
Diagram Predicate Framework
meets Model Versioning
and Deep Metamodelling

Diagram Predicate Framework
meets Model Versioning
and Deep Metamodelling

Alessandro Rossini

Dissertation for the degree of Philosophiae Doctor (PhD)
Department of Informatics

University of Bergen

December 2011

ISBN 978-82-308-1900-5

University of Bergen, Norway

Submitted 3rd October 2011

All text and figures c© 2011 Alessandro Rossini

To my parents

Contents

Preface ix

Scientific Environment xiii

Abstract xv

1 Model-Driven Engineering 1
1.1 Introduction . 1
1.2 Diagrammatic modelling . 2
1.3 Metamodelling . 5
1.4 Constraints . 6
1.5 Typing and conformance . 6

2 Diagram Predicate Framework 9
2.1 Graph and graph homomorphism 9
2.2 Signature and specification 13
2.3 Typing and conformance . 22
2.4 Specification morphism . 22
2.5 Specification transformation 24
2.6 Specification entailment . 27
2.7 Related work . 32
2.8 Conclusion and future work 34

3 Constraint-AwareModel Versioning 35
3.1 Introduction . 35
3.2 Model versioning . 36
3.3 Calculation and representation of differences 39
3.4 Synchronisation . 48

3.4.1 Construct the common of commons 50
3.4.2 Construct the difference specifications 53
3.4.3 Construct the merge of differences 53
3.4.4 Detect conflicts . 54
3.4.5 Resolve conflicts . 60

vii

3.4.6 Construct the synchronised specifications 67
3.5 Related work . 71
3.6 Conclusion and future work 74

4 Deep Metamodelling 75
4.1 Introduction . 75
4.2 Metamodelling . 76
4.3 Deep metamodelling . 81

4.3.1 Deep characterisation 81
4.3.2 Double typing and linguistic extension 82
4.3.3 Some open questions in deep metamodelling 85

4.4 Formalisation of deep metamodelling 87
4.4.1 Double metamodelling stack 87
4.4.2 Partial double metamodelling stack 92
4.4.3 Deep metamodelling stack 95

4.5 Flattening of a deep metamodelling stack 109
4.6 Related work . 118
4.7 Conclusion and future work 120

5 Conclusion 121

A Appendix 125

Bibliography 129

Preface

The last four years of my life have been dedicated towriting this thesis and
to making it as perfect as possible. These years have witnessed days and
nights of hard work, discussion, stress, frustration, anguish, insomnia, as
well as praise, relief, travelling and fun.

If you are going to read this thesis, I hope that you will find it inter-
esting. If you are just going to browse through it quickly, I hope that you
will find the models as beautiful as I do. If you are only interested in this
preface, I hope it will leave you with a nice memory.

Bergen, 3rd October 2011

Acknowledgements

This thesis would not have been possible without the contribution of the
outstanding individuals I have met during these four years.

First of all, I would like to thank my supervisor UweWolter, for teach-
ing me a lot of interesting knowledge which spans from mathematics
to philosophy and history, as well as for giving me invaluable feedback
about my research. He deserves much of the credit for this thesis and
I am indebted to him for all his help and inspiration, scientifically and
otherwise. I would also like to thank my co-supervisor Khalid A.Mughal,
for suggesting that I enrol in a PhD programme and for supporting all my
choices when I finally followed his suggestion. With time I realised that
his initiative saved me from becoming a frustrated software engineer.

A special thanks goes to Adrian Rutle, for helping me to get started
withmy research and for sharingmanygood timeswithme, both inBergen
and while travelling. He has been a brilliant colleague and a good friend,
and I have many good memories from these years.

I am grateful to my parents Pompilio and Loretta, for all they have
done for me, especially for setting my life on what I believe is the right
path. I hope that this thesis will make them as proud of me as I am of
them.

ix

Preface

“Tusen takk” to Synnøve Solberg Tokerud, for her love and friendship,
for teachingme about Norwegian andNorway, as well as for her beautiful
smile which always helped me to stay positive.

The Department of Informatics at the University of Bergen has given
me a private office, a good salary and great financial support, and I am
thankful for that. I would like to thank the Programming Theory group,
especiallyMarc Bezem, Torill Hamre, AnyaHelene Bagge, Valentin David,
Dag Hovland and Federico Mancini, for creating a stimulating environ-
ment to work in, for all the chats about informatics and teaching, for all
the empirical studies on espresso and on chocolate spreads, as well as for
all the feedback they gave me about my work. I am also grateful to the
administration of the Department of Informatics, especially Ida Holen, for
patiently listening to my rants every time I needed to vent my frustration,
Petter Bjørstad and Torleiv Kløve, for supporting my stays abroad, and
Steinar Heldal, for guiding me through the bureaucracy of the University.

My research was carried out in cooperation with fellow researchers
from the Department of Computer Engineering at the Bergen University
College. Thanks to Yngve Lamo, for his suggestions about how to deal
with the Norwegian system, and Florian Mantz, for being an excellent
flatmate and for preparing pancakes every Sunday.

Part of this thesis was written during my 4-month stay at the Depart-
ment of Computer Engineering at the Autonomous University of Madrid.
“Muchas gracias” to Juan de Lara and Esther Guerra, for taking care of
me during my stay and for giving me plenty of insights which ended up
being almost half of this thesis.

I would like to thank my opponents Reiko Heckel and Einar Broch
Johnsen, for all the time they have spent reviewing this work, and Michal
Walicki, for coordinating the committee. I am also grateful to all my
fellow researchers and anonymous reviewers who pointed out flaws and
suggested possible improvements in my research.

Despite all the time spent preparing this thesis rather than hanging
out, I still have many friends left and they should all be awarded for their
patience. In Bergen, Mikal Carlsen Østensen helped me with practically
everything before and after my move to Norway. Diego Fiore has been
one of my closest friends, who shared countless discussions about the
grotesque society we live in with me and was a perfect companion on
many suffocating trips around the world. Paolo Angelelli has also been
a very good friend, who contributed a lot to the discussion about how to
develop an ideal society. My stay inMadridwould not have been the same
without Lucia Cammalleri, Teresa Terrana andDaniele Sidoti, who treated
me like a close friend since the first day we met. In Italy, my good, old
friends Maura Brandimarte, Albert Marsili, Marino Di Carlo, Graziano
Liberati and Angelo Di Saverio have been there every time I was back
home, and I really appreciate it.

x

Finally, this thesis would have not reached this level of art without
the free and open source software I use and enjoy. A special thanks goes
to the communities behind GNU, Linux, KDE, Firefox, Kile, Inkscape,
Subversion and Git.

xi

Scientific Environment

The research presented in this thesis has been conducted within the Pro-
gramming Theory Group of the Department of Informatics at the Univer-
sity of Bergen, as well as within the Department of Computer Engineering
at the Autonomous University of Madrid during my 4-month stay.

xiii

Abstract

Model-driven engineering (MDE) is a branch of software engineering
which aims at improving the productivity, quality and cost-effectiveness
of software by shifting the paradigm from code-centric to model-centric.
MDE promotes models and modelling languages as the main artefacts of
the development process and model transformation as the primary tech-
nique to generate (parts of) software systems out ofmodels. Models enable
developers to reason at a higher level of abstraction, while model trans-
formation restrains developers from repetitive and error-prone tasks such
as coding. Although techniques and tools for MDE have advanced con-
siderably during the last decade, several concepts and standards in MDE
are still defined semi-formally, which may not guarantee the degree of
precision required by MDE.

This thesis provides a formalisation of concepts in MDE based on the
Diagram Predicate Framework (DPF), which was already under develop-
ment before this work was initiated. DPF is a formal diagrammatic spe-
cification framework founded on category theory and graph transforma-
tion. In particular, the main contribution of this thesis is the consolidation
of DPF and the formalisation of two novel techniques in MDE, namely
model versioning and deep metamodelling. The content of this thesis is
based on a sequence of publications resulting from the joint work with
researchers from the University of Bergen, the Bergen University College
and the Autonomous University of Madrid.

The work presented in this thesis is neither purely theoretical nor
purely practical; it rather seeks to bridge the gap between these worlds. It
provides a formal approach to model versioning and deepmetamodelling
motivated and illustrated by practical examples, while it introduces only
the theoretical constructions which are necessary to investigate, formalise
and solve these practical challenges.

xv

Abstract

This thesis is organised as follows. Chapter 1 introduces MDE along
with a discussion regarding some of its fundamental concepts, techniques
and standards. Chapter 2 outlines DPF along with a formalisation of some
of the fundamental concepts in MDE. In Chapter 3, a formal approach
to model versioning is described. In Chapter 4, a formal approach to
deep metamodelling is presented. Chapter 5 provides some concluding
remarks. Finally, AppendixA details some of the categorical constructions
used in this thesis.

xvi

CHAPTER 1
Model-Driven Engineering

In this chapter, we introduceMDE alongwith a discussion regarding some
of its fundamental concepts, techniques and standards.

1.1 Introduction

Since the beginning of informatics, developing high-quality software at a Evolution of
programminglow cost has been a continuous vision. This vision has boosted several

shifts of programming paradigms; e.g., from machine code to assembler
programming and from imperative to object-oriented programming. In
every shift of paradigm, productivity has been increased by raising the
abstraction level of programming languages and techniques. One of the
latest steps in this direction has led to the usage of models and modelling
languages in development processes.

Initially, modelswere adopted formere documentationpurposeswhile Model-driven
engineeringsource code remained themain artefact of thedevelopmentprocess. Lately,

however, models have gained a central role in the development process.
This trend has led to a branch of software engineering which pursues the
shift of paradigm from code-centric to model-centric. In the literature, this
branch is referred to as model-driven engineering (MDE), model-driven
development (MDD) and model-driven software development (MDSD).
In this thesis, we adopt the term MDE to denote this branch.

MDE promotes models as the main artefacts of the development pro- Advantages of
MDEcess as well as model transformation as the primary technique to automat-

ically generate (parts of) software systems. By raising the abstraction level
from source code, models enable developers and domain experts to focus
on the problem domain rather than implementation details. By automat-
ing repetitive and error-prone tasks such as coding, model transformation
enhances productivity, reusability and quality. 1

1. Model-Driven Engineering

The reference industrial standardisation of MDE is the Model-DrivenModel-Driven
Architecture Architecture (MDA),whichwas initiatedby theObjectManagementGroup

(OMG) [66] late in 2000 [39, 53, 67, 74]. The basic ideas of MDA are
closely related to generative programming [25], software factories [45],
domain-specific languages [58], etc. MDA is based on multiple standards,
including the Meta-Object Facility (MOF) [68], the Unified Modeling Lan-
guage (UML) [71], the Object Constraint Language (OCL) [70] and the
XMLMetadata Interchange (XMI) [69].

Some popular implementations of the MDA standards exist. The de-EclipseModeling
Framework facto standard is the Eclipse Modeling Framework (EMF) [32, 86], which

is part of the Eclipse project [33].

1.2 Diagrammatic modelling

The term model may have different meanings depending on the context.Model
In [20], one of the definitions of model is “a representation of something,
either as a physical object which is usually smaller than the real object,
or as a simple description of the object which might be used in calcu-
lations”. In software engineering, a model denotes “an abstraction of a
(real or language-based) system allowing predictions or inferences to be
made” [55]. In formal specifications such as formal logic and universal
algebra, in contrast, a system is represented by a specification, i.e., a set of
logical formulae, while a model of such a specification denotes a mathem-
atical structure which satisfies these formulae. Thus, formal specifications
correspond to models in terms of software modelling. In this thesis, we
interpret the term model from the software engineering perspective.

Models are often categorised into descriptive and prescriptive: a de-Descriptive vs.
prescriptive scriptive model describes an existing original, e.g., a map of a real city

with streets, buildings, etc. while a prescriptive model specifies aspects of
an original which is to be built, e.g., a blueprint of a building. In software
engineering, models may be both prescriptive and descriptive: a model
can be used to represent relevant aspects of a software system and later on
drive the implementation of the same software system (see Figure 1.1).

�

�

�

�Model

describes

prescribes

�

�

�

�
Original

represented by

Figure 1.1: A model may describe or prescribe an original

2

1.2. Diagrammatic modelling

The term diagrammay also have different meanings depending on the Diagram
context. In [20], one of the definitions of diagram is “a geometric symbolic
representation of information according to some visualisation technique”,
e.g., chart diagrams and cake diagrams. In software engineering, a dia-
gram denotes a structure which is based on graphs, i.e., a set of nodes
(or vertices) together with a set of arrows (or edges) between nodes. In
category theory, in contrast, a diagram denotes a graph homomorphism
from a shape graph into a graph [12, 38]. In this thesis, we interpret the
term diagram from the software engineering perspective.

Since graph-based structures are often visualised in a natural way, the Diagrammatic vs.
visualterms diagrammatic and visual and are often treated as synonyms. In this

thesis, however, we distinguish between these terms. A diagrammatic
model denotes a model which is represented by a graph-based structure,
while a visual model denotes a model which is intuitive for humans. Al-
though it is feasible to visualise graph-based structures, itmay be a challen-
ging task, and sometimes even unfeasible, to find intuitive visualisations
for all aspects of diagrammatic models.

Diagrammatic models have already been adopted in software engin- History of
diagrammatic

models

eering for some decades; e.g., flowcharts (Seventies) for the description
of behavioural properties of software systems; petrinets (Eighties) for the
specification of discrete distributed systems; entity-relationship diagrams
(Eighties) for the conceptual modelling of data structures.

A factor which has helped in the popularisation of diagrammatic mod- Conceptual two-
dimensionalityels is the conceptual two-dimensionality of the modelled universes [31],

e.g., nodes and arrows, activities and decisions, places and transitions, entities
and relations, classes and associations, objects and links, etc. Each of these
models may be represented by graph-based structures with nodes repres-
enting the first dimension and arrows representing the second dimension
of the modelled universe.

Several modelling languages have emerged in the last few years as Unified
Modeling
Language

attempts to facilitateMDE. In the state-of-the-art ofMDE,models are often
specifiedbymeansofMOF-basedmodelling languages suchasUML.UML
includes a set of languages which are used to describe or specify structural
and behavioural aspects of object-oriented software systems. The following
example illustrates the usage of aUML class diagram to represent structural
aspect of an object-oriented software system. Note that the example is
intentionally kept simple, retaining only the details which are relevant for
the discussion.

Example 1 (UML class diagram). Let us consider an information system for
the management of students, universities and projects. This information system
should satisfy the following requirements:

1. A university educates none tomany students.

2. A student studies at least at one and at most at four universities.
3

1. Model-Driven Engineering

Figure 1.2 shows a UML class diagram representing an object-oriented struc-
tural model of the information system above.

University
sUnivs

1..4

uStuds

0..*
Student

Figure 1.2: A UML class diagram

The class diagram consists of two classes Student and University and a
bidirectional association between the classes. The bidirectional association has
two role names uStuds and sUnivs together with twomultiplicity constraints
0..* and 1..4. The requirements 1 and 2 are enforced in the class diagram by the
multiplicity constraints 0..* and 1..4, respectively.

The term instance may also have different meanings depending on theInstance
context. In software engineering, an instance denotes a structure which
satisfies the requirements of its corresponding class or, more generally, its
corresponding model; i.e., a model restricts the set of its valid instances.
The following example illustrates the usage of UML object diagrams to
represent possible instances of an object-oriented software system at a
point in time.

Example 2 (UMLobject diagram). Building uponExample 1, Figure 1.3 shows
a UML object diagram representing a possible instance of the information system
above.

BUC:UniversityAdrian:Student

UoB:UniversityAlessandro:Student

Figure 1.3: A UML object diagram

The UML object diagram consists of two objects Alessandro and Adrian of
type Student, two objects UoB and BUC1 of type University, and three links
between the objects. Note that these objects are just illustrations of possible
runtime objects of the considered information system.

1“UoB” and “BUC” stand for University of Bergen and Bergen University College, re-
spectively.

4

1.3. Metamodelling

1.3 Metamodelling

The precise definition of the term metamodel is frequently debated in the Metamodel
literature (see [9, 16, 17, 43, 48, 55, 56, 85] for a comprehensive discus-
sion). Conceptually, the prefixmeta- suggests that modelling has occurred
twice, which is reflected in the definition “[a metamodel is] a model of
models” [67]. Technically, a metamodel defines the abstract syntax of a
modelling language. The abstract syntax describes the set of modelling
concepts, their attributes and their relationships, as well as the rules for
combining these concepts to specify valid models [71]. This means that a
metamodel restricts the set of its valid instances in the same way a model
does, which is reflected in the definition “a model is an instance of a me-
tamodel” [71]. The following example illustrates the usage of a simplified
UMLmetamodel to represent the modelling concepts of class diagrams.

Example 3 (UMLmetamodel for class diagrams). Building upon Example 1,
Figure 1.4(a) shows a simplified UML metamodel for class diagrams. Figure 1.4
also shows some of the relations between the class diagram and the metamodel as
dashed, grey arrows.

(b)

(a)

Model
Metamodel

University
sUnivs

1..4

uStuds

0..*
Student

Association Class

lower: Int
upper: Int

Property

Figure 1.4: A simplified UMLmetamodel for class diagrams

The metamodel consists of three metaclasses Class, Property and Associ-
ation and two bidirectional associations between the metaclasses. The metaclass
Property has two attributes lower and upper. The classes Student and Univer-
sity in the class diagram are instances of the metaclass Class in the metamodel.
The multiplicity constraints 0..* and 1..4 in the class diagram are specified by the
attributes lower and upper of the metaclass Property in the metamodel. Note
that each model element in a UML class diagram is an instance of exactly one
model element in the UML metamodel.

Note that the UML metamodel, in turn, is a valid instance of the MOF
metamodel. UML diagrams, UML and MOF are part of the so-called
OMG’s 4-layer hierarchy [17], which is described in detail in Section 4.2.

5

1. Model-Driven Engineering

1.4 Constraints

MOF-basedmodelling languages allow for the specification of simple con-Structural vs.
attached

constraints

straints such as multiplicity and uniqueness constraints, hereafter called
structural constraints. These structural constraints are usually specified
by attributes of classes in the corresponding metamodel of the modelling
language. However, these structural constraints may not be sufficient to
specify complex system requirements. Hence, metamodels are often com-
plemented with textual constraint languages such as OCL to specify more
complex constraints, hereafter called attached constraints. The following
example illustrates the combination of UML class diagrams with OCL
constraints.

Example 4 (UML class diagram with attached OCL constraint). Let us
consider once again the information system of Example 1. This information
system is extended with the following additional requirements:

3. A project involves none tomany students.

4. A project must be controlled by at least one university.

5. A student involved in a project must study at at least one of the controlling
universities.

Figures 1.5(b) and 1.5(c) show a UML class diagram and an attached OCL
constraint, respectively, which are compliant with the requirements above.

The requirements 1, 2, 3 and 4 are enforced in the UML class diagram by
multiplicity constraints. The requirement 5, however, can only be enforced by an
attached OCL constraint.

1.5 Typing and conformance

In MDE, the terms typing and conformance and are often used interchange-Typed by and
conforms to ably. In this thesis, however, we distinguish between these terms. Amodel

is said to be typed by a metamodel if each element in the model is typed
by an element in the metamodel, while a model is said to conform to a
metamodel if it is typed by the metamodel and, in addition, satisfies all
(structural and attached) constraints of the metamodel.

UML object diagrams and UML class diagrams are located at the sameLinguistic and
ontological

typing

modelmetalevel althoughUMLobject diagrams canbe regarded asmodels
which are typed by UML class diagrams. At the same time, since UML
object diagrams are at the model metalevel, they are regarded as models
which are typed by the UML metamodel. These two flavours of typing
are referred to as ontological and linguistic, respectively [9, 48, 55, 56]. The
following example illustrates these two flavours of typing.

6

1.5. Typing and conformance

(c)

(b)

(a)

Model
Metamodel

Structural constraint

Attached constraint
context Project

inv:

 self.pUnivs.uStuds->

 includesAll(self.pStuds)

Project
uProjs

0..*

pUnivs 1..*

sProjs

0..*

pStuds0..*

University
sUnivs

1..4

uStuds

0..*
Student

Association Class

lower: Int
upper: Int

Property

Figure 1.5: A UML class diagram together with an OCL constraint

Example 5 (Linguistic and ontological typing). Figures 1.6(a) and 1.6(b)
show a simplified UMLmetamodel and a UML class/object diagram, respectively.

(b)

Model
Metamodel

(a)

Alessandro:StudentStudent

InstanceSpecificationClass

ontological

linguisticlinguistic

Figure 1.6: Linguistic and ontological instantiation

The class Student is linguistically typed by the metaclass Class, while the
object Alessandro is ontologically typed by the class Student and linguistically
typed by the metaclass InstanceSpecification.

7

1. Model-Driven Engineering

Note that a model with these two flavours of typing is said to have
double linguistic/ontological typing. A metamodelling hierarchy which
supports double linguistic/ontological typing is described in detail in Sec-
tion 4.3.

8

CHAPTER 2
Diagram Predicate

Framework

In the previous chapter, we introduced MDE along with a discussion re-
garding some of its fundamental concepts. In this chapter, we outline DPF
along with a formalisation of some of the fundamental concepts in MDE.
DPF will be adopted as the formal underpinning for the formalisation
of model versioning and deep metamodelling presented in the following
chapters.

2.1 Graph and graph homomorphism

In a first approximation, diagrammatic models can be represented by Kinds of graphs
graphs of different kinds, e.g., simple graphs, bipartite graphs, direc-
ted graphs, directed multi-graphs, attributed graphs, hypergraphs, etc.
Graphs are a well-known and well-understood means to represent struc-
tural and behavioural properties of software systems [36]. In this thesis,
we adopt directed multi-graphs.

A directed multi-graph consists of a set of nodes together with a set of
arrows, where multiple arrows between the same source and target nodes
are permitted. Graphs are related by graph homomorphisms. A graph
homomorphism consists of a pair of maps from the nodes and arrows of a
graph to those of another graph, where the maps preserve the source and
target of each arrow.

9

2. Diagram Predicate Framework

Definition 1 (Graph). A graph G = (GN,GA, src
G, trgG) consists of a set GN

of nodes (or vertices), a set GA of arrows (or edges) and two maps srcG, trgG :
GA → GN assigning the source and target to each arrow, respectively. f : X→ Y
denotes that src(f) = X and trg(f) = Y.

Definition 2 (Subgraph). A graph G = (GN,GA, src
G, trgG) is subgraph of

a graph H = (HN,HA, src
H, trgH), written G ⊑ H, if and only if GN ⊆ HN,

GA ⊆ HA and srcG(f) = srcH(f), trgG(f) = trgH(f), for all f ∈ GA.

Definition 3 (Graph homomorphism). A graph homomorphism φ : G → H
consists of a pair of maps φN : GN → HN, φA : GA → HA which preserve the
sources and targets, i.e., for each arrow f : X→ Y in G we haveφA(f) : φN(X)→
φN(Y) in H.

Remark 1 (Inclusion graph homomorphism). G ⊑ H if and only if the inclu-
sion maps incN : GN ֒→ HN and incA : GA ֒→ HA define a graph homomorphism
inc : G ֒→ H.

Having defined graphs and graph homomorphisms, it is natural to
consider all graphs and graph homomorphisms as objects andmorphisms,
respectively, of a category [12, 38]. The category of graphs is defined as
follows:

Definition 4 (Category of graphs). The category Graph has all graphs G as
objects and all graph homomorphisms φ : G → H as morphisms between graphs
G and H.

The composition φ;ψ : G → K of two graph homomorphisms φ : G →
H and ψ : H → K is defined component-wise φ;ψ = (φN, φA); (ψN, ψA) :=
(φN;ψN, φA;ψA). The identity graph homomorphisms idG : G → G are also
defined component-wise idG = (idGN , idGA). This ensures that the composition of
graph homomorphisms is associative and that identity graph homomorphisms are
left and right neutral with respect to composition.

The semantics of nodes and arrows of a graph has to be chosen in awaySemantics of
nodes and

arrows

which is appropriate for the corresponding modelling environment [82].
In object-oriented structural modelling, each object may be related to a set
of other objects. Hence, it is appropriate to interpret nodes as sets and

arrows X
f
−→ Y as multi-valued functions f : X→ ℘(Y). The powerset ℘(Y)

of Y is the set of all subsets of Y, i.e., ℘(Y) = {A | A ⊆ Y}. Moreover, the
composition of two multi-valued functions f : X → ℘(Y), g : Y → ℘(Z) is
defined by (f ; g)(x) :=

⋃

{g(y) | y ∈ f (x)}. The following example illustrates
the usage of graphs to represent object-oriented structural models.

10

2.1. Graph and graph homomorphism

Example 6 (Graph). Building upon Example 4, Figure 2.1 shows a graph G rep-
resenting a simplified object-oriented structural model of the information system
above.

pUnivs
Project

pStuds

uStuds
University

sUnivs
Student

Figure 2.1: A graph G

In G, the nodes Student, University and Project are interpreted as sets
Student, University and Project, and the arrows sUnivs, uStuds, pUnivs
and pStuds are interpreted as multi-valued functions sUnivs : Student →
℘(University), etc.

The semantics of a graph can be formally defined in either an indexed Indexed
semanticsor a fibredway [31, 90]. In the indexed version, the semantics of a graph is

given by all graph homomorphisms sem : G → U from the graph G into a
category U, e.g., Set (sets as objects and functions as morphisms) or Mult
(sets as objects and multi-valued functions as morphisms as described
above).

In the fibred version, the semantics of a graph is given by the set of Fibred semantics
its instances. An instance (I, ι) of a graph G consists of a graph I together
with a graph homomorphism ι : I → G. The following example illustrates
the usage of graphs and graph homomorphisms to represent instances of
a graph.

Example 7 (Instance of graph). Building upon Example 4, Figure 2.2(b) shows
a graph I representing an instance of the graph G. Figure 2.2 also shows some of
the mappings of the graph homomorphism ι : I → G as dashed, grey arrows.

Themappings of the nodes of the graph homomorphism ι are defined as follows:
ι(Alessandro) = ι(Adrian) = Student
ι(UoB) = ι(BUC) = University
ι(DPF) = ι(Distech) = Project

The mappings of the arrows of the graph homomorphism ι are defined accord-
ingly.

The graph G alone is not sufficient to capture all the requirements 1, 2, 3,
4 and 5 (see Examples 1 and 4); e.g., the arrow from the node Distech to the
node Alessandro in the graph I represents the information “the project Distech
involves the student Alessandro”, but, according to requirement 5, “the project
Distech can not involve the student Alessandro because he is not a student at the
Bergen University College”.

11

2. Diagram Predicate Framework

(b)

I

(a)

G

DPF

Distech

BUC
Adrian

UoBAlessandro

pUnivs
Project

pStuds

uStuds
University

sUnivs
Student

Figure 2.2: The graph G and a possible instance I

Although the usage of graphs for the representation of diagrammatic
models is a success story, an enhancement of the formal basis is needed
to specify diagrammatic constraints and define a conformance relation
between models which takes into account these constraints.

A natural choice for this enhancement is category theory, and in par-Categorical
sketches ticular the categorical sketch formalism, which can be used to define the

semantics of diagrams and thus of diagrammatic models. In the categor-
ical sketch formalism, a model is represented by a graph, and properties
of the model are expressed by universal properties such as limits, colimits
and commutativity constraints [12, 38]. This approach has the benefit of
being generic and at a high level of abstraction, but it turns models into a
complex categorical structure with several auxiliary objects [31].

The proposed formal underpinning of this thesis is the Diagram Pre-Generalised
sketches dicate Framework (DPF) [78, 79, 80, 81, 82, 83, 84], which is a generalisation

and adaptation of the categorical sketch formalism, where the constrain-
ing constructs of modelling languages are represented by user-defined
signatures in a more intuitive and adequate way. In particular, DPF is an
extension of the Generalised Sketches [60] formalism. This extension was
originally developed by Diskin et al. in [28, 29, 30].

12

2.2. Signature and specification

2.2 Signature and specification

In DPF, a model is represented by a specification S. A specification S =
(S,CS : Σ) consists of an underlying graph S together with a set of atomic
constraints CS which are specified by means of a signature Σ. A signature
Σ = (ΠΣ , αΣ) consists of a set of predicates π ∈ ΠΣ , each having an arity
(or shape graph) αΣ (π). An atomic constraint (π, δ) consists of a predicate
π ∈ ΠΣ together with a graph homomorphism δ : αΣ(π) → S from the
arity of the predicate to the underlying graph of the specification.

Definition 5 (Signature). A signatureΣ = (ΠΣ , αΣ) consists of a set of predicate
symbolsΠΣ and amapαΣ which assigns a graph to each predicate symbolπ ∈ ΠΣ .
αΣ(π) is called the arity of the predicate symbol π.

Definition 6 (Atomic constraint). Given a signature Σ = (ΠΣ , αΣ), an atomic
constraint (π, δ) on a graph S consists of a predicate symbol π ∈ ΠΣ and a graph
homomorphism δ : αΣ (π)→ S.

Definition 7 (Specification). Given a signature Σ = (ΠΣ , αΣ), a specification
S = (S,CS:Σ) consists of a graph S and a set CS of atomic constraints (π, δ) on
S with π ∈ ΠΣ .

The following example illustrates the usage of signatures and specific-
ations to represent object-oriented structural models.

Example 8 (Signature and specification). Building upon Example 7, Table 2.1
shows a sample signature Σ = (ΠΣ , αΣ) suitable for object-oriented structural
modelling. The first column of the table shows the predicate symbols. The second
and the third columns show the arities of predicates and a proposed visualisation
of the corresponding atomic constraints, respectively. Finally, the fourth column
presents the semantic interpretation of each predicate.

Figure 2.3 shows a specification S = (S,CS : Σ) representing an object-
oriented structural model of the information system above.

pUnivs

[1
..
∞
]

Project

pStuds

[⊑] pStuds'
[comp]

University

uStuds[surj]

[inv]

[1..4]sUnivs
Student

Figure 2.3: A specification S

13

2. Diagram Predicate Framework

Table 2.1: A sample signature Σ

π ∈ ΠΣ αΣ (π) Proposed vis. Semantic interpretation

[mult(m, n)] 1
a

2 X
f

[m..n]
Y ∀x ∈ X : m ≤ | f (x)| ≤ n,

with 0 ≤ m ≤ n and n ≥ 1

[injective] 1
a

2 X
f

[inj]
Y ∀x, x′ ∈ X : f (x) = f (x′) im-

plies x = x′

[surjective] 1
a

2 X
f

[surj]
Y ∀y ∈ Y ∃x ∈ X : y ∈ f (x)

[inverse] 1

a

2

b

X

f

Y

g

[inv] ∀x ∈ X , ∀y ∈ Y : y ∈ f (x) if
and only if x ∈ g(y)

[irreflexive] 1

a

X

f[irr]

∀x ∈ X : x < f (x)

[composition] 1
a

c

2

b

3

X
f

h
[comp]

Y

g

Z

∀x ∈ X : h(x) =
⋃

{g(y) | y ∈
f (x)}

[image-

inclusion]

1

a

b

2 X

f

g

[⊑] Y ∀x ∈ X : f (x) ⊆ g(x)

In S, the nodes Student, University and Project are interpreted as sets
Student, University and Project, and the arrows sUnivs, uStuds, pUnivs
and pStuds are interpreted as multi-valued functions sUnivs : Student →
℘(University), etc.

