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Estimation of elastic moduli of mixed porous clay composites

Erling Hugo Jensen', Charlotte Faust Andersen®, and Tor Arne Johansen®

ABSTRACT

We have developed a procedure for estimating the effec-
tive elastic properties of various mixtures of smectite and ka-
olinite over a range of confining pressures, based on the indi-
vidual effective elastic properties of pure porous smectite and
kaolinite. Experimental data for the pure samples are used as
input to various rock physics models, and the predictions are
compared with experimental data for the mixed samples. We
have evaluated three strategies for choosing the initial prop-
erties in various rock physics models: (1) input values have
the same porosity, (2) input values have the same pr
and (3) anaverage of (1) and (2). The best results are obtained
when the elastic moduli of the two porous constituents are de-
fined at the same pressure and when their volumetric frac-
tions are adjusted based on different compaction rates with
pressure. Furthermore, our strategy makes the modeling re-
sults less sensitive to the actual rock physics model. The
method can help obtain the elastic properties of mixed uncon-
solidated clays as a function of mechanical compaction. The
more common procedure for estimating effective elastic

ssure,

properties requires knowledge about volume fractions, elas-
tic properties of individual constituents, and geometric de-
tails of the composition. However, these data are often uncer-
tain, e.g., large variations in the mineral elastic properties of
clays have been reported in the literature, which makes our
procedure a viable alternative.

INTRODUCTION

Lithology prediction from seismically derived properties (such as
velocity, impedance, and velocity ratio) is important in seismic ex-
ploration and reservoir characterization. In siliciclastic rocks, forin-

stance, elastic properties and permeability are known to be strongly
influenced by the clay/sand ratio (Castagna et al., 1985; Best and
Katsube, 1995). Usually, we need to estimate the so-called effective
solid and fluid properties to calculate the impact of lithology and flu-
id variations on seismic properties. Knowing the effective properties
of the solid grains is necessary when. for instance. using the Gas-
smann equation (Gassmann, 1951) to study pore fluid effects. A
common strategy is to use the Hill average (Hill, 1963) to obtain the
effective solid properties before applying the Gassmann equation to
predict the fluid effects.

In this study, we investigate an alternative approach for modeling
the effective properties of mixed clay composites. The basis for the
study is a set of experimental data published by Mondol et al. (2007).
Here, dry and brine-saturated smectite and kaolinite have been
mixed and subsequently subjected to increasing (confining) pressure
while P- and S-wave velocities were measured. We consider the
mineral heterogeneity not to be on a mineral grain scale
la for illustration of mineral grain scale heterogeneity) but instead to

e Figure

be composed of clusters of each mineral, i.c.. as a mixture of porous
smectite and porous kaolinite (see Figure 1b). Therefore, we apply
the effective elastic properties of the pure samples to define end
members, which we then use to study the relevance of various rock
physics models without specifying the grain, fluid, or pore proper-
ties.

The elastic properties of smectite and kaolinite mineral clusters
differ, so we need to take into account the effects of different com-
paction of the two components, altering the relative volume frac-
tions as pressure is increased. We compare results obtained when the
end members are defined at isopressure, at isoporosity, or as an aver-
age between these two conditions.

Our approach is somewhat analogous to the one discussed by
Gurevich and Carcione (2000) for deriving the elasticity effects re-
sulting from pore fluid alterations in heterogeneous sand/clay mix-
tures. They propose a composite Gassmann model whereby fluid
substitution is performed for each constituent, subsequently using an
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appropriate mixing law to calculate the total effective properties. In
our case, we use the experimental data of the effective elastic proper-
ties of pure dry and saturated smectite and kaolinite clusters directly
in modeling the mixtures.

Our paper is organized as follows. We start by examining the data
set of the pure and mixed samples of smectite and kaolinite. Then we
define three strategies for selecting pairs of end members from data
characterizing the pure samples. For two of the strategies, we specify

a correction to the volume fractions of the constituents because of

their different compaction. Finally, we examine commonly used
rock physics models, with the end members and volume fractions as
input, to estimate the elastic properties of the mixed clay composites.
We make a statistical comparison between the predicted and mea-
sured data for the mixed samples.

