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"Implementation of current knowledge will bring some improvements to [non-communicable 
disease] care and prevention, but further research is essential if we are to truly defeat theses 

diseases" 

- Jean Claude Mbanya,  
President of IDF,  

Lisbon, 2011. 

1. INTRODUCTION

In complex diseases like type 2 diabetes, obesity and cardiovascular diseases, 

multiple genetic and environmental factors as well as the interaction between these 

factors determine the phenotype. The worldwide rise in prevalence of type 2 diabetes 

and other cardiometabolic disorders has led to an intense search for genetic factors 

influencing the susceptibility for these common disorders. Although environmental 

influences, such as high-caloric fat- and carbohydrate-enriched diets and a sedentary 

lifestyle with markedly reduced physical activity, certainly accelerate disease 

development in those with genetic predisposition, it is nonetheless of great clinical 

importance, and indeed a formidable challenge, to elucidate the genetic variants that 

increase the risk of diseases like type 2 diabetes [1]. Even though much research has 

been conducted, the knowledge of the specific causes of common complex diseases at 

the genetic level is still somewhat at its infancy. More detailed insight into the genetic 

risk factors and the underlying molecular mechanisms involved in type 2 diabetes and 

related traits is expected to improve clinical investigations, advance the prevention of 

disease development, elucidate the diseases mechanisms and hopefully highlight new 

pathways relevant for therapeutic intervention.  

Thus, the general aim of this PhD project was to contribute to the progressing 

exploration of genetic risk factors in type 2 diabetes as well as of diabetes-related 

phenotypes like obesity and cardiovascular disease. The purpose of this first part of 

the thesis is to present a literature review of past and current findings in the dissection 

of the genetic background of type 2 diabetes and related traits. In particular, two loci 

on chromosome 16q12.2 and 9p21.3 (FTO and CDKN2B) that are shared by two or 

more conditions or traits (e.g. type 2 diabetes, obesity, cardiovascular disease) were 
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more comprehensively investigated in this project and are therefore discussed more 

thoroughly in the literature review.  

1.1 DIABETES MELLITUS TYPE 2 AND RELATED TRAITS 

1.1.1 Definition, description and classification of diabetes mellitus 

Diabetes mellitus is a group of metabolic disorders of heterogeneous etiology 

characterized by persistent elevated blood glucose levels (hyperglycemia) with 

disturbances of carbohydrate, fat and protein metabolism as a result of defects in 

insulin secretion, impaired effectiveness of insulin action, or both [2, 3]. The disease 

is classified as type 1 diabetes, type 2 diabetes, gestational diabetes and other types of 

diabetes, including monogenic diabetes [2]. Type 1 and type 2 diabetes are 

considered the two major types. Type 1 diabetes normally develops before adulthood 

and is typically caused by an auto-immune destruction of the insulin-producing -

cells leading to an absolute insulin deficiency, whereas type 2 diabetes is normally 

associated with insulin resistance and relative insulin deficiency.

Diabetes is a major global health problem due to dramatically increasing prevalence 

in both the western world and in the developing countries. Rising health care costs are 

a serious problem, and a significant portion of health care spending is incurred by 

people with diabetes. The number of people with diabetes is increasing due to aging 

(increase in the proportion of people >65 years of age), general population growth, 

urbanization, and increasing prevalence of obesity and physical inactivity. The total 

number of people worldwide with diabetes is projected to rise from 285 million in 

2010 to 439 million in 2030 corresponding to a predicted increase in prevalence from 

6.4% in 2010 to 7.7% in 2030 [4]. Similar patterns are seen in Norway as well. Data 

from the Nord-Trøndelag Health surveys (HUNT) indicate an increase in the 

prevalence of diabetes during the last two decades, with 3.8% of women and 4.9% of 

men being diagnosed with diabetes in 2006-08 [5]. The prevalence of diabetes is 

probably underestimated due to the rapid rise in the number of obese individuals. In 
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Norway, studies have indicated that the total number of individuals with diabetes is 

twice of what has been diagnosed [6].

Diagnosing diabetes The diagnostic criteria for diabetes and pre-diabetes 

(intermediate hyperglycemia such as impaired fasting glucose (IFG) and impaired 

glucose tolerance (IGT)) have been debated for several years and modified numerous 

times. In 1997 the fasting glucose cut-off level was lowered from 7.8 to 7.0 mmol/l 

[3, 7] and in 2003 the American Diabetes Association (ADA) changed the threshold 

for IFG from 6.1 to 5.6 mmol/l [8]. Moreover, since 2010, ADA included the use of 

glycated hemoglobin (HbA1c) to diagnose diabetes and to identify individuals at 

“increased risk for future diabetes” [2].  

Table 1 Present diagnostic criteria for diabetes, and non-diabetic hyperglycemia (IFG and 

IGT) according to serum/plasma levels. Adapted from [2, 9, 10]. 

WHO 2006 ADA 2011 

Diabetes Mellitus 

Fasting glucose  7.0 mmol/l  7.0 mmol/l 

2-hour glucose  11.1 mmol/l  11.1 mmol/l 

HbA1c  6.5 %1  6.5 % 

Non-diabetic hyperglycemia 

Fasting glucose2 6.1 - 6.9 mmol/l 5.6 - 6.9 mmol/l 

2-hour glucose3 7.8 – 11.0 mmol/l 7.8 - 11.0 mmol/l 

HbA1c - 5.7 - 6.4 % 

1From a WHO consultation report from 2011 that was an addendum to the diagnostic criteria 

published in the 2006. 2Impaired fasting glucose. 3Impaired glucose tolerance. 

HbA1c levels are better predictors than fasting glucose of the development of long-

term complications in type 1 and type 2 diabetes [11]. In addition, higher levels in the 

sub-diabetic range have been shown to predict type 2 diabetes risk and cardiovascular 

disease [12, 13]. Thus, in a very recent report, the World Health Organization (WHO) 



17

as well recommended the use of HbA1c in the diagnosis of diabetes [10]. The current 

diagnostic criteria for diabetes and intermediate hyperglycemia according to WHO 

and ADA are shown in Table 1. 

Figure 1 Disorders of glycemia: etiologic types and practical classification guidelines. *For 

some high risk ethnic groups a cut-off of 30 years should be used. Modified from [14]. 
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Classification The traditional view is that type 1 and type 2 diabetes characterize 

distinct conditions with widely different pathophysiology. On the other hand, there is 

a notable increase in the proportion of people having diabetes with the characteristics 

of both types [15, 16]. Thus, it may not always be possible to assign each patient with 

diabetes to a precise diagnostic box (Figure 1). As an alternative, it has been 

suggested to think more in terms of a disease continuum, with the conventional 

autoimmune type 1 diabetes at one end and the conventional metabolic type 2 

diabetes at the other [17, 18]. However, current practical classification guidelines still 

apply the traditional view that type 1 diabetes and type 2 diabetes are two different 

conditions attributable to entirely distinct, but as yet somewhat uncertain 

mechanisms.

Type 1 diabetes is caused by destruction of the insulin-producing cells of the 

pancreas, primarily due to an autoimmune-mediated reaction, resulting in absolute 

insulin deficiency. The reason why this occurs is not fully understood. In general, the 

disease is diagnosed at any age, but most frequently it develops during childhood and 

puberty. Type 1 diabetes is one of the most common endocrine and metabolic 

conditions in childhood and progresses rapidly. Latent autoimmune diabetes in the 

adult (LADA) is a slowly progressive form of autoimmune diabetes, characterized by 

diabetes-associated autoantibody positivity, and insulin independence at diagnosis, 

which distinguishes LADA from classic type 1 diabetes [19]. People with type 1 

diabetes are usually insulin-dependent from diagnosis and require daily injections of 

insulin in order to control their blood glucose and to stay alive. Moreover, type 1 

diabetes, especially the autoimmune process, is substantially determined by inherited 

variation [20]. There is a strong association between human leukocyte antigen (HLA) 

genes and type 1 diabetes. HLA variants confer either high risk of or protection 

against the disease. Currently, over 40 genetic loci have shown to affect risk of type 1 

diabetes [21]. The incidence of type 1 diabetes is increasing, the reasons for which 

are unclear but may be due to changes in environmental risk factors that could initiate 

autoimmunity or accelerate already ongoing beta cell destruction.  
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Type 2 diabetes (see also chapter 1.1.2) is the most common form of diabetes and 

accounts for over 90 % of all diabetes cases worldwide [22]. Type 2 diabetes is 

characterized by insulin resistance and relative insulin deficiency, either of which 

may be present at the time that diabetes becomes clinically manifest. Type 2 diabetes 

usually occurs after the age of 35-40 years but may be diagnosed earlier, especially in 

populations with high diabetes prevalence. Type 2 diabetes can remain undetected 

(asymptomatic), for many years and the diagnosis is often made from associated 

complications or incidentally through an abnormal blood or urine glucose test. Type 2 

diabetes is often, but not always, associated with metabolic abnormalities such as 

obesity, which itself can cause insulin resistance and lead to elevated blood glucose 

levels. In contrast to type 1 diabetes, people with type 2 diabetes are not absolutely 

dependent on exogenous insulin, but may require insulin for control of hyperglycemia 

if this is not achieved with diet alone or with oral hypoglycemic agents. Type 2 

diabetes has a strong familial component, and at least 50 genetic variants have been 

reported to influence susceptibility to type 2 diabetes (see also chapter 1.3.1) [23].  

Whereas type 2 diabetes is thought to be primarily heterogeneous and polygenic with 

low penetrance for the variants discovered, there exist monogenic types of non-

autoimmune diabetes showing a Mendelian dominant pattern of inheritance, of which 

maturity-onset diabetes of the young (MODY) is the most common type [24]. 

Monogenic disorders of diabetes accounts for approximately 1-2% of all non-

autoimmune diabetes and are largely affecting genes involved in -cell development 

and function [25]. The onset of disease usually occurs in childhood or young 

adulthood, generally before 25 years of age, although the hyperglycemia is mild in 

some cases and may be missed, as with type 2 diabetes. When hyperglycemia is 

detected in children, MODY may be misdiagnosed as type 1 diabetes. Genetic studies 

have defined a number of subtypes of MODY. Mutations in the genes encoding 

hepatic nuclear factor 4 (HNF4), glucokinase (GCK), hepatic nuclear factor 1 alpha 

and 1 beta (HNF1A and HNF1B), pancreatic and duodenal homeobox 1 (PDX1),

transcription factor neurogenic differentiation 1 (NEUROD1), krüppel-like factor 11 

(KLF11), transcription factor paired box 4 (PAX4), carboxyl ester lipase (CEL),
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insulin (INS) and B-lymphocyte specific tyrosine kinase (BLK) are the cause of the 11 

known forms of MODY (MODY1-11) [26]. The most frequent forms of MODY 

results from mutations in the genes: HNF1A, GCK, HNF4A and HNF1B [25, 27, 28]. 

Other monogenic forms of diabetes include mitochondrial diabetes, neonatal diabetes, 

syndromes of severe insulin resistance and rare genetic syndromes. There are five 

genes currently known to be associated with non-syndromic permanent neonatal 

diabetes: potassium channel, inwardly rectifying, subfamily J, member 11 (KCNJ11),

ATP-binding cassette, subfamily C, member 8 (ABCC8), INS, GCK, and 

pancreas/duodenum homeobox protein 1 (PDX1) [28-30]. Genetic testing and 

counseling is indicated and highly relevant when monogenic forms of diabetes are 

suspected, since patients with mutations in KCNJ11, ABCC8, HNF1A and HNF4A

can be treated with oral antidiabetic agents (sulphonylureas) [31, 32], in contrast to 

most of those who have mutations in the other genes. Prognosis, treatment and 

complications may also vary between the various forms of monogenic diabetes, 

depending on which gene that is affected. The predictive and clinical value of genetic 

testing is therefore substantial for monogenic forms of diabetes [28]. 

Gestational diabetes mellitus (GDM) represents glucose intolerance of varying 

degrees of severity with onset or first detection during pregnancy [2]. Most cases 

resolve after delivery. Maternal hyperglycemia may lead to complications in the baby, 

including large size at birth, birth trauma, hypoglycemia and infant respiratory 

syndrome [33, 34]. Women who have had GDM have an increased risk of developing 

diabetes later in life [35]. Moreover, children of women with GDM have an increased 

risk for childhood and adult obesity and an increased risk of glucose intolerance [36]. 

In addition, there are other specific types of diabetes with a known etiology, such as 

secondary to other diseases, trauma or surgery, or the effects of drugs. Examples 

include diabetes caused by hemochromatosis, exocrine pancreatic disease, or certain 

types of medications (e.g., long-term steroid use) [2]. 
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1.1.2 Type 2 Diabetes – etiology, pathophysiology and long-term complications 

The etiology of type 2 diabetes is not fully understood, but presumably, type 2 

diabetes develops when a diabetogenic lifestyle (i.e. excessive caloric intake, 

inadequate caloric expenditure, obesity) acts in conjugation with a susceptible 

genotype. The majority of patients who develop type 2 diabetes are obese [37]. 

Energy-dense diet as a risk factor has, however, shown to be independent of baseline 

obesity for the development of type 2 diabetes [38]. Further, it has been suggested 

that type 2 diabetes in some cases are caused by environmental pollutants [39]. Even 

though there is some disparity regarding the reasons for the development of type 2 

diabetes, most physicians and scientists agree that the major independent risk factors 

for developing type 2 diabetes are: obesity [40, 41], family history of type 2 diabetes 

(first-degree relative) [42], ethnicity (some ethnic groups have higher prevalence of 

diabetes) [43], history of previous  IGT or IFG [44], hypertension or dyslipidemia 

[45, 46], physical inactivity [47], history of gestational diabetes [48], low birth weight 

as a result of an in utero environment [49], polycystic ovarian syndrome leading to 

insulin resistance [50], and finally, decline in insulin secretion due to advancing age 

[51, 52]. Until recently, type 2 diabetes was considered to be a disease confined to 

adulthood, rarely observed in individuals under the age of 40, but clinically based 

reports and regional studies suggest that type 2 diabetes in children and adolescents is 

now more frequently being diagnosed [53]. This reflects the increasing number of 

children entering adulthood with unprecedented levels of obesity.  

Type 2 diabetes is primarily caused by obesity, insulin resistance in liver, skeletal 

muscle and adipose tissue and a relative insulin secretion defect by the pancreatic -

cell (3,4). Insulin is a hormone produced by the pancreatic -cells and is the key 

hormone for the regulation of blood glucose. The hormone stimulates uptake of 

glucose from the blood in the muscle and fat tissue, storage of glucose as glycogen in 

the liver and muscle cells, and uptake and esterification of fatty acids in adipocytes. 

In addition, insulin inhibits the breakdown of proteins, the hydrolysis of triglycerides 

and the production of glucose from amino acids, lactate and glycerol. Glucagon, 
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which is also secreted by the endocrine pancreas, has the opposite effects to that of 

insulin. The hormone causes the liver to convert stored glycogen into glucose, thereby 

increasing blood glucose. Besides, glucagon stimulates insulin secretion, so that 

glucose can be used by insulin-dependent tissues. Hence, glucagon and insulin are 

part of a feedback system that keeps blood glucose at the right level (Figure 2).  