Based on the requirement 2 (see Example 1), the function sUnivs has car-
dinality between one and four. In S, this is enforced by the atomic con-
straint ([mult(1, 4)], δ1) on the arrow sUnivs. This atomic constraints is
formulated by the predicate [mult(m, n)] from the signature Σ (see Table 2.1).
Moreover, the function uStuds is surjective. InS, this is enforced by the atomic
constraint ([surjective], δ3) on the arrow uStuds. Furthermore, the func-
tions sUnivs and uStuds are inverse of each other; i.e., ∀s ∈ Student and
∀u ∈ University : s ∈ uStuds(u) if and only if u ∈ sUnivs(s). In S, this is en-
forced by the atomic constraint ([inverse], δ2) on sUnivs and uStuds. Finally,
based on the requirement 5 (see Example 4), the image of the function pStuds
has to be included in the image the composition of the functions pUnivs and
uStuds. InS, this is enforced by the atomic constraints ([composition], δ4) on
the arrows pUnivs, uStuds and pStuds’, and ([image-inclusion], δ5) on the
arrows pStuds and pStuds’. The graph homomorphisms δ1, δ2, δ3, δ4 and δ5 are
defined as follows (see Table 2.2):

14

2.2. Signature and specification

δ1(1) = Student, δ1(2) = University, δ1(a) = sUnivs
δ2(1) = Student, δ2(2) = University, δ2(a) = sUnivs, δ2(b) = uStuds
δ3(1) = University, δ3(2) = Student, δ3(a) = uStuds
δ4(1) = Project, δ4(2) = University, δ4(3) = Student,

δ4(a) = pUnivs, δ4(b) = uStuds, δ4(c) = pStuds’
δ5(1) = Project, δ5(2) = Student, δ5(a) = pStuds, δ5(b) = pStuds’

Table 2.2: The atomic constraints (π, δ) ∈ CS and their graph homomor-
phisms

(π, δ) αΣ (π) δ(αΣ (π))

([mult(1, 4)], δ1) 1
a

2 Student
sUnivs

University

([inverse], δ2) 1

a

2

b

Student

sUnivs

University

uStuds

([surjective], δ3) 1
a

2 University
uStuds

Student

([composition], δ4) 1
a

c

2

b

3

Project
pUnivs

pStuds’

University

uStuds

Student

([image-inclusion], δ5) 1

a

b

2 Project

pStuds

pStuds’

Student

Remark 2 (Predicate symbols). Some of the predicate symbols in Σ (see
Table 2.1) refer to single predicates, e.g., [surjective], while some others refer
to a family of predicates, e.g., [mult(m, n)]. In the case of [mult(m, n)], the
predicate is parametrised by the (non-negative) integers m and n, which represent
the lower and upper bounds, respectively, of the cardinality of the function which
is constrained by this predicate.

The semantics of predicates of the signature Σ (see Table 2.1) is de- Semantics of
predicatesscribed using the mathematical language of set theory. In an implement-

ation, the semantics of a predicate is typically given by the code of a
corresponding validator such that the mathematical and the validator se-
mantics should coincide. However, it is not necessary to choose between
the above mentioned possibilities; it is sufficient to know that any of these
possibilities defines valid instances of predicates.

15

2. Diagram Predicate Framework

Definition 8 (Semantics of predicates). Given a signature Σ = (ΠΣ , αΣ), a
semantic interpretation [[..]]Σ of Σ consists of a mapping that assigns to each
predicate symbol π ∈ ΠΣ a set [[π]]Σ of graph homomorphisms ι : O → αΣ(π),
called valid instances of π, where O may vary over all graphs. [[π]]Σ is assumed
to be closed under isomorphisms.

The semantics of a specification is defined in the fibred way [31, 90];Semantics of a
specification i.e., the semantics of a specification S = (S,CS:Σ) is given by the set of its

instances (I, ι). An instance (I, ι) of a specification S consists of a graph I
together with a graph homomorphism ι : I → S which satisfies the set of
atomic constraints CS .

To check that an atomic constraint is satisfied in a given instance of
a specification S, it is enough to inspect only the part of S which is
affected by the atomic constraint. This kind of restriction to a subpart is
obtained by the pullback construction [12, 38], which can be regarded as a
generalisation of the inverse image construction.

Definition 9 (Instance of a specification). Given a specification S = (S,CS :
Σ), an instance (I, ι) of S consists of a graph I and a graph homomorphism
ι : I → S such that for each atomic constraint (π, δ) ∈ CS we have ι∗ ∈ [[π]]Σ,
where the graph homomorphism ι∗ : O∗ → αΣ(π) is given by the following
pullback:

αΣ (π)
δ

S

O∗

P.B.

δ∗

ι∗

I

ι

The following example illustrates the usage of graphs to represent
instances of a specification.

Example 9 (Instance of a specification). Building upon Example 8, Fig-
ure 2.4(b) shows a graph I representing an instance of the specification S. Fig-
ure 2.4 also shows some of the mappings of the graph homomorphism ι : I → G
as dashed, grey arrows.

The graph homomorphism ι is defined as in Example 7 and satisfies the set of
atomic constraints CS . If the graph I contained an arrow from the node Distech
to the node Alessandro (shown as a dotted, red arrow), it would not be a valid in-
stance ofS since itwould violate the atomic constraint ([image-inclusion], δ5):

pStuds(Distech) = {Alessandro,Adrian} *
uStuds(pUnivs(Distech)) = {Adrian}

Given a specification S, the category of instances of S is defined as
follows:

16

2.2. Signature and specification

(b)

I

(a)

S

DPF

Distech

BUC
Adrian

UoBAlessandro

pUnivs

[1
..
∞
]

Project

pStuds

[⊑] pStuds'
[comp]

University

uStuds[surj]

[inv]

[1..4]sUnivs
Student

Figure 2.4: The specification S and a possible instance I

Definition 10 (Category of instances). Given a specification S = (S,CS :
Σ), the category Inst(S) has all instances (I, ι) of S as objects and all graph
homomorphisms φ : I → I′ as morphisms between instances (I, ι) and (I′, ι′),
such that ι = φ; ι′.

S

=

I

ι

φ
I′

ι′

Inst(S) is a full subcategory of Inst(S) where Inst(S) = (Graph ↓ S) is the
comma category of all graphs typed by S [12]; i.e., we have an inclusion functor
incS : Inst(S) ֒→ Inst(S).

As mentioned, in an implementation, the semantics of a predicate is
typically given by the code of a corresponding validator such that the
mathematical and the validator semantics should coincide. The follow-
ing example illustrates the usage of an existing validation framework to
provide an implementation of the predicates of a signature.

17

2. Diagram Predicate Framework

Example 10 (Implementation of predicates of a signature). Let us consider
a system for international money transfers. IBAN (International Bank Account
Number) is the standard for identifying bank accounts internationally. Some
countries have not adopted this standard and, formoney transfer to these countries,
a special clearing code is needed in combinationwith the plain account number.
BIC (Bank Identifier Code) is the standard for identifying banks globally.

A form for international money transfers should contain (at least) the input
fieldsbic, iban, account and clearingCode. Supposing that the currency is Euro,
this form should also contain the input fields amountEuros and amountCents.
Moreover, this form should satisfy the following requirements:

1. The BIC code of the beneficiary’s bank is required.

2. Either the IBAN or both clearing code and account number are required.

3. The amount to transfer must be between 0.01 and 100000.00 Euros.

Table 2.3 shows a signature Φ = (ΠΦ , αΦ) which contains predicates used to
specify data validation constraints.

Table 2.3: A data validation signature Φ

π ∈ ΠΦ αΦ (π) Proposed vis. Semantic interpretation

[required] 1
a

2 X •
f

Y ∀x ∈ X : f (x) defined

[exactly-one-

null]

1
a

b

2

3

X
f

g [eon]

Y

Z

∀x ∈ X : (f (x) defined and
g(x) undefined) or (f (x) un-
defined and g(x) defined)

[all-or-none-

null]

1
a

b

2

3

X
f

g [aonn]

Y

Z

∀x ∈ X : (f (x) defined
and g(x) defined) or
(f (x) undefined and g(x)
undefined)

[cross-range-

((m1, n1), (m2, n2))]
1

a

b

2 X

f

g

[m1.n1−m2.n2] Int ∀x ∈ X : (m1, n1) ≤

(f (x), g(x)) ≤ (m2, n2)

[range(m, n)] 1
a

2 X
f

[m−n]
Int ∀x ∈ X : m ≤ f (x) ≤ n

Note that in the semantic interpretation of the [cross-range], the symbol
≤ refers to the lexicographical order.

Figure 2.5 shows a specification P = (P,CP : Φ) representing an object-
oriented structural model of the form above. The form is represented by the node
Payment while the input fields are represented by the arrows bic, iban, account,
clearingCode, amountEuros and amountCents.

18

2.2. Signature and specification

Integer

a
m
o
u
n
tE
u
ro
s

[0
.0
1
-1
0
0
0
0
0
.0
0
]

[0
-9
9
]

a
m
o
u
n
tC
e
n
ts

String
[aonn]clearingCode

[eon]account
iban
bic

Payment

Figure 2.5: A specification P = (P,CP:Φ)

In P, the requirement 1 is enforced by the atomic constraint ([required],
δ1) on the arrow bic. This atomic constraint ensures that the user provides a
value in the input field bic. Moreover, the requirement 2 is enforced in P by
two atomic constraints: ([exactly-one-null], δ2) on the arrows iban and
account together with ([all-or-none-null], δ3) on the arrows account and
clearingCode. These atomic constraints ensure that a user provides values
in either the input field iban or both the input fields account and clearing-
Code. Furthermore, the requirement 3 is enforced in P by the atomic con-
straint ([cross-range((0, 1), (100000, 0))], δ4) on the arrows amountEuros
and amountCents. This atomic constraint ensures that the user provides val-
ues in the input fields amountEuros and amountCents which add up to a
value within the range 0.01 to 100000.00. In addition, the atomic constraint
([range(0, 99)], δ5) on the arrow amountCents ensures that a user provides a
value in the input field amountCents within the range 0 to 99.

For the signature Φ, it is possible to base the implementation of each predic-
ate on the SHIP Validator [49, 61]. The XMI serialisation of the specification
P = (P,CP : Φ) (see Listing 2.1) can be transformed to a Java class tagged by
Java annotations compatible with the SHIP Validator (see Listing 2.2). For each
atomic constraint (π, δ) ∈ CP , a corresponding Java annotation is attached to the
getter methods of the Java class. Note that an atomic constraint on a single arrow,
e.g., ([required], δ1) on the arrow bic, translates to a single Java annotation,
e.g., @Required on the method getBic(). Likewise, an atomic constraint on
multiple arrows, e.g., ([exactly-one-null], δ2) on the arrows iban and ac-
count, translates to multiple Java annotations, e.g., @ExactlyOneNull on the
methods getIban() and getAccount(). The interested reader can download a
proof-of-concept implementation of a code generator from [14].

19

2. Diagram Predicate Framework

Listing 2.1: XMI serialisation of the specification P = (P,CP:Φ)

1 <?xml version="1.0" encoding="ASCII"?>

2 <no.hib.dpf.metamodel:Specification

3 xmlns:no.hib.dpf.metamodel="http://no.hib.dpf.metamodel"

4 id="9090a2ec-0e36-4fcc-8f04-3a0226f0a938" name="P">

5

6 <node id="525d2a64-66e1-42f8-aec9-9f186379a77b" name="Payment"/>

7 <node id="d3ae4964 -d091-41d7-9127-09856b3ce316" name="String"/>

8 <node id="0cac0671-a7e0-4d99-8216-14d24f186375" name="Integer"/>

9

10 <arrow id="b5a45cda -3ee0-42a0-a568-81f9e92d7e25" name="bic" source="//@node

.0" target="//@node.1"/>

11 <arrow id="ad030229-b66c-40b5-8f7f-59f1a25e24a8" name="iban" source="//@node

.0" target="//@node.1"/>

12 <arrow id="1d54b8c6-a51b-4858-ade9-0a66522b80eb" name="account" source="//

@node.0" target="//@node.1"/>

13 <arrow id="2c4b8f89-dc27-44e6-bdb4-a0e298c26f85" name="clearingCode" source

="//@node.0" target="//@node.1"/>

14 <arrow id="07a4001b-4c8e-461f-a845-4ac985b0c36d" name="amountEuros" source

="//@node.0" target="//@node.2"/>

15 <arrow id="7559cb35-863a-49dd-a2b3-3e9e893c1356" name="amountCents" source

="//@node.0" target="//@node.2"/>

16

17 <constraints id="33003eb9-d287-4bd8-9a28-ccf6d3ea9ee0" type="[required]">

18 <arrow source="//@arrow.0" />

19 </constraints>

20

21 <constraints id="33003eb6-7987-4558-ba28-aaf693349ee0" type="[not-required

]">

22 <arrow source="//@arrow.1" />

23 <arrow source="//@arrow.2" />

24 <arrow source="//@arrow.3" />

25 <arrow source="//@arrow.4" />

26 <arrow source="//@arrow.5" />

27 </constraints>

28

29 <constraints id="e0661dc3 -0620-44e6-af54-07bf14875c16" type="[exactly-one-

null]">

30 <arrow source="//@arrow.1" />

31 <arrow source="//@arrow.2" />

32 </constraints>

33

34 <constraints id="1160e483-b701-4c23-9641-7e73909de528" type="[all-or-none-

null]">

35 <arrow source="//@arrow.2" />

36 <arrow source="//@arrow.3" />

37 </constraints>

38

39 <constraints id="e1f2bab1 -b58c-4273-97bb-d0cdd14abe45" type="[cross-range]">

40 <param name="m1" value="0" />

41 <param name="n1" value="01" />

42 <param name="m2" value="100000" />

43 <param name="n2" value="00" />

44 <arrow source="//@arrow.4" />

45 <arrow source="//@arrow.5" />

46 </constraints>

47

48 <constraints id="9132c6e8-7af9-4fc6-8b67-afac0471b13b" type="[range]">

49 <param name="min" value="0" />

50 <param name="max" value="99" />

51 <arrow source="//@arrow.5" />

52 </constraints>

53

54 </no.hib.dpf.metamodel:Specification>

20

2.2. Signature and specification

Listing 2.2: Java class generated by transformation

1 public class Payment {

2

3 private String bic;

4 private String iban;

5 private String account;

6 private String clearingCode;

7

8 private int amountEuros;

9 private int amountCents;

10

11 @Required

12 public String getBic() {

13 return bic;

14 }

15

16 @ExactlyOneNull

17 @NotRequired

18 public String getIban() {

19 return iban;

20 }

21

22 @ExactlyOneNull

23 @AllOrNoneNull

24 @NotRequired

25 public String getAccount() {

26 return account;

27 }

28

29 @AllOrNoneNull

30 @NotRequired

31 public String getClearingCode() {

32 return clearingCode;

33 }

34

35 @IntRange(min=0,max=100000)

36 @CrossRange

37 public int getAmountEuros(){

38 return this.amountEuros;

39 }

40

41 @IntRange(min=0,max=99)

42 @CrossRange

43 public int getAmountCents(){

44 return this.amountCents;

45 }

46

47 }

These Java annotations are in turn transformed into executable tests by the
SHIP Validator. The interested reader can consult [49, 61] for details about
the implementation and execution of these tests. Note that the idea of using
annotations to hide the actual validation code and, at the same time, tag the
properties to be tested, allow the constraints to be easily integrated into existing
code. Besides, the validation aspects of the system remain well separated from the
application aspects. This separation of concerns facilitates the transformation of
the atomic constraints into actual working code.

21

2. Diagram Predicate Framework

2.3 Typing and conformance

In DPF, a specification S is said to be typed by a graph T if there exists a
graph homomorphism ι : S → T, called the typing morphism, between the
underlying graph of the specification S and the graph T. A specification
S is said to conform to a specification T if there exists a typing morphism
ι : S → T between the underlying graphs of S and T such that (S, ι) is a
valid instance of T; i.e., such that ι satisfies the atomic constraints CT .

Definition 11 (Typed specification). Given a signature Σ = (ΠΣ , αΣ) and a
graph T, a specification S = (S,CS :Σ) typed by T is a specification S together
with a graph homomorphism ι : S → T, called the typing morphism.

Definition 12 (Conformant specification). Given a signature Σ = (ΠΣ , αΣ)
and a specificationT = (T,CT:Σ), a specificationS = (S,CS:Σ)which conforms
to T is a specification S together with a typing morphism ι : S → T such that
(S, ι) ∈ Inst(T).

2.4 Specification morphism

In DPF, the relation between specifications is represented by specification
morphisms. Specification morphisms are graph homomorphisms between
the underlying graphs of specifications. These graph homomorphisms
induce a translation of instances of graphs.

Proposition 1 (Translation of instances of graphs). Each graph homomor-
phism φ : S → S′ induces a functor φ• : Inst(S) → Inst(S′) with φ•(I, ι) =
(I, ι;φ) for all (I, ι) ∈ Inst(S).

S
φ

S′

I

ι
ι;φ

Inst(S)
φ•

Inst(S′)

Moreover, each graph homomorphism φ : S → S′ induces a functor φ• :
Inst(S′) → Inst(S) with φ•(I′, ι′) given by the pullback (I∗, φ∗ : I∗ → I′, ι∗ :

I∗ → S) of the span S
φ

S′ I′
ι′

[31].

22

2.4. Specification morphism

S
φ

S′

I∗

ι∗ P.B.

φ∗
I′

ι′

Inst(S) Inst(S′)
φ•

In addition, these graph homomorphisms should preserve atomic con-
straints.

Definition13 (Specificationmorphism). Given two specificationsS = (S,CS:
Σ) andS′ = (S′,CS

′

:Σ), a specification morphism φ : S → S′ is a graph homo-
morphism φ : S → S′ such that (π, δ) ∈ CS implies (π, δ;φ) ∈ CS

′

.

αΣ (π)
δ

δ;φ

=

S
φ

S′

Remark 3 (Subspecification). A specification S = (S,CS :Σ) is a subspecific-
ation of a specification S′ = (S′,CS

′

:Σ) , written S ⊑ S′, if and only if S is a
subgraph of S′ and the inclusion graph homomorphism inc : S ֒→ S′ defines a
specification morphism inc : S ֒→ S′.

Remark 4 (Graph homomorphism and atomic constraints). Any graph
homomorphism φ : S → S′ induces a translation of atomic constraints; i.e., for
any specification S = (S,CS :Σ) we obtain a specification φ(S) = (S′,Cφ(S) :Σ)
with Cφ(S) = φ(CS) = {(π, δ;φ) | (π, δ) ∈ CS }.

Based on this remark, the condition for specificationmorphisms can be
reformulated as follows: a specification morphism φ : S → S′ is a graph
homomorphism φ : S → S′ such that φ(S) ⊑ S′, i.e., Cφ(S) = φ(CS) ⊆ CS

′

.
Given a signatureΣ, the category of specifications is defined as follows:

Definition 14 (Category of specifications). Given a signature Σ = (ΠΣ , αΣ),
the category Spec(Σ) has all specifications S = (S,CS : Σ) as objects and all
specification morphisms φ : S → S′ as morphisms between specificationsS and
S′.

The associativity of composition of graph homomorphism ensures that the
composition of two specification morphisms is a specification morphism as well
and that the composition of specification morphisms is associative. Moreover,
the identity graph homomorphisms idS : S → S define identity specification
morphisms idS : S → S and ensure that identity specification morphisms are
left and right neutral with respect to composition.

23

2. Diagram Predicate Framework

Proposition 2 (Specification morphisms and category of instances). For
any specification morphism φ : S → S′, we have φ•(Inst(S′)) ⊆ Inst(S);
i.e., the functor φ• : Inst(S′) → Inst(S) restricts to a functor φ• : Inst(S′) →
Inst(S).

S

φ

Inst(S) Inst(S) S

φ

S′ Inst(S′)

φ• =

Inst(S′)

φ•

S′

Proof. The proof is given by the result that the composition of two pull-
backs is again a pullback [12] and by the assumption that [[π]]Σ is closed
under isomorphisms (see Definition 8), as shown in [31].

αΣ(π)
δ

δ;φ

S
φ

S′ αΣ(π)
δ;φ

S′

O
δ∗

ι∗ P.B.

δ∗;φ∗

I
φ∗

ι P.B.

I′

ι′

O•

ι• P.B.

(δ;φ)∗
I′

ι′

�

2.5 Specification transformation

In this thesis, specification transformation is based on transformation rules [36,

47]. A transformation rule t = L K
l r

R consists of three specific-
ations L, K and R. L and R are the left-hand side and right-hand side of
the transformation rule, respectively, while K is their interface. L \ l(K)
describes the part of a specification which is to be deleted, R \K describes
the part to be added, and K describes the part which has to exist to apply
the rule, in which only renaming modifications are possible. Note that
the specification morphism l : K → L is injective in order to allow for
renaming. An application of transformation rule means finding a match for
the left-hand side L in a source specification S and replacing L with R,
leading to a target specification T.

Definition 15 (Transformation rule). A transformation rule

t = L K
l r

R consists of specifications L, K and R, called left-hand side,
interface and right-hand side, respectively, an injective specification morphism
l : K → L and an inclusion specification morphism r : K ֒→ R.

24

2.5. Specification transformation

Definition 16 (Application of transformation rule). Given a transformation

rule t = L K
l r

R , a specification S and an injective specification mor-
phism m : L → S, called the match, an application of transformation rule

S
<t,m>

T from a specification S to a specification T is given by the follow-
ing double-pushout (DPO) [36], where (1) and (2) are pushouts in the category
Spec(Σ) (see Propositions 6 and 7):

L

m

K
l

k

r
R

n

S

(1)

D
f g

T

(2)

Definition 17 (Specification transformation). A specification transformation

S
∗
S′ consists of a sequence of applications of transformation rules on S.

When an application of a transformation rule t via a match m is per-
formed, all nodes, arrows and atomic constraints which are in the image
of m but not in the image of l;m are deleted from the specification S. In
general, the deleted part does not need to be a valid specification, but the
remaining specification D := (S \ m(L)) ∪m(K) still has to be a valid spe-
cification with no dangling arrows or dangling atomic constraints. This
means that the matchm has to satisfy a gluing condition [36], which ensures
that the gluing of L \ K and D is equal to S.

Definition 18 (Gluing condition). Given a transformation rule

t = L K
l r

R , a specificationS and a match m : L → S:

• The gluing points GP consist of the nodes and arrows in L which are not
deleted by t, i.e., GP = lN(KN) ∪ lA(KA) = l(K).

• The dangling arrow points DAP consist of the nodes in L whose images
under m are the source or target of an arrow in S which does not belong
to m(L), i.e., DAP = {X ∈ LN | ∃f ∈ SA \ mA(LA) : src(f) = mN(X) or
trg(f) = mN(X)}.

• The dangling atomic constraint points DACP consist of the nodes and
arrows in L whose images under m are in the image of the graph homomor-
phism δ of an atomic constraint (π, δ) in CS which does not belong to m(L),
i.e., DACP = {X ∈ LN | ∃(π, δ) ∈ CS \m(CL) : mN(X) ∈ δN(α(π))} ∪ {f ∈
LA | ∃(π, δ) ∈ C

S \m(CL) : mA(f) ∈ δA(α(π))}.

The transformation rule t and the match m satisfy the gluing condition if all
identification points and all dangling points are also gluing points, i.e., DAP ∪
DACP ⊆ GP.

25

2. Diagram Predicate Framework

Definition 19 (Applicability of transformation rules). A transformation rule

t = L K
l r

R is applicable to a specification S via a match m : L → S
if there exists a context specification D such that (1) is a pushout in the category
Spec(Σ).

L

m

K
l

k

r
R

S

(1)

D
f

Remark 5 (Existence and uniqueness of context specification). Given a

transformation rule t = L K
l r

R , a specification S and a match m :
L → S, the context specification D together with the pushout (1) exist if and
only if the gluing condition is satisfied. IfD exists, it is unique up to isomorphism.

The proof of the existence and uniqueness of context specification can
be provided by extending the results in [36] from graph transformation to
DPF.

A specification transformation may show two kinds of non-determin-
ism [36]. Firstly, there may be more than one applicable transformation
rule. Secondly, there may be more than one match for a transformation
rule in the source specification. In both cases, the choice may be arbitrary.
Some degree of determinism may be achieved by controlling the flow of
the application of transformation rules.

In addition to these two kinds of non-determinism, a specification
transformation is, in general, non-terminating [36]. A specification trans-

formation S
∗
T is terminating if no more transformation rules can be

applied to T. However, given a set of transformation rules, there may

be two specification transformations S
∗
T′ and S

∗
T′′ leading to

two non-isomorphic target specifications T′ and T′′. A set of transform-
ation rules is confluent if, for each pair of specification transformations

S
∗
T′ and S

∗
T′′ , there exists a specification X together with

specification transformations T′
∗
X and T′′

∗
X .

A specification transformation which is terminating and confluent is
said to have functional behaviour [36]. The formalisation of termination and
confluence in view of DPF is outside the scope of this thesis and will be
investigated in future work (see Section 2.8)

26

2.6. Specification entailment

Among techniques for controlling the application of transformation
rules and achieving functional behaviour are the negative application condi-
tions (NACs) [36, 80]. NACs are used to forbid applications of a transform-
ation rule. Since non-deleting transformation rules (i.e., transformation
rules which do not delete any specification element) can be applied mul-
tiple times via the samematch, it is necessary to require that the right-hand
side of each transformation rule always defines a NAC for the transforma-
tion rule itself. This is to ensure that a transformation rule is applied only
once via a given match.

Another technique for controlling the application of transformation
rules is the layering of transformation rules [36, 80]. In this technique, each
transformation rule is assigned to a numbered layer based on its order of
application. The transformation rules at each layer are applied before the
transformation rules at the next layer.

2.6 Specification entailment

Recall that a specification consists of an underlying graph together with
a set of atomic constraints which are specified by means of predicates of
a signature. Due to Definition 9, for any specification S = (S,CS :Σ), the
atomic constraints {(π1, δ1), . . . , (πn, δn)} = CS are implicitly conjunctively
connected.

In addition to this implicit conjunction, it would be desirable to define
other relations between atomic constraints. Defining these relations can be
regarded as describing properties of the semantic interpretation of predic-
ates of a signature. For example, according to the semantic interpretation
[[[mult(m, n)]]]Σ of the signature Σ (see Table 2.1), a valid instance of the
atomic constraint ([mult(2, 3)], δ) is also a valid instance of (or satisfies)
the atomic constraint ([mult(1, 4)], δ). This kind of relation is called pre-
dicate dependency in [31, 89]. However, defining relations between single
atomic constraints may not be sufficient.

In this thesis, specification entailments are used to express relations
between conjunctively connected sets of atomic constraints. A specific-
ation entailment has the structure Le f t ⊢ Right, where both premise (Le f t)
and conclusion (Right) are specifications with the same underlying graph.

Definition 20 (Specification entailment). A specification entailment e = L ⊢
R consists of two specifications L = (L,CL :Σ) and R = (R,CR : Σ), called the
premise and the conclusion, respectively, with the same underlying graph L = R,
called the context graph.

27

2. Diagram Predicate Framework

L ⊢ R

α(π1)

δ1

. . . α(πm)

δm

⊢ α(ρ1)

ǫ1

. . . α(ρn)

ǫn

L = R

A specification entailment is valid if and only if all instances of the
premise are also instances of the conclusion.

Definition 21 (Semantic interpretation and specification entailment). A
specification entailment e = L ⊢ R, with L = (L,CL :Σ) and R = (R,CR :Σ), is
valid for a semantic interpretation [[..]]Σ of a signature Σ if and only if Inst(L) ⊆
Inst(R).

The following example illustrates the usage of specification entailments
to express relations between multiplicity and surjectivity constraints.

Example 11 (Specification entailment). Building upon Example 8, Figure 2.6
shows a specification entailment e = L ⊢ R with:

L = (L,CL = {([mult(0, n)], δ1), ([inverse], δ2), ([surjective], δ3)} : Σ)

R = (R,CR = {([mult(1, n)], ǫ1), ([inverse], ǫ2), [surjective], ǫ3)} : Σ)

L = R = X

f

Y
g

One can show that according to the semantic interpretation [[..]]Σ of the sig-
nature Σ (see Table 2.1) the requirement Inst(L) ⊆ Inst(R) is satisfied:

Since g is surjective: ∀x ∈ X ∃y ∈ Y : x ∈ g(y)
f , g inverse gives ⇒ ∀x ∈ X ∃y ∈ Y : y ∈ f (x)

f total gives ⇒ ∀x ∈ X : | f (x)| ≥ 1

Note that for the specification entailment above, it is trivial to prove that also
Inst(L) ⊇ Inst(R), concluding that Inst(L) ≡ Inst(R).

As mentioned, each specification entailment is defined over a given
context graph. From these specification entailments, one may induce
transformation rules, which can be applied to existing specifications.

28

2.6. Specification entailment

L = R

1ε

2ε

3ε
3δ

2δ

1δ

α([mult(1, n)])

α([inverse])

α([surjective])

⊢

α([surjective])

α([inverse])

α([mult(0, n)])

R⊢L

X

f

Y
g

1
a

2

1

a

2

b

2 1
a

2 1
a

1

a

2

b

1
a

2

Figure 2.6: A specification entailment e = L ⊢ R

Proposition 3 (Specification entailment and transformation rule). Each
specification entailment e = L ⊢ R, with L = (L,CL : Σ) and R = (R,CR : Σ),

induces a transformation rule t = L K
l r

R , with K = (K,CK:Σ), where

K = L = R and CK = CL ∩ CR .

The following example illustrates the transformation rule which is in-
duced by the specification entailment for multiplicity and surjectivity con-
straints.

Example 12 (Specification entailment and transformation rule). Building

upon Example 11, Table. 2.4 shows the transformation rule t = L K
l r

R

induced by the specification entailment e = L ⊢ R.

Table 2.4: The transformation rule t = L ← K ֒→ R induced by the
specification entailment e = L ⊢ R

Rule L K R

t X

f [0..n]

Y

g[surj]

[inv] X

f

Y

g[surj]

[inv] X

f [1..n]

Y

g[surj]

[inv]

29

2. Diagram Predicate Framework

Proposition 4 (Embedding of specification entailment). Given a transform-

ation rule t = L K
l r

R induced by a specification entailment e = L ⊢ R,

and a specification S = (S,CS :Σ) together with a match m : L → S, each ap-

plication of transformation rule S
<t,m>

S′ induces a specification entailment

S ⊢ S′ with S′ = (S′,CS
′

:Σ).

