2bB + 2bC + 1
)(

1−
m2
ab

(bB + 1)(bC + 1)M2

) }

for

{
bB (bC + 1)M2 < m2

ab < (bB + 1) (bC + 1)M2 scenario I

(bB + 1) bCM
2 < m2

ab < (bB + 1) (bC + 1)M2 scenario II
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6. The Spin Dependent mab Distribution

6.4 The limit mτ = 0

As for the spin-0 distribution in Section 4.4, taking mτ = 0 implies

bC = 0

bB = 0 (6.33)

M2 =
(m2

C −m2
B)(m2

B −m2
A)

m2
B

Consequently, the distinction between the two mass scenarios disappears and the mab

range corresponding to integration region e) of the xy plane now covers the entire

allowed mab range

0 < mab < M (6.34)

That is, only the last terms of the exact distributions (Ae, Be, Ce, De) ‘survive’ as we

take the taus to be massless. Furthermore, as bB and bC vanish the two terms Be and

Ce become identical, thus merging two of the four distributions contained in the exact

result. When we take the above simplifications into account the helicity dependent mab

distributions reduce to

1.
(
τb , τa

)
=
(
τ−L , τ

+
R

)
,
(
τ+
R , τ

−
L

)
1

Γ

dΓ

dmab
=

8mab

M2

{
1

2

[
ln

(
M2

m2
ab

)]2

−
(

2 +
m2
ab

M2

)
ln

(
M2

m2
ab

)
+ 3

(
1−

m2
ab

M2

)}

2.
(
τb , τa

)
=
(
τ−R , τ

+
R

)
,
(
τ+
L , τ

−
L

)
,
(
τ−L , τ

+
L

)
,
(
τ+
R , τ

−
R

)
1

Γ

dΓ

dmab
=

8mab

M2

{(
1 +

m2
ab

M2

)
ln

(
M2

m2
ab

)
+ 2

(
m2
ab

M2
− 1

)}

3.
(
τb , τa

)
=
(
τ−R , τ

+
L

)
,
(
τ+
L , τ

−
R

)
1

Γ

dΓ

dmab
=

8mab

M2

{(
1−

m2
ab

M2

)
−

m2
ab

M2
ln

(
M2

m2
ab

)}

for 0 < m2
ab < M2
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6.5 Measuring SUSY mixing parameters

In Figures 6.6 and 6.7 these approximate distributions (solid curves) are compared to

the exact results (dashed curves). As expected, we see good agreement as long as the

mass differences (mC − mB) and (mB − mA) are not close to mτ (Fig. 6.6(b)). If

either one or both of these mass differences are small, the approximate distributions

are enlarged for minimum and maximum mab values relative to the exact distributions

(Figs. 6.6(a), 6.6(c) and 6.7(a)). As discussed in Section 4.4, this effect is due to the

energy ranges of particles a and b being expanded when we take mτ = 0.

Finally, in Fig. 6.7(b) an unweighted sum of the three distributions is included

(black) reproducing the spin-0 distribution in the massless tau limit, which we derived

in Section 4.4. From comparison with the spin-0 distribution it is evident that the

mab distribution has a strong spin dependence. Even with spins not being measured

directly this dependence might still be exploited experimentally, as we comment on in

the following section.

6.5 Measuring SUSY mixing parameters

The perhaps most interesting feature of the spin dependent distributions is that as

long as the mass differences (mC −mB) and (mB −mA) make the tau mass negligible,

the distribution shapes are independent of mA, mB and mC . (The parameter M only

sets the overall scale.) As spins are not observed, a realistic mab distribution will be a

weighted combination of the three approximate distributions given in Section 6.4. With

the distribution shapes fixed it is therefore possible to fit an experimental distribution

using the weights as parameters. These weights will correspond to the probabilities of

producing different tau helicities at the two vertices, which again can be related to the

mixing parameters in a general SUSY theory [26, 27].

In order to be more specific we introduce some simplifying notation: First, recall

that in the limit of massless taus we may use helicity and chirality interchangeably,

keeping in mind that chirality and helicity are of opposite sign for antiparticles. The

approximate distributions numbered 1, 2 and 3 in Section 6.4 may therefore be labelled

according to tau chiralities as (Lc Lc), (Rc Lc = LcRc) and (RcRc), respectively. Thus,
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6. The Spin Dependent mab Distribution

(a) mC = 180, mB = 100, mA = 97 (GeV)

(scenario I)

(b) mC = 180, mB = 135, mA = 97 (GeV)

(scenario I)

(c) mC = 180, mB = 177, mA = 97 (GeV)

(scenario II)

Figure 6.6: (1/Γ)( dΓ/dmab) in the limit mτ = 0 (solid) compared to the exact dis-

tributions (dashed). As the taus are assumed massless the yellow and dark blue dashed

distributions merge into the solid green distribution. The functional shapes of the solid

distributions are independent of the masses mA, mB and mC .
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6.5 Measuring SUSY mixing parameters

(a) mC = 180, mB = 176, mA = 174 (GeV)

(scenario I)

(b) mC = 180, mB = 135, mA = 97 (GeV)

Figure 6.7: (1/Γ)( dΓ/ dmab) in the limit mτ = 0. In (b) an unweighted sum of the three

helicity dependent distributions is included (black), reproducing the spin-0 distribution in

the massless tau limit.

