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Abstract

Background: The use of DNA methods for the identification and management of natural resources is gaining
importance. In the future, it is likely that DNA registers will play an increasing role in this development.
Microsatellite markers have been the primary tool in ecological, medical and forensic genetics for the past two
decades. However, these markers are characterized by genotyping errors, and display challenges with calibration
between laboratories and genotyping platforms. The Norwegian minke whale DNA register (NMDR) contains
individual genetic profiles at ten microsatellite loci for 6737 individuals captured in the period 1997-2008. These
analyses have been conducted in four separate laboratories for nearly a decade, and offer a unique opportunity to
examine genotyping errors and their consequences in an individual based DNA register. We re-genotyped 240
samples, and, for the first time, applied a mixed regression model to look at potentially confounding effects on
genotyping errors.

Results: The average genotyping error rate for the whole dataset was 0.013 per locus and 0.008 per allele. Errors
were, however, not evenly distributed. A decreasing trend across time was apparent, along with a strong within-
sample correlation, suggesting that error rates heavily depend on sample quality. In addition, some loci were more
error prone than others. False allele size constituted 18 of 31 observed errors, and the remaining errors were ten
false homozygotes (i.e., the true genotype was a heterozygote) and three false heterozygotes (i.e., the true
genotype was a homozygote).

Conclusions: To our knowledge, this study represents the first investigation of genotyping error rates in a wildlife
DNA register, and the first application of mixed models to examine multiple effects of different factors influencing
the genotyping quality. It was demonstrated that DNA registers accumulating data over time have the ability to
maintain calibration and genotyping consistency, despite analyses being conducted on different genotyping
platforms and in different laboratories. Although errors were detected, it is demonstrated that if the re-genotyping
of individual samples is possible, these will have a minimal effect on the database’s primary purpose, i.e., to
perform individual identification.

Keywords: Calibration DNA register, genotyping error, microsatellite, minke whale, mixed logistic regression,
wildlife

Background
Microsatellites, also known as short tandem repeats
(STRs), are repeating sequences of DNA where the
repeat motif includes 1-6 bases [1,2]. Variation in the
number of repetitions within the sequence forms the
basis of the alleles. Since their discovery in the 1980’s,
microsatellite DNA markers have been a prominent tool

in ecological, medical and forensic genetics, among
other things because of their high levels of variability,
co-dominant inheritance, and abundance in most organ-
isms [3-5].
Microsatellites are almost exclusively genotyped by

amplification of the DNA sequence via the polymerase
chain reaction, which is subsequently subject to electro-
phoresis and sized (i.e., length of repeat) in relation to
known DNA fragments (i.e., the size standard). The
relative migratory properties of the microsatellite frag-
ment to the DNA size standard is influenced by a range
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of factors and is dependent on the conditions under
which the electrophoresis is performed [6]. In part due
to the way in which microsatellites are genotyped, this
class of markers is prone to genotyping errors [7], which
occur when the observed genotype does not correspond
to the real genotype [8]. Genotyping errors in microsa-
tellites cannot be avoided completely, and have a range
of origins including scoring mistakes, contaminated
multiplex assays, biochemical anomalies, and degener-
ated DNA samples [9]. Error rates in the range 0.005-
0.01 per locus have frequently been reported in the lit-
erature [9]. Furthermore, error rates as low as 0.002 per
locus are non-negligible, and may lead to false conclu-
sions about, for example, confidence in assigned pater-
nities [10].
The implementation of DNA based methods for the

identification and management of wildlife resources
represents a broad and rapidly growing field. In the
future, it is likely that DNA-registers are going to
become an increasingly important component of this
development. For example, DNA-registers may contain
information about animal pedigrees in living gene banks
for conservation of endangered species, and monitor
trade in wildlife [11,12]. DNA registers may be built
upon a multitude of approaches and genetic markers,
for example, relying upon allele frequencies for popula-
tion identification [13], exact genotype profiles for indi-
vidual identification [12], as well as sequence
recognition for species identification in DNA barcoding
[14]. Irrespective of primary purpose, a common feature
of all DNA-registers is the fact that they accumulate
data over time. This generates special challenges to data
acquisition and quality, not least because developments
in genotyping platforms and technology over time may
cause calibration and continuity issues. Despite having
similar genotyping equipment, different laboratories may
still produce deviating allelic values for microsatellites
on the same locus [6,15-17].
DNA-registers should be annotated with estimates of

genotyping error rates from blinded experiments. For
the purpose of matching profiles against a DNA-register,
it is the across-profile error rate that is of importance,
not the per-locus rates. If loci can be assumed indepen-
dent, the former is given as

pprofile = 1 −
L∏
l

(1 − pl), (1)

when there are L loci, and pl is the error rate at locus
l. However, when loci are positively correlated, i.e., the
fact that an error occurs at one locus increases the error
rate on other loci, the profile-wise error will exceed the
value given by (1). We propose to account for this using
a mixed regression model.

