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Abstract

Since its introduction in 1994, the ensemble Kalman filter (EnKF) has gained a lot
of attention as a tool for sequential data assimilation in many scientific areas. Due to
its computationally fast and easy to implement algorithm its popularity has increased
vastly over the last decades especially in the fields of oceanography and petroleum en-
gineering. Although EnKF has been successfully applied to many real world problems
it has a major drawback from a statistical point of view. The algorithm only converge to
the optimal solution if the system under consideration is linear and all random variables
describing the system are Gaussian.
There exist sequential Monte Carlo methods (SMC) with correct asymptotic proper-

ties, but both numerical and theoretical studies have shown that the number of samples
must increase exponentially with the dimension of the model to avoid a collapse of the
algorithm. For large scale geophysical systems, such as petroleum reservoirs or ocean
models, each sample requires the solution of a system of partial differential equations
on a large grid. The computational burden of solving these equations using numerical
schemes naturally puts an upper limit on the number of samples we can use in prac-
tice. Hence these sequential Monte Carlo methods are not applicable, at least in their
simplest form, in large scale geophysical models.
This thesis explores the possibility of bridging the gap between EnKF and one of the

asymptotically correct SMC methods, known as particle filters, by extending already
known theory on Gaussian mixture filters. In addition a sensitivity analysis is carried
out for a new type of data in reservoir models.
A new approximative filter is developed by introducing an additional parameter in

the standard Gaussian mixture filter. The adaptive Gaussian mixture filter (AGM) con-
sists of two parameters and by choosing these differently the filter may run as EnKF, a
particle filter, or something in between. The method is tested on the Lorenz96model for
comparison with EnKF and Gaussian mixture filters. Further comparison with EnKF is
made after running AGM on a 2D two-phase and a 3D three-phase petroleum reservoir.
We generalize AGM and compute error bounds and asymptotic properties using clas-

sical approximation techniques before we explore the effects of estimating the first and
second order moments locally in Kalman type filters. By local estimation we mean lo-
cal in value and not in space. Two different approaches are suggested and applied to the
chaotic Lorenz63 model and a 1D reservoir model. Finally the sensitivity of reservoir
parameters to a new type of data, nanosensor observations, are calculated. Both ana-
lytical and numerical results are provided. A simulation experiment is included from
which we can compute the resolution of the estimated parameters numerically.
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Chapter 1

Introduction

The main focus in this thesis is on data assimilation in high dimensional dynamic sys-
tems. Data assimilation differs a bit from classical filter problems where the underlying
model is assumed to be a known stochastic process and the goal is to find the best es-
timate of the dynamic states of the hidden process at each time where a measurement
is taken. The measurements are usually a nonlinear mapping of the states with an
additional stochastic error term. In data assimilation for large scale models such as at-
mospheric models and petroleum reservoirs, the underlying system is deterministic and
the goal is to estimate either the states itself, parameters governing the forward equa-
tions of the model or both. In this thesis however, we approach the data assimilation
problem in the same manner as the filter problem with two exceptions which have be-
come standard in the scientific community [1]. The first is that we include parameters
in the unknown state vector, which is usually not the case in filter problems. Secondly
we include simulated measurements in the state vector so that the measurement opera-
tor in the augmented state space model is a binary linear operator. This however, does
not imply a linear relationship between the measurements and the states we want to es-
timate. Further, we formulate the filter problem in discrete time. We always assume
that the measurements are taken at discrete times, as a nonlinear mapping of the state
vector at the current time with an additional stochastic error term. Although geophys-
ical models are usually continuous in time, the only computational difference between
a discrete model and a continuous model in this set up is the numerical errors when
solving the forward equations numerically (if no analytical solution is available) from
one measurement time to the next (the transition from t−1 to t). All examples in this
thesis are synthetic, that is the states and observations are generated from a reference
model using the same discretization and numerical solvers as in the filter algorithms,
hence we may restrict ourselves to discrete time systems.
Even for simple low dimensional dynamic models the optimal statistical solution

to the filter problem, given by the probability distribution of the hidden states condi-
tioned on all measurements, is analytically tractable only in a few special cases. Due to
the complexity, the number of unknown states (or parameters) and the computational
cost of running the forward model in large scale geophysical models even suboptimal
solutions (approximative solutions which converge to the optimal solution as the num-
ber of iterations increase) are out of reach. Hence alternative methods without optimal
asymptotic behavior is sought. Over the last two decades a sampling version of the
classical Kalman filter, known as the ensemble Kalman filter (EnKF) [15], has devel-
oped into one of the most popular algorithms for data assimilation, especially if we
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restrict ourselves to sequential algorithms. The EnKF, as the Kalman filter, is a linear
minimization algorithm but contrary to the standard Kalman filter, which is optimal in
linear Gaussian systems, EnKF is only optimal asymptotically in linear Gaussian sys-
tems [25] as it uses low rank approximations of all matrices involved in the Kalman
update. Our focus is on nonlinear systems so when applying Kalman type filters a lin-
earization of the system is then required. Instead of linearizing the model based on a
gradient approach as in the extended Kalman filter (EKF) [2] the model is linearized
by the ensemble itself in the EnKF algorithm.
There have already been several attempts of combining ideas from EnKF with par-

ticle filters such as [30] where they compute the importance weights in a SMC with a
Gaussian importance function obtained from EnKF or [26] where they use a moment
matching idea to update the samples while using importance sampling to estimate pos-
terior moments. For a review on SMC methods in geophysical models see [43]. The
primary goal of this work is to improve upon the EnKF algorithm by combining it
with algorithms in the class of Gaussian mixture filters [10]. We try to clarify the rela-
tionship of EnKF to particle filters and improve upon the methodology by bringing in
ideas from statistical literature, such as local estimation of covariance matrices. In or-
der to explain the Gaussian mixture filters we start by formulating the filter problem,
its conceptual solution and asymptotic optimal approximation techniques.