L

m

R

n

S S′

Given a semantic interpretation [[..]]Σ of a signatureΣ, an induced specification
entailment S ⊢ S′ is valid as long as L ⊢ R is valid.

Proof. Theproof isgivenbyshowing that if Inst(L) ⊆ Inst(R) then Inst(S) ⊆
Inst(S′).

Firstly, we have to show that (IS, ιS) � m(CL) implies that (IS, ιS) � m(CR).
Suppose that (IS, ιS) � m(CL). By Proposition 2 this holds if and only if

m•(IS, ιS) � CL . The specification entailment L ⊢ R implies that m•(IS, ιS) �
CR . Proposition 2 implies that (IS, ιS) � m(CR).

Secondly, we have to show that (IS, ιS) � m(CR) implies that (IS, ιS) �
m(CS

′

).
Suppose that (IS, ιS) � CS ; i.e., (IS, ιS) � m(CL) and (IS, ιS) � CS \ m(CL).

This implies that (IS, ιS) � m(CR) and (IS, ιS) � CS \ m(CL). Proposition 8
implies that CS

′

= CS \m(CL) ∪m(CR); i.e., (IS, ιS) � m(CS
′

). �

30

2.6. Specification entailment

The following example illustrates the embedding of the specification
entailment for multiplicity and surjectivity constraints.

Example 13 (Embedding). Building uponExamples 8 and 11, Figure 2.7 shows
the specification entailmentS ⊢ S′ induced by the application of the transforma-

tion rule S
<t,m>

S′ .

S'(b)S(a)

⊢

pUnivs

[1
..
∞
]

Project

pStuds

[⊑] pStuds'
[comp]

University

uStuds[surj]

[inv]

[1..4]sUnivs
Student

pUnivs

[1
..
∞
]

Project

pStuds

[⊑] pStuds'
[comp]

University

uStuds[surj]

[inv]

[0..4]sUnivs
Student

S'⊢S

Figure 2.7: An embedding S ⊢ S′ of the specification entailment L ⊢ R

According to the semantic interpretation [[[mult(m, n)]]]Σ of the signatureΣ
(see Table 2.1), the set of valid instances of the atomic constraint ([mult(0, 4)], δ1)
∈ CS is larger than the set of valid instances of the atomic constraint ([mult(1, 4)],
δ1) ∈ C

S′ . However, because of the implicit conjunction of the atomic constraints,
the set of valid instances of CS and CS

′

are equal.

31

2. Diagram Predicate Framework

2.7 Related work

The formalisation of diagrammatic modelling has been extensively dis-
cussed in the literature.

The work in [35, 36] uses E-graphs to represent models and metamod-E-graphs
els. An E-graph is a generalisation of an attributed graph [34] and consists
of two sets of graph and data nodes, respectively, and three sets of graph
arrows, node attribute arrows and arrow attribute arrows, respectively.
The assignment of attributes to nodes is done by adding node attribute
arrows from the graph nodes to the data nodes. The assignment of attrib-
utes to arrows is done by adding arrow attribute arrows from the graph
arrows to the data nodes. Attributes of nodes and arrows are used to de-
scribe properties of nodes and arrows, which is similar to how attributes
of classes in the UMLmetamodel are used to describe properties of model
elements. Attributes of nodes can be represented in DPF by arrows from
these nodes to nodes representing data types. The adoption of E-graphs
rather than directed multi-graphs may represent a natural next step in the
development of DPF.

The work in [36] also uses graph constraints to express propertiesGraph
constraints for graphs. A graph constraint is of the form a : Premise → Conclusion

where a is a graph homomorphism. In case a is surjective, a graph con-
straint can be seen to correspond to a first-order implication of the form
∀x : P(x)→ Q(x) where x denotes a list of variables. In case a is not surject-
ive, however, a graph constraint corresponds to a first-order implication
of the form ∀x : P(x) → (∃y : Q(x, y)). For some of our predicates the se-
mantics can be described by these first-order implications. This is the case,
for example, for the predicates [surjective] and [inverse]. In such a
way, some atomic constraints at metamodel level give rise to graph con-
straints at model level. For example, in Figure 2.4(a) the atomic constraint
([surjective], δ3) on the arrow uStuds represents a graph constraint c1 in
Table 2.5, while the atomic constraint ([inverse], δ2) on the arrows sUnivs
and uStuds represents the graph constraints c2 and c3 in Table 2.5.1

The work in [18] proposes an algebraic semantics for MOF to formal-Algebraic
specifications ise the concepts of models, metamodels and conformance between them.

Models are representedby termswhilemetamodels are representedbyspe-
cifications in membership equational logic (MEL). This formal semantics
is made executable by using Maude [24], which directly supports MEL
specifications.

1The graph constraints in Table 2.5 come with negative constraints to avoid duplication
of the conclusion; this detail is omitted.

32

2.7. Related work

Table 2.5: Graph constraints represented by the atomic constraints
([surjective], δ3) and ([inverse], δ2)

Premise Conclusion
c1: uStuds is surjective

s:Student s:Student u:University
:uStuds

c2: uStuds is inverse of sUnivs and

s:Student

:sUnivs

u:University s:Student

:sUnivs

u:University

:uStuds

c3: sUnivs is inverse of uStuds

s:Student u:University

:uStuds

s:Student

:sUnivs

u:University

:uStuds

The work in [76] exploits the higher-order nature of constructive type Constructive
type theorytheory to uniformly treat the syntax of models, metamodels, as well as

MOF itself. Models are represented by terms (token models) and can also
be representedby types (typemodels) bymeans of a reflectionmechanism.
This formal semantics ensures that correct typing corresponds to provably
correct models and metamodels.

Epsilon (Extensible Platform of Integrated Languages for mOdel maN- Epsilon
agement) [54] is a family of consistent and interoperable task-specific pro-
gramming languages which can be used to interact with EMF models.
The core of Epsilon is the Epsilon Object Language (EOL), an imperative
language that combines the procedural style of JavaScript with the query-
ing capabilities of OCL. In addition, Epsilon provides several task-specific
languages for performing code generation, model transformation, model
validation, etc. One of these task-specific languages is the Epsilon Val-
idation Language (EVL). EVL extends OCL conceptually (as opposed to
technically) to provide a number of features such as support for constraint
dependency management and access to multiple models conforming to
different metamodels.

Alloy [2] is a modelling language which is capable of expressing com- Alloy
plex structural and behavioural constraints. Model analysis in Alloy is
based on the usage of first order logic to translate specifications into
boolean expressions which are automatically evaluated by a boolean sat-
isfiability problem (SAT) solver. Given a logical formula, Alloy attempts
to find a model which satisfies the formula. Alloy models are checked by
using the Alloy analyser which attempts to find counterexamples, within
a limited scope, that violate the constraints of the system. Even though
Alloy cannot prove the system’s consistency in an infinite scope, the user
receives immediate feedback about the system’s consistency.

33

2. Diagram Predicate Framework

2.8 Conclusion and future work

In this chapter, we outlined DPF along with a formalisation of some of
the fundamental concepts in MDE. DPF is an adaptation of the categorical
sketch formalism, where the constraining constructs of modelling lan-
guages are represented by user-defined signatures in a more intuitive
and adequate way. In particular, DPF is an extension of the Generalised
Sketches formalism and aims to combine mathematical rigour with dia-
grammatic modelling.

This chapter is an adaptation of the formalisation of modelling and
model transformation published in [79, 80, 82, 84]. Compared to the previ-
ous work, the specification transformation is extended to support deleting
transformation rules. Moreover, the embedding of specification entail-
ments is also revised to adopt deleting transformation rules.

Specification transformations constitute the basis for several techniques
presented in this thesis. In future work, we will analyse termination and
confluence in view of DPF.

Specification entailments are used to characterise relations between
sets of conjunctive connected atomic constraints. In future work, we will
investigate a deduction calculus which would give rise to more complex
deductions such as new specification entailments from given ones.

A prototype tool for DPF [13] is available at [15]. The tool is imple-
mented in Java as an Eclipse plug-in and relies on EMF and the Graphical
Editing Framework (GEF) [44]. In future work, we will perform empirical
studies to determine whether the benefits of DPF and its formal approach
to MDE are observable.

34

CHAPTER 3
Constraint-Aware Model

Versioning

In the previous chapter, we outlined DPF along with a formalisation of
some of the fundamental concepts in MDE. In this chapter, we describe
a formal approach to constraint-aware model versioning based on DPF;
i.e., a formal approach to model versioning which handles constraints in
model merging, conflict detection and conflict resolution.

3.1 Introduction

In MDE, models are first-class entities of software development and un- Evolution of
modelsdergoa complex evolutionduring their life-cycles. As a consequence, there

is a growing need for techniques and tools to support model management
activities such as version control.

In optimistic version control, each developer has a local (or working) Optimistic
version controlcopy of a software artefact. These local copies aremodified independently

and in parallel and, from time to time, local modifications are merged
together. In the centralised1 approach to optimistic version control, local
modifications of each developer are merged into a central repository. In
the distributed approach, in contrast, local modifications of each developer
are merged into other developers’ local copies. In both cases, the merge
is performed using a three-waymerging technique [62], which attempts to
merge two versions of a software artefact relying on the common ancestor
version from which both versions originated. This technique facilitates

1Also referred to as copy-modify-merge [75, 78].

35

3. Constraint-AwareModel Versioning

conflict detection. Roughly speaking, conflicts may arise when the modi-
fications are contradictory. They are resolved either manually or, when
applicable, automatically.

Mainstream version control systems (VCSs), e.g., Subversion [4] andText-based VCS
Git [40], target text-based artefacts. Hence, underlying techniques such
as merging, conflict detection and conflict resolution are based on a per-
line textual comparison [50]. Since the underlying structure of models is
graph-based rather than text-based, these techniques are not suitable for
MDE.

To cope with this problem, a few prototype VCSs have been developedGraph-based VCS
that target graph-based structures, e.g., [19, 64]. However, a uniform form-
alisation of model merging, conflict detection and conflict resolution in
MDE is still debated in the literature. Researchhas lead to a number of find-
ings in this field [62]. The interested reader may consult [22, 26, 78, 87, 88]
for different approaches to model merging, conflict detection and conflict
resolution. Unfortunately, these techniques consider only model elements
and their conformance to the corresponding modelling language, e.g.,
well-formedness constraints. However, these techniques should also con-
sider constraints added to model elements, e.g., multiplicity constraints.
An interesting challenge is then to extend the current techniques by en-
abling version control of constraints.

In this chapter, we describe a formal approach to constraint-awareConstraint-
aware model

versioning

model versioning based on DPF; i.e., a formal approach to model version-
ing which handles constraints in model merging, conflict detection and
conflict resolution.

The remainder of the chapter is structured as follows. Section 3.2
introduces model versioning through a running example. Section 3.3
discusses the calculation and representation of differences in view of DPF.
Section 3.4 presents a synchronisation procedure which includes conflict
detection and conflict resolution. In Section 3.5, the current research in
model versioning is summarised. In Section 3.6, some concluding remarks
and ideas for future work are presented.

3.2 Model versioning

The following example illustrates a usual scenario of concurrent develop-
ment inMDE.Note that the example is intentionally kept simple, retaining
only the details which are relevant for the discussion. The following nota-
tion is employed:

• SpecificationVi: a version of a specification in the repository, e.g., V2

• Local copy Ui, with U for user: a local copy of the specification Vi,
e.g., A2, with A for Alice.

36

3.2. Model versioning

Example 14 (Model versioning and conflict detection scenario). Let us
consider an information system for the management of students, universities
and projects. Suppose that two software developers, Alice and Bob, adopt an
optimistic, centralised VCS. Figure 3.1 illustrates the interaction between Alice,
Bob and the repository. Figure 3.2 shows the different versions of the specification
being developed, while Table 3.1 shows the signature used to specify the atomic
constraints in these specifications.

B3B2B2

Bob

A2A2A1A1

Alice

c
o
m
m
its

y
n
c

c
h
e
c
k
-o
u
t

V3V2V1Repository

Figure 3.1: The timeline of the version control scenario

Table 3.1: The signature Σ

π ∈ ΠΣ αΣ (π) Proposed vis. Semantic interpretation

[mult(m, n)] 1
a

2 X
f

[m..n]
Y ∀x ∈ X : m ≤ | f (x)| ≤ n,

with 0 ≤ m ≤ n and n ≥ 1

[injective] 1
a

2 X
f

[inj]
Y ∀x, x′ ∈ X : f (x) = f (x′) im-

plies x = x′

[jointly-

injective]

1
a

b

2

3

X
f

g [ji]

Y

Z

∀x, x′ ∈ X : f (x) = f (x′) and
g(x) = g(x′) implies x = x′

[surjective] 1
a

2 X
f

[surj]
Y ∀y ∈ Y ∃x ∈ X : y ∈ f (x)

[inverse] 1

a

2

b

X

f

Y

g

[inv] ∀x ∈ X , ∀y ∈ Y : y ∈ f (x) if
and only if x ∈ g(y)

37

3. Constraint-AwareModel Versioning

V3(c)A2(d)

V2(b)V1(a)

UniversityStudent

Enrolment

[ji]

e
S
tu
d

e
U
n
iv

University
sUnivs

uStuds

[1..4]

[surj]

[inv]Student

i

PhDStud
pPhds

Project

p
U
n
iv
s

University
sUnivs

uStuds
Student

i

PhDStud

University
sUnivs

uStuds
Student

Figure 3.2: The specifications V1, V2, V3 and A2

Alice creates a local copy A1 of the specification V1 in the repository (see
Figure 3.2(a)). This is done in a check-out step. She modifies her local copy by
adding the nodePhDStud as a subtype ofStudent. These modifications take place
in an evolution step. Since other developers may have updated the specification
V1, she needs to synchronise her local copy with the repository in order to merge
other developers’ modifications. This is done in a synchronisation step. However,
no modifications of the specification V1 have been made in the repository while
Alice has been modifying it. Hence, the synchronisation is completed without
changing her local copy A1. Finally, Alice commits her local copy, which will be
labelled V2 in the repository (see Figure 3.2(b)). This is done in a commit step.

Afterwards, Bob checks out a local copy B2 of the specification V2 from the
same repository. He considers Postdoc as a different subtype of student. To avoid
the pollution of subtypes in the specification, he deletes the PhDStud node and
refactors the specification by adding a node Enrolment together with the arrows
eStud and eUniv. Then, he synchronises his local copy with the repository. This
synchronisation is also completed without changing his local copy B2. Finally,

38

3.3. Calculation and representation of differences

Bob commits his local copy, which will be labelled V3 in the repository (see
Figure 3.2(c)).

Alice continues modifying her local copy A2, which is now out-of-date since
it is a copy of the specification V2, while the latest specification in the repository
(containing Bob’s modifications) is V3. She adds a node Project together with
the arrows pPhds and pUnivs (see Figure 3.2(d)). Moreover, she adds the atomic
constraints ([mult(1, 4)], δ1), ([inverse], δ2) and ([surjective], δ3) on the
arrows sUnivs and uStuds. Then, she synchronises her local copy with the repos-
itory. This time the synchronisation procedure detects conflicting modifications;
e.g., Alice has added an arrow to the node PhDStud which Bob has deleted.

In the following, the underlying techniques of the proposed approach
to model versioning are analysed. Furthermore, several examples, built
upon Example 14, are used to illustrate the application of our techniques.
The notation is extended by adopting some keywords from [75]:

• Base specification VB, with B for BASE: the last checked out or syn-
chronised specification prior to any modification; i.e., the pristine
version of a local copy, e.g., V2 is the base specification for A2

• Head specification VH, with H for HEAD: the latest (or most recent)
specification in the repository, e.g., V3

Note that the head specification is the same for all users. In contrast,
the base specification is bound to the local copy and may differ from user
to user.

3.3 Calculation and representation of differences

In version control, the identification of commonalities between (versions
of) artefacts is necessary to calculate their differences. For example, a
solution to the longest common subsequence problem [50] is typically
implemented in differencing algorithms for text-based artefacts.

Various techniques for the identification of commonalities in MDE can Hard- vs.
soft-linkingbe found in the literature. A rudimentary technique is based on persistent

identifiers, such as Universally Unique Identifiers (UUID) [51]; in this
technique, elementswith equal identifiers are seen as equal elements (hard-
linking) [73]. While this technique would work efficiently within specific
tools, it is not general enough to function as a generic technique. This is
because persistent identifiers are different for every environment. Another
technique for the identification of commonalities is based on metrics such
as structural similarity; in this technique, elements that have the same
features are seen as equal elements (soft-linking) [59]. This technique has
the benefit of being general, but it is slightly resource greedy.

In this thesis, a different technique for the identification of commonal- Recording of
modifications

39

3. Constraint-AwareModel Versioning

ities is proposed. Specification elements which are not modified during
an evolution step are recorded in a common specification; i.e., a specification
which represents the commonalities between two subsequent versions of
a specification. The common specification is defined as follows:

Definition 22 (Common specification). Given specifications S = (S,CS :Σ)
and T = (T,CT:Σ), a common specification ofS and T consists of a specification
C := (C,CC : Σ), an injective specification morphism injS : C → S and an
inclusion specification morphism incT : C ֒→ T.

C

incTinjS

S T

In this work, the contribution of common specifications is twofold:

• For each pair of specifications Vi and Vi+1, a common specification
Ci,i+1 of Vi and Vi+1 is stored in the repository. Ci,i+1 is called the
common specification of Vi and Vi+1 (see Figure 3.3(a)).

• For each pair of base specificationVB and local copy UB, a local com-
mon specification UCB of VB and UB is maintained by the VCS. UCB
is called the common specification of VB and UB (see Figure 3.3(b)).

Ci,i+1

inci+1inji

Vi Vi+1

(a)

UCB
incUBinjVB

VB UB

(b)

Figure 3.3: (a) The common specification Ci,i+1 of the specificationsVi and
Vi+1; (b) The local common specification UCB of the specifications VB and
UB

Note that the specification morphism injS : C → S is injective in order
to allow for renaming. Moreover, the specificationmorphism incT : C ֒→ T
is inclusion so that common specifications always contain the new names.
An illustration of renaming is presented in Example 17.

40

3.3. Calculation and representation of differences

The following example illustrates the usage of common specifications.

Example 15 (Commonspecification). BuildinguponExample 14, Figure 3.4(c)
shows the common specification C2,3 for the specifications V2 and V3.

V3(b)V2(a)

C2,3(c)

UniversityStudent

Enrolment

[ji]

e
S
tu
d

e
U
n
iv

University
sUnivs

uStuds
Student

i

PhDStud

UniversityStudent

Figure 3.4: The common specification C2,3 of the specifications V2 and V3

Asmentioned, the identification of commonalities is necessary in order
to calculate the differences between artefacts. The calculation and repres-
entation of differences focuses on identifying the modifications which have
taken place in an evolution step.

Various techniques for the calculation and representation of differences Terminology
in MDE can be found in the literature [22, 59, 73, 77]. These techniques
differ in that they analyse the modifications which a specification under-
goes; e.g., change or update are given different and ambiguous semantics.
Moreover, the terminology in these techniques is not consistent; e.g., the
terms “add”, “create” and “insert” are frequently used to refer to the same
modification. In this work, modifications are classified as in Table 3.2.

The calculation of the difference between two subsequent versions of Calculation of
differencesa specification, i.e., the information about which elements are common,

added, deleted and renamed, requires the comparison of the old and the
new version with their common specification. For example, all the nodes
and arrows which are present in the new version but not in the common
specification are identified as added. Similarly, all the nodes and arrows

41

3. Constraint-AwareModel Versioning

Table 3.2: The classification of the modifications

Term Definition Alternative terms

add an element is added to a
specification

create, insert

delete an element is deleted from
a specification

remove

rename an element is renamed in a
specification

special case of change or up-
date

whicharepresent in the oldversionbut not in the common specification are
identified as deleted. In this work, the difference between two subsequent
versions of a specification is implicitly given by a span of common, old
and new specifications. In addition, the same information is explicitly
represented by a difference specification; i.e., a specification which contains
all common, added, deleted and renamedelements. The underlying graph
and the set of atomic constraints of the difference specification are obtained
by the pushout construction [12, 38], which can be regarded as a slight
generalisation of union – since only injective and inclusion morphisms are
considered in this thesis. Themethodological motivation behind adopting
difference specifications in addition to spans of common, old and new
specifications is that, as will be clear later, gathering all these elements
in one specification facilitates the application of transformation rules to
automatically detect and resolve conflicts.

Due to the diagrammatic nature of specifications, the representationRepresentation
of differences of differences such as added, deleted and renamed is expressed by a dia-

grammatic language. The diagrammatic language for the representation
of differences is given by a tag signature ∆, which has the same structure
of a signature but no semantic counterpart. A tag signature ∆ = (Θ∆ , α∆)
consists of a set of tags θ ∈ Θ∆ , each having an arity α∆ (θ) and a proposed
visualisation. In particular, the set of tags Θ∆ = ΘG ∪ ΘΣ consists of the
union of two sets ΘG and ΘΣ .

The setΘG is fixed and consists of tags for annotating nodes and arrows
of the underlying graph of a specification (see Table 3.3).

The setΘΣ is generated from the signatureΣ (see Table 3.1) and consists
of tags for annotating atomic constraints specified by means of predicates
of the signature Σ (see Table 3.4). The generation of tags is defined as
follows:

42

3.3. Calculation and representation of differences

Table 3.3: The subset of the signature∆ for the annotation of the underlying
graph

θ ∈ ΘG α∆ (θ) Proposed visual. Alternative visual.

<add>N 1 X X
<A>

<delete>N 1 X X
<D>

<rename(X, Y)>N 1 Y <R:X 7→ Y>

<conflict>N 1 X X
<C>

<add>A 1
a

2 X
f

Y X
<A>f

Y

<delete>A 1
a

2 X
f

Y X
<D>f

Y

<rename(f, g)>A 1
a

2 X
g

<R:f7→g>
Y

<conflict>A 1
a

2 X
f

Y X
<C>f

Y

Definition 23 (Generation of ΘΣ). Given a signature Σ = (ΠΣ , αΣ), the set of
tags ΘΣ is constructed as follows:

ΘΣ := {<add>π with α∆(<add>π) = αΣ (π) | π ∈ ΠΣ }
⋃

{<delete>π with α∆ (<delete>π) = αΣ(π) | π ∈ ΠΣ}
⋃

{<conflict>π with α∆(<conflict>π) = αΣ (π) | π ∈ ΠΣ }

Note that the tag <conflict> is not used in the difference specifica-
tions of two subsequent specifications; it is used to annotate conflicting
modifications in the synchronisation procedure (see Section 3.4).

Remark 6 (Multiple visualisations). Two visualisations for the tags in ∆ are
proposed. The default visualisation is based on colour-coding while the alternative
visualisation is based on labels. In this work, colour-coding is preferred over labels
since it is the authors’ experience that colouring makes it easier to understand
modifications. However, labels can be adopted in case of black and white printing.

43

3. Constraint-AwareModel Versioning

Table 3.4: The subset of the signature ∆ for the annotation of atomic
constraints

θ ∈ ΘΣ α∆ (θ) Proposed visual. Alternative visual.

<add>[mult(m,n)] 1
a

2 X
f

[m..n]
Y X

f

<A>[m..n]
Y

<delete>[mult(m,n)] 1
a

2 X
f

[m..n]
Y X

f

<D>[m..n]
Y

<conflict>[mult(m,n)] 1
a

2 X
f

[m..n]
Y X

f

<C>[m..n]
Y

<add>[injective] 1
a

2 X
f

[inj]
Y X

f

<A>[inj]
Y

<delete>[injective] 1
a

2 X
f

[inj]
Y X

f

<D>[inj]
Y

<conflict>[injective] 1
a

2 X
f

[inj]
Y X

f

<C>[inj]
Y

<add>[jointly-injective] 1
a

b

2

3

X

g

f
Y

Z

[ji]

X

g

f
Y

Z

<A>
[ji]

<delete>
[jointly-
injective] 1

a

b

2

3

X

g

f
Y

Z

[ji]

X

g

f
Y

Z

<D>
[ji]

<conflict>
[jointly-
injective] 1

a

b

2

3

X

g

f
Y

Z

[ji]

X

g

f
Y

Z

<C>
[ji]

<add>[surjective] 1
a

2 X
f

[surj]
Y X

f

<A>[surj]
Y

<delete>[surjective] 1
a

2 X
f

[surj]
Y X

f

<D>[surj]
Y

<conflict>[surjective] 1
a

2 X
f

[surj]
Y X

f

<C>[surj]
Y

<add>[inverse] 1

a

2

b

X

f

Y

g

[inv] X

f

Y

g

<A>
[inv]

<delete>[inverse] 1

a

2

b

X

f

Y

g

[inv] X

f

Y

g

<D>
[inv]

<conflict>[inverse] 1

a

2

b

X

f

Y

g

[inv] X

f

Y

g

<C>
[inv]

44

3.3. Calculation and representation of differences

An annotated specificationS = (S,CS:Σ,AS:∆) consists of a specification
S together with a set of annotations AS which are specified by means of
a tag signature ∆. A graph annotation (θ, γ) consists of a tag θ ∈ Θ∆

and a graph homomorphism γ : α∆ (θ) → S, while an atomic constraint
annotation consists of a tag θ ∈ Θ∆ and a graph homomorphism η :
α∆(θ)→ αΣ (π).

Definition 24 (Graph annotation). Given a tag signature ∆ = (Θ∆ , α∆), an
annotation (θ, γ) on a graph S consists of a tag symbol θ ∈ Θ∆ and a graph
homomorphism γ : α∆ (θ)→ S.

α∆ (θ)

γ

S

Definition25 (Atomic constraint annotation). Given a signatureΣ = (ΠΣ , αΣ),
a tag signature ∆ = (Θ∆ , α∆) and a graph S, an annotation (θ, η; δ) on an atomic
constraint (π, δ)with δ : αΣ(π)→ S consists of a tag symbol θ ∈ Θ∆ and a graph
homomorphism η : α∆ (θ)→ αΣ (π) such that the following diagram commutes:

α∆ (θ)
η

η;δ

=

αΣ(π)
δ

S

Definition 26 (Annotated specification). Given a signatureΣ = (ΠΣ , αΣ) and
a tag signature ∆ = (Θ∆ , α∆), an annotated specification S = (S,CS:Σ,AS:∆)
is a specificationS together with a set AS of:

• graph annotations (θ, γ) on S and

• atomic constraint annotations (θ, η; δ) on CS

with θ ∈ Θ∆ , γ : α∆ (θ)→ S, η : α∆(θ)→ αΣ(π) and (π, δ) ∈ CS .

α∆ (θ)
η

η;δ

=

γ

αΣ(π)
δ

S

45

3. Constraint-AwareModel Versioning

Considering the calculation and representation approaches described
above, the difference specification is defined as follows:

Definition 27 (Difference specification). Given a common specification C of
specifications S and T, the difference specification of S and T consists of an an-
notated specificationD := (D,CD:Σ,AD:∆), an injective specification morphism
injD : S → D and an inclusion specification morphism incD : T ֒→ D, where
(D,CD:Σ) is constructed as the pushout (D, injD : S → D, incD : T ֒→ D) of

the span S C
injS incT

T in the category Spec(Σ), according to Proposition 7.

C

incT

P.O.

injS

S

injD

T

incD

D

In addition, the set of annotations AD is constructed as follows:

AD := {(<add>N, γ) with γ(α∆ (<add>N)) = X | X ∈ TN \ CN}
⋃

{(<add>A, γ) with γ(α∆ (<add>A)) = f | f ∈ TA \ CA}
⋃

{(<delete>N, γ) with γ(α∆(<delete>N)) = X | X ∈ SN \ CN}
⋃

{(<delete>A, γ) with γ(α∆ (<delete>A)) = f | f ∈ SA \ CA}
⋃

{(<rename(injS (Y),Y)>N, γ) with
γ(α∆ (<rename(injS (Y),Y)>N)) = Y | Y ∈ SN and Y , injS (Y)}

⋃

{(<rename(injS (g), g)>A, γ) with
γ(α∆ (<rename(injS (g), g)>A)) = g | g ∈ SA and g , injS (g)}

⋃

{(<add>π, η; δ) with
η(α∆ (<add>π)) = αΣ(π) | (π, δ) ∈ CT \ CC }

⋃

{(<delete>π, η; δ) with
η(α∆ (<delete>π)) = αΣ (π) | (π, δ) ∈ CS \ CC }

The following example illustrates the usage of difference specifications.

Example 16 (Difference specification). BuildinguponExample 14, Figure 3.5(d)
shows the difference specificationD for the specificationsV2 and V3.

The nodesEnrolment, the arrowseStud andeUniv, and the atomic constraint
([jointly-injective], δ4) have been added to the specification V3. These
elements are annotated with the tag <add> in the difference specificationD. This
annotation is visualised by green colouring (or as a label <A> if adopting the
alternative visualisation of ∆).

46

3.3. Calculation and representation of differences

D(d)

V3(b)V2(a)

C2,3(c)

University
sUnivs

uStuds
Student

i

PhDStud

Enrolment

[ji]

e
S
tu
d

e
U
n
iv

UniversityStudent

Enrolment

[ji]

e
S
tu
d

e
U
n
iv

University
sUnivs

uStuds
Student

i

PhDStud

UniversityStudent

Figure 3.5: The difference specification D for the specifications V2 and V3

47

3. Constraint-AwareModel Versioning

With regard to the <rename(old, new)> tag, once a node (arrow) X ∈
S is renamed to Y ∈ T, the common specification C and the difference
specification D will contain Y with injS (Y) = X, incT (Y) = Y, injD (X) = Y
and incD (Y) = Y. Moreover, the node (arrow) Y will be annotated with the
tag <rename(X,Y)>.

Recall that the specificationmorphisms injS : C → S and injD : S → D
are injective in order to allow for this renaming. Moreover, the specific-
ation morphisms incT : C ֒→ T and incD : T ֒→ D are inclusions so
that common and difference specifications always contain the new names.
The following example illustrates the usage of difference specifications
containing a rename.

Example 17 (Difference specificationand rename). BuildinguponExample 14
and 16, Figure 3.6(d) shows the difference specification D for the specifications
V2 and V3.

In addition to the modifications presented in Example 16, the node Student
has been renamed to Person in V3. The node Person is annotated with the tag
<rename(Student,Person)> in the difference specification D. This annotation
is visualised as <R:Student 7→ Person>. The injective specification morphism
injV2

: C2,3 → V2 contains an explicit mapping Person 7→ Student; analogously,
the injective specificationmorphism injD : V2 → D contains an explicit mapping
Student 7→ Person.