The Norwegian minke whale (Balaenoptera acutoros-
trata) DNA-register (NMDR) consists of individual DNA
profiles from all whales captured legally (according to
international law) by Norway since its establishment in
1997, and includes 6736 individuals up to the 2008 catch.
The Norwegian whaling operations are controlled by the
Norwegian Directorate of Fisheries, which also owns and
operates the NMDR. In the period 1997-2008, four inde-
pendent laboratories have had responsibility for the geno-
typing: Lab 1 from Canada (1997-2002), Lab 2 (2003-
2005) and Lab 3 (2006), both from Iceland, and Lab 4
from Norway (2007-2008). All laboratories performed
electrophoresis of the DNA fragments using Applied Bio-
systems genetic analyzers (Lab 1 = gel-based 377 machine,
while laboratories 2-4 used capillary based machines). The
initial analysis protocol was designed by the Norwegian
forensic science institute using an ABI 377 genetic analy-
zer, and was based upon creating an allele size ladder for
each of the markers. Each of the laboratories that have
conducted genotyping for the register were first given sets
of samples (up to 80 individuals) to calibrate their analyses
against, and were also subject to and passed a blind cali-
bration test with at least 20 known individuals prior to
conducting analyses. Lab 1 started their analyses in the
year 2000, thus, all 1668 individuals caught in 1999 or ear-
lier were genotyped then. The NMDR was primarily estab-
lished for forensic purposes, and low error rates have
therefore been a high priority for the Norwegian govern-
ment. The register includes >99.9% genotyping coverage
for all markers in all individuals, which presents extra
challenges when dealing with individual samples of low
quality. Consequently, the NMDR provides a unique
opportunity to check how the error rates in a high-quality
DNA register has developed in an eight year period, and
allows us to evaluate the precautions taken to deal with
calibration issues between laboratories during a time of
technological progress.

Methods
Genotyping and comparison to the NMDR
In order to check genotyping quality in the NMDR, 20
individual tissue samples from each year (1997-2008)
were randomly selected for re-analysis. In total, 240
samples were subject to DNA isolation and amplifica-
tion of 10 microsatellites that the register is based on:
GT509, GT310, GT211, GT575, GT023 [18], GATA098,
GATA417, GATA028 [19], EV001PmG09074,
EV037MnG09081 [20]. Genotyping was conducted at
the Institute of Marine Research in Bergen, Norway.
This is the laboratory currently with responsibility for
the register. In short, DNA was isolated from alcohol
preserved muscle tissue in 96 well format using a com-
mercial kit (Qiagen DNeasy). For Lab 1, Lab 2 and Lab
4 microsatellite DNA markers were amplified in three
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multiplex reactions, which was consistent with the origi-
nal protocol. Lab 3 amplified fragments in two multi-
plexes for a single year class only. Full genotyping
protocol is available [21].
After the first round of genotyping, individuals not

providing full amplification of all markers were subject
to PCR and electrophoresis again. Once samples were
100% genotyped, these data were compared to the geno-
types stored in the DNA-register. A set of mismatch
individuals (i.e., individuals where the genotype for at
least one marker deviated between register and re-analy-
sis here) was then subject to PCR and electrophoresis
for a further 3-5 times in order to fully elucidate the
genotype. All genotyping was manually inspected by two
experienced researchers. After repeated analyses, geno-
types still deviating from the DNA-register were consid-
ered as the true genotype, when, and only when, the re-
run sample gave 100% consistent genotypes for the
deviating marker in the 3-5 runs it was subject to in the
present study. All genotyping errors detected within ful-
filled this criterion, and no diffuse or inconsistent geno-
types were accepted as the true genotype.
Six individual samples failed to amplify fragments for

most of the markers, and were therefore excluded from
the statistical analyses (two samples from 1997, one
from 2008). The low and only partially amplified geno-
type peaks were indicative of poor DNA quality, prob-
ably caused by sub-optimal storage of those individual
samples. While it is acknowledged that exclusion of
these six samples may potentially decrease the overall
estimate of genotyping errors if they were also of sub-
optimal quality when originally genotyped, it was not
possible to examine this here. Nevertheless, the primary
purpose of this study, to test genotyping quality in a
DNA register over time, through the application of a
mixed regression model, was not compromised by
exclusion of these six samples.