Figure  2 Insulin production and action. Diabetes results from an imbalance between the 

insulin-producing capacity of the pancreatic -cells and the requirement for insulin action in 

insulin target tissues such as liver, adipose tissue and skeletal muscle. Redrawn and modified 

after the IDF Diabetes Atlas [54]. 
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For type 2 diabetes to occur the balanced relationship between insulin action and 

release have to be disrupted. In other words, type 2 diabetes develops mainly in those 

who cannot increase insulin secretion sufficiently to compensate for their insulin 

resistance. Whereas insulin resistance is an early phenomenon partly related to 

obesity, pancreas -cell function declines gradually over time already before the onset 

of clinical hyperglycemia. Several mechanisms have been proposed for these two 

defects. Insulin resistance have been ascribed to elevated levels of free fatty acids 

[55], inflammatory cytokines [56], adipokines [57] and mitochondrial dysfunction 

[58], while glucose toxicity [59], lipotoxicity [60], and amyloid formation [61] have 

been proposed as central aspects for -cell dysfunction (all reviewed in [62]).  

The medical and socioeconomic burden of type 2 diabetes is generally caused by the 

associated complications of the disease. The severe complications accompanying type 

2 diabetes are mostly microvascular (e.g. retinopathy, neuropathy and nephropathy) 

and macrovascular diseases, leading to reduced quality of life and increased 

morbidity and mortality from end-stage renal failure and cardiovascular disease 

(CVD). Hyperglycemia plays a central role in the development and progression of the 

vascular complications, which often persist and progress despite improved glucose 

control, possibly as a result of prior occurrences of hyperglycemia. Increased 

cardiovascular risk, however, appears to begin before the development of frank 

hyperglycemia, presumably because of the effects of insulin resistance. This 

phenomenon has been described as the "ticking clock" hypothesis of complications 

[63, 64], where the clock starts ticking for microvascular risk at the onset of 

hyperglycemia, and for macrovascular risk at some antecedent point, i.e. with the 

onset of insulin resistance.

It is generally accepted that the long-term complications of diabetes mellitus are far 

less common and less severe in people who have well-controlled blood sugar levels 

[65, 66]. However, some recent trails that had great success in lowering blood sugar 

in type 2 diabetes patients, but no success in reducing deaths from cardiovascular 

disease, challenges the theory of hyperglycemia as the major cause of diabetic 
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complications [67]. The familial clustering of the degree and type of diabetic 

complications indicates that genetics may also play a role in causing diabetic 

complications [68]. Although not fully understood, the complex mechanisms by 

which diabetes leads to these complications involves hyperglycemia and both 

functional and structural abnormalities of small blood vessels along with accelerating 

factors such as smoking, elevated cholesterol levels, obesity, high blood pressure and 

lack of regular exercise. 

1.1.3 Type 2 diabetes-related traits 

Type 2 diabetes clusters with dyslipidemia and hypertension, which together with 

insulin resistance and glucose intolerance are hallmarks of the metabolic syndrome 

[69]. The prevalence of these metabolic abnormalities together with the rapid increase 

in overweight and obesity are leading to a rise in the global cardiometabolic risk, 

followed by a relentless rise in premature deaths due the increased risk of diseases 

such as type 2 diabetes, cardiovascular disease and cancer. Cardiometabolic diseases 

are currently considered as one of the major health and social challenges in the 

upcoming years. 

A wide range of factors are crucial for the development of cardiometabolic disease, 

some with greater effect than others, but generally they are all considered important. 

High blood pressure, old age, family history, smoking, elevated levels of glucose and 

LDL-cholesterol have for a long time been regarded as the classical risk factors. 

Obesity (in particular abdominal), inflammation, insulin resistance, elevated levels of 

triglycerides and decreased levels of HDL cholesterol have in recent times become 

more highlighted. The basis for all the risk factors is an interaction between genetic 

and environmental influences. Type 2 diabetes is in itself a major risk factor for 

cardiovascular disease (Figure 3). Cardiovascular morbidity in patients with type 2 

diabetes is two to four times greater than that of non-diabetic people [70]. 

Additionally, patients with type 2 diabetes experience an increased frequency of non-

fatal heart attack and stroke. In light of this, it is of great clinical and biological 



25

interest to find the genetic variants that cause increased risk of cardiometabolic 

disease.

Figure 3 Cardiometabolic risk factors. Obesity, insulin resistance, dysglycemia, dyslipidemia, 

and  hypertension  frequently  cluster  and  are  major  risk  factors  for  both  type  2  diabetes  and  

cardiovascular disease (CVD). The impact of these risk factors is amplified by lifestyle 

(physical inactivity, smoking, and diet) as well as by genetics, gender, and age. Type 2 

diabetes  alone  is  a  major  risk  factor  for  CVD.  Abbreviations;  ApoB:  apolipoprotein  B;  BP:  

blood pressure; HDL: high-density lipoprotein cholesterol; LDL: low-density lipoprotein 

cholesterol; TG: triglycerides.
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1.2 GENETIC MAPPING IN HUMAN DISEASES 

Genetic mapping is a powerful approach used for identification of genes underlying 

any trait influenced by inheritance, including human diseases. The methodology is 

based on the correlation between trait and DNA variation and is carried out without 

the need for prior hypotheses about biological function [71]. Ever since the re-

discovery of Mendel’s laws of inheritance in the early 1900s and the subsequent 

awareness that most naturally occurring phenotype variation involves the action of 

multiple genes and non-genetic factors, geneticists have searched for practical tools 

for discovering genes contributing to human diseases. Human genetic variation was 

termed “breakthrough of the year” by Science in 2007 [72], reflecting the recent 

years’ striking progress in understanding the genetic basis underlying normal human 

phenotypic variation and susceptibility to a wide range of diseases [73]. 

1.2.1 Classification of genetic variants 

Genetic information is contained in the form of DNA. The basic complement of DNA 

in an organism is called the genome. The human genome is packed in two sets of 23 

chromosomes; one set inherited from each parent whose own DNA is a mosaic of 

preceding ancestors. Consequently, the human genome functions as a diploid unit 

with phenotypes arising due to the complex interplay of alleles of genes and/or their 

non-coding functional regulatory elements [73]. The haploid human genome consists 

of approximately 3 billion nucleotides, in each cell. Among two random individuals 

the genomes vary by approximately 0.5% [74]. This variation affects the majority of 

human phenotypic differences, from eye color and height to disease susceptibility and 

responses to drugs [73].

Phenotypic diversity is determined by genetic variation acting in conjugation with 

environmental and behavioral factors. The genetic variants are classified by two basic 

criteria: their frequency in the population and their composition – i.e. sequence 

variants or structural variants. Sequence variation varies from single nucleotide 

variants to 1 kilo-base (kb) insertions or deletions (indels) of DNA segments. 
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Structural variation is a common designation for larger insertions and deletions, as 

well as duplications, inversions and translocations, ranging in size from 1 kb to more 

than 5 mega-bases (Mb) (Figure 4). If a DNA segment is present in variable numbers 

compared to the reference sequence, as in duplications, deletions or insertions, it is 

termed a copy number variant (CNVs) [73, 75, 76].  

Figure  4 Classification of genetic variants by composition, showing examples of sequence 

variation and structural variation compared to a reference sequence. Modified from [73, 77]  

According to their frequency, genetic variants are referred to as common if their 

minor allele frequency (MAF) is >5% in the population, while rare variants are 

present at a frequency <5%. A polymorphism is, in principle, defined as a genetic 

variant that is present in 1% of the population. Thus, a single-nucleotide variant 

showing a frequency >1% is consequently termed single nucleotide polymorphism 

(SNP) [73]. It is estimated that the human genome harbors approximately 10 million 
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SNPs comprising 78% of the human variants. In contrast, structural variants are 

estimated to account for no more than 22% of all variants, but comprise an estimated 

74% of the nucleotides that may differ from person to person [74].  

1.2.2 Mapping of genetic variants underlying human traits 

Mapping of genetic variation underlying human traits depends on two key concepts: 

genetic linkage and linkage disequilibrium. Genetic linkage is the phenomenon where 

recombination between two loci occurs with less than 50% probability in a single 

generation; resulting in co-segregation more often than if they were independently 

inherited.  In other words, genetic linkage is the tendency of certain alleles to be 

inherited together. Genetic loci that are physically close to one another on the same 

chromosome tend to stay together during meiosis, and are thus genetically linked 

[73].

The second concept, linkage disequilibrium (LD), is a measure of association between 

alleles at separate but linked loci, usually resulting from a particular ancestral 

chromosomal segment (haplotype) being common in the population studied. This 

phenomenon causes polymorphisms to be correlated to the point of being strong 

proxies for each other [78]. Different statistics have been used to measure the amount 

of linkage disequilibrium between two variant alleles, one of the most common being 

the coefficient of correlation r2 [79]. When r2 = 1, the two variant alleles are in 

complete linkage disequilibrium, whereas r2 < 1 indicate that the ancestral complete 

linkage disequilibrium has been eroded. Due to this phenomenon of LD, it is possible 

to choose a subset of highly informative SNPs, or "tag" SNPs, to represent certain 

haplotypes, and the number of SNPs to be genotyped in a larger sample can therefore 

be reduced without losing the ability to capture most of the variation. For example, it 

is possible to select a set of 300,000 to one million SNPs to represent most of the 10 

million common SNPs estimated to be present in the human genome [78].  

Because the causal SNP is often not typed within a genetic association study, it is 

important to cross-examine SNPs that have not been genotyped directly. This can be 
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done through imputation. Imputation methods predict the alleles of SNPs not directly 

genotyped in the study (or hidden SNPs) using the correlation structure (LD) between 

the SNPs in the region. The starting point of any imputation method is a reference 

data set for which the genotypes of a dense set of SNPs are provided, such as 

HapMap. The fundamental assumption is that the reference samples, the cases, and 

the controls are all sampled from the same population. Under this simplifying 

assumption, the three populations share the same LD structure. Thus, the structure of 

the LD in the reference population, in combination with the structure of the LD of the 

observed SNPs within the cases and the controls, may be used to impute the alleles of 

a hidden SNP [80]. 

Several different approaches have been used in the exploration of genetic factors 

involved in complex disease. The progress has generally been guided by 

technological advances in genotyping and sequencing techniques, statistical handling 

of data and also by collection of larger cohorts suitable for genetic studies. In general, 

two methods have been used for studying genetic factors involved in human diseases 

in the 20th century: the so-called candidate gene approach and the linkage analysis 

approach [81-83]. The latter is not based on assumptions, but identifies genes through 

their genomic position and is based on the rationale that family members sharing a 

specific phenotype will also share chromosomal regions surrounding the gene 

involved. The linkage approach has proved very effective in the identification of rare 

variants with a high degree of penetrance, such as those responsible for extreme 

forms of early-onset diseases segregating as monogenic (Mendelian) disorders – 

including MODY, mitochondrial diabetes with deafness, neonatal diabetes and rare 

forms of severe childhood obesity [84-86]. However, because the risk for relatives is 

lower in complex diseases due to the low penetrance of polygenic risk variants, the 

statistical power of this method in studies of polygenic traits is limited [87]. Even for 

loci with considerable effects on susceptibility at the population level, the number of 

families needed to offer sound power to detect linkage has proven hard to obtain [88]. 

Very few variants with large phenotypic effect (high-impact risk alleles) appear to be 

present in common complex diseases, thus most linkage studies have, in retrospect, 
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been seriously underpowered.  This could also explain the inadequate findings and 

the lack of replication of regions putatively linked to disease. Moreover, even when 

evidence of linkage is observed, the genomic region linked to the trait of interest is 

often very large; hence the identification of the causal gene or genetic variant often 

remained the main challenge.  

The candidate gene approach examines specific genes with a plausible role in the 

disease process. For diabetes, natural candidates are genes involved in glucose 

homeostasis and metabolism. The approach is biased since it assumes that a specific 

gene or loci is associated with disease before testing. The genetic variants are 

identified through focused sequencing and further assessed by genotyping them in a 

large number of cases and controls. Even though this approach has contributed to the 

identification of numerous published associations, only a fraction of the associations 

have been replicated by other studies [89, 90]. There are several reasons for non-

replications: a) lack of statistical power in follow-up studies to detect or exclude a 

previously reported finding, b) false positive findings in the initial report due to 

incomplete or no correction for multiple testing, c) spurious associations as a 

consequence of population stratification or by random, d) differences in allele 

frequencies or LD between the genetic variants in the populations studied, e) 

differences in selection and phenotypic characteristics of the study participants/cases 

and controls or, f) unmeasured population-specific environmental exposures that may 

confound the association [81, 91, 92].

Thus, methods used successfully to identify the genes underlying rare Mendelian 

diseases generally failed in the identification of the genetic basis of common 

disorders such as cancer, diabetes and heart disease. This suggested that most of the 

genetic contribution to complex diseases arises from multiple loci with individually 

small effects (Figure 5). The conceptual outline for association studies to identify 

common genetic variants underlying common complex diseases was first reported by 

Risch and colleagues in 1996 [93], and is now referred to as the common 

disease/common variant (CD/CV) hypothesis. The major assumption behind the 
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CD/CV hypothesis is that since the major diseases are common, so are the genetic 

variants that cause them. Moreover, common variants with low penetrance and 

modest risk are not subjected to the same negative selection as variants with strong 

phenotypic effect causing Mendelian diseases. Hence, the hypothesis states that 

common diseases are caused by multiple, high frequency genetic variants conferring 

cumulative incremental effects on disease risk [73, 94]. With these assumptions as a 

fundament, the next challenge became clear - to survey the common genetic variation 

in the genomes of a large number of individuals. This would be necessary in order to 

reveal the intricate genetic background of common complex diseases.   

Figure  5 The allelic spectrum of disease – its all about number, frequency and penetrance.  

The allelic spectrum of disease relies on the number of genetic variants, their frequency in a 

population and on the penetrance (size of their phenotypic effect). Linkage studies have 

proved successful in identifying genetic variants causing rare Mendelian disorders, those with 

low-frequency and high penetrance. Complex diseases are believed to be caused by multiple 

genetic variants each conferring only low to modest risk for disease. Adapted from [73, 95]. 
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The breakthrough came in 2006-2007 with the successful implementation of genome-

wide association studies (GWAS). This new approach became possible as a result of 

the completion of the human genome sequence in 2001 [96, 97], the creation of SNP 

LD maps by the International HapMap Project [98] and great advancements in 

genotyping technology (efficient gene-chips) and tools for statistical handling [71]. 

Using SNP-based arrays and comparing the frequency of SNP alleles between cases 

and controls, the GWA approach allowed the investigators to detect genetic variants 

with modest phenotypic effects in a systematic and unbiased manner, provided that 

the variants had a high frequency in the population. These studies required large 

numbers of patients and cost several million dollars each. Due to the vast amount of 

genetic variants analyzed in a GWA study, a high number of statistical tests are 

performed, thus leading to a substantial risk of false positives owing to multiple 

testing. The important need for controlling this problem has resulted in the general 

use of a more stringent genome-wide significance level before an association is 

considered statistically significant. Current consensus has, based on a simulation 

study, defined a genome-wide significance level of P < 5×10-8 to account for 106

independent genome-wide hypotheses tested in a dense GWA (44), even though also 

P < 10-7 has been suggested (186,187).

