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Abstract
The human guanylyl cyclase C receptor is the target for the heat-stable entero-

toxin (STa) from enterotoxigenic Escherichia coli, which is responsible for more

than 200 million episodes of diarrhea and 300,000 deaths per year in developing

countries. The STa toxin is currently a candidate for the generation of a toxoid

vaccine, and the determination of the receptor-ligand interaction would provide

invaluable information for its design. In this study, we have prepared a set of

three-dimensional models for the extracellular, ligand-binding domain of the hu-

man GC-C receptor (GCC-ECD), based on homology with the homologous natri-

uretic peptide receptors (NPRs). The modelled GCC-ECD monomer was similar

to previously published models, and the models for the dimer enabled us to iden-

tify residues potentially involved in the oligomerization of the receptor, as well as

the receptor-ligand interaction. Those residues are located within two regions of

the GCC-ECD, from Ser75 to Ser127 and from Glu175 to Arg218. Previously pub-

lished studies have shown that point mutations in the first region have an effect

on ligand-binding, but the second region has not been investigated at all. Two

residues that had been previously proposed as the ligand-binding residues were

located within the hinge region between the two sub-domains of the GCC-ECD

models. Additional candidate template structures were also obtained through

threading, all belonging to the Type 1 periplasmic binding fold superfamily. Fi-

nally, we have taken the first step towards the setup of in vitro interaction studies

by cloning the pro-sequences for the endogenous ligands of the GC-C receptor,

guanylin and uroguanylin. A fragment of the GCC-ECD was also cloned, and

it was successfully expressed in E. coli. Those results provide a basis for further

interaction studies, both experimentally and using bioinformatics.

I



Abbreviations

BLAST Basic Local Alignment Search Tool

BLASTp protein BLAST

CDD Conserved Domain Database

PSI-BLAST Position Specific Iterative -BLAST

ETEC enterotoxigenic Escherichia coli

ECD Extracellular domain

HMM Hidden Markov Model

GC Guanylyl cyclase receptor

GC-C Guanylate Cyclase C receptor

GST Glutathione-S-transferase

NCBI National Center for Biotechnology information

GCC-ECD extracellular domain of the GC-C receptor

NPR-(A,B,C) Natriuretic Peptide Receptor (A, B, or C).

NPR(A,B,C)-ECD extracellular domain of the NPR-A, B or C receptor

NPRs Natriuretic Peptide receptors

MAFFT Multiple Alignment Fast Fourier Transform

PCR Polymerase chain Reaction

PDB Protein Data Bank

PBPD1 Type 1 periplasmic binding fold superfamily

SDS Sodium Dodecyl Sulfate

SDS-PAGE SDS-Polyacrylamide Gel Electrophoresis

STa Heat-stable enterotoxin

STh STa toxin produced by human strains of ETEC

STp STa toxin produced by porcine strains of ETEC
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1 Introduction

1.1 Context of the study

1.1.1 Enterotoxigenic Escherichia coli mediates diarrhea

through several toxins

Diarrheal diseases account for more than 3 million deaths per year amongst young

children in the developing countries, with Enterotoxigenic Escherichia coli (ETEC)

being the most commonly isolated pathogen (World Heath Organization, 2006).

It is also the main cause of traveler’s diarrhea (Navaneethan and Giannella, 2008;

Okoh and Osode, 2008).

ETEC strains are a type of E. coli secreting toxins in the host’s intestine,

causing increased fluid excretion leading to diarrhea. They express colonization

factors allowing their attachment to the epithelium in the small intestine where

they release different exotoxins, the heat-stable (STa) and/or the heat-labile (LT)

enterotoxins chief amongst them (Sack et al., 1975). The LT toxin is a 84 kDa,

hexameric protein very similar to the cholera toxin (Spangler, 1992). The STa

toxins are small peptides secreted by the pathogen, and are characterized by their

resistance to the effects of high temperature (Sack, 1975). The STa toxin secreted

by human ETEC strains, commonly known as STh, is a 19 amino-acid long peptide

which is currently one of the targets for the development of a vaccine against

ETEC-induced diarrhea (Aimoto Saburo et al., 1982; Walker et al., 2007). The

STa toxins were shown to mediate increased fluid excretion via an augmentation of

intracellular cGMP, and a membrane receptor, named the heat-stable enterotoxin

receptor (STaR) was identified in the beginning of the 80s (Field et al., 1978;

Frantz et al., 1984). It was found later that the guanylyl cyclase activity due

to STa was located within the receptor itself, and it was renamed to guanylyl

cyclase receptor C (GC-C, Schulz et al., 1990; de Sauvage et al., 1991). Evidence

of another, GC-C independent pathway, exist in kidney epithelial cells (Sindiće

et al., 2002; Carrithers et al., 2004).

1



Introduction 1.1. Context of the study

1.1.2 The STa toxins are small, highly structured peptides

STa toxins are expressed as precusors

The STa toxins are encoded by three different estA alleles, with estA1 coding for

the STa secreted by the porcine strains of ETEC , named STp, and the others for

STh (Guzman-Verduzco and Kupersztoch, 1989). All alleles have a 72 residue open

reading frame and both toxins are synthetized as a pre-pro-precursor (Okamoto

and Takahara, 1990; Rasheed et al., 1990). While the 19 amino-acid long pre-

sequence is cleaved off after the initiation of translation, allowing translocation

of the pro-precursor to the periplasm of the cell, the location for the cleavage of

the pro-sequence remains unclear (Yamanaka et al., 1997; Yang et al., 1992). The

sequences of the mature toxins are NSSNYCCELCCNPACTGCY for STh and

NTFYCCELCCNPACAGCY for STp. The 14 C-terminal residues form the toxic

domain of the STa peptides, its small size making it non-immunogenic and thus a

difficult candidate for the generation of a toxoid1 vaccine (Yoshimura Shoko et al.,

1985). It contains three disulfide bridges required for biological activity, involving

cysteines 5-10, 6-14 and 9-17 of STp and 6-11,7-15 and 10-18 of STh (Gariépy

et al., 1987; Shimonishi et al., 1987). Their formation is supposed to occur inside

the periplasmic space and involve the disulfide bond formation protein A (DsbA),

although it has been suggested to happen outside the cell in a DsbA-independent

fashion (Yamanaka et al., 1994; Batisson and Der Vartanian, 2000).

STa toxins form a spiral maintained by disulfide bonds

The reference structure for the STa toxins is the crystal structure of a synthetic

analog of STp (PDB entry 1ETN), Mpr5-STp(5-17), although the structure of the

toxic domain of STa has been studied earlier by NMR spectroscopy (Ozaki et al.,

1991; Gariépy et al., 1986). The analog is there described as a right-hand spiral

composed of three β-turns, held together by the disulfide bonds mentionned earlier

(Figure 1.1a). The segments composing the two first β-turns along the sequence

form a cleft into which three water molecules are present, connecting Ala-15 to

Cys-6 and Glu-7. Another is buried between the second and the third β-turn,

1toxin whose toxicity has been weakened but which retains its immunogenicity

2



Introduction 1.1. Context of the study

(a) (b)

Figure 1.1: Structure of STp analog Mpr5-STp(5-17) (Ozaki et al., 1991; PDB id
1ETN).(a) Stick representation of the right-hand spiral. The spiral is formed by a succession
of three β-turns along the sequence. The residues forming them are colored in orange (Cys-6
to Cys-9), green (Asn-11 to Cys-14), and teal (Cys-14 to Cys-17). The disulfide bonds holding
the structure are represented in yellow. (b) Stick representation of the STp analog including
solvent and hydrogen bonds. The water molecules surrounding the analog are represented by
red spheres and the hydrogen bonds by black dashes. This figure was generated using PyMol.

connecting Pro-12 to Cys-14.

More recently, the STp(5-17) fragment has been crystallized, showing the same

global fold as the analog, even though the structural elements are described differ-

ently (Sato and Shimonishi, 2004). The structure of STh(6-18), which has been

determined by NMR, confirms the crystallographic data obtained for the STp

monomer (Matecko et al., 2009).

The STa toxins are bacterial enterotoxins similar to mammalian guanylin

The STa toxins produced by ETEC belong to a larger family of heat-stable entero-

toxins produced by other pathogens. The first members of this family were purified

in 1983 from Klebsiella pneumoniae and Yersinia enterocolitica, for which an addi-

tional one was found later (Klipstein et al., 1983; Takao et al., 1983; Yoshino et al.,

1995). The toxins produced by different strains of Vibrio cholerae were purified

over following years (Takao et al., 1985; Arita et al., 1986; Takeda et al., 1991).

Similar toxins were purified from Citrobacter freundii and the enteroaggregative

Escherichia coli (Guarino et al., 1987; Savarino et al., 1991). The STa from the

3



Introduction 1.1. Context of the study

1 2 3 1 2 3

STh NSSNYCCELCCNPACTGCY
STp .NTFYCCELCCNPACAGCY
Guanylin(human) ...PGTCEICAYAACTGC.
Guanylin(rat) ...PNTCEICAYAACTGC.
Guanylin(pig) ...PSTCEICAYAACAGC.
Uroguanylin(human) ...NDDCELCVNVACTGCL
Uroguanylin(rat) TIATDECELCINVACTGC.
Uroguanylin(pig) TIAGDDCELCVNVACTGCS
Lymphoguanylin(opposum) ...QEECELCINMACTG.Y

Figure 1.2: Alignment of STa,
guanylin, and uroguanylin pep-
tides. The UniProt sequences corre-
sponding to the mature STa toxins were
aligned with the endogenous guanylin
and uroguanylin from human, pig, and
rat (mouse sequences being identical to
rat sequences). The cysteines are la-
belled 1, 2 or 3, according to the disulfide
bond they form (disulfide bond 1 is only
present in STa toxins). This figure was
generated using the TeXshade package
for latex.

latter, named EAST1, is thought to have a mechanism of action similar to that of

the STa toxins (Savarino et al., 1993).

Interestingly, the mammalian receptor for STa has three other endogenous

ligands in the intestine and kidney, guanylin, uroguanylin, and lymphoguanylin

(Figure 1.2; Currie et al., 1992; Hamra et al., 1993; Forte et al., 1999). Together,

these peptides form the guanylin peptide family.

As for STa, the endogenous guanylin peptides are small peptides expressed as

pre-pro precursors. Guanylin is 15 amino acids long, and its precursor contains

115 residues (Wiegand et al., 1992a,b). It is organized into a pre- signal peptide

of 19 residues, a pro- sequence, and the sequence for the mature guanylin at its

C-terminus (Schulz et al., 1992; de Sauvage et al., 1992). The mature peptide

contains 4 cysteine residues that are organized in two disulfide bonds between the

cysteine pairs 4-12 and 7-15 (Cuthbert et al., 1994; Nokihara et al., 1997). The

precursor for uroguanylin has a length of 112 residues, and the mature sequence is

16 amino-acids long (Hill et al., 1995; Li et al., 1997; Miyazato et al., 1996). It con-

tains the four cysteines conserved with guanylin, forming the same disulfide bonds.

The precursor for lymphoguanylin is 109 amino acids long, and the mature peptide

consist of the 15 C-terminal residues (Forte et al., 1999). The C-terminal cysteine

that was present in both guanylin and uroguanylin is replaced by a tyrosine in

lymphoguanylin, and thus lymphoguanylin possess only one disulfide bond.

The structure of guanylin fragments of various sizes has been studied by NMR,

revealing the existence of two topological forms termed A and B (PDB entries

1GNA and 1GNB, Skelton et al., 1994). The A-form has a fold highly similar to

4
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1.2. The Guanylyl Cyclase C receptor and

its interaction with STa

(a)

SP ECD TM KHD GC

human NPR-A

non conserved

similar

50% conserved

all match

human NPR-B

human GC-C

human GC-D

rat GC-E

human GC-F

rat GC-G

(b)

Figure 1.3: The Guanylyl cyclase receptor family. (a) Cartoon representation of the GC-
C receptor. The membrane is shown in dark grey and the cytoplasm in light gray. (b) Multiple
sequence alignment of mammalian guanylyl cyclase receptors. The UniProt sequence for the
human GC-C was used as query to perform a BLASTp search against the UniProtKB/Swiss-
Prot databases, and the 32 hits showing an E-value under 1e-50 were aligned using the MAFFT
alignment tool. Although all hits were used for conservation calculations, only the human se-
quences are shown (with the exception of the second sequence for the human GC-B receptor,
which is also hidden), or when non existing, the rat sequence. SP: signal peptide, ECD: ex-
tracellular domain, TM: transmembrane helix, KHD: kinase homology domain, GC: guanylate
cyclase catalytic domain, CTD: C-terminal domain. The alignment figure was generated using
the Texshade package for latex.

that of STa, whereas the B-form is described as an assembly of three turns in a

left-handed spiral (in opposition to a right-handed spiral, which is the fold adopted

by the A-form and STa). The presence of topological isomers was also determined

for uroguanylin, and their structures solved by NMR (PDB entries 1UYA and

1UYB, Marx et al., 1998). For both peptides, only the A-form is active.

1.2 The Guanylyl Cyclase C receptor and

its interaction with STa

The GC-C receptor is a member of the guanylyl-cyclase coupled receptors family

(GCs), which counts to this day 6 other members (Figure 1.3b). The guanylyl

cyclases A and B are receptors for the natriurectic peptides and are thus also known

as the natriuretic peptides receptors A and B (NPR-A and NPR-B; Chinkers et al.,

5
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1.2. The Guanylyl Cyclase C receptor and

its interaction with STa

1989; Chang et al., 1989). Three of the family members (GC-D, GC-E, and GC-F)

are orphans receptors involved in the sensory system (Yang et al., 1995; Fülle et al.,

1995). The last one is the murine renal guanylyl cyclase GC-G (Kuhn et al., 2004).

All GC receptors are single-pass transmembrane proteins, with their extracellular

domain (ECD) responsible for ligand-binding. The intracellular domain consists

of a kinase homology domain (KHD) that is attached to the catalytic domain

through a linker region. Some of the GCs contain a C-terminal domain (CTD).

Despite this common organization, the sequence idenity between the GCs is low:

local pairwise alignments between the full-length human GC-C sequence and the

other human GC receptors show that the human receptor shares less than 35% of

its sequence with NPR-A and B, and that only the intracellular domains of GC-D,

E and F are similar, with about 45% sequence identity.

The human GC-C receptor is coded by the gucy2c gene, located on chromosome

12, and its open reading frame corresponds to a 1073 amino-acid long polypeptide

for the human sequence (Mann et al., 1996). Transcription is regulated by the

hepatocyte nuclear factor-4 (HNF-4), the homebox protein CDX2, and the Protein

kinase C (Swenson et al., 1999; Park et al., 2000; Di Guglielmo et al., 2001; Roy

et al., 2001). The mature receptor, with a theoritical molecular mass around 121

kDa, is expressed as N-glycosylated forms of 130 and 145 kDa, the latter being the

active form found on the plasma membrane (Vaandrager et al., 1993; Ghanekar

et al., 2004). Expression is localized to the brush border of epithelial cells in the

small intestine as well as the crypts of the colon (de Jonge, 1975; Swenson et al.,

1996).

1.2.1 cGMP mediated GC-C signalling leads to

fluid secretion and cell proliferation in the intestine

The GC-C receptor catalyzes the synthesis of the cyclic guanosine monophosphate

(cGMP), thus increasing its intracellular concentration and triggering several sig-

nalling cascades (for a review, see Basu et al., 2010). The main target of GC-C

signalling is the cystic fibrosis transmembrane conductance receptor (CFTR), a

chloride ion channel member of the ATP-binding cassette (ABC) transporter fam-

ily. Activation of CFTR is achieved through several pathways illustrated in Figure

6
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its interaction with STa

Figure 1.4: Fluid secretion mediated by the GC-
C receptor. Synthesis of cGMP by the GC-C receptor
upon its activation by STa, guanylin, or uroguanylin trig-
gers several signalling cascades leading to fluid secretion
(see text for details). STa: heat-stable enterotoxin, GC-

C: guanylyl cyclase C receptor, cGMP: cyclic guano-
sine monophosphate, PKGII: cGMP-dependent pro-
tein kinase II, PDE3: phosphodiesterase 3, cAMP:

cyclic adenosine monophosphate, PKA: protein kinase
A, CFTR: cystic fibrosis transmembrane conductance
receptor, NHE: Na+/H+-exchanger.

1.4. The increase of intracellular cGMP levels activates the cGMP-dependent pro-

tein kinase II (PKGII), which is responsible for the phosphorylation of CFTR

(Markert et al., 1995; Vaandrager et al., 1997). Cyclic GMP also inhibits the

Phosphodiesterase 3 (PDE3), resulting in the accumulation of cAMP inside the

cell and the activation of protein kinase A (PKA). The activated PKA is able to

activate CFTR but also to inhibit the Na+/H+-exchanger (NHE), thus preventing

the uptake of Na+ (Cheng et al., 1991).

Activation of the GC-C receptor has also an effect on cell proliferation, by the

means of prolonging the cell cycle and via the activation of cyclic nucleotide-gated

channels, leading to an anti-proliferating effect (Pitari et al., 2001, 2003).

1.2.2 GC-C binds STa through its extracellular domain

The GC-C receptor binds the STa toxins and the guanylin peptides via its extra-

cellular domain, which can be expressed independently of the rest of the receptor

(Nandi et al., 1996; Hasegawa et al., 1999c). It is a 407 amino acid long polypep-

tide (residues 23 to 430 of the full-length receptor) containing 8 cysteines residues

conserved amongst the species (Hasegawa and Shimonishi, 2005). Those are orga-

nized into 4 disulfide bonds, between the cysteine pairs 7-94, 72-77, 101-128, and

179-226, respectively (numbering from the first amino acid of the GCC-ECD). It

also contains 10 potential N-glycosylation sites, 7 of which conserved amongst the

species (Ghanekar et al., 2004). Glycosylation is not required for ligand binding

in itself, but it is essential for proper folding and activation of the receptor, in par-

7
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ticular the conserved Asn172 and Asn379 sites (Hasegawa et al., 1999b; Ghanekar

et al., 2004).

Separate expression of the extracellular and intracellular domains of GC-C

indicates that it forms a dimer in the abscence of ligand and a trimer in its presence,

even though the unit responsible for ligand binding is the dimer (Hasegawa et al.,

1999c; Vijayachandra et al., 2000). The trimer had been previously observed

for the full-length receptor (Vaandrager et al., 1994). The interaction between

the receptor and its ligands has not been solved yet, but, following photoaffinity

labeling and mutagenesis studies, it has been proposed that the binding sequence

for the STa toxins is the segment spanning residues 387 to 393 (”SPTFTWK”

for the human GC-C) along the sequence, near the C-terminus of the domain

(Hasegawa et al., 1999a). Earlier mutagenesis studies, also on the pig GC-C, had

proposed the Arg136 and Asp347 as the ligand-binding residues and the same C-

terminal region as important for the conformation of the receptor (Wada et al.,

1996). However, the Asp347 is not conserved with the human sequence, for which

there is an Asn residue at that position.