Statistical methods
Logistic regression [22] was used to account for expla-
natory variables, such as locus effects, in the error rate
estimation. It was not a priori assumed that errors
occur independently, neither for the two alleles within a
locus nor across loci. Errors are said to be indepen-
dently distributed within a locus of an individual, if the
event that the first allele (gene copy) is erroneously
recorded does not affect the probability of an error
occurring at the second allele of that same locus. Such
independence yields the relationship

pl = 1 − (1 − pa)2, (2)

where pl is the per-locus error rate, and pa is the per-
allele (gene copy) error rate. The per-locus error rate is

the probability that at least one error occurs at a locus
of an individual. The data was analyzed both with
respect to pl and pa, but no differences of consequence
were detected. We shall therefore focus on pl, as it is
the most commonly used metric among the two [23,24].
Mixed (regression) models are commonly used to

relate correlated observations to explanatory variables
[22]. We distinguished between fixed effects (LAB,
LOCUS and YEAR), which affected all individuals in the
population equally, and random effects which were indi-
vidual specific effects. The fixed effects LAB and
LOCUS were taken to be factors (ANOVA type) repre-
senting systematic differences between laboratories and
loci caused by, e.g., diverging protocols and differing
ranges of allele sizes. One parameter was estimated per
level of the factors. The fixed effect YEAR was a contin-
uous covariate (regression type), expressing the effect of
a steady advance in technology. Two random effects,
IND (individual sample) and MP:IND (intersection
between individual and multiplex assay), were consid-
ered. IND affected the error rate at all loci equally,
while MP:IND affected only those loci (within a particu-
lar individual) ran together on a multiplex. They
expressed discrepancies due to varying sample quality
and mishandling of equipment, respectively, and were
taken to be normally distributed with mean zero and
standard deviations sIND and sMP:IND, respectively. Low
values of sIND and sMP:IND means little difference
between individuals, and hence little impact on the
error rates, because the random effects are centered at
zero. Due to the facts that no laboratory has been
responsible for the analyses more than three years
(Table 1), and that not all labs were assessed each year
in the study (Table 1), YEAR and LAB are confounded
covariates, and consequently never appear in the same
model (Table 2).
Because the response variable was dichotomous (i.e.,

error vs. not error), a logistic regression model was used
([22], p 274). Denote by pil the probability that an error
occurs at locus l of individual i. A logistic map was used
to model the effect of the explanatory variables on pil,

pil =
eηil

1 + eηil
, (3)

where hil is a linear predictor, expressed in Witkin-
son-Rogers notation as

η = LAB + LOCUS + YEAR + IND + MP : IND. (4)

This is referred to as the full model. The notation in
(4) is standard in, e.g., R, and is a simplification of
ηil = βLAB

labi
+ βLOCUS

l + βYEAR(yeari − 2000) + bIND
i + bMP:IND

il ,
where the b’s are regression parameters, the b’s are nor-
mally distributed random variables and labi denotes the
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laboratory of the i’th individual. There were in total 215
random bIND parameters, and 645 bMP:IND parameters.
Submodels, with individual terms in (4) removed, were
also fitted to the data. For models without “LOCUS” the
error rate does not depend on the index “l“, and we
hence write pi. In the absence of both IND and MP:
IND, the model reduced to an ordinary logistic regres-
sion with no individual specific effects. The AIC criter-
ion [25] was used to balance goodness of fit and
parsimony, and Akaike weights ([26], p 75) were calcu-
lated. The Akaike weight for the k’th model is

wk =
e
−

�k

2

18∑
k=1

e
−

�k

2

,

where Δk = AICk - AICmin, and AICmin is the smallest
AIC-value. For models where individual specific effects
(IND or MP:IND) were included, the probability (3) was
averaged over individual effects using Monte Carlo
simulations (Appendix A).
All models were fit using the R package

“glmmADMB” which builds on the software package
AD Model Builder (AD Model Builder project, 2009).
Because glmmADMB could not fit models with more
than one random effect present simultaneously, we
relied on SAS PROC GLIMMIX in such situations. A
bootstrap approach was used to obtain the standard
deviations of the error rate, p, given by (3). Individuals
were randomly sampled from the data with replacement
to create 500 bootstrap datasets. For each of these the
model was refit, and finally, standard deviations were
calculated empirically across the 500 bootstrap replica.
Due to the use of sampling with replacement, the num-
ber of genotyping errors differed across the replica, and
also from the original data set. When fitting a model
using bootstrap replica which happened to have few
genotyping errors, the software sometimes produced

warnings indicating non-convergence of the numerical
method. However, such warnings were rare (1.6% for
M1, 0.6% for M10, 3.6% for M15 and zero for the
others), and only modestly affected the estimated stan-
dard deviations. To obtain an upper bound for the effect
of the non-convergence, we counted all error estimates
from bootstrap replica producing warnings as zero.
Results for M1 are showed in Table 3.

