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It was the Law of the Sea, they said. Civilization ends at the waterline.  

Beyond that, we all enter the food chain, and not always right at the top. 

Hunter S. Thompson 



 

 

6 

CONTENTS

SCIENTIFIC ENVIRONMENT.................................................................... 2 

ACKNOWLEDGMENTS............................................................................... 3 

CONTENTS ..................................................................................................... 5 

LIST OF PAPERS........................................................................................... 7 

ABSTRACT ..................................................................................................... 8 

THE ECONOMICS OF FISHING.............................................................. 11 
FISH – A NATURAL RESOURCE ............................................................ 11 

EVOLUTION OF FISHERIES ECONOMICS........................................... 12 

CURRENT STATUS AND MANAGEMENT PERSPECTIVE ................ 14 

ALTERNATIVE USES AND ECOSYSTEM BENEFITS......................... 17 

THE BIOLOGY BEHIND ECONOMICS ................................................. 18 
FISH STOCKS AS BIOLOGICAL SYSTEMS.......................................... 18 

IMPACT OF FISHING ............................................................................... 18 

MANAGEMENT IMPLICATIONS........................................................... 20 

BIOECONOMIC SYNTHESIS ................................................................... 23 

THESIS APPROACH................................................................................... 24 
RESEARCH RATIONALE ........................................................................ 24 

THE VALUE OF SIZE................................................................................ 24 

THE COST OF EVOLUTION .................................................................... 26 

REFERENCE LIST ...................................................................................... 29 

PAPER I ......................................................................................................... 41 

PAPER II........................................................................................................ 69 

PAPER III ...................................................................................................... 93 

PAPER IV .................................................................................................... 109



 

 

7

LIST OF PAPERS 
PAPER I 

Zimmermann F., Heino M., and Steinshamn S. (2011) 

Does size matter? A bioeconomic perspective on optimal harvesting when price is 

size-dependent. Canadian Journal of Fisheries and Aquatic Sciences (in press)

PAPER II 

Zimmermann F., Steinshamn S., and Heino M. (2011) 

Optimal harvest feedback rule accounting for the fishing-up effect and size-

dependent pricing. Natural Resource Modeling (in press)

PAPER III 

Zimmermann F., and Heino M. 

Size-dependent pricing in Norwegian fisheries. Manuscript 

PAPER IV 

Zimmermann F., and Jørgensen C. 

The bioeconomic consequences of fishing-induced evolution: A model predicts 

limited impact on net present value. Manuscript



 

 

8 

ABSTRACT
The influence of fishing on the dynamics of fish stocks is a core element in 

fisheries management. One of the most notable characteristics in this context is the size-

structure of a fish stock, composed by the individual and its body size. From a biological 

perspective, individual size is directly linked to most relevant life-history traits like 

growth, maturation or reproductive output, connecting it to evolutionary processes. In 

the context of fisheries, individual fish constitute the harvested biomass and therefore its 

overall value. In addition, individual size possesses an intrinsic economic value: 

Commonly, bigger fish are more valuable than smaller ones and fetch higher prices per 

weight unit. Thus, size-dependent pricing underlines in economic terms the relevance of 

individual size, and suggests at the same time an interaction with demographic shifts 

through fishing. Generally, policies accounting for individual growth and size structure 

can improve yield and economic returns, therefore an interactive influence of size-

dependent pricing on optimal harvest strategies is likely. Similarly, to take into account 

the impact of potential evolutionary changes in stock composition through fishing could 

improve the long-term economic benefits from fisheries. 

In paper I and II, the influence of size-dependent pricing on optimal harvest 

strategies is evaluated. Positive relationships between individual sizes of fish and the 

prices per weight unit fishermen receive are widespread in commercial fisheries. This 

underlying hypothesis is evaluated in Paper III with a statistical analysis of price data 

from Norwegian fisheries. Furthermore it is commonly assumed that such size-dependent 

pricing can influence the optimal catch composition maximizing economic rent. This 

raises the question whether the impact on optimal harvest strategies and corresponding 

maximum economic yield is of significant magnitude, and hence should be considered in 

management decisions. Paper I addresses this issue with age-structured models 

parameterized for two pelagic fisheries in Norway, targeting Atlantic herring (Clupea 

harengus) and Atlantic mackerel (Scomber scombrus). Here positive size-dependent 

pricing results in lower optimal harvest, higher average catch size and influences net 
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present value. On the other hand, paper II provides an analytical approach, introducing 

size effects into a generic Gordon-Schaefer type model. The assumption of a negative 

relationship between fishing effort and average individual size emulates a fishing-

induced truncation of size structure, while mean catch size is positively related to price to 

account for size-dependent pricing. This allows for tracing how such size-dependent 

effects change the patterns of optimal harvest paths and sustainable revenue in fish 

stocks. The results show a decrease of optimal effort and harvest with increasing strength 

of size effects. Therefore, Paper I and II suggest that ignoring the impact of fishing on 

size structure of fish stocks as well as size-dependent pricing could result in suboptimal 

management strategies and rent dissipation. Paper III underlines this conclusion and 

demonstrates that size-dependent pricing is indeed relevant in Norwegian fisheries.

In Paper IV, a simplified evolutionary life-history model was utilized to explore 

potential economic consequences of fishing-induced evolutionary changes. The 

underlying assumption is based on evidences that harvesting of fish stocks changes 

survival probabilities and therefore selection landscape for life-history strategies, 

resulting in adaptations of corresponding traits like maturation age. Hence, the model 

focuses on age at maturation as basis of stock dynamics for a cod-like species, while 

fishing is described by fishing mortality and size selectivity. Combined, these parameters 

determine the resulting yield and net revenue of the simulated fishery. A comparison of 

this model with a non-evolutionary version allows for an impact analysis of harvest 

strategies on life history evolution and the long-run economic consequences. The results 

predict an influence of fishing-induced evolution on stock biomass and composition as 

well as yield and economic rent. However, the quantitative impact is marginal even 

under low discount rates and the consequences for optimal harvest patterns moderate. 

Negative economic consequences are present for stocks managed within the range of 

maximum economic yield, while evolutionary adaptation provides beneficial resilience 

towards high fishing pressure. Nevertheless, under consideration of fishing-induced 

evolution fishing mortalities maximizing economic rent remain nearly the same for most 
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parameter values, implying that optimal harvest strategies are not significantly affected 

by an evolutionary component. Additionally, the results show high sensitivity to 

discounting: Increasing discount rates render the influence of fishing-induced evolution 

irrelevant even on the level of low to moderate discount rates. This highlights the 

problematic effect of discount rates in long-term cost-benefit calculations, and calls for a 

careful use of discounting in view of small but detrimental changes over long time 

periods. 
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THE ECONOMICS OF FISHING 

 

FISH – A NATURAL RESOURCE 

Aquatic organisms are one of the world’s pivotal renewable resources, providing food, 

employment and other benefits on a global scale. Most prominent are commercial 

fisheries and aquaculture with a total production volume of 145.1 million tones in 2009 

(FAO 2011), whereof marine fisheries contribute the main part (55%) with a stable 

production. Aquaculture has become increasingly important, now accounting for 38% of 

the total volume, while inland fisheries remain a minor factor (7%). Fisheries and 

aquaculture provide direct or indirect livelihoods for estimated 540 million people, and 

human consumption represents the primary utilization (81%), resulting in all-time high 

of 17.2 kg per capita annual fish supply in 2009. Correspondingly, fish contributed 

15.7% to the global population’s intake of animal protein in 2007 (FAO 2011).  

Fish is a particularly important food source in developing countries, therefore a 

key component for future food security in view of population growth and environmental 

threats (Kent 1997, Garcia and Rosenberg 2010). However, the progression from 

artisanal to industrial fishing resulted in four-fold increase of total catch over the second 

half of last century, threatening fish as a future resource (Pauly et al. 2002). Today, 

unsustainable exploitation and habitat degradation peril global fish stocks, and therefore 

the natural capital and food source they represent (Pauly et al. 2005, Godfray et al. 

2010). 

In summary, there is substantial wealth generated globally in connection with fish 

and fisheries. At the same time, mismanagement and detrimental utilization put the 

continuity of those resources at risk and squander potential benefits on massive scale 

�

"It�will�appear,�I�hope,�that�most�of�the�problems�associated�with�the�words�“conservation”�or�
“depletion”� or� “overexploitation”� in� the� fisheries� are,� in� reality,�manifestations� of� the� fact,�
that�the�natural�resources�of�the�sea�yield�no�economic�rent."�

H.�Scott�Gordon,�1954�
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(World Bank 2009). The study of these systems at the intercept point between biology 

and economics is therefore not only of scientific value but embodies high socioeconomic 

relevance. The disciplines of bioeconomics and fisheries management may provide here 

important answers for the problems and challenges to achieve sustainability and 

efficiency. 

EVOLUTION OF FISHERIES ECONOMICS 

From today’s perspective, the sweeping absence of scientific and political debate until 

mid 20th century on the utilization and management of fish stocks may be puzzling. 

