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Abstract 

The effect of including a three-phase representation of the flow parameters and capillary 

pressure has been investigated using a black oil simulator. The simulation approaches include 

the complexity of three-phase flow, relative permeability hysteresis, dynamic phase trapping 

functions and capillary pressure. A WAG simulation case was used to study the effect of 

three-phase flow parameters and capillary pressure on the size of the three-phase zone, 

breakthrough time of the injected fluids and oil recovery.  

Three-phase flow WAG processes are characterised by lower relative permeability of the 

injected fluids, because of flow path hysteresis and trapping of phases. It is important to 

incorporate these effects to have a correct description of the physics of multi-phase flow. 

The results from this study showed that the size of the three-phase zone was considerably 

larger when a three-phase description of the flow was implemented. The reduced relative 

permeability of gas and water in the three-phase zone leads to slower segregation of gas and 

water. The breakthrough time of gas and water was delayed and the oil recovery was 

increased when hysteresis and trapping functions were included.  

Including capillary pressure seems to further delay the breakthrough of the injected phases 

and the result is higher oil recovery. When including capillary pressure effects on the relative 

permeability, the three-phase zone was further extended and the oil recovery was increased. 

These studies show the importance of using a more detailed fluid flow description in 

simulation of immiscible WAG processes. 
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Introduction 

The size of the three-phase area has a large effect on the total oil recovery; because the 

residual oil is lower in the three-phase area.1-4 It is well known that gas usually has better 

microscopic displacement efficiency than water. Areas flooded by both gas and water may 

however have even lower residual oil than after gas injection. The reduction in residual oil is 

often linked to the trapped gas saturation3 

gtorworm SRSS ×−= ,          (1) 

where ormS  is the minimum residual oil saturation after three-phase flow, orwS  is the residual 

oil saturation after water injection, R  is a reduction factor and gtS  is the trapped gas 

saturation. 

The analytical methods for estimating the three-phase zone may strongly underestimate the 

size.5-6 Stone5 stated that the size of the three-phase zone depended on the injection rate, the 

vertical permeability and the density difference between the fluids. He proposed the equation 
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where tq  is the total injection rate, ρ∆  is the density difference between the fluids, vk  is the 

vertical permeability, GL  is the length the three-phase area extends from the injection well, 

W  is the transverse distance between the injection wells, rwk  is the two-phase relative 

permeability of water, wµ  is the viscosity of water, rgk  is the two-phase relative permeability 

of gas and gµ  is the viscosity of gas. Such analytical models will underestimate the three-

phase area because it does not take the effect of relative permeability hysteresis, three-phase 

relative permeability and capillary pressure into account. 
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Hysteresis of the relative permeability curves is common. The relative permeability curves are 

in many cases not reversible. One of the most important reasons for hysteresis is gas trapping. 

If a gas injection period is followed by water injection a significant part of the gas can be 

trapped. The amount of gas trapped is usually quantified by the Land constant7 

gigt SS
C

11 −= ,          (3) 

where gtS  is the trapped gas saturation and giS  is the initial or maximum gas saturation. Two-

phase hysteresis models like the Killough8 and Carlson9 models are based on Land’s 

correlation. It is assumed that imbibition process is reversible. The drainage process leads to 

gas trapping which gives hysteresis. 

It has been shown that the three-phase relative permeability is significantly different from the 

two-phase relative permeability. The relative permeabilities of the injected fluids, gas and 

water, is reduced in the three-phase zone.10 A three-phase relative permeability model11 was 

developed. This model has hysteresis for both the drainage and imbibition process and takes 

into account the reduced mobility of the injected fluids during three-phase flow. 

Using correct representations of the relative permeability is important when estimating the 

extent of the three-phase zone. Reduced mobility of the injected fluids during three-phase 

flow leads to slower gravity segregation of gas and water. The size of the three-phase zone is 

larger when using correct representations of three-phase relative permeabilities and phase 

trapping. Simulation studies have shown large three-phase zones.12-16 

Earlier work done by Dale and Skauge17-18 demonstrated that capillary pressure had a 

significant effect on flow in porous media. History matching of a core flood experiment 

showed that the relative permeabilities of the injected fluids, gas and water, must be reduced 

when capillary pressure is included. The relative permeability of oil must be increased when 

capillary pressure is included. 