GCC-ECD has a fold similar to that of the NPRs

The only member of the GC family for which three-dimensional structures are

available is the NPR-A receptor, and two homology models for the ECD of the

GC-C receptor have been presented based on it (van den Akker et al., 2000; Ogawa

et al., 2004; Hasegawa and Shimonishi, 2005; Lauber et al., 2009). However, the

NPR family counts another member that is not a guanylyl cyclase: the NPR clear-

ance receptor, or NPR-C, for which several structures have also been published

(He Xl et al., 2001; He et al., 2006). This receptor is a protein G coupled re-

ceptor that binds all natriuretic peptides, and its ECD shares about 20% of its

sequence with that of GC-C. The available crystal structures for the ligand-bound

extracellular domains of the NPR-A and C receptors reveal that, even though the

sequence homology between them is low (less than 36%), their structures are re-

markably similar (Figure 1.5a, He Xl et al., 2001; Ogawa et al., 2004; He et al.,

2006). Each monomer is organized into two highly structured sub-domains, each

of them centered around a β-sheet that is covered on each side by α-helices. The

8
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N

C

C

N

ANP

NPR-A

NPR-C

C
C

N

N

N

N

C

C

(a)

NPR-A

NPR-C

b1 b3

h6 h14

b17

h20 h22h2 h4

b5 b7

h8

b9

h10

b11

h12

b13 b15

h16 h18

b19

h21

b23 - b27

membrane-distal membrane-proximal distal proximal

(b)

Figure 1.5: Structure of the ligand-bound extracellular domain of the natriuretic
peptide receptors (NPRs). (a) Superposition of the crystal structures for the extracellular
domains of the NPR-A receptor (in orange) bound to ANP (PDB entry 1T34) and the NPR-
C receptor (in blue) bound to ANP, BNP, and CNP (PDB entries 1YK0, 1YK1, and 1JDP,
respectively). (b) Secondary structure organization for the extracellular domains of the NPR-A
and C receptors, according to their published crystal structures. The sequences are not aligned.
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organization of the secondary structure elements along the sequence and within

the structure is identical for both receptors, with the exception on an extra helix

located on the outside of the membrane-proximal domain of the NPR-C receptor

(Figure 1.5b). The sub-domains are interconnected by three cross-overs, and the

expression of the putative membrane-proximal sub-domain of the GC-C receptor,

as well as even even smaller portion of it, suggests that its ECD shares the same

type of organization (Hidaka et al., 2002; Lauber et al., 2009). Interaction between

the monomers is mediated by the membrane distal sub-domain, via the interaction

of two helices located of the membrane-distal domain of each monomer (h4 and

h6 along the sequence), forming a 2x2 helix bundle.

Several structures exists for each of the NPR-A and NPR-C receptors, corre-

sponding to their unliganded and ligand-bound forms (Figure 1.6). The confor-

mational change that occurs, upon ligand binding, within the NPR-A receptor,

involves the relative position of each monmer, but the intramolecular structure

remains mostly unchanged (Figure 1.6; Ogawa et al., 2004). On the contrary, the

NPR-C monomers adopt different conformations when bound to a ligand: the angle

formed between the helices h2 and h10, which illustrates that of the membrane-

distal and -proximal subdomains, is augmented by more than 10◦, which brings

the ligand binding regions of the receptor that are located within the membrane-

proximal domain closer (He Xl et al., 2001). The segment between b19 to h20

(from Leu279 to Pro285), which links the two subdomains, is described as a spring

that is stretched upon ligand binding. This fragment interacts strongly, in the

unliganded form of the receptor, with the N-linked glycan at Asn248, and the

interaction is broken unpon ligand binding. This site is aligned in the sequence

alignment with the Asn306 site of NPR-A, but their localization on the structures

is, although near, different. The properties observed for Asn248 of NPR-C are

not similary observed in NPR-A, for which the N-glycosylated residues are not

involved in ligand-binding (Miyagi et al., 2000). However, the NPR-A glycosyla-

tion sites are conserved between the species, and it has been prosposed that they

have a role in the proper folding of the receptor. The Asn13 and Asn180 sites are

conserved with the NPR-B receptor. The Asn41 site of the NPR-C receptor is

located within the missing segment in the structures.

The disulfide bonds of each receptor are situated at the exact same location,
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Natriuretic Peptide receptor CNatriuretic Peptide receptor A

1JDP 1YK0 1YK1
N

N
N

C

C

C
C

ANP, BNP, CNP

C

C

C

C

ANP
N

N

1T34

membrane-distal

sub-domain

membrane-proximal

sub-domain

1T34

1DP4

Figure 1.6: Crystal structures for the NPR-A and NPR-C receptors. The different
structures for the natriuretic receptors (NPR) A and C are shown in cartoon representation, each
chain colored as a rainbow from N-terminus to C-terminus. Up: Structures for the ligand-bound
NPR-A (PDB entry 1T34) and NPR-C (PDB entries 1JDP, 1YK0, and 1YK1) receptors. Since
they are very similar, the structures for the bound forms of the NPR-C are superposed Down:
Structures for the unliganded NPR-A and NPR-C receptors (PDB entries 1DP4 and 1JDN,
monomers). They are superposed with the corresponding ligand-bound form (PDB entries 1T34
and 1JDP, respectively) for easier vizualisation. The sulphur atomes from the cysteine residues
are shown as yellow spheres, chlorides as green ones, and the potential N-glycosylation sites
as gray ones. Secondary structure elements of interest (see text) are indicatedANP: Atrial
Natriuretic peptide, BNP: Brain Natriuretic peptide, CNP: Natriuretic peptide type C. Figure
generated using PyMol.

11



Introduction

1.2. The Guanylyl Cyclase C receptor and

its interaction with STa

behind the ligand-binding helices h6 and h12 which they seem to lock the position

of. The structures also reveal a bound chloride ion, located in the viccinity of

the disulfide bond from the membrane-distal domain, that has been shown to be

necessary for receptor activity (van den Akker et al., 2000). This bond is the one

that, within the GC-C receptor, is separated into two different disulfide bridges

(Hasegawa and Shimonishi, 2005).

The GC-C receptor seems to bind ligands in a different fashion

from that of the NPRs

The ligand binding site of the NPR receptors is located between the monomers,

where different subsets of amino-acids from each monomer (sites I and II, involving

mostly helix h8 and the region from b11 to h14, see Figure 1.5b) bind a different

part of the natriuretic peptides (He et al., 2006). This data is in contradiction

with the hypothesis for the ligand-binding site of GC-C according to which the

ligand-binding sequence of the GC-C receptor involves C-terminal residues, the

latter being further supported by the observed lignad-binding capabilities of the

GCC-ECD fragments (Hasegawa et al., 1999a; Hidaka et al., 2002; Lauber et al.,

2009). The interaction between the binding sequence and the ligand is proposed

to mimick the interaction that takes place between guanylin and its prosequence,

which form a β-hairpin (Lauber et al., 2003). Titration of the complex between

STa and the proximal domain of GC-C (miniGC-C) indicates a 1:1 stoichiometry,

which is also in contractiction with that of the NPR receptors which bind one

molecule of ligand per dimer (Lauber et al., 2009; He et al., 2006).

STa and the guanylin peptides bind to GC-C with different affinities

The STa toxins possess high affinity for the GC-C receptor, with values for the

dissociation constant between 0.4 x 10−11 M and 2.2 x 10−9 M, and the presence of

several affinity sites has been reported (Wada et al., 1994; Deshmane et al., 1995).

Values for the dissociation constant for the extracellular domain of GC-C range

between 4.0 x 10−10 M and 7.3 x 10−8 M, and the miniGC-C shows an affinity

somewhat 10-fold weaker than that of the full receptor, with KD values between

4.5 x 10−9 M and 7.2 x 10−9 M (Hasegawa et al., 1999c; Lauber et al., 2009).
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Guanylin and uroguanylin, which compete with STa, were shown to inhibit the

binding of radio-labeled STa in a similar pH dependent fashion: at pH 5, guanylin

has a Ki of 10
−7 M, against 10−9 for uroguanylin. The effect is reversed at pH 8,

with Ki values of 10
−9 and 10−8 (Hamra et al., 1997).

The binding of ligands to the extracellular domain of the GC-C receptor is

thought to induce a conformational change within the receptor leading to the

activation of the catalytic domain, but the nature of this change is unknown. Data

obtained for the extracellular domains of the NPR-A and NPR-C receptors show

that the dimer undergoes either a twist motion, or a translation of its membrane-

proximal domains (He Xl et al., 2001; Ogawa et al., 2004). A recent study on

the juxtamembrane region of the GC-A receptor suggests that relative orientation

is more crucial than proximity, although the rotation mechanism they propose is

different from the one inferred by the crystallographic data (Parat et al., 2010).
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2 Aims of the Study
One current strategy to counter diarrhea induced by enterotoxigenic Escherichia

coli (ETEC) involves the development of a toxoid vaccine based on its heat-stable

enterotoxin (STa), as is it a key virulent factor (Taxt et al., 2010). The STa toxin

binds to the guanylyl cyclase C receptor (GC-C), and detailed knowledge on this

interaction would be a great asset for the design of the vaccine. In order to study

this interaction, it was chosen to use an experimental approach combined with

bioinformatics.

The primary aim was to establish an in vitro system to study the interaction.

The subaims were:

1. to clone and to express, in Escherichia coli, the GCC-ECD and its endoge-

nous ligands guanylin and uroguanylin.

2. to conduct pilot binding experiments such as GST-pulldown assays or surface

plasmmon resonance spectroscopy experiments (Biacore).

The main bioinformatical aim was to investigate the residues of the GCC-

ECD that may be involved in ligand binding, but also in the oligomerization of

the receptor.

1. For this puropse, a goal was to generate a homology model for the extracel-

lular domain of the GC-C receptor (GCC-ECD). This included the aim to

construct a high quality multiple sequence alignment and the indentification

of different template structures.

2. The development procedure for the vaccine involves work with several model

organisms, such as the mouse or the pig. In order to assess the suitability of

those organisms for this purpose, an aim was to use the obtained homology

models for the GCC-ECD , as well as the sequence alignments, to evaluate,

amongst those organism, potential differences in ligand-binding.
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3 Materials

3.1 Software

3.1.1 Databases and database search programs

Protein sequences were obtained from the UniProt and UniRef90 protein sequence

databases, the latter containing clustered sets of sequences sharing at least 90%

identity (Magrane and Consortium, 2011; Suzek et al., 2007). Structures were

obtained from the Protein Data Bank (Berman, 2000; www.pdb.org).

Database searches for sequence similarity were carried out using the BLAST

and HMMER program suites (Altschul et al., 1990; www.hmmer.org). BLAST, for

”Basic local alignment search tool”, detects the sequences segments of a database

that produce alignments of high statistical significance with the query. In this

study, protein sequences were compared by using the BLASTp program, either

from the NCBI website (for National Center for Biotechnology Information, www.ncbi.nlm.nih.gov),

via the command-line version of the program suite, blastall, or using its more

sensitive version, PSI-BLAST (for Position-Specific Iterated). The latter uses the

results of an initial BLASTp search to build a position-specific scoring matrix

(PSSM), or profile, using the multiple alignment of the returned sequences. Pro-

files are statistical descriptions of a multiple alignment or even one sequence which

gives, for each column of the alignment, the propensity of the amino acid that is

most represented. The profile is used as query in the next iteration of the search,

thus giving the possibility to find more distantly related homologs to the initial

query.

The HMMER package provides a group of programs that also makes use of

profiles for sequence similarity searches (Eddy, 1998; www.hmmer.org). In this

case, the probabilistic model used to construct the profiles is the Hidden Markov

Model, and the profile can be used to search sequences databases as well as pro-

file HMM databases, in a non-iterative or iterative fashion (Krogh et al., 1994).

HMMER 2.3.2 was used in this study, for which the hmmbuild program is used to
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build the profiles HMM. Parameters for the profile are calculated separately by the

hmmcalibrate program, and the database search is performed by the hmmsearch

program.

Database search for fold recognition, was performed using the pGenThreader

program, from the PSIPRED web-server (Lobley et al., 2009). This method is

based on the comparison of PSSM profiles between the target sequence and tem-

plate structures. The profile for the target is obtained through PSI-BLAST, after

8 iterations.

3.1.2 Sequence alignment programs

Several multiple sequence aligment tools were used in this study. The Multiple

Alignment Fast Fourier Transform (MAFFT) tool was used a the default mul-

tiple sequence alignment program (Katoh et al., 2005). In MAFFT, amino-acid

sequences are converted into sequences of vectors, which describe each residue

in terms of volume and polarity (Katoh, 2002). The similarity between such se-

quences is represented by the correlation between them, and the discrete fourier

transform (corresponding to the fast fourier transform algorithm) is used to sim-

plify its expression.

Structure-based multiple sequence alignment was performed using the EX-

PRESSO server, where a set of sequences is submitted to the server, which as-

signs, via a BLASTp search against the PDB database, structural templates to

the sequences whenever possible (Armougom et al., 2006).

Sequence-sequence and sequence-structure alignments were also performed us-

ing the diverse alignment commands of the MODELLER program, which 9.9 ver-

sion was used in this study (Sali and Blundell, 1993).

3.1.3 Other programs related to sequence alignments

Highly similar sequences provide very similar sequence information, and can thus

be considered redundant. Removal of this redundancy from a set of sequences was

performed by using the CD-HIT program from its web-interface (Li and Godzik,

2006; Huang et al., 2010).
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Another useful information, when constructing sequence alignments, is to ob-

serve the phylogenetic distribution of the sequences composing the alignment. Phy-

logenetic trees based on sequence aligments were obtained using the MrBayes 3

program, which uses the Bayes probabilistic theorem to infer phylogeny (Ronquist

and Huelsenbeck, 2003; Huelsenbeck and Ronquist, 2001).

3.1.4 Secondary structure prediction: PSIPRED

The PSIPRED secondary structure prediction method was used to predict the

secondary structure of the extracellular domain of the GC-C receptor (Jones, 1999).

This method uses, as it improves the prediction, sequence information provided

by sequences related to the query, and more specifically the information provided

by PSI-BLAST (Zvelebil, 1987; Altschul et al., 1997). Neural networks are used

to process the information.

3.1.5 Homology modelling using MODELLER

Homology modelling was performed using MODELLER v9.9, which generates a

three-dimensional model for a protein, given spacial restraints (Sali and Blundell,

1993). One of those restraints is the experimentally determined structure for an

homologous protein (template), but additional data from other sources can be

used as constraints. More precisely, it is the alignment between the template

structure(s) and the target sequence that is used as input to the progam, the output

being one or several models. Several alignment tools are included in MODELLER

in order to align the target with the template, but also perform the structure-

structure alignment of several templates, which can then be used togheter for

doing multi-template modelling.

3.1.6 Model evaluation

PROCHECK calculates, from the coordinates of a structure, its stereochmichal

parameters: the (phi,psi) angles, peptide bond planarity, bond lengths, bond an-

gles, hydrogen-bond geometry, and side-chain conformations. The values for these
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parameters can then be compared with that of known proteins structures (Morris

et al., 1992).

3.2 Biological and chemical materials

3.2.1 Bacterial strains and DNA material

Table 3.1: Escherichia coli strains

Strain Genotype

TOP10 One shot F– mcrA ∆(mrr − hsdRMS-mcrBC) Φ80lacZ∆M15 ∆lacX74 recA1 araD139 ∆(ara leu)
7697 galU galK rpsL (StrR) endA1 nupG

Origami B F- ompT hsdSB(r−
B

m−

B
) gal dcm lacY 1 ahpC (DE3) gor522:: Tn10 trxB (KanR, TetR)

Two Escherichia coli strains were used in study, the TOP10 One Shot cells

from Invitrogen and the Origami B cells from Novagen, for which the genotypes

are presented in Table 3.1. The TOP10 cells were used for plasmid preparation

and the Origami cells for protein expression.

The template DNAs used in this study, i.e. the human sequences for pro-guanylin,

pro-uroguanylin, and the GC-C receptor, were obtained as recombinant pCR4-

TOPO plasmids from Invitrogen.

Fragments of interest were cloned into the pSXG expression vector, a mutated

version of the pGEX-2TK vector for which the polylinker was replaced with that

of the pGAD424 vector (Figure 3.1; (Ragvin et al., 2004)). The pSXG vector

enables the construction of glutathione-S-transferase fusion proteins which are

inducible by IPTG: the multiple-cloning site is placed in 3’ of the gene coding for

the GST, which expression is directed by the IPTG-inducible tac-promoter. To

further ensure that the construct will be expressed only upon induction, the vector

contains the gene coding for the LacI repressor of the Lac operon.

The different primers used in this study were obtained from Sigma (see Table

3.2), and the nucleotides (dNTPs) were purchased from TaKaRa. The GeneRuler

DNA ladder was obtained from Fermentas.
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pSXG
4994 bp

GST
(258...994)

tac promoter
(183...211)

pGEX 5' primer
(869...891)

EcoRI (957)
BamHI (967)
SalI (973)
AccI (973)
PstI (979)

pGEX 3' primer
(1066...1044)

AmpR (1332...2262)

PstI (1943)

pBR322 origin
(2417...3036)

LacI (3341...4425)

lac promoter
(4474...4503)

LacZ α (4565...4720) 

Figure 3.1: Graphical map for the pSXG vector. The pSXG vector is an E. coli expression
vector for the inducible expression of glutathione-S-transferase fusion proteins using the Lac
operon. The tac-promoter is induced by the addtion of IPTG in the culture medium, and the
presence of the gene coding for the repressor of the Lac operon, LacI, prevents the expression of
the trget protein in the absence of IPTG. For selection purposes, the vector contains the genes
coding for resistance to ampicilin and the α-segment of LacZ.

Table 3.2: Primers

Primer name Sequence Restriction
Site

Pro-guanylin fwd * 5’-GCCTTGGCAGAATTCGTCACCGTGCAG-3’ EcoRI
Pro-guanylin rev * 5’-TGGGCCCATGGATCCTTAGCATCCGGT-3’ BamHI
Pro-uroguanylin fwd * 5’-GCAGAGCACAGAATTCGTCTACATCCAGTACC-3’ EcoRI
Pro-uroguanylin rev * 5’-TGGGCGGATCCTACCCAGGGCTATCTCA-3’ BamHI
GCC-ECD fwd 5’-TGGCTGTCCGGATCCTCCCAGGTGAGTCAGAAC-3’ BamHI
GCC-ECD rev/ 5’-GGAGGAGGATCCTTACTGAGGGCCCCGGCCTGTAATATC-3’ BamHI
miniGC-C D (rev)
miniGC-C A (fwd) 5’-GGAGGAGAATTCTCTCCAGCTAGAAAGTTGATGTACTTC-3’ EcoRI
miniGC-C B (rev) 5’-CACCATGGTGTCTCCAGGAGCCAGCGTCAGAACAAGGACATTTTTCATATAGTC-3’ None
miniGC-C C (fwd) 5’-CTGACGCTGGCTCCTGGAGACACCATGGTGCTTCTGTATACCTCTGTG-3’ None
pGEX 5’ (fwd) 5’-GGGCTGGCAAGCCACGTTTGGTG-3’ None
pGEX 3’ (rev) 5’-CCGGGAGCTGCATGTGTCAGAGG-3’ None

* Primers designed by Arne M. Taxt

3.2.2 Proteins

The enzymes used in this study, i.e. the Taq DNA polymerase (ExTaq), EcoRI

and BamHI endonucleases, calf intestine alkaline phosphatase, and T4 DNA ligase,

as well as their corresponding buffers, were purchased from TaKaRa.

The anti-GST polyclonal rabbit antibody was obtained from Sigma and the

anti-rabbit, HRP-coupled antibody from GE Healthcare.
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Bovine serum albumine (BSA) was obtained from TaKaRa. The PageRuler

protein molecular weight marker was obtained from Fermentas.