However, it illustrates impressively how the way society bears upon the environment and 

natural resources has changed, as well as the scientific progress that has been made in the 

past decades. The levity of previous generations in this matter becomes more 

understandable in view of a vast resource and limited technological possibilities of past 

fishermen. Hence, the fallacy that fishing cannot cause a significant impact on fish stocks 

was common even among biologists. A drastic change in the situation began with large-

scale industrial fisheries after World War II, accentuating the need for a paradigm shift. 

The technological development of fisheries found its echo in several corner stones 

of modern fisheries management published in the same period (Gordon 1954, Schaefer 

1954, Scott 1955, Beverton and Holt 1957). Conceptually, the ideas may be divided into 

a biological approach contrasting the economic perspective: R. Beverton and S. Holt, as 

well as M.B. Schaefer focused on dynamics of exploited stocks while A. Scott’s book 

contained a “then confusing notion of conservation of natural resources in terms of 

stewardship of assets” (Wilen 2000). Gordon on the other hand discussed the problem of 

overexploitation in an open-access resource and thus portended what later became more 

generally known as the “tragedy of the commons” (Hardin 1968). Particularly the work 

of Gordon and Schaefer offered with their perceptive simplicity an essential 

understanding of key mechanisms in a fishery – and still do. This is easily underlined by 

the fact that the Gordon-Schaefer model remains until today the pedagogical tool of 
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THE�GORDON�SCHAEFER�MODEL�

The� Gordon�Schaefer� model� (Schaefer� 1954,�

Tietenberg� and� Lewis� 2008)� combines� a� logistic�

growth�model� with� simple� economic� assumptions� to�

an� equilibrium� model� of� a� fishery,� describing� stock�

productivity� and� corresponding� fishing� effort� under�

assumption� of� constant� price� and� constant� marginal�

cost.� Under� effort� Em� biological� yield� is� maximized,�

while� with� Ee� the� efficient� allocation� of� effort� is�

achieved� (marginal� cost� =� marginal� revenue)� and�

economic� rent� highest.� Without� regulation� effort� is�

increased� until� rent� is� fully� dissipated,� i.e.� total� cost�

equals� total� revenue,� defining� the� open� access�

situation.� Limitations� are� the� simplified� stock�

dynamics,� ignoring� ecosystem� interactions,�

demographics�and�genetics,�as�well�as�fleet�dynamics.�

 

choice to explain characteristics 

of a common-property resource 

(Tietenberg and Lewis 2008). 

The main achievements of 

the Gordon-Schaefer model are 

the concepts of maximum 

sustainable yield (MSY), 

maximum economic yield (MEY) 

and open-access equilibrium. 

MSY describes the stock size and 

corresponding fishing effort 

where yield is highest, i.e. a 

simple maximization of 

biological productivity. MEY on 

the other hand incorporates 

economics as part of the fishery, 

defining the yield where 

economic rent is maximized. This 

is contrasted by the open-access 

equilibrium, characterized by 

zero economic returns from 

additional harvest and therefore 

full rent dissipation (Gordon 

1954, Gardner et al. 1990).  

Yet, the static framework’s 

disregard for the temporal 

component of resource 

exploitation was cause for some concern, as already Scott had recognized (Scott 1955). 
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Therefore, fisheries economics progressed significantly with the introduction of dynamic 

solutions to the problem of optimal resource utilization and an elaborated capital theory. 

The first model accounting for dynamics dates back to Crutchfield and Zellner (1962), 

concluding, however, little influence on the outcome. This dissented Scott’s notion that 

high discount rates could shift MEY towards the effort level of an open-access situation. 

Consequently, dynamic solutions to fisheries problems were considered to be of little 

relevance (Turvey 1964), even by Scott himself (Christy and Scott 1965). Optimal 

control-theory (Pontryagin et al. 1962) provided here a new powerful tool, but its 

implementation into resource economics towards the end of the decade was viewed as 

mere complication (Munro 1992). It was mainly C.W. Clark who caused a paradigm 

shift as he demonstrated the impact of dynamic solutions: Effort yielding MEY can 

surpass MSY-effort (Clark 1971) and the difference between discount rate and intrinsic 

growth rate can affect optimal harvest strategies (Clark 1973). Based on this, Clark 

highlighted the peculiarity of fish stocks as natural capital (Clark and Munro 1975). 

Collecting those threads, “Mathematical bioeconomics” (Clark 1976) proved itself as a 

seminal work that provided strong argument for the interdisciplinarity of fisheries 

science. In spite of the more recent scientific and political advancements (Wilen 2000, 

Bjørndal et al. 2007, Clark 2010), the basic principles and questions remained rather 

perpetual. Foremost the quest for MEY is still the dominating thread for fisheries 

economists (Grafton et al. 2007, Dichmont et al. 2010). 

CURRENT STATUS AND MANAGEMENT PERSPECTIVE 

The conclusive and aging theoretic directives to optimal resource utilization are 

contrasted by prevalent management failure in reality as well as a poor state of the 

world’s fisheries and marine resources today (Jackson 2008, Holt 2009, World Bank 

2009, FAO 2011). Renowned fisheries scientists draw a bleak picture, attesting a trophic 

down-fishing (Pauly et al. 1998), “worldwide crisis in fisheries” (Clark 2006a), the 

collapse of all fisheries in near future (Worm et al. 2006) and ultimately the “end of fish” 

(Pauly 2009). These assessment are not unchallenged (Murawski et al. 2007, Branch 
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INDIVIDUAL�TRANSFERABLE�QUOTAS�

Individual� transferable� quotas� are� one� type� of�

dedicated� access� rights,� distributing� total� allowable�

catches� (TAC)� as� quota� shares� to� private� individuals�

(Squires�et�al.�1995,�Grafton�1996,�Branch�et�al.�2006).�

The�quota�share�is�fully�transferable�and�can�therefore�

be�traded.�First�described�by�F.T.�Christy� (1973),� ITQs�

remained� a� theoretical� concept� for� almost� two�

decades� until� first� implementations� in� Icelandic� and�

New� Zealand� fisheries� (Sissenwine� and� Mace� 1992,�

Annala� 1996,� Arnason� 1996).� Since� then� they� gained�

increasing�acceptance�as�a�management�tool.�The�key�

advantage� of� ITQs� is� their� transferability:� More�

efficient� fishermen� can� buy� quota� shares� from� less�

efficient�fishermen.�This�results�in�a�overall�increase�of�

economic�efficiency�in�the�fishery.�Additionally,�future�

rents� promote� stewardship� for� the� fish� stock� among�

the� quota� owners.� But� there� is� a� downside� to� both�

points:�Quota�trading�can�lead�to�monopolization,�and�

potentially�huge�increases�in�values�raise�questions�of�

social� equity� (Clark� 2006a).� In� particular,� critics� point�

out� that� free� endowment� of� fishermen� and� lack� of�

temporal� restrictions� can� lead� to� substantial� private�

profits� from� a� public� good� (Macinko� and� Bromley�

2003).� ITQs� also� do� not� guarantee� biological�

sustainability,�but�generate�solely�economic�efficiency.�

Therefore�successful�ITQ�management�still�relies�on�an�

adequate� TAC� and� strict� enforcement� of� quota� and�

gear�restrictions.�

2008, Daan et al. 2011, Hilborn 

2011), and recent studies come 

to more complex conclusions 

(Dankel et al. 2008, Mora et al. 

2009, Worm et al. 2009). In 

particular, there are widespread 

counterexamples of successful 

management (Beddington et al. 

2007, Hilborn 2007a, c, Costello 

et al. 2008). Furthermore, flawed 

conclusion based on unclear 

objectives (Hilborn 2007d), 

arbitrary reference points 

(Hilborn and Stokes 2010) or 

inconclusive catch data (De 

Mutsert et al. 2008, Branch et al. 

2010) require consideration. 

Nonetheless, the overall 

performance of global fisheries 

is mediocre at best, raising the 

question: What went wrong?  

The reasons for 

overfishing, unsustainable 

practices and economic 

underperformance are diverse 

and rarely straight-forward. 

From an economic perspective, 

the problems in fisheries 
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originate in market failures connected to deficient property rights, quota system designs, 

user conflicts or insufficient enforcement (Clark 2006b, Grafton et al. 2008). Thus, a 

common symptom of fisheries mismanagement is overcapitalization, often caused by 

subsidies (Munro and Sumaila 2001, Clark et al. 2005, Sumaila et al. 2008, Sumaila et 

al. 2010). This problem is strongly linked to unsustainable total allowable catches 

(TACs) due to political decisions instead of scientific advice (Pauly, et al. 2002). Catch 

restrictions are further undermined by illegal, unreported and unregulated (IUU) fishing 

activities, particularly in absence of an adequate legal framework or sufficient 

enforcement (Gallic and Cox 2006, Sumaila et al. 2006, Agnew et al. 2009)  

A key role in overfishing and rent dissipation can be attributed to improper access, 

property and use rights (Schlager and Ostrom 1992, Scott 2008). Hence, fishermen 

behaviour and fleet dynamics are a crucial factor (Branch, et al. 2006). However, 

previous quota systems often provided improper incentives and therefore failed in reality 

(Hilborn et al. 2005, Clark 2006a): A race-to-fish, high-grading and discarding as some 

of the most notable unwanted effects of unsound quota system designs (Pascoe 1997, 

Sutinen 1999, Hilborn 2007b). A potential cause is the prevalent management focus on 

biological reference points and the health of fish stocks, disregarding economic 

objectives as driving force of fisheries (Wilen 2000, Hilborn 2002, Branch, et al. 2006). 