referring to the numbered distributions, we define

1.
1

Γ

dΓ

dmab
≡ f(mab)Lc Lc (light blue)

2.
1

Γ

dΓ

dmab
≡ f(mab)Rc Lc (green)

3.
1

Γ

dΓ

dmab
≡ f(mab)RcRc (red)

Second, we denote the probability of producing a right-chiral tau in the first vertex by

cos2 β, and in the second vertex by cos2 α. Consequently, the probabilities of producing

left-chiral taus in the first and second vertices are respectively sin2 β and sin2 α. A

general mab distribution might then be expressed as

f(mab)tot = cos2 β cos2 α f(mab)RcRc

+ (cos2 β sin2 α+ sin2 β cos2 α) f(mab)Rc Lc

+ sin2 β sin2 α f(mab)Lc Lc

(6.35)
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6. The Spin Dependent mab Distribution

One could in principle fit this function to an observed distribution using α and β as fit

parameters. This would measure the probabilities of producing different tau chiralities

in the two vertices, which could in turn be translated into measurements of mixing

parameters for the stau sector (τ̃L-τ̃R) and neutralino sector (W̃ 0-B̃0-H̃0) in a general

SUSY theory.

Although the idea presented above is simple enough, there are several complications

related to performing such a study. In the following we will mention a few of these

complicating aspects, referring the reader to [27] for further details. First of all, in

an experimental analysis it will be preferable to include all tau decays resulting in a

single charged hadron (‘one-prong’), not just the two-body decay into a scalar (pion)

and a neutrino. The dominant additional contributions will come from tau decays

into ρ’s and a1’s, with subsequent decays into pions. As ρ and a1 are vector mesons,

this will complicate the relation between the taus’ chiralities and the energy spectra of

the final state particles. The resulting invariant mass distributions will consequently

not be as clearly separated as in Figures 6.6 and 6.7. On the other hand, including

additional decay modes results in better statistics that may more than compensate for

this decrease in separation.

Second, selection criteria on the transverse momenta of the visible particles will shift

the invariant mass distributions towards higher mab values. Due to the soft energy

spectra of particles resulting from left-chiral taus, such criteria will have a greater

impact on f(mab)Lc Lc compared to f(mab)LcRc and f(mab)RcRc , and thus reduce the

difference between the distributions.

A third complication in performing a fit to an experimentally observed distribution

arises due to the poorly defined endpoints of f(mab)Lc Lc , f(mab)LcRc and f(mab)RcRc .

With the endpoint being difficult to determine experimentally, it may not be feasible

to use it to anchor the theoretical distributions. In [27] a solution is proposed where

one exploits the fact that the common endpoint (M) of the theoretical distributions

is (for each distribution) uniquely determined by the position of the peak. As the

peak should be well defined in an experimental distribution, one can define rescaled

theoretical distributions that all have their peaks located at the observed position while

their relative endpoints are allowed to vary. By using these rescaled distributions one

can perform the fit without prior knowledge of the endpoint position. However, as
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6.5 Measuring SUSY mixing parameters

this rescaling procedure must reproduce the total area of the observed distribution, the

total number of observed events must be well understood.
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Chapter 7

Conclusion

Supersymmetry has for many years been regarded as one of the most promising theories

for physics beyond the Standard Model. With the experiments at the LHC up and

running, the question of whether supersymmetry is manifest at the TeV scale may

soon be settled. If supersymmetric particles are detected, the next step will be to

determine masses and other parameters as precisely as possible. One way this can be

achieved is by extracting information from invariant mass distributions of the visible

particles in supersymmetric cascade decays. In this thesis, shape formulas have been

derived for distributions resulting from cascades with decaying taus in the final state.

In Chapter 4 the ditau cascade

χ̃0
2 → τ±n τ̃∓ → (π±n ν) (τ∓f χ̃0

1) → π±n ν π∓f ν χ̃0
1 (7.1)

was considered.1 An analytical expression for the mππ distribution resulting from

phase space alone was derived. Due to the energy lost to the neutrinos, the mππ

distribution is rounded and weighted towards lower invariant mass values relative to

the dilepton triangle distribution. By comparison with the distribution obtained by

setting mτ = 0, the effect of non-zero tau masses was shown only to be significant for

scenarios where (mχ̃0
2
− mτ̃ ) or (mτ̃ − mχ̃0

1
) are close to mτ . Including non-zero tau

masses leads to a slightly narrower distribution due to a more restricted range of allowed

pion energies. The mππ distribution might seem unsuited for endpoint measurements

due its slow decrease at high invariant mass values. However, with negligible tau masses

1We now return to a notation in terms of particle and sparticle labels rather than the simplified

notation used for the derivations in Chapters 4 – 6.
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7. Conclusion

the distribution shape is fixed, implying that the necessary information can be obtained

from other, more distinct features of the distribution (e.g. the maximum).

In Chapter 5 we studied the extended ditau cascade

q̃ → q χ̃0
2 → q τ±n τ̃∓ → q (π±n ν) (τ∓f χ̃0

1) → q π±n ν π∓f ν χ̃0
1 (7.2)

We derived a shape formula for the distribution of the invariant mass variable mhigh,

defined in (5.3). As in Chapter 4, the effects of particle spins were ignored. Due to the

compositeness of mhigh, the resulting distribution exhibits substantial structure, with

the shape depending strongly on the two mass differences (mχ̃0
2
− mτ̃ ) and (mτ̃ − mχ̃0

1
).