3.2.3 Common chemicals and Solutions

Table 3.3: Buffers, culture media, and other solutions

Name Composition pH

Phosphate buffered saline (PBS) 137 mM NaCl; 2.7 mM KCl; 4.3 mM Na2HPO4; 1.47 mM KH2PO4 7.4
PBS-T PBS with 0.05 % (v/v) Tween 20 7.4
Ethylene-diamine-tetra-acetate (EDTA) 500 mM EDTA 8.0
Tris-acetate-EDTA (TAE) 40 mM Tris; 20 mM acetic acid; 1 mM EDTA
Electrophoresis buffer 25 mM Tris-HCl pH 8.5; 1 % (w/v) SDS
Transfert buffer 3.03 g/l Tris; 14.4 g/l glycine; 20 % (v/v) methanol
LB medium Tryptone 10 g/l; Yeast extract 5 g/l; NaCl 10 g/l; dH20
LB-agar Tryptone 10 g/l; Yeast extract 5 g/l; NaCl 10 g/l; Agar 15 g/l; dH20

Most of the chemicals used in this study were obtained from either Merck

or Sigma, with the execption of Agarose, which was purchased from Invitrogen,

Sodium Docecyl Sulfate (SDS) from Fluka, Trizma-base from Prolabo, and the 6x

loading buffer for DNA, which was provided by TaKaRa. Ethanol and Isopropanol

were obtained from Arcus. Buffers and their composition are described in Table

3.3.
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4 Methods

4.1 Construction of sequence alignments

The critical determinant for the quality of a three-dimensional model built by

homology is the sequence alignment between the target sequence to be modelled

and the structure(s) that will serve as template for the modelling. When the

template and the target possess a very high sequence identity, they are easy to align

and thus no other sequence information is needed. However, when the sequence

identity is low, it is necessary to include in the alignment other sequences that

will provide additional information, leading to a better alignment of the target

and template sequences. The additional sequences, which are homologous to the

target, should not be too similar to each other so as to avoid redundancy. It is

therefore necessary to gather sequences that are homologous to the target but that

are as diverse from each other as possible, referred to as the remote homologs to

the target.

4.1.1 Gathering of remote homologs

The sequence corresponding to the extracellular domain of the GC-C receptor

(UniProt accession number P25092, residues 24 to 430) was used as query for a

preliminary BLASTp search against the UniProtKB/SwissProt database from the

UniProt web-server, using an E-value threshold of 1. A PSI-BLAST search was

also carried out from the NCBI web-site against the SwissProt database, using the

same query sequence (GCC-ECD) and the default parameters.

The gathering of remote homologs for the GCC-ECD was performed according

to the strategy presented in Figure 4.1. The sequence corresponding to full-length

human GC-C receptor was used as query to gather homologous protein sequences

using the BLASTp alignment tool (Altschul et al., 1997). The UniRef90 database,

which contains representatives for sequences groups sharing above 90% sequence

identity, was chosen for this search (Suzek et al., 2007). It was also chosen to
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gathering of close homologs

multiple sequence alignment (m.s.a.)

BLAST

MAFFT

reduction to GCC-ECD

HMMER
construction of profile

database search with profile

GC-C sequence

Figure 4.1: Strategy for the construc-
tion of a high quality sequence alignment.
From the sequence of the full length GC-C
receptor, close homologs were gathered in or-
der to build an accurate profile for its extra-
cellular domain (GCC-ECD). This profile was
used to gather sub-sequences homologous to the
GCC-ECD, which were thereafter aligned. Se-
quences containing important deletions were re-
moved from the alignment, which was used to
build another profile. This procedure was re-
peated until no more homologs of interest were
gathered this way. Sequences redundant above
90% were removed from the set of gathered ho-
mologs, provided that they were not associated
to a structure, belonging to one of the chosen
repressentative organisms, or a member of an
under-represented phylogenetic group. This fi-
nal set of sequences was aligned using two differ-
ent alignment programs, giving the final align-
ments.

limit the search to the Coelomata taxonomic group, as to exclude plants and

fungi. Version 2.2.20 of the blastall program was used, with default values for

all parameters and an E-value threshold of 0.0. Sequences obtained were aligned

using the MAFFT multiple alignment program (Katoh et al., 2005). Sequences

containing either prominent deletions or dissimilarities within the region of the

alignment corresponding to the extracellular domain of the GC-C receptor (GCC-

ECD) were removed from the alignment. The alignment was then edited so as to

contains only the portion corresponding to the GCC-ECD and the sub-sequences

aligned to it.

This alignment, now a GCC-ECD alignment, was used to build a Hidden

Markov Model (HMM) profile using the hmmbuild program of the HMMER 2.3.2

package (Eddy, 1998). After calibration (hmmcalibrate), the profile was used

to perform a database search within the UniRef90-Coelomata database, with the

hmmsearch program, using an E-value threshold of 1e-100. From the search results,

the subsequences corresponding to the portion of the GCC-ECD with 10 additional

residues in the N- and C-terminal were harvested using a script provided by Dr.

P̊al Puntervoll. As described above, the obtained sequences were aligned using

MAFFT and sequences were removed according to the same criteria as for the
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initail alignment. This new alignement was used to build a new profile, and the

procedure was repeated until no more new sequences were harvested. The last

HMM profile for which new sequences were gathered from the UniRef90 database,

limited to the Coelomata taxonomic group, was used to search the correspond-

ing portion of the UniProt database. This was done in order to obtain all the

sequences that could be harvested with this profile, not just the representatives of

identity clusters.

4.1.2 Determination of the final set of sequences

In order to obtain a highly informative but non-redundant sequence alignment,

several analyses were performed on the sequence set obtained through the profile

HMM search procedure: sequences for which structures are available were deter-

mined, redundancy above 90% was removed from the set, and phylogenetic trees

were built for both the original set and the clustered one. Removal of redun-

dancy above 90% was performed using the CD-HIT program (Huang et al., 2010).

The phylogenetic trees were built using the version 3.1.1 of the MrBayes program

(Ronquist and Huelsenbeck, 2003).

The information gathered by those analyses was used to remove redundant

sequences from the original set of homologs for which no structures were associated

and that did not belong to an underepresented phylognetic cluster or an organism

of interest.

4.1.3 Multiple sequence alignments

The final, non-redundant, set of sequences obtained as described above was aligned

using the MAFFT and EXPRESSO (3D-Coffee) alignment tools (See Materials,

Section 3.1.2; Katoh et al., 2005; Armougom et al., 2006). The latter takes into

account the structural information for the sequences to which structures are asso-

ciated, in this case the sequences corresponding to the rat NPR-A and the human

NPR-C. The sequences for the extracellular domains of the NPR-A and NPR-C

receptors were also aligned with that of the GC-C receptor using the alignment

programs included in MODELLER.
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4.2 Homology Modelling

The structures for the NPR-A and NPR-C receptors were used to model the extra-

cellular domain of the GC-C receptor (GCC-ECD). The structure corresponding

to the unbound NPR-A receptor (PDB entry 1DP4), contains a dimer which or-

ganizzation is due to crystal packing, so only the monomer was modelled based

on it (Ogawa et al., 2004). The structures for the bound forms of the NPR-

C receptor (PDB codes 1JDP, 1YK0, and 1YK1) were used as a group (multi-

template modelling). For the structures containing dimers (with the exception of

1DP4), modelling was performed on both chains simultaneously (without symme-

try constraints) and separately. Disulfide bonds of the GCC-ECD, as described by

Hasegawa and Shimonishi (2005), were added as constraints for all models. The

template(s) and the target were aligned by the MAFFT tool, using the final set

of sequences gathered by HMM profile search. The evaluation of the models was

done by submitting them to the PDBsum database, where different analyses were

performed, including the evaluation of their stereochemical parameters (Laskowski,

2001).

4.3 Cloning of the GCC-ECD,

pro-guanylin and pro-uroguanylin

4.3.1 Preparation of inserts by site-directed mutagenesis

The DNAs encoding pro-guanylin, pro-uroguanylin and the complete GC-C recep-

tor were used as templates to perform site-directed mutagenesis via Polymerase

Chain Reaction (PCR), under the following conditions:

Reaction mix cycle conditions

DNA template 100-200 ng initial denaturation 94 ◦C, 30 sec.

10x ExTaq buffer 5µl denaturation 94 ◦C, 10 sec.

dNTPs 2.5 mM annealing 55 ◦C, 10 sec.

Primers 0.2 µM extension 72 ◦C, 30 sec.

ExTaq DNA polymerase 0.025 U/µl final extension 72 ◦C, 1 min.

dH2O up to 50 µl number of cycles: 25
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pro-guanylin and pro-uroguanylin

Pro-guanylin and Pro-uroguanylin

The DNA fragments coding for the human pro-guanylin and pro-uroguanylin were

amplified using the primers mentionned in Table 3.2, introducing an EcoRI restric-

tion site in 5’ of the coding sequence and a BamHI site in 3’. After the PCR, the

reaction mixtures were subjected to agarose gel electrophoresis on a 1% agarose gel

containing 3µg/ml of ethidium bromide (EtBr) in TAE buffer, for the purposes

of analysis and purification. Each mixture was loaded as two samples of 40µl

and 5µl, alongside 500 ng of 100 bp DNA ladder. The gel was run at 80V for 80

minutes, and the bands corresponding to the expected PCR products (315 bp for

pro-guanylin and 302 bp for pro-uroguanylin) for the 40µl samples were purified

from it using the QIAquick gel extraction kit and according to the manufacturer’s

instructions. The purified PCR products were digested by the EcoRI and BamHI

endonucleases, according to the following reaction mixture:

Reagent concentration/volume

PCR product 20 ng/µl

Buffer 10H 5.5 µl

Bovine serum albumine (BSA) 0.2µg/µl

EcoRI 2 U/µl

BamHI 3 U/µl

dH2O up to 50 µl

The digestion was carried out for 1h at 37 ◦C, and the enzymes were inactivated

at 80 ◦C for 20 minutes. The digested inserts were stored at -2 0◦C.

GCC-ECD

The extracellular domain of the GC-C receptor (residues 24 to 430) was amplified

by PCR according to the condtions presented above. The primer couple used

for the reaction introduced BamHI restriction sites on each side of the receptor

sequence, along with a stop-codon for the reverse primer. The PCR amplified

fragment was, as in the case of pro-guanylin and pro-uroguanylin, subjected to

agarose gel electrophoresis and gel extraction, using the same conditions. The

purified PCR product, which has an expected size of 1251 bp, was digested by

BamHI according to the digestion reaction presented for pro-guanylin and pro-

uroguanylin .
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Figure 4.2: Synthesis of the miniGC-C insert. From the coding sequence for the GC-C
receptor, 2 fragments are amplified by PCR using the primers couples A/B and C/D, respectively.
Those fragments are used in an additionnal PCR reaction using primers A and D but also each
other, leading to the miniGC-C construct.

miniGC-C

In order to reproduce the miniGC-C fragment obtained by Lauber et al., two por-

tions of the GC-C receptor, from residues 142 to 299 and 378 to 430, were amplified

by PCR (Lauber et al., 2009). The first fragment was amplified using primers A

and B, and the second using primers C and D (see Table 3.2). Each PCR product

(with expected sizes of 444bp for the the first fragment and 189bp for the second)

was purified by gel extraction Primer A introduces a EcoRI restriction site in 5’ of

the first fragment, and primer B introduces the Ala-Pro-Gly-Asp coding sequence

in 3’. Primer C introduces the same sequence but in 5’ of the second fragment,

and primer D a BamHI restriction site in 3’. Due to the common Ala-Pro-Gly-Asp

coding sequence, the PCR products for the fragments are complementary, which

allows their combination during a third PCR reaction (Figure 4.2). The final PCR

product was then purified and double-digested as was done for the guanylin and

uroguanylin inserts.

4.3.2 Cloning into the pSXG vector

The empty pSXG vector was digested by either BamHI or EcoRI/BamHI, accord-

ing to the conditions presented for the inserts (20 ng/µl of DNA, 2 U/µl for EcoRI,

3 U/µl for BamHI, total reaction volume of 50 µl). Dephosphorylation was then
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carried out on 44 µl of the reaction mixture, using 0.4 U/µl of calf intestine alkaline

phosphatase (CiAP) in its associated reaction buffer, for a total reaction volume of

50 µl. The rest was kept for analysis on agarose gel. Incubation conditions for the

dephosphorylation were 1h at 37 ◦C, and the enzyme was inactivated for 15 min-

utes at 75 ◦C. The dephosphorylated plasmid was purified by phenol/chloroform

extraction. The insert and dephosphorylated vector were ligated overnight at 16
◦C using 0.5 U/µl of T4-DNA ligase.

4.3.3 Transformation, plasmid purification, and analysis

The ligated products were transformed into TOP 10 One shot cells as described by

the manufacturer (Invitrogen), but using LB medium instead of SOCmedium. The

transformed cells were spread on LB-agar plates containing 100 µg/ml ampicilin

and grown overnight at 37 ◦C. Single colonies were used to inoculate 5ml of LB

medium (containing 100 µg/ml ampicilin) and the cultures were grown overnight

at 37 ◦C, 250 rpm. The plasmids were purified using the QIAspin mini-prep kit,

according to the manufacturer’s instructions. The presence of the inserts with the

expected size was assessed by restriction digestion analysis of the pSXG constructs

using the EcoRI and BamHI endonucleases for the pro-guanylin, pro-uroguanylin,

and miniGCC constructs, and BamHI for the GST-GCCECD. The reaction mix

and incubation conditions were identical to what was done for the digestion of

the empty pSXG. The pSXG constructs were also subjected to sequencing which

was performed by the Sequencing Facility of the Department of Molecular Biology

(MBI), University of Bergen. The sequencing reaction was prepared according

to the instructions from the facility, which uses the Big-Dye version 3.1 DNA

sequencing kit from Applied Biosystems:

Reaction mix cycle conditions

DNA template a initial denaturation 96 ◦C, 5 min.

Sequencing buffer 1 µl cycle phase 1 96 ◦C, 10 sec.

Big-Dye v3.1 1 µl cycle phase 2 50 ◦C, 5 sec.

Primerb 3,2 pmol cycle phase 3 60 ◦C, 4 min.

dH2O up to 50µl number of cycles: 25
a the amount of DNA depends

on the size of the template
b the pGEX 5’ and 3’ were used in

two sequencing reactions for each template
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4.4 Expression of GST-tagged miniGC-C

The pSXG-miniGCC construct, as well as the empty pSXG vector, were trans-

formed into Origami cells, spread on LB-agar plates containing 100 µg/ml ampi-

cillin, 15 µg/ml kanamycin and 12.5 µg/ml tetracyclin, and grown at 37 ◦C for

at least 24 hours. Precultures of 5 ml of LB-medium (also containing 100 µg/ml

ampicillin, 15 µg/ml kanamycin and 12.5 µg/ml tetracyclin) were made from a

single colony and grown overnight at 37 ◦C, 250 rpm. The precultures were used

to inoculate 50 ml of LB medium (containing the same anitbiotics at the same

concentrations) at an OD600nm of 0.1. Cultures were grown at 37 ◦C, 250 rpm

to an OD600nm of 0.8. Induction of protein expression was carried by addition

of IPTG to a final concentration of 100 µM, and the cultures were placed at 30
◦C for protein expression. After 6 hours of incubation, cells were harvested by

centrifugation at 5000 xg, 20 min, 4 ◦C and resuspended in 1 ml of PBS-T per 100

mg wet pellet.

In order to verify the expression of GST and GST-miniGCC, SDS-polyacrylamide

gel electrophoresis (SDS-PAGE) andWestern Blot analyses were carried out (Shapiro

et al., 1967; Towbin et al., 1979). Cell samples of 1.5 ml were lysed either by son-

ication or using French Press, and 250 µl of each lysed sample were clarified by

centrifugation at 13 000 rpm for 5 min, at room temperature. The pellet was

resuspended in 250 µl of PBS. Samples from whole cell samples as well as super-

natant sample, for both non-induced and induced cultures transformed with either

pSXG-miniGCC or the empty vector were subjected to SDS-PAGE analysis on

two identical 12% polyacrylamide gels. The gels were either Coomassie stained or

used for western blot analysis using an anti-GST antibody from rabbit as primary

antibody and a horseradish peroxidase (HRP)-conjugated anti-rabbit antibody as

secondary one. Detection of the secondary antibody was carried out using the

ECL Western Blotting detection kit from GE Healthcare.
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5 Results

5.1 Modelling of the GC-C receptor

One step towards the determination of the interaction between the GC-C receptor

and its ligands is the knowledge of the structure for the receptor itself. In the ab-

sence of an experimentally solved structure, the construction of a three-dimensional

model for the ligand-binding domain of the receptor may provide valuable infor-

mation. Two homology models have been published for the extracellular domain

of the GC-C receptor (GCC-ECD), and several in vitro experiments have been

carried out based on the acquired data (Hasegawa and Shimonishi, 2005; Lauber

et al., 2009). The structural models were built based on the crystal structure of

the unliganded NPR-A receptor, which is also a GC receptor (see Introduction,

1.2). However, one other structure exists for the bound form of the receptor, and

several ones for the NPR-C receptor, which is related to the NPR-A receptor and

possess a highly similar structure (Ogawa et al., 2004; He Xl et al., 2001; He et al.,

2006). No dimeric model of GCC-ECD has been published, even though evidence

of its presence has been presented and the structures for the bound NPR receptors

all contain dimers (Vaandrager et al., 1994; Hasegawa et al., 1999c; Vijayachandra

et al., 2000).

5.1.1 Gathering of GC-C homologs

Preliminary sequence analysis

An initial BLASTp search using the human sequence for the extracellular do-

main of the GC-C receptor was performed as described in Methods, section 4.1.1

(Table 5.1). The search was carried out against the manually annotated UniPro-

tKB/SwissProt database and yielded nine sequences with an E-value below 1.

The identified sequences were six GC-C receptors, 2 NPR-C receptors, and one

sequence corresponding to the centrosomal protein CEP57L1. Note that sequence

identity drops abruptly from 70% to 20% with no sequences having intermediate
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Table 5.1: BLASTp search result using the sequence for the human GCC-ECD

E-value Identity Entry Protein Organism Accesion
name name number

0.0 100.0% GUC2C HUMAN GC-C receptor Homo sapiens P25092
0.0 77% GUC2C PIG GC-C receptor Sus Scrofa P55204

1.0x10−174 71% GUC2C RAT GC-C receptor Rattus norvegicus P23897
1.0x10−173 72% GUC2C CAVPO GC-C receptor Cavia porcellus P70106
1.0x10−172 71% GUC2C MOUSE GC-C receptor (isoform 2) Mus musculus Q3UWA6-2
1.0x10−172 71% GUC2C MOUSE GC-C receptor Mus musculus Q3UWA6
9.0x10−3 21% ANPRC HUMAN NPR-C receptor (isoform 2) Homo sapiens P17342-2
9.0x10−3 21% ANPRC HUMAN NPR-C receptor Homo sapiens P17342
6.7x10−1 25% CE57L RAT Centrosomal protein CEP57L1 Rattus norvegicus Q6AXZ4

values, which makes it difficult to assess whether the non-GC-C receptor sequences

are homologous to the GC-C sequences, especially considering their poor statistical

values. In addition, no NPR-A receptor was found, even though it is, when the

full-length receptor is considered, the most similar protein to GC-C in terms of

sequence identity (data not shown).