This work tries to show the effect of including these flow features on field scale. The effect of 

the three-phase characteristics and capillary pressure on the size of the three-phase area, 

breakthrough time of the injected fluids and oil recovery was investigated. 
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Simulations  

Conditions 

The black-oil simulator Eclipse 10019-20 was used in this work. A synthetic case on field scale 

was used to illustrate the principles. 

The grid size was 1000m × 100m × 100m, with a grid block size of 10m × 10m× 10m. This 

corresponds to a total of 10 000 grid blocks, see figure 1. The reservoir had homogeneous 

properties. The porosity was 25%. The horizontal permeability was 500 mD and the vertical 

permeability was 50 mD. The oil-water contact was placed far below the reservoir and the 

gas-oil contact far above the reservoir. This ensured that the reservoir was in the oil zone. The 

model was initialized based on the endpoints of the relative permeability curves. The initial 

oil saturation was 71%, with a connate water saturation of 29%. The density of water is 1000 

kg/m³, for oil it is 671 kg/m³ and for gas 0.67 kg/m³. The pressure is 300 bars. 

A WAG scenario was executed in the reservoir. The production criteria were chosen after 

evaluating some test cases. The injected fluid was changed between gas and water every six 

months. The total injection time was 5 years. The main WAG-effect was expected to be small 

after this time. The injection and production rate was 1000 Rm³/d. This ensured voidage 

replacement in the reservoir. Rate control of the wells was chosen because then the reservoir 

sees the same volume and the results are more comparable. The pressure in the injector will 

then fluctuate but it is assumed that this will be managed, for example by fracturing of the 

injector. The injector was placed 100m from the end of the reservoir and the producer 100m 

from the other end, see figure 1. 

Simulation cases 

Five cases were compared.  

Two-phase relative permeability: Case 1 was WAG using a two-phase representation of 

relative permeability with no hysteresis. In case 2 capillary pressure was included but all other 

parameters were kept the same. When history matching the relative permeability curves 

would have to be changed when including capillary pressure17-18, but in this case we want to 

investigate the effect of capillary pressure at constant relative permeability. The correction of 

the relative permeability because of capillary pressure effects is taken into account in case 5. 
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Three-phase relative permeability hysteresis and gas trapping: Case 3 was WAG including 

three-phase relative permeability and gas trapping. The Stone 1 method was used to estimate 

the three-phase relative permeability of oil. The WAG hysteresis option19-20 was included and 

the relative permeability of water and gas was reduced for the three-phase flow. Lower 

residual oil for three-phase flow was applied. In case 4 capillary pressure was included 

together with the three-phase features. Earlier work had indicated an effect of capillary 

pressure on the relative permeability representation.17-18 The observed effect of capillary 

pressure, i.e. lower relative permeability of the injected fluids and higher relative permeability 

of oil, was included in case 5. 

The capillary pressures and relative permeability curves used are representative for a North 

Sea type reservoir. The capillary pressure for gas-oil and oil-water can be seen in figures 2 

and 3, respectively. The relative permeabilities used as input for three-phase flow for all the 

cases can be seen in figures 4 and 5. The oil relative permeability, seen in figures 4 and 5, are 

higher for three-phase flow, case 3 and 4, than for two-phase flow, case 1 and 2, and even 

higher when the effect of relative permeability is taken into account, case 5. The relative 

permeability of water is highest for two-phase flow, case 1 and 2, lower for three-phase flow, 

case 3 and 4, and even lower when the effect of capillary pressure on relative permeability is 

included, case 5. The input gas relative permeability is the same for two-phase and three-

phase, cases 1, 2, 3 and 4. The three-phase gas relative permeability is however lowered by 

the WAG-hysteresis option in the simulator.14-15  The input gas relative permeability is 

reduced when including the effect of capillary pressure on relative permeability, case 5. 

The relative permeability input in case 1 and 2 is used directly, but the relative permeability 

input for the cases 3, 4 and 5 is modified by the three-phase hysteresis option in the simulator. 