This is analogous to the corresponding distribution for the extended dilepton cas-

cade [24]. As a consistency check, the mhigh distribution was compared to the shapes

of the underlying mqπn and mqπf distributions. For intermediate to low values of mτ̃ ,

relative to the kinematically allowed range (mχ̃0
1
,mχ̃0

2
), the endpoint of the mhigh dis-

tribution is quite pronounced. For larger mτ̃ values, a ‘foot’-like structure close to the

endpoint is manifest. The mass scenarios for which this distribution foot is evident

were identified. Finally, and not surprisingly, non-zero tau masses were found to have

a nearly vanishing impact on the distribution shape as long as not both (mχ̃0
2
− mτ̃ )

and (mτ̃ −mχ̃0
1
) are close to mτ .

For Chapter 6 we returned to the cascade in (7.1), but this time incorporating

the effects of particle spins. Shape formulas were derived for the four different mππ

distributions corresponding to the four possible combinations of tau helicities. Except

for the two distributions corresponding to both taus having the same helicity, the

distribution shapes were found to be clearly separated, showing a strong dependence

on the tau helicity configuration. Further, it was verified that an unweighted sum of the

four distributions reproduces the spin-independent distribution derived in Chapter 4.

In the limit of negligible tau masses (when neither (mχ̃0
2
− mτ̃ ) nor (mτ̃ − mχ̃0

1
) are

close to mτ ) the two least separated distributions merge, leaving a total of three clearly

distinct distribution shapes. These distributions seem to be in good agreement with

corresponding distributions shown in [26]. Similar to what we found in Chapter 4, the

distribution shapes are fixed in the limit of massless taus.

The strong spin dependence in ditau cascades is a complicating aspect from the

viewpoint of mass measurements. On the other hand, this dependence may be exploited
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to extract information on the mixing parameters of the stau and gaugino sectors, as

shown in [26, 27].

The work presented here can clearly be extended in both the theoretical and the

experimental direction: On the theoretical side, shape formulas for the mlow and mqππ

distributions can be derived. When considering phase space alone, a derivation of the

mlow distribution will follow in exact analogy with the derivation of mhigh in Chapter 5.

Further, spin effects should be taken into account for all distributions. The fact that the

mhigh distribution of Chapter 5 is nearly unaffected by non-zero tau masses, indicates

that subsequent derivations safely can be performed in the limit of mτ = 0. Although

conceptually straightforward, the derivation of spin-dependent mhigh, mlow and mqππ

distributions may become quite involved due to the amount of bookkeeping necessary

to cover all integration regions for all possible helicity combinations. Furthermore, it

should be possible to derive a ‘threshold version’ of the mqππ distribution (a mqππ

distribution including arbitrary selection criteria on the mll value), as was done for the

extended dilepton cascade in [25].

From an experimental point of view, the most important extension would be to com-

pare the derived shapes to simulated data, and further investigate to what extent the

theoretical and experimental distributions will differ due to selection criteria, detector

effects, combinatorial background and other limiting factors. Additionally, the poten-

tial for extracting sparticle mass information from complete distribution fits should be

studied, similar to what was done in [22] for the extended dilepton cascade.
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Appendix A

The mac and mbc Distributions

in the Spin-0 Approximation

During the derivation of the mhigh distribution in Chapter 5 we found that the invariant

masses mac and mbc can be expressed as

m2
ac =

[
aC − (bC + v)

]
(bB + u)wM2 , 0 ≤ (u, v, w) ≤ 1 (A.1)

m2
bc = aB (bC + v) tM2 , 0 ≤ (t, v) ≤ 1 (A.2)

The angular variables t, u, v and w are defined in (5.13) and (5.21), while the mass

parameters aB, aC , bB, bC and M2 are defined in (5.14). Making use of the spin-0

approximation in which t, u, v and w all have flat distributions, the analytical expres-

sions for dΓ/ dmac and dΓ/ dmbc can be obtained in a way completely analogous to

the derivation of dΓ/ dmab in Chapter 4. In the following sections we will therefore

simply state the analytical results along with the simplified expressions found for the

limit mτ = 0.

A.1 The mac distribution in the spin-0 approximation

For the mac distribution we must differentiate between the two mass scenarios

bB < aC − (bC + 1) Scenario I

bB > aC − (bC + 1) Scenario II

Here scenario I is the most ‘common’ as scenario II only applies if mB is very close

to (mA +mτ ).
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Scenario I

1

Γ

dΓ

dmac
=



mac
M2

{
2 ln
(
bB+1
bB

)
ln
(

aC−bC
aC−(bC+1)

)}
for (1)

mac
M2

{[
ln
(

aC−bC
aC−(bC+1)

)]2
−
[
ln
(

(aC−bC)bBM
2

m2
ac

)]2

+ 2 ln
(

(aC−(bC+1))(bB+1)M2

m2
ac

)
ln
(

aC−bC
aC−(bC+1)

)} for (2)

mac
M2

{[
ln
(

aC−bC
aC−(bC+1)

)]2

+ 2 ln
(

(aC−(bC+1))(bB+1)M2

m2
ac

)
ln
(

aC−bC
aC−(bC+1)