1.1 The filter problem

Let Xt(ω), t ≥ 0 and Yt(ω), t > 0 be two F measurable stochastic processes defined
on a probability space (Ω,F,P). The filter problem consists of estimating the prob-
ability distribution of the states Xt ∈ X of a hidden dynamic system given the partial
information FY = σ(Y1, . . . ,Yt) from a sequence of measurements Y1:t � (Y1, . . . ,Yt),
Yj ∈ Y, j = 1 . . .t. The systems under consideration may consist of both dynamic vari-
ables Ut = (U1t , . . . ,U

nu
t )′ and static parameters θ = (θ1, . . . ,θnθ )′. For notational pur-

poses we include both the dynamic variables and static parameters into the state vector,
Xt = (θ ,Ut)′. Throughout the thesis we assume that all random variables are elements
of L2(Ω,F,P). We consider systems of the form

Xt = Mt(Xt−1,ξt) (1.1)
Yt = Ht(Xt ,εt), (1.2)

with initial condition X0 and where {ξt , t ≥ 1} and {εt , t ≥ 1} are noise sequences
of mutually independent variables which are also independent of X0. We will always
assume that given Xt = x the law of Yt admits a known conditional probability density
pYt |Xt (yt |xt). For fixed Yt = yt we refer to pYt |Xt (yt |xt) as the likelihood function at time
t. We assume that the observations are taken at discrete time steps either as direct
measurements or as an integral of the measurement process between two time steps if
Yt is a continuous process. (Then Ht would depend on the state at time s ∈ (t− 1,t].
If the model is discrete the model operator Mt is the transition from one time step to
the next. If the system is continuous Mt is the integral operator of a deterministic or
stochastic differential equation. The numerical algorithms discussed in this thesis are
the same for both the discrete and continuous model scenario if the measurement noise
is additive. That is we only need to know Xt to evaluate the density for Yt . All the
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case studies in this thesis are synthetic, that is numerical errors when solving Mt and
Ht (in the continuous case) are non existing and these types of errors are not an issue
in this thesis. In other words we assume that we can sample correctly from (1.1). We
also consider the prior knowledge of the parameters and initial state of the system to
be described in terms of a known probability density function which we denote as the
prior. From (1.1) it follows that {Xt} is Markov and in most of what follows we assume
that the transition function is a conditional probability density. We are now ready to
formulate the conceptual solution of the filter problem. For an overview see e.g. [12]
or [37].

1.1.1 Conceptual solution of the filter problem

Assume that a prior density p(x0) exists and that at each time step t > 0 the conditional
densities p(xt |xt−1) and p(yt |xt) exists, where p(·) denotes the probability density func-
tion with the argument of the function indicating the random variables under consid-
eration as long as there is no danger of confusion, i.e. p(xt|yt) � pXt |Yt (xt |yt). From a
statistical point of view, the optimal solution to the filter problem described in the pre-
vious section is given by the conditional density of Xt given all measurements up to and
including time t, p(xt |y1:t), denoted as the posterior density. Bayes’ theorem allows us
to recursively define the posterior density in terms of the densities described above for
t > 1.

forecast: p(xt |y1:t−1) =
∫
p(xt |xt−1)p(xt−1|y1:t−1)dxt−1 (1.3)

update: p(xt |y1:t) =
p(yt |xt)p(xt |y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt . (1.4)

For t = 0 the solution is p(x0) and for t = 1 the forecast is given by p(x1|x0). To an-
alytically solve these equations in general requires the evaluation of complex high di-
mensional integrals which is impossible in the general case. However there are certain
cases where it is possible to obtain analytical solutions to the filter problem.

• If the system is linear and Gaussian the functional recursions satisfies the Kalman
filter equations [21].

• If the state space is discrete valued with a finite number of states the optimal solu-
tion is obtained using a grid based method [37].

• For a certain class of nonlinear problems analyzed by [6] and [11], it is possible to
formulate exact analytical solutions.

The Kalman filter is an important part of this thesis and we therefore give a quick
overview. Assume that in addition to a Gaussian prior the model is described by linear
operators and additive Gaussian noise

Xt = �tXt−1+�tξt
Yt = �tXt +�tεt ,

(1.5)

where ξt and εt are standardized Gaussian vectors, i.e, with zero mean, no correlations
and with unit marginal variance. In this scenario the solution of the filter problem is
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a Gaussian density with parameters given by the Kalman recursions. Starting with μ0
and �0 from the prior density and defining

μt = E[Xt |y1:t ],
�t = Cov(Xt |y1:t−1),
�t = Cov(Xt |y1:t).

The parameters in the Gaussian posterior density evolves as follows

μt = �tμt−1+�t�
′
t(�t�t�

′
t +�t�

′
t)
−1(Yt−�t�tμt−1),

�t = (�−�t�
′
t(�t�t�

′
t)
−1
�t)�t,

(1.6)

where
�t = �t�t−1�′t +�t�

′
t . (1.7)

and
�t�

′
t(�t�t�

′
t +�t�

′
t)
−1 = Cov(Xt ,Yt)[Cov(Yt,Yt)]−1 (1.8)

is referred to as the Kalman gain matrix.
We started this introduction by claiming that the posterior density is the optimal so-

lution to the filter problem and recursively updating the posterior using Bayes’ theorem
coincides with the Kalman filter when we have linearity and Gaussianity. In order to
verify these claims it is useful to study the filter problem in Hilbert space where it is
natural to define the optimal solution as the element x̂ in the subspace spanned by the
measurements minimizing ||x− x̂||.