DATA SET

We use data from a mechanical compaction experiment reported
by Mondol et al. (2007). Six dry and six brine-saturated samples
with mixtures of smectite and kaolinite, ranging from 100% smectite
to 100% kaolinite in steps of 20% matrix volume fractions, were pre-
pared in the laboratory and exposed to uniaxial (vertical) compres-
sion using an oedometer cell. The P- and S-wave velocities and
changes in sample heights were measured at pressure intervals of ap-
proximately 5 MPa, from I to 50 MPa, using the transmission tech-
nique (Birch, 1960). Changes in volume were deduced from the
measured decrease in the heights of the specimens and were used to
compute the porosities and densities. Dynamic bulk and shear mod-
uli were calculated from the velocities and density.
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Figure 1. Two ways of modeling the effects of mixed minerals. (a)
Homogeneous mixing can be modeled as a composite of single min-
erals, defining a set of effective (mixed) grain properties. (b) Hetero-
geneous mixing can be modeled as a composite of mineral clusters,
defining effective properties of porous clusters of each mineral.

Figure 2 shows the bulk and shear moduli of the various dry and
wet samples measured at 11 different pressures (and porosities),
plotted as circles. Because our modeling typically requires input for
other porosities or pressures than those which have been measured,
we find third-order polynomial fitted functions for these observa-
tions and use them to calculate the input values we need.

MODELING APPROACH

The use of effective medium models to obtain the elastic proper-
ties of porous composites typically requires knowledge of the corre-
sponding properties of the individual constituents. A general proce-
dure (e.g., Mavko et al., 1998) is first to model the two sets of effec-
tive parameters, one for the solid phase and one for the fluid phase,
and their respective volume fractions (Figure 1a). Subsequently, the
effect of porosity and pore texture is modeled. However, the elastic
properties of clay minerals are poorly known and may also depend
on the geochemical interaction with the pore fluid (Meade, 1966),
which makes the general procedure unsuitable.

We propose an alternative procedure wherein we consider the
smectite-kaolinite mixtures to have two phases: one cluster of po-
rous smectite and one cluster of porous kaolinite (Figure 1b). Thus,
the effects of mineral and fluid properties, grain geometries, pore
space, and structure are embedded implicitly in the effective elastic
properties of the two phases. For these properties, we use the mea-
sured data of the pure porous smectite and kaolinite samples as end
members and input to the effective medium models.

Figure 2 shows that the variation in elastic moduli versus porosity
and pressure differs for the pure smectite and kaolinite samples. We
will demonstrate how to use these curves to predict the properties of
any mixture of smectite and kaolinite.

The mixed samples initially are very loose. As confining pressure
increases, the porosity decreases and the bulk and shear moduli in-
crease. We assume that within the pressure range of this experiment
(pressure << 50 MPa), the reduction in sample volume is dominated
by areduction of the pore volume; we also assume that alteration of
the solid minerals is negligible. The porosity variations seen in Fig-
ure 2 should then be a result of mechanical compaction only. The
elastic properties of the various mineral mixtures are different, so

o TR d sor

their compaction rates and poros

sity reduction
in Figure 2c, the porosity in the wet samples reduces with confining
pressure from approximately 41% to 11% in the pure kaolinite sam-
ple. whereas the range for smectite is 57%—-36%. Figure 3 shows
schematically the compaction trends and the expected differences in
compaction of smectite and kaolinite mineral clusters.
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Strategies for selecting modeling end members

To base the modeling on observed data, we avoid using extrapo-
lated values, but we use best-fit values within a porosity range limit-
ed by the observations and the approach for selecting end members
for the modeling. We consider the following three strategies for de-
fining which end members to use as input to the effective medium
models.

Isoporosity

In this strategy, we assume an equal compaction of the pore vol-
umes of the smectite and kaolinite mineral clusters. Hence, both end
members and the mixed sample have the same porosity (Figure 4a):
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s = buix = bk (1)
where ¢s. ¢k, and ¢, are the porosities in the pure smectite, pure
kaolinite, and mixed samples. respectively. Then, in our modeling.
the pressures for the pure end members Pg and Py respectively, and
the mixture P,;,, are different:

Py# Pix# Py # Pg. 2

This limits our studied porosity interval to where we have obser-
vations for the pure smectite and kaolinite. The porosity values are
sampled with a 0.02 increment in the range [0.45, 0.59] for the dry
samples and [0.35, 0.41] for the wet samples.

IS()[)VL’XSIIVL’

Here. we assume that during compaction the same pressure is ap-
plied on the individual clusters in the mixed samples as we observe
for the pure samples. Hence, the end members and mixed sample
have the same pressure (Figure 4b):
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Pg= Py = Px. 3)
However, in our modeling, the porosities are now different:

b5 F buix F Pr F bs. 4)

The pressure range is nearly equal for all samples, which gives the
largest porosity range of the three approaches. The pressures are cal-
culated from the best-fit function of the pure kaolinite Py (), with a
0.02 increment in porosity sampling in the range [0.29, 0.59] for the
dry samples and [0.11,0.41] for the wet samples. These pressures are
in turn used in the porosity best-fit functions to calculate the porosi-
ties of the end members and the mixed samples.