Considering those results, it was chosen to perform the same search, but using

PSI-BLAST (see Materials, 3.1.1). More than 100 sequences were gathered at the

fourth iteration, suggesting that a profile-based search method is, in the case of

GCC-ECD, the right approach to gather remote homologs. However, the user

control over the procedure is limited, since PSI-BLAST does not provide the user

with the ability to modify, at each iteration, the multiple sequence alignment nor

the profile. It was therefore chosen, in order to build a sequence alignment as good

as possible, to use another profile-based method allowing that kind of control.

Database search using HMM profiles

Table 5.2: Gathering of GCC-ECD
homologs by HMM profile search

Profile E-value Sequences Sequences
Nr. cutoff gathered aligned

- 0.0 15 9
1* 1e-100 14 11
2* 1e-100 18 15
3* 1e-10 49 41
4* 1e-100 47 47
4** 1e-100 93 88

* Search against the UniRef90 database
** Search against the UniProt database

The chosen method, HMMER, is based on the use of Hidden Markov Model
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(HMM) profiles (see Materials, 3.1.1), which were used in place of the query se-

quence to perform sequence similarity searches (See Methods, 4.1.1). From the

sequence of the full-length receptor, close homologs were gathered by a BLASTp

search against the UniRef90 database limited to the Coelomata taxonomic group,

which yielded 15 sequences. A multiple sequence alignment was constructed from

those homologs, which was edited so as to contain only sequences highly similar

to the GCC-ECD, but also only the portion of the alignment corresponding to

the length of GCC-ECD. This first ”GCC-ECD alignment”, which contained nine

sequences, was the starting point for the iterative procedure that was carried out

to harvest remote homologs to the GCC-ECD (Table 5.2). Briefly, a HMM profile

was built from the alignment and used to perform a database search, and, from

the search results, the sub-sequences corresponding to the length of the GCC-

ECD were fetched and aligned. Sequences containing important deletions were

removed from the alignment, which was against reduced to the exact length of the

GCC-ECD, leading to a new ”GCC-alignment”.

Four HMM profile searches were conducted in total, leading to a set of 47

sequences (Table 5.2). However, since the searches were performed against the

UniRef90 database, the set of sequences only contains cluster representatives of

sequences that are identical above 90%. In order to harvest all corresponding

sequences, the last HMM profile was used to search the UniProt database, again

limited to the Coelomata taxonomic group. Ninety-three sequences were thus

gathered, 88 of which were kept in the subsequent ”GCC-ECD alignment”.

Analysis of the gathered sequences

The set of 88 sequences gathered by the iterative HMM profile search contains a

lot of highly similar sequences that provide the very similar information, and thus

can be removed without loss of information. The CD-HIT program was used to

remove the redundancy above 90% from the set. This new set was compared to

the original one in order to identify the redundant sequences: phylogenetic trees

were built for both sets, and the sequences removed by the CD-HIT program were

located in the tree corresponding to the original set of sequences. Sequences that

were (i) removed by the CD-HIT program, (ii) not a human sequence, and (iii)
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Figure 5.1: Phylogenetic distribution of homologous sequences to the GCC-ECD.
The phylogenetic tree was built using the MrBayes program, using the set of 41 sequences
obtained by profile HMM search, after removal of redundancy above 90%. Insects (in orange)
were chosen as an outgroup. Sequences belonging to mammals are represented in black, and
those belonging to fishes or amphibians in green. A bold font was used for the sequence of the
human GCC-ECD, and a italic one for the sequences for which structures are available. Clusters
are indicated the by name of the sequence they represent.

not associated with an experimentally determined structure were removed from

the original set of sequences, leading to the final set.

The result was a set of 41 sequences, for which the corresponding phylogenetic

tree is presented in Figure 5.1. The sequences are separated in four clusters corre-

sponding to either orthologs of the human GC-C, or belonging to NPR receptors,

which strongly suggests that they are indeed homologs. Interestingly, the tree

suggests that the sequences for the NPR-B receptor, as well as the sequences for

the NPR-A receptor, are less distant from the GC-C sequences than the NPR-C

sequences are, which the opposite of what their level of sequence identity would
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suggest. It is, however, not a surprising result considering that both the NPR-A

and NPR-B receptors are guanylate cyclase receptors, whereas the NPR-C receptor

is a protein G-coupled receptor.

The sequences for the GC-C receptor are more distant to any other cluster

of sequences than they are from each other. This organisation also separates the

two structures in different clusters. A human sequence, which was chosen as

representative organism for the mammals, is present in each group. It is the only

mammalian sequence in all groups apart from the GC-C cluster, the presence of the

rat NPR-A sequence being due to its association with a structure. This reflects the

high sequence identity between mammalian sequences for the NPRs, and the fact

that, even within closely related organisms, the sequences for the GC-C receptor

are still different, the sequence identity between them being around 70% only.

5.1.2 Alignments of GCC-ECD with its homologs

In order to evaluate the effect on both the sequence information provided by the

gathered homologs to the GC-C receptor and the structural information provided

by the structures of the NPR-A and C receptors, three alignments programs were

used. The full set of sequences was aligned by the MAFFT and EXPRESSO

multiple sequence alignment tools, the latter taking into acount the structural

information provided by the structures associated to the NPR-C and rat NPR-A

sequences. For the third alignment, which was performed using the alignment

tools from the MODELLER program, only the sequences for the GC-C, NPR-C,

and rat NPR-A, that is our target protein and the sequences for which structures

are associated, were considered. In this case, a structure-structure alignment was

done on the NPR sequences, and the GC-C was thereafter aligned to them in a

structure-sequence alignment.

The three alignments are presented in parallel in Figure 5.1, with, in the case

of the alignments performed on the full set of sequences, only the GC-C, NPR-

C, and rat NPR-A sequences represented (the full alignment that was done using

MAFFT in presented as appendix). All alignments present the secondary structure

elements and for the NPR-A and C receptors (NPRs) well aligned with each other,

but also with the predicted structural elements for the GCC-ECD, which are
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mafft|NPRA_RAT LLLLRGGHASDLTVAVVLPLTNTSYPWSWARVGPAVELALARVKARPD----LLPGWTVRMVLGSSENAA-GVCSDTAAPLAAVDLKWE---HSPAVFLGPGCVYSAAPVGRFTAHWRVPLLTAG 108
mafft|NPRC_HUMAN RQEREALPPQKIEVLVLLPQDDS-YLFSLTRVRPAIEYALRSVEGNGTGRRLLPPGTRFQVAYED------SDCGN-RALFSLVDRVAAARGAKPDLILGPVCEYAAAPVARLASHWDLPMLSAG 113
mafft|GCC_HUMAN SQVSQNCHNGSYEISVLMMGNSA-FAEPLKNLEDAVNEGLEIVRGRLQ-NAGLNVTVNATFMYSDGLIHNSGDCRSSTCEGLDLLRKISNAQRMGCVLIGPSCTYSTFQMY-LDTELSYPMISAG 122

expresso|NPRA_RAT LLLLRGGHASDLTVAVVLPLTNT-SYPWSWARVGPAVELALARVKARPD---LL-PGWTV--RMVLGSSE---NAAGVCSDTAAPLAAVD---LKWE-HSPAVFLGPGCVYSAAPVGRFTAHWRV 102
expresso|NPRC_HUMAN RQEREALPPQKIEVLVLLPQD--DSYLFSLTRVRPAIEYALRSVEGNGTGRRLLPPGTRF--Q--VA------YEDSDCGNR-ALFSLVDRVAAARG-AKPDLILGPVCEYAAAPVARLASHWDL 107
expresso|GCC_HUMAN SQVSQNCHNGSYEISVLMMG-N-SAFAEPLKNLEDAVNEGLEIVRGRL----QN-AGLNVTVNATFMYSDGLIHNSGDCRSSTCEGLDLL-RKISNAQRMGCVLIGPSCTYSTFQMY-LDTELSY 116

modeller|NPRA_RAT --------SDLTVAVVLPLTNTSYPWSWARVGPAVELALARVKA-------RPDLLP-GWTVRMVLGSSENA---AGVCSDTAAPLAAVDLKWE---HSPAVFLGPGCVYSAAPVGRFTAHWRVP 103
modeller|NPRC_HUMAN P-------QKIEVLVLLP-QDDSYLFSLTRVRPAIEYALRSVEGNGTGRRL---LPP-GTRFQVAYEDSD---------CGNRALFSLVDRVAAARGAKPDLILGPVCEYAAAPVARLASHWDLP 108
modeller|GCC_Human SQVSQNCHNGSYEISVLMMGNSAFAEPLKNLEDAVNEGLEIVRG-------RLQNAGLNVTVNATFMYSDGLIHNSGDCRSSTCEGLDLLRKISNAQRMGCVLIGPSCTYSTFQMYLDTEL-SYP 117

110. 120. 130. 140. 150. 160. 170. 180. 190. 200. 210. 220.
mafft|NPRA_RAT APALGIGVK-DEYALTTRTGPSHVKLGDFVTAL-------HRRLGWEHQALVLYADRLGDDRPCFFIVEGLYMRVRERLNITVNHQEFVEGDPDHYPKLLRAVRRKGRVIYICSSPDAFRNLMLL 225
mafft|NPRC_HUMAN ALAAGFQHKDSEYSHLTRVAPAYAKMGEMMLAL-------FRHHHWSRAALVYSDD--KLERNCYFTLEGVHEVFQEE-GLHTSIYSFDETKDLDLEDIVRNIQASERVVIMCASSDTIRSIMLV 228
mafft|GCC_HUMAN S----FGLSCDYKETLTRLMSPARKLMYFLVNFWKTNDLPFKTYSWST-SYVYKNG--TETEDCFWYLNALEASVSYF-SHELGFKVVLRQ-DKEFQDILMDHNRKSNVIIMCGGPEFLYKLK-- 236

expresso|NPRA_RAT PLLTAGAPALGIGVKD-EYALTTRTGPSHVKLGDFVTAL-------HRRLGWEHQALVLYADRL-GDDRPCFFIVEGLYMRVRER-LNITVNHQEFVE-G-DPDHYPKLLRAVRRKGRVIYICSS 215
expresso|NPRC_HUMAN PMLSAGALAAGFQHKDSEYSHLTRVAPAYAKMGEMMLAL-------FRHHHWSRAA-LVYSDDKL--ERNCYFTLEGVHEVFQEEGLH--TSIYSFDETK--DLDLEDIVRNIQASERVVIMCAS 218
expresso|GCC_HUMAN PMISAGSFGLSCD----YKETLTRLMSPARKLMYFLVNFWKTNDLPFKTYSWST-S-YVYKNG--TETEDCFWYLNALEASVSYF--SHELGFKVVL---RQDKEFQDILMDHNRKSNVIIMCGG 228

modeller|NPRA_RAT LLTAGAPALGIGVKD-EYALTTRTGPSHVKLGDFVTALHRRLGWEHQALVLYADRLGDDRPCFFIVEGLYMRVRERLNITVNHQEFVEGDPDHYPKLLRAVRRKGRVIYICSSPDAFRNLMLLAL 227
modeller|NPRC_HUMAN MLSAGALAAGFQHKDSEYSHLTRVAPAYAKMGEMMLALFRHHHW-SRAALVYSDDK-LERNCYFTLEGVHEVFQEE-GLHTSIYSFDETKDLDLEDIVRNIQASERVVIMCASSDTIRSIMLVAH 230
modeller|GCC_Human MISAGSFGLSCDYKETLTRLMSPARKLMYFLVNFWKTNDLPFKTYSWSTSYVYKNGTETEDCFWYLNALEASVSY--FSHELGFKVVLRQDKEFQDILMDHNRKSNVIIMCGGPE----FLYKLK 236

230. 240. 250. 260. 270. 280. 290. 300. 310. 320. 330. 340. 350.
mafft|NPRA_RAT ALNAGLTGEDYVFFHLDVFGQSLKSAQGLVPQKPWERGDGQDRSARQAFQAAKIITYKEPDNPEYLEFLKQLKLLADKKFNFTVEDGLKNIIPASFHDGLLLYVQAVTETLAQGGTVTDGENITQ 350
mafft|NPRC_HUMAN AHRHGMTSGDYAFFNIELFNSSSYG------DGSWKRGDKHDFEAKQAYSSLQTVTLLRTVKPEFEKFSMEVKSSVEKQGLN--MEDYVNMFVEGFHDAILLYVLALHEVLRAGYSKKDGGKIIQ 345
mafft|GCC_HUMAN GDRAV--AEDIVIILVDLFNDQYLE---------------DNVTAPDYMKNVLVLTLSPGNSLLNSSFSRN-------------LSPTKRDFALAYLNGILLFGHMLKIFLENG-ENITTPKFAH 330

expresso|NPRA_RAT PDAFRNLMLLALNAGLTGEDYVFFHLDVFGQSLKSAQGLVPQKPWERG-DGQDRSARQAFQAAKIITYKEPDNPEYLEFLKQLKLLADKKFNFTV-EDGLKNIIPASFHDGLLLYVQAVTETLAQ 338
expresso|NPRC_HUMAN SDTIRSIMLVAHRHGMTSGDYAFFNIELFNSSSYGD------GSWKRGD-KHDFEAKQAYSSLQTVTLLRTVKPEFEKFSMEVKSSVEK-QGL-NM-EDYVNMFVEGFHDAILLYVLALHEVLRA 333
expresso|GCC_HUMAN PEFLYKLKGD----RAVAEDIVIILVDLFNDQYLED----------------NVTAPDYMKNVLVLTLSPGNSLLNSSFS-------------R-NLSPTKRDFALAYLNGILLFGHMLKIFLEN 319

modeller|NPRA_RAT NAGLTGEDYVFFHLDV--FGQSLKSAQGLVPQKPWERGDGQDRSARQAFQAAKIITYKEPDNPEYLEFLKQLKLLADKKFNFTVEDGLKNIIPASFHDGLLLYVQAVTETLAQGGTVTDGENITQ 350
modeller|NPRC_HUMAN RHGMTSGDYAFFNIELFNSSSYGD--------GSWKRGDKHDFEAKQAYSSLQTVTLLRTVKPEFEKFSMEVKSSVEK--QGLNMEDYVNMFVEGFHDAILLYVLALHEVLRAGYSKKDGGKIIQ 345
modeller|GCC_Human GDRAVAEDIVIILVDLFNDQ-------------YLE----DNVTAPDYMKNVLVLTLSPGNSLLNSSFSRNLS-------------PTKRDFALAYLNGILLFGHMLKIFLENGENIT-TPKFAH 330

360. 370. 380. 390. 400. 410. 420. 430.
mafft|NPRA_RAT RMWNRSFQGVTGYLKIDRNGDRDTDFSLWDM-DPETGAFRVVLNYNGTSQELMAV-SEHKLYWPLG------------YPPPDVPKC-GFDNEDPACNQDH-------------- 436
mafft|NPRC_HUMAN QTWNRTFEGIAGQVSIDANGDRYGDFSVIAMTDVEAGTQEVIGDYFGKEGRFEMR-PNVKYPWGPLKLRIDENRIVEHTNSSPCKSSGGLEESAVTGIVVG-------------- 445
mafft|GCC_HUMAN AFRNLTFEGYDGPVTLDDWGDVDSTMVLLYT-SVDTKKYKVLLTYDTHVNKTYPVDMSPTFTWKNS------------KLPNDITGR-GPQILMIAVFTLT-------------- 417

expresso|NPRA_RAT GG--TVTDGENITQRMWNRSFQGVTGYLKIDRNGDRDTDFSLWDMD-PETGAFRVVLNYNGTSQEL-MAVSEHKLYWPLGY------------P-PPDVPKCGFDNEDPACNQDH 436
expresso|NPRC_HUMAN GYSK--KDGGKIIQQTWNRTFEGIAGQVSIDANGDRYGDFSVIAMTDVEAGTQEVIGDYFGKEGRF-EMRPNVKYPWGPLKLRIDENRIVEHTNSSPCKSSGGLEESAVTGIVVG 445
expresso|GCC_HUMAN G-E-N-ITTPKFAHAFRNLTFEGYDGPVTLDDWGDVDSTMVLLYT-SVDTKKYKVLLTYDTHVNKTYPVDMSPTFTWKNSK------------L-PNDITGRGPQILMIAVFTLT 417

modeller|NPRA_RAT RMWNRSFQGVTGYLKIDRNGDRDTDFSLWDM-DPETGAFRVVLNYNGTSQELMAVS-EHKL-YWPLGYPPPDVPKCGF------------------------------------- 425
modeller|NPRC_HUMAN QTWNRTFEGIAGQVSIDANGDRYGDFSVIAMTDVEAGTQEVIGDYFGKEGRFEMRP-NVKYPWGPLKLRIDENR----------------------------------------- 418
modeller|GCC_Human AFRNLTFEGYDGPVTLDDWGDVDSTMVLLYTSV-DTKKYKVLLTYDTHVNKTYPVDMSPTFTWKNSKLPNDITGRGPQ------------------------------------- 407
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Results 5.1. Modelling of the GC-C receptor

Figure 5.1: Multiple alignment of GCC-ECD with NPR-A and NPR-C. The ”mafft”
and ”expesso” alignments are the portion of the alignment of the set of 41 sequences obtained
by profile HMM search (empty columns, which correspond to insertions from other sequences,
were removed for an easier vizualisation). The ”modeller” alignment was generated by aligning
the GCC-ECD with the previously aligned structures 1DP4 and 1JDN, which correspond to the
unliganded NPR-A and NPR-C receptors. Residues belonging to secondary structure elements
are shown in red (α-helices) or green (β-strands). N-glycosylation sites are highlighted in blue,
and cysteines in yellow, and ligand-binding residues in gray. In the case of GCC-ECD, the
secondary structure was predicted by PSIPRED, the N-glycosylation sites by NetNglyC 1.0, and
the ligand binding sequence is the one inferred from photoaffinity labeling studies (Wada et al.,
1996; Hasegawa et al., 1999a). The numbering of each sequence corresponds to their respective
extracellular domains.

described later on see section 5.1.3. The residues of the NPRS that are involved in

ligand binding, as well as the conserved cysteines, are also aligned in most cases.

Two regions are most different for each alignment, located, in terms of secondary

structure elements,(i) between the first and second α-helices (residues 45 to 92 of

GCC-ECD), and (ii) between the fourth and seventh β-strands (residues 120 and

195 of GCC-ECD, see Figure 5.1). These regions are also both located just before

the ligand-binding sequences of the NPRs, and two NPR ligand-binding fragments,

located on the fourth α-helix and the sixth β-strand and α-helix (residues 126 to

131 and 170 to 188 of GCC-ECD, approximately) is within the second region.

The first ”region of uncertainity” appears best aligned in the ”mafft” alignment,

with the least gaps and conserved cysteines aligned. The ”expresso” alignment

contains more gaps, especially within the second β-strand, and the ”modeller”

alignment does not present the conserved cysteines as aligned. It is to be noted

that this region contains the two additionnal cysteines of the GC-C receptor. The

second region contains also more gaps for the ”mafft” and ”expresso” alignments,

but they are very similar to each other, and all three alignments present the

ligand-binding residues of the NPRs aligned.