1.1.2 Filtering as a projection

Consider again the probability space (Ω,F,P). Let X ∈ L2(Ω,F,P). Denote by FY ⊂ F

the σ -algebra generated by the random variables Y1:t ∈ L2(Ω,F,P). We assume that
all variables are zero mean without loss of generality. We denote the covariance and
cross-covariance matrices by �X ,X , �Y,Y and �X ,Y respectively. Let L1 be the subspace
of the Hilbert space L2(Ω,F,P) defined by

U1 = {Y ∈ L2(Ω,F,P); such thatY isFY measurable}.
Then there exists a P unique element in L1 with the minimum distance to X (i.e. the
best estimate) which is the orthogonal projection of X , denoted PL1(X), into L1. PL1 is
FY measurable and we have the identity

PL1(X) = E[X |FY ].
For a proof see e.g.[35]
Further let L2 be the subspace of L2(Ω,F,P) defined by the linear span of Y = Y1:t .

Again we may define an orthogonal projection of X into L2 which is the point in L2
closest to X

PL2X =minE[X−	Y ]2,

where the minimum is given by 	 = �X ,Y�
−1
Y,Y . If Y = �X +�ε where ε is zero mean

Gaussian with identity covariance matrix then �X ,Y = �X ,X�
′, �Y,Y = ��X ,X�

′ +��
′.



1.2 Sampling the posterior 5

Further if X is Gaussian then PL1 and PL2 coincides and we recognize � from (1.8) as
the Kalman gain matrix. From the above we conclude that

E[X−E[X |FY ]]2 ≤ E[X−�Y ]2,

with equality in the linear Gaussian case.
Now that we have defined the optimal solution to the filter problem we turn our focus

on how to solve it in practice.

1.2 Sampling the posterior

In general, as discussed in the previous section, it is impossible to obtain analytical
solutions to the filter problem. We are interested in quantities such as P(|Xt | >C|Y1:t)
or in general E[v(Xt)|Y1:t] which can be written as∫

v(x)p(xt |y1:t)dxt (1.9)

for an appropriate function v. If v = 1A for some Borel set A then (1.9) is equal to
P(Xt ∈ A|Y1:t = y1:t). However, not knowing p(xt|y1:t) analytically we are forced to use
approximative solutions of (1.9). As the convergence of standard numerical integration
techniques depend on the dimension of the integrand they are not suitable to solve the
filter problem. However, we see that the integral given by (1.9) is the expectation of a
stochastic variable with density p(xt |y1:t) where y1:t is fixed. Thus we get by the strong
law of large numbers that

1
N

N

∑
i=1
v(Xit )

a.s.−−→
∫
v(x)p(xt |y1:t)dx, (1.10)

as N→ ∞ if {Xit }Ni=1 is a random sample from p(xt |y1:t). Here a.s. denotes almost sure
convergence. Moreover, the order of convergence rate of (1.10) is equal to the square
root of N for any dimension of the integral. However, the actual convergence also
contains a constant that is clearly dependent on the dimension. There exists several al-
gorithms that samples correctly from the posterior density (e.g. Langevin sampling [4]
and Markov chain Monte Carlo [38]) however, the focus in this thesis is on the sequen-
tial Monte Carlo methods as these are more suitable for online estimation and do not
require re-staring the algorithm from time zero when a new observation arrive. These
sequential Monte Carlo methods are often referred to as particle filters and originate
from sequential importance sampling (SIS). In order to understand SIS and particle
filters it is useful to start with a description of ordinary importance sampling (IS).

1.2.1 Importance sampling

Let X ∈ X be a random vector with probability density function p(x) and let v : X → �

be an integrable function w.r.t.the density p. Assume that we want to evaluate

I(v) =

∫
v(x)p(x)dx.
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Very often, as in the filter problem, it is not possible to sample directly from p(x).
However, let g be any density dominating p. Then we can write

I(v) =

∫ v(x)p(x)
g(x)

g(x)dx.

If {Xi}Ni=1 is a sample from g then by the strong law of large numbers

IN(v) =
1
N

N

∑
i=1

v(Xi)p(Xi)
g(Xi)

a.s.−−→ Eg
[
v(X)p(X)

g(X)

]
= I(v),

as N → ∞. An important situation is when p(x) is known only up to a normalizing
constant,i.e, p=Cp̃ where p̃ is known. In that case we use a weight function w= p̃/g
and since any density integrates to one

I(v) =

∫
v(x)Cw(x)g(x)dx∫
Cw(x)g(x)dx

=

∫
v(x)w(x)g(x)dx∫
w(x)g(x)dx

=
Eg[v(X)w(X)]

Eg[w(X)]
.

Then, although biased (ratio of two estimators), the estimator

IN(v) =
∑Ni=1 v(Xi)w(Xi)

∑Nj=1w(X j)
, (1.11)

where {X j}Nj=1 is a random sample from g, converges almost surely to I(v) [17]. This
is exactly the scenario we have in the filter problem in (1.3). The joint posterior density
satisfies

p(x0:t |y1:t) ∝ p(yt |xt)p(xt |xt−1)p(x0:t−1|y1:t−1),
by iterating we get

p(x0:t |y1:t) ∝ p(x0)
t

∏
k=1
p(yk|xk)p(xk|xk−1), (1.12)

and we see that all ingredients are assumed to be known and the problem is the nor-
malizing constant. A suboptimal, but convenient choice for the importance function g
is

g(x0:t |y1:t) = p(x0:t) = p(x0)
t

∏
k=1
p(xk|xk−1), (1.13)

since we have assumed that each transition density is known and that we know how to
sample from it. The importance weights are then given by

w(x0:t) =
p(x0:t|y1:t)
g(x0:t|y1:t) ∝

p(x0)∏t
k=1 p(yk|xk)p(xk|xk−1)

p(x0)∏t
k=1 p(xk|xk−1)