Average

The two previous strategies form extreme bounds in our model-
ing. The average strategy examines the use of average properties be-
tween these two bounds (Figure 4c). In this case, neither the pressure
nor the porosity is the same for the end members and the mixed sam-
ple:

©OObservations with grayscale for pressure, P (MPa)
0 10 20 30 40 50

25 30 35 40 45 50 55 60 65 70 10 20 30 40 50 60
Porosity ¢ (%) Porosity ¢ (%)

Figure 2. Measured bulk and shear moduli versus porosity for (a, b) dry and (¢, d) wet samples. Circles denote moduli calculated from measured
P- and S-wave velocities and density. Increased pressure P decreases porosity, as indicated by the gray gradient applied on the circles. Lines are
best-fit curves for various smectite-kaolinite mixtures, where S is smectite and K is kaolinite: black solid line (smectite — S100/K0); black
dashed line (S80/K20); black x’s (S60/K40): gray plus signs (S40/K60): gray dashed line (S20/K80): gray solid line (kaolinite — S0/K100).
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Ps# P # P # Ps, (5)

s F buixF Px F Ps. (6)

Porosities in the range [0.37, 0.59] for the dry samples and [0.26,
0.42] for the wet samples are utilized to identify the kaolinite end
members and to calculate the corresponding pressure-porosity rela-
tion P (). Then the average of these porosities and the calculated
porosities ¢(P = Py) for the pure smectite and mixed samples are
inputinto the model.

For the three strategies, the modeling end members are calculated
using the obtained porosities as input in the bulk and shear moduli
best-fit functions K(¢) and u( ), respectively. The porosities and
corresponding moduli of the end members can be found in Appendix
A.

Volume fraction correction from varying pressure

The initial volume fractions of smectite Vs and kaolinite Vi in the
mixed samples refer to the relative matrix fractions. Because we
model mixtures of porous smectite and kaolinite, the volume frac-
tions must also capture the relative pore volumes of the constituents.
Hence, the volume fraction for smectite Lg is given by

Lg

(smectite mineral volume) + (smectite pore volume)

total volume
(7)

Assimilar relation can be written for the volume fraction of kaolinite
Lg: these fractions must satisfy the equation

L+ Lg=1. (8)

For the isoporosity strategy, we consider the volume fractions of the
porous constituents to remain constant and thus resemble the initial
volume fractions. For smectite, this means that

Smectite

Initial samples

S60/K40

Compacted samples

\, Elastic modulus

v

1.
@s«s‘z/f”ig\ e
Q)

Low
isopressure

Kaolinite

Porosity Kaolinite

Figure 3. Ilustration of how elastic modulus and porosity of pure
smectite (black) and kaolinite (light gray) samples with a 60% smec-
tite (S60) and 40% kaolinite (K40) mixture (dark gray) are con-
trolled by confining pressure. The mixture of smectite and kaolinite
is illustrated to take place as clusters of the constituents. The pore
space of the mineral clusters reduces with increasing compaction,
from initial conditions on the right side to final ones on the left side.
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Figure 4. Schematics of the various strategies to model the mixed
smectite-kaolinite composites. End members of elastic properties,
marked with X, are defined at (a) the same porosity, (b) the same
pressure, or {c) the average between (a) and (b). Associated pres-
sures to the measured seismic property are represented in the legend.
Black solid line is smectite, dotted line is S40/K40 mixture, and gray
line is kaolinite.
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Lg=Vs. 9) given by equation 10 for the isopressure and average strategies,

For the isopressure and the average strategies, we perform one set of
modeling whereby the volume fractions remain constant, as ex-
plained above, and another where the volume fractions change as a
resultof the relative difference in compaction of the smectite and ka-
olinite pore space. Then the smectite volume fraction is adjusted by

Ls= Vs, (10)

where ¢ and ¢ are the porosities that depend on the selected end

members of the mixed and pure smectite samples, respectively. (See

Appendix B for details about the volume fraction correction.)
Figure 5 shows the predicted porosity effects from compaction
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Figure 5. Effect of lithology correction on smectite fraction as a
function of porosity when following (a) the isopressure and (b} the
average strategy. For the observed porosities the circles denote un-
corrected data as given by equation 9 and the crosses denote the cor-
rected data as given by equation 10. The gray gradient refers to the
different smectite and kaolinite fractions.

compared with constant volume fractions (equation 9). The largest
corrections are clearly seen subsequent to initial compaction: the po-
rosity correction vanishes as the pore space becomes relatively small
compared to the total volume.