Results
Descriptive statistics
The mean genotyping error rate varied both between
laboratories and from year to year (Table 1). For the
analyses of the catches from 2007-8, conducted by Lab
4, the mean error rate was approximately a ninth of
what was found for the oldest analyses, conducted by
Lab 1. Lab 3 and locus EV001 had error rates of zero,
and were therefore left out of the subsequent statistical
analyses, as these data did not provide information
about other parameters than those associated with the
respective factor levels (Lab 3 and locus EV001). Using
the pa estimated from the data, (2) predicted the corre-
sponding value of pl to three decimal points for Lab 4
(Table 1). On the other hand, for Lab 2 and Lab 1 the
predicted values of pl (still using the estimated pa and
(2)) were off by 33% and 19%, respectively (Table 1),
indicating the presence of individual or multiplex assay
effects, which is consistent with [8]. False allele size con-
stituted 18 of the 31 errors (Table 4). A third of those
were incorrectly called at both gene copies, again point-
ing in the direction of the presence of individual sample
or multiplex effects. The remaining errors were ten false
homozygotes (i.e., the true genpotype was a heterozy-
gote) and three false heterozygotes (i.e., the true geno-
type was a homozygote).

Model selection
Models were arranged according to their AIC value,
which balances goodness of fit against model complexity

Table 1 Empirical estimates of error rates by laboratory.

LOCUS ALLELE PRED

Lab (country) Period Sample size pl SD(pl) pa SD(pa) p∗
l

Lab 1 (Canada) 97-02 116 (120) 0.02373 0.00443 0.01422 0.00246 0.02825

Lab 2 (Iceland) 03-05 60 0.00500 0.00288 0.00333 0.00166 0.00666

Lab 3 (Iceland) 06 19 (20) 0 - 0 - 0

Lab 4 (Norway) 07-08 39 (40) 0.00256 0.00256 0.00128 0.00128 0.00256

Total 97-08 234 (240) 0.01325 0.00236 0.00812 0.00131 0.01617

The column “Period” shows the catch period for which each laboratory had responsibility for the NMDR. Except for the catches from 1997-98, which were
genotyped in the year 2000, all individuals were genotyped the year following capture. The column “Sample size” contains the number of successfully
regenotyped individuals from the laboratories, with the total number of regenotyping attempts in parenthesis. Initially 20 samples were selected from each year,
but 6 samples had to be thrown out because of amplification failure. Locus EV001 was included for all probabilities of error in this table. In columns labeled
LOCUS and ALLELE, pl and pa are the mean error rates (number of errors detected divided by number of loci/alleles), and SD(p) the corresponding empirical
standard deviations. The column labeled PRED contains the predicted values, p∗

l , of pl, calculated from pa using (2).
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(Table 2). The covariate YEAR is confounded with LAB,
but had a better fit than LAB according to the AIC cri-
terion. Models including YEAR had a combined Akaike
weight of 0.86, while the Akaike weights of models con-
taining LAB only summed to 0.14 (Table 2). Part of the
reason is that YEAR gave a more parsimonious repre-
sentation (1 extra parameter) of the fact that technology
has improved over time than did LAB (2 extra para-
meters). The addition of LOCUS to a model always

improved the fit (e.g., M1 vs. M2, Table 2). The com-
bined Akaike weight of models including IND was 0.95,
whereas models featuring MP:IND had Akaike weights
summing to 0.024 (Table 2). In all cases where IND and
MP:IND were present in the same model, sMP:IND was
estimated to be equal to zero, reducing the model to
one including only IND. Therefore, models including
both random effects were omitted from further
consideration.

Table 2 Candidate model set for NMDR study.