3.4 Synchronisation

To enable concurrent development, a mechanism for specification syn-
chronisation is necessary. In this section, a synchronisation procedure is
presented. This synchronisation procedure exploits the identification of
commonalities and the calculation/representation of differences presented
in the previous section.

Whenever a local copy UB is to be synchronised with the head specific-
ation VH from the repository, two cases are considered:

• If nobody has updated the head specification VH; i.e., if the head
specificationVH and the base specificationVB are identical, then the
local copy is not affected by the synchronisation procedure.

• If someone has updated the head specification VH; i.e., if the head
specification VH and the base specificationVB are different, then the
modifications made by others will be merged into the local copy and
possible conflicts will be detected.

48

3.4. Synchronisation

D(d)

V3(b)V2(a)

C2,3(c)

Student ↦ Person

Person ↦ Student

University
sUnivs

uStuds
Person

i

PhDStud

Enrolment

[ji]

e
S
tu

d

e
U
n
iv

⟨R: Student ↦ Person⟩

UniversityPerson

Enrolment

[ji]

e
S
tu

d

e
U
n
iv

University
sUnivs

uStuds
Student

i

PhDStud

UniversityPerson

Figure 3.6: The difference specificationD for the specificationsV2 andV3,
containing a renaming

49

3. Constraint-AwareModel Versioning

The synchronisation procedure takes as input the following specifica-
tions:

• The local copy UB and the local common specification UCB, which
are stored locally.

• The head specification VH, the base specification VB and their in-
termediate common specifications CB,B+1 . . .CH−1,H, which are stored
remotely in the repository.

Furthermore, the synchronisation procedure is divided into the follow-
ing steps:

1. Construct the common of commons for the base specification and the
head specification.

2. Construct the difference specification for the base specification and
the local copy, and the difference specification for the base specifica-
tion and the head specification.

3. Construct the merge of differences.

4. Detect conflicts.

5. Resolve conflicts.

6. Construct the synchronised local copy and the synchronised local common
specification.

3.4.1 Construct the common of commons

The common specifications stored in the repository represent the common-
alities between subsequent versions of a specification. However, common
specifications for specifications which are not subsequent versions of each
other have to be considered as well. This is because the synchronisation
procedure will construct the difference specification of the base specifica-
tionVB and thehead specificationVH whichmayhave anarbitrarynumber
of intermediate specifications VB+1 . . .VH−1. This common specification,
called the common of commons, can be constructed from the common spe-
cifications CB,B+1 . . .CH−1,H of the intermediate specifications. One possible
way to construct the common of commons is defined as follows:

50

3.4. Synchronisation

Definition 28 (Common of commons). Given specifications Ci, j, C j,k, Vi, V j

and Vk, the common of commons consists of a specification Ci,k := (Ci,k,C
Ci,k:Σ),

an injective specification morphism f := inji, j; inji and an inclusion specifica-
tion morphism g := inc j,k; inck constructed as the pullback (Ci,k, inji, j : Ci,k →

Ci, j, inc j,k : Ci,k ֒→ C j,k) of the co-span Ci, j
inc j
V j C j,k

inj j
in the category

Spec(Σ), according to Proposition 5.

Ci,k
inji, j inc j,k

P.B.

f g

Ci, j

inji inc j

C j,k

inj j inck

Vi V j Vk

For numbers i, k with (k − i) > 2, there are different possible ways to
construct a corresponding common of commons by a sequence of pullback
constructions. However, all these different sequences will produce the
same result, as discussed in Remark 11. Thus, one can talk about the
common of commons and use the notation Ci,k for this. The following
example illustrates the usage of common of commons.

Example18 (Common of commons). Building uponExample 14, Figure 3.7(f)
shows the common of commons C1,3 of the common specifications C1,2 and C2,3,
which is the common specification for the specifications V1 and V3.

Remark 7 (Identities of elements). For all i, k such that i < k, elements which
are deleted inVi and added toVk are considered distinct elements even if they have
the same name. For example, a node Student which is deleted fromV1 and a node
Student which is added inV10 are distinct nodes and they will not be identified in
the common specification C1,10. Similarly, elements which are added by different
users are considered distinct elements even if they have the same name.

51

3
.
C
o
n
st
r
a
in
t-A
w
a
r
e
M
o
d
e
l
V
e
r
sio
n
in
g

V3(d)V2(b)V1(a)

C2,3(e)C1,2(c)

C1,3(f)

Student University

Enrolment

[ji]

Student University
sUnivs

uStuds

PhDStud

i

Student University
sUnivs

uStuds

Student UniversityStudent University
sUnivs

uStuds

Student University

Figure 3.7: The common specification C1,3 of the common specifications C1,2 and C2,3

5
2

3.4. Synchronisation

3.4.2 Construct the difference specifications

Once the common of commons CB,H is available, the difference specific-
ations UD and D of VB, UB and VB, VH, respectively, are constructed,
according to Definition 27.

UCB
uincUB uinjVB

CB,H
incVHinjVB

UB

uincUD

P.O.
VB

uinjUD injD

. . .
P.O.

VH

incD

UD D

3.4.3 Construct the merge of differences

Once the difference specificationsUD andD are available, they aremerged
in the merge of differences MD. The merge of differences is defined as
follows:

Definition 29 (Merge of differences). Given specificationsUD,D andVB, the
merge of differences consists of a specificationMD := (MD,CMD:Σ,AMD:∆) and
injective specification morphisms uinjMD : UD →MD and injMD : D → MD,
constructed as the pushout (MD, uinjMD : UD → MD, injMD : D → MD)

of the span UD VB

injDuinjUD
D in the category Spec(Σ ∪ ∆), according to

Proposition 8.

VB

uinjUD injD

P.O.UD

uinjMD

D

injMD

MD

The sets of annotations AUD and AD are merged into AMD by the
pushout construction. While some of these annotations are identified
(see Remark 13), some elements may be annotated with a pair of tags from
∆. However, only some combinations are possible. This is justified as
follows:

• It is impossible to have an annotation (<add>N/A, γ) together with any
other annotation on the same node or arrow inMD because elements
added by different users are considered distinct even if they have the
same name (see Remark 7).

53

3. Constraint-AwareModel Versioning

• It is impossible to have two annotations (<delete>N/A, γ) on the same
node or arrow in MD because they are identified by the pushout
construction (see Proposition 8).

D
h
h
h
h
h
h
h
h
h
h
h
hh

UD <add>N/A <delete>N/A <rename(old, new)>N/A

<add>N/A Impossible Impossible Impossible
<delete>N/A Impossible Identified Possible

<rename(old, new)>N/A Impossible Possible Possible

• It is impossible to have two annotations (<add>π, η; δ) on the same
atomic constraint inMD because they are identified by the pushout
construction (see Proposition 8).

• It is impossible to have two annotations (<delete>π, η; δ) on the same
atomic constraint inMD because they are identified by the pushout
construction (see Proposition 8).

CD
X
X
X
X

X
X
X
X
X

CUD <add>π <delete>π

<add>π Identified Impossible
<delete>π Impossible Identified

3.4.4 Detect conflicts

The merge of differencesMD is then processed in order to detect conflicts.
In this work, two kinds of conflicts are distinguished, namely standard
conflict and custom conflict. A standard conflict occurs when concurrent
modifications compete on the same elements of a specification, while a
custom conflict occurs when concurrent modifications lead to semantic
inconsistencies.

Standard and custom conflicts are specified by conflict detection rules.
A conflict detection rule consists of a non-deleting transformation rule,
where the left-hand side L is a specification representing the conflict, and
the right-hand side R is a specification where the conflicting elements are
annotated. The interfaceK is equal to L since non-deleting transformation
rules do not delete any specification elements. The conflict detection rule
is defined as follows:

Definition 30 (Conflict detection rule). A conflict detection rule consists of a

transformation rule c = L K
l r

R , where L = K (see Definition 15).

54

3.4. Synchronisation

Detecting a conflict consists of applying a conflict detection rule by
finding a match for the left-hand side L in the merge of differences MD,
leading to a target merge of differences MD′′2 where the conflicting ele-
ments are annotated. Hence, MD is processed by applying all conflict
detection rules, as follows:

MD
conflict detection

MD′′

Standard conflict detection

Standard conflict detection rules are divided into two sets. The first set is
fixed and consists of rules for detecting conflicts on the underlying graph
of a specification:

a, b A node or arrow is concurrently renamed and deleted.

c, d A node or arrow is concurrently renamed twice.

e, f A node is deleted while an arrow having the same node as source or
target is added (dangling arrows).

Table 3.5 shows these standard conflict detection rules.

Table 3.5: The standard conflict detection rules for detecting conflicts on
the underlying graph of a specification

Rule L = K R

a X <R:X 7→Y> X <C>
<R:X 7→Y>

b X
f

<R:f7→g>
Y X

f

<R:f7→g>
Y

c X
<R:X 7→Y>
<R:X 7→Z> X

<R:X 7→Y>
<R:X 7→Z>

d X
f

<R:f 7→g><R:f7→h>
Y X

f

<R:f 7→g><R:f7→h>
Y

e X
f

Y X
f

Y

f X Y
f

X Y
f

The second set is generated from the signature Σ and consists of rules
for detecting conflicts on atomic constraints of a specification; i.e., a part
of the underlying graph is deleted while an atomic constraint having the
same part as target is added (dangling atomic constraints). The generation
of conflict detection rules is defined as follows:

2The choice of the notationMD′′ rather thanMD′ will become clear in Section 3.4.5.

55

3. Constraint-AwareModel Versioning

Definition 31 (Generation of conflict detection rules). Given signaturesΣ =
(ΠΣ , αΣ) and∆ = (Θ∆ , α∆), a set of conflict detection rules is generated as follows:

L = K = R := α∆ (<add>π) | <add>π ∈ Θ∆

CL = CK = CR := {(π, δ) | δ(αΣ (π)) = L}
AL = AK := {(<delete>A, γ1) | γ1(α

∆ (<delete>A)) = f ∈ LA}
⋃

{(<add>π, η1; δ) | η1; δ(α
∆ (<add>π)) = L}

AR := AK
⋃

{(<conflict>A, γ2) | γ2(α
∆ (<conflict>A)) = f ∈ LA}

⋃

{(<conflict>π, η2; δ) | η2; δ(α
∆(<conflict>π)) = L}

Table 3.6 shows the standard conflict detection rules which are gener-
ated from the signature Σ (see Table 3.4).

Table 3.6: The standard conflict detection rules generated from Σ for de-
tecting conflicts on atomic constraints of a specification

Rule L = K R

g X
f [m..n]

Y X
f [m..n]

Y

h X
f [inj]

Y X
f [inj]

Y

i X

g

f
Y

Z

[ji]

X

g

f
Y

Z

[ji]

j X
f [surj]

Y X
f [surj]

Y

k X

f

Y

g

[inv] X

f

Y

g

[inv]

The following example illustrates the application of standard conflict
detection rules.

Example 19 (Merge of differences and standard conflict detection). Build-
ing upon Example 14, Figure 3.8(h) shows the merge of differences MD for the
difference specifications UD andD, while Figure 3.8(i) shows the merge of differ-
encesMD′′ after the application of conflict detection rules.

56

3.4. Synchronisation

MD''(i)MD(h)

D(d)UD(g)

conflict
detection

merge of differences

University
sUnivs

uStuds

[1..4]

[surj]

[inv]Student

i

PhDStud
pPhds

Project

p
U
n
iv
s

Enrolment

[ji]

e
S
tu
d

e
U
n
iv

University
sUnivs

uStuds

[1..4]

[surj]

[inv]Student

i

PhDStud
pPhds

Project

p
U
n
iv
s

Enrolment

[ji]

e
S
tu
d

e
U
n
iv

University
sUnivs

uStuds
Student

i

PhDStud

Enrolment

[ji]

e
S
tu
d

e
U
n
iv

University
sUnivs

uStuds

[1..4]

[surj]

[inv]Student
i

PhDStud
pPhds

Project

p
U
n
iv
s

Figure 3.8: Themerge of differencesMD and themerge of differencesMD′′

after the application of conflict detection rules

InMD thenodePhDStud and the arrowpPhds are annotatedwith<delete>N

and <add>A, respectively. InMD′′ these nodes and arrows are additionally an-
notated with <conflict> according to rule f (see Table 3.6). Moreover, inMD
the arrows sUnivs and uStuds and the atomic constraints ([mult(1, 4)], δ1),
([inverse], δ2) and ([surjective], δ3) and are annotated with <delete>A,
<delete>A, <delete>[mult(m,n)], <delete>[inverse] and <delete>[surjective],
respectively. In MD′′ these arrows and atomic constraints are additionally an-
notated with <conflict> according to rules g, k and j (see Table 3.6).

Figure 3.9(j) shows how the synchronised local copy A3 would appear if
constructed from the conflicting merge of differencesMD′′ .

The specificationA3 is invalid since it contains dangling arrows and dangling
atomic constraints. Note that this specification will not be constructed by the
synchronisation procedure; i.e., the presence of annotations (<conflict>, γ) and
(<conflict>, η; δ) in AMD

′′

prevents the synchronisation procedure from creat-
ing A3.

57

3. Constraint-AwareModel Versioning

A3(j)MD''(i)

University

[1..4]

[surj]

[inv]Student

pPhds
Project

p
U
n
iv
s

Enrolment

[ji]

e
S
tu
d

e
U
n
iv

University
sUnivs

uStuds

[1..4]

[surj]

[inv]Student

i

PhDStud
pPhds

Project

p
U
n
iv
s

Enrolment

[ji]

e
S
tu
d

e
U
n
iv

Figure 3.9: An invalid local copy A3

Custom conflict detection

So far, only concurrentmodifications which compete on the same elements
of a specification are detected as conflicts; i.e., conflicts related to concur-
rent renaming aswell as dangling arrows and dangling atomic constraints.
However, concurrentmodificationswhich lead to semantic inconsistencies
can also be detected as conflicts. These conflicts are domain-specific and
are specified as custom conflict detection rules on demand. The following
example illustrates this alternative scenario of concurrent development in
MDE.

Example 20 (Custom conflict detection scenario). Let us consider a variant
of the scenario in Example 14. Figure 3.11 shows the different versions of the
specification being developed.

Bob andAlice check out local copiesB2 andA2, respectively, of the specification
V2 from the repository. Bob adds the atomic constraint ([mult(0, 3)], δ1) on the
arrow and sUnivs, while Alice adds the atomic constraint ([mult(1, 4)], δ1)
on the same arrow sUnivs. The synchronisation procedure detects conflicting
modifications. This is because Alice has added a multiplicity constraint which
is semantically inconsistent with the one added by Bob; i.e., according to the
semantic interpretation [[..]]Σ of the signature Σ (see Table 3.1), the set of valid
instances of the multiplicity constraints are different. Figure 3.10(a) shows an
instance which is valid for ([mult(1, 4)], δ1) but invalid for ([mult(0, 3)], δ1).
Similarly, Figure 3.10(b) shows an instance which is valid for ([mult(0, 3)], δ1)
but invalid for ([mult(1, 4)], δ1).

In order to detect conflicts which are caused by concurrent modific-
ations (or additions) of multiplicity constraints, it is possible to define a
custom conflict detection rule such as the one shown in Table 3.7.

58

3.4. Synchronisation

UnivAQ

UoB

Alessandro

UniMarburg

UAM
(a)

UnivAQ

UoB

Alessandro

UniMarburg

UAM
(b)

Figure 3.10: (a) An instance valid for ([mult(1, 4)], δ1) but invalid for
([mult(0, 3)], δ1): |sUnivs| > 3; (b) An instance valid for ([mult(0, 3)], δ1)
but invalid for ([mult(1, 4)], δ1): |sUnivs| < 1

Table 3.7: The custom conflict detection rule for conflicts on multiplicity
constraints

Rule L = K R

l X
f

[m1..n1] [m2..n2]
Y X

f

[m1..n1] [m2..n2]
Y

The rule l detects a conflict if two different multiplicity constraints are
added to the same arrow.

The following example illustrates the application of custom conflict
detection rules.

Example 21 (Merge of differences and custom conflict detection). Building
upon Example 20, Figure 3.11(h) shows the merge of differences MD, while
Figure 3.11(i) shows the merge of differencesMD′′ after the application of conflict
detection rules.

InMD the atomic constraints ([mult(0, 3)], δ1) and ([mult(1, 4)], δ1) are
annotated with <add>[mult(m,n)]. InMD′′ these atomic constraints are addition-
ally annotated with <conflict>[mult(m,n)] according to rule l (see Table 3.7).

59

3. Constraint-AwareModel Versioning

MD''(i)MD(h)

D(d)UD(g)

�2(a)

conflict
detection

merge of differences

University
sUnivs

uStuds
Student

[1..4]
[0..3]

University
sUnivs

uStuds

[1..4]

Student

[0..3]

University
sUnivs

uStuds

[0..3]

StudentUniversity
sUnivs

uStuds

[1..4]

Student

University
sUnivs

uStuds
Student

Figure 3.11: The merge of differences MD and the merge of differences
MD′′ after the application of conflict detection rules

3.4.5 Resolve conflicts

Depending on the structure and semantics of the modifications, some
conflicts may be automatically resolved. In this work, several resolution
strategies [22] may be possible for a given conflict. These strategies are
specified by conflict resolution patterns. A conflict resolution pattern consist
of a transformation rule, where the left-hand side L is a specification
representing the conflict, the right-hand side R is a specification where
the resolution is applied, and K is their interface. The conflict resolution
pattern is defined as follows:

Definition 32 (Conflict resolution pattern). A conflict resolution pattern con-

sists of a transformation rule p = L K
l r

R .

60

3.4. Synchronisation

Resolving a conflict consists of applying a conflict resolution pattern
by finding a match for the left-hand side L in the merge of differences
MD′′ , leading to a target merge of differencesMD′′′ . Hence, in addition
to conflict detection rules, the merge of differences MD is processed by
applying all conflict resolution patterns, as follows:

MD
conflict detection

MD′′
conflict resolution

MD′′′

Asmentioned, someof themodificationswhich aredetected as conflicts
are dangling arrows. In order to resolve dangling arrows, it is possible to
define two conflict resolution patterns. The first “liberal” pattern aL is to
keep the node which is targeted by the arrow. The second “conservative”
pattern aC is to remove the dangling arrow. Table 3.8 shows these conflict
resolution patterns.

Table 3.8: The conflict resolution pattern for dangling arrows

Rule L K R

aL X
f

Y X
f

Y X
f

Y

aC X
f

Y X
f

Y X
f

Y

Similarly, in order to resolve conflicts detected by custom conflict de-
tection rules, such as those on multiplicity constraints, it is possible to
define two conflict resolution patterns. The first “liberal” pattern bL is to
remove the conflicting multiplicity constraints and add a constraint which
is the union of the two. The second “conservative” pattern bC is to remove
the conflicting multiplicity constraints and add a constraint which is the
intersection of the two. Table 3.9 shows these conflict resolution patterns.

Table 3.9: The conflict resolution pattern for conflicts on multiplicity con-
straints

Rule L K R

bL X
f

[m1 ..n1] [m2..n2]
Y X

f
Y X

f

[min(m1 ,m2)..max(n1 ,n2)]
Y

bC X
f

[m1 ..n1] [m2..n2]
Y X

f
Y X

f

[max(m1,m2)..min(n1 ,n2)]
Y

In bL, according to the semantic interpretation [[[mult(m, n)]]]Σ of the
signatureΣ (see Table 3.1), the set of valid instances of the atomic constraint
([mult(min(m1,m2),max(n1, n2))], δ1) ∈ C

R is equal to the union of the set
of valid instances of the atomic constraints ([mult(m1, n1)], δ1),
([mult(m2, n2)], δ2) ∈ C

L . This is justified as follows:

61

3. Constraint-AwareModel Versioning

([mult(m1, n1)], δ) ∧ ([mult(m2, n2)], δ) ≡

≡

([mult(m2, n2)], δ) if m1 ≤ m2 ≤ n2 ≤ n1
([mult(m1, n1)], δ) if m2 ≤ m1 ≤ n1 ≤ n2
([mult(m2, n1)], δ) if m1 ≤ m2 ≤ n1 ≤ n2
([mult(m1, n2)], δ) if m2 ≤ m1 ≤ n2 ≤ n1

Similarly, in bC, the set of valid instances of the atomic constraint
([mult(max(m1,m2),min(n1, n2))], δ1) ∈ CR is equal to the intersection of
the set of valid instances of the atomic constraints ([mult(m1, n1)], δ1),
([mult(m2, n2)], δ2) ∈ C

L . This is justified as follows:

([mult(m1, n1)], δ) ∨ ([mult(m2, n2)], δ) ≡

≡

([mult(m1, n1)], δ) if m1 ≤ m2 ≤ n2 ≤ n1
([mult(m2, n2)], δ) if m2 ≤ m1 ≤ n1 ≤ n2
([mult(m1, n2)], δ) if m1 ≤ m2 ≤ n1 ≤ n2
([mult(m2, n1)], δ) if m2 ≤ m1 ≤ n2 ≤ n1

Note that the conflict resolution patterns bL and bC can be applied only
under the condition that the range of the multiplicity constraints overlap,
i.e., if n1 ≥ m2 or m1 ≤ n2. This could be formulated as a NAC.

The following example illustrates the application of conflict resolution
patterns.

Example 22 (Conflict resolution). Building upon Example 20, Figure 3.12(i)
shows the merge of differencesMD′′ , while Figures 3.12(j) and 3.12(k) show the
merge of differences MD′′′ after the application of the liberal and conservative
conflict resolutions patterns, respectively.

In MD′′ the atomic constraints ([mult(0, 3)], δ1) and ([mult(1, 4)], δ1)
are annotated with <add>[mult(m,n)] and <conflict>[mult(m,n)]. InMD′′′ these
atomic constraints are replaced with a new atomic constraint ([mult(0, 4)], δ1),
according to pattern bL, or ([mult(1, 3)], δ1), according to pattern bC (see
Table 3.6).

Normalisation, Conflict Detection and Conflict Resolution

Recall that the merge of differences MD is constructed as the pushout
of the difference specifications UD and D. In general, MD is a valid
specification by construction, but it may not be in normal form; i.e., single
atomic constraints of the specification may hide constraints that are given
by the conjunction of the atomic constraints in a specification. Performing
conflict detectiononamerge of differencesMDwhich is not innormal form
may lead to a merge of differences MD′′ containing false negatives [62];
i.e., containing actual conflicts which are not annotated with <conflict>.

62

3.4. Synchronisation

MD'''(k)MD'''(j)

MD''(i)MD(h)

conservative conflict resolutionliberal conflict resolution

conflict
detection

University
sUnivs

uStuds
Student

[1..3]

University
sUnivs

uStuds

[0..4]

Student

University
sUnivs

uStuds
Student

[1..4]
[0..3]

University
sUnivs

uStuds

[1..4]

Student

[0..3]

Figure 3.12: The merge of differences MD′′ and the merge of differences
MD′′′ after the application of the conflict resolution patterns

Moreover, performing conflict resolution on themerge of differencesMD′′

which is not in normal form may lead to a merge of differences MD′′′

which is also not in normal form. The following example illustrates this
alternative scenario of concurrent development in MDE.

Example 23 (Alternative customconflict detection scenario). Let us consider
a variant of the scenario in Example 20. Figure 3.13 shows the different versions
of the specification being developed.

In addition to the atomic constraint ([mult(1, 4)], δ1) on the arrow sUnivs,
Alice adds the atomic constraints ([surjective], δ3) on the arrows uStuds and
([inverse], δ2) on the arrows sUnivs and uStuds.

Figure 3.13(h) shows the merge of differences MD, Figure 3.13(j) shows the
merge of differences MD′′ after the application of conflict detection rules, while
Figures 3.13(k) and 3.13(l) show the merge of differencesMD′′′ after the applica-
tion of the liberal and conservative conflict resolutions patterns, respectively.

The application of the conflict resolution pattern bL formultiplicity constraints
(see Table 3.9) leads to a merge of differencesMD′′′ which is not in normal form.
This is because it is possible to find a match for the left-hand side L of the

transformation rule t = L K
l r

R induced by the specification entailment
e = L ⊢ R (see Section 2.6). Indeed, the atomic constraint ([mult(0, 4)], δ1) on
the arrow sUnivs has cardinality between zero and four (see Figure 3.13(k)), while
the function sUnivs has cardinality between one and four due to the surjectivity
of the inverse function uStuds. The application of the transformation rule t
induced by the specification entailment e would replace the atomic constraint
([mult(0, 4)], δ1)with ([mult(1, 4)], δ1), leading to the normal form ofMD′′′ .

63

3. Constraint-AwareModel Versioning

MD'''(l)MD'''(k)

MD''(j)MD(h)

D(d)UD(g)

�2(a)

conservative conflict resolutionliberal conflict resolution

conflict
detection

merge of differences

University

uStuds[surj]

[inv]Student
sUnivs [1..3]

University

uStuds[surj]

[inv]Student
sUnivs [0..4]

University

uStuds[surj]

[inv]Student
sUnivs [1..4]

[0..3]

University
sUnivs

uStuds

[1..4]

[surj]

[inv]Student

[0..3]

University
sUnivs

uStuds

[0..3]

StudentUniversity
sUnivs

uStuds

[1..4]

[surj]

[inv]Student

University
sUnivs

uStuds
Student

Figure 3.13: The merge of differencesMD, the merge of differencesMD′′

after the application of conflict detection rules and themerge of differences
MD′′′ after the application of the conflict resolutions patterns

64

3.4. Synchronisation

The previous example shows that single atomic constraints of a spe-
cification may hide constraints that are given by the conjunction of the
atomic constraints in a specification. These hidden constraints can be
made explicit by means of normalisation of the specification, leading to a
normal form of the specification. In this work, normalisation consists of a
sequence of applications of transformation rules induced by specification
entailments. More precisely, given a specification S = (S,CS : Σ) and a
set of transformation rules induced by specification entailments, a norm-

alisation consists of a specification transformation S
∗
S′ , leading to a

normal form S′.

Definition 33 (Normalisation). Given a specification S = (S,CS : ∆) and a
set of transformation rules induced by specification entailments, a normalisation

S
∗
S′ consists of a specification transformation S

∗
S′ where no further

transformation rules are applicable to the specificationS′.

In thiswork, normalisation is assumed to be terminating and confluent;
i.e., each specification can be transformed to a unique normal form by
specification transformation.

Remark 8 (Termination and confluence of normalisation). The identifica-
tion of the conditions under which a set of specification entailments guarantees
termination and confluence of the normalisation is outside the scope of this work
and will be investigated in future work (see Section 3.6).

In order to ensure that conflict detection and conflict resolution behave
as expected, they have to be performed on a merge of differences MD
in normal form. Hence, the process of the merge of difference has to
be revised by adding normalisation before conflict detection and conflict
resolution, as follows:

MD
normalisation

MD′
conflict detection

MD′′
conflict resolution

MD′′′

The following example illustrates the usage of normalisation.

Example 24 (Normalisation, conflict detection and conflict resolution).
Building upon Example 23, Figure 3.14(i) shows the merge of differences MD′

after the normalisation, Figure 3.14(j) shows the merge of differencesMD′′ after
the application of conflict detection rules, while Figures 3.14(k) and 3.14(l) show
the merge of differencesMD′′′ after the application of the liberal and conservative
conflict resolutions patterns, respectively.

The normalisation replaces the atomic constraint ([mult(0, 3)], δ1) inMD
with ([mult(1, 3)], δ1) inMD

′ . As a consequence, the application of the conflict
resolution pattern bL (see Table 3.9) leads to a merge of differences MD′′′ which
is in normal form.

65

3. Constraint-AwareModel Versioning

MD'''(l)MD'''(k)

MD''(j)MD'(i)

MD(h)

D(d)UD(g)

�2(a)

conservative conflict resolutionliberal conflict resolution

conflict
detection

normalisation

merge of differences

University

uStuds[surj]

[inv]Student
sUnivs [1..3]

University

uStuds[surj]

[inv]Student
sUnivs [1..4]

University

uStuds[surj]

[inv]Student
sUnivs [1..4]

[1..3]

University

uStuds[surj]

[inv]Student
sUnivs [1..4]

[1..3]

University
sUnivs

uStuds

[1..4]

[surj]

[inv]Student

[0..3]

University
sUnivs

uStuds

[0..3]

StudentUniversity
sUnivs

uStuds

[1..4]

[surj]

[inv]Student

University
sUnivs

uStuds
Student

Figure 3.14: The merge of differencesMD, the merge of differencesMD′

after the normalisation, the merge of differencesMD′′ after the application
of conflict detection rules and the merge of differences MD′′′ after the
application of the conflict resolution patterns

66

3.4. Synchronisation

Remark 9 (Alternative sequences to process the merge of differences).
There are alternative sequences that could be adopted to process the merge of
differencesMD. An alternative sequence could have the normalisation performed
after conflict detection and resolution, as follows:

MD
conflict detection

MD′
conflict resolution

MD′′
normalisation

MD′′′

This sequence has not been adopted since conflict detection may lead to false
negatives when performed on a merge of differencesMD which is not in normal
form.

Another alternative sequence could include a loop, as follows:

MD
conflict detection

MD′
conflict resolution

MD′′
normalisation

MD′′′

This loop may be necessary if certain conflict resolution patterns actually
solve a conflict but introduce others. The conditions under which a set of conflict
resolution patterns guarantees that no new conflicts are introduced is outside the
scope of this work and will be investigated in future work (see Section 3.6).

3.4.6 Construct the synchronised specifications

Should themerge of differencesMD′′′ contain annotations (<conflict>, γ)
or (<conflict>, η; δ), the synchronisation procedure will stop and the de-
veloper will be asked to resolve conflicts manually. Otherwise, the syn-
chronisation procedure will create the synchronised local copy UH and
the synchronised local common specification UCH. Note that while the
merge of differences is an annotated specification, the synchronised local
copy and and the synchronised local common specification are plain spe-
cifications; i.e., they do not have the set of annotations AUH and AUCH ,
respectively.

Definition 34 (Synchronised local copy). Given a non-conflicting merge of
differences MD′′′ , the synchronised local copy consists of a specification UH :=
(UH,C

UH : Σ) and an injective specification morphism injMD′′′ : UH → MD
′′′ ,

constructed by applying the following transformation rules to MD′′′ (see Ta-
ble 3.10):

67

3. Constraint-AwareModel Versioning

Table 3.10: The transformation rules for extraction of synchronised local
copy

Rule L K R

ext1 X

X
f

Y X Y X Y

ext2 X
<R:X 7→Y>

Y Y

X
f

<R:f 7→g>
Y X

g
Y X

g
Y

Definition 35 (Synchronised local common specification). Given specifica-
tions VH and UH, the synchronised local common specification consists of a spe-
cification UCH := (UCH,C

UCH :Σ), an injective specification morphism uinjVH
:

UCH → VH and an inclusion specification morphism incUH
: UCH ֒→ UH, con-

structed as the pullback (UCH, uinjVH
: UCH → VH, incUH

: UCH ֒→ UH)

of the span VH

incD ;injMD ;se;cd;cr
MD′′′ UH

injMD′′′
in the category

Spec(Σ), according to Proposition 5.