Models used in calculating effective moduli

Eight models are used and compared for predicting the observed
elastic moduli of the various mixtures. Reuss (1929), Voigt (1928),
Hill (1963), and Hashin-Shtrikman upper and lower bounds (HSUB,
HSLB) (Hashin and Shtrikman, 1963) are multipurpose models used
for deriving the elastic moduli for any mixture of minerals from the
elastic moduli of the individual constituents. Differential effective
medium (DEM) modeling (Sheng, 1990) and self-consistent ap-
proximation (SCA) (Berryman, 1980a, 1980b) are inclusion-based
models that consider the shapes of the inclusions and their respective
concentration. Normally, these shapes relate to the shape of the
grains or the pore space. But because we model mixing porous clus-
ters of pure smectite and kaolinite, the inclusions in our modeling are
not bound by these dependencies. So the spherical inclusions we use
do not denote the shape of the individual minerals but the shape of
the aggregate of minerals, representing the porous clay constituents.

In the case of DEM, we consider two versions: one where the ka-
olinite is the host medium (DEMy) and another where smectite is the
host medium (DEMs). More details of the various models can be
found in Appendix C. Predicted bulk modulus versus porosity for
these models are shown in Figure 6. The two end members used as
input in the modeling are the buik moduius of the porous material
and of the mineral. This is equivalent to considering a plot between
two porous materials — one being relatively soft and the other being
relatively stiff, where the x-axis denotes volume fractions of the two.

= = Reues
Hill
== = Voigt
. . HSLB
oo HSUB
SCA
N, = =+ DEM soft
S, = = : DEM stiff

Bulk modulus K (GPa)

Porosity ¢ (%)

Figure 6. Examples of the estimated bulk modulus as a function of
mineral fractions when the difference in bulk modulus of the two
constituents (end members) is large. Models: Reuss (dotted-dashed
gray curve), Hill (solid gray curve), Voigt (dotted-dashed black
curve), Hashin-Shtrikman lower bound (dotted gray curve), Hashin-
Shtrikman upper bound (dotted black curve), self-consistent ap-
proximation (solid black curve), differential effective medium with
the soft material as the host medium (dashed gray curve), and differ-
ential effective medium with the stiff material as the host medium
(dashed black line).
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MODELING RESULTS

To evaluate the results of the modeled versus observed data, we
use the rms deviation normalized to the mean of the observed values.
This is also referred to as the coefficient of variation of the rms devia-
tion (CVRMSD).

Figure 7 shows the CVRMSD for the bulk and shear moduli,
based on isoporosity, isopressure, and average approaches and sub-
sequently used in the eight prediction models. We see that the match
between modeled and observed data for the wet samples is better
than for the dry samples. The best results for the dry samples have a
CVRMSD smaller than 10%. whereas for the wet samples it is less
than 5%.

The modeling results generally are more sensitive to the choice of
strategy for defining the elastic properties of the end members than
the particular rock physics model being used. Thus, isopressure
gives a better prediction of the effective elastic properties of the
mixed samples than does isoporosity. Of the three approaches, iso-

porosity implies the largest difference between the elastic properties
of the two end members, leading to a stronger rock physics model
dependency than for the other two approaches, as revealed in Figure
6. The average gives results almost as good as when considering iso-
pressure.

In general, the volume correction clearly improves the predictions
for the isopressure approach. The two exceptions are for modeling
the bulk modulus of the dry samples and when applying the Voigt
model to calculate the shear modulus of the wet samples. But for the
average strategy, this correction only improves the results when the
Voigt model is used to calculate the bulk modulus of the dry samples.

Individually, the best results for the bulk and shear moduli of the
dry samples are obtained with the Voigt model with end members
from the isopressure or average strategy, respectively, both without
applying correction to the bulk volume fraction. Overall, the best
model to predict both moduli is the HSUB, defining end members by
the average strategy and with no volume fraction correction.

The bulk and shear moduli of the wet samples are best predicted
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Figure 7. The mean and standard deviation of the coefficient of variation of the rms deviation versus model for the (a) dry bulk modulus, (b) dry
shear modulus, (c) wet bulk modulus, and (d) wet shear modulus. The results are grouped for each model: Reuss, Hill, Voigt, Hashin-Shtrikman
lower bounds (HSLB), Hashin-Shtrikman upper bounds (HSUB), self-consistent approximation (SCA), differential effective medium with ka-
olinite as host medium (DEMy), and differential effective medium with smectite as host medium (DEMs). The mean values for the various mod-
eling are black asterisk (isoporosity), red dot (isopressure without volume correction), red circle (isopressure with volume correction), blue
cross (average strategy without volume correction), and blue asterisk (average strategy with volume correction). The error bars show the stan-

dard deviation.
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using the isopressure model combined with the volume fraction cor-
rection. For the bulk modulus, all effective medium models are al-
most equally good, but there are some variations in the quality of the
shear modulus prediction. Hence, the result for the shear modulus
constrains the number of models best suited for a combined model-
ing of both moduli. Then, all models except for Reuss and Voigt are
good candidates, with HSBU being slightly better than the rest.