This model incorporates hysteresis for both the wetting and the non-wetting phase. The Stone 

I model is used together with trapped gas reduction of residual oil. This produces process 

dependent oil relative permeability curves. The reduction of the relative permeability of the 

injected fluids during three-phase flow is also described by the model. 

Results and discussion 

To quantify the effect of correct relative permeability representations and inclusion of 

capillary pressure we have chosen some parameters to investigate. We have chosen to focus 

on the size of the three-phase zone, breakthrough of the injected fluids and oil recovery. 
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Size of the three-phase zone 

The criteria for defining a grid block as part of the three-phase flow zone was that it had both 

mobile gas and mobile water present. The threshold for the gas saturation was set to minimum 

1%, and the water saturation had to be above the irreducible saturation, i.e. minimum 30%. 

The three-phase zone when using two-phase representations of the relative permeability can 

be seen in figure 6. The three-phase zone is largest at the top of the reservoir. The water 

seems to segregate slower than gas for these conditions. When including capillary pressure, 

case 2, the three-phase zone was larger than without capillary pressure, case 1. The capillary 

pressure seems to delay the segregation of gas and water. The three-phase zone is primarily 

stretched out in the horizontal plane. The increase in the size was about 19 %. The three-phase 

zone for case 1 can be seen in figure 6 and the three-phase zone for case 2 can be seen in 

figure 7. 

The three-phase zone was considerably larger when using three-phase representations of the 

relative permeability, case 3, when compared to two-phase representations, case 1. The 

increase in the size of the three-phase zone from case 1 to case 3 was 45 %. Reduced relative 

permeability of gas and water leads to slower segregation of both gas and water. The three-

phase zone for case 3 is shown in figure 8. When including capillary pressure, case 4 shown 

in figure 9, the three-phase zone was larger than without capillary pressure. The difference in 

size from case 1 to case 4 was about 73 %. 

The effect of capillary pressure on estimation of relative permeability was investigated in an 

earlier study.17-18 The effect was reduced relative permeability of the injected fluids and 

increased relative permeability of the oil. When including this effect of capillary pressure on 

relative permeability the result was an even larger three-phase zone. The three-phase zone for 

case 5 was much larger than for the case with no three-phase characteristics included, case 1. 

The increase in size was about 103 %. The size of the three-phase zone was more than double 

the size in the base case, case 1. The three-phase zone in case 5 is shown in figure 10. 

Breakthrough of the injected fluids and oil recovery 

The relative permeability of the injected fluids is lower for the three-phase representation. 

Capillary pressure also seems to delay the segregation. The relative permeability of the 

injected fluids is even lower when the effect of capillary pressure on relative permeability is 

included. Low relative permeability of the injected fluids leads to slower gravity segregation. 
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Slower segregation of gas to the top and water to the bottom of the reservoir gives a larger 

three-phase zone and later breakthrough of the gas and water.  

The breakthrough times for gas in all cases are shown in figure 11. Case 1 has the fastest 

segregation and the smallest three-phase zone and the earliest breakthrough time of the gas. 

Case 5 has the slowest segregation and the largest three-phase zone and the latest 

breakthrough time. The total gas production for the different cases can be seen in figure 12. 

The two-phase representation of the flow parameters, case 1, gives the highest gas production. 

The gas production decreases for each of the flow characteristics included, through cases 2 to 

5. 

The water production rate for all the cases can be seen in figure 13. The breakthrough time for 

the case with two-phase representations of the relative permeability, case 1, is earlier than for 

the case with capillary pressure included, case 2. When using three-phase relative 

permeability hysteresis and trapping, case 3, the breakthrough time is a little bit more delayed. 

When capillary pressure is used in addition to three-phase relative permeability hysteresis and 

trapping the breakthrough of water is even more delayed. For case 5 with lower relative 

permeability due to capillary pressure effects the water breakthrough is even later. The total 

water production for all the cases can be seen in figure 14. The water production decreases 

through cases 1 to 5. 

The oil rate and oil recovery for the five cases is shown in figures 15 and 16, respectively. 