In summary, the ”modeller” alignment, for which the only sequence informa-

tion is that of the templates and the target, presents, as expected, less gaps than

the other alignments, but conserved residues are not always aligned. For the

”mafft” alignment, which contains additional sequence information but no struc-

ture information, conserved residues as well as the sequence fragments correspond-

ing to secondary structure elements are aligned. In fact, the secondary structure
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membrane-distal membrane-proximal distal proximal
sub-domains

s.s. elements h2 h4 h6 h8 h10 h12 h14 h16 h18 h20 - h22
b1 b3 b5 b7 b9 b11 b13 b15 b17 b19 b23 - b27

NPR-A

NPR-C

GC-C

Figure 5.2: Secondary structure for the GC-C, NPR-A, and NPR-C extracellular
domains. The secondary structure elements for the NPR-A and NPR-C ECDs are represented
along their sequences according to the data from their three-dimensional structures. The sec-
ondary structure elements for the GCC-ECD have been predicted by the PSIPRED program.
α-helices are represented in red and β-strands in yellow. Numbering of the secondary structure
elements is done with NPR-A as reference.

elements are better aligned with MAFFT than they are with EXPRESSO, which

is suprising considering that the ”expresso” alignment includes structural informa-

tion. It was therefore chosen to use the ”mafft” alignment for the modelling.

5.1.3 Comparison of the secondary structures for

the GC-C, NPR-A, and NPR-C ECDs

The secondary structure for the extracellular domain of the GC-C receptor (GCC-

ECD) was predicted using PSIPRED, which relies on the results from a PSI-

BLAST database search, and is therefore based on the secondary structure from

other proteins. As expected, the organization of secondary structure elements for

the GCC-ECD is globally the same as for the NPRs, with an alternance of α-

helices and β-strands along most of the sequence, with the C-teminus exclusively

composed of β-strands (Figure 5.2). Not predicted are the α-helices h8 and h20

from the NPRs, and the extra α-helix of NPRC-ECD, located just before h18.

The helix h8 corresponds to the ligand-binding fragment of the NPRs that is

between residues 111 and 115 of NPR-A, located within the second region of

uncertainity in the sequence alignments (see section 5.1.2). The extra helix of

NPRC-ECD (residues 267 to 271) and the helix h20 (residues 286 to 305 of NPR-A)

are located, on the sequence alignment, within the gapped region appearing after

the last conserved cysteine. The other binding regions for the NPRs correspond

to helices h6 and h12, and the β-strand b13. Helices h4 and h6 are involved in the
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Results 5.1. Modelling of the GC-C receptor

Table 5.3: Structures obtained via threading

PDB Resolution P-value UniProt Protein description
ID (Å) ID

1JDP 2.00 7e-05 P17342 CNP-bound NPRC-ECD
3JPW 2.80 1e-04 Q00960 Glutamate NMDA receptor subunit NR2B
3OM0 1.40 3e-04 Q63273 Ionotropic Glutamate Receptor Kainate 5
3LOP 1.55 4e-04 B5RX19 Substrate-binding periplasmic protein (Pbp)

from Ralstonia solanacearum, engineered
3H6G 2.70 4e-04 P42260 Ionotropic Glutamate Receptor Kainate 2
3HUT 1.93 6e-04 Q2RQC5 Branched-chain amino acid ABC transporter

from Rhodospirillum rubrum, putative
3OLZ 2.75 6e-04 D3ZDH2 Ionotropic Glutamate Receptor Kainate 3
3H5L 1.70 7e-04 Q5LQF6 Branched-chain amino acid ABC transporter

from Silicibacter pomeroyi, putative

dimerization interface of the NPR receptors.

Identification of remote structures by fold recognition

With the purpose of exploring the possibilty for the extracellular domain of the

GC-C receptor to have a fold different to that of the NPR receptors, its sequence

was submitted as query for a database search by fold recognition, using the pGen-

Threader tool of the PSIPRED web-server (Bryson et al., 2005). Eight structures

with a p-value below 1e-03 were obtained, with the structure for the NPR-C recep-

tor bound to the natriuretic peptide C (CNP; PDB entry 1JDP) scoring highest,

with a p-value of 7e-05 (Table 5.3). This result further supports the hypothesis

according to which the GCC-ECD has a structure very similar to that of the NPR

receptors.

Four structures corresponding to different ionotropic glutamate receptors (iGluRs),

which mediate excitatory synaptic neurotransmission in the central nervous sys-

tem, were also harvested (PDB entries 3JPW, 3OM0, 3H6G, and 3OLZ) (Karakas

et al., 2009; Kumar et al., 2009; Kumar and Mayer, 2010). They describe their

regulatory extracellular amino-terminal domains (ATD), which are located before

their ligand-binding domains in terms of sequence. As for the GC-C and the NPR

receptors, the fold adopted by those sub-domains is recognized as belonging to the

Type 1 periplasmic binding fold superfamily (PBPD1), suggesting that they may

be remote homologs to the GC-C receptor (Marchler-Bauer et al., 2011). The re-

maining three structures, which remained to be published, correspond to putative

members of the ABC transporter family (PDB entrys 3HUT and 3H5L) and to an

37



Results 5.1. Modelling of the GC-C receptor

3LOP 3H5L

Ionotropic glutamate receptors (iGluRs)

3OM0 3H6G3OLZ

Periplasmic binding protein ABC transporters
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NMDA subunit NR2B
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Glutamate receptors Kainate (GluK)

Glutamate receptors Kainate (GluK)
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subdomain
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Figure 5.3: Structures identified by threading. Cartoon representation of the different
structures obtained by threading using the sequence for the GCC-ECD as query. Each chain is
colored as a rainbow from N-terminus to C-terminus. (a) Ionotropic Glutamate Receptor Kainate
(GluK) 3 (PDB entry 3OLZ). (b) GluK 5 (PDB entry 3OM0). (c) (PDB entry 3H6G). (d) Su-
perposition of the structures for the GluK receptors. (e) Glutamate NMDA receptor subunit
NR2B (PDB entry 3JPW). (f) Engineered substrate-binding periplasmic protein from Ralsto-
nia solanacearum(PDB entry 3LOP). (g)Putative branched-chain amino acid ABC transporter
from Silicibacter pomeroyi (PDB entry 3H5L). (h) Putative branched-chain amino acid ABC
transporter from Rhodospirillum rubrum (PDB entry 3HUT).

38



Results 5.1. Modelling of the GC-C receptor

Table 5.4: NPR-A and NPR-C structures

PDB Resolution Oligomerization UniProt Protein description
entry (Å) ID

1DP4 2.00 monomer* P18910 NPRA-ECD
1T34 2.95 dimer P18910 ANP-bound NPRA-ECD
1JDN 2.90 monomer P17342 NPRC-ECD
1JDP 2.00 dimer P17342 CNP-bound NPRC-ECD
1YK0 2.40 dimer P17342 ANP-bound NPRC-ECD
1YK1 2.90 dimer P17342 BNP-bound NPRC-ECD

* The structure presents a dimer which organization is due to crystal packing,
therefore only the monomer was used as
template (see van den Akker et al., 2000; Ogawa et al., 2004).

engineered substrate-binding periplasmic protein (pbp, PDB entry 3LOP), all of

then also members of the PBPD1 superfamily.

All the structures share the fold with 2 subdomains linked by three cross-overs,

with each subdomain a β-sheet surrounded by α-helices (Figure 5.3). However, the

relative orientation of subdomains and secondary structure elements is different,

as well as their lengths, giving an idea of the variability of the fold. As for the

NPR receptors, several of the threaded structures contain disulfide bonds, some

of them having a greater number of cysteines than the NPRs or even the GC-C

receptor. The N-glycosylation sites belonging to some of the structures are mostly

located within the hinge region between the two subdomains.

The structure for the unliganded NPRA-ECD (PDB entry 1DP4) was also

harvested, but with a p-value of 1e-03 (data not shown), which reflects what was

obtained by the initial BLASTp sequence similarity search.

5.1.4 Homology Modelling based on the natriuretic pep-

tide receptors

NPR template structures

As mentionned earlier, six structures are available for the NPR receptors (Table

5.4). The two structures corresponding to the extracellular domain of the NPR-

A receptor (NPRA-ECD) describe its unliganded (PDB entry 1DP4) and bound

(PDB entry 1T34) forms, respectively (van den Akker et al., 2000; Ogawa et al.,

2004). The extracelllular domain of the NPR-C receptor (NPRC-ECD) is described

by four structures, one for the unliganded form (PDB entry 1JDN) and three
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Table 5.5: PROCHECK analysis of the GCC-ECD models (main chain parameters).

NPRA-based models NPRC-based models Comparison values
Parameter unbound ligand-bound unbound ligand-bound Typical Bandwidth

(monomer) (dimer) ch. A ch. B (monomer) (dimer) ch. A ch. B
Ramachandrana 79.9 84.8 84.3 83.8 82.1 80.2 81.0 84.3 83.8 10.0
Planarityb 5.2 4.2 6.7 4.5 5.0 4.5 4.6 4.1 6.0 3.0
Bad contactsc 8.6 7.1 6.9 4.9 7.1 6.1 4.2 6.6 4.2 10.0
Cα distortiond 2.0 2.0 2.9 2.1 1.9 1.8 1.8 1.7 3.1 1.6
H-bond energye 0.9 0.8 0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.2
a Percentage of residues in the most favored regions of the Ramachandran plot.
b Standard deviation of the ω torsion angle, gives a measure of the planarity of the peptide bond.
c Number of bad contacts per 100 residues, with a distance of closest approach less than or equal to 2.6Å.
d Standard deviation of the ζ torsion angle, gives a measure of the tetrahedral distortion of the Cα.
e Standard deviation of the hydrogen bond energies for main-chain hydrogen bonds.

for the bound one (PDB entries 1JDP, 1YK0, and 1YK1), corresponding to the

complexes between NPR-C and the natriuretic peptides A, B, and C (He Xl et al.,

2001; He et al., 2006).

General features of the GCC-ECD models

Homology models for the GCC-ECD monomer were built based on the structures

for the unliganded NPR-A and NPR-C receptors (PDB entries 1DP4 and 1JDN),

but also using the ”dimer structures” for the ligand-bound receptors (the 3 struc-

tures corresponding to the NPR-C receptor bound to its various ligands were used

as a group), modelling each chain of the dimer separately. Dimer models were

built based on the same ”dimer structures”. The ”mafft” sequence alignment (see

Figure 5.1) was used as basis for the modelling, and the experimentally determined

disulfide bonds for GCC-ECD were added as constraints for all models (Hasegawa

and Shimonishi, 2005).

Analysis of the modelled structures was carried out by submitting them to

the PDBsum structure database, thus generating several analyses concerning the

features of the models but also their stereochemical quality by PROCHECK, for

which the main chain parameters are presented in Table 5.5 (Laskowski, 2001;

Morris et al., 1992). All models are inside the observed values for known protein

structures for all parameters, although the percentage of residues with a good

value for the (φ,ψ) torsion angles (Ramachandran) is below to 90%, and that the

number of bad contacts is rather high. However, this kind of result is expected

considering that the models were not refined.
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GCC-ECD models based on the NPR-A receptor

N

C

GCC-ECD models based on the NPR-C receptor

N

C

1DP4

1JDN
1JDP,1YK0,1YK1

Figure 5.4: Homology models of the GCC-ECD. Each model is shown as a cartoon
representation, each chain colored as a rainbow from N-terminus to C-terminus. The PDB
code(s) of the corresponding template(s) is(are) indicated above the models. Several features
are represented on the models, such as the disulfide bonds (sulphur atomes shown as yellow
spheres) and potential N-glycosylation sites (atomes represented as gray spheres) of the GC-C
receptor. The secondary structure elements of interest are indicated by their number according
to the sequence of the NPR-A receptor. The putative ligand-binding sequence, as described by
Hasegawa et. al, is indicated by a bracket.
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membrane-distal membrane-proximal distal proximal

sub-domains
s.s. elements h2 h4 h6 h8 h10 h12 h14 h16 h18 h20 - h22

b1 b3 b5 b7 b9 b11 b13 b15 b17 b19 b23 - b27
PSIPRED prediction

NPRA-based model, unbound

NPRA-based model, bound

NPRC-based model, unbound

NPRC-based model, bound

Figure 5.5: Secondary structure of the GC-C models. The organization of the secondary
structure elements along the sequence of the GCC-ECD is represented for the different models,
as well as the PSIPRED secondary structure prediction. α-helices are shown as in red and
β-strands in yellow.

The structures of the models for the extracellular domain of the GC-C receptor

(GCC-ECD) are presented in Figure 5.4, with the exception of the monomer models

based on the ligand-bound structures for the NPR receptors, which were identical

to the chains from the dimer models. All models show, as expected, the same

overall structure, although the two chains from the model based on the ligand-

bound NPR-C receptor are totally different from each other. The most structured

chain is similar to the model obtained based on the unliganded NPR-C and to the

NPR-C templates, so the unstructured chain is most likely an artefact.

The N- and C-terminal ends also adopt different conformations depending on

the model, aberrant in several cases. The N-terminal region corresponds to the

portion of the GCC-ECD sequence (before the first β-strand) that is not present

within the structure files for the NPR templates (see the ”modeller” alignment in

Figure 5.1). The C-terminal region is, within the templates, either not defined or

present as a coil under the membrane-proximal domain, which makes it difficult

for the modelling.

The secondary structure of the extracellular domain of the GC-C receptor

presented in the models is globally in aggreement with the secondary structure

prediction, although the length of the secondary structure elements varies from

model to model (Figure 5.5). The helices that were not predicted for the GC-C

receptor are present in the models in a more or less defined fashion, suggesting

that program tried to fit the corresponding GC-C sequence onto an helix structure

even though it was not optimal.
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Disulfide bonds of GCC-ECD

The disulfides bonds of the extracellular domain of the GC-C receptor, which

were experimentally determined, were added as a constraint for the modelling

(Hasegawa and Shimonishi, 2005). The disulfide bond of the membrane-proximal

domain (Cys179-Cys226), which is conserved with that of the NPR receptors, is

also located behind the helix h12 on all models (Figure 5.4). The disulfide bond of

the NPR receptors which is located in the membrane-distal domain (behind helix

h6), is split into two bonds in the GCC-ECD (Cys72-Cys77 and Cys7-Cys94, see

Figure 5.1). The Cys7-Cys94 bond is located near the top of the structures, and

seems to be responsible for the folding of the N-terminal portion of the chain back

into the structures for the models based on the NPR-A receptor. The Cys72-77

bond takes the place of the NPR disulfide bond, and is positionned, in all models

but the one based on the unliganded NPR-A receptor, at the exact same position

as the Cys101-Cys128 bond.

N-glycosylation sites of GCC-ECD

All models present the potential glycosylation sites for the GC-C receptor on the

outside of their respective structures, apart from Asn261 that is buried for the

models based on the NPR-C receptor (Figure 5.4). However, the sequence identity

between models and templates is not high enough to describe with precision the

orientation of residues along the polypeptide chain, the side chains of the Asn

residues being shown only for visualization purposes. The sites for the Asn9,

Asn52, Asn56, and Asn322 are situated on the top of the structures, often very

close to each other. The Asn172 site is at the NPR-like dimer interface within the

membrane-proximal domain, with the Asn261 and Asn379 on the other side. The

Asn284 site is located between the two subdomains, within the helix h20 that was

not predicted for the GCC-ECD.

Residues involved in dimer interface and ligand binding

The residues of the NPR receptors that are involved in either the dimer interface

or the ligand binding belong to the sequence stretches that go from the α-helices

h4 to h8 for the membrane-distal domain, and from the β-strand b11 to helix h14
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Table 5.6: Residues of GCC-ECD potentially involved in interactions

secondary NPRA-based models NPRC-based models
structure unbound bound unbound bound

h4 Tyr76, Leu80, Leu83 Ser75, Gly79, Leu82 Ser75, Gly79, Arg84 Gly79, Leu82, Lys85
h6 Ser104, Glu107, Asp111, Gln107, Leu110, Glu113 Gln107, Leu110, Glu113 Gln107, Leu110, Glu113

Leu114
”h8”* Leu126 to Lys131 Ser127 to Lys131 Leu126 to Lys131 Ser127
h12 Glu175, Trp181, Ala185 Phe180, Trp181, Asn184 Glu175, Phe180, Trp181,

Ala188 Asn184, Ala188, Tyr191
b13 Lys200, Val201, Val202 Lys200, Val201, Val202 Phe199, Lys200, Val201 Phe199, Lys200, Val201
h14 Phe209, Ile212, His216 Lys207, Asp210, Met213, Asp210, Ile212, Asp214, Asp210, Asp214, Arg218

Arg218 Arg218, Lys 219

* The α-helix h8 is not predicted for the GCC-ECD, and is not present on all models.

↓↓ ↓↓ ↓↓↓↓ ↓ ↓ ↓↓ ↓↓ ↓↓↓↓↓↓
70. 80. 90. 100. 110. 120. 130.

Human GDCRSSTCEGLDLLRKISNAQRMGCVLIGPSCTYSTFQMYLDTELSYPMISAGSFGLSCDYKETLT
Pig SDCRSSTCEGLDLLRTISSEKRMGCVLLGPSCTYSTFQMYLDTDLNYPMISAGSFGLSCDYKETLT
Mouse GDCRSSTCEGLDLLREITRDHKMGCALMGPSCTYSTFQMYLDTELNYPMISAGSYGLSCDYKETLT
Ox SDCRSSTCEGLDLLRTISSKKQMGCVLMGPSCTYSTFQMYLDTDLNYPMISAGSFGLSCDYKETLT
Guinea Pig GDCRSSTCEGLDLLREIARQKRMGCALMGPSCTYSTYQMYLDTELNYPMISAGSFGLSCDHKETLT
Panda NDCRSSTCEGLDLLRAISNNKRMGCVLMGPSCTYSTFQMYLDADLNYPMISAGSFGLSCDYKETLT

↓ ↓↓ ↓↓ ↓ ↓ ↓↓↓↓ ↓↓ ↓↓↓ ↓ ↓↓
170. 180. 190. 200. 210. 220.

Human YKNGTETEDCFWYLNALEASVSYFSHELGFKVVLRQDKEFQDILMDHNRKS
Pig FKNSTESEDCFWYLNALEAGVSYFSQKLSFKEMLRGNEEFQNILMDQNRKS
Mouse YKNGSEPEDCFWYLNALEAGVSYFSEVLNFKDVLRRSEQFQEILTGHNRKS
Ox FKNSTETEDGLWYLNALAAGVSYFPQKLGFKEMLRGDTEFQDILMDQNRKS
Guinea Pig FKNGTESEHCFWYINALEAGVSYFSQVLGFKEMLRGNEELQKILKDPNRRS
Panda FKNGSETEDCFWYLNALEAGVSYFSQELSFKEMLRGNDQFQDILTNQNRKS

Figure 5.6: Putative interface residues of GCC-ECD. The residues located at the NPR-
like interface for the extracellular domain of the GC-C receptor have been identified on the
GCC-ECD models (see text, section 5.1.4). This alignment shows the conservation, amongst the
GC-C orthologs, of the sequence fragments corresponding to those residues. Residues conserved
in more than half the sequences are shaded in blue, and the residues identified on the models are
indicated by arrows. The separation between the two regions is shown by a red line

44



Results

5.2. Cloning and expression of the GC-C receptor

and its endogenous ligands

for the membrane proximal domain (Figure 5.1). For the extracellular domain

of the GC-C receptor, this corresponds, according to the sequence alignments, to

the regions from Cys72 to Leu134 and from Trp164 to His216. On the GCC-ECD

models, the residues facing the outside of the molecule on the NPR-like interface

can be identified (Table 5.6). They are more or less the same ones for all models,

and are highly conserved amongst the GC-C orthologs (Figure 5.6).

The PDBsum analysis on the model for the extracellular domain of the GC-C

receptor (GCC-ECD) based on the bound NPR-A reports the putative interactions

that occur between the two monomers. Those interactions involve the residues

Ile66, Arg73, Ser75, Glu78, Leu82, Leu83, Leu110, Glu113, Tyr130 and Lys131

(data not shown).