UCB
uincUB uinjVB

CB,H
incVHinjVB

CH,H+1
injVH incVH+1

UB

uincUD

P.O.
VB

uinjUD injD

P.O.

. . .
P.O.

VH

incD

VH+1

UD

uinjMD

D

injMD

UCH

uinjVH

incUH

MD se MD′
cd
MD′′ cr MD′′′ UH

injMD′′′

Figure 3.15: The synchronisation procedure

Finally, when all the building blocks for synchronising the local copy
with thehead specification are inplace, the synchronisation canbe fulfilled.
The synchronisation is defined as follows (see Figure 3.15):

Definition 36 (Synchronisation). Given specifications UB, VB, VH, UCB and
CB,B+1 . . .CH−1,H, the synchronisation sync : (UB,VB,VH,UCB,CB,B+1 . . .CH−1,H)
→ (UH,UCH, incUH

: UCH ֒→ UH, uinjVH
: UCH → VH) is a procedure which

generates a synchronised local copy UH and a synchronised local common spe-
cification UCH, according to the following procedure:

68

3.4. Synchronisation

1 if B < H
2 given VB, UB and UCB, construct the difference specification UD;

3 if H > (B + 1)
4 given VB, VH and CB,B+1 . . .CH−1,H, construct the common of commons CB,H;
5 else

6 the common specification CB,H is given;

7 given VB, VH and CB,H, construct the difference specification D;

8 given VB, UD and D construct the merge of the differences MD;

9 given MD

10 construct MD′ by normalising MD;

11 construct MD′′ by conflict detection on MD′ ;

12 construct MD′′′ by conflict resolution on MD′′ ;

13 if (<conflict>, γ), (<conflict>, η; δ) < AMD
′′′

14 given MD′′′ construct the synchronised local copy UH and the synchronised

local common specification UCH;

15 else

16 display MD′′′ ;

17 ask for manual conflict resolution;

18 else

19 the local copy is already synchronised;

Once the synchronisation is performed, the synchronised local copy
may be committed to the repository. The committed specification will be
the new head specification, labelled VH+1 in the repository. In addition,
the commit will add the synchronised local common specification as the
common specification of VH and VH+1, labelled CH,H+1 in the repository.
The commit is defined as follows (see Figure 3.15):

Definition 37 (Commit). Given a synchronisation sync : (UB,VB,VH,UCB,
CB,B+1 . . .CH−1,H) → (UH, UCH, incUH

: UCH ֒→ UH, uinjVH
: UCH → VH),

the commit com : (UH,UCH, incUH
, uinjVH

) (VH+1,CH,H+1, incVH+1
:

CH,H+1 ֒→ VH+1, injVH
: CH,H+1 → VH) is an operation which adds the spe-

cifications UH and UCH to the repository asVH+1 and UCH, respectively, and the
specification morphisms incUH

, uinjVH
as incVH+1

, injVH
, respectively.

The following example illustrates all the steps of a synchronisation
procedure.

Example 25 (Synchronisation procedure). Building upon Example 24, Fig-
ure 3.16 shows the complete execution of the synchronisation procedure.

69

3. Constraint-AwareModel Versioning

MD'''(l)MD'''(k)

MD''(j)MD'(i)

MD(h)

D(d)UD(g)

�3(b)�2(a)�2(e)

�2,3(c)��2(f)

conservative conflict resolutionliberal conflict resolution

conflict
detection

normalisation

merge of differences

University

uStuds[surj]

[inv]Student
sUnivs [1..3]

University

uStuds[surj]

[inv]Student
sUnivs [1..4]

University

uStuds[surj]

[inv]Student
sUnivs [1..4]

[1..3]

University

uStuds[surj]

[inv]Student
sUnivs [1..4]

[1..3]

University
sUnivs

uStuds

[1..4]

[surj]

[inv]Student

[0..3]

University
sUnivs

uStuds

[0..3]

StudentUniversity
sUnivs

uStuds

[1..4]

[surj]

[inv]Student

University
sUnivs

uStuds

[0..3]

StudentUniversity
sUnivs

uStuds
StudentUniversity

sUnivs

uStuds

[1..4]

[surj]

[inv]Student

University
sUnivs

uStuds
StudentUniversity

sUnivs

uStuds
Student

Figure 3.16: The complete execution of the synchronisation procedure

70

3.5. Related work

3.5 Related work

Model versioning has been greatly discussed in the literature. A first Representation
of differencesstrand of research focuses on the problem of representation of differences.

Three categories of representation of differences can be distinguished in
the literature:

• Asmodels which conform to a difference metamodel. The difference Difference
metamodelmetamodel can be generic [77], or obtained by an automated trans-

formation [21]. These models are in general minimalistic (i.e., only
the necessary information to represent the difference is presented),
transformative (i.e., eachdifferencemodel induces a transformation),
compositional (i.e., difference models can be composed sequentially
or in parallel) and typically symmetric (i.e., the inverse of a given
representation of differences can be computed).

• As a model which is the union of the two compared models, with Annotations
the modified elements highlighted by colours, tags, or symbols [73].
The adoption of this technique is typically beneficial for the designer,
since the rationale of the modifications is easily readable. However,
these benefits apply only if the base models are not large and not
too many updates apply to the same elements, since the difference
model resorts to both base models to denote the differences.

• As a sequence of transformations describing how the initial model Sequence of
transformationshas been procedurally modified [1]. While this technique has the

great advantage of being efficient, the representation of differences
is neither readable nor intuitive. In addition, the sequence of trans-
formations do not follow the “everything is a model vision” [16].
They are suitable for internal representations but quite ineffective
for documenting modifications in MDE environments.

According to this classification, our representation of differences falls
into the second category. The difference between models is presented
in a difference model where the modified elements are annotated (and
coloured to enhance readability).

A second strand of research focuses on the problem of model merging. Model merging
Different formalisations can be found in the literature:

• The work in [22] introduces a domain-specific modelling language Weaving models
for the definition of weaving models which represent patterns of
conflicting modifications. A resolution criteria for these patterns can
be specified through OCL expressions.

71

3. Constraint-AwareModel Versioning

• The work in [88] presents a formal approach to the three-way mer-Set theory and
predicate logic ging of Ecore [86] models based on set theory and predicate logic.

It is based on formally defined merge rules which can handle ad-
ditions, deletions and renames of model elements and, in addition,
moves of contained model elements. Moreover, it detects and re-
solves conflicting modifications of the same element and of different
interdependent elements. Finally, the approach guarantees that the
resulting merged model is a well-formed model.

• Thework in [87] proposes a formal approach to themerging of typedCategory theory
and graph

transformation

attributed graphs based on graph transformations and category the-
ory. In this approach, two kinds of conflicts are defined based on
the notion of graph modifications: operation-based and state-based
conflicts. On the one hand, operation-based conflicts are detected by
first extracting minimal rules from modifications and thereafter, if
possible, selecting pre-defined operation rules. Conflict detection is
then based on parallel dependence of graph transformations and ex-
traction of critical pairs. On the other hand, state-based conflicts are
detected by checking the merged graphs against graph constraints.

• The work in [26] proposes a technique for obtaining automaticallySequence of
transformations generated repair plans for a given inconsistent model. Repair plans

are sequences of concretemodifications to be performed over a given
model that fix existing inconsistencieswithout introducingnewones.
The technique is based on Praxis, which is a model inconsistency de-
tection approach. In Praxis, themodel is represented as the sequence
of actions executed by the user in order to build it.

In contrast to our approach, the above mentioned approaches do not
take constraints onmodel elements into account. However, the approaches
in [26, 87, 88] include checking the well-formedness of the result of mer-
ging. This is an important dimension of model versioning which has not
been explored yet in our approach.

A third strand of research focuses on the problem of heterogeneous syn-Heterogeneous
synchronisation chronisation. In [3] the authors propose a tutorial which aims at explor-

ing the design space of heterogeneous synchronisation. The term hetero-
geneous synchronisers is used by the authors to denote procedures that
automate – fully or in part – the synchronisation process for (software)
artefacts which are expressed in different languages. Various approaches
to synchronisation of heterogeneous software artefacts are analysed and
compared. In particular, the tutorial covers both the simpler synchron-
isation scenarios where some artefacts are never edited directly but are
re-generated from other artefacts, and the more complex scenarios where
several artefacts that can be modified directly need to be synchronised.

72

3.5. Related work

Heterogeneousmodelling languages andmetamodelling are important
dimensions of MDE. However, in the present thesis we have not fully
explored these dimensions. Our synchronisation procedure takes as input
homogeneous models expressed in one modelling language. The aim
of the proposed formalisation is to cover all aspects of optimistic version
control andprovide formaldefinitions of these aspects in termsof category-
theoretical constructs.

Finally, research has lead to a number of prototype tools that support Prototype tools
model versioning:

• DSMDiff [59] and EMF Compare [37] are two model differencing DSMDiff and
EMF Comparetools which are based on a similar technique. Difference calculation

is divided in two phases. The first focuses on model mappings,
where all the elements of the two input models are compared us-
ing measures like signature matching and structural similarity. The
second phase determines differences, detecting all the additions, de-
letions and changes. The benefit of this approach is that it is general,
but this is at the price of it being slightly resource greedy.

• In [19], the authors present AMOR, a VCS which can deal with ar- AMOR
bitrary modelling languages based on Ecore. AMOR is built around
Subversion in order to provide a centralised approach to optimistic
version control, but reuses an extended version of EMF Compare for
difference calculation. AMOR provides conflict detection features
which may be enhanced with user-defined operations. Moreover,
it provides collaborative conflict resolution features, which allow
the implementation of conflict resolution policies. If the resolution
is performed manually, it is analysed in order to derive resolution
recommendations for similar situations which occur in future scen-
arios.

In contrast to our approach, the above mentioned tools do not provide
a formal treatment of conflict detection and resolution. An implementa-
tion of our formalisation of model versioning is just in its initial stage of
development (see Section 3.6). Once a prototype tool will be available,
case studies will be performed to compare the existing tools with our tool.

73

3. Constraint-AwareModel Versioning

3.6 Conclusion and future work

In this chapter, we described a formal approach tomodel versioning based
on DPF. Firstly, we defined the identification of commonalities and calcu-
lation of differences as pullback and pushout constructions, respectively.
Secondly, we defined the representation of differences; i.e., the information
added, deleted and renamed, as a set of annotations which are specified
by means of a tag signature. Thirdly, we introduced a synchronisation
procedure which includes normalisation, conflict detection and conflict
resolution. Specification entailments are adopted to describe properties of
the semantic interpretation of predicates of a signature. The normalisation
of a specification is then formalised as the embedding of these specifica-
tion entailments to obtain the normal form of a specification. Moreover,
transformation rules are used to represent conflicts and, when applicable,
their resolution patterns. The conflict detection and resolution are then
formalised as the application of these transformation rules. Note that the
approachhandles atomic constraints in all the steps of the synchronisation,
including normalisation, conflict detection and conflict resolution.

To the best of our knowledge, this work is the first attempt to clarify
each step of a work cycle in a centralised approach to optimistic model
versioning; i.e., checkout a local copy, make modifications on a local copy,
synchronise a local copy, resolve conflicts and commit modifications to
a repository. Moreover, this work also constitutes the first attempt to
formalise and illustrate constraint-awareness in model versioning.

Specification transformations constitute the basis for normalisation,
conflict detection and conflict resolution. In future work, we will analyse
termination and confluence in view of DPF. This will facilitate the iden-
tification of the conditions under which a set of specification entailments
guarantees termination and confluence of the normalisation. Similarly, it
will facilitate the identification of the conditions under which a set of con-
flict resolution patterns guarantees that no new conflicts are introduced.

This chapter further develops the formal approach to model version-
ing published in [78, 81]. Compared to the previous work, the theoretical
foundation and the underlying techniques are extended to handle con-
straints. Moreover, new examples are added to illustrate how model
merging, conflict detection and conflict resolution handle constraints. The
findings of this work have already been submitted to a journal for evalu-
ation.

74

CHAPTER 4
Deep Metamodelling

In this chapter, we present a formal approach to deep metamodelling
based on DPF; i.e., a formal approach to metamodelling which supports
deep characterisation, double linguistic/ontological typing and linguistic
extension.

4.1 Introduction

Models can be specified using general-purpose languages like UML, but Domain-specific
languagesto fully unfold the potential of MDE, models are specified using domain-

specific languages (DSLs) which are tailored to a specific domain of con-
cern. One way to define DSLs in MDE is by specifying metamodels. In
this approach, a system is specified using models at two metalevels: a
metamodel defining allowed types and a model instantiating these types.
However, this approachmayhave limitations [7, 10, 42], in particularwhen
the metamodel includes the type-object pattern [7, 10, 42], which requires
an explicit modelling of types and their instances at the same metalevel.
In this case, deep metamodelling (also calledmulti-level metamodelling) using
more than two metalevels yields simpler models [10].

Deep metamodelling was proposed in the seminal works of Atkinson Deep
metamodellingand Kühne [7], and several researchers and tools have subsequently adop-

ted this approach [5, 6, 27]. However, there is still a lack of formalisation of
the main concepts of deep metamodelling such as deep characterisation,
double linguistic/ontological typing and linguistic extension. Such form-
alisation is needed in order to explain the main aspects of the approach,
study the different semantic variation points and their consequences, as
well as to classify the different semantics found in the tools implementing
them [5, 6, 11, 27, 57].

75

4. DeepMetamodelling

In this chapter, we present a formal approach to deep metamodelling
based on DPF; i.e., a formal approach to metamodelling which supports
deep characterisation, double linguistic/ontological typing and linguistic
extension. The proposed formalisation helps in reasoning about the dif-
ferent semantic variation points in the realisation of deep metamodelling
as well as in classifying the existing tools according to these options.

The remainder of the chapter is structured as follows. Section 4.2 il-
lustrates the limitations of traditional metamodelling through an example
in the domain of component-based web applications. Section 4.3 intro-
duces deep metamodelling. Section 4.4 explains different concepts of
deep metamodelling through its formalisation in DPF. Section 4.5 shows
how deep metamodelling relates to traditional metamodelling by means
of flattening constructions. In Section 4.6, the current research in deep
metamodelling is summarised. In Section 4.7, some concluding remarks
and ideas for future work are presented.

4.2 Metamodelling

In a traditionalmetamodelling stack (or hierarchy), models at eachmetalevelTraditional
metamodelling

stack

conform to the correspondingmetamodel of themodelling language at the
adjacent metalevel above (see Figure 4.1). This pattern is often referred to
as linearmetamodelling in the literature [8]. Moreover, in strictmetamodel-
ling, amodel element at eachmetalevel has exactly one type at the adjacent
metalevel above. The top-mostmodel of a traditionalmetamodelling stack
may not conform to any model or may be a reflexive model, i.e., a model
which conforms to itself. The length (or depth) of a traditional metamod-
elling stack is fixed (i.e., it cannot change depending on the requirements)
and the metalevels are conventionally numbered from 1 onwards starting
from the bottom-most.

For instance, in the 4-layer hierarchy [17] developed by the OMG [66],OMG’s 4-layer
hierarchy models conform to themetamodel ofUML (see Figure 4.2). Themetamodel

of UML, in turn, conforms to the metamodel of MOF [68], and the latter
is reflexive. Please note that meta- is a relative term, so that the UML
metamodel is a model as well, while the MOF metamodel is a meta-
metamodel with respect to the models.

The OMG’s 4-layer hierarchy is the one most widely adopted in prac-
tice, but thedesigner is restricted toworkingwithmodels at twometalevels
only: a metamodel at metalevel M2 corresponding to the modelling lan-
guage (e.g., UML or an appropriate DSL), and a model at metalevel M1

conforming to this metamodel. The following example illustrates that, on
some occasions, the restriction to two metalevels leads to the introduc-
tion of accidental complexity, which could be avoided if the models were
organised using more than two metalevels.

76

4.2. Metamodelling

1

...

i

i+1

...

l

Metalevel

Model

conforms to

...

conforms to

Model

conforms to

Model

conforms to

...

conforms to

Model

Linear stack

Modelling
language

Modelling
language

Modelling
language

metamodel of

metamodel of

metamodel of

Figure 4.1: Pattern in a linear metamodelling stack

O

M1

M2

M3

Metalevel

Original

represented by

Model

conforms to

Metamodel

conforms to

Meta-
metamodel

conforms to

4-layer hiearachy

metamodel of

metamodel of

UML/DSL

MOF

Figure 4.2: OMG’s 4-layer hierarchy

77

4. DeepMetamodelling

Example 26 (A DSL for component-based web applications). The MeT-
EOriC project [63] aims at the model-driven engineering of web applications.
Here we describe a small excerpt of one of the modelling problems encountered in
this project.

In MeTEOriC, a DSL is adopted to define the mash-up of components (like
Google Maps and Google Fusion Tables) to provide the functionality of a web ap-
plication. A simplified version of this language can be defined using themetalevels
M2 and M1 of the OMG’s 4-layer hierarchy (see Figure 4.3).

The metamodel at metalevel M2 corresponds to the DSL for component-based
web applications. In this metamodel, the metaclass Component defines com-
ponent types having a type identifier, whereas the metaclass CInstance defines
component instances having a variable name and a flag indicating whether it
should be visualised. Moreover, the metaassociation datalink defines the data link
types between component types, whereas the metaassociation dlinstance defines
the data link instances between component instances. Finally, the metaassociation
type defines the typing of each component instance.

The model at metalevel M1 represents a component-based web application
which shows the position of professors’ offices on a map. In this model, the classes
Map and Table are instances of the metaclass Component and represent com-
ponent types, whereas the classes UAMCamp and UAMProfs are instances of the
metaclass CInstance and represent component instances of Map and Table, re-
spectively. The association geopos is an instance of the metaassociation datalink
and represents the allowed data link between the component typesMap and Table,
whereas the association offices is an instance of the metaassociation dlinstance
and represents the actual data link between the component instances UAMCamp
and UAMProfs. Finally, the associations camptype and profstype are instances
of the metaassociation type and represent the typing of the component instances
UAMCamp and UAMProfs, respectively.

The type-object relation between component types and instances is represented
explicitly in the metamodel by the metaassociation type between the metaclasses
Component and CInstance. However, the type-object relation between allowed
and actual data links is implicit since there is no explicit relation between the
metaassociations datalink and dlinstance, and this may lead to several problems.
Firstly, it is not possible to define that the data link instance offices is typed by
the data link type geopos, which could be particularly ambiguous if the model
contained multiple data link types between the component types Map and Table.
Moreover, it could be possible to specify a reflexive data link instance from the
component instance UAMProfs to itself, which should not be allowed since the
component type Table does not have any reflexive data link type. Although these
errors could be detected by complementing the metamodel with attached OCL
constraints, these constraints are not enough to guide the correct instantiation of
each data link, in the same way as a built-in type system would do if the data link
types and instances belonged to two different metalevels.

78

4.2. Metamodelling

Model

Metamodel

name="UAMCampus"
visualise=true

UAMCamp
camptype

id="GoogleMaps"

Map

trg

offices

src

trg

geopos

src name="UAMProfs"
visualise=false

UAMProfs
profstype

id="FusionTable"

Table

name: String
visualise: Boolean

CInstance src
*

dlinstance

*trg

*type1
id: String

Component

trg*

datalink

src
*

Figure 4.3: A two-metalevel DSL for component-based web applications

In the complete definition of the DSL, the component types can define features
which need to be correctly instantiated in the component instances. This leads
to even more cluttered models (see Figure 4.4). In the model, the class Scroll is
associated to the class Map and represents the zooming capabilities of the map
component. The definition of the class UAMScroll and its association to both
the classes UAMCamp as well as Scroll has to be done manually. Moreover, the
conformance check that the value true assigned to the attribute value is actually
a boolean has to be done manually as well. Hence, either one builds manually the
needed machinery to emulate the existence of two metalevels within the same one,
or this two-metalevel solution eventually becomes convoluted and hardly usable.

In the following, we show that organising the models in three meta-
levels results in a simpler DSL.

79

4
.
D
e
e
p
M
e
ta
m
o
d
e
l
l
in
gModel

Metamodel

value="true"

UAMScroll
scrolltype

name="scroll"
type="Boolean"

Scroll

slotfeat

name="UAMCampus"
visualise=true

UAMCamp
camptype

id="GoogleMaps"

Map

trg

offices

src

trg

geopos

src name="UAMProfs"
visualise=false

UAMProfs
profstype

id="FusionTable"

Table

value: String

Slot

*slot1
name: String
visualise: Boolean

CInstance src
*

dlinstance

*trg

*type1
id: String

Component

trg*

datalink

src
*

1feat*
name: String
type: String

Feature

slottype

Figure 4.4: Extension of the two-metalevel DSL adding component features

8
0

4.3. Deep metamodelling

4.3 Deep metamodelling

This section introduces the main concepts of deep metamodelling, illus-
trating how they overcome the problems of the two-metalevel approach
when defining DSLs which incorporate the type-object pattern.

4.3.1 Deep characterisation

The first ingredient of deepmetamodelling is deep characterisation: the abil-
ity to describe structure and express constraints for metalevels below the
adjacent one. In this work, we adopt the deep characterisation approach
described in [7]. In this approach, each element has a potency. In the ori-
ginal proposal of [7], the potency is a natural number which is attached
to a model element to describe at how many subsequent metalevels this
element can be instantiated. Moreover, the potency decreases in one unit
at each instantiation at a deeper metalevel. When it reaches zero, a pure
instance that cannot be instantiated further is obtained. In Section 4.4, we
provide a more precise definition for potency.

The following example illustrates the usage of deep characterisation.
Note that in deep metamodelling, the elements at the top metalevel are
pure types, the elements at the bottom metalevel are pure instances, and
the elements at intermediate metalevels retain both a type and an instance
facet. Because of that, they are all called clabjects, which is the merge of the
words class and object [10]. Note also that since in deep metamodelling
the number of metalevels may change depending on the requirements, we
find it more convenient to number the metalevels from 1 onwards starting
from the top-most, in contrast to the traditional metamodelling stack (see
Figure 4.1).

Example 27 (A DSL for component-based web applications in three meta-
levels). Compared to Example 26, theDSL for component-basedweb applications
can be defined in a simpler way using deep metamodelling (see Figure 4.5).

The model M1 contains the definition of the DSL. In this model, the clabject
Component has potency 2, which denotes that it can be instantiated at the two
subsequent metalevels. Its attribute id has potency 1, which denotes that it can be
assigned a valuewhenComponent is instantiated at the adjacentmetalevel below.
Its other two attributes name and visualise have potency 2, which denotes that
they can be assigned a value only two metalevels below. The association datalink
also has potency 2, which denotes that it can be instantiated at the two subsequent
metalevels. The DSL in Figure 4.5 is simpler than the one in Figure 4.3, as it
contains less model elements to define the same DSL.

81

4. DeepMetamodelling

Model M3

Model M2

Model M1

name="UAMProfs"
visualise=false

UAMProfs

srctrg
officesname="UAMCampus"

visualise=true

UAMCamp

id="FusionTable"

Table

srctrg
0..1geopos*

id="GoogleMaps"

Map

@2
@2

@1id: String
name: String
visualise: Boolean

@2Component
src
*

@2datalink

*trg

Figure 4.5: A three-metalevel DSL for component-based web applications
corresponding to the DSL in Figure 4.3

The deep characterisation is very useful in the design of this DSL. For in-
stance, in the model M1, the designer can specify the attributes name and visu-
alise which should be assigned a value in indirect instances of Component, i.e.,
UAMCamp and UAMProfs. Moreover, the model M1 does not need to include a
clabject CInstance or an association dlinstance since the clabjects UAMCamp
and UAMProfs are instances of the clabjects Map and Table, respectively, which
in turn are instances of the clabject Component.

4.3.2 Double typing and linguistic extension

The dashed grey arrows in Fig. 4.5 denote the ontological typing for the
clabjects, as they represent instantiations within a domain; e.g., the clab-
jects Map and Table are ontologically typed by the clabject Component. In
addition, deepmetamodelling frameworks usually support an orthogonal
linguistic typing [10, 27] which refers to the metamodel of the metamodel-
ling language used to specify the models.

82

4.3. Deep metamodelling

Figure 4.6 shows the scheme of this double linguistic/ontological typ- Double linguist-
ic/ontological

typing

ing. Moreover, it shows a simplified linguistic metamodel, which contains
some of themetaclasses needed to specifymodels, e.g., clabjects, attributes
and associations.

l

...

i+1

i

...

1

Metalevel

Model

conforms to (onto.)

...

conforms to (onto.)

Model

conforms to (onto.)

Model

conforms to (onto.)

...

conforms to (onto.)

Model

Ontological stack

(ling.)
conforms to

(ling.)
conforms to

(ling.)
conforms to

(ling.)
conforms to

Association

*1

*1
Clabject*Attribute

potency: Int
name: String

DeepElement

Linguistic metamodel

Figure 4.6: Metamodelling stack with double linguistic/ontological typing

In Figure 4.5, the clabjectsComponent, Map andUAMCamp are linguis-
tically typed by themetaclassClabject, whereas the attributes id, name and
visualise are linguistically typed by the metaclass Attribute. The availab-
ility of a double linguistic/ontological typing has the advantage that one
can uniformly treat all clabjects independently of their ontological type
and metalevel. This enables the specification of generic model manipula-
tions typed by the linguistic metamodel, which then become applicable to
models at any metalevel.

Thedouble linguistic/ontological typing also enables so-called linguistic Linguistic
extensionextensions [27]. The crucial observation is that any model in an ontological

stack conforms linguistically to the linguistic metamodel. Hence, one can
add clabjects which are only linguistically typed, or add new attributes
to existing clabjects which are ontologically typed. Figure 4.7 shows the
scheme of linguistic extensions. All models in the ontological stack con-
form linguistically to the linguistic metamodel, but only portions of them
conform ontologically to the model at the adjacent metalevel above.

Linguistic extensions are a useful mechanism to design extensible deep
DSLs. These extensions are necessary to address new requirements at
lower metalevels which could not be foreseen or addressed at the top-
most metalevel. The following example illustrates the usage of linguistic
extensions. 83

4. DeepMetamodelling

l

...

i+1

i

...

1

Metalevel

Model

conforms to (onto.)

...
conforms to (onto.)

Ling. extension

Onto.
instance

conforms to (onto.)

Ling. extension

Onto.
instance

conforms to (onto.)

...

conforms to (onto.)

Model

Ontological stack

(ling.)
conforms to

(ling.)
conforms to

(ling.)
conforms to

(ling.)
conforms to

L
in

g
u
is

t
ic

 m
e
t
a
m

o
d
e
l

Figure 4.7: Metamodelling stack with double linguistic/ontological typing
and linguistic extension

Example 28 (ExtendedDSL for component-basedwebapplications in three
metalevels). Asdiscussed inExample 26, the component types can define features
which need to be correctly instantiated in the component instances. These new
features can be naturally expressed as linguistic extensions in the model M2 (see
Figure 4.8). In particular, the clabject Map is extended with an attribute scroll
of type Boolean. The attribute scroll has potency 1, which denotes that it can be
assigned a value in the model M3.

Figure 4.8 also shows that potency can be attached to constraints as well. The
attached OCL constraint in the model M1 forbids to reflexively connect indirect
instances of Component. This constraint has potency 2, which denotes that it
has to be evaluated in the model M3 only.

Regarding the handling of features of component types, the solution
presented in Example 28 has twomain advantageswith respect to the solu-
tion in Example 26. Firstly, linguistic extensions enable the use of a built-in
type system to check the conformance of feature types and instances; e.g.,
the conformance check that the value true assigned to the attribute scroll is
actually a boolean. Secondly, the built-in type system is used to guide the

84

4.3. Deep metamodelling

Model M3

Model M2

Model M1

name="UAMProfs"
visualise=false

UAMProfs

srctrg
officesname="UAMCampus"

visualise=true

UAMCamp

id="FusionTable"

Table

srctrg
0..1geopos*

id="GoogleMaps"

Map

@2
@2

@1id: String
name: String
visualise: Boolean

@2Component
src
*

@2datalink

*trg@2
context Component

inv:

 self.trg->

 excludes(self)

scroll: Boolean

scroll=true

Figure 4.8: Linguistic extension of the three-metalevel DSL adding com-
ponent features

instantiation of clabjects; e.g., when the clabject Map is instantiated, all its
attributes are instantiated as well. In Example 26, the correct instantiation
was done either manually or by additional machinery needed to emulate
the existence of two metalevels within the same one.

In the following, we discuss some open questions in deep metamodel-
ling.

4.3.3 Some open questions in deep metamodelling

Deep metamodelling allows a more flexible approach to metamodelling
by introducing richer modelling mechanisms. However, their semantics
have to be precisely defined in order to obtain sound, robust models. Even
if the literature (and this section) permits grasping an intuition of how
these modelling mechanisms work, there are still open questions which
require clarification.

Some works in the literature give different semantics to the potency of Potency on
associationsassociations. In Example 28, the associations are instantiated like clabjects.

In this case, the association datalink with potency 2 in the model M1 is

85

4. DeepMetamodelling

first instantiated as the association geopos with potency 1 in the model
M2, and then instantiated as the association offices with potency 0 in the
model M3 (see Figure 4.8); i.e., the instantiation of offices is mediated
by geopos. In contrast, the attributes name and visualise with potency
2 in the model M1 are assigned a value directly in the model M3 (see
Figure 4.8); i.e., the instantiation of name and visualise is not mediated.
Some frameworks such as EMF [32, 86] represent associations as Java
references, so the associations could also be instantiated like attributes.
In this case, the association datalink would not need to be instantiated in
the model M2 in order to be able to instantiate it in the model M3. This
would have the effect that one could add an association between any two
component instances in the model M3, not necessarily between instances
of Table and instances of Map.

Another ambiguity concerns constraints, since some works in the lit-Potency on
constraints erature support potency on constraints [27] but others do not [11]. In

Example 28, the attached OCL constraint in the model M1 is evaluated in
the modelM3 only; i.e., it is not evaluated in the modelM2. In other cases,
it might be useful to have a potency which denotes that a constraint has to
be evaluated at every metalevel. In Example 28, none of the multiplicity
constraints has potency and they are all evaluated at the adjacentmetalevel
below. In other cases, it might be useful to attach a potency to multiplicity
constraints. For instance, a potency 2 on the multiplicity constraints of
the association datalink would have the effect that one could control the
number of data link instances in the model M3.