=
t

∏
k=1
p(yk|xk). (1.14)

From equation (1.11) any question regarding the joint posterior distribution can be
answered using estimators of the form

IN(v) =
∑Ni=1 v(Xi0:t)∏t

k=1 p(yk|Xik)
∑Nj=1∏t

k=1 p(yk|X jk )
,
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where Xi0:t is a sample from (1.13) provided that N is sufficiently large. Usually we are
only interested in the marginal posterior distribution p(xt|y1:t), then one may simply
omit the first t components in each of the random vectors Xi0:t .
There are in general two reasons why importance sampling as described above is not

applied to the filter problem.
• The measurements often arrive sequentially in time and we would like to update
the posterior density each time a new measurement arrives. It is then important
to be able to start with the sample from the posterior density at the previous time
step and not having to sample the entire vector x0:t . This is also one of the main
reasons why Markov chain Monte Carlo is not suitable for sequential sampling.

• As time increases the variance of the weights increase. From (1.14) we see that
each of the components of Xi1:t has to statistically match the data at the given time
to avoid having negligible weight. Being a random vector, this is very unlikely
as time increases. The result is that most of the vectors have negligible weights,
and more important, due to the normalization of the weights the ones that do have
significant weights do not necessarily statistically match the data well, they just
match the data better than the other random vectors. Instead we would like to have
an algorithm where the weights at time t only depends on the statistical match
between yt and the sample {Xit }Ni=1.

The first problem can be solved by selecting the importance function in such a way
that both sampling and evaluation of the importance weights may be done sequentially
(Note that this is already the case in (1.13)). This is known as sequential importance
sampling (SIS). The second problem is solved by introducing a bootstrapping step in
the SIS algorithm, this is known as sequential importance resampling (SIR) and is often
referred to as the standard particle filter.

1.2.2 Sequential importance sampling and sequential importance resampling

Consider again the importance sampling setup where one has to construct a weighted
sample from a chosen importance function g. As mentioned in the previous section
we would like select the importance function in such a way that we may sample and
evaluate the weights sequentially in time. For the filter problem this can be achieved if
we choose an importance function of the form

gt(x0:t|y1:t) = gt|t−1(xt |x0:t−1,y1:t)gt−1(x0:t−1|y1:t−1). (1.15)

We now see that a sample from gt(x0:t|y1:t) is obtained by sampling from gt|t−1(xt|Xi0:t−1,y1:t)
given that one has a sample Xi0:t−1 from gt−1(x0:t−1|y1:t−1). The weights can also be
updated sequentially as

Wi
t = w(Xi0:t) =

p(Xi0:t |y1:t)
gt(Xi0:t |y1:t)

∝
p(yt |Xit )p(Xit |Xit−1)p(Xi0:t−1|y1:t−1)

gt|t−1(Xit |Xi0:t−1,y1:t)gt−1(Xi0:t−1|y1:t−1)

=
p(yt |Xit )p(Xit |Xit−1)
gt|t−1(Xit |Xi0:t−1,y1:t)

Wi
t−1.

(1.16)
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Further if we are only interested in the marginal posterior distribution at each time
step it is convenient to select the importance function in such a way that the identity
gt|t−1(xt |x0:t−1,y1:t) = gt|t−1(xt |xt−1,yt) holds for each t. Then it is sufficient to only
store (Xit−1,Wi

t−1,yt) in order to sample Xit and evaluate Wi
t . From (1.13) and (1.14)

(1.15) and (1.16) are satisfied if we choose
gt|t−1(xt|x0:t−1,y1:t) = p(xt |xt−1)

,gt−1(x0:t−1|y1:t−1) = p(x0)
t−1
∏
k=1
p(xk|xk−1),

Wi
t ∝Wi

t−1p(yt |Xit ).
From (1.14) we see that each weight decays rapidly with time and after the weights
are normalized the difference between the largest and smallest weight increase rapidly,
hence the number of samples actually contributing to the estimator IN(v) decreases with
time. A measure of how many samples that actually contributes to the estimate was
introduced in [22] as the estimated effective ensemble size (omitting the time index)

N̂eff =
(∑Nj=1W̄ j)2

∑Ni=1(W̄ i)2
=

1
∑Ni=1(Wi)2

, (1.17)

where we now have defined W̄ as the unnormalized weights andW as the normalized
weights. To avoid a degeneracy of the weights [18] reintroduced a resampling step of
the SIS algorithm, hence the name sequential importance resampling. The idea is to
replace the weighted estimator

IN(v) =
N

∑
i=1
v(Xi)Wi

with the unweighted estimator

În(v) = N−1
N

∑
i=1
v(Xi)Ni,

where Ni is a random number such that E[Ni] = NWi. The simplest (but not opti-
mal) way of doing this is by drawing M = {Ni}Ni=1 from the multinomial distribution
(N, p1, . . . , pN) = (N,W 1, . . . ,WN) where However, this is equivalent to sample N i.i.d.
variables {X̂ i}Ni=1 from the weighted empirical distribution

N

∑
i=1
WiδXi(x),

where δ is the Dirac-delta measure. A rule of thumb is to perform resampling if N̂eff is
below some predetermined threshold value [13]. There are several ways to reduce the
variance of the resampling step or to increase the diversity of the re-sampled particles,
but they will not be addressed here. For an overview see [12] or [24].
The estimates ÎN(v) produced by the SIR algorithm has the correct asymptotic be-

havior assuming some regularity conditions on the model process and the actual v. This
means that ÎN(v) is strongly consistent and converge almost surely to the correct value
I(v). Moreover the normalized error,