Examples of effective property predictions

For the wet samples, the HSUB with end members defined as a re-
sult of the isopressure strategy gives the best overall modeling pre-
dictions for bulk and shear moduli over the entire porosity range and
for all lithologies. The modeled data (using HSUB) and measured
data of the wet samples are shown in Figure 8. The results are im-
proved when using the volume fraction correction (Figure 8¢ and d).
Ignoring this correction (Figure 8a and b) leads to increasing devia-
tions between modeled and observed data with increasing pressure
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(i.c., decreasing porosity). In particular, for 20% smectite and 80%
kaolinite, HSUB gives a very good prediction when applying the
volume correction for the whole porosity range. The prediction of
the bulk modulus is improved when one of the clays has a dominant
volume fraction; for the shear modulus, the result improves with in-
creasing amount of kaolinite.

DISCUSSION

Poisson’s ratio of the wet samples range from 0.40 to 0.49; for the
dry samples, there is a large spread between — 0.11 and 0.42. In fact,
18 of the 54 values for the dry samples are negative. Auxetic materi-
als, which have negative Poisson’s ratios, become thinner perpen-
dicular to the applied force when being compressed. This is not the
expected behavior of clay and can be the result of the samples being
dried too much — losing some of their chemically bounded water in
addition to the pore fluid and thus changing their mineral properties.
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Figure 8. Estimated (a, ¢) bulk and (b, d) shear moduli for the wet samples using end members of equal pressure. The modeling is done using
HSUBs without (a, b) and with (¢, d) correction of the bulk volume fraction. Modeled data are plotted as crosses on top of the best-fit curves of
the observed data for the various smectite-kaolinite mixtures using the color code: green (S80/K20), red (S60/K40), blue (S40/K60), and purple
(S20/K80).
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It is unlikely that overdried and wet clay minerals have the same
properties. To confirm this, we performed a Gassmann fluid substitu-
tion using the observed data from the wet and dry samples of pure
smectite and kaolinite to estimate the mineral properties of these two
clays; negative bulk moduli values were found for both minerals.
Another explanation for the large spread in Poisson’s ratio of the dry
samples is that there could be some erroneous measurements or spe-
cific problems with these samples. Either way, the measurements for
the dry samples seem dubious and might be the reason why we have
better predictions for the wet samples than the dry ones. This, com-
bined with the fact that most natural clay rocks are water saturated,
implies that most attention should be paid to our results for the wet
samples.

The strategy for choosing the elastic end members seems to be the
most significant factor for the quality of our predictions of the over-
all elastic moduli. Of the three tested strategies, isopressure and iso-
porosity are the least and most sensitive to the choice of rock physics
models, respectively. This is because the differences in the elastic
properties of the end members are smallest when following the iso-
pressure approach and largest for the isoporosity approach. The dif-
ference in predicting the bulk modulus for the various models is
shown in Figure 6. In the general case, however, the contrast in elas-
tic properties of the mixing minerals might be larger than between
smectite and kaolinite. Thus, in those cases, the choice of rock phys-
ics model becomes more important for the predicted elastic moduli
than in the case of the isopressure approach. But smectite and kaolin-
ite are end members with respect to grain size, surface area, and cat-
ion exchange rate (Mondol et al., 2008), and the difference in the
clastic moduli of these minerals is expected to be significant —
something the measured elastic properties of the two clays at equal
porosity supports.
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Figure 9. Porosity of mixed smectite-kaolinite sample as a function
of volume fraction of porous smectite. A heterogeneous mixed com-
posite (dotted line) will have a linear trend given by the weighted av-
erage of the constituents. In the dispersed model (dashed line), the
pore space of the large grain-sized mineral (c.g., kaolinite) is filled
initially by the small-grain-size mineral (e.g., smectite) (Marion,
1990; Yin, 1992; Dvorkin and Gutierrez, 2002). Plot of the porosity
versus volume fraction for the wet sample at confining pressure of
5 MPa (solid line) does not follow the V-shaped trend of the dis-
persed model.