Approximately 951 GWA studies covering over two hundred distinct diseases and 

traits have been published by the second quarter of 2011, with nearly 1,450 SNP–trait 

associations reported as significant (P <5×10 8) (Figure 6) [99, 100]. The upshot is 

that hundreds of common genetic variants have now been statistically linked with 

various diseases. Such associations are consistent with the common disease–common 

variant hypothesis, which posits that common diseases are attributable in part to 

allelic variants present in more than 1–5% of the population [94, 101, 102]. Hence, 

genome-wide association studies have, without doubt, provided valuable insights into 

the genetic architecture of common complex disorders. However, most variants 

identified so far confer relatively small increments in risk, and explain only a small 

proportion of familial clustering, thus leading to question of how the remaining 

”missing heritability” can be explained. Possible sources of the missing heritability 
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and future research strategies, including and extending beyond current genome-wide 

association approaches, will be discussed in more detail in Chapter 5. 

Figure 6 Published genome-wide associations reported as of June 2011. The circles indicate 

the chromosomal location of 1,449 published GWA at p  5x10-8 for 237 traits. Each disease 

type or trait is coded by color. From the National Human Genome Research Institute [99]. 
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1.3 GENETIC PREDISPOSITION AND SUSCEPTIBILITY GENES 

FOR TYPE 2 DIABETES AND DIABETES RELATED TRAITS 

1.3.1 Heritability of type 2 diabetes  

Phenotypic variation among individuals may be attributable to genetics, 

environmental challenge and/or random events. Heritability is the proportion of 

phenotypic variation in a population that is due to genetic variation between 

individuals. Heritability of a trait or condition is often estimated on the basis of 

parent-offspring correlations for continuous traits or the ratio of the incidence in first-

degree relatives of affected persons to the incidence in first-degree relatives of 

unaffected persons. Heritability is also frequently estimated by comparing 

resemblances between twins.  

The clinical assessment of type 2 diabetes has often incorporated genetic information 

in the form of family history. Although very simple, family information has helped to 

raise clinical awareness for an individual patient’s risk of type 2 diabetes due to the 

strong heritability of this disease. In contrast to a population risk of ~7%, family 

studies have estimated that the risk for type 2 diabetes among offspring is, 

respectively, 3.5-fold and 6-fold higher for those with a single diabetic parent and two 

diabetic parents compared with offspring without parental diabetes [103]. 

Furthermore, the higher concordance rate of type 2 diabetes in monozygotic versus 

dizygotic twins and the high prevalence of type 2 diabetes in specific ethnic groups 

such as Pima Indians and Mexican Americans, all lend support to the existence of 

genetic determinants for type 2 diabetes [78]. Overall, estimates have shown that 

30%–70% of type 2 diabetes risk can be ascribed to genetics [104]. It is also evident, 

for example from a recent study in Finnish families, that type 2 diabetes-related 

intermediate and quantitative traits show substantial heritability [105]. The patterns of 

inheritance therefore suggest that type 2 diabetes and its related traits are both 

polygenic and heterogeneous; hence multiple genes are involved and different 

combinations of genes play a role in different subsets of individuals. How many risk 
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genes that exist and what their relative contributions are, remains somewhat 

uncertain. However, recent advances in genetic mapping of complex diseases have 

provided some information or at least great optimism in the dissection of the complex 

architecture of polygenic diseases such as type 2 diabetes.

1.3.2 Genetics of type 2 diabetes and intermediary phenotypes 

In the past 10-15 years, huge resources have been devoted to finding type 2 diabetes 

genes. These efforts have included many candidate-gene studies and extensive efforts 

to fine-map linkage signals. Linkage analysis and subsequent positional fine-mapping 

of candidates have been mostly inconclusive, despite the detection of multiple 

genomic regions putatively linked to diabetes [106]. There is one notable exception, 

namely transcription factor 7-like 2 gene (TCF7L2). In 2006, the Icelandic company 

deCODE Genetics identified a common type 2 diabetes susceptibility variant in the 

TCF7L2 gene region [107]. This result was interesting for two reasons. First, the 

variants that were found to alter risk did not explain the linkage signal, even though 

the investigators analyzed more than 200 markers across the region. This suggested 

that a non-candidate-gene or region-based association approaches, such as a GWAS, 

could have a great potential. Second, TCF7L2 was a completely unexpected gene, 

thus demonstrating that a genome-wide approach could uncover previously unknown 

disease pathways [108]. 

Variants in many candidate genes were extensively studied by association studies in 

the pre-GWA era. In most instances, however, the initial association was not 

replicated in subsequent analyses. The candidate gene studies produced more 

unequivocal evidence for common variants involved in type 2 diabetes than did the 

linkage approach. The most robust candidate variants were the E23K variant in the 

KCNJ11 gene [109-111], the P12A variant in the peroxisome proliferator-activated 

receptor-  (PPARG) gene [112], and common variation in the HNF1B and the 

Wolfram syndrome 1 (WFS1) genes [113-115]. Rare mutations in all of these four 

genes are causing monogenic forms of diabetes [116-119], and two are targets of anti-
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diabetic therapies. KCNJ11 encodes a component of a potassium channel with a key 

role in -cell physiology that is a target for the sulphonylurea class of drugs, and 

PPARG encodes a transcription factor involved in adipocyte differentiation that is a 

target for the thiazolodinedione class of drugs [78, 108]. 

In the spring of 2007, the results from the first wave of GWA studies investigating 

type 2 diabetes genes were published, namely the French, deCODE, DGI, WTCCC 

and FUSION studies [120-124]. These five independent GWA studies were all 

conducted using a two-stage strategy consisting of a GWA screen in an initial cohort 

of unrelated cases and controls followed by replication of the most significant 

findings in additional patients series. The initial GWAS were subsequently followed 

by five smaller GWA studies [125-129]. The screening and replication sets consisted 

primarily of European Whites, with the exception of the deCODE study which 

contained groups of Chinese and West Africans. Each of these early GWA studies of 

type 2 diabetes identified numerous potential susceptibility variants, but no less than 

nine loci emerged as being consistently associated with risk of type 2 diabetes across 

multiple studies. The nine loci were TCF7L2, solute carrier family 30, member 8 

(SLC30A8), hematopoietically expressed homeobox (HHEX), CDK5 regulatory 

subunit-associated protein 1-like 1 (CDKAL1), cyclin-dependent kinase inhibitor 

2A/2B (CDKN2A/B), insulin-like growth factor 2 mRNA-binding protein 2 

(IGF2BP2), fat mass- and obesity-associated gene (FTO), KCNJ11 and PPARG,

among which three (TCF7L2, KCNJ11 and PPARG) had previously been implicated 

in type 2 diabetes.

The TCF7L2 gene is the most important type 2 diabetes susceptibility gene found to 

date [107]. Since its discovery, the association has been replicated in a variety of 

studies in subjects of different ethnicities [130-141]. In the U.K. population, the 

allelic odds ratio (OR) for the lead SNP (rs7903146, risk-allele frequency = 30%) is 

1.36 and individuals carrying two risk (T) alleles are at nearly twice the risk of type 2 

diabetes as are those with none [134]. The population attributable risk (PAR) is on 

the other hand somewhat lower, and varies with the variants’ frequency in the 
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population. TCF7L2 encodes a transcription factor in the Wnt-signaling pathway, 

which induces transcription of a number of genes, including proglucagon, in the 

intestine. Recent studies have shown that there is an increased expression of TCF7L2

in the islets of pancreas in type 2 diabetes, which in turn results in impaired glucose-

stimulated insulin secretion [142]. 

One of the most interesting regions to emerge from the first wave of GWAS for type 

2 diabetes and CVD lies in a gene desert ~130 kb upstream of the CDKN2B gene on 

chromosome 9p21. Several SNPs in the 9p21 interval have demonstrated strong 

associations with coronary artery disease/myocardial infarction (MI) [143-146] and 

other vascular diseases such as stroke and intracranial and abdominal aneurisms [147-

149]. All these SNPs are highly correlated (r2 >0.8) and found in a ~60 kb LD-block. 

The 9p21 region also contains two adjacent, but distinct type 2 diabetes signals 

separated by a recombination hotspot; a strong signal mapped to an 11 kb LD-block 

(represented by rs10811661) and a second signal (rs564398) located ~100 kb in a 

telomeric direction from the type 2 diabetes-associated interval [120, 121, 124]. After 

the initial GWASs, several studies have confirmed the association with the implicated 

candidate SNPs in type 2 diabetes [150-153] and CVD [154-160] and extended the 

number of CVD phenotypes associated with the region [161-165]. This raised the 

possibility of a shared genetic or mechanistic link causing both CVD and diabetes 

within this region. In support, a significant interaction was found between poor 

glycemic control and a variant within the 9p21 region on the risk of coronary heart 

disease in patients with type 2 diabetes [166]. However, the effects of the disease 

susceptibility variants for the two major disease loci have shown to be independent, 

since type 2 diabetes risk variants do not seem to confer increased risk of 

cardiovascular disease or the other way around [147, 167]. 

The risk variants identified in the 9p21 interval by GWAS are in general located in 

non-coding regions, since most reported risk variants do not appear in mature 

transcripts, and there are no known micro-RNAs mapping to this region [168]. This 

suggests that their effects probably are mediated by influences on gene expression of 
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nearby genes in cis. Besides the coding sequences for the two cyclin-dependent 

kinase inhibitors, CDKN2A (p16INK4a) including its alternative reading frame (ARF)

transcript variant (p14ARF), and CDKN2B (p15INK4b), the region contains a large 

antisense non-coding RNA gene, designated CDKN2BAS (formerly termed ANRIL).

Recent studies have shown that expression of these genes is co-regulated and that 

most of the confirmed risk variants are all correlated with CDKN2BAS expression, 

indicating that CDKN2BAS could play a role in CDKN2B regulation [168]. Hence, 

modulation of CDKN2BAS expression may mediate susceptibility to several 

important diseases. 

The individual SNP rs10757278 has been highlighted as a potential causal variant for 

the association with coronary artery disease based on effects on expression of the 

INK4/ARF locus (p15INK4b, p16INK4a, ARF and CDKN2BAS) [169]. Moreover, the 

rs10757278 SNP have also been mapped to one of 33 newly identified enhancers in 

the 9p21 interval, in which the risk variant disrupts a transcription factor binding site, 

thus having functional relevance for an atherosclerosis-associated pathway in human 

endothelial cells [170].

The French GWA study, one of the first five GWA studies investigating type 2 

diabetes genes, involved non-obese diabetics and revealed that a version of a gene 

encoding a protein that transports zinc in the pancreas, SLC30A8, increased the risk 

of type 2 diabetes [122]. Of all the new type 2 diabetes genes discovered by the GWA 

approach, SLC30A8 are one of the few involving a non-synonymous polymorphism – 

an arginine to tryptophan substitution at amino acid 325. SLC30A8 has also recently 

been identified as an auto-antigen in human type 1 diabetes [171]. In contrast to 

SLC30A8, most of the genes identified in the GWA screens would not be considered 

typical candidate genes for type 2 diabetes and in most cases the variants are located 

in non-coding regions in or near the gene.  

In the first wave of GWAS, all studies had relatively small sample sizes and were 

therefore to some extent statistically underpowered to detect variants with modest 

effect sizes. In recognition of this, data from three GWA studies were combined by 
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the DIAGRAM consortium. Through meta-analysis comprising 10,128 individuals of 

European descent and ~2 million SNPs directly genotyped or imputed, followed by 

large-scale replication in up to 53,975 individuals, six additional type 2 diabetes 

susceptibility genes (JAZF1, CDC123, TSPAN8, THADA, ADAMTS9, and NOTCH2)

were detected [172]. The initial GWA scans were mainly performed in cases and 

controls from European populations. For this reason GWA scans in other populations 

were warranted. The first GWA studies performed in Asian subjects with type 2 

diabetes discovered a new gene, KCNQ1, which has later also been confirmed in 

European subjects [173, 174]. Furthermore, a single GWA study in Taiwanese 

demonstrated genome-wide associations with type 2 diabetes for two other loci, SRR

and PTPRD [175]. Notably, most type 2 diabetes variants have been shown to have 

an impact on pancreatic -cell function with a primary effect on insulin secretion 

rather than on insulin action [176]. A GWA study performed in French and Danish 

subjects revealed, however, a variant in the IRS1 gene, which together with PPARG

being one of a limited number of type 2 diabetes loci so far displaying a diabetogenic 

potential through affecting peripheral insulin sensitivity [177]. 

The GWA approach has further demonstrated that genetic studies of glycemic traits 

can identify type 2 diabetes risk loci. Follow-up signals for type diabetes from GWA 

scans for fasting glucose or insulin secretion revealed from 2008 to 2010 a whole new 

set of type 2 diabetes susceptibility loci. The melatonin-receptor gene (MTNR1B),

which highlights the link between circadian and metabolic regulation [178], was 

found to be associated with levels of fasting glucose and risk of type 2 diabetes [179-

181]. Follow-up signals of a fourth GWA scan for fasting glucose identified, in 

addition to MTNR1B, five other loci (ADCY5, PROX1, GCK, GCKR and DGKB)

associated with type 2 diabetes [182]. Very recently, several studies have reported 

even larger meta-analyses of GWA data from both European and Asian ethnic groups, 

leading to the identification of several new loci for type 2 diabetes, including RBMS1,

DUSP9, KLF14, ARAP1, HMGA2, HNF1A, GRB14, ST6GAL1, VPS26A, HMG20A,

AP3S2 and HNF4A [183-185]. Of these new loci, genetic and gene expression studies 

had previously suggested an important role for KLF14 in metabolic disease. A recent 
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study demonstrated a network of genes whose expression was associated with KLF14 

variation in trans, providing a framework for understanding how KLF14 influences 

disease risk [186]. Moreover, confirmation of a common variant associations at 

HNF1A and HNF4A [183, 185] added new loci to those known to harbor both rare 

mutations causing monogenic forms of diabetes and common variants predisposing to 

multifactorial diabetes. The number is now 7, the others being PPARG, KCNJ11,

WFS1, HNF1B and GCK.

Overall, the power of genome-wide association studies, in combination with larger 

data sets, meta-analyses of the initial GWA studies, establishments of larger consortia 

(e.g DIAGRAM, GIANT, MAGIC), GWA scans conducted on intermediary diabetes 

phenotypes (e.g. fasting glucose) and the use of study samples of different ethnicities, 

have delivered a whole set of new susceptibility loci for type 2 diabetes over the last 

five years, now counting around 50 loci [23, 183]. The validated susceptibility loci 

along with their discovery method, cellular function and putative intermediary 

mechanism in diabetes are summarized in Table 2. The last reported type 2 diabetes 

susceptibility regions are individually only associated with a marginally increased risk 

for diabetes (OR<1.1), and can together explain only ~10% of the heritability seen for 

type 2 diabetes [187]. Clinical factors seem to predict the risk of diabetes 

development better than a sample of 16 genotyped type 2 diabetes associated SNPs, 

either alone or in combination [188]. The clinical utility of the genome wide 

association studies is therefore controversial and have been highly debated [189-191]. 
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Table 2 Genetic regions (variants) associated with type 2 diabetes at genome-wide levels of 

statistical significance (p < 10-8), listed by chromosome.  