Yet economic factors are from society’s viewpoint a key purpose of fisheries and 

demand adequate attention in fisheries management. In this context, catch shares in form 

of individual fishing quotas (IFQs) or individual transferable quotas (ITQs) gain 

increasing acceptance as potential remedy (Squires, et al. 1995, Grafton 1996, Grafton et 

al. 2006). Signs of success substantiate this notion (Chu 2009, Costello et al. 2010), 

although a cautious implementation is required (Bromley 2009, Grafton et al. 2009, 

Gibbs 2010, Sumaila 2010), and the appropriate choice of management instruments 

depend on specific situations and challenges (Kompas et al. 2008, Hannesson 2011). 
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ALTERNATIVE USES AND ECOSYSTEM BENEFITS 

The direct benefits from commercial fisheries are supplemented by alternative use values 

and non-use values of fish, frequently leading to stakeholder conflicts over the resources. 

Particularly recreational fishing generates substantial benefits (Connelly and Brown 

1991, Pitcher and Hollingworth 2002), but may also contribute to stock depletion (Post 

et al. 2002, Coleman et al. 2004, Cooke and Cowx 2004) and is commonly understudied. 

Furthermore, recreational fishing is connected to benefits through tourism, and therefore 

relates to non-consumptive use values of aquatic systems and the ecosystem services 

they provide (Costanza 1997). 

Ecological economics define ecosystem services as a flow of energy, information 

and material from natural capital within ecosystems to the benefit of human welfare 

(Costanza 1997, Millennium Ecosystem Assessment 2005). This includes direct and 

indirect use and non-use values, ranging from food production and recreational purposes 

to climate regulation, pollution control or sediment retention. Commonly markets 

captures these services only partially or not all, and quantitative valuation is often 

difficult. In fisheries management some ecosystem approaches attempt to account for 

additional ecosystem services, but globally most policies focus solely on (single) fish 

stocks as food source. Here integration of ecological economics and alternative 

stakeholder interests could result in improved sustainability and alignment of objectives 

as part of a “new consensus” (Hilborn 2007). 
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THE BIOLOGY BEHIND ECONOMICS 

FISH STOCKS AS BIOLOGICAL SYSTEMS 

As fisheries biologists tend to underestimate the economic complexity of a fishery, so are 

fish rarely grasped as the biological entities they are in fisheries economics. Fish stocks 

are subpopulations of a fish species, and therefore subject to population dynamics and 

demographics. Furthermore, a fish stock exists in an ecological and evolutionary context, 

including all biological interactions in the framework of an ecosystem, as well as the 

underlying environmental determinants. The resulting inherent complexity of a fish stock 

elevates it above more trivial resources. Consequently, harvesting fish involves much 

more than a mere removal of biomass as economic models traditionally suggest. Thus, 

simplifications of low-dimensional lumped-biomass models could be a reason for 

unsatisfactory management results (Krysiak and Krysiak 2002, Tahvonen 2008). 

IMPACT OF FISHING 

Fishing imposes additional mortality on a fish stock, commonly enhanced by size 

selectivity, and alters the demographic composition of the stock. Truncations of size 

structure may impair the recruitment potential of fish stocks (Murawski et al. 2001, 

Berkeley et al. 2004b), destabilize population dynamics (Anderson et al. 2008) and 

increase population variability (Longhurst 2002, Hsieh et al. 2006) as well as natural 

mortality (Jørgensen and Fiksen 2010). This generally results in reduced productivity of 

fish stocks and higher vulnerability towards environmental changes and fluctuations. 

These dynamics feedbacks could be particularly problematic in view of potential threats 

through climatic changes (Perry et al. 2005, Brander 2007).  

Reduced stock densities are another major factor to take into account in harvested 

populations. Density-dependence in larval and juvenile survival is commonly 

�

"I� think� the�major� opposition� to� ecology� has� deeper� roots� than�mere� economics;� ecology�
threatens�widely�held�values�so�fundamental�that�they�must�be�called�religious"��

Garrett�Hardin,�1982�
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acknowledged as an essential part of population dynamics in fish (Rothschild 1986, 

Hilborn and Walters 1992, Houde 1994, Cowan et al. 2000). This is extensively 

implemented in most stock assessment models as density-dependent recruitment, i.e. a 

spawning stock-recruitment relationship, and long established in fisheries science 

(Ricker 1946, Beverton and Holt 1957). In comparison, density-dependent individual 

growth among recruited fishes has received little attention, despite evidence for its 

relevance in the regulation of fish stocks (Jenkins Jr et al. 1999, Lorenzen and Enberg 

2002, Vincenzi et al. 2008) and its potential management implications (Helser and 

Brodziak 1998). In general, density-dependence results in increased growth potentials 

under low densities and may reinforce resilience of fish stocks towards fishing mortality. 

There is increasing evidence that fishing may cause evolutionary changes (Law 

and Grey 1989, Conover and Munch 2002, Jørgensen et al. 2007, Law 2007, Hutchings 

and Fraser 2008, Allendorf and Hard 2009). Fishing mortality reduces the overall chance 

of survival and imposes a shift in the selection landscape of life-history traits. The 

mechanism and resulting adaptations have been documented in time-series analysis 

(Ricker 1981, Heino et al. 2002, Swain et al. 2007), experimental (Reznick and 

Ghalambor 2005, Conover et al. 2009, Conover and Baumann 2009) and modelling 

approaches (Ernande et al. 2004, Dunlop et al. 2009b). Today most commercial fish 

stocks are heavily exploited (Worm, et al. 2009, FAO 2011), fishing mortalities may 

therefore outnumber natural mortalities significantly (Mertz and Myers 1998) and cause 

rapid evolution (Darimont et al. 2009). Potential negative consequences for biomass and 

yield (Law and Grey 1989, Conover and Munch 2002), adult body size (Heino 1998, 

Enberg et al. 2011) or the recovery of depleted fish stock (Enberg et al. 2009) are 

contrasted by indications for heightened resilience towards fishing pressure (Enberg, et 

al. 2009, Enberg et al. 2010). 

As ecosystems are subject to fluctuations and changes up to drastic regime shifts 

(Scheffer and Carpenter 2003, Mayer and Rietkerk 2004, Carpenter et al. 2008), fishing 

has been suggested as an indirect or direct cause for trophic shifts and ecological 
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transitions (Jackson et al. 2001, Folke et al. 2004). In particular, predominant targeting of 

large predatory species and overfishing may cause cascading effects on the food web and 

result in alternative trophic regimes (Scheffer et al. 2005, Daskalov et al. 2007, 

Österblom et al. 2007, Casini et al. 2009). This corresponds with an observed decrease of 

mean trophic level of catches that indicates a dwindling of high-trophic level fisheries 

and increasing exploitation of lower trophic levels (Pauly, et al. 1998, Pauly and 

Palomares 2005, Essington et al. 2006, Branch, et al. 2010). It has been shown that this 

could create alternative stable states (Persson et al. 2007). 

MANAGEMENT IMPLICATIONS 

The complexity of marine ecosystems with multi-layered feedbacks to fishing reveals 

another major reason for failing fisheries. Correspondingly, the comprehensive 

understanding of the underlying biological system is a crucial component of successful 

fisheries management. But in reality most approaches are still rather simplistic. 

Traditionally, management efforts target on concepts like MSY (Larkin 1977) and 

preventing growth or recruitment overfishing (Beverton and Holt 1957, Sissenwine 

1987, Myers et al. 1994). The corresponding biological reference points (Gabriel and 

Mace 1999) and size limits remain therefore predominant. However, the crude single-

species perspective neglects evolutionary and plastic consequences as well as the 

ecosystem point of view. 

The proportion of big individuals in a population could be one major parameter 

for improved sustainability (Berkeley, et al. 2004b, Birkeland and Dayton 2005). This 

idea is based upon the avoidance of recruitment overfishing, but links to concerns of 

growth overfishing too. The concept of growth overfishing dates back to Beverton and 

Holt (1957) who pointed out the relevance of age structure and the growth of 

corresponding cohorts. When individuals of a cohort are allowed to grow sufficiently, 

the resulting yield per recruit is optimized and a biologically efficient harvest is 

achieved. More recent studies add the additional dimension of maternal effects. There is 

evidence for higher larval survival of older female spawners (Berkeley et al. 2004a) with 
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impacts on lifetime reproduction (O'Farrell and Botsford 2006). Here, considering 

individual growth and age-dependent effects can therefore not only maximize the 

harvested yield from a cohort, but increase recruitment and overall population stability 

(Murawski 2000, Anderson, et al. 2008). Thus, several threads of evidence suggest that 

taking into account age structure and individual size may be crucial parameters to 

determine optimal sustainable harvest (Tahvonen 2008, Diekert et al. 2010). 