)} for (3)

mac
M2

{[
ln
(

(aC−bC)(bB+1)M2

m2
ac

)]2
}

for (4)

(1) 0 < mac <
√

(aC − (bC + 1))bBM2

(2)
√

(aC − (bC + 1))bBM2 < mac <
√

(aC − bC)bBM2

(3)
√

(aC − bC)bBM2 < mac <
√

(aC − (bC + 1))(bB + 1)M2

(4)
√

(aC − (bC + 1))(bB + 1)M2 < mac <
√

(aC − bC)(bB + 1)M2

Scenario II

1

Γ

dΓ

dmac
=



mac
M2

{
2 ln
(
bB+1
bB

)
ln
(

aC−bC
aC−(bC+1)

)}
for (1)

mac
M2

{[
ln
(

aC−bC
aC−(bC+1)

)]2
−
[
ln
(

(aC−bC)bBM
2

m2
ac

)]2

+ 2 ln
(

(aC−(bC+1))(bB+1)M2

m2
ac

)
ln
(

aC−bC
aC−(bC+1)

)} for (2)

mac
M2

{[
ln
(

(aC−bC)(bB+1)M2

m2
ac

)]2
−
[
ln
(

(aC−bC)bBM
2

m2
ac

)]2
}

for (3)

mac
M2

{[
ln
(

(aC−bC)(bB+1)M2

m2
ac

)]2
}

for (4)
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A.1 The mac distribution in the spin-0 approximation

(1) 0 < mac <
√

(aC − (bC + 1))bBM2

(2)
√

(aC − (bC + 1))bBM2 < mac <
√

(aC − (bC + 1))(bB + 1)M2

(3)
√

(aC − (bC + 1))(bB + 1)M2 < mac <
√

(aC − bC)bBM2

(4)
√

(aC − bC)bBM2 < mac <
√

(aC − bC)(bB + 1)M2

A.1.1 The limit mτ = 0

We recall from Section 5.4 that setting the tau mass to zero has the following implica-

tions for the mass parameters:

aB =
m2
B

m2
B −m2

A

bB = 0

aC =
m2
C

m2
C −m2

B

bC = 0 (A.3)

M2 =
(m2

D −m2
C)(m2

C −m2
B)(m2

B −m2
A)

m2
Bm

2
C

Consequently, mass scenario II vanishes and the number of split points along the mac

axis is reduced, leaving only the two upper ranges of the scenario I distribution. Thus,

in the limit of massless taus the mac distribution is reduced to

1

Γ

dΓ

dmac

∣∣∣∣∣
mτ=0

=


mac
M2

{[
ln
(

aC
aC−1

)]2
+ 2 ln

(
(aC−1)M2

m2
ac

)
ln
(

aC
aC−1

)}
for (1)

mac
M2

{[
ln
(
aCM

2

m2
ac

)]2
}

for (2)

(1) 0 < mac <
√

(aC − 1)M2

(2)
√

(aC − 1)M2 < mac <
√
aCM2

The full mac distribution (black) and the mτ = 0 approximation (red) are compared

in Figure A.1, using the same sets of masses as in Chapter 5. It is worth noticing that

even though taking (mC−mB) close to mτ increases the parameter bC , the distribution

with massless taus (bC = 0) shows good agreement with the complete distribution
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A. The mac and mbc Distributions

(Fig. A.1(e)). This behaviour is explained by the fact that dΓ/dmac only depends on

bC through the difference (aC − bC), and as (mC −mB) decreases the parameter aC

increases faster than bC , making (aC − bC) ' aC a good approximation.

A.2 The mbc distribution in the spin-0 approximation

As particles b and c are produced in the decays D → c C and C → τb B → b ν B, their

invariant mass mbc is independent of the subsequent decay B → τa A. Consequently,

we expect the distribution dΓ/ dmbc to be independent of mA. To see that this is

indeed the case, despite the appearance of aB = m2
B/
√
λBτA in (A.2), we note that

aBM
2 =

m2
B√

λBτA

(m2
D −m2

C)
√
λBτA

√
λCτB

m2
Bm

2
C

=
(m2

D −m2
C)
√
λCτB

m2
C

(A.4)

Evidently the parameters for the mbc distribution could be chosen more economically,

but to ease comparison with the mac and mhigh distributions we will keep all parame-

ters as previously defined. Deriving dΓ/dmbc from (A.2), we obtain

1

Γ

dΓ

dmbc
=


2mbc

aBM2
ln

(
bC + 1

bC

)
for (1)

2mbc

aBM2
ln

(
aB(bC + 1)M2

m2
bc

)
for (2)

(1) 0 < mac <
√
aBbCM2

(2)
√
aBbCM2 < mac <

√
aB(bC + 1)M2

A.2.1 The limit mτ = 0

Since bC vanishes in the limit of massless taus, the mbc distribution reduces to

1

Γ

dΓ

dmbc

∣∣∣∣∣
mτ=0

=
2mbc

aBM2
ln

(
aBM

2

m2
bc

)
for 0 < mbc <

√
aBM2

As expected, the agreement between the complete and approximate mbc distributions

is good as long as (mC −mB) is not close to mτ (Fig. A.2).
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A.2 The mbc distribution in the spin-0 approximation