Chr Gene region 
(lead SNP) 

Discovery method 
(major ethnicity) 

Cellular function and putative 
intermediary mechanism in diabetes References 

1 PROX1
(rs340874) 

Follow-up of signals 
for T2D from GWA 
scan for FG 
(European) 

Encodes the prospero-related homeobox 
1. Implicated in cell proliferation and 
development. Associated with elevated 
FG. 

[182]

1 NOTCH2 
(rs10923931) 

GWA meta-analysis 
(European) 

Transmembrane receptor implicated in 
pancreatic organogenesis; regulates cell 
differentiation. 

[172]

2 GRB14
(rs3923113) 

GWA meta-analysis 
(South Asians) 

Adaptor protein binding to insulin 
receptor and insulin-like growth factor 
receptors to inhibit kinase signaling. 
Associated with reduced insulin 
sensitivity. 

[183]

2 BCL11A
(rs243021) 

GWA meta-analysis 
(European) 

Involved in both B- and T-lymphocyte 
development and -cell function. 
Affects insulin response to glucose. 

[185, 192] 

2 RBMS1 
(rs7593730) 

GWA meta-analysis 
(European) 

Encodes RNA-binding motif, single-
stranded interacting protein 1. 
Implicated in DNA replication, gene 
transcription, cell cycle progression and 
apoptosis. Unknown diabetogenic 
mechanism. 

[184]

2 GCKR
(rs780094) 

Follow-up of signals 
for T2D from GWA 
scan for FG 
(European) 

Glucokinase regulatory protein. 
Involved in signal transduction, glucose 
transport and sensing. Associated with 
FG, fasting insulin and HOMA-IR. 

[182]

2 IRS1
(rs2943641) 

Single GWA study 
(French, European) 

Encodes insulin receptor substrate-1. 
Associates with reduced adiposity and 
impaired metabolic profile (e.g. visceral 
to subcutaneous fat ratio, IR, 
dyslipidemia, CVD, adiponectin levels). 

[177, 185, 
193]

2 THADA 
(rs7578597) 

GWA meta-analysis 
(European) 

Thyroid adenoma-associated gene. 
Associates with PPAR; Involved in 
apoptosis. Associated with -cell 
dysfunction, lower -cell response to 
GLP-1 and reduced -cell mass. 

[172, 192] 

3 ST6GAL1
(rs16861329) 

GWA meta-analysis 
(South Asians) 

Enzyme located in Golgi apparatus, 
involved in post-translational 
modification of cell-surface components 
by glycosylation. 

[183]

3 ADCY5
(rs11708067) 

Follow-up of signals 
for T2D from GWA 
scan for FG 
(European) 

Encodes adenylate cyclase 5. Involved 
in signal transduction. Associated with 
elevated FG. 

[182]
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Chr Gene region 
(lead SNP) 

Discovery method 
(major ethnicity) 

Cellular function and putative 
intermediary mechanism in diabetes References 

3 ADAMTS9 
(rs4607103) 

GWA meta-analysis 
(European) 

Proteolytic enzyme. Affects insulin 
response to glucose. Primary effect on 
insulin action not driven by obesity. 

[172, 192, 
194]

3 IGF2BP2 
(rs4402960) 

Single GWA study 
(European) 

Growth factor (IGF2-mRNA) binding 
protein. Involved in pancreatic 
development and stimulation of insulin 
action. 

[120, 121, 
124, 172, 173, 
185, 195] 

3 PPARG*
(rs1801282) 

Candidate study; 
Later confirmation 
by GWA studies 

TRF involved i adipocyte development. 
TRF receptor for TZDs and 
prostaglandins. Effect on IR. 

[112, 124, 
196]

4 WFS1*
(rs1801214) 

Candidate study; 
later validated by 
GWA meta-analysis 

Endoplasmic reticulum transmembrane 
protein involved in stress and -cell 
apoptosis. Insulin response. 

[113, 185, 
197, 198] 

5 ZBED3 
(rs4457053) 

GWA meta-analysis 
(European) 

Encodes an axin-interacting protein 
activating wnt/beta-catenin signaling. 
Unknown diabetogenic mechanism. 

[185]

6 CDKAL1
(rs7754840) 

Single GWA study 
(Icelandic, 
European) 

Cyklin kinase (CDK5) inhibitor. 
Involved in cell cycle regulation in the 
-cell. Insulin response. 

[120, 121, 
123, 124, 172, 
173, 185, 199, 
200]

7 KLF14 
(rs972283) 

GWA meta-analysis 
(European) 

Basic transcription element-binding 
protein. "Master switch" controlling 
other genes associated with BMI, 
insulin, glucose and cholesterol. 

[185, 186] 

7 DGKB
(rs972283) 

Follow-up of signals 
for T2D from GWA 
scan for FG 
(European) 

Encodes diacylglycerol kinase beta. 
Implicated in signal transduction. 
Associated with elevated FG. 

[182]

7 GCK*
(rs4607517) 

Follow-up of signals 
for T2D from GWA 
scan for FG 
(European) 

Encodes the enzyme glucokinase. 
Involved in signal transduction, glucose 
transport and sensing. Associated with 
elevated FG and HbA1c. 

[115, 182] 

7 JAZF1 
(rs864745) 

GWA meta-analysis 
(European) 

Zinc-finger protein. Function as a 
transcriptional repressor. Associated 
with prostate cancer. Insulin response. 

[172, 185, 
201]

8 TP53INP1 
(rs896854) 

GWA meta-analysis 
(European) 

Encodes the p53-dependent damage-
inducible nuclear protein. May regulate 
p53-dependent apoptosis. Unknown 
diabetogenic mechanism. 

[185]

8 SLC30A8
(rs13266634) 

Single GWA study 
(French, European) 

-cell zinc transporter ZnT8. Involved 
in insulin storage and secretion. 
Associated with fasting proinsulin 
levels. 

[120-122,
124, 185, 199, 
202]

9 TLE4a

(rs13292136) 
GWA meta-analysis 
(European) 

Encodes the transducin-like enhancer 
of split 4. Unknown diabetogenic 
mechanism. 

[185]
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Chr Gene region 
(lead SNP) 

Discovery method 
(major ethnicity) 

Cellular function and putative 
intermediary mechanism in diabetes References 

9 PTPRD
(rs17584499) 

Single GWA study 
(Taiwanese) 

Encodes the tyrosine phosphatase 
receptor type D protein. Associated 
with increased HOMA-IR and may 
affect insulin signaling on its target 
cells. 

[175, 203, 
204]

9 CDKN2A/B
(rs10811661) 

Single GWA study 
(European) 

Cyclin-dependent kinase inhibitor and 
p15/16 tumor suppressor. Involved in 
islet development. Also associated with 
CVD and several cancers. Insulin 
response. 

[120, 121, 
157, 185, 195, 
199, 205] 

10 VPS26A 
(rs1802295) 

GWA meta-analysis 
(South Asians) 

Multimeric protein involved in 
transport of proteins from endosomes to 
the trans-Golgi network. Expressed in 
pancreatic and adipose tissues. 

[183]

10 CDC123
(rs12779790) 

GWA meta-analysis 
(European) 

Cell cycle kinase, required for S-phase 
entry. Affects different aspects of 
insulin response to glucose. 

[172, 192, 
206]

10 HHEX 
(rs1111875) 

Single GWA study 
(French, European) 

TRF involved i pancreatic development. 
Might influence both insulin release 
and insulin sensitivity. 

[120-122,
172, 185, 195, 
199, 200, 207, 
208]

10 TCF7L2 
(rs7903146) 

Linkage study; later 
confirmation by 
several GWAs 
(European) 

TRF involved in wnt-signaling. 
Influencing insulin and glucagon 
secretion. Most important polygene 
identified for T2D. 

[107, 120, 
121, 123, 
129-139, 142, 
143, 172, 185, 
199, 209-215] 

11 ARAP1b

(rs1552224) 
GWA meta-analysis 
(European) 

Associated with lower proinsulin levels, 
as well as lower -cell function 
(HOMA-B and insulinogenic index). 

[185, 213] 

11 HMGA2
(rs1531343) 

GWA meta-analysis 
(European) 

Oncogene implicated in body size 
(height). Primary effect on insulin 
action not driven by obesity. 

[185, 216, 
217]

11 MTNR1B
(rs10830963) 

Follow-up of signals 
for T2D from GWA 
scan for FG or IS 

Receptor for melatonin. Involved in 
glucose homeostasis. Associated with 
increased FG and reduced -cell 
function. 

[179-181]

11
KCNQ1 
(rs2237892, 
rs231362)c

Single GWA study 
(Japanese, Asian, 
European) 

Encodes the pore-forming alfa subunit 
of IKaK+ channel. Insulin response. 

[173-175,
185, 199, 
218]

11 KCNJ11*
(rs5219) 

Candidate study; 
later confirmation 
by GWAS 

Inwardly rectifying potassium channel. 
Risk allele impairs insulin secretion. 

[110, 111, 
121, 124] 

12 HNF1A*
(rs7957197) 

Candidate study; 
Later confirmation 
by GWA meta-
analysis (European) 

TRF essential for pancreatic -cell 
development and function. 

[115, 172, 
185, 205, 
219-222]

12 TSPAN8
(rs7961581) 

GWA meta-analysis 
(European) 

Cell surface glycoprotein implicated in 
GI cancers. Insulin response. [172, 201] 
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Chr Gene region 
(lead SNP) 

Discovery method 
(major ethnicity) 

Cellular function and putative 
intermediary mechanism in diabetes References 

13 SPRY2
(rs1359730) 

Single GWA study 
(Chinese) 

Inhibitor of tyrosine kinase signaling. 
Associated with body fat percentage. 
Homologs inhibit insulin receptor-
transduced MAPK signaling. Regulates 
development of pancreas. 

[193, 206] 

15 AP3S2
(rs2028299) 

GWA meta-analysis 
(South Asians) 

Clathrin-associated adaptor complex 
expressed in adipocytes and pancreatic 
islets. Involved in vesicle transport and 
sorting. Unknown diabetogenic 
mechanism 

[183]

15 HMG20A
(rs7178572) 

GWA meta-analysis 
(South Asians) 

High mobility group non-histone 
chromosomal protein influencing 
histone methylation. Involved in 
neuronal development. Unknown 
diabetogenic mechanism. 

[183]

15 C2CD4A
(rs11071657) 

Single GWA study 
(Japanese) 

Nuclear calcium-dependent domain-
containing protein. Impairs glucose-
stimulated insulin response. Associated 
with levels of fasting glucose and 
proinsulin. 

[213, 223, 
224]

15 ZFAND6 
(rs11634397) 

GWA meta-analysis 
(European) 

Encodes a zinc finger AN1 Domain-
containing protein. Unknown 
diabetogenic mechanism. 

[185]

15 PRC1
(rs8042680) 

GWA meta-analysis 
(European) 

Protein regulating cytokinesis. 
Unknown diabetogenic mechanism. [185]

16
FTO 
(rs8050136, 
rs9939609) 

Single GWA study 
(British, European) 

2-oxoglutarate-dependent demethylase. 
Alters BMI i general population. 

[121, 124, 
172, 185, 215, 
225-228]

17 SRR
(rs391300) 

Single GWA study 
(Taiwanese) 

Encodes a serine racemase protein. May 
play a role in regulation of insulin and 
glucagon secretion. 

[175]

17 HNF1B*
(rs757210) Candidate study 

TRF involved in development of the 
kidney, pancreas, liver, and Mullerian 
duct. Implicated in MODY and renal 
cyst. Associated with prostate cancer. 

[114, 115, 
185, 222, 
229]

20 HNF4A*
(rs4812829) 

Candidate study; 
Later replicated by 
GWA meta-analysis 
(South Asians) 

Nuclear TRF expressed in liver. 
Regulates transcription of several 
genes, e.g. HNF1A. Elevated hepatic 
glucose production. Defective 
pancreatic -cell function and impaired 
insulin secretion. 

[183, 219, 
222, 230-233] 

X DUSP9 
(rs5945326) 

GWA meta-analysis 
(European) 

MAP kinase phosphatase. Decreased 
insulin release for male risk allele 
carriers. Up-regulated during adipocyte 
differentiation. Involved in insulin 
signaling and stress induced IR. 

[185, 234, 
235]

All loci have shown genome-wide statistical significance (p 10-8). For many of the loci several SNPs 

associate with type 2 diabetes, but only one (in some cases two) SNPs are listed. Abbreviations: Chr: 
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chromosome; CVD: cardiovascular disease; FG: fasting glucose; GI: gastrointestinal; IR: insulin resistance; 

IS: insulin secretion; T2D: type 2 diabetes; TRF: transcription factor; TZD: thiazolidinediones. aGWA signal 

re-annotated from CHCHD9 to TLE4. bFormerly known as CENTD2. cThese  SNPs  are  in  low  LD  in  

Europeans (r2 = 0.01), thus they most likely represent two independent association signals. *Genes also 

implicated in MODY, other monogenic forms of diabetes or rare genetic syndromes. 

Genetics of glycemic traits and glucose homeostasis. Levels of circulating glucose 

are tightly regulated. Indicators of glycemic status such as fasting glucose levels, 

HbA1c and glucose levels 2-hour post-oral glucose tolerance test (OGTT) have all 

heritability estimates (47-59%, 34-36% and 33%, respectively) that make them 

amenable to genetic analysis [236, 237]. The GWA scans on fasting glucose in both 

diabetic and non-diabetic subjects have shown that genetic studies of glycemic traits 

can identify type 2 diabetes risk loci, as well as loci containing gene variants that are 

associated with a modest elevation in glucose levels [179-182, 238-240]. 

Several loci have also reached evidence for association with HbA1c in type 1 and 

type 2 diabetes, as well as in non-diabetic subjects, including loci near FN3K, HFE,

TMPRSS6, ANK1, SPTA1, ATP11A/TUBGCP3, HK1, MTNR1B, GCK,

G6PC2/ABCB11, TCF7L2, SLC30A8, SORCS1, WDR72, GCS and BNC2 [241-245]. 

The associations with HbA1c may well in part be a function of hyperglycemia 

associated with five of the loci (TCF7L2, SLC30A8, GCK, G6PC2 and MTNR1B)

[179, 181, 202, 238, 239, 246, 247]. Most of the others have been classified as novel, 

but some variants map to loci where more rare variants cause various forms of 

hereditary anemia and iron storage disorders. Common variants at these loci likely 

influence HbA1c levels via erythrocyte biology. Seven non-glycemic loci have shown 

to account for a 0.19 (% HbA1c) difference between the extreme 10% tails of the risk 

score, and would reclassify approximately 2% of a general white population screened 

for diabetes with HbA1c [243].

The most recent diabetes intermediary trait assessed by a GWA scan was proinsulin 

level. Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating 

proinsulin levels are associated with impaired -cell function, raised glucose levels, 
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insulin resistance, and type 2 diabetes [242]. Nine SNPs at eight loci have shown 

association with proinsulin levels [213]. Two loci (LARP6 and SGSM2) have not been 

previously related to metabolic traits, one (MADD) has been associated with fasting 

glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8,

VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase type 2 diabetes risk. 

The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose, 

improved -cell function and lower risk of type 2 diabetes. There is no doubt that 

genetic studies on glycemic traits have and will continue to illuminate the biology 

underlying glucose homeostasis and type 2 diabetes development. 