The potential impact of fishing-induced evolutionary changes is a similar 

management concern (Heino 1998, Ashley et al. 2003, Jørgensen, et al. 2007, Dunlop et 

al. 2009a). As fishing has the ability to affect the evolution of life-history traits, 

consequences for the biomass of fish stocks and their resilience towards environmental 

change are likely, ultimately derogating sustainable yields of fisheries. Because 

evolutionary changes may be difficult or even impossible to reverse (De Roos et al. 

2006), a careful assessment of evolutionary impacts and their mitigation with 

evolutionary sensitive reference points is necessary (Hutchings 2009). 

The ecosystem perspective of fisheries management has gained much attention 

recently (Pikitch et al. 2004, Garcia and Cochrane 2005). In spite of the fast 

dissemination of the term itself, including FAO guidelines and others, the concept 

remained rather vague. Generally, ecosystem-approaches to fisheries imply a holistic 

perspective and aim for by-catch mitigation, multi-species management, avoidance of 

ecosystem degradation or integrated approaches (Morishita 2008). Hence, single-species 

stock assessments and reference points need to be replaced by appropriate metrics and 

management goals (Brodziak and Link 2002, Hall and Mainprize 2004, Jennings 2005). 

However, scientific progress and partial implementations initiated a potential paradigm 

shift (Murawski 2007). 

In general, the management instruments to address biological challenges are 

limited. Specific management questions may obscure that the underlying mechanisms are 

restricted to gear selectivity and – overall, spatial or temporal – reductions of fishing 

mortality. Because gear selectivity is imperfect and very limited in some fisheries, e.g. 
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purse-seining, fishing mortality becomes often the only biological lever of regulatory 

control. At the same time, overfishing is the key driver of unsustainable fisheries, stock 

collapse and evolutionary or ecological changes. Accordingly, lowered fishing pressure 

can be considered as straight-forward remedy, addressing all described problems to some 

degree. Two threads take this up in particular: Precautionary approach and marine 

protected areas (MPAs). The precautionary approach focuses on uncertainty directly, 

using risk-minimizing reference points to ensure long-term sustainability (Garcia 1996, 

Hilborn et al. 2001). Similarly, MPAs attempt to mitigate uncertainties, consolidate stock 

productivity and resilience and reduce ecosystem impacts with no-take zones (Sumaila et 

al. 2000, Grafton et al. 2005, Edgar et al. 2007).  
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BIOECONOMIC SYNTHESIS 

In view of the biological and socio-economic dynamics of fisheries, it becomes clear that 

only an interdisciplinary approach enables successful management. Bridging the gap, 

bioeconomics provide a crucial discipline to achieve the goal of sustainable, yet 

profitable fisheries and marine ecosystems (Hannesson 1993, Anderson and Seijo 2010, 

Clark 2010). In this respect, bioeconomic models are a useful tool to combine stock and 

fleet dynamics, balance biological precaution with economic efficiency, and generate 

comprehensive policy advice. However, implementing theory in practice has its pitfalls. 

In particular, adequate complexity in biological and economic parameters is crucial, or as 

in the canonical saying, models should be as simple as possible, but as sophisticated as 

necessary. Hence, to reach this goal while balancing the different perspectives 

summarizes the key challenge of bioeconomic models. It comes as no surprise that the 

previously described discipline biases, i.e. lack of biological or economic insight, 

respectively, is a key problem. To unify the different perspectives and explore potentially 

relevant mechanisms at the boundary of biology and economics is therefore crucial for 

successful bioeconomics. The research in the framework of this thesis was conducted in 

this spirit.  

�

"The� current� state� of� affairs,� in� which� most� professional� economists� ignore� resource�
limitations� and� in�which�most� ecologists�maintain� a� proud� disdain� of� economics,�must� give�
way� to� a� science� of� renewable� resource� management� based� on� sound� principles� of�
bioeconomics.�"�

Colin�W.�Clark,�1989�
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THESIS APPROACH 
RESEARCH RATIONALE 

To this point I discussed the biological and economic complexities of fisheries 

management, highlighting the need for integral bioeconomic research that combines both 

perspectives. This represents the root idea of this thesis: The basic quest throughout to 

bring more biology into economic questions and vice-versa, and thereby to improve 

utilization of fish stocks. In detail, the general research questions are: 

� What is the value of body size? 

� What is the economic impact of fishing-induced evolution? 

The first question (paper I, II, III) ties in with the topic of growth overfishing 

and general importance of size-structure for fisheries. With a focus on size-dependent 

pricing, we emphasise the intrinsic economic value of body size directly. Thus, we 

provide a change of perspective with this previously understudied topic and underline 

the overall relevance of body size for fisheries. The second problem (paper IV) centres 

on potential evolutionary consequences of fishing by amending previous research with 

an economic assessment. This offers a first evaluation of possible evolutionary cost, and 

introduces at the same time an evolutionary dimension into fisheries economics. 

THE VALUE OF SIZE 

Individual growth has been long established as a key parameter in population dynamics 

of fish, and therefore also the prevention of growth overfishing for fisheries management 

(Beverton and Holt 1957). More recent studies corroborate the biological relevance of 

stock structure in context of survival and reproductive success further (Murawski, et al. 

2001, Berkeley, et al. 2004b, Birkeland and Dayton 2005). Similarly, age and size 

structure are increasingly acknowledged as crucial factor for harvest optimization 

(Tahvonen 2008, 2009, Diekert, et al. 2010). However, another aspect has drawn little 

attention: The intrinsic economic value of body size, or size-dependent pricing.  
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It is common that ex-vessel prices for fish are weight-structured with increasing 

prices per weight unit for larger individuals. Simply speaking, big fish often fetch higher 

relative prices than smaller one. Correspondingly, an influence of size-dependent pricing 

on optimal harvest strategies has been suggested for a long time (Hilborn and Walters 

1992). Yet just a few studies regarded this aspect to some extent (Gallagher et al. 2004, 

Holland et al. 2005, Tahvonen 2009). More frequently, size-dependent pricing was 

considered as a fixed component of fisheries without further analysis (e.g.Helser et al. 

1996, De Leo and Gatto 2001, Katsukawa 2005). Therefore the goal was to fill this gap 

and demonstrate in two different approaches the influence of size-dependent pricing on 

optimal harvesting, as well as assess its prevalence in Norwegian fisheries. This involved 

quantifications in the framework of age-structured models (paper I) as well as an 

analytical approach (paper II) and a statistical analysis (paper III).  

Paper I uses Atlantic herring (Clupea harengus) and Atlantic mackerel (Scomber 

scombrus) as example fisheries for the influence of size-dependent pricing on optimal 

fishing mortalities and resulting net present value (NPV). We use age-structured 

population models with size-dependent harvesting, and apply a price function based on a 

linear approximation of Norwegian price per weight class data (paper III) to allow for a 

smooth variation of the size-price relationship. This quantifies how size-dependent 

pricing may alter optimal fishing mortalities, and the resulting mean catch weight and 

NPV.  

Paper II combines fishing-induced truncations of size structure with size-

dependent pricing to study the consequences of size-dependent effects on sustainable 

rent and harvest paths. To permit an analytical approach we chose a lumped-biomass 

model, extended with relationships between fishing effort and mean individual size as 

well as size and price. This enables us to trace on a generic level how size-dependent 

effects change optimal harvest paths and sustainable rent. 
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Paper III contains an analysis of price data from Norwegian fisheries in respect 

to size dependence. This takes up the point of origin in paper I, but uses instead 

statistical methods to determine the overall prevalence and strength of size-dependent 

pricing in Norwegian fisheries. Because all previous work in this topic was mostly 

conceptual or restricted to mere case studies, paper III offers a first systematic 

approach. Moreover, it underlines the key assumption of paper I and II and therefore 

their conclusions. 

Both modelling approaches conclude a reduction of optimal effort or fishing 

mortality under consideration of size structure and size-dependent pricing. This suggests 

that ignoring body size could lead to flawed strategies to achieve MEY, potentially 

causing rent dissipation and suboptimal performance of fisheries. From our results it 

follows that the impact of fishing on stock demographics and size-structured market 

prices should receive more attention in bioeconomic modelling and management 

policies. 

THE COST OF EVOLUTION 

As evidences for evolutionary consequences of fishing have been substantiated (e.g. 

Conover and Munch 2002, Law 2007, Hutchings and Fraser 2008, Allendorf and Hard 

2009), the debate has shifted towards possible management implications of fishing-

induced evolution (FIE) (Jørgensen, et al. 2007, Dunlop, et al. 2009a, Hutchings 2009). 