Finally, another research question concerns the relation betweenmeta-Flattening of
deep

metamodelling

modelling stacks with and without deep characterisation. One could
define constructions to flatten deep characterisation; e.g., given the three-
metalevel stack of Example 28, one could obtain another three-metalevel
stack without potencies but with some elements replicated along meta-
levels, making explicit the semantics of potency. This would allow the
migration of deeply characterised systems into tools that do not support
deep characterisation. One could also define further constructions to flat-
ten multiple metalevels into two or to eliminate the double typing.

Altogether, we observe a lack of consensus and precise semantics for
some of the aspects of deepmetamodelling. The contribution of this work
is the use of DPF to provide a neat semantics for the different aspects of
deep metamodelling: double linguistic/ontological typing, linguistic ex-
tension and deep characterisation through potency. As a distinguishing
note, we propose two possible semantics of potency for each model ele-
ment, i.e., clabjects, attributes, associations and constraints. To the best
of our knowledge, this is the first time that the two semantics have been
recognised and formalised.

86

4.4. Formalisation of deep metamodelling

4.4 Formalisation of deep metamodelling

This section presents a formalisation of deep metamodelling based on
DPF. This formalisation is presented stepwise by defining and illustrating
double linguistic/ontological conformance, linguistic extension and deep
characterisation.

4.4.1 Double metamodelling stack

Recall that in a metamodelling stack which supports double linguistic/on-
tological conformance – hereafter called double metamodelling stack –, mod-
els at each metalevel conform linguistically to the corresponding meta-
model of a fixed linguistic modelling language and conform ontologically
to the model at the adjacent metalevel above (see Section 4.3).

Themetamodelof the linguisticmodelling languageof adeepmetamod-
elling stack can be represented in DPF by a specification LM = (LM,CLM:
Σ) which consists of an underlying graph LM and a set of atomic con-
straints CLM specified by means of a predicate signature Σ.

A model at metalevel i of a double metamodelling stack can be repres-
ented in DPF by a specificationSi = (Si,Ci:Ω) which consists of an under-
lying graph Si and a set of atomic constraints Ci specified by means of a
predicate signatureΩ. Moreover,Si conforms linguistically to the specific-
ation LM; i.e., there exists a total linguistic typing morphism λi : Si → LM
such that (Si, λi) is a valid instance of LM. Furthermore, Si conforms
ontologically to the specification Si−1; i.e., there exists a total two-level on-
tological typing morphism ωi : Si → Si−1 such that the ontological typing
is compatible with the linguistic typing and (Si, ωi) is a valid instance of
Si−1.

First, in order to enable reuse later in the chapter, the linguistic portion
of the double metamodelling stack is defined as follows:

Definition 38 (Linguistic metamodelling stack). Given:

• signatures Σ = (ΠΣ , αΣ),Ω = (ΠΩ , αΩ)

• a specification LM = (LM,CLM:Σ)

A linguistic metamodelling stack with length l consists of:

• specificationsSi = (Si,Ci:Ω), for all 1 ≤ i ≤ l

• total linguistic typing morphisms λi : Si → LM, for all 1 ≤ i ≤ l, such
that:

– (Si, λi) ∈ Inst(LM)

87

4. DeepMetamodelling

Σ
CLM

LM S1
λ1

Ω

Cl

Ci

Ci−1

C1

...

Si−1

λi−1

Si

λi

...

Sl

λl

Note that a linguistic metamodelling stack is similar to a traditional lin-
ear metamodelling stack with two metalevels, where each specificationSi

conforms to the specificationLM. Basedon this, thedoublemetamodelling
stack is constructed by adding ontological typingmorphismsωi : Si → Si−1
to the linguistic metamodelling stack, as follows:

Definition 39 (Double metamodelling stack). A double metamodelling stack
with length l is a linguistic metamodelling stack with length l together with:

• total two-level ontological typing morphismsωi : Si → Si−1, for all 2 ≤ i ≤
l, such that:

– ωi;λi−1 = λi

– (Si, ωi) ∈ Inst(Si−1)

Σ
CLM

LM S1
λ1

Ω

Cl

Ci

Ci−1

C1

...

ω2

Si−1

ωi−1

λi−1

Si

ωi

=

λi

...

ωi+1

Sl

ωl

λl

88

4.4. Formalisation of deep metamodelling

The following example illustrates the usage of a doublemetamodelling
stack.

Example 29 (Double metamodelling stack). Building upon Example 27, Fig-
ure 4.9(a) shows the specification LM and Figures 4.9(b), (c) and (d) show the
specifications S1, S2 and S3, respectively, of a double metamodelling stack.
Moreover, Figure 4.9 shows the ontological typing morphisms ω2 and ω3 as
dashed grey arrows. Tables 4.1 and 4.2 show the signatures Σ and Ω, respect-
ively.

The specification LM corresponds to a metamodelling language for object-
oriented structural modelling similar to the one in Figure 4.6. The interested
reader may consult [80] for details about the semantics of inheritance in DPF.

Table 4.1: The signature Σ

π ∈ ΠΣ αΣ (π) Proposed vis. Semantic interpretation

[irreflexive] 1

a

X

f[irr]

∀x ∈ X : x < f (x)

Table 4.2: The signatureΩ

π ∈ ΠΩ αΩ(π) Proposed vis. Semantic interpretation

[mult(m, n)] 1
a

2 X
f

[m..n]
Y ∀x ∈ X : m ≤ | f (x)| ≤ n,

with 0 ≤ m ≤ n and n ≥ 1

[irreflexive] 1

a

X

f[irr]

∀x ∈ X : x < f (x)

The specificationsS1,S2 andS3 conform linguistically toLM; i.e., there exist
linguistic typing morphisms λ1 : S1 → LM, λ2 : S2 → LM and λ3 : S3 → LM
such that (S1, λ1), (S2, λ2) and (S3, λ3) are valid instances of LM. The linguistic
typing morphisms λ1, λ2 and λ3 are defined as follows:

λ1(Component) = Clabject
λ1(datalink) = Reference
λ1(id) = Attribute
λ1(String) = DataType
λ2(Map) = λ2(Table) = Clabject
λ2(geopos) = Reference
λ2(idMap) = λ2(idTable) = Attribute
λ2(“GoogleMaps”) = λ2(“FusionTable”) = DataType
λ3(UAMCamp) = λ3(UAMProfs) = Clabject
λ3(offices) = Reference

89

4
.
D
e
e
p
M
e
ta
m
o
d
e
l
l
in
g

S3(d)

S2(c)

S1(b)

LM(a)

UAMProfs

offices

UAMCamp

“Fusion

Table”

idTable
Table

geopos

“Google

Maps”

idMap
Map

String

[1..1]id
Component

[irr]

datalink

[0..1]

DataType

A
tt

ri
b
u
te

Clabject

R
e
fe

re
n
c
e

Inheritance

[irr]

Figure 4.9: The specifications LM, S1, S2 and S3 together with the ontological typing morphisms ω2 and ω3

9
0

4.4. Formalisation of deep metamodelling

Moreover, S2 and S3 conform ontologically to S1 and S2, respectively; i.e.,
there exist total two-level ontological typing morphisms ω2 : S2 → S1 and
ω3 : S3 → S2 such that (S2, ω2) and (S3, ω3) are valid instances of S1 and S2,
respectively, and commute with the linguistic typing morphisms. The ontological
typing morphisms ω2 and ω3 are defined as follows:

ω2(Map) = ω2(Table) = Component
ω2(geopos) = datalink
ω2(idMap) = ω2(idTable) = id
ω2(“GoogleMaps”) = ω2(“FusionTable”) = String
ω3(UAMCamp) = Map
ω3(UAMProfs) = Table
ω3(offices) = geopos

The proposeddoublemetamodelling stack conveniently represents lin-
guistic and ontological typing, but lacks support for linguistic extension
and deep characterisation.

Firstly, in Example 28, the attribute scroll constitutes a linguistic exten-
sion of the model at metalevel 2 as this element is only typed linguistically.
In Example 29, in contrast, S2 can not include an attribute scroll which is
not ontologically typed by an element inS1. This is because the proposed
doublemetamodelling stack has total ontological typingmorphisms rather
than partial ones.

Moreover, in Example 28, the deep characterisation of the elements
Component and datalink at metalevel 1 forbids that these elements are
instantiated at metalevel 4 or below. In Example 29, in contrast, one could
add a specification S4 including elements that are ontologically typed by
elements in S3.

Furthermore, in Example 28, the deep characterisation of the attribute
name at metalevel 1 allows that this element is instantiated (i.e., it is
assigned a value) at metalevel 3. In Example 29, in contrast, S3 can not
include elements which are ontologically typed by a possible attribute
name in S1 since S3 is ontologically typed by S2 but not by S1.

Finally, in Example 28, the deep characterisation of the OCL constraint
ensures that this constraint is evaluated at metalevel 3. In Example 29, in
contrast, the atomic constraint ([irreflexive], δ2) corresponding to the
OCL constraint above is evaluated inS2 but not in S3. This is because S2

conforms ontologically to S1, while S3 conforms ontologically to S2 but
not to S1.

In the following, we revise the definition of the double metamodelling
stack to support linguistic extension as well as different mechanisms of
deep characterisation.

91

4. DeepMetamodelling

4.4.2 Partial double metamodelling stack

Recall that in a metamodelling stack which supports double linguistic/on-
tological conformance and linguistic extension – hereafter called partial
double metamodelling stack –, models at each metalevel conform linguisti-
cally to the metamodel of a fixed linguistic modelling language, but only
a portion of the same models conform ontologically to the model at the
adjacent metalevel above (see Section 4.3); i.e., there can be elements in a
model which are only linguistically typed.

In analogy to the double metamodelling stack, a model at metalevel i
of a partial double metamodelling stack can be represented in DPF by a
specification Si = (Si,Ci:Ω) which conforms linguistically to the specific-
ation LM. In contrast to the double metamodelling stack, however, only a
subgraph of Si conforms ontologically to the specification Si−1; i.e., there

exists a partial two-level ontological typing morphism ωi : Si ◦ Si−1
which is given by a subgraph Ii ⊑ Si representing the domain of definition
of ωi (see Definition 47) and a total two-level ontological typing mor-
phisms ωi : Ii → Si−1, such that the ontological typing is compatible with
the linguistic typing and (Ii, ωi) is a valid instance of Si−1.

The partial double metamodelling stack is defined as follows:

Definition 40 (Partial double metamodelling stack). A partial double meta-
modelling stack with length l is a linguistic metamodelling stack with length l
together with:

• partial two-level ontological typing morphisms ωi : Si ◦ Si−1 , for all
2 ≤ i ≤ l, which are given by:

– domain of definition subgraphs Ii ⊑ Si

– total two-level ontological typing morphisms ωi : Ii → Si−1

such that:

– ωi;λi−1 ⊑ λi

– (Ii, ωi) ∈ Inst(Si−1)

92

4.4. Formalisation of deep metamodelling

Σ
CLM

LM S1
λ1

Ω

Cl

Ci

Ci−1

C1

...

◦ω2

Si−1

◦ωi−1

λi−1

Si

◦ωi

⊒

λi

...

◦ωi+1

Sl

◦ωl

λl

LM Si−1
λi−1

Si

=
λi

Ii

ωi

Note that partial two-level ontological typing morphisms ωk :

Sk ◦ Sk−1 can be composed to obtain a partial multi-level ontological

typing morphism ωi
k
: Sk ◦ Si , for all 1 ≤ i < k ≤ l, which is given

by a subgraph Ii
k
⊑ Sk representing the domain of definition of ωi

k
and a

total multi-level ontological typing morphism ωi
k
: Ii

k
→ Si, where ωi

k
=

ωk; . . . ;ωi−1, I
i
k
= (ωi

k
)−1(Si) ⊑ I

k
and Ii

k
⊑ . . . ⊑ Ik−1

k
= Ik (see Definition 47).

Example 30 (Partial double metamodelling stack). Figure 4.10(a) shows the
specification LM and Figures 4.10(b), (c) and (d) show the specifications S1,
S2 and S3, respectively, of a partial double metamodelling stack. Moreover,
Figure 4.10 shows the ontological typing morphisms ω2 and ω3 as dashed grey
arrows.

Compared to Example 29, the specification S2 is extended with an attribute
scroll with data type Boolean, while the specification S3 is extended with a
corresponding data value true. The linguistic typing morphisms λ1, λ2 and λ3

are extended with the following mappings:
λ2(scroll) = Attribute
λ2(Boolean) = DataType
λ3(scrollUAM) = Attribute
λ3(true) = DataType

93

4
.
D
e
e
p
M
e
ta
m
o
d
e
l
l
in
g

S3(d)

S2(c)

S1(b)

LM(a)

UAMProfs

offices

UAMCamp
scrollUAM

true

“Fusion

Table”

idTable
Table

geopos

“Google

Maps”

idMap
Map

scroll
Boolean

String

[1..1]id
Component

[irr]

datalink

[0..1]

DataType

A
tt
ri
b
u
te

Clabject

R
e
fe
re
n
c
e

Inheritance

[irr]

Figure 4.10: The specifications LM, S1, S2 and S3 together with the ontological typing morphisms ω2 and ω3

9
4

4.4. Formalisation of deep metamodelling

Moreover, the subgraphs I2 and I3 of the specificationsS2 andS3, respectively,
conform ontologically toS1 andS2, respectively; i.e., there exist partial two-level
ontological typing morphisms ω2 : S2 → S1 and ω3 : S3 → S2 such that (I2, ω2)
and (I3, ω3) are valid instances ofS1 and S2, respectively. Note that in this case,
the subgraph I3 is equal to the underlying graph S3, meaning that the ontological
typing morphism ω3 is actually total. Compared to Example 29, the ontological
typing morphism ω3 is extended with the following mappings:

ω3(scrollUAM) = scroll
ω3(true) = Boolean

The proposed partial double metamodelling stack adds support for
linguistic extension, but still lacks support for deep characterisation.

In the following, we further revise the definition of the partial double
metamodelling stack to support different mechanisms of deep character-
isation.

4.4.3 Deep metamodelling stack

Recall that in a metamodelling stack which supports double linguistic/on-
tological conformance, linguistic extension and deep characterisation –
hereafter called deep metamodelling stack –, models at each metalevel con-
form linguistically to the corresponding metamodel of a fixed linguistic
modelling language and a portion of the same models conform ontologic-
ally to the models at the metalevels above according to the deep charac-
terisation of elements in these models (see Section 4.3).

A mechanism for deep characterisation is potency, for which different
interpretations are possible. In this work, two kinds of potency are dis-
tinguished, namely multi- and single-potency, denoted by the symbols Np
and △p, respectively.

A multi-potency Np on a clabject/reference at metalevel i denotes that Multi-potency
this clabject/reference can be instantiated at all metalevels from i + 1 to i + p
(see Figure 4.11), where the instantiation of this clabject/reference has to
be mediated and the multi-potency has to be decreased at each metalevel;
e.g., a clabject with multi-potency 0 at metalevel i + 2 which is an instance
of a clabject with multi-potency 2 at metalevel i must also be an instance
of a clabject with multi-potency 1 at metalevel i + 1 which in turn is an
instance of the considered clabject with multi-potency 2 at metalevel i
(see Figures 4.12 and 4.13). Most deep metamodelling approaches assume
multi-potency semantics for clabjects [5, 6, 11, 27, 57]. A multi-potency
Np on an atomic constraint at metalevel i denotes that this constraint is
evaluated at all metalevels from i+ 1 to i+ p. Finally, attributes only retain
either a type or an instance facet but not both; therefore, the multi-potency
on attributes can not be considered.

95

4. DeepMetamodelling

Metalevel Clabject Reference

...
...

...
...

...

i ANp A
aNp

N

i + 1 BNp-1 B
bNp-1

O

...
...

...
...

...

i + p − 1 LN1 L
lN1

Y

i + p MN0 M
mN0

Z

...
...

...
...

...

Figure 4.11: Intuition on the semantics of multi-potency

96

4.4. Formalisation of deep metamodelling

Metalevel Clabject Reference

...
...

...
...

...

i AN2 A
aN2

N

i + 1 B O

i + 2 BN0 C
bN0

P

...
...

...
...

...

Figure 4.12: Invalid instantiation: an element with multi-potency 0 at
metalevel i+2 cannot be a direct instance of an elementwithmulti-potency
2 at metalevel i

Metalevel Clabject Reference

...
...

...
...

...

i AN2 A
aN2

N

i + 1 BN1 B
bN1

O

i + 2 CN1 C
cN1

P

...
...

...
...

...

Figure 4.13: Invalid instantiation: an element with multi-potency 1 at
metalevel i + 2 can not be an instance of an element with the same multi-
potency at metalevel i + 1

97

4. DeepMetamodelling

A single-potency △p on a clabject/reference at metalevel i, in contrast,Single-potency
denotes that this clabject/reference can be instantiated at metalevel i + p
only (see Figure 4.14). A single-potency △p on an attribute at metalevel i
denotes that this attribute can be instantiated (i.e., can be assigned a value)
at metalevel i + p only. A single-potency △p on an atomic constraint at
metalevel i denotes that this atomic constraint is evaluated at metalevel
i + p only.

Metalevel Clabject Reference Attribute

...
...

...
...

...
...

...
...

i A△p A
a△p

N A
a△p

DT

...
...

...
...

...
...

...
...

i + p B△0 M
b△0

Z M
b△0

DV

...
...

...
...

...
...

...
...

Figure 4.14: Intuition on the semantics of single-potency

Each element in amodel has either amulti-potency or a single-potency.
However, some combinations of potencies on interdependent elements
may lead to contradictions. Tables 4.3, 4.4 and 4.5 show the contradictory
combinations of multi- and single-potencies.

Table 4.3: Contradictory combinations of multi-potencies on interdepend-
ent elements

ANq aNp

N

A
aNp

NNq

p > q: possible to instantiate the
reference a only at metalevels i +
1, . . . , i + q

A
aNq πNp

N p > q: possible to evaluate the atomic
constraint π only at metalevels i +
1, . . . , i + q

98

4.4. Formalisation of deep metamodelling

Table 4.4: Contradictory combinations of single-potencies on interdepend-
ent elements

A△q a△p

N

A
a△p

N△q

p , q: impossible to instantiate the
reference a

A△q a△p

DT p , q: impossible to instantiate the
attribute a

A
a△q π△p

N p , q: impossible to evaluate the
atomic constraint π

Table 4.5: Contradictory combinations of multi- and single-potencies on
interdependent elements

A△q aNp

N

A
aNp

N△q

p , q: impossible to instantiate the
reference a
p = q: possible to instantiate the ref-
erence a only if p = q = 1

ANq a△p

N

A
a△p

NNq

p > q: impossible to instantiate the
reference a

ANq a△p

DT p > q: impossible to instantiate the
attribute a

A
a△q πNp

N p , q: impossible to evaluate the
atomic constraint π
p = q: possible to evaluate the atomic
constraint π only if p = q = 1

A
aNq π△p

N p > q: impossible to evaluate the
atomic constraint π

99

4. DeepMetamodelling

In analogy to the partial double metamodelling stack, a model at meta-
level i of a deep metamodelling stack can be represented in DPF by a
specificationSi = (Si,Ci:Ω) which conforms linguistically to the specifica-
tion LM. In contrast to the partial double metamodelling stack, however,
the specification Si supports deep characterisation; i.e., it is compliant
with the following requirements, for all 1 ≤ i < j < k ≤ l, with o = j− i and
p = k − i:

1. Elements in specifications fromSi+1 toSk can be ontologically typed
by elements with multi-potency p in a specification Si.

2. Elements in a specificationSk can be ontologically typed by elements
with single-potency p in a specification Si.

3. Elements in specifications from Si+1 to Sk satisfy the atomic con-
straints with multi-potency p in a specification Si.

4. Elements in a specification Sk satisfy the atomic constraints with
single-potency p in a specification Si.

The multi- and single-potency of each clabject, reference and attribute
in a specificationSi can be represented by considering type-facet subgraphs
Tk
i
⊑ S

i
(see Figure 4.15). Elements with multi-potency p in a specification

Si are included in the type-facet subgraphs from Ti+1
i

to Tk
i
only. Similarly,

elements with single-potency p in a specification Si are included in the
type-facet subgraph Tk

i
only.

I 3
1

I 3

2

T 3

5
T 3

4

S3

Figure 4.15: A venn diagram illustrating the partitioning of the underlying
graph S3 of a specification S3 into possible type-facet and instance-facet
subgraphs

100

4.4. Formalisation of deep metamodelling

Similarly, the multi- and single-potency of each atomic constraint in
a specification Si can be represented by considering subsets of atomic con-
straints Ck

i
⊑ C

i
. Atomic constraints with multi-potency p in a specification

Si are included in the subsets from Ci+1
i

to Ck
i
only. Similarly, atomic

constraints with single-potency p in a specification Si are included in the
subset Ck

i
only.

The instantiation in a specification Sk of elements with multi- and
single-potency p in a specification Si can be represented by considering

partialmulti-level ontological typingmorphismsωi
k
: Sk ◦ Si , which are

given by instance-facet subgraphs Ii
k
⊑ Sk (see Figure 4.15) together with total

multi-level ontological typing morphisms ωi
k
: Ii

k
→ Si (see Figure 4.16).

The partitioning of a specification into possibly overlapping type-facet
subgraphs and instance-facet subgraphs follows the rationale behind the
term clabject, namely that elements in a specification of a deep metamod-
elling stack can retain both a type (class) and instance (object) facet.

Spec. Multi-potency Single-potency

Si ANp NNo A△p N△o

Si+1 BNp-1

ωi
i+1

ONo-1

ωi
i+1

...

S j ENp-j+i

ωi
j

ωi−1
j

QN0

ωi
j

ωi−1
j

O△0

ωi
j

...

Sk MN0

ωi
k

ωi+1
k

ω
j

k

B△0

ωi
k

Figure 4.16: Partial multi-level ontological typing morphisms

Note that since the instantiation of elements with single-potency can
jump over several metalevels, the multi-level ontological typing mor-
phisms ωi

k
and their domains of definition Ii

k
can not be obtained by com-

101

4. DeepMetamodelling

posing the two-level ontological typing morphisms as was the case for
partial double metamodelling stacks; they have to be defined explicitly.
Moreover, these jumpsmean that the instantiation is no longer monotonic,
i.e., Ii

k
⊑ . . . ⊑ Ik−1

k
does not hold.

The requirements 1 and 2 that all the elements in a specificationSk that
are ontologically typed by elements in a specification Si actually have to
be ontologically typed by elements in the type-facet subgraph Tk

i
can be

represented by the condition (ωi
k
)−1(Tk

i
) = Ii

k
.

The requirements 3 and 4 that all the elements in a specification Sk

that are ontologically typed by elements in the type-facet subgraph Tk
i
also

have to satisfy the atomic constraints in the subsetCk
i
can be representedby

the condition that (Ii
k
, ωi

k
) is a valid instance of the type-facet subspecification

Tk
i
= (Tk

i
,Ck

i
:Ω) ⊑ S

i
.

The partitioning of a specification into type-facet subspecifications en-
sures that only valid combinations of potencies are allowed. This is be-
cause the contradictory combinations of potencies presented in Table 4.3,
4.4 and 4.5 would lead to dangling arrows or dangling atomic constraints
and hence to invalid type-facet subspecifications.

The requirements above, however, are not sufficient to represent all
the aspects of the semantics of deep characterisation. A specification Si

of a deep metamodelling stack has to be compliant with the following
additional requirements:

5. Elements in specifications from Sk+1 to Sl can not be ontologically
typed by elements with multi-potency p in a specification Si; i.e.,
the instantiation of elements with multi-potencies stops when the
multi-potency is zero.

6. Elements in specifications fromSi+1 toSk−1 and fromSk+1 toSl can
not be ontologically typed by elements with single-potency p in a
specification Si.

The multi- and single-potency of each clabject, reference and attribute
in a specificationSi can be distinguished by considering additional multi-

potency subgraphsMPk
i ⊑ Tk

i
and single-potency subparts SPk

i = (Tk
i
\MPk

i) ⊑ Tk
i

(see Figure 4.17).

The requirements 5 can be represented by the condition (ωi
k
)−1(MPk

i \

MPk+1
i) ⊑ S

k
\ (
⋃

k′>k
Tk′

k
) where S

k
\ (
⋃

k′>k
Tk′

k
) includes all the elements in Sk

which do not retain a type-facet; i.e., which are not instantiated at any
metalevel.

The requirement 6 can be represented by the conditions (ωi
j
)−1(SPk

i) = ∅

and (ωi
k
)−1(SPk

i) ⊑ S
k
\ (
⋃

k′>k
Tk′

k
).

102

4.4. Formalisation of deep metamodelling

T 3
4

SP 3

4
MP 3

4

Figure 4.17: A venn diagram illustrating the partitioning of the type-facet
subgraph T4

3
of a specification S3 into the multi-potency subgraph MP4

3

and the single-potency subpart SP4
3, respectively

Furthermore, a specification Si of a deep metamodelling stack has to
be compliant with the following additional requirements:

7. Elements in a specification Sk which are ontologically typed by ele-
ments with multi-potency p in a specificationSi must also be ontolo-
gically typed by elements with multi-potency o < p in a specification
S j which in turn are ontologically typed by the considered elements
with multi-potency p in the specification Si; i.e., the instantiation of
elements with multi-potency is mediated.

8. Elementswithmulti-potency q in a specificationSk cannot be ontolo-
gically typed by elements with multi-potency p ≤ q in a specification
Si; i.e., the multi-potency of elements is decreased at each instanti-
ation.

The requirement 7 can be represented by the conditions MPk
i ⊑ . . . ⊑

MPi+1
i , ω

j

k
;ωi

j
⊑ ωi

k
(i.e., (ω

j

k
)−1(Ii

j
) ⊑ Ii

k
) and (ωi

k
)−1(MPk

i) ⊑ I
j

k
.

The requirement 8 can be represented by the condition (ωi
j
)−1(MPk

i \

MPk+1
i) ⊑ (MPk

j \MPk+1
j).

Finally, a specification Si of a deep metamodelling stack has to be
compliant with the following additional requirements:

9. Elements in a specification have either a multi-potency or a single-
potency, but not both.

10. The ontological typing is compatible with the linguistic typing.

The requirement 9 can be represented by the condition SP
j

i
∩ Tk

i
= ∅.

The requirement 10canbe representedasusualby the conditionωi
k
;λi ⊑

λk.
Taking into account all these conditions, the deepmetamodelling stack

is defined as follows:

103

4. DeepMetamodelling

Definition 41 (Deepmetamodelling stack). A deep metamodelling stack with
length l is a linguistic metamodelling stack with length l together with:

• type-facet subspecifications Tk
i
= (Tk

i
,Ck

i
:Ω) ⊑ Si, for all 1 ≤ i < k ≤ l

• multi-potency subgraphs MPk
i ⊑ Tk

i
, for all 1 ≤ i < k ≤ l, such that:

– MPk
i ⊑ . . . ⊑MPi+1

i (requirement 7)

• single-potency subparts SPk
i = (Tk

i
\MPk

i) ⊑ Tk
i
, for all 1 ≤ i < k ≤ l, such

that:

– SP
j

i
∩ Tk

i
= ∅, for all j , k (requirement 9)

• partial multi-level ontological typing morphisms ωi
k
: Sk ◦ Si , for all

1 ≤ i < k ≤ l, which are given by:

– instance-facet subgraphs Ii
k
⊑ Sk

– total multi-level ontological typing morphisms ωi
k
: Ii

k
→ Si

such that for all 1 ≤ i < k ≤ l and all i < j < k:

– (ωi
k
)−1(Tk

i
) = Ii

k
(requirements 1 and 2)

– (Ii
k
, ωi

k
) ∈ Inst(Tk

i
) (requirements 3 and 4)

– (ωi
k
)−1(MPk

i \MPk+1
i) ⊑ S

k
\ (
⋃

k′>k
Tk′

k
) (requirement 5)

– (ωi
j
)−1(SPk

i) = ∅ (requirement 6)

– (ωi
k
)−1(SPk

i) ⊑ S
k
\ (
⋃

k′>k
Tk′

k
) (requirement 6)

– ω
j

k
;ωi

j
⊑ ωi

k
(i.e., (ω

j

k
)−1(Ii

j
) ⊑ Ii

k
)) (requirement 7)

– (ωi
k
)−1(MPk

i) ⊑ I
j

k
(requirement 7)

– (ωi
j
)−1(MPk

i \MPk+1
i) ⊑ (MPk

j \MPk+1
j) (requirement 8)

– ωi
k
;λi ⊑ λk (requirement 10)

104

4.4. Formalisation of deep metamodelling

Σ
CLM

LM S1
λ1

Ω

Cl

Ci

Ci−1

C1

...

◦ω2

Si−1

◦ωi−1

λi−1

Si

◦ωi

⊒

λi

...

◦ωi+1

Sl

◦ωl

λl

LM Si
λi

T
j

i
Tk
i

S j

...
...

λ j

Ii
j

ωi
j

Tk
j

Sk

...
...

λk

I
j

k

...

ω
j

k

Ii
k

ωi
k

Example 31 (Deep metamodelling stack). Building upon Example 30, Fig-
ure 4.18(a) shows the specification LM and Figures 4.18(b), (c) and (d) show
the specifications S1, S2 and S3. Moreover, Figure 4.18 shows the ontological
typing morphismsω1

2
and ω2

3
as dashed grey arrows. Figure 4.19 shows the same

specifications and the ontological typing morphism ω1
3
.

In analogy to Example 30, S1, S2 and S3 conform linguistically to LM.
In contrast to Example 30, however, the multi-potency N2 on the clabject

Component and the reference datalink denotes that these elements are in both
type-facet subgraphs T2

1
and T3

1
(as well as the multi-potency subgraphs MP2

1

and MP2
1). Moreover, the single-potency △1 on the attribute id denotes that this

element is in the type-facet subgraph T2
1
only (aswell as the single-potency subpart

SP2
1), while the single-potency△1 on the atomic constraint ([mult(1, 1)], δ3) on

the same attribute denotes that this element is in the subset of atomic constraintsC2
1

only. Furthermore, the single-potency△2 on the attribute name denotes that this
element is in the type-facet subgraph T3

1
only (aswell as the single-potency subpart

SP3
1), while the single-potency△2 on the atomic constraint ([mult(1, 1)], δ4) on

the same attribute denotes that this element is in the subset of atomic constraints
C3
1
only.