1.3.3 Genetics of common obesity 

Overweight and obesity are reaching epidemic dimensions on all continents and is 

closely linked to the rising prevalence of type 2 diabetes. The interactions between 

environmental and individual factors, including genetic makeup, explain the 

variability in body size between individuals in a given population [248]. Genetic 

variation may explain as much as 40-90% of the observed population variation in 

body mass index (BMI) [249, 250]. Thus, huge efforts have been made to dissect the 

underlying heritability of obesity in order to increase our knowledge of the biological 

processes involved and to highlight new pathways relevant for therapeutic 

interventions.  

In the pre-GWA era, despite the huge efforts using genome-wide linkage studies and 

candidate gene association studies, only mutations in genes responsible for rare 

Mendelian forms of severe childhood obesity were identified (e.g. genes encoding 

leptin, leptin receptor and proopiomelanocortin) [86]. Few genetic variations had 

been unequivocally associated with BMI and risk of multifactorial obesity in 

population studies [251, 252], with the notable exception of low-frequency variants 

identified in the melanocortin-4 receptor (MC4R) gene explaining some 2-3 % of 

cases of severe obesity [253]. Since 2007, the GWA approach has been similarly 

productive as for type 2 diabetes in the identification of common variants influencing 
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obesity and quantitative measures of adiposity. Currently, over 30 loci influencing 

BMI and the risk of obesity have been identified [23].  

In the spring of 2007, several independent GWA studies reported a strong correlation 

between body mass index and SNPs in the human FTO (the fat-mass and obesity-

related) gene [121, 225, 226, 228]. The association was initially seen in a study of 

type 2 diabetes. The diabetogenic effect, however, proved to be mediated through 

adiposity. Common variants in the first intron define a risk allele predisposing to both 

childhood and adult obesity, with homozygotes for the risk allele weighing 

approximately 3 kilograms more and having a 1.67-fold increased risk of obesity 

compared to those homozygotes for the protective allele [226]. These findings have 

been extensively reproduced and the effect is fairly consistent throughout different 

study populations (reviewed in [254]). Nevertheless, a recent study demonstrated 

little evidence of association in African Americans, suggesting that the effect of FTO

variants on adiposity phenotypes may show some genetic heterogeneity dependent on 

ethnicity [255].

It is not fully understood how the observed effects of the FTO gene variants on 

obesity is exerted. The gene is shown to have sequence homology with Fe(II)- and 2-

oxoglutarate (2OG) oxygenases [256, 257], enzymes that are implicated in various 

processes such as DNA repair, fatty acid metabolism, and posttranslational 

modifications [258]. In vitro studies have shown that recombinant FTO protein has 

strong preference for the abundant N6-methyladenosine (m6A) residues in RNA in 

vitro [259] and 3-methylthymidine (3-meT) in single-stranded DNA or 3-methyluracil 

(3-meU) in single-stranded RNA [256]. Whether an altered demethylase activity can 

explain the link between BMI and the FTO gene variants remains to been seen.   

Furthermore, the FTO protein is expressed in a wide range of human tissues, both 

peripheral and central, with a particularly high expression in the brain [226, 256, 260, 

261]. A study on mice demonstrated that feeding and fasting up-regulated and down-

regulated the FTO mRNA levels, respectively [261]. The FTO variants do not appear 

to be involved in the regulation of energy expenditure, but may have a role in the 
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control of food intake and food choice [262]. Furthermore, dietary factors and 

physical activity may accentuate the susceptibility to obesity by the FTO variants 

[263-265]. Based on the relative rates of the FTO protein expression in adipose tissue 

sub-fractions, other studies point out a role of FTO on the level of the adipose tissue 

metabolism [266, 267]. The functional role of FTO in energy homeostasis remains 

elusive. 

The FTO risk variants have also shown association with obesity-related conditions 

and diseases such as the metabolic syndrome, polycystic ovary syndrome (PCOS), 

and type 2 diabetes [227, 268, 269]. However, in most of the studies reported, these 

effects appear to be secondary to weight increase since the associations are attenuated 

or completely abolished after adjusting for BMI [227]. 

After the identification of the strong signal between FTO variants and obesity, several 

other interesting associations with BMI have been reported. Signals near genes 

implicated in features of neuronal function (e.g. BDNF, SH2B1 and NEGR1)

highlights the neuronal influence on body weight regulation [270-273]. Other studies, 

performed in cases and controls selected from the extremes of the BMI distribution 

have revealed an additional, partly overlapping, list of susceptibility loci [274-277]. 

Moreover, GWASs and meta-analysis on patterns of fat distribution have also 

identified a wide range of variants different from those influencing overall adiposity 

[278-281]. Interestingly, many of these variants reveal sexual dimorphism in the 

genetic basis of fat distribution [280]. 
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2. AIMS

Vision

In this project, the overall aim was to establish a research design to investigate 

genotype-phenotype relations between common genetic variants, type 2 diabetes and 

type 2 diabetes-related traits using subjects from a large population-based Norwegian 

material - the second Nord-Trøndelag Health Study (HUNT2). By evaluating past and 

current findings based on GWA studies, we sought to validate and expand the results, 

and thus to contribute to the continuing exploration and dissection of the complex 

genetic background of type 2 diabetes and related phenotypes. 

Specific aims 

1) To examine and validate several newly identified type 2 diabetes susceptibility 

loci for association with type 2 diabetes, obesity and lipid measures in a 

completely unselected population of type 2 diabetes patients (paper I).  

2) To investigate whether a genetic variant in the gene FTO affects type 2 

diabetes risk entirely through its effect on BMI, and how this variant

influences BMI across adult life in Scandinavian subjects using both cross-

sectional and longitudinal perspectives (paper II). 

3) To investigate the very interesting chromosome 9p21 region emerging from the 

GWAS for type 2 diabetes and cardiovascular diseases in an attempt to fine-

map the functional variant(s) involved in type 2 diabetes and cardiovascular 

disease, and to investigate the relation between the association signals (paper 

III). 

4) To evaluate whether four novel genetic variants affecting hemoglobin A1c 

levels in subjects with type 1 diabetes have an effect on glycemia in a 

population-based type 2 diabetes cohort (paper IV). 
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3. RESEARCH DESIGN AND METHODS

3.1 DEFINITION OF COHORTS 

3.1.1 The Nord-Trøndelag Health Study  

The Nord-Trøndelag Health Study (HUNT) is a longitudinal population-based health 

study and is considered the largest and most unique database of personal and family 

medical histories in Norway, and possibly in the world. The database is a product of 

tight collaboration and joint efforts between local, regional, national and international 

partners throughout the last 20 years. The data was collected during three intensive 

studies, HUNT1, HUNT2 and HUNT3. Compared to population studies in other 

countries, the HUNT study is somewhat unique, given that a total population within a 

geographical area was covered, the age range is wide, the study covers an extensive 

range of topics, and the participation rate was high. Nord-Trøndelag is a county with 

127,000 inhabitants in the middle of Norway. The county is representative of Norway 

as a whole with regard to the economy, industry and sources of income, age 

distribution, morbidity and mortality rates. The population is stable both ethnically 

and geographically, with less than 3% of people of non-white origin and a net 

emigration level of 0.3% per year (1996–2000) [282]. 

HUNT1

HUNT1 was carried out in 1984-1986 to establish the health history of the people 

aged  20 years in Nord-Trøndelag. Of those invited, the attendance rate was 88.1% 

(74,599 participants). The main objectives in this health survey aimed at 

hypertension, diabetes, lung disease and quality of life. Each participant had his/her 

blood pressure, height and weight measured and was asked to answer two different 

questionnaires. For those over the age of 40 years, non-fasting serum glucose was 

measured. No blood samples were collected in HUNT1. 
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HUNT2

The second HUNT Study which took place from 1995-97 was partly a follow-up 

study of HUNT1. However, HUNT2 comprised a larger scientific program including 

data and blood samples from more than 66,000 subjects, of whom ~45,000 had 

participated in HUNT1. Of the 92,434 individuals considered eligible for the study, 

the participation rate was 71.3% [282]. The main objectives in this health survey 

focused on large public health issues like cardiovascular disease, diabetes, obstructive 

lung disease, osteoporosis and mental health. A personal invitation was distributed to 

all inhabitants 20 years or older. The invitation included a questionnaire 1 (Q1) and 

suggestions for time and place for a clinical examination. During the medical 

examination data were collected from two additional questionnaires (Q2 and Q3) and 

combined with blood and urine samples and various clinical measurements, some of 

them in sub-samples of the population. Four different versions of Q2 were handed out 

according to age and gender. Q3 was delivered to those individuals reporting 

hypertension, lung disease, diabetes or asthma in Q1. The participants were asked to 

complete Q2 and Q3 and returned them by mail. Thus, data are missing more often 

for Q2 and Q3 than for Q1. The clinical examination of each participant was carried 

out by specially trained nurses and technicians at established screening stations in the 

largest towns or by visiting smaller communities with transportable office and 

laboratory facilities. Blood sampling was done whenever subjects attended, thus 

considered to be in a random or a non-fasting state. Serum analyses were performed 

in fresh blood samples at Levanger Hospital. Glucose, total cholesterol, HDL 

cholesterol and triglycerides were measured by standard enzymatic methods. In those 

who confirmed to have diabetes in Q1 an extra tube of whole blood was drawn for 

analyses of HbA1c [282].

3.1.2 Malmö Diet and Cancer Cohort (MDC) 

The Malmö Diet and Cancer cohort [283] was a 10-year prospective case-control 

study with baseline examinations from March 1991 to October 1996 and consisted of 

28,449 individuals. All men born 1923-1945 and all women born 1923-1950 and 
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living in Malmö were invited to participate. The main objective was to investigate 

whether a western diet could be associated with certain forms of cancer accounting 

for other life-style factors. Moreover, the study also aimed to act as a resource 

available for testing innovative hypotheses arising from other studies. Initially food 

intake, heredity, socio-economic factors, life-style pattern, occupational situation, 

previous and current diseases, symptoms and medications, were determined. 

Plasma/serum was collected. Nurses conducted anthropometric measurements and 

collected blood. Diabetes at baseline was identified through self-reported diabetes 

diagnosis, self-reported use of anti-diabetic therapy or fasting whole blood glucose 

levels. 

3.1.3 Malmö Preventive Project (MPP) 

The Malmö Preventive Project (MPP) was a preventive case-finding program for 

cardiovascular risk factors and alcohol abuse initiated in Malmö in 1974 [284, 285]. 

The major aim was to screen large stratum of the adult population in order to find 

high-risk individuals for preventive intervention. Subjects were invited to participate 

in a broad health-screening program, including a physical examination and a panel of 

laboratory tests. Additionally, every participant filled in a self-administered 

questionnaire on lifestyle, and medical history. 33,346 Swedish subjects (22,444 men 

and 10,902 women; mean age 49 years, 24.5% with impaired fasting glucose and/or 

impaired glucose tolerance from the city of Malmö in southern Sweden participated 

in a health screening during 1974-1992, with a 71% attendance rate. Eligible 

participants were invited to a re-screening visit during 2002-2006 at the Clinical 

Research Unit Medicine, University Hospital, Malmö. This screen included a 

physical examination and fasting blood samples for measurements of plasma glucose 

and lipids, as well as whole blood samples for DNA extraction.  
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3.2 Study samples

Our research group (The Bergen Diabetes Research Group) is collaborating with 

HUNT, and currently we have access to extensive clinical data and DNA samples 

from ~6,000 participants aged  20 years from HUNT2. Initially (in 2007), we had 

access to extensive clinical data and DNA-samples from 1,850 participants with 

diabetes and 2,956 random controls (dataset 1 in Figure 7). We had genomic DNA 

available for 1,850 diabetic participants, for 1,391 of whom more extensive clinical 

diabetes data were available. Subjects who were GAD antibody–positive and had 

diabetes onset before age 40 years, or before age 30 years with insulin treatment 

initiated during the first year of diagnosis, or had continuously been on insulin 

treatment since the year of diagnosis were considered not having type 2 diabetes and 

thus excluded from the type 2 diabetes group. For 459 diabetic subjects with no GAD 

antibody measurements, subjects with diabetes onset before age 40 years were also 

excluded from the type 2 diabetes group [231]. Based on these criteria we had three 

groups; one group consisting of 1,644 subjects with type 2 diabetes, one with 206 

subjects with suspected type 1 diabetes or other forms of diabetes, and a group of 

2,956 non-diabetic (self-reported) control participants. 

Two years later we increased our sample size with DNA and clinical data from 300 

new subjects with a history of myocardial infarction, 300 subjects with history of 

stroke and 500 new random controls. Altogether, dataset 2 consisted of 1,100 

individuals and none of these were overlapping with dataset 1 (see Figure 7). In total, 

our current HUNT2 material consists of two different datasets, counting 5,906 

individuals all together. In addition, we had access to data on weight, height and 

diabetes status from HUNT1 (1985) for 4,625 of the 5,906 subjects in HUNT2, 

giving a follow-up time of 10 years. 
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Figure 7 Schematic overview of our HUNT2 study sample. Our HUNT2 material consists of 

two different datasets, counting 5,906 individuals all together. Dataset 1: 1,850 diabetic 

subjects and 2,956 non-diabetic controls. Dataset 2: 300 subjects selected for myocardial 

infarction, 300 subjects selected for stroke and 500 random controls with neither 

cardiovascular disease nor diabetes. 

Participants in HUNT2 did not always fill inn all questions in the various 

questionnaires, resulting in different numbers of valid responses in different parts of 

the HUNT database. In the dataset obtained from the HUNT biobank we explored 

that there were also varying levels of missing data for some of the variables collected 

from the clinical examinations and laboratory analyses. Thus, the study samples 

derived and the number of subjects that were enrolled in paper I-IV differed 

according to the year of initiation and the different research questions raised in each 

paper.

In paper II, we obtained summary statistics from the MPP and MDC studies and the 

study groups enrolled in paper II were derived as follows. In the MPP cohort, 33,346 

Swedish participated in the health screening. Of those persons participating in the 

initial screening, 4,931 have died, and 551 were lost to follow-up. Of those twenty-

five thousand invited to a re-screening visit, 17,284 persons participated in the re-

screening; of these 1,223 were excluded because of incomplete medical information 

Total HUNT2 
~ 60 000 participants 

1850 diabetic 
subjects 

2956 random 
controls 

300 subjects 
with MI 

300 subjects 
with stroke 

5906 subjects 

Selected for CVD 94 % of the total 
diabetes population 

500 random 
controls 

Dataset 1 Dataset 2 
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or lack of a DNA sample (or type 2 diabetes at baseline). Thereby, 16,061 non-

diabetic subjects, 2,063 of whom developed type 2 diabetes during follow-up, were 

included in the analyses. In the MDC cohort (n=30447), 27948 were successfully 

genotyped for FTO rs9939609. Out of those, 27,901 had information on BMI, age 

and diabetes status. After excluding individuals that were part of MPP and were 

genotyped for FTO (n=7,923), 19,978 remained and constituted the study sample. 

Differential missingness was thus not a problem here as all the genotyped MDC 

individuals with needed clinical information were included in the analyses, either as 

part of MDC study, or as part of MPP study.  