(a) mD = 550, mC = 180,

mB = 100, mA = 97 (GeV)

scenario I

(b) mD = 550, mC = 180,

mB = 110, mA = 97 (GeV)

scenario I

(c) mD = 550, mC = 180,

mB = 135, mA = 97 (GeV)

scenario I

(d) mD = 550, mC = 180,

mB = 160, mA = 97 (GeV)

scenario I

(e) mD = 550, mC = 180,

mB = 177, mA = 97 (GeV)

scenario I

(f) mD = 550, mC = 180,

mB = 176, mA = 174 (GeV)

scenario I

Figure A.1: The (1/Γ)( dΓ/ dmac) distribution (black) along with the mτ = 0 approxi-

mation (red) plotted for the same sets of masses used for mhigh in Chapter 5. The corre-

sponding distribution for a dilepton cascade is shown in grey [24].
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A. The mac and mbc Distributions

(a) mD = 550, mC = 180,

mB = 100 (GeV)

(b) mD = 550, mC = 180,

mB = 110 (GeV)

(c) mD = 550, mC = 180,

mB = 135 (GeV)

(d) mD = 550, mC = 180,

mB = 160 (GeV)

(e) mD = 550, mC = 180,

mB = 177 (GeV)

(f) mD = 550, mC = 180,

mB = 176 (GeV)

Figure A.2: The (1/Γ)( dΓ/dmbc) distribution (black) along with the mτ = 0 approxi-

mation (red) plotted for the same sets of masses used for mhigh in Chapter 5. Note that

the mbc distribution is independent of mA. The corresponding distribution for a dilepton

cascade is shown in grey [24].
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Appendix B

The Spin Dependent mab

Distribution in the Collinear

Approximation

In what follows we will illustrate an alternative derivation of the spin dependent mab

distribution in the limit of massless taus. This derivation is outlined in [26, 27] and

makes use of the ‘collinear approximation’ in which the visible tau products a and b are

assumed to move in the directions of their respective taus, viewed from the lab frame.

In Section 6.2.1 we saw that the angular distribution in the decay τb → b ν is

1

Γ

dΓ

d cos θb
=

1

2
(1− β Pβ cos θb) (B.1)

Here β = ± and Pβ = ± specify the charge and polarisation of τb, respectively, while θb

is the angle between the τb spin quantization axis and the three-momentum of b in

the τb rest frame. (In Section 6.2.1 this angle was referred to as θτbb τb . See Figure 6.2

for illustration.) The spin axis can be chosen to coincide with the τb direction in

the lab frame. With the lab-frame directions of a and b given by the directions of

their parent taus, the spin dependent mab distributions will only differ from the linear

mττ distribution due to the energy lost to the neutrinos. As noted earlier, the mττ

distribution is identical for all spin configurations. Defining the energy fractions

za ≡
Elab
a

Elab
τa

(B.2)

zb ≡
Elab
b

Elab
τb

(B.3)
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B. The Spin Dependent mab Distribution in the Collinear Approximation

we can obtain the desired mab distributions by folding the mττ distribution with the

distributions of za and zb. If we can express cos θb in terms of zb, the distribution of

zb can be found from from (B.1) by a change of variable. The procedure for deriving

the za distribution from the distribution of cos θa is completely analogous.

In finding an expression for cos θb in terms of the energy fraction zb, we start by

defining the x-axis as the common direction of plab
τb

and spin quantization in the τb rest

frame. From the definition of cos θb it now follows that

cos θb =
(pτbb )x
pτbb

(B.4)

With the lab frame and the τb rest frame being related by a boost βτ = plab
τb
/Elab

τb
along

the x-axis, we can write down the following Lorentz transformations for particle b:

Eτbb = γElab
b − βτγ(plab

b )x (B.5)

(pτbb )x = −βτγElab
b + γ(plab

b )x (B.6)

Solving (B.5) for (plab
b )x and inserting the resulting expression into (B.6) leaves us with

(pτbb )x =
Elab
b /γ − Eτbb

βτ
(B.7)

Thus, cos θb can be expressed as

cos θb =
Elab
b /γ − Eτbb
βτp

τb
b

(B.8)

By squaring the four-momentum relation Pν = Pτb − Pb and evaluating the cross term

in the rest frame of τb, we find (including the mass of b)

Eτbb =
m2
τ +m2

b

2mτ
=

mτ

2

(
1 +

m2
b

m2
τ

)
(B.9)

pτbb =
m2
τ −m2

b

2mτ
=

mτ

2

(
1−

m2
b

m2
τ

)
(B.10)

In addition, the term Elab
b /γ appearing in the numerator in (B.8) can be rewritten as

Elab
b

γ
=

mτ

2

(
2Elab

b

mτγ

)
=

mτ

2

(
2
Elab
b

Elab
τb

)
=

mτ

2

(
2 zb
)

(B.11)
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By inserting the results of (B.9) – (B.11) into (B.8) and cancelling the common factor

mτ/2 we arrive at

cos θb =
2 zb − 1−m2

b/m
2
τ

βτ
(
1−m2

b/m
2
τ

) (B.12)

As we have assumed b to me massless in all previous derivations, we now drop the terms

m2
b/m

2
τ . (If b is a pion, m2

b/m
2
τ ∼ 0.6 %.) Further, going to the collinear approximation

corresponds to taking βτ → 1. We are then left with the simple relation

cos θ = 2 zb − 1 (B.13)