The isopressure model gives the best result, which is significantly
improved when the volume fraction correction is applied. To study
pore fluid substitution effects for various pressures, constituents,
and rock structure, this correction can be linked to the porosity-dis-
tribution parameter of Gurevich and Carcione (2000).

An important assumption in our modeling is that we consider the
mixed samples to be composed of clusters of the pure smectite and
kaolinite minerals, as illustrated in Figure Ib. If the mixture were
more homogeneous, as illustrated in Figure la, and because there is
such a large difference in volume size of the two clay constituents, it
should be possible to observe a V-shaped drop in porosity versus li-
thology because of the smaller grains filling the pore space of the
larger grains (Marion, 1990; Yin, 1992: Dvorkin and Gutierrez,
2002). The trend of a heterogencous composite mix and the
V-shaped trend of a dispersed model are plotted in Figure 9 along
with the porosity observations of the wet samples measured at
5 MPa. The observations follow the mixed model and show no
V-shaped drop. This supports our assumption that the mixing is not
taking place at the grain scale.

The axial (vertical) confining stress will usually cause mineral
compaction and some mineral alignment in the horizontal direction,
leading to elastic anisotropy. We do not consider this to affect our re-
sults seriously, however. because we have limited our analysis to
vertical velocities.

CONCLUSIONS

We have demonstrated a procedure for estimating the elastic prop-
erties of mixtures of porous smectite and kaolinite from data obser-
vations of pure smectite and kaolinite for pressure values between |
and 50 MPa. We have assumed the mixture constituents to be clus-
ters of pure porous smectite and pure porous kaolinite. Hence, we do
not rely the modeling on uncertain estimates of mineral values or
pore geometries. Following this procedure, the various rock physics
models we have tested show few variations and give almost equally
good predictions of the elastic properties. Instead, the dominating
factoris the choice of input values (end members) in the modeling.

We have tested three strategies for choosing the pure smectite and
pure kaolinite end members: one where they have the same porosity,
another where they have the same pressure, and a third that is an av-
erage between the other two. We find the best predictions when
choosing end members having the same pressure. Furthermore, cor-
recting the volume fractions of the constituents improves the results
significantly, showing the importance of taking into account the ef-
fect of different compactions of the smectite and kaolinite domains.

The HSUB gives slightly better predictions of the shear modulus
for the entire pressure range compared to the other rock physics
models. It is therefore the best model to use for these samples of
smectite and kaolinite mixtures because the bulk modulus is equally
well predicted by all the tested rock physics models.
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APPENDIX A

END MEMBERS USED IN THE MODELING

Tables 1-3 list the porosity, bulk moduli, and shear moduli end
members for the various modeling strategies.

APPENDIX B

DERIVATION OF CORRECTION TO THE BULK
VOLUME FRACTION

We consider a heterogeneous mixture consisting of clusters of
pure porous smectite and kaolinite minerals. One fraction of the pore
space can therefore be associated with the smectite and the other
with the kaolinite, as observed in Figure 1b. Furthermore, for this ex-
periment, we assume the mineral volume to remain constant during
compaction.

The initial smectite volume fraction Vs in the mixed samples only
considers the solid phase and is given by

smectite mineral volume
V=M ™ . (B-1)
total mineral volume

1l to the total volume in the mixed

samples Vs e €an be expressed as

Vs minerat = Vs(1 = &), (B-2)
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where ¢ is the total porosity. The smectite volume fraction Ls used in
our modeling must also consider the pore space:

Lg

(smectite mineral volume) + (smectite pore volume)
total volume '
(B-3)

If we define ¢ e as the porosity in the smectite mineral clusters,

(/)S.clus[m\

smectite pore volume

(smectite mineral volume) + (smectite pore volume)’

(B-4)
then we can also express Vs pinera 4
Vs mineral = Ls(1 = s clusters) - (B-5)
Inserting equation B-2 into B-5 and solving for Ls gives
1-4¢
Ls=Vs (B-6)

1 - ¢.\,c|\|\'!en‘

For the correction of the bulk volume fraction, we assume that the

compaction of the pore space in the mixed samples is the same as for
the

Cebs = Prciusens e
porosity in the pure sample and equation B-6 becomes
equation 10. Observe thatif ¢ = ¢s. which is always the case for the
isoporosity strategy, then equation 10 can be simplified to become
equation 9.

Table 1. Porosity, bulk and shear modulus end-member values for the dry and wet samples used in the modeling following the

isoporosity approach.