3.3 GENETIC ANALYSES 

3.3.1 SNP selection 

In parallel with this work, putative new loci showing association with type 2 diabetes 

and related traits were identified at an increasing speed. Hence, at the initiation of our 

studies, inclusion criteria for SNPs were based on the available information at that 

time. The panel of SNPs selected could in many cases have been more wide-ranging 

and thus ideally extended. However, with reference to a multiplex level of ~25 SNPs 

to ensure a high rate of success (i.e. high genotyping efficiency) and the need to keep 

the costs of the SNP scoring to a reasonable level, we decided to type the best 

candidates related to our research questions of interest and from a cost/benefit 

standpoint.

In paper I, the selection of SNPs prioritized for genotyping was based on publicly 

available type 2 diabetes GWA data as of June 2007, i.e. Sladek et al., the DGI–

FUSION–WTCCC collaboration and deCODE Genetics [120-124, 226]. We included 

only SNPs that were robustly replicated in at least two of the GWASs, i.e. TCF7L2 

(rs7903146 and rs12255372), KCNJ11 (rs5219), PPARG (rs1801282), IGF2BP2 

(rs4402960), CDKAL1 (rs7756992), SLC30A8 (rs13266634), CDKN2B (rs10811661),

HHEX (rs1111875) and FTO (rs9939609). Because of the close relation between the 

Norwegian and Swedish populations, we also included two SNPs in PKN2 
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(rs6698181) and FLJ39370 (rs17044137), also known as C4ORF32, which had 

shown rather strong evidence of association in the DGI Scandinavian data set [120], 

although not in the UK sample sets [24]. Unfortunately, we had to exclude the SNPs 

in TCF7L2, KCNJ11 and PPARG from further analysis and publication due to fact 

that we did not attain analysis rights from the HUNT Research Center publication 

committee for these three genes in the cohort. 

In the second paper, wherein we aimed to validate and expand the results regarding 

the relations between FTO, type 2 diabetes and weight gain in subjects from three 

large Scandinavian cohorts, we decided to include only one SNP, rs9939609, which 

was reported by the first GWAS [226]. The reported obesity-associated FTO SNPs 

are in strong to perfect LD (pairwise r2 >0.8; HapMap; CEU, release 21), hence 

rs9939609 functioned as a proxy for the cluster of SNPs in the first intron of FTO that

have demonstrated association with both type 2 diabetes and BMI. 

In paper III, we applied a fine-mapping approach and defined a target region for 

tagSNP selection across the 9p21 interval (Chr9:21,995,330-22,133,570, NCBI Build 

36). 18 SNPs (rs3217986, rs523096, rs10965215, rs1759417, rs1333034, rs8181047, 

rs10811647, rs1333039, rs16905599, rs10811658, rs7045889, rs10811659, 

rs10757282, rs1333051, rs4977761, rs2065501, rs6475610, rs10757287) tagging a 

138-kb region were selected using the Haploview implementation of the Tagger 

algorithm [286] using the following criteria: minor allele frequency (MAF) of >5% 

and pairwise r2 >0.80. In addition, two previously GWAS-identified type 2 diabetes 

susceptibility variants (rs564398 and rs10811661) and three confirmed CVD-

susceptibility variants (rs1333040, rs10757278 and rs1333049) were added to the 

SNP set, making a total of 23 SNPs. Four variants (rs1759417, rs1333049, rs7045889 

and rs6475610) did not pass our quality control criteria and were excluded from 

further analyses. Thus, a total of 19 SNPs were included in the association analysis 

with type 2 diabetes, stroke, myocardial infarction, angina pectoris and coronary heart 

disease.
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Although a wide panel of genetic variants have shown association with glycemic 

traits in both non-diabetic and diabetic subjects, we decided in paper IV to include 

only the four novel variants reported by Paterson and colleagues [241], which had 

shown the strongest GWA signals with glycemic control in subjects with type 1 

diabetes collected from the Diabetes Control and Complications Trial (DCCT). These 

were the non-coding SNPs rs10810632, rs1358030, rs11624318 and rs566369 located 

in or close to the BNC2, SORCS1, GSC and WDR72 genes, respectively.

3.3.2 Genotyping 

A plethora of different SNP genotyping methods has been developed over the past 

years. One principal approach in SNP genotyping is to score multiple SNPs from each 

sample in a multiplexed fashion (more than one primer/probe pair per reaction). In 

paper I-IV, all samples from the HUNT2 cohort were genotyped using the multiplex 

MassARRAY® iPLEX™ System (SEQUENOM Inc., San Diego, CA, USA) at the 

Norwegian genotyping platform CIGENE, Ås, Norway. The Sequenom MassARRAY 

system utilizes a MALDI-TOF (Matrix-assisted laser desorption ionization - time of 

flight) mass spectrometry for genotyping. In brief, this technology is based on an 

allele-specific primer extension reaction where short primers are extended, according 

to the base composition in the template sequence, and separated by mass [287]. The 

differences in mass captured by the MALDI-TOF are automatically translated by the 

software into specific genotype calls.

The service provided by CIGENE included primer and assay design all the way 

through to production of genotypes. We were typically multiplexing at a level of 20 

to 25 SNPs depending on the project and the ability to make proper designs. 

In the MPP cohort, subjects were genotyped using the TaqMan allelic discrimination 

assay-by-design method on ABI 7900 (Applied Biosystems, Foster City, CA). An 

allelic discrimination assay is a multiplexed end-point (data collection at the end of 

the PCR process) assay that detects variants of a single nucleic acid sequence. The 

presence of two primer/probe pairs in each reaction allows genotyping of the two 
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possible variants at the SNP site in a target template sequence. The actual quantity of 

target sequence is not determined. For each sample, a unique pair of fluorescent dye 

detectors is used, for example, two TaqMan probes that target an SNP site. One 

fluorescent dye detector is a perfect match to the major allele 1 and the other 

fluorescent dye detector is a perfect match to the minor allele 2. The allelic 

discrimination assay classifies unknown samples as homozygotes or heterozygotes. 

Hence, the allelic discrimination assay measures the change in fluorescence of the 

dyes associated with the probes. In the MDC cohort, the genotyping was performed 

by a SEQUENOM MassARRAY platform, and/or TaqMan genotyping assay. 

3.3.3 Quality Control (QC) 

In paper I-IV we applied standard QC procedures to only allow for further analysis 

and interpretation of data with acceptable quality. Quality control was achieved by 

sample tracking methods, genotyping protocols, genotype design for samples 

including numbers and plating locations, internal control samples (duplicate samples 

from the same DNA collection), assay call rates, assay reproducibility and 

concordance with previously generated genotypes and frequencies. Finally, we 

persistently tested for deviations from Hardy-Weinberg proportions to detect failed 

assays or large-scale stratification separately in cases and controls.  

3.4 ETHICS

3.4.1 Ethical issues and approvals 

Both the core study and each sub-study of HUNT were approved by the Data 

Inspectorate of Norway and recommended by the Regional Committee for Medical 

Research Ethics, and all information from HUNT is treated according to the 

guidelines of the Data Inspectorate [282]. Participation in the HUNT study was 

voluntary, and written informed consent was obtained regarding the screening, 

subsequent control and follow-up, and to the use of data and blood samples for 
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research purposes. All data files had only a laboratory number and no personal 

identification number. Only the HUNT Research Center had access to the key, which 

could link the two numbers in question. We had no contact with the participants. The 

MDC and MPP studies and their follow-up analyses had been approved by the 

Regional Ethics Committee in Lund. Written informed consent was obtained from all 

participants.

The study protocols for paper I-IV were approved by the Regional Committee for 

Research Ethics and the Norwegian Data Inspectorate, and all studies were performed 

according to the latest version of the Helsinki Declaration. 

3.4.2 Funding 

The HUNT Study was funded by joint efforts of a large number of partners. Main 

contributions came from The Ministry of Health, through The National Institute of 

Public Health and The National Health Screening Service. The Nord-Trøndelag 

County Council, The Norwegian University of Science and Technology and The 

Norwegian Research Council were also providing essential funding. Sub-studies were 

supported by The Norwegian Research Council or a number of private organizations, 

like The Diabetes Association. Some sub-studies were supported by pharmaceutical 

industry such as the diabetes study by GlaxoSmithKline. 

The MPP Study was supported by grants from the Swedish Research Council 

(including Linné grant 31475113580), the Heart and Lung Foundation, the Diabetes 

Research Society, a Nordic Center of Excellence Grant in Disease Genetics, the 

Diabetes Program at the Lund University, the European Foundation for the study of 

diabetes, the Påhlsson Foundation, the Craaford Foundation, the Novo Nordisk 

Foundation, the European Network of Genomic and Genetic Epidemiology and the 

Wallenberg Foundation. The MDC Study was supported by project grants from the 

Swedish Research Council, the European Foundation for the Study of Diabetes, the 

Novo Nordisk and Albert Påhlsson Foundations, a Linnaeus grant to the Lund 

University Diabetes Centre, and the Knut and Alice Wallenberg Foundation. 
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The genotyping was in part provided by the CIGENE technology platform (Ås, 

Norway), which is supported by the Functional Genomics Programme (FUGE) of the 

Research Council of Norway. This work has been supported by funds from the 

University of Bergen, Haukeland University Hospital, Helse Vest, Innovest and the 

Research Council of Norway. One of the co-authors of paper II (LG) has been a 

consultant for and served on advisory boards for Sanofi-Aventis, GlaxoSmithKline, 

Novartis, Merck, Tethys Bioscience and Xoma, and received lecture fees from Lilly 

and Novartis. All the others authors declare that there is no conflict of interest that 

could be perceived as prejudicing the impartiality of the research reported. The 

funders had no role in the study design, data collection and analysis, decision to 

publish or preparation of the manuscripts. 
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4. MAIN RESULTS 

4.1 PAPER I 

The first wave of genome-wide association studies procured substantial support for 

several new type 2 diabetes susceptibility variants; however, these studies were 

mainly performed in carefully selected cases (sometimes the extremes of the 

phenotype) and controls which may not be representative of the entire type 2 diabetes 

populations. In this paper, using a completely unselected population of type 2 

diabetes subjects and controls (the HUNT2 Study), we confirmed the association with 

type 2 diabetes for three SNPs in or near the genes CDKN2B (rs10811661, OR 

=1.20), FTO (rs9939609, OR=1.14), and SLC30A8 (rs13266634, OR=1.20) and 

observed a borderline significant association for the variant near IGF2BP2

(rs4402960, OR=1.10). Notably, the FTO variant, which was previously shown to be 

associated with diabetes probably via a primary effect on obesity, was still significant 

after adjustment for BMI. Moreover, the association results for the HHEX SNP 

(rs1111875) and the CDKAL1 SNP (rs7756992) were non-significant and showed 

slightly lower ORs than in previous studies. We found no support for an association 

with the less consistently replicated FLJ393370 (C4ORF32) or PKN2 SNPs. We 

hypothesized that some SNPs could have a more pronounced effect on type 2 diabetes 

in obese participants than in non-obese participants; however, results were not 

significantly different between the obese and the non-obese groups.  

Quantitative metabolic traits analysis demonstrated in agreement with previous 

studies that FTO was strongly associated with BMI. The association with obesity 

shown for FTO using BMI as phenotype could not be demonstrated using waist-to-

hip ratio as a quantitative trait for obesity after adjustment for age, gender and 

diabetes status. We also demonstrated an association with triglyceride levels for the 

FTO SNP. Furthermore, the SNP in the vicinity of CDKN2B indicated association 

with waist-to-hip ratio and also a nominal association with cholesterol. We found no 
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evidence for association with quantitative metabolic traits for the SNPs in or near 

PKN2, IGF2BP2, FLJ39370, CDKAL1, SLC30A8 and HHEX in this study.

4.2  PAPER II 

This paper describes the relationship between a genetic variant (rs9939609) in FTO,

type 2 diabetes and weight gain throughout adult life in 41,504 subjects from the 

Scandinavian HUNT, MDC and MPP studies. The initial analyses in the HUNT 

cohort followed by the meta-analyses of data from all three cohorts, revealed a highly 

significant association for rs9939609 with both type 2 diabetes (OR=1.13, P=4.5×10-

8) and the risk to develop incident type 2 diabetes during follow-up (OR=1.12, 

P=3.2×10-8) after correction for age and gender. In contrast to previous findings, the 

associations with both type 2 diabetes and incident type 2 diabetes remained 

significant also after correction for BMI, waist circumference, waist-to-hip ratio or 

change in BMI over time ( BMI). We have previously suggested a link between 

SNPs in FTO and altered lipid profiles (paper I), but we were not able to confirm this 

finding in a meta-analysis in this paper. 

The meta-analysis of the FTO-associated allele-wise effect on BMI using cross-

sectional data from the HUNT, MPP and MDC studies confirmed the strong effect of 

the FTO SNP on BMI (0.28 kg/m2 per risk allele, P= 2.0×10 26), with no significant 

heterogeneity in the effect sizes for the risk allele between different adult age groups. 

Interestingly, using longitudinal data from the HUNT and MPP studies, we found no 

differences in change of BMI over time according to rs9939609 risk alleles overall 

BMI=0.0 (-0.05, 0.05)), or in any individual age stratum. Hence, our results 

indicate that the additional weight gain as a result of the FTO risk variant seems to 

occur relatively early in life, most likely before adulthood, and the relative BMI 

difference remains stable thereafter. 
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4.3 PAPER III 

In this paper we applied a genetic fin-mapping approach by assessing 19 SNPs 

tagging a 138-kb region on chromosome 9p21 for association with type 2 diabetes, 

stroke, myocardial infarction, angina pectoris, and coronary heart disease. Through 

single point and haplotype analysis, we found evidence for only one common type 2 

diabetes risk haplotype (OR=1.20) in the region. The risk haplotype was completely 

tagged by two markers, rs10757282 and rs10811661, and we mapped the break-up of 

this haplotype and confined a maximal 11-kb candidate region located 117-128 kb 

upstream of the CDKN2B gene. There was no evidence of additional type 2 diabetes 

association signals elsewhere in the region.  

Furthermore, we confirmed the strong association between SNPs in the 60-kb 

cardiovascular disease block with angina pectoris and myocardial infarction (p>0.01). 

We observed two apparently independent and suggestive single SNP association 

signals for myocardial infarction in the 138-kb interval; one SNP located in a small 2-

kb region just upstream the previously implicated type 2 diabetes risk block 

(rs2065501, OR 1.18), and one other located in the 3’UTR of the CDKN2B gene ~59-

kb downstream of the well confirmed cardiovascular disease block (rs3217986, 

OR=0.70). The latter SNP was also significantly associated with angina. Notably, 

both of these two single SNP associations remained significant after conditioning 

upon the lead cardiovascular disease SNPs in the region

4.4 PAPER IV 

Paper IV describes an attempt to evaluate whether four novel SNPs reported to affect 

HbA1c levels in subjects with type 1 diabetes had an effect on glycemia in a type 2 

diabetes cohort. We observed allele frequencies similar to the frequencies reported in 

individuals with type 1 diabetes, however, in the individual SNP analysis, No 

significant associations with HbA1c or glucose levels were found for the SORCS1,

BNC2, GSC or WDR72 variants (all P-values >0.05). Although the observed effects 
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were non-significant and of much smaller magnitude than previously reported in type 

1 diabetes, the SORCS1 risk variant showed a direction consistent with increased 

HbA1c and glucose levels, with an observed effect of 0.11% and 0.13 mmol/l 

increase per risk allele for HbA1c and glucose, respectively. In contrast, the WDR72

risk variant showed a borderline association with reduced HbA1c levels, and direction 

consistent with decreased glucose levels.  