Using (B.13) to perform a change of variable in (B.1) we find the zb distribution in

the collinear limit:

1

Γ

dΓ

dzb
= 1− β Pβ (2 zb − 1) (B.14)

Similarly, the distribution of za = (Elab
a /Elab

τa ) for the decay τa → a ν is given by

1

Γ

dΓ

dza
= 1− αPα (2 za − 1) (B.15)

where α = ± and Pα = ± specify the charge and polarisation of τa. Due to the assumed

collinearity in the lab frame, we have that

cos θlab
ab = cos θlab

ττ (B.16)

With the taus treated as massless in the lab frame, the invariant mass m2
ab is related

to the ditau invariant mass m2
ττ by

m2
ab = 2Elab

a Elab
b

(
1− cos θlab

ab

)
= 2 za zbE

lab
τa Elab

τb

(
1− cos θlab

ττ

)
= za zbm

2
ττ

(B.17)

The distribution of the squared ditau mass is simply

1

Γ

dΓ

dm2
ττ

=
1

M2
(B.18)

which corresponds to the well-known linear distribution of mττ . Here M2 denotes the

maximum value of m2
ττ , given by

M2 =
(m2

C −m2
B)(m2

B −m2
A)

m2
B

(B.19)
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B. The Spin Dependent mab Distribution in the Collinear Approximation

As the various normalised differential decay rates are nothing but probability den-

sity functions, and the variables m2
ab, m

2
ττ , za and zb are related by (B.17), the desired

m2
ab distribution can be obtained by folding (1/Γ)( dΓ/dm2

ττ ) with the za and zb dis-

tributions. For notational convenience we define

1

Γ

dΓ

dm2
ab

≡ f(m2
ab) (B.20)

1

Γ

dΓ

dza
≡ ga(za) (B.21)

1

Γ

dΓ

dzb
≡ gb(zb) (B.22)

1

Γ

dΓ

dm2
ττ

≡ h(m2
ττ ) (B.23)

The probability of observing m2
ab in the range [m2

ab , m
2
ab+ dm2

ab ] can now be expressed

as [30]

f(m2
ab) dm2

ab =

∫∫∫
dS

ga(za) gb(zb)h(m2
ττ ) dm2

ττ dzb dza (B.24)

where integration is over the infinitesimal volume dS of (za, zb,m
2
ττ ) space that corre-

sponds to m2
ab values in [m2

ab , m
2
ab + dm2

ab ]. As we specify the order of integration we

get

f(m2
ab) dm2

ab =

1∫
m2
ab

M2

ga(za)

1∫
m2
ab

za M2

gb(zb)

m2
ab+dm2

ab
za zb∫
m2
ab

za zb

h(m2
ττ ) dm2

ττ dzb dza (B.25)

From (B.18) we know that h(m2
ττ ) = 1/M2, which makes the integration over m2

ττ

trivial:

m2
ab+dm2

ab
za zb∫
m2
ab

za zb

h(m2
ττ ) dm2

ττ =
1

M2

dm2
ab

za zb
(B.26)

Inserting this result back into (B.25) we see that m2
ab is distributed according to

f(m2
ab) =

1

M2

1∫
m2
ab

M2

1∫
m2
ab

za M2

ga(za) gb(zb)
1

za zb
dzb dza (B.27)

150



Obtaining the m2
ab distribution for various combinations of tau charges and helicities

is now just a matter of inserting the corresponding za and zb distributions (Equa-

tions (B.14) and (B.15)) and perform the remaining integrations. The explicit ga(za)

and gb(zb) expressions for the different tau configurations are are given below:

τb =

 τ−L , τ
+
R ⇒ gb(zb) = 2 (1− zb)

τ−R , τ
+
L ⇒ gb(zb) = 2 zb

(B.28)

τa =

 τ−L , τ
+
R ⇒ ga(za) = 2 (1− za)

τ−R , τ
+
L ⇒ ga(za) = 2 za

(B.29)

We recall that particles A and C are assumed to be neutral, implying that τa and τb

must be of opposite charge. As integrating (B.27) for various choices of ga(za) and

gb(zb) is straightforward, further details will be omitted.

After all integrations have been performed the spin dependent m2
ab distributions

in the collinear approximation are obtained. Returning to the notation of differential

decay rates and expressing the distributions in terms of mab (rather than m2
ab), we

have:

1.
(
τb , τa

)
=
(
τ−L , τ

+
R

)
,
(
τ+
R , τ

−
L

)
1

Γ

dΓ

dmab
=

8mab

M2

{
1

2

[
ln

(
M2

m2
ab

)]2

−
(

2 +
m2
ab

M2

)
ln

(
M2

m2
ab

)
+ 3

(
1−

m2
ab

M2

)}

2.
(
τb , τa

)
=
(
τ−R , τ

+
R

)
,
(
τ+
L , τ

−
L

)
,
(
τ−L , τ

+
L

)
,
(
τ+
R , τ

−
R

)
1

Γ

dΓ

dmab
=

8mab

M2

{(
1 +

m2
ab

M2

)
ln

(
M2

m2
ab

)
+ 2

(
m2
ab

M2
− 1

)}

3.
(
τb , τa

)
=
(
τ−R , τ

+
L

)
,
(
τ+
L , τ

−
R

)
1

Γ

dΓ

dmab
=

8mab

M2

{(
1−

m2
ab

M2

)
−

m2
ab

M2
ln

(
M2

m2
ab

)}

for 0 < m2
ab < M2
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B. The Spin Dependent mab Distribution in the Collinear Approximation

As expected, the above distributions are identical to those derived in Section 6.4, where

further discussion of these results can be found.
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Appendix C

The Differential Decay Rate

As the main quantity of interest in this thesis is the differential decay rate, we present

here an outline of how this quantity is derived from field theory. For this purpose we

first briefly introduce the Interaction Picture of quantum mechanics, along with the

concept of the S-matrix. The following treatment is largely based on Mandl & Shaw [2].