√
N

(
ÎN(v)− I(v)) is asymptotically normal with

zero mean. For more details and theoretical results on SIR filters see e.g. [24, 32]
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1.3 Curse of dimensionality and the ensemble Kalman filter

Although the SMC methods presented in the previous section have nice theoretical
properties their applications are somewhat limited. If the complexity or the dimension
of the phenomena being studied increase, the particle filter methods collapse in the
sense that all but a few particles have significant weight at a given time step if the
sample size is limited. Note that this is different from the weight degeneracy described
in the previous section. When high dimensional or very complex models are studied
such as petroleum reservoir or oceanographic and climate models, the computational
cost of sampling forward in time increases as it demands solving partial differential
equations numerically over a large domain. This naturally puts on upper limit on the
number of samples, N, in the Monte Carlo algorithms. Intuitively the weight collapse
occur as the solution space is extremely small compared to the space that we sample
from. Mathematically it can be shown under some restrictions that the largest of the
importance weights converges to one in probability as the dimension of the problem
goes to infinity unless the number of samples grow exponentially with the dimension
[7, 41]. The computational cost of forward sampling in large scale system force us
to look for more robust sampling algorithms with the expense of no longer having
asymptotic optimality.

1.3.1 The ensemble Kalman filter

Although particle filters are included in the geophysical literature [43], the most popular
SMC method for application in high dimensional geophysical systems is the Ensemble
Kalman filter (EnKF) [15]. Several improved versions of EnKF have been successfully
applied to the history matching problem in petroleum [1] and in oceanography [9].
Usually in these applications, it is assumed that the measurement error is additive and
Gaussian with zero mean and a known covariance matrix �t so that for each t, p(yt |xt)
is a known Gaussian density w.r.t. yt . Also it is common to include the simulated
measurements in the state vector giving a linear relationship between the observation
and the state vector with additive Gaussian noise, Yt = �tXt + εt , where �t is a matrix
of zeros and ones that selects the simulated measurements from the state vector.
From a statistical point of view EnKF is best described as a sequential Monte Carlo

method with an additional Gaussian assumption. The EnKF evolves by sampling from
the Markov transitions p(xt |xt−1). The joint density of the state vector is then assumed
to be Gaussian and is approximated by the Gaussian density with the forecast sample
mean X̄ ft and sample covariance �

f
t as parameters. According to Bayes’ theorem the

posterior density is again a Gaussian density with parameters μt and �t given by the
Kalman equations

μt = X̄ ft +�t(yt−�t X̄ ft )

�t = �
f
t �

′
t(�t�

f
t �

′
t +�t)

−1

�t = (�−�t�t)�
f
t .

(1.18)

Again these parameters are estimated by a sample, where a sample {Xi,ut }Ni=1 from the
posterior is obtained from the prior sample by

Xi,ut = Xi, ft +�t(yT − (�tX i, ft + ε it )), i= 1, . . . ,N (1.19)
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where �t is the same as in (1.18) and ε it is a zero mean Gaussian random variable with
covariance matrix �t . The parameters μt and �t are estimated by the posterior sample
and we no longer have the identities in (1.18), however these identities can be obtained
by using a mean correction and updating the sample using a square root transformation
[39] instead of (1.19). Note that under the Gaussian assumption, this sampling strat-
egy corresponds to using the posterior density as importance function, that is all the
weights are equal to N−1 which is equivalent to an unweighted sample. In other words,
the curse of dimensionality as described above does not apply in the same manner to
EnKF which makes it applicable to large geophysical models. However, there are other
dimensionality issues regarding EnKF and such as the impact of spurious correlations
and inbreeding of the sample. They are both consequences of the fact that we use sam-
ple covariance matrices in the Kalman Gain when the sample is updated at each time
step. Each ensemble member is now a function of the other ensemble members and
we no longer have an independent sample which results in under estimation of the pos-
terior uncertainty. Also, as the number of ensemble members is low compared to the
dimension of � f , the entries s fi j may be very unreliable especially the ones that are the-
oretically zero. This means that the sample update differs from the theoretical update
(the one obtained using the theoretical covariance matrix). There exists several tech-
niques we can apply to reduce the effect of spurious correlations e.g. [3, 16, 33, 45].
Another drawback, which is the major concern in this thesis, is that the asymptotic

solution obtained by EnKF is only optimal in linear Gaussian systems [25]. The main
bias for EnKF enters through the linear update of the non-observed entries in the state
vector which may have a strong nonlinear relationship with the measurements.
As the SIR filter is asymptotically optimal but collapses in high dimensions and

EnKF may suffer from severe bias, intuitively it might be reasonable to believe that the
optimal filter for high dimensional systems lies somewhere in between.

1.3.2 Improved importance functions and Gaussian mixture filters

The aim of this section is to describe a class of filters, known as Gaussian mixture
filters (GM), equipped with properties from both SIR and EnKF. The starting point
however, is improving the importance function in the SIR algorithm. As in EnKF, we
work with augmented state vectors and we therefore restrict ourselves to systems with a
linear measurement operator. If we in addition assume that the model and measurement
errors are additive with knownGaussian densities, it is possible to improve the choice of
importance function. Conditionally on Xt−1 = xt−1 and Yt = yt , the optimal importance
function (for any system) is p(xt |xt−1,yt) [14]. For the system described above, with
model error covariance �t and measurement error covariance �t we have

p(xt|xt−1,yt) = Φ(μt ,�t),
μt = Mt(xt−1)+�t�t(�t�t�

′
t +�t)

−1(yt−�tMt(xt−1)),
(1.20)

where Φ denotes a Gaussian density. After sampling Xit from (1.20) the importance
weights are updated as

wit ∝ wit−1Φ(yt−�tMt(Xit−1),�t�t�′
t +�t), i= 1, . . . ,N.