When we included all four variants in a combined genetic score model we observed 

no evidence for a relationship between increasing number of risk alleles and 

increasing HbA1c or glucose levels. Each additional risk allele demonstrated an 

increase in HbA1c of approximately 0.04%.
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5 DISCUSSION

5.1 REPLICATION OF GENOTYPE-PHENOTYPE ASSOCIATIONS 

(PAPER I) 

By performing the studies described in this thesis, reviewing the literature, and 

learning from the design of successful genetic association studies, four key features 

become clear: 

1) Because of the moderate risk conferred by many common genetic variants, it is 

crucial to design an adequately powered study with large sample sizes that are 

carefully controlled to minimize bias. 

2) Thorough phenotype characterization of study subjects is of importance to 

ensure appropriate categorical classifications and also to allow for statistical 

adjustment for confounding factors, especially related to environmental 

exposures.

3) SNP selection and detection is critical. There is a continuing attempt to catalog 

more SNPs across the genome and to explore new methods to assay SNP 

genotypes more densely.  

4) Even statistically convincing associations require validation by replication in 

independent cohorts, and in cohorts of other ethnicities.  

The latter will be more comprehensively discussed here since it reflects one of the 

fundaments for this thesis.  

The importance of replication. During the last 10-15 years, genetic association 

studies have increasingly gained in importance and become an essential approach for 

unraveling the genetic architecture of complex diseases. Although genetic association 

studies offer a potentially powerful approach to detect genetic variants that influence 

susceptibility to common disease, the failure to replicate or validate association 
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results are rather common and a serious concern [288, 289]. Why does replication 

often fail?

Several reasons have been proposed to explain the inconsistent findings from 

association studies. Bias may be caused by factors that lead to systematic deviations 

from the true effect of a genetic association. Biases may operate at the level of a 

single study, a collection of studies (e.g. meta-analysis), or a research field at large. 

They may arise in: a) the study design (selection or recruitment of participants, 

retrospective or prospective collection of DNA samples, and method of gathering 

information on phenotypes, exposures and covariates); b) DNA extraction method; c) 

production of genotype data; d) raw data management; e) data processing and data 

analysis; f) reporting of analyses; g) integration of studies through meta-analyses or f) 

integration of meta-analyses into field synopses [81, 290, 291].  

Two potential sources of bias are particularly recognized in genetic association 

analyses: population stratification and genotyping error. The magnitude of population 

stratification effects, reflecting different ancestral history that includes responses to 

natural selection, migration patterns, and founder events, remains a debated concern. 

They are expected to be small in well-designed studies, but the effect of population 

stratification on the results of association analyses are potentially more severe when 

small effects are studied in very large sample sets. Thus, a true association in one 

population is not always true in another population because of heterogeneity in 

genetic or environmental background. Biases such as population stratification can 

also be the reason for a false positive finding. On the contrary, non-replication could 

arise due to chance and to a false negative finding in the replication study. Hence, 

besides investigating possibly insufficient power and flaws or biases of the replication 

study, it is also recommended and important to investigate possible heterogeneity 

between the different samples studied. 

Why is replication and validation important? The first reason is more general for all 

association studies and is based in the study design itself. A direct establishment of a 

casual relationship from an observed association is not possible because experimental 
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designs like randomization cannot be applied to genetic associations [289]. To infer 

causality of a genetic factor to a phenotype from an observed association, one also 

needs to consider other classical criteria or conditions such as strength, consistency, 

specificity, temporality, biological gradient, plausibility, analogy and coherence [289, 

292]. To exemplify: The association should have a biological explanation (= 

plausibility), the result should agree with relationships between similar 

expositions/genotypes and diseases (= analogy), and the result should not conflict 

with existing knowledge (= coherence).  However, for genetic associations, only in 

some fortunate cases a biological explanation or analogy situation might be available. 

Thus, inferring causality from a genetic association really depends upon the current 

biological knowledge [289].  

Also from the statistical viewpoint the need for replication is a major criterion.  

Considering the apparently high proportion of false positive reports in the literature, 

very stringent criteria for interpreting association studies are needed [89]. The 

threshold of replication has been a matter of considerable debate in recent years [293-

295]. With genome-wide testing of hundreds of thousands of polymorphisms, many 

would argue that P-values at least < 10 7 are needed for establishing a strong 

candidacy for further replication and validation. More conventional thresholds of 

statistical significance like P <0.05 may still be used appropriately for the replication 

and validation phase of a proposed association, if the discovery data are excluded, the 

replication is limited to a specific polymorphism and a specific model of association 

is analyzed [290]. Nevertheless, a single, nominally significant association should be 

viewed as tentative until it has been independently replicated in other studies. 

 A third reason for why replication and validation is so important is more specific for 

genetic association studies. The history of genetic association studies has frequently 

shown that in the first study of an association, the effect is overestimated, and that 

there is just a modest correlation between effects in the first and the following studies 

on the same association [90, 91, 289, 293]. This disagreement between effects can be 

explained by either true difference between the populations studied or be a result of a 
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phenomenon known as the” winner’s curse” [296], an event based on the fact that the 

associations with the strongest effects are overestimated. Linked to regression to the 

mean [297], this phenomenon takes place primarily because within a small sample, a 

weak effect becomes significant only if the effect is overestimated.  Furthermore, the 

“winner’s curse” phenomenon is further strengthened by selective reporting of 

analyses, possibly biased interpretation of results and publication, and other forms of 

bias. As a consequence, the first report of an association is more likely to be a false 

positive and the effect overestimated, thus emphasizing the need for replication or 

validation of the association results. Replication and validation efforts of genetic 

association results are therefore highly emphasized by the scientific community [289]. 

In this project, the overall aim was to establish a research design to investigate 

genotype-phenotype relations between common genetic variants, type 2 diabetes and 

type 2 diabetes-related traits. The whole-genome association scans, in combination 

with large data sets has shown its promise and delivered a whole set of new 

susceptibility loci for type 2 diabetes [23]. To get a better estimate of the true effects 

conferred by the susceptibility loci identified in the first wave of GWAS, we sought 

replication and validation of the genetic variants using a large population-based 

cohort – HUNT2. Paper I describes one of the first replication studies of the new type 

2 diabetes susceptibility variants. The paper provided some important insights, as it 

confirmed most, but not all, previously identified loci. Thus, our results show that 

GWAS findings can be generalized to a completely unselected population such as the 

Norwegian HUNT study (Figure 8). We confirmed the diabetes association at the 

SLC30A8 locus and the rs10811661 SNP located on chromosome 9p21, 125 kb from 

the nearest gene (CDKN2B). Our data were less compelling with regard to the SNPs 

tested near IGF2BP2, HHEX and CDKAL1. However, there was a trend in the same 

direction and of the same magnitude as in previous reports [120-124]. These genetic 

variants have been confirmed to be associated with type 2 diabetes, although in some 

cases with modest evidence in the initial stages and strengthened evidence only in 

combined analyses [121]. Our findings probably reflect the possibility that the 

associations are stronger in certain subgroups and that very large sample sizes are 
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needed to formally replicate the IGF2BP2, HHEX and CDKAL1 data. It should also 

be emphasized that the risk variants had not been fine-mapped and that even subtle 

differences between different populations might affect linkage disequilibrium 

between test and disease variants. The DGI Study defined two loci, FLJ39370 and 

PKN2, as interesting for follow-up studies [120], whereas the WTCCC/UKT2D and 

FUSION studies showed conflicting results [121, 124]. We were not able to detect 

any association between type 2 diabetes and FLJ39370 or PKN2 candidate SNPs in 

the Norwegian sample, which is supposed to be genetically closely related to other 

Scandinavian populations. Hence, these two SNPs probably represent false positive 

results in the DGI whole-genome scan.  

Figure 8 Association results for confirmed type 2 diabetes susceptibility loci based on GWA 

results from the DGI [120] , WTCCC/UKT2D [124], deCODE Genetics [123], French 

samples [122] and the DGI-WTCCC-FUSION combined analysis [120] compared to results 

from our study in HUNT2 (Paper I) . The size effects that we observed are close to the 

estimates from the previous studies, indicating that the design of the first round of the whole-

genome scans seems to pinpoint risk-alleles that show generality, at least in other Northern 

European populations.  
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We also validated the HUNT samples by genotyping known type 2 diabetes risk 

variants in TCF7L2, KCNJ11 and PPARG. However, as previously mentioned, we 

had to exclude these three SNPs from further analysis and publication due to fact that 

we did not attain analysis rights from the HUNT Research Center publication 

committee for these three genes in the cohort. We found a significant association with 

type 2 diabetes for the SNPs rs7903146 and rs12255372 in TCF7L2 and rs5219 in 

KCNJ11, similar to recent data reported by Thorsby et al. [214], and with an OR 

similar to other studies [107, 109], indicating that the HUNT2 population contains a 

representative diabetes cohort and that our genotyping strategy was robust.  

The HUNT2 study includes a well-characterized population from a clearly defined 

region of Norway where participants were recruited without regard to disease status 

and where the controls were drawn from the same population. Thus, there was no 

clear selection bias that could arise when conducting genetic studies [209]. A recent 

study by Almgren and colleagues [105] demonstrated that the strongest heritability 

for type 2 diabetes was seen in patients with age at onset 35-60 years (h2 = 0.69). 

Inclusion of patients with onset up to 75 years made the heritability estimate drop to 

0.31.  Thus, to detect stronger genetic effects in type 2 diabetes, it seems reasonable 

to restrict inclusion of patients to those with age at onset 35-60 years. Of the total 

diabetes population in HUNT2, we had data from 94%, comprising 1644 type 2 

diabetes cases. The mean age at diagnosis for these patients were 58.4 (± 12.1) years. 

Thus, we believe that our study contained a proper type 2 diabetes cohort for 

detection of the most important genetic effects.   

Although we did not have the opportunity to formally test for possible population 

sub-structures with the limited numbers of markers genotyped, we believe that the 

type 2 diabetes cohort of HUNT2 is more, rather than less homogeneous than other 

type 2 diabetes sample collections. Furthermore, the allele frequencies and the size 

effects are similar to previous publications, arguing against problems with population 

stratification. However, although appropriate and detailed sampling of cases and 

controls may diminish problems of population stratification, even in well-designed 



71

studies modest amounts of population stratification can be detected [298]. The effect 

of population stratification on the results of association analyses are, however, 

potentially more severe when small effects are studied in very large sample sets 

[299].

As a replication study, the sample size of ~3,500 patients and control participants was 

only powered to detect relatively small ORs (ranging from 1.1 – 1.4) at a nominal 

significance. Our study had 60-90% power for detection of the different OR estimates 

for the susceptibility variants reported in the first GWA wave on type 2 diabetes. We 

argue that it is not necessary to correct for multiple comparisons when using diabetes 

as a trait, since this could be considered a pure replication study. The NCI-NHGRI 

Working Group on Replication in Association Studies has set up precise criteria for 

establishing a positive replication [293]: a) the sample size (N) should be sufficient; 

b) the phenotype should be similar; c) the replication population should be similar – if 

the confirmation sample stems from a population which is different than that from 

which the original sample was drawn (e.g. ethnicity, phenotype, time etc), validation 

of the genetic association is attempted; d) the phenotype should be more or less 

similar, e) the effect should be similar in magnitude and in same direction; f) the 

replication marker(s) should be the same or in very high LD, selected with a strong 

rationale; g) the genetic model should be the same; h) P-values of combined analysis 

should be smaller than the initial P-value; and finally, i) the report of replication 

should be at the same level of detail as for the initial report.  

In view of all of the above-mentioned criteria, Paper I represents a positive replication 

and validation of the type 2 diabetes susceptibility variants reported in the first wave 

of GWAS on type 2 diabetes. However, for additional phenotypic traits, the results 

were more explorative and further studies are needed to address whether our observed 

associations with waist-to-hip ratio and triacylglycerol levels represent true effects or 

spurious associations. 

As part of the WTCCC study, Frayling et al. [226] reported that SNPs in the first 

intron of the FTO gene were highly associated with type 2 diabetes and BMI, 
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suggesting that the FTO locus exerts its primary effect on adiposity and that it 

subsequently has an impact on type 2 diabetes [226]. In Paper I, we replicated the 

association for the same FTO variant (rs9939609), both with regard to BMI and type 

2 diabetes. Interestingly, the association between rs9939609 and type 2 diabetes and 

BMI remained significant after adjustment for BMI and diabetes status, respectively. 

It is also noteworthy that rs9939609 demonstrated a strong association with 

triacylglycerol levels, which was not abolished after correcting for diabetes status. 

Thus, our data suggested that the relation between FTO and BMI/diabetes is more 

complex than initially thought. These findings became the fundament of our next 

research questions (Paper II).
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5.2 LARGE-SCALE META-ANALYSES (PAPER II)

Genetic association studies generally focus on single phenotypes, but associated 

variants may actually influence multiple traits. In some cases, the phenotypes are 

correlated, such as the association of several obesity susceptibility loci with type 2 

diabetes, obesity and other obesity-related phenotypes [300]. As mentioned in section 

1.3.3, the obesity-associated risk variants of FTO have shown association with 

obesity-related conditions and diseases such as the metabolic syndrome, PCOS, and 

type 2 diabetes [227, 268, 269]. In most of the studies reported, these effects appear 

to be secondary to weight increase since the associations are attenuated or completely 

abolished after adjusting for BMI [227].  

However, based on our findings in Paper I, we raised the following questions: Could 

variations in FTO alter metabolic traits (in particular type 2 diabetes, HDL and 

triglycerides levels) independent of its effect on BMI, at least in some other 

populations? We also noted that the FTO-associated allele-wise increase in BMI 

remained surprisingly constant across all adult age-groups in our cross-sectional 

sample from HUNT2. Our longitudinal data on weight-gain between 1985 (HUNT1) 

and 1995 (HUNT2) showed that there were no detectable differences in weight-gain 

between carriers with high versus low risk genotypes. Hence, we questioned whether 

the FTO-associated BMI difference is established relatively early in life and 

thereafter stable across adulthood. To seek replication and validation of our initial 

results from HUNT (Paper I), the findings needed to be tested in independent and 

large patient materials, preferentially of Scandinavian origin and by using both cross-

sectional and longitudinal perspectives. 

 We therefore initiated a Nordic collaborative project with two Swedish research 

groups having access to both extensive clinical and genetic data from the MPP and 

MDC cohorts (for further details see sections 3.1.2 and 3.1.3). Initially, we were 

interested in performing a pooled analysis of all three datasets using individual level 

data to properly account for covariates et cetera. Unfortunately, we could not get 
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access to individual data from the MPP and MDC cohorts. Certainly, access to 

genetic data across studies is an important aspect of identifying new loci or to validate 

already reported genetic associations. However, even sharing summary-level data, 

such as allele frequencies, inherently carries some degree of privacy risk to study 

participants [301]. As an alternative, we therefore decided to use a meta-analysis 

approach by performing identical analyses in all three cohorts using exactly the same 

covariates and methods, followed by meta-analysis of the results. 