In summary, there is concern that FIE may impair stock biomass, stability and recovery 

potential, and therefore result in negative consequences for fisheries, particularly reduced 

yield and higher vulnerability to environmental change. However, existing work is 

mainly focused on biological consequences of FIE for fish stocks, their conclusiveness 

and adequate management response. On the other hand, there was little attention for the 

economic perspective, in spite of its crucial role for fisheries. Therefore, in paper IV we 

contribute an evaluation of potential economic impacts of FIE. 

Our study contains a basic quantification of the economic impact FIE might have. 

In doing so, we extend traditional bioeconomic models not only with dynamics of a 
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structured population, but with trait variation as well. Changeable traits have been rarely 

part of bioeconomic studies; therefore our approach includes general novelty in this 

context. In paper IV we compare an age-structured population dynamics model with 

evolutionary life-history to the same model with fixed traits. Maturation age acts as the 

only evolving trait in a key role and affects here growth, reproduction and survival 

directly, and is genetically inherited. Natural mortality and fishing are size-dependent 

and act as selective force. Additionally, the input parameters of fishing, size-selectivity 

and maximum fishing mortality, determine the catch and corresponding economic 

output. The parameterization is adjusted to the stock of Northeast Arctic cod (Gadus 

morhua). 

The model shows a clear long-term impact of fishing-induced evolution on 

economic rent. However, the quantitative influence is generally rather insignificant. In 

particular, the differences between optimal fishing mortality and resulting MEY are low 

even under assumption of low discount rates. With higher discount rates, the effect of 

FIE becomes even negligible. Furthermore, in our model the fish stock demonstrates a 

higher resilience towards overfishing with FIE, pointing out potential advantages 

through evolutionary adaptation in specific situations. Our results predict also an 

evolutionary shift in size composition of stock and catch. This may be a concern in 

context of general fishing-induced changes in stock structure and consolidate related 

negative effects like reduced productivity and population stability on a genetic level. In 

economic terms, consequences of FIE could be enhanced when considering the value of 

size. Therefore a future extension of the model with size-dependent pricing is likely to 

predict more pronounced economic consequences.  

The influence of discounting on the economic relevance of FIE underlines a 

problematic aspect with dynamic solutions to problems of optimal resource utilization. 

Traditionally, reasonable low discount rates, e.g. a social discount rate, demonstrated 

little influence on optimal harvest of fish stocks. However, precondition is a sufficient 

difference of magnitude between discount rate and intrinsic growth rate. Otherwise, 
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optimal economic harvest can shift to levels higher than MSY or even suggest extinction 

(Clark 1973). Similarly, even high rates of human-induced evolutionary change are 

rather subtle and slow from a fisheries perspective. Therefore, as we have shown in 

paper IV, economic impacts of FIE may be very sensitive to choice of discount rate. 

This implies that FIE is for fisheries economics and in view of overall uncertainty rather 

irrelevant. Yet it appears ethically problematic to diminish the productivity of a fish 

stock for future generations, which raises the question if a conventional approach can do 

justice to such intergenerational problems (Lande et al. 1994, Weitzman 1998, 

Ainsworth and Sumaila 2005). This transcends to usage of natural resources and impact 

of environmental changes in general, and will require future research and debate. In 

particular, alternative concepts of discounting like e.g. decreasing discount rate over time 

await further exploration. 



 

 

29

REFERENCE LIST 
Agnew, D.J., Pearce, J., Pramod, G., Peatman, T., Watson, R., Beddington, J.R. and 

Pitcher, T.J. 2009. Estimating the worldwide extent of illegal fishing. PLoS One 
4(2): e4570  

Ainsworth, C.H. and Sumaila, U.R. 2005. Intergenerational valuation of fisheries 
resources can justify long-term conservation: a case study in Atlantic cod (Gadus 
morhua). Can. J. Fish. Aquat. Sci. 62(5): 1104-1110  

Allendorf, F.W. and Hard, J.J. 2009. Human-induced evolution caused by unnatural 
selection through harvest of wild animals. Proc. Natl. Acad. Sci. USA 
106(Supplement 1): 9987-9994  

Anderson, C.N.K., Hsieh, C., Sandin, S.A., Hewitt, R., Hollowed, A., Beddington, J., 
May, R.M. and Sugihara, G. 2008. Why fishing magnifies fluctuations in fish 
abundance. Nature 452(7189): 835-839  

Anderson, L.G. and Seijo, J.C. 2010. Bioeconomics of fisheries management. Wiley-
Blackwell, Hoboken, NJ. 

Annala, J.H. 1996. New Zealand's ITQ system: have the first eight years been a success 
or a failure? Rev. Fish. Biol. Fish. 6(1): 43-62  

Arnason, R. 1996. On the ITQ fisheries management system in Iceland. Rev. Fish. Biol. 
Fish. 6(1): 63-90  

Ashley, M.V., Willson, M.F., Pergams, O.R.W., O'Dowd, D.J., Gende, S.M. and Brown, 
J.S. 2003. Evolutionarily enlightened management. Biol. Conserv. 111(2): 115-
123  

Beddington, J.R., Agnew, D.J. and Clark, C.W. 2007. Current problems in the 
management of marine fisheries. Science 316(5832): 1713-1716  

Berkeley, S.A., Chapman, C. and Sogard, S.M. 2004a. Maternal age as a determinant of 
larval growth and survival in a marine fish, Sebastes melanops. Ecology 85(5): 
1258-1264  

Berkeley, S.A., Hixon, M.A., Larson, R.J. and Love, M.S. 2004b. Fisheries sustainability 
via protection of age structure and spatial distribution of fish populations. 
Fisheries 29(8): 23-32  

Beverton, R. and Holt, S. 1957. On the dynamics of exploited fish populations Ministry 
of Agriculture, Fisheries and Food, London 533  

Birkeland, C. and Dayton, P. 2005. The importance in fishery management of leaving 
the big ones. Trends Ecol. Evol. 20(7): 356-358  



 

 

30 

Bjørndal, T., Munro, G.R., Arnason, R. and Sumaila, R.U. 2007. Advances in fisheries 
economics: festschrift in honour of Professor Gordon R. Munro. Wiley-
Blackwell. 

Branch, T.A., Hilborn, R., Haynie, A.C., Fay, G., Flynn, L., Griffiths, J., Marshall, K.N., 
Randall, J.K., Scheuerell, J.M. and Ward, E.J. 2006. Fleet dynamics and 
fishermen behavior: lessons for fisheries managers. Can. J. Fish. Aquat. Sci. 
63(7): 1647-1668  

Branch, T.A. 2008. Not all fisheries will be collapsed in 2048. Mar. Pol. 32(1): 38-39  
Branch, T.A., Watson, R., Fulton, E.A., Jennings, S., McGilliard, C.R., Pablico, G.T., 

Ricard, D. and Tracey, S.R. 2010. The trophic fingerprint of marine fisheries. 
Nature 468(7322): 431-435  

Brander, K.M. 2007. Global fish production and climate change. Proc. Natl. Acad. Sci. 
USA 104(50): 19709-19714  

Brodziak, J. and Link, J. 2002. Ecosystem-based fishery management: what is it and how 
can we do it? B. Mar. Sci. 70(2): 589-611  

Bromley, D.W. 2009. Abdicating responsibility: the deceits of fisheries policy. Fisheries 
34(6): 280-290  

Carpenter, S., Brock, W., Cole, J., Kitchell, J. and Pace, M. 2008. Leading indicators of 
trophic cascades. Ecology Letters 11(2): 128-138  

Casini, M., Hjelm, J., Molinero, J.C., Lövgren, J., Cardinale, M., Bartolino, V., 
Belgrano, A. and Kornilovs, G. 2009. Trophic cascades promote threshold-like 
shifts in pelagic marine ecosystems. Proc. Natl. Acad. Sci. USA 106(1): 197-202  

Christy, F. 1973. Fisherman quotas: a tentative suggestion for domestic management, 
Occ. Pap. 19: 6 pp. Law of the Sea Institute, Univ. Rhode Island,. 

Christy, F.T. and Scott, A. 1965. The common wealth in ocean fisheries: some problems 
of growth and economic allocation. The Johns Hopkins Press, Baltimore. 

Chu, C. 2009. Thirty years later: the global growth of ITQs and their influence on stock 
status in marine fisheries. Fish and Fisheries 10(2): 217-230  

Clark, C.W. 1971. Economically optimal policies for the utilization of biologically 
renewable resources. Mathematical biosciences 12(3-4): 245-260  

Clark, C.W. 1973. Profit maximization and the extinction of animal species. J. Polit. 
Economy 81(4): 950-961  

Clark, C.W. and Munro, G.R. 1975. The economics of fishing and modern capital 
theory: A simplified approach* 1. J.Environ.Econ.Manage. 2(2): 92-106  

Clark, C.W. 1976. Mathematical bioeconomics: the optimal management of renewable 
resources. John Wiley, New York. 