C.1 The Interaction Picture

When treating particle interactions it is convenient to work in the so called Interaction

Picture (I.P.). This picture is based on a division of the Hamiltonian H into a free part

H0 describing free fields, and an interaction part HI :

H = H0 + HI (C.1)

The advantage of employing the interaction picture is that the time evolution of a

system is split between states and operators: operators evolve according to H0, while

states are evolved by HI . More precisely, the equation of motion for states is the I.P.

version of the Scrödinger equation, given by

i
d

dt
|Φ(t)〉 = HI(t) |Φ(t)〉 (C.2)

while for operators the equation of motion is the I.P. version of the Heisenberg equation

i
d

dt
O(t) =

[
O(t) , H0

]
(C.3)
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C. The Differential Decay Rate

In what follows we will focus on the time evolution of states. With the initial condition

that the system is in a well-defined state |i〉 at time t = t0, that is |Φ(t0)〉 = |i〉, a

formal solution of (C.2) is

|Φ(t)〉 = U(t) |i〉 = T exp

−i t∫
t0

dt′HI(t
′)

 |i〉 (C.4)

Here T denotes time-ordering of the operator products HI(t
′)HI(t

′′)(. . .) resulting from

expanding the exponential. As HI(t) is Hermitian, it follows that U(t) is unitary. Thus,

the normalisation of states is preserved under time evolution by U(t):

〈Ψ(t) |Ψ(t)〉 = 〈i|U †(t)U(t) |i〉 = 〈i|U−1(t)U(t) |i〉 = 〈i | i〉 = 1 (C.5)

C.2 The S-matrix

For a particle interaction we are interested in connecting the known initial state ‘long’

before the interaction (relative to the interaction time span)

|Φ(−∞)〉 = |i〉 (C.6)

with the state ‘long’ after the interaction, |Φ(∞)〉. For this purpose we define the

S-matrix to be the operator evolving states from t = −∞ to t =∞:

|Φ(∞)〉 = S |Φ(−∞)〉 = S |i〉 (C.7)

In this definition |Φ(∞)〉 contains all possible final states that can result from |i〉
undergoing the interaction given by HI(t). Note that S is nothing but a special version

of the unitary operator U(t) (defined in (C.4)) for the case t0 = −∞ and t = ∞. If

we let a specific final state be denoted |f〉, the probability of observing the system in

exactly this state long after the interaction is given by∣∣ 〈f |Φ(∞)〉
∣∣2 =

∣∣ 〈f |S |i〉 ∣∣2 ≡ |Sfi|2 (C.8)

where we have defined the S-matrix element Sfi. It is from this probability that we

will obtain observables like cross sections and decay rates. With the specific final states

|f〉 forming a complete, orthonormal set of states, |Φ(∞)〉 can be expanded as

|Φ(∞)〉 =
∑
f

|f〉 〈f |Φ(∞)〉 =
∑
f

Sfi |f〉 (C.9)
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C.2 The S-matrix

Using this expansion we can see that the unitarity of S implies conservation of proba-

bility:
1 = 〈i | i〉 = 〈i|S†S |i〉 = 〈Φ(∞) |Φ(∞)〉

=
(∑

f ′

〈
f ′
∣∣S∗f ′i)(∑

f

Sfi |f〉
)

=
∑
f ′

∑
f

S∗f ′i Sfi δf ′f

=
∑
f

|Sfi|2

(C.10)

As stated earlier, we are interested in obtaining the probability |Sfi|2 for a specific

process |i〉 → |f〉. From the definition of U(t) in (C.4) we know that S can be expressed

as

S = T exp

−i ∞∫
−∞

dt′HI(t
′)

 (C.11)

By writing S in terms of Hamiltonian densities rather than Hamiltonians, using

HI(t) =

∫
d3xHI(t) (C.12)

we arrive at an explicitly covariant expression:

S = T exp

(
−i
∫

d4xHI(t
′)

)

= 1 +

∞∑
n=1

(−i)n

n!

∫
. . .

∫
d4x1 . . . d4xn T

{
HI(x1) . . .HI(xn)

} (C.13)

The above expansion of the S-matrix is known as the Dyson expansion. It forms the

basis for doing calculations in perturbation theory, as, given a small interaction energy

of HI , the series can be truncated when the desired accuracy is obtained.