The residual oil is lower in the three-phase zone and therefore a large three-phase zone gives 

high recovery. Also late breakthrough of gas and water results in high recovery. The oil 

recovery is lowest for the case with the smallest three-phase zone and earliest breakthrough of 

the injected phases, case 1, and highest for the case with the largest three-phase zone and 

latest breakthrough, case 5. The increased oil recovery estimate is 35% higher for case 5 than 

for case 1. 

Discussion 

The three-phase zone is much bigger when three-phase hysteresis is included, case 3, than for 

the case with no hysteresis, case 1. This is consistent with the results in the paper by Skauge 

and Larsen.12 The segregation of gas is greatly delayed both in this work and in the results 

from Skauge and Larsen. The increase in size found in this work was 45%. The size of the 

three-phase area was not quantified in the paper by Skauge and Larsen, but a visual inspection 
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of the figures with gas and water saturation indicates an increase in the same order of 

magnitude. 

The effect of capillary pressure in simulation of WAG on field scale has to our knowledge not 

been investigated earlier. The effect of capillary pressure was to further delay the segregation 

of gas and water. The increased size of the three-phase zone between case 2 with capillary 

pressure and case 1 with zero capillary pressure was 19%. The effect of capillary pressure on 

segregation was smaller than the effect of three-phase relative permeability hysteresis, but it is 

still a significant increase. The size is increased from 45% to 73% when including capillary 

pressure in the case with three-phase relative permeability hysteresis. This indicates that 

capillary pressure has a larger effect when used in combination with three-phase relative 

permeability hysteresis. The effect of capillary pressure on estimation of relative permeability 

was investigated in earlier work.17-18 Including this effect of increased oil relative 

permeability and decreased relative permeability of the injected fluids gives a further increase 

of the three-phase zone. Capillary pressure seems to have a considerable influence on the size 

of the three-phase zone.  

The breakthrough time of gas was a bit delayed when three-phase relative permeability 

hysteresis was included; see the difference between case 3 and 1 in figure 11. This is 

consistent with earlier work, where three-phase relative permeability hysteresis was found to 

delay the gas breakthrough.12, 14, 21-22 The total gas production showed a more significant 

difference, see figure 12. The three-phase hysteresis case, case 3, had lower gas production 

than the case without hysteresis, case 1. 

The capillary pressure had only a minor effect on the gas breakthrough and gas production, 

see figures 11 and 12. When including the effect of capillary pressure on relative 

permeability, case 5, the effect was however more substantial, but the effect was smaller than 

the effect of relative permeability hysteresis. 

The water breakthrough was delayed when using three-phase relative permeability hysteresis, 

see figure 13. The total water production was also smaller for the three-phase hysteresis case, 

see figure 14. This has not been reported in other papers.14, 21-22 The gas breakthrough and 

production was however more affected in the other papers than in this work. It depends on the 

balance between the reduction of the gas and water relative permeability. In earlier work the 
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reduction in gas relative permeability has been dominating, but in this work the effect is more 

even on the gas and water relative permeability reduction. 

The capillary pressure had a small effect on the water breakthrough and the total water 

production. The water breakthrough was further delayed and the total production was smaller 

when capillary pressure was included. The effect of capillary pressure on relative 

permeability, case 5, had a large effect. The water breakthrough was considerably delayed and 

the total water production lower. 

The three-phase relative permeability hysteresis had a large effect on the total oil recovery. 

The oil recovery was much higher when three-phase relative permeability hysteresis was 

included, see figure 16. This is consistent with most of the earlier work.12-14, 22-23 Kossack21 

got higher total oil recovery for the case with no hysteresis, but these simulations were done 

on a one-dimensional grid. The positive effects of delayed segregation for three-phase relative 

permeability hysteresis will therefore not bee present. 

Including the capillary pressure also had a small positive effect on the oil recovery. The case 

where the effect of capillary pressure on relative permeability is included show a significant 

increase in oil recovery.  

When including all effects the increase in oil recovery is about 35%. This is a considerable 

increase in oil recovery. It shows the importance of including correct representations of 

relative permeability and capillary pressure when simulating WAG-injection. 