Mathematically we see that the extra covariance term in the likelihood function, �t�t�′
t ,

results in a heavier tail weight function and thus the weights are less spread. Intuitively,
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the weights are less spread as we use information about yt when we sample Xt , thus we
expect the sample to all match the data quite well or at least better than if we sample
randomly from p(xt |xt−1).
In many geophysical applications the model error is unknown and very often not ac-

counted for in the forward modeling. If we represent these unknown error quantities
with a Gaussian random variable, it is not necessarily a good idea to add noise from
this density to each sample but instead sample from the forward model and then rep-
resent the uncertainty with a Gaussian density. In this setting a natural representation
of the forecast distribution would be a weighted sum of Gaussian densities (a Gaus-
sian mixture) where the mean of each density is represented by one of the ensemble
members/particles. The covariance matrix can be chosen arbitrarily, but should some-
how reflect the uncertainty in the model to make the approximation reasonable. Note
that it is these covariance matrices that controls the linear update of each ensemble
member. If we let � be the covariance matrix of the Gaussian density and by defining
Xi, ft = Mt(Xi,ut−1), the updated particles in the GM filter are given by

Xi,ut = Xi, ft +�t�t(�t�t�
′
t +�t)

−1(yt−�tX i, ft ), i= 1, . . . ,N, (1.21)

and the weights are given by

Wi
t ∝Wi

t−1Φ(yt−�tX i, ft ,�t�t�
′
t +�t), i= 1, . . . ,N. (1.22)

The Gaussian mixture (GM) filters can also be derived from nonparametric density
estimation theory [40] by approximating the prior density at each time step with a
Gaussian kernel estimator. For more details on GM filters see e.g. [8, 19, 23].
Although the GM filters combine ideas from EnKF and SIR, the asymptotic theory

of the weights as the dimension increases are still valid. Hence the GM also suffer from
the curse of dimensionality, at least in its basic form. From a practical point of view
this means that �t has to be large in some sense to avoid a collapse of the weights. A
typical choice for �t [19] is

�t = h2� ft ,
that is �t is proportional to the sample covariance of the forecast ensemble.
The first objective of this thesis is to construct a new class of Gaussian mixture filters

with reduced bias. As mentioned above the size of the covariance matrix in each Gaus-
sian kernel decides the impact of the linear update, increasing the size of each matrix
increases the bias of the estimates if the posterior distribution is not Gaussian. At the
same time, the covariance matrix of the likelihood function is increased by �t�t�′

t thus
increasing the size of the matrices reduces the chance of a weight collapse and makes
the filter more robust. To avoid these contradictions we introduce a new parameter, in-
fluencing the weights independent of the linear update. In the new setting it is possible
to reduce the size of the linear update and at the same time avoid a weight collapse.
The details are given in paper A.

1.3.3 Summary of paper A

In paper A we discuss the approximation of the optimal SIR filter using Gaussian mix-
tures with covariance matrices of the form

�t = h2� f (1.23)
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where � f is the sample covariance of the augmented forecast state vector (X1, ft , . . . ,XN, f
t )

and h ∈ [0,1]. It is necessary that h> 0 in order to update the sample, but in many ap-
plications we are forced to have h≈ 1 in order to avoid a weight collapse and the bias
of the filter is almost as severe as EnKF. In paper A we argue that the correct thing to
do is to introduce a weight reduction parameter independent of the linear update. Thus
we introduce the weight interpolation

Wnew = αWold+(1−α)N−1. (1.24)

We also adapt α at each assimilation step as (remembering (1.17))

α = N̂effN−1,

based on bias variance tradeoff arguments. The resulting filter, denoted the adaptive
Gaussian mixture filter (AGM), can behave as a SIR filter, a GM filter and EnKF de-
pending on the values of the two parameters. A simulation study of the Lorenz40 model
[28] where we compute the mean squared error (MSE) and the Kullback-Leibler diver-
gence (KL) confirms that the bias of the filter is reduced compared to both GM and
EnKF by introducing the new parameter.

1.3.4 Summary of paper B

One of the main areas of application for EnKF is reservoir characterization of petroleum
reservoirs. It is therefore natural to apply AGM to such type of problems and compare
the performance with EnKF. In paper B we compare the AGM with the standard EnKF
on two synthetic petroleum reservoir models. The first is a 2D model with large initial
uncertainty and a Gaussian prior with a spherical variogram. The second is the well
known 3D model Punq-S3 [5]. While the initial ensemble in the 2D case are randomly
generated from the prior, the initial ensemble in the Punq model are conditioned to well
data.
Comparing different filter solutions on large scale models is not a simple task for

several reasons. First, we have no good approximation of the true posterior distribu-
tion. Secondly, we don’t know the distribution of the measures calculated (usually L2
norms), except for the linear Gaussian case, but in this case the true posterior could be
well approximated. In many geophysical applications, the only measure considered is
the data mismatch. That is the (root) mean squared error between the observations and
the filter solution. A rule of thumb is that the lower history match, the better the filter.
Although a reasonable assumption, one has to understand that the N filtered samples
are supposed to represent an independent sample from the posterior distribution and
not N “best” estimates. A low data mismatch is often connected to under estimation of
the posterior uncertainty. For petroleum reservoirs, the main interest in the filter prob-
lem is the geophysical parameters such as permeability and porosity. These quantities
are usually assumed to be constant in time, hence we are able to compare the solution
at the final time step with the prior density to see how much the samples have changed.
If we have a sample from the true posterior, then it should not contradict the prior dis-
tribution. This sometimes happens when EnKF is applied, that is the posterior sample
has a geostatistical structure that is far from the prior geostatistical structure. If we as-
sume that there exists a unique porosity and permeability vector θ̂ minimizing the sum
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of inner products
T