 

 

31

Clark, C.W., Munro, G.R. and Sumaila, U.R. 2005. Subsidies, buybacks, and sustainable 
fisheries. J.Environ.Econ.Manage. 50(1): 47-58  

Clark, C.W. 2006a. The worldwide crisis in fisheries: economic models and human 
behavior. Cambridge University Press, Cambridge, UK. 

Clark, C.W. 2006b. Fisheries bioeconomics: why is it so widely misunderstood? 
Springer, Tokyo. 

Clark, C.W. 2010. Mathematical Bioeconomics: The Mathematics of Conservation. 
Wiley, Hoboken, NJ. 

Coleman, F.C., Figueira, W.F., Ueland, J.S. and Crowder, L.B. 2004. The impact of 
United States recreational fisheries on marine fish populations. Science 
305(5692): 1958  

Connelly, N.A. and Brown, T.L. 1991. Net economic value of the freshwater recreational 
fisheries of New York. T. Am. Fish Soc. 120(6): 770-775  

Conover, D., Munch, S. and Arnott, S. 2009. Reversal of evolutionary downsizing 
caused by selective harvest of large fish. Proc. R. Soc. B  

Conover, D.O. and Munch, S.B. 2002. Sustaining fisheries yields over evolutionary time 
scales. Science 297(5578): 94  

Conover, D.O. and Baumann, H. 2009. The role of experiments in understanding fishery 
induced evolution. Evol. Appl. 2(3): 276-290  

Cooke, S.J. and Cowx, I.G. 2004. The role of recreational fishing in global fish crises. 
Bioscience 54(9): 857-859  

Costanza, R. 1997. The value of the world's ecosystem services and natural capital. 
Nature 387(6630): 253-260  

Costello, C., Gaines, S.D. and Lynham, J. 2008. Can catch shares prevent fisheries 
collapse? Science 321(5896): 1678  

Costello, C., Lynham, J., Lester, S.E. and Gaines, S.D. 2010. Economic incentives and 
global fisheries sustainability. Res. Econ. 2: 299-318  

Cowan, J., Rose, K. and DeVries, D. 2000. Is density-dependent growth in young-of-the-
year fishes a question of critical weight? Rev. Fish. Biol. Fish. 10(1): 61-89  

Crutchfield, J.A. and Zellner, A. 1962. Economic aspects of the Pacific halibut fishery. 
Fish. Ind. Res 1(1): 23-24  

Daan, N., Gislason, H., Pope, J.G. and Rice, J.C. 2011. Apocalypse in world fisheries? 
The reports of their death are greatly exaggerated. ICES J. Mar. Sci.  

Dankel, D.J., Skagen, D.W. and Ulltang, O. 2008. Fisheries management in practice: 
review of 13 commercially important fish stocks. Rev. Fish. Biol. Fish. 18(2): 
201-233  



 

 

32 

Darimont, C.T., Carlson, S.M., Kinnison, M.T., Paquet, P.C., Reimchen, T.E. and 
Wilmers, C.C. 2009. Human predators outpace other agents of trait change in the 
wild. Proc. Natl. Acad. Sci. USA 106(3): 952-954  

Daskalov, G.M., Grishin, A.N., Rodionov, S. and Mihneva, V. 2007. Trophic cascades 
triggered by overfishing reveal possible mechanisms of ecosystem regime shifts. 
Proc. Natl. Acad. Sci. USA 104(25): 10518-10523  

De Leo, G.A. and Gatto, M. 2001. A stochastic bioeconomic analysis of silver eel 
fisheries. Ecol. Appl. 11(1): 281-294  

De Mutsert, K., Cowan, J.H., Essington, T.E. and Hilborn, R. 2008. Reanalyses of Gulf 
of Mexico fisheries data: Landings can be misleading in assessments of fisheries 
and fisheries ecosystems. Proc. Natl. Acad. Sci. USA 105(7): 2740-2744  

De Roos, A.M., Boukal, D.S. and Persson, L. 2006. Evolutionary regime shifts in age 
and size at maturation of exploited fish stocks. Proceedings of the Royal Society 
B: Biological Sciences 273(1596): 1873  

Dichmont, C., Pascoe, S., Kompas, T., Punt, A. and Deng, R. 2010. On implementing 
maximum economic yield in commercial fisheries. Proc. R. Soc. B 107(1): 16-21  

Diekert, F.K., Hjermann, D., Nævdal, E. and Stenseth, N.C. 2010. Spare the young fsh: 
Optimal harvesting policies for North-East Arctic cod. Environ. Resource Econ. 
47(4): 455-475  

Dunlop, E.S., Enberg, K., Jørgensen, C. and Heino, M. 2009a. Toward Darwinian 
fisheries management. Evol. Appl. 2(3): 245-259  

Dunlop, E.S., Heino, M. and Dieckmann, U. 2009b. Eco-genetic modeling of 
contemporary life-history evolution. Ecological Applications 19(7): 1815-1834  

Edgar, G.J., Russ, G.R. and Babcock, R.C. 2007. Marine protected areas. Marine 
Ecology: 533-555  

Enberg, K., Jørgensen, C., Dunlop, E., Heino, M. and Dieckmann, U. 2009. Implications 
of fisheries-induced evolution for stock rebuilding and recovery. Evol. Appl. 2(3): 
394-414  

Enberg, K., Jorgensen, C. and Mangel, M. 2010. Fishing-induced evolution and 
changing reproductive ecology of fish: the evolution of steepness. Can. J. Fish. 
Aquat. Sci. 67(10): 1708-1719  

Enberg, K., Jørgensen, C., Dunlop, E.S., Varpe, Ø., Boukal, D.S., Baulier, L., Eliassen, 
S. and Heino, M. 2011. Fishing-induced evolution of growth: concepts, 
mechanisms, and the empirical evidence. Mar. Ecol. in press  

Ernande, B., Dieckmann, U. and Heino, M. 2004. Adaptive changes in harvested 
populations: plasticity and evolution of age and size at maturation. Proc. R. Soc. B 
271(1537): 415  



 

 

33

Essington, T., Beaudreau, A. and Wiedenmann, J. 2006. Fishing through marine food 
webs. Proc. Natl. Acad. Sci. USA. 103(9): 3171-3175.  

FAO. 2011. The state of world fisheries and aquaculture 2010 FAO Fisheries and 
Aquaculture Department, Rome. 

Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L. and 
Holling, C. 2004. Regime shifts, resilience, and biodiversity in ecosystem 
management. Annu. Rev. Ecol. Evol. Syst. 35: 557-581  

Gabriel, W.L. and Mace, P.M. 1999. A review of biological reference points in the 
context of the precautionary approach. Northeast Fisheries Science Center, Woods 
Hole, MA. 

Gallagher, C., Hannah, R. and Sylvia, G. 2004. A comparison of yield per recruit and 
revenue per recruit models for the Oregon ocean shrimp, Pandalus jordani, 
fishery. Fish. Res. 66(1): 71-84  

Gallic, B.L. and Cox, A. 2006. An economic analysis of illegal, unreported and 
unregulated (IUU) fishing: Key drivers and possible solutions. Mar. Pol. 30(6): 
689-695  

Garcia, S. 1996. The precautionary approach to fisheries and its implications for fishery 
research, technology and management: an updated review. FAO Fisheries 
Technical Paper: 1-76  

Garcia, S.M. and Cochrane, K.L. 2005. Ecosystem approach to fisheries: a review of 
implementation guidelines. ICES J. Mar. Sci. 62(3): 311  

Garcia, S.M. and Rosenberg, A.A. 2010. Food security and marine capture fisheries: 
characteristics, trends, drivers and future perspectives. Proc. R. Soc. B 365(1554): 
2869  

Gardner, R., Ostrom, E. and Walker, J.M. 1990. The nature of common-pool resource 
problems. Rationality and Society 2(3): 335  

Gibbs, M.T. 2010. Why ITQs on target species are inefficient at achieving ecosystem 
based fisheries management outcomes. Mar. Pol. 34(3): 708-709  

Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., 
Pretty, J., Robinson, S., Thomas, S.M. and Toulmin, C. 2010. Food security: the 
challenge of feeding 9 billion people. Science 327(5967): 812-818  

Gordon, H. 1954. The economic theory of a common-property resource: the fishery. J. 
Polit. Economy 62: 124-142  

Grafton, R., Kompas, T. and Schneider, V. 2005. The bioeconomics of marine reserves: 
a selected review with policy implications. Journal of Bioeconomics 7(2): 161-
178  



 

 

34 

Grafton, R.Q. 1996. Individual transferable quotas: theory and practice. Rev. Fish. Biol. 
Fish. 6(1): 5-20  

Grafton, R.Q., Arnason, R., Bjorndal, T., Campbell, D., Campbell, H.F., Clark, C.W., 
Connor, R., Dupont, D.P., Hannesson, R. and Hilborn, R. 2006. Incentive-based 
approaches to sustainable fisheries. Can. J. Fish. Aquat. Sci. 63(3): 699-710  

Grafton, R.Q., Kompas, T. and Hilborn, R.W. 2007. Economics of overexploitation 
revisited. Science 318(5856): 1601  

Grafton, R.Q., Hilborn, R., Ridgeway, L., Squires, D., Williams, M., Garcia, S., Groves, 
T., Joseph, J., Kelleher, K. and Kompas, T. 2008. Positioning fisheries in a 
changing world. Mar. Pol. 32(4): 630-634  

Grafton, R.Q., Campbell, D., Costello, C., Hilborn, R. and Kompas, T. 2009. Comment 
on Abdicating Responsibility: The Deceits of Fisheries Policy. Fisheries 34(6): 
292-294  

Hall, S.J. and Mainprize, B. 2004. Towards ecosystem based fisheries management. Fish 
and Fisheries 5(1): 1-20  

Hannesson, R. 1993. Bioeconomic analysis of fisheries. Fishing News Books Ltd., 
Oxford, UK. 