105

4. DeepMetamodelling

The specification S2 conforms ontologically to S1; i.e., there exists a partial

multi-level ontological typing morphism ω1
2
: S2 ◦ S1 such that (I1

2
, ω1

2
) is a

valid instance of the type-facet subspecification T2
1
= (T2

1
,C2

1
:Ω). The ontological

typing morphism ω1
2
is defined as follows (see Figure 4.18):

ω1
2(Map) = ω1

2(Table) = Component
ω1

2
(geopos) = datalink

ω1
2
(idMap) = ω1

2
(idTable) = id

ω1
2
(“GoogleMaps”) = ω1

2
(“FusionTable”) = String

The specification S3 conforms ontologically to both S2 and S1; i.e., there

exists partial multi-level ontological typing morphisms ω2
3
: S3 ◦ S2 and

ω1
3
: S3 ◦ S1 such that (I2

3
, ω2

3
) and (I1

3
, ω1

3
) are valid instances of the type-

facet subspecifications T3
2
= (T3

2
,C3

2
:Ω) and T3

1
= (T3

1
,C3

1
:Ω), respectively. The

ontological typing morphisms ω2
3
and ω1

3
are defined as follows (see Figures 4.18

and 4.19):
ω2

3
(UAMCamp) = Map

ω2
3
(UAMProfs) = Table

ω2
3(offices) = geopos

ω2
3(scrollUAM) = scroll

ω2
3
(true) = Boolean

ω1
3
(UAMCamp) = ω1

3
(UAMProfs) = Component

ω1
3(offices) = datalink

ω1
3
(nameMapUAM) = ω1

3
(nameTableUAM) = name

ω1
3
(“UAMCampus”) = ω1

3
(“UAMProfs”) = String

It is straightforward to show that this sample deep metamodelling stack satis-
fies all the conditions in Definition 41.

In this section, we presented a formalisation of deep metamodelling
based on DPF from a structural point of view.

In the following, we switch to an operational point of view and show
how to flatten deep characterisation by transforming a deep metamodel-
ling stack into a partial double metamodelling stack.

106

4
.4
.
F
o
rm

a
lisa

tio
n
o
f
d
eep

m
eta

m
o
d
ellin

g

S3(d)

S2(c)

S1(b)

LM(a)

“UAM

Profs”

nameTableUAM▵0
UAMProfs

▴0

offices▴0

“UAM

Campus”

nameMapUAM▵0
UAMCamp

▴0scrollUAM▵0
true

“Fusion

Table”

idTable▵0
Table

▴1

geopos▴1

“Google

Maps”

idMap▵0
Map

▴1scroll▵1
Boolean

String

[1..1]▵2name▵2

[1..1]▵1id▵1

Component
▴2

[irr]▴2

datalink▴2

[0..1]▵2

DataType

A
tt
ri
b
u
te

Clabject

R
e
fe
re
n
c
e

Inheritance

[irr]

Figure 4.18: The specifications LM, S1, S2 and S3 together with the ontological typing morphisms ω1
2 and ω

2
3

1
0
7

4
.
D
e
e
p
M
e
ta
m
o
d
e
l
l
in
g

S3(d)

S2(c)

S1(b)

LM(a)

“UAM

Profs”

nameTableUAM▵0
UAMProfs

▴0

offices▴0

“UAM

Campus”

nameMapUAM▵0
UAMCamp

▴0scrollUAM▵0
true

“Fusion

Table”

idTable▵0
Table

▴1

geopos▴1

“Google

Maps”

idMap▵0
Map

▴1scroll▵1
Boolean

String

[1..1]▵2name▵2

[1..1]▵1id▵1

Component
▴2

[irr]▴2

datalink▴2

[0..1]▵2

DataType

A
tt
ri
b
u
te

Clabject

R
e
fe
re
n
c
e

Inheritance

[irr]

Figure 4.19: The specifications LM, S1, S2 and S3 together with the ontological typing morphism ω1
3

1
0
8

4.5. Flattening of a deep metamodelling stack

4.5 Flattening of a deep metamodelling stack

Recall that in a deepmetamodelling stack, an element with single-potency
0 at metalevel k may be ontologically typed by an element with single-
potency p = k − i at metalevel i; i.e., there may be p metalevels between
an instance and its type. In a double metamodelling stack, in contrast, an
element at metalevel k can only be ontologically typed by an element at
metalevel k − 1. In order to better illustrate the semantics of deep charac-
terisation, we show how to flatten deep characterisation by transforming a
deepmetamodelling stack into a partial doublemetamodelling stack. This
flattening is defined by multiple replication rules and an extraction rule.

The replication rules rc0, rr1, ra1 and rac2 followa general patternwhich,
for each elementwith single-potency p ≥ 2 atmetalevel i, adds tometalevel
k − 1 a replica of the considered element with single-potency decreased to
1. Similar to the layering of transformation rules in specification trans-
formation (see Section 2.5), the subscripts from 0 to 2 denote the layer to
which a rule belongs, so that rules of layer 0 are applied before rules of
layer 1, etc.

The replication rule rc0 adds to metalevel k − 1 a replica with single-
potency 1 of a clabject with single-potency p at metalevel i, as follows1:

Definition 42 (Replication rule rc0 for clabjects). Given a deep metamodelling
stack with length l, for all 1 ≤ i < k ≤ l and k ≥ i + 2:

• for each A ∈ SPk
i

– T′kk−1 = Tk
k−1
∪ A’

– I′ik−1 = Ii
k−1
∪ A’ and ωi

k−1
(A’) = A

• for each B ∈ Ii
k
such that ωi

k
(B) = A

– I′k−1k = Ik−1
k
∪ B and ωk−1

k
(B) = A’

1T′kk−1 and I′ ik−1 denote the state of the type- and instance-facet subgraphs Tk
k−1

and Ii
k−1

,
respectively, after the application of the rule.

109

4. DeepMetamodelling

Spec. Input Output

Si A△p A△p

...

Sk−1 A’△1

ωi
k−1

Sk B△0

ωi
k

B△0

ωi
k

ωk−1
k

The replication rule rr1 adds to metalevel k − 1 a replica with single-
potency 1 of a reference with single-potency p at metalevel i, as follows:

Definition 43 (Replication rule rr1 for references). Given a deep metamodel-
ling stack with length l, for all 1 ≤ i < k ≤ l and k ≥ i + 2:

• for each (A
a
−→ N) ∈ SPk

i

– for each L,Y ∈ Ii
k−1

such that ωi
k−1

(L) = A and ωi
k−1

(Y) = N

∗ T′kk−1 = Tk
k−1
∪ (L

a’
−→ Y)

∗ I′ik−1 = Ii
k−1
∪ (L

a’
−→ Y) and ωi

k−1
(L

a’
−→ Y) = (A

a
−→ N)

• for each (M
b
−→ Z) ∈ Ii

k
such that ωi

k
(M

b
−→ Z) = (A

a
−→ N), ωk−1

k
(M) = L and

ωk−1
k

(Z) = Y

– I′k−1k = Ik−1
k
∪ (M

b
−→ Z) and ωk−1

k
(M

b
−→ Z) = (L

a’
−→ Y)

110

4.5. Flattening of a deep metamodelling stack

Spec. Input Output

Si A
a△p

N A
a△p

N

...

Sk−1 L

ωi
k−1

Y

ωi
k−1

L

ωi
k−1

a’△1

ωi
k−1

Y

ωi
k−1

Sk M

ωi
k

ωk−1
k

b△0

ωi
k

Z

ωi
k

ωk−1
k

M

ωi
k

ωk−1
k

b△0

ωi
k

ωk−1
k

Z

ωi
k

ωk−1
k

Remark 10 (Identity of data types). Recall that, similar to E-graphs [35, 36],
attributes of nodes can be represented in DPF by arrows from these nodes to nodes
representing data types. Nodes representing data types can be regarded as having
a “global identity” in a deep metamodelling stack. Therefore, we assume that all
nodes representing data types are implicitly available in each specification Si of
the deep metamodelling stack.

The replication rule ra1 adds to metalevel k − 1 a replica with single-
potency 1 of an attribute with single-potency p at metalevel i, as follows:

Definition 44 (Replication rule ra1 for attributes). Given a deep metamodel-
ling stack with length l, for all 1 ≤ i < k ≤ l and k ≥ i + 2:

• for each (A
a
−→ DT) ∈ SPk

i

– for each L,DT ∈ Ii
k−1

such that ωi
k−1

(L) = A

∗ T′kk−1 = Tk
k−1
∪ (L

a’
−→ DT)

∗ I′ik−1 = Ii
k−1
∪ (L

a’
−→ DT) and ωi

k−1
(L

a’
−→ DT) = (A

a
−→ DT)

• for each (M
b
−→ DV) ∈ Ii

k
such thatωi

k
(M

b
−→ DV) = (A

a
−→ DT), ωk−1

k
(M) = L

and ωk−1
k

(DV) = DT

– I′k−1k = Ik−1
k
∪ (M

b
−→ DV) and ωk−1

k
(M

b
−→ DV) = (L

a’
−→ DT)

111

4. DeepMetamodelling

Spec. Input Output

Si A
a△p

DT A
a△p

DT

...

Sk−1 L

ωi
k−1

DT L

ωi
k−1

a’△1

ωi
k−1

DT

Sk M

ωi
k

ωk−1
k

b△0

ωi
k

DV

ωi
k

ωk−1
k

M

ωi
k

ωk−1
k

b△0

ωi
k

ωk−1
k

DV

ωi
k

ωk−1
k

The replication rule rac2 adds to metalevel k − 1 a replica with single-
potency 1 of an atomic constraint with single-potency p at metalevel i, as
follows:

Definition 45 (Replication rule rac2 for atomic constraints). Given a deep
metamodelling stack with length l, for all 1 ≤ i < k ≤ l and k ≥ i + 2:

• for each (A
a
−→ N) ∈ Tk

i
and (π, δ) ∈ Ck

i
where δ(αΩ (π)) = (A

a
−→ N)

– for each (L
b
−→ Y) ∈ (Tk

k−1
) such that ωi

k−1
(L

b
−→ Y) = (A

a
−→ N)

∗ C′kk−1 = Ck
k−1
∪ (π, δ′) where δ′(αΩ (π)) = (L

b
−→ Y)

Spec. Input Output

Si A
π△p

a
N A

π△p

a
N

...

Sk−1 L

ωi
k−1

b

ωi
k−1

Y

ωi
k−1

L

ωi
k−1

π△1

b

ωi
k−1

Y

ωi
k−1

Sk M

ωi
k

ωk−1
k

c

ωi
k

ωk−1
k

Z

ωi
k

ωk−1
k

M

ωi
k

ωk−1
k

c

ωi
k

ωk−1
k

Z

ωi
k

ωk−1
k

112

4.5. Flattening of a deep metamodelling stack

Note that the rule rac2 for the replication of atomic constraints is pro-
posed as a proof-of-concept only. This is because this rule is designed

to work with the predicates having arities 1

a

and 1
a

2 , e.g.,
[irreflexive] and [mult(m, n)] from the signature Ω (see Table 4.2).
However, predicates may have arbitrary arities and semantics which may
not enable replication of atomic constraints at all. The conditions under
which a predicate enables replication of atomic constraints is outside the
scope of this work andwill be investigated in future work (see Section 4.7).

According to this layering, the application of the rules adds a replica
of a reference only after it adds a replica of a clabject. This ensures that the
rule which adds a replica of a referencematches both clabjects with multi-
potency and their instances as well as clabjects with single-potency and
their replicas. Moreover, this ensures that the replica of the reference has as
source and target an instance of the considered clabjectwithmulti-potency
or a replica of the considered clabject with single-potency. The layering of
rules for attributes and atomic constraints follow the same rationale.

The extraction rule e3 projects out the types at each metalevel i and
the corresponding instances at metalevel i + 1 as the elements in each
specification of the target partial double metamodelling stack, as follows:

Definition 46 (Extraction rule e3). Given a deep metamodelling stack with
length l, a double metamodelling stack with length l is extracted as follows:

• S1 = (T2
1
,C2

1
, λ1)

• for all 2 ≤ i ≤ l − 1, Si = (Ti+1
i
∪ Ii−1

i
,Ci+1

i
, λi, ω

i−1
i

)

• Sl = (Il−1
l
, λl, ω

l−1
l

)

Example 32 (Flattening of a deep metamodelling stack). Building upon
Example 31, Figures 4.20(b), (c) and (d) show the specifications S1, S2 and S3

of the deep metamodelling stack, after the application of the replication rules.
Moreover, Figure 4.20(c) shows the replicated elements in green colour. Note that
the attribute scroll, the data type Boolean and the corresponding instances are
omitted from Figure 4.20 due to space constraints.

Firstly, the application of ra1 adds to T3
2
the attributes nameMap and

nameTable with single-potency △1. Moreover, it adds the following mappings
to the ontological typing morphism ω2

3:

ω2
3(nameMapUAM) = nameMap

ω2
3
(nameTableUAM) = nameTable

ω2
3(“UAMCampus”) = ω2

3(“UAMProfs”) = String

113

4
.
D
e
e
p
M
e
ta
m
o
d
e
l
l
in
g

S3(d)

S2(c)

S1(b)

LM(a)

“UAM

Profs”

nameTableUAM▵0
UAMProfs

▴0

offices▴0

“UAM

Campus”

nameMapUAM▵0
UAMCamp

▴0

“ sion

Table”

idTable▵0

Table
▴1

geopos▴1

“Google

Maps”

idMap▵0

Map
▴1

nameTable▵1

[1
..
1
]▵

1

[0..1]▵1

nameMap▵1[1..1]▵1
String

String

[1..1]▵2name▵2

[1..1]▵1id▵1

Component
▴2

[irr]▴2

datalink▴2

[0..1]▵2

DataType

A
tt

ri
b
u
te

Clabject

R
e
fe

re
n
c
e

Inheritance

[irr]

Figure 4.20: The specifications LM, S1, S2 and S3 together with the ontological typing morphisms ω1
2
and ω2

3
, after the

application of the replication rules

1
1
4

4.5. Flattening of a deep metamodelling stack

Secondly, the application of rac2 adds to T
3
2
the atomic constraints

([mult(0, 1)], δ1), ([mult(1, 1)], δ2) and ([mult(1, 1)], δ3)with single-poten-
cy △1 on the reference geopos and the attributes nameMap and nameTable,
respectively.

Figures 4.22(b), (c) and (d) show the specificationsS1,S2 andS3 of the partial
double metamodelling stack resulting from the application of the extraction rule.
Moreover, Figure 4.21(b) shows the discarded elements in red colour.

The application of e3 discards fromS1 the atomic constraints ([mult(0, 1)], δ1)
and ([mult(1, 1)], δ4) on datalink and name, respectively. In this way, these
atomic constraints are not evaluated at metalevel 2. Moreover, it discards from
S1 the attribute name. In this way, it is not possible to instantiate name at
metalevel 2.

The presented flattening of the deep characterisation enables the trans-
formation of a deep metamodelling stack into a partial double metamod-
elling stack. Obviously, part of the deep characterisation information is
lost in the transformation. For instance, in Example 31, the multi-potency
N2 on the elements Component and datalink in S1 forbids that these ele-
ments are ontologically typed by elements in a possible specificationS4 or
below. In Example 32, in contrast, a possible specificationS4 may include
elements which are ontologically typed by elements in S3.

In addition to the flattening of the deep characterisation, it is possible
to define the flattening of the double linguistic/ontological conformance
which enables the transformation of a partial double metamodelling stack
into a traditional metamodelling stack. This could be done by adding the
specification LM on top of the ontological stack, and adding a replica of
all elements in LM in all the specifications Si, for all i ≤ l − 2.

115

4
.
D
e
e
p
M
e
ta
m
o
d
e
l
l
in
g

S3(d)

S2(c)

S1(b)

LM(a)

“UAM

Profs”

nameTableUAM▵0
UAMProfs

▴0

offices▴0

“UAM

Campus”

nameMapUAM▵0
UAMCamp

▴0

“ sion

Table”

idTable▵0

Table
▴1

geopos▴1

“Google

Maps”

idMap▵0

Map
▴1

nameTable▵1

[1
..
1
]▵

1

[0..1]▵1

nameMap▵1[1..1]▵1
String

String

[1..1]▵2name▵2

[1..1]▵1id▵1

Component
▴2

[irr]▴2

datalink▴2

[0..1]▵2

DataType

A
tt

ri
b
u
te

Clabject

R
e
fe

re
n
c
e

Inheritance

[irr]

Figure 4.21: The specifications LM,S1,S2 andS3 together with the ontological typing morphisms ω1
2
and ω2

3
, before the

application of the extraction rule

1
1
6

4
.5
.
F
la
tten

in
g
o
f
a
d
eep

m
eta

m
o
d
ellin

g
sta

ck

S3(d)

S2(c)

S1(b)

LM(a)

“UAM

Profs”

nameTableUAM
UAMProfs

offices

“UAM

Campus”

nameMapUAM
UAMCamp

“Fusion

Table”

idTable
Table

geopos

“Google

Maps”

idMap
Map

nameTable[1
..
1
]

[0..1]

nameMap[1..1]
String

String

[1..1]id
Component

[irr]

datalink

DataType

A
tt
ri
b
u
te

Clabject

R
e
fe
re
n
c
e

Inheritance

[irr]

Figure 4.22: The specifications LM, S1, S2 and S3 together with the ontological typing morphisms ω2 and ω3, after the
application of the extraction rule

1
1
7

4. DeepMetamodelling

4.6 Related work

Deepmetamodelling is a relatively new technique, and some of its aspectsMulti-level
metamodelling are still debated in the literature. A first strand of research focuses on

multi-level metamodelling.
Early forms of multi-level metamodelling can be traced back to know-

ledge-based systems like Telos [65] and deductive object base managers
like ConceptBase [52].

More recent forms include the works in [6, 23, 41]. In [41], MOF is
extended with multiple metalevels to enable XML-based code generation.
Nivel [6] is a double metamodelling framework based on the weighted
constraint rule language (WCRL). XMF [23] is a language-driven develop-
ment framework allowing an arbitrary number of metalevels.

Another form of multi-level metamodelling can be achieved through
powertypes [42, 72], since instances of powertypes are also subtypes of
another type andhence retain both a type and an instance facet. Multi-level
metamodelling can also be emulated through stereotypes [71], although
this is not a general modelling technique since it relies on UML to emulate
the extension of its metamodel. The interested reader can consult [10] for
a thorough comparison of potencies, powertypes and stereotypes.

In contrast to our approach, none of the above mentioned works sup-
port deep characterisation; i.e., the ability to describe structure and express
constraints for metalevels below the adjacent one.

A second strand of research focuses on deep characterisation. DeepDeep
characterisation characterisation through potency is included in the works in [5, 11, 27, 46,

57]. DeepJava [57] is a superset of Java which extends the object-oriented
programming paradigm to feature an unbounded number of metalevels.
The work in [46] describes the problems arising from the way in which
connectors (e.g., associations, links, generalisations, etc.) are supported
in mainstream modelling languages such as UML and why they are not
suitable for deep metamodelling. The work in [11] presents a prototype
implementation of amodelling infrastructurewhich provides built-in sup-
port for multiple ontological as well as linguistic metalevels. The work
in [5] proposes a deep metamodelling framework which extends the ba-
sic notion of clabject for handling connector inheritance and instantiation.
metaDepth [27] is a deep metamodelling framework which supports po-
tency, double linguistic/ontological typing and linguistic extension.

While these works agree on that clabjects are instantiated using the
multi-potency semantics, they differ in other design decisions. Firstly,
some works are ambiguous about the instantiation semantics for associ-
ations. In [57], the associations can be represented as Java references; hence
we interpret that they are instantiated using the single-potency semantics.
In [46], the connectors are explicitly represented as clabjects but their in-
stantiation semantics is not discussed; hence we interpret that they are

118

4.6. Related work

instantiated using the multi-potency semantics. Secondly, not all works
adhere to strict ontological metamodelling. In [5], the ontological type
of an association does not need to be in the adjacent metalevel above, but
severalmetalevels above. Note that our single-potency semanticsmakes it
possible to retain strictmetamodelling for associations through a flattening
construction that replicates these associations. Finally, some works differ
in how they tackle potency on constraints and methods. Potency on con-
straints is not explicitly shown in [11] and not considered in [5], whereas
potency on methods is only supported by DeepJava and metaDepth.

Table 4.6 shows a summary of the particular semantics for deep char-
acterisation implemented by the above mentioned works and compares it
with the semantics supported by our formalisation. It is worth noting that
no tool recognises the fact that multiplicity constraints are constraints as
well and hence can have a potency.

Table 4.6: Comparison of different deep characterisation semantics

Clabjects Associations Strictness Constraints Mult. constraints

DeepJava [57] N △ yes △ N.A.
Atkinson et al. [11] N N yes N N1
Aschauer et al. [5] N N no N.A. N1
metaDepth [27] △, N △, N yes △ N1
DPF formalisation △, N △, N yes △, N △, N

119

4. DeepMetamodelling

4.7 Conclusion and future work

In this chapter, we presented a formal approach to deep metamodelling
basedonDPF. Firstly,we illustrated the limitations of traditionalmetamod-
elling through an example in the domain of component-based web applic-
ations. Secondly, we introduced deep metamodelling through the same
example. Thirdly, we defined double linguistic/ontological typing and lin-
guistic extension in view of DPF. Fourthly, we formalised deep character-
isation and defined two different semantics for potency, namelymulti- and
single-potency. Finally, we showed how to flatten deep characterisation
by transforming a deepmetamodelling stack into a doublemetamodelling
stack.

To the best of our knowledge, this work is the first attempt to clarify
and formalise some aspects of the semantics of deep metamodelling. In
particular, this work explains different semantic variation points available
for deep metamodelling, points out new possible semantics, currently
unexplored in practice, as well as classifies the existing tools according to
these options. The findings of this work have already been submitted to a
journal for evaluation.

In futurework, wewill investigate the effects of overriding the potency
of a clabject using inheritance, as this may lead to additional contradictory
combinations of potencies.

120

CHAPTER 5
Conclusion

This thesis provides a formalisation of concepts in MDE based on DPF, a
formal diagrammatic specification framework which was already under
development before this work was initiated. In particular, this thesis aims
to consolidate DPF and provide a formalisation of two novel techniques
in MDE, namely model versioning and deep metamodelling.

In Chapter 1, we introduced MDE along with a discussion regarding
some of its fundamental concepts, techniques and standards.

In Chapter 2, we outlined DPF along with a formalisation of some
of the fundamental concepts in MDE. DPF is an adaptation of the cat-
egorical sketch formalism, where the constraining constructs of modelling
languages are represented by user-defined signatures in a more intuitive
and adequate way. In particular, DPF is an extension of the Generalised
Sketches formalism and aims to combine mathematical rigour with dia-
grammatic modelling.

Chapter 2 is an adaptation of the formalisation ofmodelling andmodel
transformation published in [79, 80, 82, 84]. Compared to the previous
work, the specification transformation is extended to support deleting
transformation rules. Moreover, the embedding of specification entail-
ments is also revised to adopt deleting transformation rules.

In Chapter 3, we described a formal approach to model versioning
based on DPF. Firstly, we defined the identification of commonalities and
calculation of differences as pullback and pushout constructions, respect-
ively. Secondly, we defined the representation of differences; i.e., the
information added, deleted and renamed, as a set of annotations which
are specified by means of a tag signature. Thirdly, we introduced a syn-
chronisation procedure which includes normalisation, conflict detection

121

5. Conclusion

and conflict resolution. Specification entailments are adopted to describe
properties of the semantic interpretation of predicates of a signature. The
normalisation of a specification is then formalised as the embedding of
these specification entailments to obtain the normal form of a specifica-
tion. Moreover, transformation rules are used to represent conflicts and,
when applicable, their resolution patterns. The conflict detection and res-
olution are then formalised as the applicationof these transformation rules.
Note that the approach handles atomic constraints in all the steps of the
synchronisation, including normalisation, conflict detection and conflict
resolution.

To the best of our knowledge, this work is the first attempt to clarify
each step of a work cycle in a centralised approach to optimistic model
versioning; i.e., checkout a local copy, make modifications on a local copy,
synchronise a local copy, resolve conflicts and commit modifications to
a repository. Moreover, this work also constitutes the first attempt to
formalise and illustrate constraint-awareness in model versioning.

Chapter 3 further develops the formal approach to model versioning
published in [78, 81]. Compared to the previous work, the theoretical
foundation and the underlying techniques are extended to handle con-
straints. Moreover, new examples are added to illustrate how model
merging, conflict detection and conflict resolution handle constraints. The
findings of this work have already been submitted to a journal for evalu-
ation.

In Chapter 4, we presented a formal approach to deep metamodel-
ling based on DPF. Firstly, we illustrated the limitations of traditional
metamodelling through an example in the domain of component-based
web applications. Secondly, we introduced deep metamodelling through
the same example. Thirdly, we defined double linguistic/ontological typ-
ing and linguistic extension in view of DPF. Fourthly, we formalised deep
characterisation and defined two different semantics for potency, namely
multi- and single-potency. Finally, we showed how to flatten deep char-
acterisation by transforming a deep metamodelling stack into a double
metamodelling stack.

To the best of our knowledge, this work is the first attempt to clarify
and formalise some aspects of the semantics of deep metamodelling. In
particular, this work explains different semantic variation points available
for deep metamodelling, points out new possible semantics, currently
unexplored in practice, as well as classifies the existing tools according to
these options. The findings of this work have already been submitted to a
journal for evaluation.

122

In this thesis, the formalisationofmodelversioninganddeepmetamod-
elling havebeen treatedas two independent research strands. Considering
that the formal approaches to model versioning and deep metamodelling
share DPF as the formal underpinning, model versioning in the context of
deep metamodelling may represent a natural next step in this research.

DPF is a general and open framework still under development and
with potential applications in many areas of software engineering and
informatics. In this thesis, DPF has been adopted as a formal foundation
for two novel techniques in MDE. The intention of writing a monograph
was to consolidate andpresent the current state of the development ofDPF,
especially by adopting precise and consistent terminology and notation as
well as practical examples in MDE. We hope that we have convinced the
reader that DPF has the potential to support the foundation and the further
development of MDE.

123

APPENDIX A

This appendix details the constructions adopted in this thesis.

Proposition 5 (Pullback). Given specificationsM = (M,CM :Σ), S = (S,CS:
Σ), T = (T,CT : Σ) and injective specification morphisms n : S → M, m :
T → M, one can construct a specification C = (C,CC : Σ) and an injective
specification morphism m∗ : C → S such that C ⊑ T and the resulting diagram
is commutative and a pullback in the category Spec(Σ).

C

n∗m∗

S

n

P.B. T

m

M

The graph C is defined as follows:

CN := {X ∈ TN | mN(X) ∈ nN(SN)}

CA := {f ∈ TA | mA(f) ∈ nA(SA)}

srcC(f) := srcT(f) for all f ∈ CA

trgC(f) := trgT(f) for all f ∈ CA

Moreover, the graph homomorphism m∗ : C → S is defined as follows:

m∗N(X) := n−1N (mN(X)) for all X ∈ CN

m∗A(f) := n−1A (mA(f)) for all f ∈ CA

125

A. Appendix

Finally, the set of atomic constraints CC is defined as follows:

CC := {(π, δ) ∈ CT | ∃(π, ǫ) ∈ CS with δ;m = ǫ; n}

Remark 11 (Uniqueness of pullback). The pullback (C,m∗ : C → S, n∗ :
C ֒→ T) in Proposition 5 is unique since the specification morphism n∗ is an
inclusion.

In the following, the notation S.x refers to the element x in the spe-
cification S, where S is considered the name (unique identifier) of the
specification. This notation is used to resolve possible name conflicts; i.e.,
to ensure disjoint union.

Proposition 6 (Pushout). Given specifications C = (C,CC:Σ),S = (S,CS:Σ),
T = (T,CT :Σ) and injective specification morphisms m : C → S, n : C → T,
one can construct a specification M = (M,CM : Σ) and injective specification
morphisms n∗ : S → M, m∗ : T → M such that the resulting diagram is
commutative and a pushout in the category Spec(Σ).

C

nm

S

n∗

P.O. T

m∗

M

The graph M is defined as follows:

MN := {S.X | X ∈ SN \mN(CN)} ∪ CN ∪ {T.X | X ∈ TN \ nN(CN)}

MA := {S.g | g ∈ SA \mA(CA)} ∪ CA ∪ {T.g | g ∈ TA \ nA(CA)}

srcM(f) :=

Y, if f = S.g,mN(Y) = srcS(g) ∈ mN(CN)
S.X, if f = S.g,X = srcS(g) < mN(CN)
srcC(f), if f ∈ CA

Y, if f = T.g, nN(Y) = srcT(g) ∈ nN(CN)
T.X, if f = T.g,X = srcT(g) < nN(CN)

trgM(f) is defined analogously

Moreover, the graph homomorphisms n∗ : S → M, m∗ : T → M are defined as
follows:

126

n∗N(X) :=

{

Y, if X = mN(Y) ∈ mN(CN)
S.X, if X < mN(CN)

m∗N(X) :=

{

Y, if X = nN(Y) ∈ nN(CN)
T.X, if X < nN(CN)

n∗A(f) :=

{

g, if f = mA(g) ∈ mA(CA)
S.f, if f < mA(CA)

m∗A(f) :=

{

g, if f = nA(g) ∈ nA(CA)
T.f, if f < nA(CA)

Finally, the set of atomic constraints CM is defined as follows:

CM := {(π, δ; n∗) | (π, δ) ∈ CS } ∪ {(ρ, ǫ;m∗) | (ρ, ǫ) ∈ CT }

Remark 12 (Uniqueness of representatives). The Y’s and g’s in Proposition 6
are uniquely determined since the specification morphisms m and n are assumed
to be injective.

In case of inclusion specification morphisms, the pushout construction
can be simplified:

Proposition 7 (Pushout for inclusion specification morphisms). If C ⊑ T
there will not be name conflicts between C and T. In this case, the specification
morphism m∗ is assumed to be inclusion, which simplifies the construction ofM.

C

nm

S

n∗

P.O. T

m∗

M

The graph M is defined as follows:

MN := {S.X | X ∈ SN \mN(CN)} ∪ TN

MA := {S.g | g ∈ SA \mA(CA)} ∪ TA

srcM(f) :=

Y, if f = S.g,mN(Y) = srcS(g) ∈ mN(CN)
S.X, if f = S.g,X = srcS(g) < mN(CN)
srcT(f), if f ∈ TA

trgM(f) is defined analogously

Finally, the set of atomic constraints CM is defined as follows:

CM := {(π, δ; n∗) | (π, δ) ∈ CS } ∪ CT

127

A. Appendix

Proposition 8 (Pushout for annotated specifications). Given specifications
C = (C,CC : Σ,AC : ∆), S = (S,CS : Σ,AS : ∆), T = (T,CT : Σ,AT : ∆) and
injective specification morphisms m : C → S, n : C → T, one can construct
a specification M = (M,CM : Σ,AM : ∆) and injective specification morphisms
n∗ : S → M, m∗ : T → M such that the resulting diagram is commutative and
a pushout in the category Spec(Σ∪ ∆).

The graph M, the graph homomorphisms n∗ : S → M, m∗ : T → M, and the
set of atomic constraints CM are defined as is Proposition 6.