∑
t=1

(Yt−Ht(θ))′R−1t (Yt−Ht(θ)), (1.25)

then the sample θi = θ̂ , i = 1, . . . ,N has lower history match than any other sample,
however, it is not a good solution to the filter problem as it represents the posterior
distribution as a single point.
For Gaussian priors (which is the case in the two synthetic models) we may evaluate

the Euclidean inner product

(θ(s)ui −θp(s))′�−1(θ(s)ui −θp(s)), (1.26)

where θ(s)ui is filtered ensemble member i, θ(s)p is the prior mean, � is the prior
covariance, and s is the spatial variable. Minimizing (1.26) is equivalent to maximizing
the prior likelihood for each ensemble member, thus we are able to compare how well
each filtered ensemble member match fits the prior density. For large dimensional
systems the posterior mean is usually far from the prior mean and the values of (1.26)
is not that informative (remember the curse of dimensionality problem). Perhaps a
more interesting measure is the deviation between the initial sample and the filtered
sample

(θ(s)ui −θ pi (s))′�−1(θ(s)ui −θ ip(s)). (1.27)
If small changes have been made to the prior update then we expect that the samples
are more consistent with the prior distribution which they initially were sampled from.
We compute (1.27) in for the posterior ensemble in Punq-S3 where no resampling is
performed.
For the 2D model, where resampling is performed, the empirical variogram formula

for each ensemble member
1
Nh ∑

i, j∈Nh
(X(si)−X(s j))2, (1.28)

where Nh is the number of ensemble members such that ‖ si− s j ‖= h, is computed
and the mean over the ensemble is used to measure the geostatistical properties of the
posterior ensemble. As mentioned above the theoretical posterior variogram is not the
same as the prior, but as the posterior process is no longer stationary (1.28) is no longer
an estimate of the variogram. However, it does say something about the geostatistical
properties within each sample and should reflect the geostatistical properties of the true
field which is generated using the prior theoretical variogram.
For the Punq-S3 model, the consistency of the filters are compared, in terms of

the empirical cdf for the total oil production, using twenty different initial ensembles
as previous studies have shown inconsistent results with EnKF using different initial
ensembles [27].
Over all, the data mismatch for both filters are comparable, however the samples

from AGM are closer to the prior samples and, produces estimated fields that are closer
to the true field in root means squared error and the estimated cdfs of the total cumulativ
oil production had a lower spread than the cdfs estimated from the EnKF sample.
The AGM was developed in paper A and tested on large scale models in paper B. In

paper C we generalize it and study the asymptotic properties with some simplifications.
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1.3.5 Summary of paper C

A generalization of AGM is the topic of paper C. We consider a d dimensional Markov
system with transition kernels Qp(x,x′), p= 1, . . . ,n with Qp being the transition form
time tp−1 to tp. The measurements arrive sequentially in time at discrete times tp, p=
1, . . . ,n and we assume that conditional on Xp = x′ the measurement Yp has a known
bounded density gp(x′). Given the posterior density η̂p−1 at time p− 1, the posterior
expectation of a function f at time p is then proportional to

η̂p−1(Kp f (x)),

where we have defined the kernels Kp by

Kp f (x) =
∫
f (x′)gp(x′)Qp(x,x′)dx′.

Our general interpolated kernel filter is defined through an approximating of Kp given
by

K̂p(x)
def
= αgp(x′)

∫
Gp,h(x′−u)Qp(x,u)du+(1−α)gp(x′)

∫
Gp,h(x′−u)θp,h(u)Qp(x,u)du,

(1.29)
where Gp,h(x) = h−dGp(x/h), Gp is a symmetric kernel. θp,h(x) is a function such that
for h = 0 we have θp,h(x)gp(x) is a bounded function for all h. By sampling {Xip}Ni=1
from Qp we get the particle approximation of (1.29) by

N

∑
i=1

(
αgp(xp)Gp,h(xp−Xip)+(1−α)gp(xp)θp,h(Xip)Gp,h(xp−Xip)

)
.

We find that by appropriate functions Gp,h and θp,h together with some regularity as-
sumptions the filter reduces to AGM. However, we also show that there is a one to one
correspondence between the adaptive weights in paper A and the new weights. Using
methods developed by [31] error bounds for the asymptotic distribution of the new fil-
ter are provided along with a central limit theorem for the particular choice α = 1−h2
and h= h(N) = N−1/4 using a general SMC theorem [32].

1.3.6 Local Kalman gain

In paper C the kernel Gp depends on a parameter h, however it is not necessary that the
kernel depends on h through (1.23) as in paper A and B. In fact, it is easy to construct
an example where this particular choice is not a good one. Consider the simple model

Y = X2+ ε,

where X and ε are independent standard Gaussian variables. Although dependent we
see that

Cov(X ,Y ) = Cov(X ,X2+ ε) = Cov(X ,X2) = EX3 = 0,
since X is Gaussian. This means that we have E[h2�] = 0 so that we expect GM, AGM
and EnKF to do no linear update of the sample. This situation occurs since the covari-
ance is a measure of global linear dependence between variables. A natural extension
is then to measure a local linear dependence between the variables and hence estimate
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the Kalman gain locally. Viewing the sample correlation as a linear approximation of
the measurement operator, it is clear that a local approximation is better than a global
approximation. Both parametric and non-parametric estimation of a local covariance
matrix is discussed and tested on small dynamic systems in paper D.