Model Fixed Rand s AIC p SD(p) CV(p) W

M1 LOCUS + YEAR IND 1.35 295.7 0.0774 0.0214 0.28 5.76e-1

M2 YEAR IND 1.24 297.5 0.0243 0.0045 0.19 2.34e-1

M3 LAB + LOCUS IND 1.43 299.3 0.0514 9.52e-2

Lab1 0.0823 0.0242 0.29

Lab2 0.0185 0.0088 0.48

Lab4 0.0102 0.0089 0.87

M4 LAB IND 1.32 301.0 0.0162 4.07e-2

Lab1 0.0261 0.0045 0.17

Lab2 0.0054 0.0024 0.44

Lab4 0.0029 0.0025 0.86

M5 LOCUS + YEAR - - 303.1 0.0768 0.0239 0.29 1.42e-2

M6 LOCUS + YEAR MP:IND 1.22 303.5 0.0771 0.0237 0.33 1.17e-2

M7 YEAR - - 303.6 0.024 0.0046 0.2 1.11e-2

M8 YEAR MP:IND 1.13 304.0 0.0242 0.0047 0.2 9.08e-3

M9 LAB + LOCUS - - 307.1 0.0511 1.92e-3

Lab1 0.0822 0.0263 0.32

Lab2 0.0182 0.0118 0.65

Lab4 0.0094 0.0097 1.04

M10 LAB + LOCUS MP:IND 1.31 307.2 0.0516 1.83e-3

Lab1 0.0828 0.0405 0.49

Lab2 0.0193 0.0172 0.89

Lab4 0.0102 0.0131 1.28

M11 LAB - - 307.5 0.016 1.58e-3

Lab1 0.0259 0.0048 0.19

Lab2 0.0056 0.0032 0.58

Lab4 0.0028 0.0031 1.08

M12 LAB MP:IND 1.20 307.9 0.0162 1.29e-3

Lab1 0.0261 0.038 0.15

Lab2 0.0056 0.081 1.44

Lab4 0.0028 0.062 2.15

M13 LOCUS IND 1.52 308.3 0.0513 0.0129 0.25 1.06e-3

M14 - IND 1.41 309.9 0.016 0.0026 0.17 4.75e-4

M15 LOCUS MP:IND 1.50 318.3 0.0523 0.0057 0.11 7.12e-6

M16 - MP:IND 1.36 319.1 0.0162 0.0055 0.36 4.78e-6

M17 LOCUS - - 319.5 0.0512 0.0156 0.3 3.91e-6

M18 - - - 319.8 0.016 0.0030 0.2 3.37e-6

Model fit and estimated error rates for different covariate models sorted according to the AIC score (column five). “s“ contains the standard deviations of the
random effects. The values in “p” are the probabilities that an error occurs at locus GATA417 in year 2001. Whenever LAB is included in the model, weighted
means and laboratory specific error rates are given (Lab 1, Lab 2, Lab 4). “SD(p)” and “CV(p)” are the bootstrap based standard deviations and coefficients of
variance of p. The column “W” contains the Akaike weights of the models.
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Error rates
The non-model based mean error rate across all labs
and years, including locus EV001 and Lab 3, was 0.013
per locus and 0.008 per allele (Table 1). Excluding
EV001 and Lab 3, the mean error rate was 0.016 per
locus. Under the best fitting model (M1), the across-
locus error rate was 0.022 in the middle of the period
(year 2001). The locus with the highest error rate was
GATA417, at which the rate (0.077) was almost three
times as high as at any other locus (Table 3). In 2004
and 2008 the error rates for GATA417 had dropped to
0.032 and 0.008, still according to M1.
Models containing the same fixed effects yielded simi-

lar error rate estimates, regardless of the choice of ran-
dom effects (e.g., M1, M5 and M6, Table 2), so to
compare laboratories, we discuss models including LAB
and LOCUS apart from models featuring only LAB. In
both scenarios the error rate at Lab 1 was several times
higher than at the other laboratories, and Lab 4 always
had lower error rates than Lab 2 (e.g., M3, Table 2).
This is consistent with the estimated regression coeffi-
cient for YEAR translating to a decreasing annual trend.
Note that, in Table 2, p was calculated for GATA417,
where errors were abundant, and in the year 2001,

which is why p rose when LOCUS or YEAR was added
to a model (e.g., M14 vs. M2, and M2 vs. M1, Table 2).
Our suspicion that errors tend to accumulate within

individuals was strengthened by s being greater than
zero in all models featuring random effects (Table 2).
The importance of this fact becomes obvious when con-
sidering how it affects the probability of more errors
occurring at individuals with at least one error. Due to
the dependence between loci, we expect more than one
in five such individuals to have at least two errors,
whereas independence would yield less than one in ten
(Table 5).
In the mixed model framework, the per locus error