Hannesson, R. 2011. Rights based fishing on the high seas: Is it possible? Mar. Pol.  
Hardin, G. 1968. The tragedy of the commons. Science 162: 1243-1248  
Heino, M. 1998. Management of evolving fish stocks. Can. J. Fish. Aquat. Sci. 55(8): 

1971-1982  
Heino, M., Dieckmann, U. and Godo, O.R. 2002. Estimating reaction norms for age and 

size at maturation with reconstructed immature size distributions: a new technique 
illustrated by application to Northeast Arctic cod. ICES J. Mar. Sci. 59(3): 562-
575  

Helser, T.E., Thunberg, E.M. and Mayo, R.K. 1996. An age-structured bioeconomic 
simulation of US silver hake fisheries. N. Am. J. Fish. Manage. 16(4): 783-794  

Helser, T.E. and Brodziak, J.K.T. 1998. Impacts of density-dependent growth and 
maturation on assessment advice to rebuild depleted US silver hake (Merluccius 
bilinearis) stocks. Can. J. Fish. Aquat. Sci. 55(4): 882-892  

Hilborn, R. and Walters, C. 1992. Quantitative fisheries stock assessment: Choice, 
dynamics, and uncertainty. Chapman & Hall, New York. 

Hilborn, R., Maguire, J.J., Parma, A.M. and Rosenberg, A.A. 2001. The Precautionary 
Approach and risk management: can they increase the probability of successes in 
fishery management? Can. J. Fish. Aquat. Sci. 58(1): 99-107  

Hilborn, R. 2002. The dark side of reference points. Bull. Mar. Sci. 70(2): 403-408  



 

 

35

Hilborn, R., Orensanz, J. and Parma, A.M. 2005. Institutions, incentives and the future of 
fisheries. Philosophical Transactions of the Royal Society B: Biological Sciences 
360(1453): 47  

Hilborn, R. 2007a. Defining success in fisheries and conflicts in objectives. Mar. Pol. 
31(2): 153-158  

Hilborn, R. 2007b. Moving to sustainability by learning from successful fisheries. 
Ambio 36(4): 296-303  

Hilborn, R. 2007c. Managing fisheries is managing people: what has been learned? Fish 
and Fisheries 8(4): 285-296  

Hilborn, R. 2007d. Reinterpreting the state of fisheries and their management. 
Ecosystems 10(8): 1362-1369  

Hilborn, R. and Stokes, K. 2010. Defining Overfished Stocks: Have We Lost The Plot? 
Fisheries 35(3): 113-120  

Hilborn, R. 2011. Let Us Eat Fish. In The New York Times, New York. p. A27. 
Holland, D.S., Bentley, N. and Lallemand, P. 2005. A bioeconomic analysis of 

management strategies for rebuilding and maintenance of the NSS rock lobster 
(Jasus edwardsii) stock in southern New Zealand. Can. J. Fish. Aquat. Sci. 62(7): 
1553-1569  

Holt, S. 2009. Sunken Billions-But how many? Fisheries Research 97(1-2): 3-10  
Houde, E. 1994. Differences between marine and freshwater fish larvae: implications for 

recruitment. ICES J. Mar. Sci. 51(1): 91  
Hsieh, C., Reiss, C.S., Hunter, J.R., Beddington, J.R., May, R.M. and Sugihara, G. 2006. 

Fishing elevates variability in the abundance of exploited species. Nature 
443(7113): 859-862  

Hutchings, J.A. and Fraser, D.J. 2008. The nature of fisheries-and farming-induced 
evolution. Mol. Ecol. 17(1): 294-313  

Hutchings, J.A. 2009. Avoidance of fisheries induced evolution: management 
implications for catch selectivity and limit reference points. Evol. Appl. 2(3): 324-
334  

Jackson, J.B.C., Kirby, M.X., Berger, W.H., Bjorndal, K.A., Botsford, L.W., Bourque, 
B.J., Bradbury, R.H., Cooke, R., Erlandson, J. and Estes, J.A. 2001. Historical 
overfishing and the recent collapse of coastal ecosystems. Science 293(5530): 629  

Jackson, J.B.C. 2008. Ecological extinction and evolution in the brave new ocean. 
Proceedings of the National Academy of Sciences 105(Supplement 1): 11458  

Jenkins Jr, T.M., Diehl, S., Kratz, K.W. and Cooper, S.D. 1999. Effects of population 
density on individual growth of brown trout in streams. Ecology 80(3): 941-956  



 

 

36 

Jennings, S. 2005. Indicators to support an ecosystem approach to fisheries. Fish and 
Fisheries 6(3): 212-232  

Jørgensen, C., Enberg, K., Dunlop, E.S., Arlinghaus, R., Boukal, D.S., Brander, K., 
Ernande, B., Gårdmark, A., Johnston, F., Matsumura, S., Pardoe, H., Raab, K., 
Silva, A., Vainikka, A., Dieckmann, U., Heino, M. and Rijnsdorp, A.D. 2007. 
Managing evolving fish stocks. Science 318(5854): 1247-1248  

Jørgensen, C. and Fiksen, Ø. 2010. Modelling fishing-induced adaptations and 
consequences for natural mortality. Can. J. Fish. Aquat. Sci. 67(7): 1086-1097  

Katsukawa, T. 2005. Evaluation of current and alternative fisheries management 
scenarios based on spawning-per-recruit (SPR), revenue-per-recruit (RPR), and 
yield-per-recruit (YPR) diagrams. ICES J. Mar. Sci. 62(5): 841-846  

Kent, G. 1997. Fisheries, food security, and the poor. Food Policy 22(5): 393-404  
Kompas, T., Che, T.N. and Grafton, R.Q. 2008. Fisheries instrument choice under 

uncertainty. Land economics 84(4): 652  
Krysiak, F.C. and Krysiak, D. 2002. Aggregation of Dynamic Systems and the Existence 

of a Regeneration Function* 1. J.Environ.Econ.Manage. 44(3): 517-539  
Lande, R., Engen, S. and Saether, B.E. 1994. Optimal harvesting, economic discounting 

and extinction risk in fluctuating populations. Nature 372(6501): 88-90  
Larkin, P.A. 1977. An epitaph for the concept of maximum sustained yield. Trans. Am. 

Fish. Soc. 106(1): 1-11  
Law, R. and Grey, D.R. 1989. Evolution of yields from populations with age-specific 

cropping. Evolutionary Ecology 3(4): 343-359  
Law, R. 2007. Fisheries-induced evolution: present status and future directions. Mar. 

Ecol.-Prog. Ser. 335: 271-277  
Longhurst, A. 2002. Murphy's law revisited: longevity as a factor in recruitment to fish 

populations. Fisheries Research 56(2): 125-131  
Lorenzen, K. and Enberg, K. 2002. Density-dependent growth as a key mechanism in the 

regulation of fish populations: evidence from among-population comparisons. 
Proc. R. Soc. B 269(1486): 49-54  

Macinko, S. and Bromley, D.W. 2003. Property and fisheries for the twenty-first 
century: seeking coherence from legal and economic doctrine. Vt. L. Rev. 28: 623  

Mayer, A.L. and Rietkerk, M. 2004. The dynamic regime concept for ecosystem 
management and restoration. Bioscience 54(11): 1013-1020  

Mertz, G. and Myers, R.A. 1998. A simplified formulation for fish production. Can. J. 
Fish. Aquat. Sci. 55(2): 478-484  



 

 

37

Millennium Ecosystem Assessment. 2005. Ecosystems and human well-being: synthesis 
1597260401 World Resources Institute, Washington, DC. 