There are, however, several complications connected to extracting the desired ma-

trix element 〈f |S |i〉, and we will just briefly mention some here. First, the initial

and final states |i〉 and |f〉 used are stationary states of the free field Hamiltonian H0,

which describes fields as non-interacting. Using these states may seem invalid as we

are developing a formalism for particle interactions. However, this conceptual difficulty

can be remedied by assuming that the interaction only is of importance when the par-

ticles are relatively close together, such that HI → 0 when t → ∞. Second, the fields
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C. The Differential Decay Rate

contained in HI(x) are subject to normal-ordering (absorption operators to the right

of creation operators), thus to be able to expand S in a meaningful way we must know

how to deal with time-ordered products of normal-ordered operators. The solution to

this problem is found in Wick’s theorem, where it is shown that such time-orderings can

be expanded to give sums of normal-ordered operator products combined with vacuum

expectation values of time-ordered operators. A general term in this sum will thus

contain normal-ordered annihilation and creation operators for a set of initial and final

external particles, along with vacuum expectation values which can be interpreted as

propagators. Upon calculating 〈f |S |i〉, only the terms that exactly annihilate |i〉 and

create |f〉 give non-zero contributions.

C.3 From matrix elements to observable decay rates

Studying the matrix element Sfi for various processes, the resulting expressions can be

seen to exhibit a common structure:

Sfi = δfi + (2π)4δ(4)
(∑

Pi −
∑

Pf

)∏
i

(
1

2V Ei

)1/2

×
∏
f

(
1

2V Ef

)1/2∏
l

(
2ml

)1/2
M

(C.14)

Here indices i and f run over all initial- and final-state particles, respectively, while

l runs over all fermions involved. The Kronecker delta in front is for the case of no

interaction, |i〉 = |f〉. The four-dimensional delta function ensures conservation of four-

momentum, while V represents a normalisation volume used in plane-wave expansions

of fields. Being a non-physical volume, V must of course drop out of all measurable

quantities, and we will shortly see that this is indeed the case. All the process-specific

dynamics are contained in the Feynman amplitude M.

For a particle decay P → P1 + P2 + . . .+ PN the expression for Sfi simplifies to

Sfi = δfi + (2π)4δ(4)
(
P −

∑
Pf

)( 1

2V E

)1/2

×
∏
f

(
1

2V Ef

)1/2∏
l

(
2ml

)1/2
M

(C.15)

In what follows we will leave out the term δfi. As the integrations in (C.13) are over

all of spacetime, the above expressions for Sfi correspond to the limit of infinite time
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C.3 From matrix elements to observable decay rates

T and infinite normalisation volume V . To aid the following derivation we will assume

V and T to be large but finite, before taking the limits V → ∞ and T → ∞ at the

end. With T finite, the transition probability per unit time, wfi, is

wfi =
|Sfi|2

T
(C.16)

Before we can write out the expression for wfi explicitly, the delta function δ(4)(P −
∑
Pf )

in (C.15) must be replaced with its counterpart for finite T and V , δ
(4)
TV (P −

∑
Pf ).

The two functions are related by

δ(4)
(
P −

∑
Pf

)
= lim

T→∞
V→∞

δ
(4)
TV

(
P −

∑
Pf

)
(C.17)

A finite delta function δL(x) (working in one dimension for simplicity) satisfying the

one-dimensional analogue of (C.17) can be defined as [ref?]

δL(x) =
1

(2π)

∞∫
−∞

dy eixy e−2|y|/L (C.18)

for which we have that

δL(0) =
L

(2π)
(C.19)

The squared four-dimensional delta function appearing in |Sfi|2 can thus be expressed

as [
δ

(4)
TV

(
P −

∑
Pf

)]2

=

[
δ

(4)
TV (0)

][
δ

(4)
TV

(
P −

∑
Pf

)]
=

TV

(2π)4
δ

(4)
TV

(
P −

∑
Pf

) (C.20)

Using the above result the transition rate wfi defined in (C.16) becomes

wfi = (2π)4V δ(4)
(
P −

∑
Pf

)( 1

2V E

)∏
f

(
1

2V Ef

)∏
l

(
2ml

)
|M|2 (C.21)

This is the transition rate from |i〉 to the exact final state |f〉. However, what we can

observe are transitions to final states where the outgoing particles have three-momenta

within the intervals [pf , pf + dpf ]. Therefore, in order to obtain a physical transition
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rate, wfi must be multiplied by the number of such states. For a large but finite

normalisation volume V this number of states is given by

∏
f

V d3pf
(2π)3

(C.22)

Upon multiplying wfi by (C.22) we note that all factors of the non-physical volume

V cancel. Thus, when we now let T and V become infinite again, all that changes is

δ
(4)
TV (. . .) → δ(4)(. . .). This leaves us with the physically meaningful differential decay

rate dΓ:

dΓ = (2π)4δ(4)
(
P −

∑
Pf

)( 1

2E

)
|M|2

∏
l

(
2ml

)∏
f

(
d3pf

(2π)32Ef

)
(C.23)

From (C.23) the differential decay rate with respect to some observable kinematical

property (x) of the final-state particles can be obtained by integrating over all other

final-state variables. Moreover, if we divide by the total decay rate Γ we arrive at a

normalised differential decay rate

1

Γ

dΓ

dx
= f(x) (C.24)

which can be interpreted as a probability density for the observable x in the decay

P → P1 + P2 + . . . + PN . The results derived in Chapters 4 – 6 are all in the general

form of (C.24), with x being the invariant mass of two visible final-state particles.
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