Conclusions 

Both three-phase relative permeability and capillary pressure delays the gravity segregation of 

gas and water and thus the three-phase zone is increased and breakthrough of the injected 

fluids is delayed. 

 

When three-phase characteristics and capillary pressure are included breakthrough of gas and 

water is considerably delayed, which may lead to higher oil recovery. 

 

The oil recovery is also increased because the residual oil is lower in the three-phase zone. 
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Comparing different fluid flow representations in simulation for an immiscible WAG process 

show that inclusion of all three-phase features and the effect of capillary pressure, gives the 

highest estimated oil recovery. 

Ignoring the complexity of three phase flow in simulation of WAG leads to underestimation 

of the oil recovery. 
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Fig. 1: Grid used in the simulations. 



 13 

Pcgo

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Sg

[b
ar

]

 
Fig. 2: Gas-oil capillary pressure. 
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Fig. 3: Oil-water capillary pressure. 
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Fig. 4: Relative permeability of oil in presence of water, krow, and relative permeability of water, krw, for the 
different cases. 
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Fig. 5: Relative permeability of oil in presence of gas, krog, and relative permeability of gas, krg, for the 
different cases. 
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Fig. 6: Three-phase zone case 1:  two-phase relative permeability. 
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Fig. 7: Three-phase zone case 2: two-phase relative permeability including capillary pressure. 
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Fig. 8: Three-phase zone case 3: three-phase relative permeability hysteresis and trapping. 
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Fig. 9: Three-phase zone case 4: three-phase relative permeability hysteresis and trapping including capillary 
pressure. 
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Fig. 10: Three-phase zone case 5: three-phase relative permeability hysteresis and trapping including capillary 
pressure and the effect of capillary pressure on relative permeability. 
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Fig. 11: Simulated gas production rate for case 1: two-phase relative permeability, case 2: two-phase relative 
permeability including capillary pressure, case 3: three-phase relative permeability hysteresis and trapping, 
case 4: three-phase relative permeability hysteresis and trapping including capillary pressure and case 5: three-
phase relative permeability hysteresis and trapping including capillary pressure and the effect of capillary 
pressure on relative permeability. 
 

 
Fig. 12: Simulated total gas production for case 1: two-phase relative permeability, case 2: two-phase relative 
permeability including capillary pressure, case 3: three-phase relative permeability hysteresis and trapping, 
case 4: three-phase relative permeability hysteresis and trapping including capillary pressure and case 5: three-
phase relative permeability hysteresis and trapping including capillary pressure and the effect of capillary 
pressure on relative permeability. 
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Fig. 13: Simulated water production rate for case 1: two-phase relative permeability, case 2: two-phase relative 
permeability including capillary pressure, case 3: three-phase relative permeability hysteresis and trapping, 
case 4: three-phase relative permeability hysteresis and trapping including capillary pressure and case 5: three-
phase relative permeability hysteresis and trapping including capillary pressure and the effect of capillary 
pressure on relative permeability. 
 

 
Fig. 14: Simulated total water production for case 1: two-phase relative permeability, case 2: two-phase relative 
permeability including capillary pressure, case 3: three-phase relative permeability hysteresis and trapping, 
case 4: three-phase relative permeability hysteresis and trapping including capillary pressure and case 5: three-
phase relative permeability hysteresis and trapping including capillary pressure and the effect of capillary 
pressure on relative permeability. 
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Fig. 15: Simulated oil production rate for case 1: two-phase relative permeability, case 2: two-phase relative 
permeability including capillary pressure, case 3: three-phase relative permeability hysteresis and trapping, 
case 4: three-phase relative permeability hysteresis and trapping including capillary pressure and case 5: three-
phase relative permeability hysteresis and trapping including capillary pressure and the effect of capillary 
pressure on relative permeability. 
 

 
Fig. 16: Simulated oil recovery for case 1: two-phase relative permeability, case 2: two-phase relative 
permeability including capillary pressure, case 3: three-phase relative permeability hysteresis and trapping, 
case 4: three-phase relative permeability hysteresis and trapping including capillary pressure and case 5: three-
phase relative permeability hysteresis and trapping including capillary pressure and the effect of capillary 
pressure on relative permeability. 