1.3.7 Summary of paper D

In paper D we discuss the the failure of EnKF when the posterior distribution is multi-
modal. A local parametric Kalman filter is proposed where a the Kalman gain is evalu-
ated locally at each ensemble member using a local Gaussian correlation [20]. The new
filter is applied to a simple toy problem with bimodal posterior distribution [44]. Due to
the computational cost of the filter, two nonparametric approaches are discussed. The
first is a k-cluster mean algorithm [29] and the second is a kernel estimation approach
using ideas from kernel regression [34]. It is shown that the kernel approach approxi-
mates an ensemble based EKF where the Jacobian of Ht is used to calculate the cross
covariance between the states and measurements. The new methods are compared with
EnKF and SIR in two different models, one chaotic model with dynamic states being
filtered and a petroleum reservoir type model where we estimate geological parameters.
For both models the true posterior is multimodal and is approximated with SIR using a
large number of particles. The new methods proposed show great potential in captur-
ing several (if not all) modes with as few as 100 particles. The standard SIR collapse
in both cases with this few particles. As expected, EnKF fails to capture the multiple
modes, and approximates the posterior with a single mode.

1.4 Resolution, sensitivities and the Fréchet derivative

So far we have only studied estimation techniques, however, an important task in com-
plex models with many unknown parameters is to determine the information content in
the data. Taking measurements can often be time consuming and/or expensive and it is
therefore important to understand what the different measurements tell us about the un-
derlying system. Sensitivities and resolutions are important tools in order to estimate
the information content of the data and we will give a brief overview.
Assume that we study a linear model y = �m with prior mean and covariance

(mp,�p) and observations yo with error covariance �y. The least square estimate, mest ,
minimizing

(m−mp)′�−1p (m−mp)+(yo−�m)′�−1y (yo−�m), (1.30)

is given by
mest = mp+�p�

′(��m�′ +�y)
−1(yo−�mp), (1.31)

which is the mode of the posterior distribution if m the prior density and the likelihood
are assumed Gaussian. The resolution of the estimate [42] is defined by

mest−mp = �(mtrue−mp). (1.32)

With an exact measurement yo = y = �mtrue, then � is well defined in the linear case
by

�= �p�
′(��p�+�y)

−1)�. (1.33)
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From (1.31) we see that if � is the identity matrix, we would have a perfect estimate.
The result remain approximately valid for mildly nonlinear problems where � is a lin-
earization of the model using the sensitivity matrix [36].
The posterior uncertainty is related to the resolution matrix using (1.32)

�est = (�−�)�p, (1.34)

so the resolution matrix � can be calculated without linearizing the model from the
alternative formulation

� = �−�est�
−1
p , (1.35)

where �est is the model uncertainty obtained from the solution (e.g. an MCMC run).
From (1.35) we see that in the Kalman filter the resolution matrix is given by ��.
For a continuous problem where the model m= m(x) is a function in L2([a,b]), the

resolution is defined by

mest(x)−mp(x) =

∫ b

a
R(ξ )(mtrue(ξ )−mp(ξ )), (1.36)

and we would have a perfect estimate if R(ξ ) = δx(ξ ), where δ is the Dirac measure.
In order to estimate the resolution it is useful to compute the sensitivity coefficients

for a discretized problem, or the Fréchet derivative for a continuous problem. Both
the sensitivities and the Fréchet derivative describe the change of model output from a
small change in the input.

Definition 1 Let f : E→ Y be a mapping from an open set E in a normed linear space
X into a normed linear space Y . Let x ∈ E. If there exists a bounded linear operator
� : X → Y such that

lim
δ→0

‖ f (x+δ )− f (x)−�δ ‖
‖ δ ‖ = 0, (1.37)

then f is said to be Fréchet differentiable at x.

In L2([a,b]) the Fréchet derivative of a functional f at m ∈ L2([a,b])(Parker 1994) is
the integral kernel G such that

f (m+δm) = f (m)+(G,δm)+o(‖ δm ‖), (1.38)

where (G,δm) is the inner product
∫ b
a G(m(x))δm(x)dx. From (1.38) we see that the

Fréchet derivative or sensitivity can be obtained from a perturbation analysis.

1.4.1 Summary of paper E

In paper E we investigate the information content in nanosensors with limited func-
tionality injected in a petroleum reservoir and transported with the fluid to provide
information about spatial properties (Ullo, Chapman).
The model we study is a 1 dimensional core with incompressible flow. For this sim-

ple model we are able to derive analytical expressions of the Fréchet derivative of the
location and pressure of a nanosensor with respect to permeability and porosity. To
determine the resolution we compute linearized estimates of the sensitivity for the dis-
cretized model with unknown sensor location and for the scenario with known sensor
location. The preliminary results is that the location of the sensor is sensitive to the
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porosity between its location and the injection location, while it is sensitive to the ef-
fective permeability over the entire interval. The pressure on the sensor is sensitive
to the permeability and porosity in the region between the particle and the injector,
however, if the location is known the pressure is not sensitive to porosity.
The resolution of model estimates are computed in a numerical example with vary-

ing precision of the measurements where the reference log permeability and porosity
are samples from a Gaussian prior. Not surprisingly, the model resolution is poor be-
yond the range traversed by the particle.
In the next numerical example the measurements consists of the flow rate at the

inlet and censored pressure values from the particles. We assume that the nanosensors
are encapsulated to protect them from the environment until a predetermined time is
reached with a certain error. After a given time, 16 threshold levels are exposed to the
reservoir conditions and level j will burst if the pressure exceeds some predetermined
pressure value. The posterior pdf is approximated using a Markov chain Monte Carlo
approach and from these results we also compute the resolution of the estimates. The
conclusion is much the same as for the linearized example, the posterior uncertainty is
smallest at the inlet and increases beyond the range traversed by the particles.
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