probability varies among individuals according to a dis-
tribution (Figure 1). For the estimated value of s this
distribution was unimodal, but skewed to the right.
Because the random effect was shared among loci, indi-
viduals in the right hand tail of the distribution were
error prone at all loci. In an artificial experiment, where
s was increased by a factor of three, the population dis-
tribution became bimodal, with the two groups of indi-
viduals being 1) those with almost zero error rate 2)
those with pil > 0.50 (Figure 1).
Table 6 shows the mean allele lengths for each mar-

ker, and the corresponding coefficients for model M1
(Table 2), sorted according to mean error rate.
GATA417 was by far the most error prone locus. At the
most ancient laboratory, Lab 1, there were nine occur-
rences of the true genotype, 221, being erroneously
recorded as 220 (data not shown) for GATA417. Both
220 and 221 were present on the allelic ladder. Apart
from those, GATA417 had two errors.

Discussion
To our knowledge, this study represents the first investi-
gation of genotyping error rates in a wildlife DNA regis-
ter, and the first application of mixed models to
examine multiple effects of different factors influencing
the genotyping quality, such as time, microsatellite mar-
ker and sample quality.
A major challenge with microsatellite data sets is shar-

ing data between laboratories, and comparing data from

Table 4 Summary of genotyping errors observed in the NMDR according to laboratory.

Lab 1 Lab 2 Lab 4

Type of error Total = 1 bp >1 bp Total = 1 bp >1 bp Total = 1 bp >1 bp

Single false allele size 10 7 3 2 0 2 0 0 0

Double false allele size 6 1 5 0 0 0 0 0 0

False homozygote 9 5 4 1 1 0 0 0 0

False heterozygote 2 0 2 0 0 0 1 0 1

Columns labeled “Total” contain the total number of errors of a specific kind for each laboratory. False allele size is when an allele was erroneously sized
compared to the true size for single and double alleles. “ = 1 bp” denotes that the erroneously called allele is a distance one from the true allele, whereas “>1
bp” means that the distance was greater than one. False homozygote is where the true genotype was a heterozygote, and false heterozygote is where the true
genotype was a homozygote.

Table 3 Estimates of (per locus) error rates for best
fitting model (M1).

Locus p SD(p) CV(p)

GATA417 0.0774 0.0214 (0.0241) 0.28

EV037 0.0283 0.0112 (0.0122) 0.41

GATA028 0.0283 0.0130 (0.0134) 0.46

GT575 0.0213 0.0110 (0.0112) 0.52

GT509 0.0141 0.0093 (0.0095) 0.66

GT310 0.0141 0.0101 (0.0102) 0.71

GT211 0.0141 0.0083 (0.0085) 0.59

GT023 0.0141 0.0091 (0.0092) 0.64

GATA098 0.0071 0.0084 (0.0084) 1.19

EV001 0 0 -

The values in “p” are the probabilities that an error occurs at a particular locus
in year 2001. “SD(p)” and “CV(p)” are the bootstrap based standard deviations
and coefficients of variance of p. In parenthesis are the “upper limit” standard
deviations (i.e., we included bootstrap replica which produced warning
messages as having zero errors).
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different analytical platforms. Despite the importance of
these challenges, systematic shifts of allelic scores have,
with few exceptions, not been thoroughly examined (e.
g., [6,15,16]). Furthermore, to our knowledge no studies
have investigated how calibration between laboratories
over time influences the ability to produce calibrated
data. Although nine true values of 221 were recorded as
220 at GATA417 and Lab 1, we did not detect any sys-
tematic shift of allelic values for any of the markers
implemented in the NMDR. This was despite the fact
that the analyses were conducted in four separate
laboratories in three countries, and over a period almost
stretching a decade. We conclude that even though the
genotyping for the NMDR has been conducted by sev-
eral laboratories, and during a period in which genotyp-
ing platforms have displayed significant technological
changes from gel to capillary based electrophoresis
instruments, systematic genotyping errors due to allele
size calibration were not present. This demonstrates the
importance of calibrating genotyping scoring between
laboratories, in addition to conducting blind proficiency

tests prior to new laboratories overtaking an existing
DNA register, as was performed for the NMDR.
Assuming genotyping errors disperse identically and

independently (or almost independently) across the mar-
kers within an individual can be convenient when deal-
ing with calculations regarding the genotyping error
rate. Among studies utilizing simulations, it is therefore
a common simplification [10,24,27,28]. However, such
an assumption is often not realistic [7,27,29]. This is
well illustrated by a study of genotyping errors in 510
loci [8]. In that study, ten errors were detected, and all
occurred in the same individual. Within-individual
dependencies like this can easily be modeled by increas-
ing the standard deviation of the random effects MP:
IND and IND in the mixed models (4).
Because all individual whales caught by Norway are