5.2 Cloning and expression of the GC-C receptor

and its endogenous ligands

In order to study, by biochemical means, the interaction between the GC-C re-

ceptor and its ligands, it was chosen to develop an in vitro system that would

complement the cell-based and sukling mouse assays already in place. For this

purpose, the extracellular domain of the GC-C receptor (GCC-ECD), as well as

the pro-sequences for its endogenous ligands guanylin and guanylin, were cloned

into the pSXG vector. In addition, a small fragment of the GCC-ECD, named

miniGCC and corresponding to its putative membrane-proximal sub-domain, was

also cloned into the pSXG vector and expressed in Escherichia coli.

5.2.1 Construction of the pSXG vectors

The cDNAs for human guanylin, uroguanylin, GCC-ECD and miniGC-C were

cloned into the pSXG vector to form the pSXG-guanylin, pSXG-uroguanylin,

pSXG-GCCECD and pSXG-miniGCC constructs (Figure 5.7). Each fragment

was amplified from a PCR4-TOPO vector containing the sequence for the pro-

hormone and the full-length GC-C receptor, and primers introducing restriction

sites in 5’ and 3’ of the insert sequences were used (see Materials, section 3.2.1).

In the case of the miniGC-C insert, several amplifications were necessary: one for

45



Results
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and its endogenous ligands

pSXG-proUroguanylin
5265 bp

pro-uroguanylin(963-1237
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BamHI (957)
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Figure 5.7: Graphical map for the pSXG constructs. The map of the full vector is
shown for the pSXG-proGuanylin construct, and the portion containing the insert for the others
(pSXG-proUroguanylin, pSXG-GCC-ECD, and pSXGminiGCC). in the case of guanylin and
uroguanylin, it is the pro-peptides that have been cloned. The GCC-ECD inserts corresponds
to the region of the GC-C receptor that codes for its extracellular domain. The miniGCC insert
codes for the putative membrane-proximal domain of the GCC-ECD, according to the design by
Lauber et. al (Lauber et al., 2009).
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5.2. Cloning and expression of the GC-C receptor

and its endogenous ligands

each of the sequence fragments from the GC-C receptor, and another to join them

(see Figure 4.2 in Section 4.3.1). The GCC-ECD was cloned in collaboration with

Dr Yuleima Diaz.

The inserts were retrieved from their respective clones by conducting a restric-

tion analysis on the pSXG constructs (data not shown). The size of the bands

corresponded to the expected sizes of the inserts, i.e. 290 bp for pro-guanylin, 280

bp for pro-uroguanylin, 1229 bp for GCC-ECD and 615 bp for miniGC-C. The

clones were submitted to sequencing, which revealed, in the case of GCC-ECD, a

frameshift caused by two missing bases after the introduced BamHI restriction site

(data not shown). Otherwise all sequences were confirmed, and the pro-guanylin

and pro-uroguanylin peptides have been successfully expressed by Arne M. Taxt

(personal communication). Pro-guanylin has also been purified using its GST-tag,

but difficulties are currently met for the purification of pro-uroguanylin.

5.2.2 Pilot expression of miniGCC

The putative membrane-proximal sub-domain of the extracellular domain of the

GC-C receptor (miniGC-C) was expressed as a Glutathione-S-transferase fusion

protein in an E.coli strain possessing an oxidative cytoplasm, in order to allow the

formation of disulfide bonds. Analysis on SDS-PAGE revealed the over-expression,

upon induction by ITPG, of a 43kDa protein which was identified as the GST-

miniGCC fusion by western blot analysis (Figure 5.8). The presence of GST and

GST-miniGCC for non-induced cells indicates a leakage of the pSXG vector. The

use of French Press as a lysis method augnmented the yield of protein in the

supernatant compared to sonication.
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Figure 5.8: Pilot expression of miniGC-C. Expression was carried out as described in
the Methods section. (a) SDS-PAGE analysis for the expression of miniGCC. (b) Western blot
analysis for the expression of miniGCC, using anti-GST antibodies. Lanes 1 and 2: pSXG, lanes
3-7: miniGCC. The lanes marked with a minus sign represent the non-induced cultures, whereas
those with a plus sign represnt cultures induced with 100µM IPTG. The nature of the samples
(i.e. whole cell lysate or supernatant), as well as the lysis method is indicated above the lanes.
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6 Discussion

6.1 Homology modelling of the GCC-ECD

The characterization of the interaction between the guanylyl cyclase C receptor

(GC-C) and its ligands, the endogenous guanylin and uroguanylin peptides, as

well as the heat-stable enterotoxin (STa) from the enterotoxigenic Escherichia coli

(ETEC) would be an asset for the design of a toxoid vaccine against the latter. In

the abscence of a crystal structure for the receptor, homology modelling of its ex-

tracellular domain (GCC-ECD), which is responsible for ligand-binding, has been

previously performed based on the structure for another guanylyl cyclase recep-

tor, the natriuretic peptide receptor A (NPR-A) (Hasegawa and Shimonishi, 2005;

Lauber et al., 2009). The NPR-A receptor is the protein for which a structure is

available that possesses the highest sequence identity to the GC-C receptor (data

not shown). Ligand-binding studies using a fragment of the GCC-ECD, which de-

sign was motivated by the NPR-A based homology model, supports the hypothesis

according to which the GCC-ECD has a fold similar to that of the NPR-A receptor

(Lauber et al., 2009). However, the published models only present the monomeric

form of the GCC-ECD, although it has been shown that the ligand-binding unit is

a dimer (Vijayachandra et al., 2000). In addition, when considering the sequence

for the GCC-ECD alone, it appears that it more similar to the the natriuretic pep-

tide receptor C (NPR-C, see Results, Table 5.1). The NPR-C receptor, which is a

protein G-coupled receptor, is homologous to the NPR-A receptor, and structures

are available for its extracellular domain, both for the ligand-bound and unbound

forms of the receptor (He Xl et al., 2001; He et al., 2006).

In this study, we have built homology models for the GCC-ECD using all the

structures that are available for the NPR-A and NPR-C receptors as templates (6

in total, 2 for the NPR-A and 4 for the NPR-C). In order to achieve the highest

possible quality for these models, special care was taken when building the sequence

alignment to be used as basis for the modelling: 41 sequences for remote homologs

to the GCC-ECD were gathered using itrative building of and searching with

49



Discussion 6.1. Homology modelling of the GCC-ECD

Hidden Markov Model profiles, and two different multiple sequence alignments

built from this set were compared to the default structure-sequence alignment

used by MODELLER. As excepted, the additional sequence information provided

by the GCC-ECD homologs improved the alignment between the extracellular

domains of the GC-C, NPR-A, and NPR-C receptors. The two alignments built

from the set differed in that one of them was containing structrural information (in

addition to the sequence information provided by the set of GCC-ECD homologs).

However, the other one performed best and was therefore used for the modelling

procedure. Another alternative could have been to manually construct a fourth

alignment from the information provided by all three sequence alignments, as well

as the information from the analysis of the template structures (see Results, 5.1.4).

The obtained models all shared the same global structure and were within what

is observed for protein in terms of stereochemical parameters (see Results, 5.1.4).

The N-terminal ends, for which the GCC-ECD sequence was not aligned with

the templates, showed aberrant conformations. The same was observed for the

C-terminal ends, its corresponding portion in the template structure being either

missing or having a coil structure. However, these regions are not critical for the

rest of the models, and can be omitted, as is the case with the automaticcally

generated models from the ModBase model database (Pieper et al., 2011). The

potential N-glycosylation sites for the GCC-ECD were well located on the outside

of the model structures. The unique disulfide bonds of GCC-ECD were not as

well placed, and resulted in aberrant conformations (such as the folding of the N-

terminal end into the structure due to the Cys7-Cys94 bond) or clashes (the Cys72-

Cys77 and Cys101-Cys128 situated at the same location). The relative position

of those disulfide bridges, even if it is not well modeled, seems to indicate that

they maintain the structure of the membrane-distal subdomain in the abscence of

the chloride ion that is bound to the NPR receptors, but, unfortunately, there is

no data available concerning whether chloride is necessary for the activity of the

GC-C receptor.

Another uncertain region of the models is the portion corresponding to the

secondary structure elements that are present in the NPR receptors but were not

predicted for the GCC-ECD. These elements are present in some of the models but

not all, although it is from the conformation of the polypeptide chain that it was
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Discussion 6.2. Identification of remotely related structures by threading

attempted to model them as such. These results, along with the one concerning the

terminal ends and the disulfide bonds, reflect the difficulty to model by homology

the regions of the target that are most likely structurally different form that of the

template. The homology procedure tries to fit to the template as closely as possible,

thus sometimes creating clashes and aberrant conformations within the model(s).

In order to address these issues, the refinement of the models is necessary.

6.2 Identification of remotely related structures

by threading

Considering the low sequence identity between the extracellular domains of the

GC-C, NPR-A and NPR-B receptors, it was chosen to perform a database search

based on fold recognition rather than sequence similarity (see Results, section

5.1.3). The obtained structures all belonged to the Type 1 Periplasmic Binding fold

superfamily (PBPD1), which also contains the GC-C and NPR receptors (domain

accession number cl10011). This result suggests that more putative homologs to

the GCC-ECD than were picked up in the HMM profile search may exist, and

that the alignment derived from the gathered set of sequences could have been

extended. Indeed, the Conserved Domain Database lists the hierarchy of the

superfamily, along with sequence clusters that could have been used as a starting

point for the building of the sequence alignment (Marchler-Bauer et al., 2011). In

addition, some of the threaded structures contain more cysteines than the NPR

receptors, located in the same region as that of the GCC-ECD models. This

suggest that such structures might be better to use as templates for the modelling

of this region.

6.3 Hypotheses for dimer interaction and ligand-

binding

Experimental data based on photo-affinity labelling studies of the STa toxin sug-

gest that the ligand-binding sequence for the GC-C receptor as the ECD fragment
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Discussion 6.3. Hypotheses for dimer interaction and ligand-binding

Figure 6.1: Localization of the mutated residues of the GCC-ECD. the residues of
the extracellular domain of the GC-C receptor (GCC-ECD) that were submitted to site-directed
mutagenesis (see Wada et al., 1996 and Hasegawa et al., 1999a) are shown on the model for the
GCC-ECD based on the structure for the ligand-bound NPR-A receptor (PDB entry 1T34). The
Cαs of the mutated residues are shown as spheres which color follows that of the main chain.
Sulphur atoms from the cysteine residues are shown as yellow spheres and the Cαs of potential
N-glycosylation sites as gray ones. The Asn121 site is colored in gray even though it has been
subjected to mutagenesis.

between the 387 and 393 residues, at the C-terminal end of the domain (Hasegawa

et al., 1999a). However, this region of the GCC-ECD models is not well defined,

and they are thus not very well suited to address this issue. On the other hand,

the dimer models can be used to predict residues that may be involved in the

oligomerization of the receptor but also the ligand-binding, assuming that the GC-

C receptors binds its ligands in the same fashion of that of the NPR-A and NPR-C

receptors.

Following this hypothesis, a set of residues located at the NPR-like interface of

GCC-ECD models that may be involved in either the interaction between GCC-

ECD monomer or ligand-binding have been proposed (see Results, 5.1.4). Those

residues are located, within the GCC-ECD sequence, in the segments from Ser75

to Ser127 and from Glu175 to Arg218. Within the first segment, nine residues
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Discussion 6.3. Hypotheses for dimer interaction and ligand-binding

have been subjected previously to site-directed mutagenesis: three (residues 78

to 80) located in h4 and 6 (residues 107 to 109 and 111 to 113) in h6 (Figure

6.1; Wada et al., 1996). Those mutations consisted in the alaline substitution of

the polar residues, and lead to various results depending on the mutation: the

EGL(78-80)AAV mutation, which was used in combination with the VS(3,4)AG

mutation, resulted in an important reduction for the binding of the STa toxin,

whereas the QMY(107-109)AIS and DT(111,112)AA mutations had no effect, and

the TD(112,113)GA mutation leaded to increased binding of STa. This results

suggest that this region is indeed related to the binding of ligand, but most likely

in a indirect fashion, as would be the case if this region was involved in the

dimer interface rather than ligand binding. Interestingly, no mutations have been

performed on residues belonging to the second segment (Glu175 to Arg218, α-helix

h12 and β-strand b13), even though it is corresponding to the main ligand-binding

region for the NPR receptors. The only mutation in the vicinity, ET(230,231)AA,

has a moderate effect on STa binding.

The residues that were proposed as the ligand binding residues by this study,

Arg136 and Asp347, are located, on the GCC-ECD model, at the hinge region

between the two subdomains, which may explain their importance. The mutation

of the residue fragment Arg296-Phe298, which is also located at the hinge region,

leads to loss of binding affinity, although not complete. Two other regions were

submitted to site-directed mutagenesis, corresponding to the top of the structure

(residues 321 to 326) and the end of the domain. In the first case, those mutations

had no effect at all, which would seem logical. The mutations at the C-terminal

end of the domain, which all resulted in important to complete loss of binding,

cannot be related to the models since this region is not well defined.

In summary, the GCC-ECD models fit well with the mutational data, which

supports the hypothesis according to which the extracellular domain of the GC-C

receptor not only has a fold very similar to the NPR receptors, but also interacts

with its ligand in the same fashion, although the other hypothesis for ligand binding

could not be investigated.
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6.4 Cloning and expression of guanylin,

uroguanylin, GCC-ECD and miniGCC

As mentioned earlier, the development of a toxoid vaccine against STa would ben-

efit from the characterization of the interaction between the GC-C receptor and its

ligands. To achieve this purpose, the expression of the different protagonists (GCC-

ECD, guanylin, uroguanylin and STa) of the interaction would provide a system

to study the interaction in vitro. It was chosen to express them as gluthatione-

S-transferase fusion proteins in Escherichia coli, as was done previously for the

GCC-ECD (Nandi et al., 1996).

The cloned pro-guanylin and pro-uroguanylin peptides have both been success-

fully expressed in Escherichia coli and purified using their GST-tag, but it has

not been established of yet whether they are functional. The extracellular domain

of the GC-C receptor has to be cloned again due to the presence of a frameshift

occuring between the GST and GCC-ECD fragment of the fusion protein, but it

seems only a matter of time before it is, as the miniGCC, expressed in Escherichia

coli.

6.5 Diversity of the model organisms used for

the development of the vaccine against STa

One strategy chosen to identify toxoid candidates for an STa vaccine, pursued

by the EntVac consortium, is to screen a library of all possible single amino acid

mutants of STa for effects on toxicity and antigenicity. In the process of the

development of the toxoid vaccine against STa, the pig and the mouse are used as

model organisms (Taxt et al., 2010). In particular, the mouse is used at an early

level in suckling mouse assays to assess the ability of toxoid candidates to induce

diarrhea. However, putative ligand-binding sequence located at the C-terminal

end of the extracellular domain of the GC-C receptor is not strictly conserved

between the three organisms (SPTFTWK for the human, SPTFIWK for the pig,

and NPNFIWK for the mouse). In this regard, STa toxoid canditates may have

a different effect depending on the organism, which could lead either to overlook
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the development of the vaccine against STa

good candidates or to a considerable waste of time and ressources pursuing bad

ones, in addition to the unecessary sacrifice of animals. On the other hand ,

the potential ligand-binding residues identified in this study are almost all strictly

identical (30 out of 37) between not only human, pig, and mouse, but also including

other mammalian species (see Results, 5.1.4), suggesting that mouse and pig are

relevant model organisms for assessing toxoids aimed for human vaccine usage.
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7 Future Perspectives
The homology models built in this study allowed us to propose a set of residues

from the GC-C receptor that may be involved in its oligomerization and/or its

interaction with the guanylin peptides, making them good candidates for site-

directed mutagenesis.

The expression of the extracellular domain of the GC-C receptor, the miniGCC

and the guanylin peptides as GST-fusion proteins would provide a complete in

vitro system to study the interaction between the GC-C receptor and its ligands.

The range of possible experiments is wide, from qualitative GST pull-down assays

to quantitative binding studies using surface plasmon resonance. In addition to

interaction studies, the issue of the oligomerization of the receptor, which remains

unclear, could be investigated. It is therefore of high interest to continue the

current cloning and expression attempt.

We have also seen that structures other than the ones corresponding to the

NPR-A and NPR-C receptors could be used as templates for the modelling og the

GCC-ECD, porvided that a high quality sequence alignment is built. Those new

models might be able to describe the regions of the GCC-ECD that were not well

modeled when based on the NPRs, but also provide us with another alternative

for the prediction of residues of interest for the experimental studies. In addition,

both groups of models (based on the NPRs and the threaded structures) could

be refined in the hope of achieving a quality high enough to carry out molecular

dynamics simulations and maybe even docking experiments, with the prior use

of ligand-binding site prediction programs. Those models could then be used in

combination with the experimental data obtained from mutagenesis and binding

studies, and together, form a double edged, self-enhancing studying tool.
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Appendix
Appendix 1: Multiple alignment of the GCC-ECD remote homologs.

The set of 41 sequences obtained by profile HMM search was aligned using the Mul-

tiple Alignment Fast Fourirer Transform (MAFFT) alignment tool. The residues

are shaded according to their similarity: from 80% conserved: yellow letters on

dark blue shading, between 50% and 80% conserved: white letters on blue shading.