Mora, C., Myers, R.A., Coll, M., Libralato, S., Pitcher, T.J., Sumaila, R.U., Zeller, D., 
Watson, R., Gaston, K.J. and Worm, B. 2009. Management effectiveness of the 
world’s marine fisheries. PLoS Biol. 7(6): e1000131  

Morishita, J. 2008. What is the ecosystem approach for fisheries management. Mar. Pol. 
32(1): 19-26  

Munro, G.R. 1992. Mathematical bioeconomics and the evolution of modern fisheries 
economics. Bull. Math. Biol. 54(2): 163-184  

Munro, G.R. and Sumaila, U.R. 2001. Subsidies and their potential impact on the 
management of the ecosystems of the North Atlantic. Fish. Cent. Res. Rep. 9(5): 
10-27  

Murawski, S., Methot, R. and Tromble, G. 2007. Biodiversity loss in the ocean: how bad 
is it? Science 316(5829): 1281  

Murawski, S.A. 2000. Definitions of overfishing from an ecosystem perspective. ICES J. 
Mar. Sci. 57(3): 649  

Murawski, S.A., Rago, P.J. and Trippel, E.A. 2001. Impacts of demographic variation in 
spawning characteristics on reference points for fishery management. ICES J. 
Mar. Sci. 58(5): 1002-1014  

Murawski, S.A. 2007. Ten myths concerning ecosystem approaches to marine resource 
management. Mar. Pol. 31(6): 681-690  

Myers, R., Rosenberg, A., Mace, P., Barrowman, N. and Restrepo, V. 1994. In search of 
thresholds for recruitment overfishing. ICES J. Mar. Sci. 51(2): 191  

O'Farrell, M.R. and Botsford, L.W. 2006. The fisheries management implications of 
maternal-age-dependent larval survival. Can. J. Fish. Aquat. Sci. 63(10): 2249-
2258  

Österblom, H., Hansson, S., Larsson, U., Hjerne, O., Wulff, F., Elmgren, R. and Folke, 
C. 2007. Human-induced trophic cascades and ecological regime shifts in the 
Baltic Sea. Ecosystems 10(6): 877-889  

Pascoe, S. 1997. Bycatch management and the economics of discarding FAO Fisheries 
Technical Paper, Rome. 

Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. and Torres Jr, F. 1998. Fishing 
down marine food webs. Science 279(5352): 860-863  

Pauly, D., Christensen, V., Guénette, S., Pitcher, T.J., Sumaila, U.R., Walters, C.J., 
Watson, R. and Zeller, D. 2002. Towards sustainability in world fisheries. Nature 
418(6898): 689-695  



 

 

38 

Pauly, D. and Palomares, M.L. 2005. Fishing down marine food web: it is far more 
pervasive than we thought. Bull. Mar. Sci. 76(2): 197-212  

Pauly, D., Watson, R. and Alder, J. 2005. Global trends in world fisheries: impacts on 
marine ecosystems and food security. Philos. Trans. R. Soc. B-Biol. Sci. 
360(1453): 5  

Pauly, D. 2009. Aquacalypse now: the end of fish. The New Republic 240(18): 24-27  
Perry, A.L., Low, P.J., Ellis, J.R. and Reynolds, J.D. 2005. Climate change and 

distribution shifts in marine fishes. Science 308(5730): 1912  
Persson, L., Amundsen, P.A., De Roos, A.M., Klemetsen, A., Knudsen, R. and 

Primicerio, R. 2007. Culling prey promotes predator recovery—alternative states 
in a whole-lake experiment. Science 316(5832): 1743  

Pikitch, E., Santora, C., Babcock, E., Bakun, A., Bonfil, R., Conover, D., Dayton, P., 
Doukakis, P., Fluharty, D. and Heneman, B. 2004. Ecosystem-based fishery 
management. Science 305(5682): 346  

Pitcher, T.J. and Hollingworth, C.E. 2002. Recreational fisheries: ecological, economic, 
and social evaluation. Wiley-Blackwell, Hoboken, NJ. 

Pontryagin, L., Boltyanskii, V., Gamkrelidze, R. and Mishchenko, E. 1962. The 
mathematical theory of optimal processes. Interscience, New York. 

Post, J.R., Sullivan, M., Cox, S., Lester, N.P., Walters, C.J., Parkinson, E.A., Paul, A.J., 
Jackson, L. and Shuter, B.J. 2002. Canada's recreational fisheries: the invisible 
collapse? Fisheries 27(1): 6-17  

Reznick, D.N. and Ghalambor, C.K. 2005. Can commercial fishing cause evolution? 
Answers from guppies (Poecilia reticulata). Can. J. Fish. Aquat. Sci. 62(4): 791-
801  

Ricker, W.E. 1946. Production and utilization of fish populations. Ecological 
Monographs 16(4): 373-391  

Ricker, W.E. 1981. Changes in the average size and average age of Pacific salmon. Can. 
J. Fish. Aquat. Sci. 38(12): 1636-1656  

Rothschild, B.J. 1986. Dynamics of marine fish populations. Harvard University Press, 
Cambridge, MA. 

Schaefer, M. 1957. Some aspects of the dynamics of populations important to the 
management of the commercial marine fisheries. J . Fish. Res. Board Canada 14: 
669-681  

Scheffer, M. and Carpenter, S.R. 2003. Catastrophic regime shifts in ecosystems: linking 
theory to observation. Trends Ecol. Evol. 18(12): 648-656  



 

 

39

Scheffer, M., Carpenter, S. and Young, B. 2005. Cascading effects of overfishing marine 
systems. Trends Ecol. Evol. 20(11): 579-581  

Schlager, E. and Ostrom, E. 1992. Property-rights regimes and natural resources: a 
conceptual analysis. Land economics 68(3): 249-262  

Scott, A. 1955. Natural resources: the economics of conservation. University of Toronto 
Press, Toronto. 

Scott, A. 2008. The evolution of resource property rights. Oxford University Press, USA. 
Sissenwine, M. 1987. An alternative perspective on recruitment overfishing and 

biological reference points. Can. J. Fish. Aquat. Sci 44(6987): 913  
Sissenwine, M.P. and Mace, P.M. 1992. ITQs in New Zealand: the era of fixed quota in 

perpetuity. Fish. Bull. 90(1): 147-160  
Squires, D., Kirkley, J. and Tisdell, C.A. 1995. Individual transferable quotas as a 

fisheries management tool. Rev. Fish. Sci. 3(2): 141-169  
Sumaila, U.R., Guénette, S., Alder, J. and Chuenpagdee, R. 2000. Addressing ecosystem 

effects of fishing using marine protected areas. ICES J. Mar. Sci. 57(3): 752  
Sumaila, U.R., Alder, J. and Keith, H. 2006. Global scope and economics of illegal 

fishing. Mar. Pol. 30(6): 696-703  
Sumaila, U.R., Teh, L., Watson, R., Tyedmers, P. and Pauly, D. 2008. Fuel price 

increase, subsidies, overcapacity, and resource sustainability. ICES Journal of 
Marine Science: Journal du Conseil 65(6): 832  

Sumaila, U.R. 2010. A cautionary note on individual transferable quotas. Ecology and 
Society 15(3): 36  

Sumaila, U.R., Khan, A.S., Dyck, A.J., Watson, R., Munro, G., Tydemers, P. and Pauly, 
D. 2010. A bottom-up re-estimation of global fisheries subsidies. Journal of 
Bioeconomics: 1-25  

Sutinen, J.G. 1999. What works well and why: evidence from fishery-management 
experiences in OECD countries. ICES J. Mar. Sci. 56(6): 1051  

Swain, D.P., Sinclair, A.F. and Mark Hanson, J. 2007. Evolutionary response to size-
selective mortality in an exploited fish population. Proc. R. Soc. B 274(1613): 
1015-1022  

Tahvonen, O. 2008. Harvesting an age structured population as biomass: Does it work? 
Natural Res. Modeling 21(4): 525-550  

Tahvonen, O. 2009. Optimal harvesting of age-structured fish populations. Mar. Resour. 
Econ. 24(2): 281–299  

Tietenberg, T. and Lewis, L. 2008. Environmental and natural resource economics. 
Addison Wesley, Boston. 



 

 

40 

Turvey, R. 1964. Optimization and suboptimization in fishery regulation. The American 
economic review 54(2): 64-76  

Vincenzi, S., Crivelli, A.J., Jesensek, D. and De Leo, G.A. 2008. The role of density-
dependent individual growth in the persistence of freshwater salmonid 
populations. Oecologia 156(3): 523-534  

Weitzman, M.L. 1998. Why the far-distant future should be discounted at its lowest 
possible rate. J.Environ.Econ.Manage. 36(3): 201-208  

Wilen, J.E. 2000. Renewable resource economists and policy: What differences have we 
made? J.Environ.Econ.Manage. 39(3): 306-327  

World Bank. 2009. The sunken billions: The economic justification for fisheries reform. 
World Bank, Washington D.C., USA. 

Worm, B., Barbier, E.B., Beaumont, N., Duffy, J.E., Folke, C., Halpern, B.S., Jackson, 
J.B.C., Lotze, H.K., Micheli, F. and Palumbi, S.R. 2006. Impacts of biodiversity 
loss on ocean ecosystem services. Science 314(5800): 787  

Worm, B., Hilborn, R., Baum, J.K., Branch, T.A., Collie, J.S., Costello, C., Fogarty, 
M.J., Fulton, E.A., Hutchings, J.A. and Jennings, S. 2009. Rebuilding global 
fisheries. Science 325(5940): 578  

 
 