required to be genotyped at all markers in the NMDR,
samples of questionable quality cannot be disregarded
or left as missing data, as is possible in many studies
[8,30]. Despite this fact, the overall error rate of 0.013
per locus in the NMDR is in concordance with the pub-
lished literature on microsatellites from tissue samples
[7-9,31]. Still, the inclusion of bad samples in the analy-
sis is an error source beyond the control of any labora-
tory, and contributes to the standard deviation of IND,
sIND, representing the effect of variability in sample
quality between individuals, being greater than zero in
all models featuring IND (Table 2).
We initially investigated an interaction effect between

individual and multiplex (MP:IND), but it turned out to
be superfluous if a model also contained an individual
random effect (IND). Further, the inclusion of MP:IND
alone in a model not containing IND did not affect the
model fit much (Table 2). This leads to the conclusion
that sample quality was dominating over the mishand-
ling of multiplex assays as a source of errors, but the
same conclusion may not apply in other studies.
Among the fixed effects, YEAR was the most impor-

tant. Because LAB and YEAR were confounded, we were
unable to assess their individual impacts on the genotyp-
ing error rate. However, models including YEAR had the
best AIC scores (Table 2). This can partly be explained
by LAB being a less parsimonious representation of tech-
nological and procedural advances than YEAR, and partly
by models including YEAR being closer to the data than
models including LAB (Table 2). Examining the differ-
ence between technological and procedural advances, we
conclude that the considerable impact of sample quality
(IND) relative to that of the mishandling of multiplex
assays (MP:IND) implies that the importance of YEAR is
mostly due to progress regarding apparatus. Although
the complete eradication of genotyping errors seems
unlikely, we have documented a positive development
taking place over the last decade in the NMDR.

Figure 1 Probability densities for error rates, p, for model M1
(SD (h) = 1.35) and a model with a three times larger standard
deviation (SD (h) = 4.05).

Table 5 Multilocus error rates.

P(E > 0) P(E = 1) P(E > 1) P(E > 1|E > 0)

Dep. 17.0 13.4 3.60 21.2

Ind. 20.1 18.3 1.77 8.84

Probability of having E errors in a 10 loci profile for model M1. The top row
(Dep.) assumes dependence between the loci within an individual, and the
bottom row (Ind.) assumes independence. P(E > 1|E > 0) is the conditional
probability of having two or more errors given that an error occurs.

Haaland et al. BMC Genetics 2011, 12:36
http://www.biomedcentral.com/1471-2156/12/36

Page 7 of 10



In addition to the time aspect, a large variation
between the genotyping error rate on different markers
was detected (Table 6). Such variation was expected
[29], and was the reason for the positive impact of
LOCUS on the model fit. It is also known that larger
alleles may be more prone to genotyping errors than
shorter ones [32-34], which is consistent with the trend
seen here (Table 6). The relationship between allelic size
and error rate is not deterministic however, as illu-
strated by locus EV001 harboring zero errors (Table 6).
Initially the R function “lmer” was used to fit the

mixed models. However, due to convergence problems
on the bootstrap datasets, we switched to the R package
“glmmADMB” which turned out to be more numerically
robust, but had the limitation that only a single random
effect can be included at a time. This is the reason why
models including both the factors IND and MP:IND
were run in SAS.
Since the beginning of the millennium, the number of

peer reviewed articles mentioning genotyping errors has
drastically increased [9]. It has been discussed how to
best obtain estimates for genotyping error rates
[23,31,35], reduce the number of errors [7,8] and statis-
tically handle the uncertainty necessarily accompanying
errors [10,27]. We have focused on how to accurately
model the genotyping error rate. This is important both
in order to understand the underlying mechanisms con-
cerning errors, and to be able to use data for purposes
of statistical inference.
The presence of genotyping errors weakens the ability to

accurately match individual samples to a DNA register.
On average there is a 17% chance of a mismatch between
a true multilocus genotype and the corresponding