The consensus sequence is shown at the bottom, using a color scale from blue to

red (”cold-hot”). similar residues (above 50% conserved) are shown in llower case

letters and residues conserved above 80% in upper case letters. The residues are

numbered according to their full-length sequences in the UniProt database. Figure

generated with the texshade package for latex.
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tr|Q1LX84|Q1LX84_DANRE/1-439 Q.SPSAHASQKNITLAVILPLHNT..EYPWAWPRVGPALYWALEKVNSDPN....LLAGYH..LQLVFNSSENKE..GLCSDSVAPLVAV 79
tr|Q6P409|Q6P409_XENLA/1-445 G.VAVGDDGVNNLTMAVLLPKTNR..VYPWAWPRVGPAIQLAIDRINNDPS....LLPDLH..VQTFFGNSEDKD..GVCSDSTAPVVAV 79
tr|Q90YB7|Q90YB7_RANCA/1-444 V.VCHCSQEAQNLTIAVLLPKTST..SYPWALPRVGPAIQMAIDRVNADRD....LLPDFH..LWAVYGDTEDKH..KRCSESAAPVTAV 79
sp|P16066|ANPRA_HUMAN/1-445 L.LLLRGSHAGNLTVAVVLPLANT..SYPWSWARVGPAVELALAQVKARPD....LLPGWT..VRTVLGSSENAL..GVCSDTAAPLAAV 79
tr|Q9YI17|Q9YI17_SQUAC/1-448 G.TGRSQSPPETINIAIVLPH.NT..KYAWAWPRVGPAIQMAIERINNDGD....LLKDYV..LTYKYKSSEEN...GGCADSLAPLHAV 77
tr|A1L2S6|A1L2S6_XENLA/1-441 R.SHQNVTSNHTLTLAVVLPESNI..RYAWSWPRVAPALRMAVDRAQELQ.....LLSGYQ..VKWVFLTSELN...GACSEYVAPLNAV 77
tr|Q98UI0|Q98UI0_ORYLA/1-439 A.HGHHERPRQNITLAIILPETNT..AYPWAWPRIGPALERAIIKINSDPN....LLPNHH..LTYVFKSSENSN..GICSESVAPLVAV 79
tr|Q9DG04|Q9DG04_XENLA/1-441 L.AKSNPMDEDTVNMLVLLPKDNS...YMFSMDRVKPAIDHALSSIQENQT....LLPGVH..FNVIYND.......SDCGN.QALFSLI 72
tr|Q98UI1|Q98UI1_ORYLA/1-445 S.SENTTDDLQEVTLAAILPLTNT..DYPWAWPRVAPALYRAVDSVNSDPH....LLPGLK..LQLVHGSSENRE..GFCSDSAAPLVAV 79
sp|P18910|ANPRA_RAT/1-445 L.LLLRGGHASDLTVAVVLPLTNT..SYPWSWARVGPAVELALARVKARPD....LLPGWT..VRMVLGSSENAA..GVCSDTAAPLAAV 79
tr|Q98845|Q98845_ANGJA/1-436 L.PVRTSALNEEIEVLVLLPKNNS...YIFSMPRVRPAIEYAKIRLSAD......LYPGLN..FTVHYDN.......SDCGN.EALFSLV 70
tr|Q90223|Q90223_ANGJA/1-437 L.PVNESASTEDIDVLIILPKNNS...YHFSISMVAPAIDYAQKKMKSVNG....LYSGLN..FNFHYEN.......SNCGD.EALFRLV 72
sp|P55202|ANPRB_ANGJA/1-441 M.ARCRTEIGKNITVVVMLPDNHL..KYSFAFPRVFPAIRMAHDDIQKKGK....LLRGYT..INLLNHSTESQG..AGCSESQAQIMAV 79
sp|P17342|ANPRC_HUMAN/1-449 R.QEREALPPQKIEVLVLLPQDDS...YLFSLTRVRPAIEYALRSVEGNGTGRRLLPPGTR..FQVAYED.......SDCGN.RALFSLV 76
sp|P20594|ANPRB_HUMAN/1-439 A.GGVRPPGARNLTLAVVLPEHNL..SYAWAWPRVGPAVALAVEA..........LGRALP..VDLRFVSSELE...GACSEYLAPLSAV 72
tr|Q4SW10|Q4SW10_TETNG/1-437 D.QPGAERERPNITLAVILPQSNT..EYPWAWPRIGPAIDRAVRTVNANAT....LLPDHH..LTYAFKSSEDKA..GICSELAASLMAV 79
tr|Q7PTP9|Q7PTP9_ANOGA/1-442 ...........YVKFAILLPKKPSKNRDIRILSTVLPVIEMATRVVTAPGG....LLQNLR..IEIDYRD.......TQCSSTYGALGAF 66
tr|Q174S2|Q174S2_AEDAE/1-451 S.ASEDSYHEPHIKFAILLPEH.GRSRDSRILSTVRPVIEMATNLVTGPNG....VLHNLK..IEIDYRD.......TQCSSTYGALGAF 75
tr|Q9BPR0|Q9BPR0_BOMMO/1-453 R.PERHQFHRKIVKLGVLLPADPN...QVFSLVKVLPILEMAIPAVTKQDG....PLPGWK..ILVDYRD.......TLCSSVEGPLAAF 73
tr|Q75Q00|Q75Q00_ORYLA/1-435 L.DPVLSGRTEDIDVLVFLPQNNS...FLFSSARVAPALRYAQRRLQAGEG....NFSGFH..FNLHFQS.......SDSPN.EALFALV 72
tr|Q9PWH0|Q9PWH0_XENLA/1-445 G.VSVGDDGVNNLTMAVLLPKTNR..VYPWAWPRVGPAIQLAIDRINNDPS....LLPDLH..VQTFLGNSEDKD..GVCSDSTAPVVAV 79
tr|B3NK16|B3NK16_DROER/1-458 E.VGEMGSTMRVYNVGVLMASHLD...SPFDLERCGPAVDLALDEINKV......FLKPHN..ITLLKKKGSY....PSCSGARAPGLAA 74
tr|Q9VF17|Q9VF17_DROME/1-451 P.DHRRLGARRQLVFVALLPSVESDNKNDCIMPKVLPVLELAIRHVQRMG.....FVGGSHFDIQLISRD.......TFCSSKYGPIGFF 77
tr|B4KRH8|B4KRH8_DROMO/1-458 L.NERDLSRMRVYNVGVLMASHLD...SPFDLERCGPAVDLALDQINKR......FLSPHN..IRLVKKKASY....PSCSGAKAPGLAA 74
tr|O97053|O97053_STIJA/1-434 R.ELRIGLMLPKFPLVSLLPETTQRPMYPFFLQMVQPAVEIALQEVKAT......TLPFHQ..VSVVSND.......TLCNVNTAQIVVV 74
tr|B4K5Q8|B4K5Q8_DROMO/1-451 Q.QHDGPVQRRQLVFVALLPSVESDNKNDCIMPKVLPVLELAIGHVQRMG.....FVGGVQIDITLISRD.......TFCSSTYGPLGFF 77
tr|B0W1T4|B0W1T4_CULQU/1-458 P.EEDYGGNYTTYNVGVLMASHLD...SPFDLERCGPAVDLALVFINEF......LMAHHR..IKLLKVQQSY....ASCSGAKSPGLAA 74
tr|Q7Q8C9|Q7Q8C9_ANOGA/1-448 ...........VYHVGVLMASHLD...SPFDLERCGPAIDLALELVNQS......LMKVHN..VRLSKVQRSY....ATCSGSKSPGLAA 64
sp|P55204|GUC2C_PIG/1-417 S.SVSQNCHNGSYEISVLMMNNSA...FPESLDNLKAVVNEGVNIVRQRLL.EAGLTVTVN..ATFVYSEGVIYKS.SDCRSSTCEGLDL 82
sp|P70106|GUC2C_CAVPO/1-417 S.QISQNCHNGSYEITVLMMNNYA...FQESLESLKTAVNKGLDIVKQRLQ.EAALYVTVN..ATFIHSDGLIHKS.GDCRSSTCEGLDL 82
sp|Q3UWA6|GUC2C_MOUSE/1-417 S.QVRQNCRNGSYEISVLMMDNSA...YKEPMQNLREAVEEGLDIVRKRLR.EADLNVTVN..ATFIYSDGLIHKS.GDCRSSTCEGLDL 82
tr|D2H857|D2H857_AILME/1-417 S.QISRNCNNGSYEISVLMMNNSA...FPESLDNLKEAVNEGVEIVRQRLL.NAGINVTVN..VTFIYSDSVIYKS.NDCRSSTCEGLDL 82
sp|P25092|GUC2C_HUMAN/1-417 S.QVSQNCHNGSYEISVLMMGNSA...FAEPLKNLEDAVNEGLEIVRGRLQ.NAGLNVTVN..ATFMYSDGLIHNS.GDCRSSTCEGLDL 82
tr|O77690|O77690_BOVIN/1-416 S.HVSRNCQDGSYEISVLMMNNSA...FPESLDSLEEVVKEGVKIVSQRLL.KAGLNVTVN..ATFIYSEGVIYKS.SDCRSSTCEGLDL 82
tr|B8ZHI6|B8ZHI6_ANGAN/1-421 S.LMVRDCLKSAYVLNVVLLEDDV...SEWSLKFVKAGVERAIAIENQRNA.EEGLNFKLT..ANYCGFNTSSYRR.RGCGSSTCEGVEI 82
tr|Q75Q01|Q75Q01_ORYLA/1-415 MLDDCLES.NPRYTMNVVLLEDNT...YEWSRPFVQEAVEGAIKKDAEENR.KAGLNFTLT..ANYNWFNTNLYNR.QGCGSSTCEGVAI 82
tr|O42440|O42440_ORYLA/1-440 C.FCLLPGCRSNITAAVMLPDNYH..KYPWALPRVFPALLMAQEDLHTKHK....LLLGHT..ITILNYSTENPAAPGSCAESRAQVVVV 81
tr|B8ZHI5|B8ZHI5_ANGAN/1-419 S.PSANACPQGEDIINVVLLDDNV...SQWSLDFVKNAVNEAIIHDNELNV.AAGVGFNMT..ASYDGYKTNQYQR.KGCGSSTCEGVEL 82
tr|P79991|P79991_XENLA/1-416 D.LLEANCMSGSLTMNVIMLNDSM...TEWNIKAVQEAVSIGMHVVTKDLE.REGIKVTIN..ADFQTFNTDLYAT.PGCVSSGCEGVEK 82
tr|O42129|O42129_ORYLA/1-418 CVQDTGQCMDG.ITVNVILLEDEE...SPWSLKYVGGQILEAIEKDAAINA.EEGMEFNLT..VNFEGFNTTLYRQ.RGCITSACEGAEK 82
tr|Q4T0M0|Q4T0M0_TETNG/1-443 T.CCLLPGCRGNITVAVMLPDNHH..KYPWALPRVFPAILMAHEDLQSKHG....LLLGRS..INIWNYSTEDPTA.GSCAESRAQVVAV 80
consensus ................v.lp..............v.pa...a.............l.......................C..........
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tr|Q75Q01|Q75Q01_ORYLA/1-415 KKALTS.KYRFSNIFILCGSVDDIVSIK.GLAKQF....HEDTIFILI.DLYNPE..YY..................INT...TSLAPMR 270
tr|O42440|O42440_ORYLA/1-440 KELVSF.IKENGRIIYICGPLETFLSIMKLFQSEIQD..PESYAIFYL.DVFAES..LTH......RKPWQ..NAKFDWT...NPIQVFK 278
tr|B8ZHI5|B8ZHI5_ANGAN/1-419 RSEINN.KQRKSNVFILCGGPGDIANLTKDIDRKL....HPEVIFILI.DLYSPA..YH..................HNT...TSIPPME 270
tr|P79991|P79991_XENLA/1-416 MKVLQE.NNHKSNVILMCGTPNDIWNLH..NKVAI....PQDKVLILL.DIFNTV..YY..................DNK...SSPYYME 268
tr|O42129|O42129_ORYLA/1-418 KDVLDSQENRTSNLFILCGSPTDLKEVKNISDAAD....NLDILFILI.DLYNDV..YY..................TNT...TSMPEMR 270
tr|Q4T0M0|Q4T0M0_TETNG/1-443 KELINF.MKEHGRIVYLNDTSSMLVTRHVHIQKGNFISFPLEICCYLLSSVFPIR..ITH......NPPPE.VFLYVCFL...PHPTQIQ 281
consensus ............rv...c......r..m...............vf....d.f.................w..............a..a..
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tr|Q1LX84|Q1LX84_DANRE/1-439 SVKILTYRE.PQNPEYKDFVSKLKTEAMDMFNFNV..EDSLMNLISGSFHDGVMLYSHALNDTMDRSG......SRP......PGDVV.. 350
tr|Q6P409|Q6P409_XENLA/1-445 AVMIITYKE.PDNPEYKEFLANLNRFSGEPFHYKE..ESTLMNALAASFHDSVLLYAHAVNETRNNGY......SMK......NASAV.. 357
tr|Q90YB7|Q90YB7_RANCA/1-444 SVMIITYKE.PENPEYFEFLQDLKSYAPK.FNHTM..ESTLMNTVAADFYDSVMLYAHVVNETREKGE......SIR......NATAI.. 356
sp|P16066|ANPRA_HUMAN/1-445 AAKIITYKD.PDNPEYLEFLKQLKHLAYEQFNFTM..EDGLVNTIPASFHDGLLLYIQAVTETLAHGG......TVT......DGENI.. 357
tr|Q9YI17|Q9YI17_SQUAC/1-448 SVMIITYRH.PEEPEYLEFQEELRRRATNVSSADL..DNALVNFIAGCFYDGVMLYAMALNETLAAGG......SKK......DGLVI.. 359
tr|A1L2S6|A1L2S6_XENLA/1-441 TVLVISYHQ.PENPEYFEFQKKLIQKSKEEFGVEL..NYSLMNFIAGCFHDGVLLYAQALNETLREGG......SQK......DGLSI.. 353
tr|Q98UI0|Q98UI0_ORYLA/1-439 SVKILSYRE.PQNQEYQQFVRDLKADAKTSFNYSV..QDSLMNIIAGGFYDGLMLYAHALNETALVPG......ARP......PGKLI.. 350
tr|Q9DG04|Q9DG04_XENLA/1-441 SLQTVTLLR.TVKPEFEKFSMEVKSSVQKLGLN....DDDYVNMFVEGFHDAIILYALALHELLKNGF......SQK......DGEKL.. 341
tr|Q98UI1|Q98UI1_ORYLA/1-445 SVKVLTYME.PQNAEYHQFVETLKKDAEKMFNFTI..KDSLYNLIAGGFYDGVMLYSRALNETLSKRKPGLRPVQRP......KGDMV.. 356
sp|P18910|ANPRA_RAT/1-445 AAKIITYKE.PDNPEYLEFLKQLKLLADKKFNFTV..EDGLKNIIPASFHDGLLLYVQAVTETLAQGG......TVT......DGENI.. 357
tr|Q98845|Q98845_ANGJA/1-436 ALNVVTLMR.TAKAEFETFTTEVKKSIQRAGIGP...DSANVNMFMEGFHDALLLYALALHEVVKNGF......SKK......DGVQI.. 339
tr|Q90223|Q90223_ANGJA/1-437 TLNTVTLLR.TVKPEFEDFSMEVKKSLQKAGIRHC..DSDNINVFVEGFHDALLLYAMAVVEVTQNGS......NKT......DGARI.. 341
sp|P55202|ANPRB_ANGJA/1-441 SVFVITAKE.PDNPEYKAFQRELHARAKQEFSVQL..EPSLEDIIAGCFYDGFMLYAQALNETLAEGG......SQN......DGINI.. 352
sp|P17342|ANPRC_HUMAN/1-449 SLQTVTLLR.TVKPEFEKFSMEVKSSVEKQGLN....MEDYVNMFVEGFHDAILLYVLALHEVLRAGY......SKK......DGGKI.. 347
sp|P20594|ANPRB_HUMAN/1-439 TVLVITYRE.PPNPEYQEFQNRLLIRAREDFGVEL..GPSLMNLIAGCFYDGILLYAEVLNETIQEGG......TRE......DGLRI.. 351
tr|Q4SW10|Q4SW10_TETNG/1-437 SVKILTYRE.PENLEYQQFLSTLKTDAKLMFNYTI..QDSLMNIIAGGFYDSVMLYAQVLNETMATAG......DRP......AGKLV.. 349
tr|Q7PTP9|Q7PTP9_ANOGA/1-442 ALLQVVARE.PEDEEYRQFSKEVKELTKTKYNHTY.AEDEPVSTFVTAFYDAVLLYAYALNDSIAQLG......VERALRQPINGTHL.. 353
tr|Q174S2|Q174S2_AEDAE/1-451 AMLQVVARQ.PEDEEYRRFSEEVKLLTKTKFNYTY.AEDEPVSTFVTAFYDAVLLYAYALNDSIGLLG......EQRALKQPINGTYL.. 362
tr|Q9BPR0|Q9BPR0_BOMMO/1-453 AVLTVTSPA.PEKKEYLEFSDQVKELAATKYNYTF.GKGEVVSTFVAAFYDAVLLYALALNDTLQQAT......DPR...GQLDGAAV.. 363
tr|Q75Q00|Q75Q00_ORYLA/1-435 SLNTITLLR.TVKPEFENFSLEMKSSAEKEGIYDC.KDCGSVNMFVEGFHDAMLLYAIALHEAMKHGY......SKK......NGTEV.. 340
tr|Q9PWH0|Q9PWH0_XENLA/1-445 AVMIITYKE.PDNPEYKEFLTNLSRFSGEPFHYKE..ESTLMNVLAASFHDSVLLYAHAVNETRTNGY......TMN......NASAI.. 357
tr|B3NK16|B3NK16_DROER/1-458 ALLRVSLLQ.PTSPKFQDFADNVRENALYDYNYTF.GEGEEVNFFIGAFYDGVYLLGMALNETLTEGG......DIR......DGVNI.. 368
tr|Q9VF17|Q9VF17_DROME/1-451 AMLTVTPKQ.PNDNEYTRVSNEIKAIAAEKYNYTF.SDNEPISAFVTSFFDGVLLYANALNESIREDP......TML..TRPINGTDM.. 363
tr|B4KRH8|B4KRH8_DROMO/1-458 ALLRVSLLQ.PTSPTFQDFADNVRENALTEYNYTF.GEGEEVNFFIGAFYDGVYLLGMALNETLTEGG......DIR......DGVNI.. 368
tr|O97053|O97053_STIJA/1-434 ALMTIQLYS.EKSEHYDQFAAKVKEKALAEFGYDFDANGEQVNSFVTAFHDAVILYALALNESLTEGA......NPR......NGTDL.. 347
tr|B4K5Q8|B4K5Q8_DROMO/1-451 AMLTVTPKQ.PNDDAYTKVSNEIKDIASAKYNYTF.SENEPISAFVTSFFDGVLLYANALNESIREDP......SML..TRPINGTDM.. 363
tr|B0W1T4|B0W1T4_CULQU/1-458 ALLRVSLLQ.PTSPSYQYFAEKVRQRAKRDYNYTF.VEDEEVNFFIGAFFDGVYLLGMALNETLNEGG......NIR......DGSAI.. 368
tr|Q7Q8C9|Q7Q8C9_ANOGA/1-448 ALLRVSLLQ.PTSPTYQYFAEKVRALAKQDYNYTF.VEDEEVNFFIGAFFDGVYLLGMALNDTLNEGG......DIR......DGTAI.. 358
sp|P55204|GUC2C_PIG/1-417 NVLVLTLPP.ENSVSNSSFSKD...............LSLVKNDFTLAYMNGVLLFGHMLKIFLEKR.......EDV......TTSKF.. 328
sp|P70106|GUC2C_CAVPO/1-417 NVLVLTLPP.GNSTINTSLSKE...............SLQEFSDFALAYLDGILLFGHMLKTFLRNG.......ENT......TAHKF.. 328
sp|Q3UWA6|GUC2C_MOUSE/1-417 NVLVLTLPS.EQSTSNTSVAER...............FSSGRSDFSLAYLEGTLLFGHMLQTFLENG.......ENV......TGPKF.. 328
tr|D2H857|D2H857_AILME/1-417 NVLVLTLPP.ENSTSISSFSKG...............LSQAKNNFALAYLNGILLFGHMLKIFLENG.......EAI......TTPKF.. 328
sp|P25092|GUC2C_HUMAN/1-417 NVLVLTLSP.GNSLLNSSFSRN...............LSPTKRDFALAYLNGILLFGHMLKIFLENG.......ENI......TTPKF.. 328
tr|O77690|O77690_BOVIN/1-416 NVLVLTLPP.ENSVSNSSSSKN...............LSLAKNDFAAAYLDGVLLFGHMLKIFLENG.......EDV......TTSKF.. 327
tr|B8ZHI6|B8ZHI6_ANGAN/1-421 NVLVITMPNIRNYTE..GWTDN..............GTLPEMNDYVAGYHDGVHLFGLVLRQKMLYGEG.....SVE......ENASV.. 330
tr|Q75Q01|Q75Q01_ORYLA/1-415 DVLVVTLPP.RNYVNESNSTFN.................NTINDYVAGYHDSALLFGEVLRRKMLSQ................HVPLS.. 324
tr|O42440|O42440_ORYLA/1-440 SVFVITYHP.PDNPEYKDFQRKLHARAQRDFGVNL..EPSLMDYIAGSFYDGFVLYAMALDETLAEGG......AQN......NGINI.. 351
tr|B8ZHI5|B8ZHI5_ANGAN/1-419 NVLVLTMPK.RNFTNEIDPSTN................ETLMTDYMAAYGDGVLLVGQVIRRLWEENP......GRK......QFSIN.. 329
tr|P79991|P79991_XENLA/1-416 NVLVVTQRP.SNMSKISNQTGI...............AKLLEDNYAAGYLDGVLLFGHILKKFLGSV.......DIN......QTFSF.. 327
tr|O42129|O42129_ORYLA/1-418 NVLVLTMPDTRTYTIKPDLTGN.................DTMNDYMAAYHDAVLLVGQVMRDIAIRNP......AEM......QGMEYVN 331
tr|Q4T0M0|Q4T0M0_TETNG/1-443 SVFIITYRP.PDNPEYKDFQKKLHARARRDFGVHL..EPSLMDYIAGSFYDGFVLYAMALEETLADGG......AQN......DGLGI.. 354
consensus .v...t........e...f.......................n.....f.dg.lLy..al.e....g.................g.....
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tr|Q1LX84|Q1LX84_DANRE/1-439 NKRMWNRTYHGVTGLVQLDENGDREIDFALWDMTDTKTGDYQIVSVYNGSQKQMILE.PGMKVHWLKG............RPPPDIPEC. 426
tr|Q6P409|Q6P409_XENLA/1-445 TSHMRNKSFYGASGFVKIDDSGDRENDFSLWDMYEP.HGTFQIVSHYNGTLRKIIPV.PGQEIQWPGN............RIPRDFPPC. 432
tr|Q90YB7|Q90YB7_RANCA/1-444 ISHMWNRTYYGVSGFLRVDDNGDRENDYSLWDLSEA.GGDFQVVANYNGTQRSINRV.PGREIHWPGG............AVPKDVPPC. 431
sp|P16066|ANPRA_HUMAN/1-445 TQRMWNRSFQGVTGYLKIDSSGDRETDFSLWDM.DPENGAFRVVLNYNGTSQELVAV.SGRKLNWPLG............YPPPDIPKC. 432
tr|Q9YI17|Q9YI17_SQUAC/1-448 TRKMQDRRFPGVTGLVNIDKNGDRDIDFSLWDMVDTETGKYEVVAHYLGIKKQIYWI.PNVEIHWPSG............SVPIDNPPC. 435
tr|A1L2S6|A1L2S6_XENLA/1-441 VKKIQDRQMEGITGTVSMDKNNDRNTDFDLWAMTDHEEGNFEVVGHYNGITKQINWT..GKPILWLKG............SPPSDSPPC. 428
tr|Q98UI0|Q98UI0_ORYLA/1-439 SGKMWNRTFHGVTGLLHLDVSGDRETDFALWDLVDTNSSSFQIVVVYNSFEEQVTPV.PGTSVRWLGG............ARPLDVPKC. 426
tr|Q9DG04|Q9DG04_XENLA/1-441 VQQMWNRTYEGIAGQVSIDANGDRYGDFSVIAMTDKETGTQEVIGDYYGIQGHFEIR.PNVKLPWGPGRLLIN.DRFVEHTNTTPCKSC. 428
tr|Q98UI1|Q98UI1_ORYLA/1-445 TQRMWNRTFQGVMGTVEMDKFGDREIDFALWDMTDINSGKFEVVCVYNSSIKELVLQ.KGLNFQWPGG............SPPLEVPEC. 432
sp|P18910|ANPRA_RAT/1-445 TQRMWNRSFQGVTGYLKIDRNGDRDTDFSLWDM.DPETGAFRVVLNYNGTSQELMAV.SEHKLYWPLG............YPPPDVPKC. 432
tr|Q98845|Q98845_ANGJA/1-436 TQSMRNRTFEGIAGQVSIDENGDRNGDFSVMAMTDTQSGTYEAVFNYFGVNQSFQIM.PGFNTDHFTLRERPRPP.....SPEQPDQSSG 423
tr|Q90223|Q90223_ANGJA/1-437 TQRMWNRTFEGIAGPVSIDANGDRYGDFSVMAMVDHETGTYEDVINYFGINGSFQML.PRFNNDRFTLRARHQMS.....MPDYSTKSC. 424
sp|P55202|ANPRB_ANGJA/1-441 TQKMQNRRFWGVTGLVSTDKNNDRDIDFNLWAMTNHKTGQYGIVAYYNGTNKEIVWS.ETEKIQWPKG............SPPLDNPPC. 428
sp|P17342|ANPRC_HUMAN/1-449 IQQTWNRTFEGIAGQVSIDANGDRYGDFSVIAMTDVEAGTQEVIGDYFGKEGRFEMR.PNVKYPWGPLKLRIDENRIVEHTNSSPCKSSG 436
sp|P20594|ANPRB_HUMAN/1-439 VEKMQGRRYHGVTGLVVMDKNNDRETDFVLWAMGDLDSGDFQPAAHYSGAEKQIWWT..GRPIPWVKG............APPSDNPPC. 426
tr|Q4SW10|Q4SW10_TETNG/1-437 NARMWNRTFHGVTGKVHLDKNGDRETEFALWDMTDGDSHMFQ.VHTHPHISEHLRMV.PGTIVRWLGG............VCPPDVPVC. 424
tr|Q7PTP9|Q7PTP9_ANOGA/1-442 AQLMWGRSFKGITGNVTIDSNGDRISNYSLLDL.NPETGLFEVVANYYY.GGGLQFV.EGKAIHWAGDRT..........KAPPDRPTC. 429
tr|Q174S2|Q174S2_AEDAE/1-451 THLMWGKSFKGITGNVTIDSNGDRISDYSLLDL.NPETGMFEIVANYFH.DGGLQFV.EGKEIHWSGGRT..........KAPPDRPIC. 438
tr|Q9BPR0|Q9BPR0_BOMMO/1-453 MRNMWNRTFQGITGEVVINSNGDRVASYSLLDM.NPNTSKFEVVATYVAANKTLQFT.ENRPIYWAGGRT..........TPPPDTPEC. 440
tr|Q75Q00|Q75Q00_ORYLA/1-435 TSRMWNRTIEGIAGQISIDTNGDRNGDFSVMAMTDVEAGTFEVVANYFGVNRTLELL.PSFRAEHFTLKERHEA......SPLPPEKSC. 422
tr|Q9PWH0|Q9PWH0_XENLA/1-445 TSHMRNKSFYGASGFVKIDDSGDRENDFSLWDMYEA.HGTFQIVSHYNGTLRKIMAL.PGREIQWPGK............RIPRDVPPC. 432
tr|B3NK16|B3NK16_DROER/1-458 TRRMWNRTFEGITGHVRIDDNGDRDADYSILDL.DPINGKFSVVAHYSGVHKVYSAV.HGKKIHWPGGRE..........EPPPDVPPC. 445
tr|Q9VF17|Q9VF17_DROME/1-451 VRRMWNRSFTGITGNVTIDANGDRLSAYSLLDM.NPTTGRFEIVAHFLH..NRLEFE.ANKEIHWAGDRE..........EAPPDRPIC. 438
tr|B4KRH8|B4KRH8_DROMO/1-458 TRRMWNRTFHGITGHVRIDDNGDRDADYSILDL.DPINGKFSVVAHYYGLHRKYAAA.HGKKIHWPGGRE..........EPPPDIPPC. 445
tr|O97053|O97053_STIJA/1-434 SHRMWNRTFKGIAGDVTIDSNGDRDSDYSLKEM..DSDGEFEVVGIFSGATKAFTML.KGKTIDWPGD............TVPLDTPKC. 421
tr|B4K5Q8|B4K5Q8_DROMO/1-451 VRRMWNRSFTGITGNVTIDSNGDRISAYSLLDM.NPTTGRFEIVAHFLH..NRLEFE.SEKEIHWAGGRD..........QAPPDRPIC. 438
tr|B0W1T4|B0W1T4_CULQU/1-458 TRKMWNRSFDGITGHVRIDDNGDRDADYSILDL.DPITGRFEVVAHYYGKTREYSPV.KGKRIHWPGGRE..........GPPPDIPKC. 445
tr|Q7Q8C9|Q7Q8C9_ANOGA/1-448 TRKMWGRDFEGITGHVRIDDNGDRDADYSILDL.DPITGRFEVVAHYYGITREYSPV.KGKKIHWPGGRE..........GPPPDVPKC. 435
sp|P55204|GUC2C_PIG/1-417 AHAFRNITFEGHMGPVTLDNCGDIDNTMFLLYT.SVDTSKYKVLLTYDTRKNYTNPVDKSPTFIWKNH............KLPNDIPGR. 404
sp|P70106|GUC2C_CAVPO/1-417 AHAFRNLTFEGSTGPVTLDDSGDIDNTMVLLYT.SVDTKKFKPLLFYDTRINQTTPIDTHPTFIWKNH............RLPHDIPGL. 404
sp|Q3UWA6|GUC2C_MOUSE/1-417 ARAFRNLTFQGFAGPVTLDDSGDIDNIMSLLYV.SLDTRKYKVLMKYDTHKNKTIPVAENPNFIWKNH............KLPNDVPGL. 404
tr|D2H857|D2H857_AILME/1-417 AQAFRNLTFEGHAGPVTLDDCGDIDNTMVLLYT.SVETNKYKVLLKYDTHVNKTTPEVDNPMFIWMNH............KLPSDIPGQ. 404
sp|P25092|GUC2C_HUMAN/1-417 AHAFRNLTFEGYDGPVTLDDWGDVDSTMVLLYT.SVDTKKYKVLLTYDTHVNKTYPVDMSPTFTWKNS............KLPNDITGR. 404
tr|O77690|O77690_BOVIN/1-416 AHAFRNITFEGHVGPVTLDACGDIDNTMYLLYT.SVDTSKYKVLLTYDTRVNQTSPVDKSPTFIWKNH............KLPNDIPGQ. 403
tr|B8ZHI6|B8ZHI6_ANGAN/1-421 ENPFKNISFSGIGGQYVLDEHGDRDVNFSVMYM.STTDSQYKVLFEFDTSTNNTAVVDANPTWHWKSS............RLPDDRPAQE 407
tr|Q75Q01|Q75Q01_ORYLA/1-415 DTPFGNISFEGMAGNYVLDEYGDRDVNFTFIYT.SAQTSKYETLSVFDTSQNITIMWHDSPTLPWKDG............QLPGDEPENT 401
tr|O42440|O42440_ORYLA/1-440 TRRTQNRSFWGVTGLVSIDKRNARNIDVDLWAMTNQETGEYGVVSYYNGSTKEIVWS.QTEKIHWPSC............GPPLDNPPC. 427
tr|B8ZHI5|B8ZHI5_ANGAN/1-419 MEDFRNLSFTGLGGHYVLDEYGDRDVNFSVMYT..TKGMEYKTLFEFDTATGLISVKDDKPDFFWPNY............LLPDDILVQS 405
tr|P79991|P79991_XENLA/1-416 IDQFRNISIIGALGPLILDAAGDRELNLTLLYS.STATNNYTELIQFDTSTNQTTVMDTSPNFIWKNH............RLPSDVPQS. 403
tr|O42129|O42129_ORYLA/1-418 TNYFRNVSFNGIGGHYKLDSYGDRDVNFSVIYT..STDNKYKILFSFDTENNRTKQMDPSPTFIWTK.............ALPDDKPGS. 405
tr|Q4T0M0|Q4T0M0_TETNG/1-443 TTKMKNRHMWGVTGLVTTDDKDARNIDVNLWAMTDQNTGEYGIVLYYNGTTKDIVWS.QSEKIHWPGD............GPPLDNPPC. 430
consensus ...m.nr.f.G..G.v..D..gdr..d.sl........g....v..y.................w.................p.d.p.c.
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tr|Q1LX84|Q1LX84_DANRE/1-439 ..GFKNDNPACLAKT 439
tr|Q6P409|Q6P409_XENLA/1-445 ..GFDHSNPECKKSS 445
tr|Q90YB7|Q90YB7_RANCA/1-444 ..GFDNSNPECMKTS 444
sp|P16066|ANPRA_HUMAN/1-445 ..GFDNEDPACNQDH 445
tr|Q9YI17|Q9YI17_SQUAC/1-448 ..VFETDIASCNQAT 448
tr|A1L2S6|A1L2S6_XENLA/1-441 ..VFNADDPSCLKTT 441
tr|Q98UI0|Q98UI0_ORYLA/1-439 ..GFKNDNPACLTKT 439
tr|Q9DG04|Q9DG04_XENLA/1-441 ..GLGESAVTGIVVG 441
tr|Q98UI1|Q98UI1_ORYLA/1-445 ..GFKNDNPACLTST 445
sp|P18910|ANPRA_RAT/1-445 ..GFDNEDPACNQDH 445
tr|Q98845|Q98845_ANGJA/1-436 ..GLGVSAVTGIIVG 436
tr|Q90223|Q90223_ANGJA/1-437 ..GLGVSAVTGITFG 437
sp|P55202|ANPRB_ANGJA/1-441 ..VFSMDEPFCNEDQ 441
sp|P17342|ANPRC_HUMAN/1-449 ..GLEESAVTGIVVG 449
sp|P20594|ANPRB_HUMAN/1-439 ..AFDLDDPSCDKTP 439
tr|Q4SW10|Q4SW10_TETNG/1-437 ..GFKNDNPACLTSE 437
tr|Q7PTP9|Q7PTP9_ANOGA/1-442 ..GFDGSLCPDNSLP 442
tr|Q174S2|Q174S2_AEDAE/1-451 ..GFDGSLCPDKSLP 451
tr|Q9BPR0|Q9BPR0_BOMMO/1-453 ..GFDGSLCPDNSLP 453
tr|Q75Q00|Q75Q00_ORYLA/1-435 ..GLGVSALTGVIVG 435
tr|Q9PWH0|Q9PWH0_XENLA/1-445 ..GFDQSNPECKKST 445
tr|B3NK16|B3NK16_DROER/1-458 ..GFLGNSTDCLGNF 458
tr|Q9VF17|Q9VF17_DROME/1-451 ..GYDGALCPDNSLP 451
tr|B4KRH8|B4KRH8_DROMO/1-458 ..GFLGNAPDCHGNE 458
tr|O97053|O97053_STIJA/1-434 ..GFNGDKCIVDVNN 434
tr|B4K5Q8|B4K5Q8_DROMO/1-451 ..GYDGSLCPDNSLP 451
tr|B0W1T4|B0W1T4_CULQU/1-458 ..GFMGNSPACQRSE 458
tr|Q7Q8C9|Q7Q8C9_ANOGA/1-448 ..GFLGTSPACQGND 448
sp|P55204|GUC2C_PIG/1-417 ..GPQILMIAVFTLT 417
sp|P70106|GUC2C_CAVPO/1-417 ..GPHILLIAVCTLA 417
sp|Q3UWA6|GUC2C_MOUSE/1-417 ..GPQILMIAVFTLT 417
tr|D2H857|D2H857_AILME/1-417 ..GPQALLIAVFTLT 417
sp|P25092|GUC2C_HUMAN/1-417 ..GPQILMIAVFTLT 417
tr|O77690|O77690_BOVIN/1-416 ..GPQMLMIAVFTLA 416
tr|B8ZHI6|B8ZHI6_ANGAN/1-421 QVLLATQDIIVIVL. 421
tr|Q75Q01|Q75Q01_ORYLA/1-415 E.DLSTQDIIVIVLG 415
tr|O42440|O42440_ORYLA/1-440 ..VFSTDDPSCNDGL 440
tr|B8ZHI5|B8ZHI5_ANGAN/1-419 V.HLQIHNIIVIVLA 419
tr|P79991|P79991_XENLA/1-416 ..GPHILTIAVFTLI 416
tr|O42129|O42129_ORYLA/1-418 ..ELETQDIIVVVLG 418
tr|Q4T0M0|Q4T0M0_TETNG/1-443 ..VFSSDDPSCNDVT 443
consensus ..g............