Smectite end member

Kaolinite end member

Bulk Shear Bulk
Porosity modulus modulus Porosity modulus Shear modulus
Sample (%) (GPa) (GPa) (%) (GPa) (GPa)
Dry 45.00 2.268 2.108 45.00 0.3377 0.7005
47.00 2.007 1.794 47.00 0.2890 0.5713
49.00 1.761 1.506 49.00 0.2542 0.4600
51.00 1.528 1.244 51.00 0.2291 0.3638
53.00 1310 1.007 53.00 0.2095 02800
55.00 1.106 0.7941 55.00 0.1911 0.2055
57.00 0.9147 0.6038 57.00 0.1696 0.1377
59.00 0.7368 0.4356 59.00 0.1409 0.07366
Wet 35.00 8.726 1.238 35.00 5.114 0.4095
37.00 8.025 1.005 37.00 4713 0.3490
39.00 7.387 0.8111 39.00 4.284 0.2978
41.00 6.809 0.6508 41.00 3.817 0.2539
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APPENDIX C

THEORETICAL MIXING MODELS
Voigt, Hill, and Reuss

Voigt (1928) and Reuss (1929) define the upper and lower bounds
for the elastic moduli of any isotropic or anisotropic composite. The
effective elastic modulus C for a mixture of two constituents with
elastic parameters C, and C, and volume fractions V, and V, are giv-
en by Voigt,

Cy=V,C| + V5Cs, (C-1)
and by Reuss,
1 V Vs,
— =t (c-2)
Gk C G

The Hill model (Hill, 1963) is the arithmetic average of the Reuss
and Voigt methods, i.c., the elastic modulus is given by

Ch=—=. (C-3)

Table 2. Porosity, bulk, and shear modulus end-member values for the dry and wet samples used in the modeling following the

isopressure approach.

Smectite end member

Kaolinite end member

Bulk Shear
Porosity modulus Shear modulus Porosity Bulk modulus modulus
Sample (%) (GPa) (GPa) (%) (GPa) (GPa)
Dry 45.46 2.207 2.034 29.21 1.703 2.681
47.47 1.948 1.725 31.55 1.347 2.250
49.05 1.754 1.499 32.99 1.161 2.013
50.56 1.579 1.300 34.44 0.9963 1.795
52.11 1.405 1.109 36.25 0.8205 1.548
53.73 1.234 0.9268 38.46 0.6464 1.283
55.35 1.071 0.7587 40.94 0.4969 1.030
56.92 0.9218 0.6107 4353 0.385 0.8088
58.38 0.7907 0.4857 46.05 0.3102 0.6303
59.68 0.6795 0.3836 48.38 0.2637 0.4925
60.80 0.5875 0.3021 50.46 0.2352 0.3885
61.76 0.5122 0.2379 52.26 0.2164 0.3097
62.58 0.4505 0.1868 53.81 0.2021 0.2487
63.29 0.3983 0.1448 55.18 0.1893 0.1991
63.95 0.3513 0.1081 56.46 0.1759 0.1554
64.62 0.3051 0.07298 57.77 0.1596 0.1127
Wet 34.92 8.755 1.248 10.23 12.93 2778
37.41 7.888 0.9622 13.58 11.12 2.208
38.31 7.600 0.8742 15.25 10.35 1.960
38.91 7.415 0.8195 16.62 9.774 1.774
39.78 7.155 0.7448 18.29 9.141 1.567
41.08 6.787 0.6451 20.39 8.435 1.335
42.73 6.355 0.5362 22.82 7.725 1.104
44.59 5.916 0.4358 25.40 7.073 0.8976
46.48 5.517 0.3538 27.94 6.507 0.7296
48.27 5.181 0.2920 30.29 6.027 0.6011
49.89 4.911 0.2473 32.39 5.619 0.5062
51.30 4.701 0.2150 34.20 5.270 0.4368
52.52 4.538 0.1911 35.77 4.963 0.3851
53.62 4.405 0.1721 37.15 4.681 0.3447
54.67 4.291 0.1554 38.48 4.399 0.3104
55.78 4.183 0.1388 39.87 4.086 0.2779
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Hashin-Shtrikman bounds

The Hashin-Shtrikman bounds (Hashin and Shtrikman, 1963) are
theoretical upper and lower limits of effective moduli of an isotropic
mixture. An interpretation of these two bounds is that one of the con-
stituents forms a shell around the other constituent. The upper limit
yields a composition where a stiff shell surrounds a soft core, and the
lower limit is where a soft shell surrounds a stiff core. For a mixture
of two constituents, the upper bound (HSUB) is given by

Vs

Kysup = K + 7 PRGN
(K, —K)~ '+ VI(KI +§M1)

(c4
Musus = M
Vs
+ - ~I
. 4
(2 — )~ 2Vi(K, +2#J){5#|<K\ + ;M)J
(C-5)

where V, K, and g are the volume fraction, bulk modulus, and shear
modulus, respectively, and where indices 1 and 2 refer to the stiffer

and softer materials, respectively. The lower bound (HSLB) is found
using the same equations but with index 1 referring to the softer ma-
terial and index 2 to the stiffer material.