genotype in the NMDR for data accumulated over a dec-
ade (Table 5). Tissue samples from all individuals are
stored, so it is possible to analyze them again, and thereby
correct prospective errors. This is handy, e.g., in a juridical
setting [12], where a high confidence in the validity of the
genotypes is imperative in order to take legal action, and
only few samples are involved. The use of genetic tagging
to obtain abundance estimates [36-39] and to monitor
populations [19,40-42] is widespread. For such applica-
tions, reanalyzing all close mismatches (sample matching
at all but a few markers) may not be feasible due to finan-
cial or other reasons. If a rule is applied to allow for close
mismatches to count as a recapture, the within-individual
dependence structure described by s is of great impor-
tance. Assuming independence (s = 0) when it is not the
case, the probability of more errors occurring at indivi-
duals harboring at least one error will potentially be
grossly underestimated (Table 5). Genotyping errors may
also strongly influence the outcome of parentage analysis
[10,43]. As with individual identification, one can compen-
sate by assigning parentage even if a candidate parent-off-
spring pair does not have at least one allele in common at
all markers [44,45]. A somewhat related matter is the
degree of relatedness represented by LOD score [46,47]
used in, e.g., [48-50] to do inference about population
structure and size from identified close kin. In both cases
it matters whether few individuals contain many genotyp-
ing errors or the errors are more evenly spread.

Conclusions
Microsatellite DNA markers with associated genotyping
quality issues can be challenging to handle, especially in
the context of a DNA register that requires accurate
data over many years. Nevertheless, results of the pre-
sent study have demonstrated that accurate, calibrated
and reproducible genotypic data are possible to achieve
despite conducting analyses over a number of years and
a number of analytical platforms. In addition, the mixed
models approach implemented in the present study has
provided further clarification of how genotyping errors
occur. Once an error is present at one marker of an
individual sample, it is more likely that other markers of
that same individual have also been erroneously
recorded. This has important consequences when mak-
ing inference on individual matches, parental assign-
ment, or degree of relatedness.

Appendix A
In this appendix our first goal is to explain how the indi-
vidual specific error probability (3) is averaged over the
individual effects. Letting pl = P (Error at locus 1), we get

pl =
∫ ∞

−∞

eη

1 + eη
fl(η)dη, (5)

Table 6 Error rates and allele lengths.

Parameter Coef SD(coef) Amax Ā p̄
GATA417 1.59 0.38 252 223 0.0512

EV037 0.40 0.52 211 203 0.0186

GATA028 0.40 0.52 223 202 0.0186

GT575 0.09 0.58 166 155 0.0140

GT509 -0.35 0.68 217 203 0.0093

GT310 -0.35 0.68 125 117 0.0093

GT211 -0.35 0.68 116 106 0.0093

GT023 -0.35 0.68 115 103 0.0093

GATA098 -1.08 0.93 107 93 0.0047

EV001 - - 175 153 0

YEAR -0.36 0.11 - - -

Intercept -4.74 0.45 - - -

VAR(IND) 1.81 0.94 - - -

The second column is the values of the coefficients in M1 (Table 2), and the
third is their standard deviations. Amax is the length of the largest allele, and

Ā is calculated using the population allele frequencies. p̄ is the mean error
rate at the locus. EV001 was not in the analyses, and has therefore no
coefficient in M1. Its correct value would have been -∞.
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where fl(h) is the Gaussian probability distribution
function at locus l with mean μl = LAB + LOCUSl +
YEAR, and variance σ 2

l = σ 2
IND + σ 2

MP:IND. Drawing N dif-
ferent hil (i = 1,...,N) from fl (h), (5) may be approxi-
mated by the Monte Carlo estimate

pl ≈ 1
N

∑
i

eηil

1 + eηil
=

1
N

∑
i

pil. (6)

A second goal of this appendix is to derive Table 5.
Begin by letting E be the number of errors at an indivi-
dual across all loci. For an individual i

Pi(E > 0) = 1 −
∏

l

(1 − pil), (7)

and,

Pi(E = 1) =
∑

k

pik

∏
l�=k

(1 − pil). (8)

where pil is as in (6). Assuming that errors are inde-
pendently distributed across the loci of that same indivi-
dual, we may simply substitute pil in (7) and (8) with pl
from (6), to get the population means

P(E > 0) = 1 −
∏

l

(1 − pl),

as already seen in (1), and

P(E = 1) =
∑

k

pk

∏
l�=k

(1 − pl).

Without the independence assumption, the calcula-
tions require the simultaneous consideration of all nine
loci for each of the N simulated individuals. Hence,
Monte Carlo estimation gives

P(E > 0) ≈ 1
N

∑
i

Pi(E > 0),

with Pi (E > 0) given by (7), and

P(E = 1) ≈ 1
N

∑
i

Pi(E = 1),

with Pi (E = 1) given by (8). In both the indepen-
dence- and dependence scenario

P (E > 1) = P (E > 0) − P (E = 1) ,

and

P(E > 1|E > 0) =
P(E > 0) − P(E = 1)

P(E > 0)
= 1 − P(E = 1)

P(E > 0)
.
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