Finally, the set of atomic constraints AM is defined as follows:

AM := {(θ, δ; n∗) | (θ, δ) ∈ AS } ∪ {(υ, ǫ;m∗) | (υ, ǫ) ∈ AT }

Remark 13 (Identification of atomic constraints and annotations). Two
atomic constraints (π, δ) ∈ CS and (π, ǫ) ∈ CT such that δ;m∗ = ǫ; n∗ are
identified andwill bemapped to the same atomic constraint (π, δ;m∗) = (π, ǫ; n∗) ∈
CM ; i.e., for all atomic constraints (ρ, γ) ∈ CC we obtain just one atomic constraint
(ρ, γ; n;m∗) = (ρ, γ;m; n∗) ∈ CM . The same applies to annotations (θ, δ) ∈ AS .

Definition 47 (Partial map). A partial map f : A ◦ B between two sets
A and B is given by the domain of definition dom(f) ⊆ A and a total map
f : dom(f) → B. For any subset A0 ⊆ A, the image of the subset A0 under f
is defined as f (A0) = { f (a) | a ∈ A0 and a ∈ dom(f)} ⊆ f (A) ⊆ B. For any
subset B0 ⊆ B, the inverse image of the subset B0 under f is defined as f−1(B0) =
{a ∈ dom(f) | f (a) ∈ B0} ⊆ f−1(B) ⊆ A. The composition of two partial maps

f : A ◦ B and g : B ◦ C is defined by dom(f ; g) = f−1(dom(g)) ⊆ dom(f)
and (f ; g)(a) = g(f (a)), for all a ∈ dom(f ; g).

It is straightforward to check that: the composition of partial maps is
associative; for any subset C0 ⊆ C we have (f ; g)−1(C0) = g−1(f−1(C0)); for
any subsetB0 ⊆ Bwehave f (f−1(B0)) ⊆ B0 andhence f (dom(f ; g)) ⊆ dom(g).

Definition 48 (Partial order over partial maps). A partial order ⊑ over the set
of all partial maps from the set A to the set B can be defined as: given two partial
maps f , g : A ◦ B , f ⊑ g if and only if dom(f) ⊆ dom(g) and f (a) = g(a), for
all a ∈ dom(f).

128

Bibliography

[1] Marcus Alanen and Ivan Porres. Difference and Union of Models.
In Perdita Stevens, Jon Whittle, and Grady Booch, editors, Proceed-
ings of UML 2003: 6th International Conference on The Unified Modeling
Language, Modeling Languages and Applications, volume 2863 of Lecture
Notes in Computer Science, pages 2–17. Springer, 2003. ISBN 978-3-540-
20243-1. DOI 10.1007/978-3-540-45221-8_2.

[2] Alloy. Project Web Site. http://alloy.mit.edu/community/.

[3] Michał Antkiewicz and Krzysztof Czarnecki. Design Space of Het-
erogeneous Synchronization. In Ralf Lämmel, Joost Visser, and João
Saraiva, editors, Proceedings of GTTSE 2007: Generative and Transforma-
tional Techniques in Software Engineering II, International Summer School,
volume 5235of LectureNotes inComputer Science, pages 3–46. Springer,
2008. ISBN 978-3-540-88642-6. DOI 10.1007/978-3-540-88643-3_1.

[4] Apache Subversion. Project Web Site. http://subversion.apache.
org/.

[5] ThomasAschauer, GerdDauenhauer, andWolfgang Pree. Multi-level
Modeling for Industrial Automation Systems. In Proceedings of EUR-
OMICRO 2009: 35th EUROMICRO Conference on Software Engineering
and Advanced Applications, pages 490–496. IEEE Computer Society,
2009. ISBN 978-0-7695-3784-9. DOI 10.1109/SEAA.2009.46.

[6] Timo Asikainen and Tomi Männistö. Nivel: a metamodelling lan-
guage with a formal semantics. Software and Systems Modeling, 8(4):
521–549, 2009. DOI 10.1007/s10270-008-0103-2.

[7] Colin Atkinson and Thomas Kühne. Rearchitecting the UML infra-
structure. ACM Transactions on Modeling and Computer Simulation, 12
(4):290–321, 2002. DOI 10.1145/643120.643123.

[8] Colin Atkinson and Thomas Kühne. Profiles in a strict metamodel-
ing framework. Science of Computer Programming, 44(1):5–22, 2002.
DOI 10.1016/S0167-6423(02)00029-1.

129

http://dx.doi.org/10.1007/978-3-540-45221-8_2
http://alloy.mit.edu/community/
http://dx.doi.org/10.1007/978-3-540-88643-3_1
http://subversion.apache.org/
http://subversion.apache.org/
http://dx.doi.org/10.1109/SEAA.2009.46
http://dx.doi.org/10.1007/s10270-008-0103-2
http://dx.doi.org/10.1145/643120.643123
http://dx.doi.org/10.1016/S0167-6423(02)00029-1

Bibliography

[9] Colin Atkinson and Thomas Kühne. Model-Driven Development:
A Metamodeling Foundation. IEEE Software, 20(5):36–41, 2003.
DOI 10.1109/MS.2003.1231149.

[10] Colin Atkinson and Thomas Kühne. Reducing accidental complexity
in domain models. Software and Systems Modeling, 7(3):345–359, 2008.
DOI 10.1007/s10270-007-0061-0.

[11] Colin Atkinson, Matthias Gutheil, and Bastian Kennel. A Flexible
Infrastructure forMultilevel LanguageEngineering. IEEETransactions
on SoftwareEngineering, 35(6):742–755,2009. DOI 10.1109/TSE.2009.31.

[12] Michael Barr and CharlesWells. Category Theory for Computing Science
(2nd Edition). Prentice Hall, 1995. ISBN 978-0-13-323809-9.

[13] Øyvind Bech. DPF Editor: A Multi-Layer Modelling Environment
for Diagram Predicate Framework in Eclipse. Master’s thesis, De-
partment of Informatics, University of Bergen, Norway, May 2011.

[14] Øyvind Bech and Dag Viggo Lokøen. DPF to SHIP Validator
Proof-of-Concept Transformation Engine. http://dpf.hib.no/code/
transformation/dpf_to_shipvalidator.py.

[15] Bergen University College and University of Bergen. Diagram Predic-
ate Framework Web Site. http://dpf.hib.no/.

[16] JeanBézivin. On theunificationpower ofmodels. Software and Systems
Modeling, 4(2):171–188, 2005. DOI 10.1007/s10270-005-0079-0.

[17] Jean Bézivin and Olivier Gerbé. Towards a Precise Definition of the
OMG/MDA Framework. In Proceedings of ASE 2001: 16th IEEE Inter-
national Conference on Automated Software Engineering, pages 273–280,
2001. ISBN 978-0-7695-1426-0. DOI 10.1109/ASE.2001.989813.

[18] Artur Boronat and José Meseguer. Algebraic Semantics of OCL-
Constrained Metamodel Specifications. In Manuel Oriol, Bertrand
Meyer, Wil Aalst, John Mylopoulos, Michael Rosemann, Michael
J. Shaw, and Clemens Szyperski, editors, Proceedings of TOOLS
2009: 47th International Conference on Objects, Components, Models
and Patterns, volume 33 of Lecture Notes in Business Information
Processing, pages 96–115. Springer, 2009. ISBN 978-3-642-02571-6.
DOI 10.1007/978-3-642-02571-6_7.

[19] Petra Brosch, Gerti Kappel, Martina Seidl, Konrad Wieland, Manuel
Wimmer, Horst Kargl, and Philip Langer. Adaptable Model Version-
ing in Action. In Gregor Engels, Dimitris Karagiannis, and Hein-
rich C. Mayr, editors, Modellierung 2010, volume 161 of Lecture Notes
in Informatics, pages 221–236. GI, 2010. ISBN 978-3-88579-255-0.

130

http://dx.doi.org/10.1109/MS.2003.1231149
http://dx.doi.org/10.1007/s10270-007-0061-0
http://dx.doi.org/10.1109/TSE.2009.31
http://dpf.hib.no/code/transformation/dpf_to_shipvalidator.py
http://dpf.hib.no/code/transformation/dpf_to_shipvalidator.py
http://dpf.hib.no/
http://dx.doi.org/10.1007/s10270-005-0079-0
http://dx.doi.org/10.1109/ASE.2001.989813
http://dx.doi.org/10.1007/978-3-642-02571-6_7

Bibliography

[20] Cambridge. Dictionaries Online. http://dictionary.cambridge.
org.

[21] Antonio Cicchetti, Davide Di Ruscio, and Alfonso Pierantonio.
A Metamodel Independent Approach to Difference Representa-
tion. Journal of Object Technology, 6(9):165–185, October 2007.
DOI 10.5381/jot.2007.6.9.a9.

[22] Antonio Cicchetti, Davide Di Ruscio, and Alfonso Pierantonio. Man-
aging Model Conflicts in Distributed Development. In Krzysztof
Czarnecki, Ileana Ober, Jean-Michel Bruel, Axel Uhl, and Markus
Völter, editors, Proceedings of MoDELS 2008: 11th International Confer-
ence on Model Driven Engineering Languages and Systems, volume 5301
of Lecture Notes in Computer Science, pages 311–325. Springer, 2008.
ISBN 978-3-540-87874-2. DOI 10.1007/978-3-540-87875-9_23.

[23] Tony Clark, Paul Sammut, and James Willans. Applied Metamodelling:
A Foundation for Language Driven Development (2nd Edition). Ceteva,
2008.

[24] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Nar-
ciso Martí-Oliet, José Meseguer, and Carolyn L. Talcott, editors. All
About Maude - A High-Performance Logical Framework, How to Specify,
Program and Verify Systems in Rewriting Logic, volume 4350 of Lecture
Notes in Computer Science, 2007. Springer. ISBN 978-3-540-71940-3.
DOI 10.1007/978-3-540-71999-1.

[25] Krysztof Czarnecki and Ulrich Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley Professional, June
2000. ISBN 978-0-201-30977-5.

[26] Marcos Aurélio Almeida da Silva, Alix Mougenot, Xavier Blanc,
and Reda Bendraou. Towards Automated Inconsistency Hand-
ling in Design Models. In Barbara Pernici, editor, Proceedings
of CAiSE 2010: 22nd International Conference on Advanced Informa-
tion Systems Engineering, volume 6051 of Lecture Notes in Computer
Science, pages 348–362. Springer, 2010. ISBN 978-3-642-13093-9.
DOI 10.1007/978-3-642-13094-6_28.

[27] Juan de Lara and Esther Guerra. Deep Meta-modelling with Meta-
Depth. In Jan Vitek, editor, Proceedings of TOOLS 2010: 48th Interna-
tional Conference on Objects, Components, Models and Patterns, volume
6141 of Lecture Notes in Computer Science, pages 1–20. Springer, 2010.
ISBN 978-3-642-13952-9. DOI 10.1007/978-3-642-13953-6_1.

[28] Zinovy Diskin. Practical foundations of business system specifications,
chapter Mathematics of UML: Making the Odysseys of UML less

131

http://dictionary.cambridge.org
http://dictionary.cambridge.org
http://dx.doi.org/10.5381/jot.2007.6.9.a9
http://dx.doi.org/10.1007/978-3-540-87875-9_23
http://dx.doi.org/10.1007/978-3-540-71999-1
http://dx.doi.org/10.1007/978-3-642-13094-6_28
http://dx.doi.org/10.1007/978-3-642-13953-6_1

Bibliography

dramatic, pages 145–178. Kluwer Academic Publishers, 2003. ISBN
978-1-4020-1480-2.

[29] Zinovy Diskin and Jürgen Dingel. Mappings, Maps and Tables: To-
wards Formal Semantics for Associations in UML2. In Oscar Nier-
strasz, Jon Whittle, David Harel, and Gianna Reggio, editors, Pro-
ceedings of MoDELS 2006: 9th International Conference on Model Driven
Engineering Languages and Systems, volume 4199 of Lecture Notes in
Computer Science, pages 230–244. Springer, 2006. ISBN 978-3-540-
45772-5. DOI 10.1007/11880240_17.

[30] Zinovy Diskin and Boris Kadish. Generic Model Management. In
Encyclopedia of Database Technologies and Applications, pages 258–265.
Idea Group, 2005. ISBN 978-1-59140-560-3.

[31] Zinovy Diskin and Uwe Wolter. A Diagrammatic Logic for Object-
Oriented Visual Modeling. In Proceedings of ACCAT 2007: 2nd Work-
shop on Applied and Computational Category Theory, volume 203/6 of
Electronic Notes in Theoretical Computer Science, pages 19–41. Elsevier,
2008. DOI 10.1016/j.entcs.2008.10.041.

[32] EclipseModelingFramework. ProjectWebSite. http://www.eclipse.
org/emf/.

[33] Eclipse Platform. Project Web Site. http://www.eclipse.org.

[34] Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz
Rozenberg. Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 2: Applications, Languages, and Tools. World
Scientific Publishing Company, 1999. ISBN 978-981-02-4020-2.

[35] Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamental
Theory for Typed Attributed Graph Transformation. In Hartmut
Ehrig, Gregor Engels, FrancescoParisi-Presicce, andGrzegorz Rozen-
berg, editors, Proceedings of ICGT 2004: 2nd International Conference
on Graph Transformations, volume 3256 of Lecture Notes in Computer
Science, pages 161–177. Springer, 2004. ISBN 978-3-540-23207-0.
DOI 10.1007/978-3-540-30203-2_13.

[36] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer.
Fundamentals of Algebraic Graph Transformation. Springer, March 2006.
ISBN 978-3-540-31187-4. DOI 10.1007/3-540-31188-2.

[37] EMF Compare. Project Web Site. http://www.eclipse.org/emft/
projects/compare/.

[38] José Luiz Fiadeiro. Categories for Software Engineering. Springer, May
2004. ISBN 978-3-540-20909-6.

132

http://dx.doi.org/10.1007/11880240_17
http://dx.doi.org/10.1016/j.entcs.2008.10.041
http://www.eclipse.org/emf/
http://www.eclipse.org/emf/
http://www.eclipse.org
http://dx.doi.org/10.1007/978-3-540-30203-2_13
http://dx.doi.org/10.1007/3-540-31188-2
http://www.eclipse.org/emft/projects/compare/
http://www.eclipse.org/emft/projects/compare/

Bibliography

[39] David S. Frankel and John Parodi. The MDA Journal: Model Driven
Architecture Straight From The Masters. Meghan-Kiffer Press, 2004.
ISBN 978-0-929652-25-2.

[40] Git. Project Web Site. http://git-scm.com/.

[41] Ralf Gitzel, Ingo Ott, and Martin Schader. Ontological Extension to
theMOFMetamodel as a Basis for CodeGeneration.Computer Journal,
50(1):93–115, 2007. DOI 10.1093/comjnl/bxl052.

[42] Cesar Gonzalez-Perez and Brian Henderson-Sellers. A powertype-
based metamodelling framework. Software and Systems Modeling, 5
(1):72–90, 2006. DOI 10.1007/s10270-005-0099-9.

[43] Cesar Gonzalez-Perez and Brian Henderson-Sellers. Metamodelling
for Software Engineering. Wiley, 2008. ISBN 978-0-470-03036-3.

[44] Graphical Editing Framework. Project Web Site. http://www.

eclipse.org/gef/.

[45] Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Software
Factories: Assembling Applications with Patterns, Models, Frameworks,
and Tools. Wiley, 2004. ISBN 978-0-471-20284-4.

[46] Matthias Gutheil, Bastian Kennel, and Colin Atkinson. A Systematic
Approach to Connectors in a Multi-level Modeling Environment. In
Krzysztof Czarnecki, Ileana Ober, Jean-Michel Bruel, Axel Uhl, and
Markus Völter, editors, Proceedings of MoDELS 2008: 11th International
Conference onModel Driven Engineering Languages and Systems, volume
5301 of Lecture Notes in Computer Science, pages 843–857. Springer,
2008. ISBN 978-3-540-87874-2. DOI 10.1007/978-3-540-87875-9_58.

[47] Reiko Heckel. Graph Transformation in a Nutshell. Elec-
tronic Notes in Theoretical Computer Science, 148(1):187–198, 2006.
DOI 10.1016/j.entcs.2005.12.018.

[48] Wolfgang Hesse. More matters on (meta-)modelling: remarks on
Thomas Kühne’s “matters”. Software and Systems Modeling, 5(4):387–
394, 2006. DOI 10.1007/s10270-006-0033-9.

[49] Dag Hovland, Federico Mancini, and Khalid A. Mughal. The SHIP
Validator: An Annotation-Based Content-Validation Framework for
Java Applications. Technical Report 389, Department of Informatics,
University of Bergen, Norway, September 2009.

[50] JamesW. Hunt and M. D. McIlroy. An Algorithm for Differential File
Comparison. Technical Report 41, Bell Laboratories, Murray Hill, NJ,
USA, 1976.

133

http://git-scm.com/
http://dx.doi.org/10.1093/comjnl/bxl052
http://dx.doi.org/10.1007/s10270-005-0099-9
http://www.eclipse.org/gef/
http://www.eclipse.org/gef/
http://dx.doi.org/10.1007/978-3-540-87875-9_58
http://dx.doi.org/10.1016/j.entcs.2005.12.018
http://dx.doi.org/10.1007/s10270-006-0033-9

Bibliography

[51] Internet Engineering Task Force. RFC4122: AUniversally Unique IDen-
tifier (UUID) URNNamespace, July 2005. http://www.ietf.org/rfc/
rfc4122.txt.

[52] Matthias Jarke, RainerGallersdörfer,ManfredA. Jeusfeld, andMartin
Staudt. ConceptBase - A deductive object base for meta data man-
agement. Journal of Intelligent Information Systems, 4(2):167–192, 1995.
DOI 10.1007/BF00961873.

[53] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The
Model Driven Architecture: Practice and Promise. Addison-Wesley Pro-
fessional, 2003. ISBN 978-0-321-19442-8.

[54] Dimitrios S. Kolovos, Louis M. Rose, and Richard Paige. The Epsilon
Book. http://www.eclipse.org/gmt/epsilon/doc/book/.

[55] Thomas Kühne. Matters of (meta-)modeling. Software and Systems
Modeling, 5(4):369–385, 2006. DOI 10.1007/s10270-006-0017-9.

[56] Thomas Kühne. Clarifying matters of (meta-)modeling: an au-
thor’s reply. Software and Systems Modeling, 5(4):395–401, 2006.
DOI 10.1007/s10270-006-0034-8.

[57] Thomas Kühne andDaniel Schreiber. Can Programming be Liberated
from the Two-Level Style? Multi-Level Programmingwith DeepJava.
In Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes, and
Guy L. Steele Jr., editors, Proceedings of OOPSLA 2007: 22nd Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages and Applications, pages 229–244. ACM, 2007. ISBN 978-1-
59593-786-5. DOI 10.1145/1297027.1297044.

[58] Ivan Kurtev, Jean Bézivin, and Frédéric Jouault andPatrick Valduriez.
Model-Based DSL Frameworks. In Proceedings of OOPSLA 2006: 21st

Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages and Applications, pages 602–616. ACM, 2006. ISBN
978-1-59593-491-8. DOI 10.1145/1176617.1176632.

[59] Yuehua Lin, Jeff Gray, and Frédéric Jouault. DSMDiff: A Differenti-
ation Tool for Domain-SpecificModels. European Journal of Information
Systems, 16(4, Special Issue on Model-Driven Systems Development):
349–361, 2007. DOI 10.1057/palgrave.ejis.3000685.

[60] Michael Makkai. Generalized Sketches as a Framework for Com-
pleteness Theorems. Journal of Pure and Applied Algebra, 115(1):49–79,
179–212, 214–274, 1997. DOI 10.1016/S0022-4049(96)00007-2.

134

http://www.ietf.org/rfc/rfc4122.txt
http://www.ietf.org/rfc/rfc4122.txt
http://dx.doi.org/10.1007/BF00961873
http://www.eclipse.org/gmt/epsilon/doc/book/
http://dx.doi.org/10.1007/s10270-006-0017-9
http://dx.doi.org/10.1007/s10270-006-0034-8
http://dx.doi.org/10.1145/1297027.1297044
http://dx.doi.org/10.1145/1176617.1176632
http://dx.doi.org/10.1057/palgrave.ejis.3000685
http://dx.doi.org/10.1016/S0022-4049(96)00007-2

Bibliography

[61] Federico Mancini, Dag Hovland, and Khalid A. Mughal. Investig-
ating the Limitations of Java Annotations for Input Validation. In
Proceedings of ARES 2010: 5th International Conference on Availability,
Reliability and Security. IEEE Computer Society, 2010. ISBN 978-1-
4244-5879-0. DOI 10.1109/ARES.2010.29.

[62] Tom Mens. A State-of-the-Art Survey on Software Merging.
IEEE Transactions on Software Engineering, 28(5):449–462, 2002.
DOI 10.1109/TSE.2002.1000449.

[63] MeTEOriC:Meta-Tool Environments for Model-OrientedCollaborat-
ive Web Applications. Project Web Site. http://ishtar.ii.uam.es/
meteoric/.

[64] Leonardo Murta, Chessman Corrêa, João Gustavo Prudêncio, and
Cláudia Werner. Towards odyssey-VCS 2: improvements over
a UML-based version control system. In Proceedings of CVSM
2008: International workshop on Comparison and Versioning of Soft-
ware Models, pages 25–30. ACM, 2008. ISBN 978-1-60558-045-6.
DOI 10.1145/1370152.1370159.

[65] John Mylopoulos, Alexander Borgida, Matthias Jarke, and Manolis
Koubarakis. Telos: Representing Knowledge About Information Sys-
tems. ACM Transactions on Information Systems, 8(4):325–362, 1990.
DOI 10.1145/102675.102676.

[66] Object Management Group. Web site. http://www.omg.org.

[67] Object Management Group. MDA Guide, June 2003. http://www.
omg.org/cgi-bin/doc?omg/03-06-01.

[68] Object Management Group. Meta-Object Facility Specification, January
2006. http://www.omg.org/spec/MOF/2.0/.

[69] Object Management Group. XML Metadata Interchange Specification,
December 2007. http://www.omg.org/spec/XMI/2.1.1/.

[70] Object Management Group. Object Constraint Language Specification,
February 2010. http://www.omg.org/spec/OCL/2.2/.

[71] Object Management Group. Unified Modeling Language Specification,
May 2010. http://www.omg.org/spec/UML/2.3/.

[72] James Odell. Power Types. Journal of Object-Oriented Programming, 7
(2):8–12, 1994.

135

http://dx.doi.org/10.1109/ARES.2010.29
http://dx.doi.org/10.1109/TSE.2002.1000449
http://ishtar.ii.uam.es/meteoric/
http://ishtar.ii.uam.es/meteoric/
http://dx.doi.org/10.1145/1370152.1370159
http://dx.doi.org/10.1145/102675.102676
http://www.omg.org
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/spec/MOF/2.0/
http://www.omg.org/spec/XMI/2.1.1/
http://www.omg.org/spec/OCL/2.2/
http://www.omg.org/spec/UML/2.3/

Bibliography

[73] Dirk Ohst, Michael Welle, and Udo Kelter. Differences between
versions of UML diagrams. In Proceedings of ESEC/FSE 2003:
11th ACM SIGSOFT Symposium on Foundations of Software Engin-
eering 2003, pages 227–236. ACM, 2003. ISBN 978-1-58113-743-5.
DOI 10.1145/940071.940102.

[74] OMG Model Driven Architecture. Web Site. http://www.omg.org/
mda/.

[75] C. Michael Pilato, Ben Collins-Sussman, and Brian W. Fitzpatrick.
Version Control with Subversion (2nd Edition). O’Reilly Media, October
2008. ISBN 978-0-596-51033-6.

[76] Iman Poernomo. A Type Theoretic Framework for Formal Metamod-
elling. In International Seminar on Architecting Systems with Trust-
worthy Components, volume 3938 of Lecture Notes in Computer
Science, pages 262–298. Springer, 2006. ISBN 978-3-540-35800-8.
DOI 10.1007/11786160_15.

[77] José E. Rivera and Antonio Vallecillo. Representing and Op-
erating with Model Differences. In Richard F. Paige, Bertrand
Meyer, Wil Aalst, John Mylopoulos, Michael Rosemann, Michael
J. Shaw, and Clemens Szyperski, editors, Proceedings of TOOLS
2008: 46th International Conference on Objects, Components, Models
and Patterns, volume 11 of Lecture Notes in Business Information Pro-
cessing, pages 141–160. Springer, 2008. ISBN 978-3-540-69823-4.
DOI 10.1007/978-3-540-69824-1_9.

[78] Alessandro Rossini, Adrian Rutle, Yngve Lamo, and Uwe Wolter. A
formalisation of the copy-modify-merge approach to version control
in MDE. Journal of Logic and Algebraic Programming, 79(7):636–658,
2010. DOI 10.1016/j.jlap.2009.10.003.

[79] Alessandro Rossini, Adrian Rutle, Khalid A. Mughal, Yngve Lamo,
and UweWolter. A Formal Approach to Data Validation Constraints
in MDE. In Marcel Kyas, Sun Meng, and Volker Stolz, editors, Pro-
ceedings of TTSS 2011: 5th International Workshop on Harnessing Theories
for Tool Support in Software, pages 65–76, September 2011. ISBN 82-
7368-371-0.

[80] Adrian Rutle. Diagram Predicate Framework: A Formal Approach to
MDE. PhD thesis, Department of Informatics, University of Bergen,
Norway, 2010.

[81] Adrian Rutle, Alessandro Rossini, Yngve Lamo, and Uwe Wolter.
A Category-Theoretical Approach to the Formalisation of Version
Control in MDE. In Marsha Chechik and Martin Wirsing, editors,

136

http://dx.doi.org/10.1145/940071.940102
http://www.omg.org/mda/
http://www.omg.org/mda/
http://dx.doi.org/10.1007/11786160_15
http://dx.doi.org/10.1007/978-3-540-69824-1_9
http://dx.doi.org/10.1016/j.jlap.2009.10.003

Bibliography

Proceedings of FASE 2009: 12th International Conference on Fundamental
Approaches to Software Engineering, volume 5503 of Lecture Notes in
Computer Science, pages 64–78. Springer, 2009. ISBN 978-3-642-00592-
3. DOI 10.1007/978-3-642-00593-0_5.

[82] Adrian Rutle, Alessandro Rossini, Yngve Lamo, and Uwe Wolter. A
Diagrammatic Formalisation of MOF-Based Modelling Languages.
In Manuel Oriol, Bertrand Meyer, Wil Aalst, John Mylopoulos, Mi-
chael Rosemann, Michael J. Shaw, and Clemens Szyperski, editors,
Proceedings of TOOLS 2009: 47th International Conference on Objects,
Components,Models and Patterns, volume 33 of LectureNotes in Business
Information Processing, pages 37–56. Springer, 2009. ISBN 978-3-642-
02571-6. DOI 10.1007/978-3-642-02571-6_4.

[83] Adrian Rutle, Alessandro Rossini, Yngve Lamo, and Uwe Wolter.
A Formalisation of Constraint-Aware Model Transformations. In
David Rosenblum and Gabriele Taentzer, editors, Proceedings of
FASE 2010: 13th International Conference on Fundamental Approaches
to Software Engineering, volume 6013 of Lecture Notes in Com-
puter Science, pages 13–28. Springer, 2010. ISBN 978-3-642-12028-2.
DOI 10.1007/978-3-642-12029-9_2.

[84] Adrian Rutle, Alessandro Rossini, Yngve Lamo, and Uwe Wolter. A
formal approach to the specification and transformation of constraints
in MDE. Journal of Logic and Algebraic Programming, To appear.

[85] Ed Seidewitz. What Models Mean. IEEE Software, 20(5):26–32, 2003.
DOI 10.1109/MS.2003.1231147.

[86] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and EdMerks.
EMF: Eclipse Modeling Framework 2.0 (2nd Edition). Addison-Wesley
Professional, 2008. ISBN 978-0-321-33188-5.

[87] Gabriele Taentzer, Claudia Ermel, Philip Langer, and Manuel Wim-
mer. Conflict Detection for Model Versioning Based on Graph Modi-
fications. In Hartmut Ehrig, Arend Rensink, Grzegorz Rozenberg,
and Andy Schürr, editors, Proceedings of ICGT 2010: 5th International
Conference on Graph Transformations, volume 6372 of Lecture Notes in
Computer Science, pages 171–186. Springer, 2010. ISBN 978-3-642-
15927-5. DOI 10.1007/978-3-642-15928-2_12.

[88] BernhardWestfechtel. A Formal Approach to Three-WayMerging of
EMFModels. In Proceedings of IWMCP 2010: 1st InternationalWorkshop
on Model Comparison in Practice, pages 31–41. ACM, 2010. ISBN 978-
1-60558-960-2. DOI 10.1145/1826147.1826155.

137

http://dx.doi.org/10.1007/978-3-642-00593-0_5
http://dx.doi.org/10.1007/978-3-642-02571-6_4
http://dx.doi.org/10.1007/978-3-642-12029-9_2
http://dx.doi.org/10.1109/MS.2003.1231147
http://dx.doi.org/10.1007/978-3-642-15928-2_12
http://dx.doi.org/10.1145/1826147.1826155

Bibliography

[89] Uwe Wolter and Zinovy Diskin. The Next Hundred Diagrammatic
Specification Techniques – An Introduction to Generalized Sketches.
Technical Report 358, Department of Informatics, University of Ber-
gen, Norway, July 2007.

[90] Uwe Wolter and Zinovy Diskin. From Indexed to Fibred Semantics
– The Generalized Sketch File. Technical Report 361, Department of
Informatics, University of Bergen, Norway, October 2007.

138

	Preface
	Scientific Environment
	Abstract
	Model-Driven Engineering
	Introduction
	Diagrammatic modelling
	Metamodelling
	Constraints
	Typing and conformance

	Diagram Predicate Framework
	Graph and graph homomorphism
	Signature and specification
	Typing and conformance
	Specification morphism
	Specification transformation
	Specification entailment
	Related work
	Conclusion and future work

	Constraint-Aware Model Versioning
	Introduction
	Model versioning
	Calculation and representation of differences
	Synchronisation
	Construct the common of commons
	Construct the difference specifications
	Construct the merge of differences
	Detect conflicts
	Resolve conflicts
	Construct the synchronised specifications

	Related work
	Conclusion and future work

	Deep Metamodelling
	Introduction
	Metamodelling
	Deep metamodelling
	Deep characterisation
	Double typing and linguistic extension
	Some open questions in deep metamodelling

	Formalisation of deep metamodelling
	Double metamodelling stack
	Partial double metamodelling stack
	Deep metamodelling stack

	Flattening of a deep metamodelling stack
	Related work
	Conclusion and future work

	Conclusion
	Appendix
	Bibliography