X non conserved

X ≥ 50% conserved

X ≥ 80% conserved
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Parat M, Blanchet J, De Léan A (2010) Role of juxtamembrane and transmem-
brane domains in the mechanism of natriuretic peptide receptor A activation.
Biochemistry 49: 4601--10.

Park J, Schulz S, Waldman SA (2000) Intestine-specific activity of the human
guanylyl cyclase C promoter is regulated by Cdx2. Gastroenterology 119: 89--
96.

Pieper U, Webb BM, Barkan DT, Schneidman-Duhovny D, Schlessinger A, et al.
(2011) ModBase, a database of annotated comparative protein structure models,
and associated resources. Nucleic acids research 39: D465--74.

71



Bibliography Bibliography

Pitari GM, Di Guglielmo MD, Park J, Schulz S, Waldman SA (2001) Guanylyl
cyclase C agonists regulate progression through the cell cycle of human colon
carcinoma cells. Proceedings of the National Academy of Sciences of the United
States of America 98: 7846--51.

Pitari GM, Zingman LV, Hodgson DM, Alekseev AE, Kazerounian S, et al. (2003)
Bacterial enterotoxins are associated with resistance to colon cancer. Proceed-
ings of the National Academy of Sciences of the United States of America 100:
2695--9.

Ragvin A, Valvatne Hv, Erdal S, Arskog V, Tufteland KR, et al. (2004) Nu-
cleosome binding by the bromodomain and PHD finger of the transcriptional
cofactor p300. Journal of molecular biology 337: 773--88.

Rasheed JK, Guzmán-Verduzco LM, Kupersztoch YM (1990) Two precursors of
the heat-stable enterotoxin of Escherichia coli: evidence of extracellular process-
ing. Molecular microbiology 4: 265--73.

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference
under mixed models. Bioinformatics (Oxford, England) 19: 1572--4.

Roy N, Guruprasad MR, Kondaiah P, Mann EA, Giannella RA, et al. (2001)
Protein kinase C regulates transcription of the human guanylate cyclase C gene.
European journal of biochemistry / FEBS 268: 2160--71.

Sack DA, Merson MH, Wells JG, Sack RB, Morris GK (1975) Diarrhoea associated
with heat-stable enterotoxin-producing strains of Escherichia coli. Lancet 2: 239-
-41.

Sack RB (1975) Human diarrheal disease caused by enterotoxigenic Escherichia
coli. Annual review of microbiology 29: 333--53.

Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial
restraints. Journal of molecular biology 234: 779--815.

Sato T, Shimonishi Y (2004) Structural features of Escherichia coli heat-stable
enterotoxin that activates membrane-associated guanylyl cyclase. The journal
of peptide research : official journal of the American Peptide Society 63: 200--6.

Savarino SJ, Fasano A, Robertson DC, Levine MM (1991) Enteroaggregative Es-
cherichia coli elaborate a heat-stable enterotoxin demonstrable in an in vitro
rabbit intestinal model. The Journal of clinical investigation 87: 1450--5.

72



Bibliography Bibliography

Savarino SJ, Fasano A, Watson J, Martin BM, Levine MM, et al. (1993) Enteroag-
gregative Escherichia coli heat-stable enterotoxin 1 represents another subfamily
of E. coli heat-stable toxin. Proceedings of the National Academy of Sciences of
the United States of America 90: 3093--7.

Schulz S, Chrisman TD, Garbers DL (1992) Cloning and expression of guanylin.
Its existence in various mammalian tissues. The Journal of biological chemistry
267: 16019--21.

Schulz S, Green CK, Yuen PS, Garbers DL (1990) Guanylyl cyclase is a heat-stable
enterotoxin receptor. Cell 63: 941--8.
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