Differential effective medium

In differential effective medium model (Sheng, 1990), one of the
constituents acts as the host medium forming the initial background
material the other constituents are treated as inclusions. The inclu-
sions of known shape are gradually added into the background mate-
rial, forming a new background material with new effective elastic
properties. This can be realized mathematically using a recursive
equation with L iterations; the effective elastic properties of one iter-
ation become input to the next iteration. The total number of itera-
tions must be large enough so that an additional iteration does not
change the calculated effective bulk and shear moduli significantly.

We model spherical inclusions and mix only two constituents, so
we can use the simplified version of the recursive coupled equations:

K

n—1

LYY

K —K,_
g e (C-6)
3“:1 4/”‘/1 =1

UK, A

Mn — /i‘u—1 _ V/,VZM”71 _ /l:z‘ (€-7)
P+ Fy -1+ F>

Table 3. Porosity, bulk, and shear modulus end-member values for the dry and wet samples used in the modeling following the

average approach.

Smectite end member

Kaoiinite end member

Bulk Bulk
Porosity modulus Shear modulus Porosity modulus Shear modulus
Sample (%) (GPa) (GPa) (%) (GPa) (GPa)
Dry 44.56 2.328 2.182 36.25 0.8205 1.548
46.36 2.088 1.891 38.46 0.6464 1.283
48.18 1.860 1.621 40.94 0.4969 1.030
49.96 1.647 1.377 43.53 0.3850 0.8088
51.69 1.452 1.160 46.05 0.3102 0.6303
53.34 1.275 0.9696 48.38 0.2637 0.4925
54.90 1.116 0.804 50.46 0.2352 0.3885
56.38 0.9724 0.6603 52.26 0.2164 0.3097
57.79 0.8430 0.5350 53.81 0.2021 0.2487
59.14 0.7244 0.4243 55.18 0.1893 0.1991
60.47 0.6139 0.3252 56.46 0.1759 0.1554
61.81 0.5086 0.2348 57.77 0.1596 0.1127
Wet 35.77 8.449 1.144 26.68 6.779 0.8085
37.70 7.796 0.9337 29.14 6.257 0.6607
39.55 7.222 0.7637 31.38 5.815 0.5499
41.31 6.725 0.6289 33.33 5.438 0.4688
42.97 6.298 0.5225 35.01 5.112 0.4092
44.54 5.927 0.4381 36.48 4.820 0.3639
46.07 5.599 0.3698 37.82 4.542 0.3271
47.6 5.301 0.3133 39.16 4.249 0.2941
49.20 5.022 0.2652 40.64 3.904 0.2613
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y= (C-8)

<M2>9Kz+ 8o
6 ) Kot 2p

where K, is the bulk modulus of the background material, K, is the
effective bulk modulus after adding a volume fraction of V,, of the in-
clusion material, and g,_, and g, are the background material and
effective shear moduli, respectively. The value V,is the volume frac-
tion of the inclusion material. The iteration parameter 7 is given by
n=(2,3,...,L + 1)and results in index values (1,2,...,L). The host
medium acts as the initial background material, identified with index
1 for the first iteration, i.e., n = 2. The second constituent acts as the
inclusion material and is identified with index 2. The value V, can be
computed from

V,
v 2

_ _ 0
" L—(n— 1)V, ©9

Differential effective medium is an asymmetric model because in-
terchanging the constituents for the host and inclusions will lead to
differentresults.

Self-consistent approximation

In self-consistent approximation (Berryman, 1980a, 1980b), none
of the constituents defines a background medium. Instead, inclu-
sions of both constituents are added into a host medium of unknown
properties. These unknown properties are perturbed until the effects
of the inclusions vanish, at which point these properties represent a
unique solution for the effective elastic properties of the mixed ma-
terial. In practice, this can be done by perturbing the effective elastic
properties K5 and g5 until equations C-10 and C-11 are satisfied:

> (K, — KMV, =0, (C-10)
i=1
(C-11)

where V;, K;, and u; are the volume fraction, bulk modulus, and
shear modulus of inclusion material j, respectively. The values P and
Q are geometric factors, which for spherical inclusions are given by

4
KS(/\ + ;:MS(A
p=—" (C-12)

0= ©13)

where parameter F is given by equation C-8 (when replacing K> and
o with K54 and uSC*).
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