Meta-analysis across multiple genetic association studies with combined cohort sizes 

of tens of thousands of individuals often uncovers many more associated loci than the 

original individual studies or delivers more confident estimates for already reported 

associations. Hence, in order to circumvent problems with lack of statistical power, 

meta-analysis has been increasingly applied in genetic epidemiology [90]. Even 

though larger sample sizes theoretically deliver more confident estimates of 

association there are in general several pitfalls related to meta-analysis such as 

publication biases [302], heterogeneity between studies because of overestimation of 

effect sizes in small studies of low quality [303], and heterogeneity between studies 

introduced due to confounding by ethnic origin, age, gender, or other measured or 

unmeasured variables. Therefore, meta-analysis can be a useful tool in dissecting the 

genetics of complex diseases and traits, provided its methods are properly applied and 

interpreted [304]. 

Paper II is one of the largest studies to date investigating the effect of FTO sequence 

variants on type 2 diabetes and BMI across the whole range of adult ages and in a 

longitudinal perspective. Through a meta-analysis comprising over 41,000 

Scandinavian individuals, we demonstrate that a common variant of FTO does not 

mediate type 2 diabetes risk entirely through its influence on BMI. In an attempt to 

capture the complex relationship between FTO, BMI, and type 2 diabetes during the 

life course, we also performed an analysis on incident type 2 diabetes in over 20,000 

non-diabetic individuals followed up for over 10 years. Over 3,000 developed type 2 

diabetes during follow-up, and the FTO variant was strongly associated with the 
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incident risk of type 2 diabetes. The results remained similar when we controlled for 

BMI at baseline (before diabetes was diagnosed), BMI, or waist circumference 

and/or waist-to-hip ratio as covariates in the regression analyses. None of the 

covariates alone or in combination with BMI changed our results notably. FTO still 

conferred an increased risk for type 2 diabetes.

Our data therefore contrast previous results reported in most of the populations 

studied to date, including Europeans [121, 225-227]. Consistent with our finding, 

Sanghera et al., in a material of North Indian ethnicity, have reported a significant 

association between type 2 diabetes and FTO gene variants that was unaffected by 

controlling for BMI [305]. Similarly, a study in South Asian Indians also found a 

strong association of FTO variants with type 2 diabetes, which did not seem to be 

mediated entirely through BMI [306]. The finding that rs9939609 is associated with 

type 2 diabetes in Asian populations after accounting for BMI and waist 

circumference has recently been confirmed by two different meta-analysis; one meta-

analysis of four studies comprising 8,091 South Asian individuals [307] and in a 

meta-analysis of 32 populations including 96,551 East and South Asians [308]. 

Several of the Asian studies suggested that the varying results between Europeans and 

Asians could be explained by ethnic differences in the way that the FTO gene 

influences susceptibility to diabetes. Scandinavians are considered to display a low 

level of historical and genetically heterogeneity [309], thus, one could speculate that 

variation in other environmental factors that contribute to the development of type 2 

diabetes could be the reason for the apparently disparate results between 

Scandinavian and other European populations. Arguing against that this is a spurious 

finding in whites, however, similar observations have been recorded in white 

American type 2 diabetes cases in the ARIC study [310]; in 283 subjects with and 

2,601 subjects without type 2 diabetes mellitus in the French Multinational 

MONItoring of Trends and Determinants in CArdiovascular Disease (MONICA) 

Study [311] and in a partially overlapping sample of LADA patients in the HUNT2 

population [312]. 
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A single BMI measurement may not fully capture the effect of the FTO gene on total 

fat mass. One can also probably expect heterogeneity between cohorts as BMI has 

been steadily increasing in most populations during the last decades and therefore will 

vary according to when the cohort was characterized. In the current study, the mean 

BMI in MPP, which started in the 70ies, was lower than in MDC. Considering that a 

single BMI estimate may not be an accurate measure of obesity in our populations, 

we applied longitudinal measures of BMI together with waist circumference and/or 

waist-to-hip ratio as covariates in the regression analyses. We also allowed for a more 

flexible effect of BMI using second and third order polynomial functions of BMI as 

covariates. None of the covariates alone or in combination with BMI changed our 

results notably. Other reasons for the diverging results could be differences in 

selection or recruitment of cases and control subjects between studies, differences in 

undetected key effects at early age, or population-specific environmental factors that 

may interact with the way FTO works to influence the risk of type 2 diabetes.

The HUNT2, MDC and MPP samples have previously been validated by genotyping 

of known type diabetes risk variants indicating that the cohorts contain a 

representative diabetes cohort and that the genotyping strategies are robust (see Paper 

I and [188]). In the MDC cohort, only data on FTO has been published in the whole 

material. However, we would like to inform that there is a manuscript in preparation 

where the rs7903146 in TCF7L2 was genotyped and analyzed for risk of incident type 

2 diabetes. Each additional risk allele of rs7903146 was associated with 36 % (95 % 

CI: 25-47 %, p=4 × 10-19) increased risk of diabetes which is comparable to the risk 

estimates observed in other studies. One possible limitation of our study is that 

diabetes diagnosis was self-reported in the HUNT and MDC cohorts, while 

confirmed from patient records or based upon a fasting plasma glucose concentration 

in the MPP cohort. On the other hand, self-reported information has been shown to be 

a reliable source of information for epidemiological studies focusing on diabetes 

mellitus [313]. Moreover, the effect of the FTO variant on type 2 diabetes risk was 

stronger in the HUNT cohort than in the MPP and, in particular, the MDC cohorts. It 

is therefore of relevancy to point out that if data are combined – in a multi-stage 
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design, a sequential design, or in meta-analyses – a positive result can always be 

driven by the large effect from the first study only, even if it is unbiased. 

How sequence variation in FTO could possibly affect type 2 diabetes risk in other 

forms than through increased adiposity, remains elusive. No studies so far have 

reported evidence for an association between the FTO SNPs and glucose tolerance or 

insulin sensitivity independent of BMI [152, 200, 227, 314]. Studies have suggested a 

link between SNPs in FTO and inflammation [315, 316] and altered lipid profiles 

[268], which both are factors that are linked to increased risk for type 2 diabetes. The 

link between the FTO variant and altered lipid levels found in Paper I could however 

not be confirmed in a meta-analysis reported in Paper II, indicating that these 

associations might be a spurious finding. Non-fasting measurements for the HUNT2 

individuals and/or a population-based sample could be two other explanations why 

we observe associations with lipids in HUNT2 and not in the HUNT2-MPP-MDC 

combined analysis. Furthermore, given its expression pattern in relevant brain regions 

[260], it has been argued that the FTO gene could play a role in circadian rhythms 

[254]. Abnormal circadian rhythms have been shown to affect the risk of type 2 

diabetes and other metabolic diseases [317]. 

A different interesting aspect is that the rs9939609 SNP may affect the primary allelic 

FTO transcript levels [318], and correlations have been observed in peripheral tissues 

between BMI of tissue donors and FTO mRNA expression levels [319]. It is also 

noteworthy that three recent FTO expression studies suggest a BMI-independent role 

in type 2 diabetes. One study found no association between FTO expression and BMI 

in islet cells [320]. Another study reported an inverse correlation between Fto mRNA 

and glucose in mice after correction for body weight [321]. Finally, a third study 

found an increase of FTO mRNA and protein levels in muscle from type 2 diabetic 

patients compared with healthy lean control subjects or BMI-matched obese non-

diabetic individuals [322]. The latter also suggests that increased FTO expression in 

type 2 diabetic patients contributes to reduced mitochondrial oxidative capacities, 

lipid accumulation, and oxidative stress, all associated with type 2 diabetes. 
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Furthermore, it has been suggested that FTO may play a role in epigenetic regulation 

taking into consideration that FTO have been shown to function as a demethylation 

enzyme [256, 323] combined with the suggestion of FTO as a transcriptional co-

activator that enhances the transactivation potential of the CCAAT/enhancer binding 

proteins from unmethylated as well as methylation-inhibited promoters [324, 325]. It 

is also possible that the rs9939609 SNP (or a SNP in strong LD) affects another gene 

in the region, which has the potential to alter type 2 diabetes risk independently of 

BMI [326]. 

Paper II supports the hypothesis that FTO is a type 2 diabetes susceptibility gene; 

however, more evidence and further studies are warranted to get a more complete 

picture of the effect of the FTO gene variation on adiposity and glucose homeostasis. 

Some directions have been suggested [324]: a) Large-scale type 2 diabetes case-

control studies matched at the individual level for age, gender and adiposity measures 

such as BMI, body fat content and body adiposity index; b) Comparison of incident 

type 2 diabetes cases to nested controls in large-sized longitudinal cohorts in which 

careful collection of obesity and type 2 diabetes-related deep phenotypes have been 

performed. It is important to perform such studies in individuals of different 

ethnicities due to the fact that the relationship between adiposity and risk for type 2 

diabetes varies according to an individual’s ethnic background [324, 327] 

In Paper II, we confirmed the strong and well-established association between the 

rs9939609 FTO SNP and BMI. We also found significant cross-sectional association 

between FTO and other anthropometric measures such as waist-to-hip ratio and waist 

and hip circumference. Moreover, both in our initial analysis of the HUNT population 

and in the meta-analysis, we observed effect sizes and allele frequencies of 

magnitudes consistent with previous studies conducted in Europeans [121, 225, 226, 

228]. Altogether, this strongly confirms the role of FTO as a genetic factor 

influencing which individuals are at risk of becoming obese.  

The plethora of studies conducted on FTO the last years have shown that the 

association between FTO sequence variants and BMI is not established at birth, 
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because birth weight and ponderal index (kg/m3) at birth are not affected by FTO 

variants [226, 328].  The association seems to evolve gradually and becomes 

detectable before the age of seven [226, 329, 330]. It is not clear how FTO genotype 

affects BMI after adolescence and develops during the life course [331-338], although 

a recent longitudinal Finnish study suggested that the effect may continue into 

adulthood since they found an association between rs9939609 and BMI at age 31, 

which could not be explained by the BMI at age 14 [339]. In the initial analyses 

performed in the HUNT2 population we observed that the relative difference in mean 

BMI among individuals with different rs9939609 genotypes remained more or less 

stable across all adult ages. The non-significant SNP–age interactions observed for all 

the different obesity-related traits examined in the HUNT2 population further 

strengthened that change in those traits with age were not dependent on the 

individual’s FTO rs9939609 genotype. In accordance with the observations from the 

HUNT2 cohort, our meta-analysis revealed no heterogeneity across the effect-sizes 

for the FTO risk allele between the different age groups. 

On its own, the results from the cross-sectional analyses of Paper II were informative. 

However, the evidence of change across age could have been inferred from 

differences between the age groups. The cross-sectional design could also have been 

affected by the cohort effect where age differences show trends particular to a 

specific group and not true developmental changes. In this study, we had the unique 

opportunity to subsequently carry out investigations using longitudinal data analyzing 

change of BMI over time. We found no evidence that the BMI difference between 

genotypes increased over time as there was no evidence of heterogeneity across the 

different adult age groups. In accordance with the previous studies conducted by Hunt 

et al. [331] and Wangensteen et al [338], our results suggest that genetic susceptibility 

to weight gain in terms of higher BMI induced by the FTO SNP rs9939609 do not 

increase with age in adults. Hence, because our study primarily comprised individuals 

that were above 30 years of age (98.7%), current evidence suggest that the FTO

variant increases BMI in the first 2 to 3 decades of life, and from then on the BMI 

difference between the genotypes becomes more or less constant throughout life. 
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In contrast, a recent report from the Genetic Analysis Workshop 16 managing data of 

7,130 Caucasian individuals from the Framingham Heart Study showed that genetic 

susceptibility to weight gain induced by the FTO SNP rs9939609 increased with age 

[334]. The same pattern was observed in a small study comprising adult Filipino 

women, where the minor allele of rs9939609 was associated with longitudinal BMI, 

indicating a relatively constant genotype effect over a period of 22 years [335]. In 

contrast, Jacobsen et al. [332] and Qi et al. [336] observed an opposite pattern in 

which the association between the FTO SNP and the risk of obesity tended to decline 

in men at older age. The association was constant across different age groups in 

women [336]. Although our cross-sectional analyses in the HUNT population could 

indicate a smaller effect of FTO on BMI for individuals between 60 and 80 years, the 

meta-analysis detected no significant support for a decrease in the associations 

between rs9939609 and BMI at older age. Furthermore, we detected no significant 

differences between men and women when analyzed separately.  

In a recent longitudinal study of Danish men, the FTO risk allele was associated with 

fatness during early childhood, maintained a constant effect on BMI during later 

childhood and facilitated a further increase in BMI during adulthood [333]. In our 

study, we observed no additional weight gain in adulthood attributable to the FTO

genotype. In other words, in the Scandinavian population FTO seems to induce 

weight gain for a period in early life, and thereafter no further weight gain or loss 

later in life. 

Our study included both males and females, and height and weight were measured in 

all three cohorts. Participants from both the HUNT and MDC cohorts were part of an 

all population-inclusive survey with high attendance, which limits possible selection 

biases. Even though the participation rate in HUNT generally was fairly high 

compared to most other studies in Norway and abroad [340, 341], there is always a 

potential selection problem. In HUNT2, data from young age groups, especially in 

men, should be analyzed with some caution [282]. However, a comprehensive non-

participation study after HUNT1 could not find evidence of selection in health 
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measures in young age groups [342]. Old non-participants, however, had significantly 

more health problems than participants of the same age [282]. 

Recent models of Fto deficiency in mice support the idea that alleles associated with 

risk of obesity will cause up- or dysregulation of FTO and that inactivation of FTO

protect against obesity. Furthermore, mice with loss of Fto function appear to have 

reduced fat mass, mainly due to increased energy expenditure and not decreased 

energy intake [316, 343]. Interestingly, studies in humans have demonstrated an 

opposite pattern, indicating a relationship between the FTO risk alleles and energy 

consumption, but not energy expenditure [262]. More recently, it has also been 

shown that high-fat diets and low physical activity levels may interact and modify the 

susceptibility to obesity by the FTO variants [263-265, 344]. This could be one of the 

reasons for the discordant results regarding the effect of these variants on BMI in a 

longitudinal perspective, since type of diets and level of physical activity may have 

varied between the populations studied and the time the data were collected. 
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5.3 GENETIC FINE-MAPPING FOR IDENTIFICATION OF 

FURTHER PHENOTYPIC AND GENETIC COMPLEXITY 

(PAPER III) 

After the identification of a disease-associated region by GWAS, comprehensive 

studies of sequence variation in the region are essential to identify the full set of 

variants that might explain the association signal. This is due to the fact that a GWAS 

is neither a candidate-gene approach nor directly intended to detect causative variants. 

Rather, GWAS uses SNPs as naturally occurring genetic markers to map genomic risk 

alleles for the trait in question. Since GWAS arrays do not capture DNA variation in 

each region completely, it has been assumed that causal variants partially captured by 

LD (e.g. due to location near recombination hotspots or low MAF) might show 

stronger association with the phenotype than the tag SNPs used in GWAS. HapMap 

and GWAS arrays contain primarily variants with MAF >5%. First-generation GWAS 

studies have therefore generally not tested variants of quite low frequency that might 

have larger effects on disease risk. In contrast to exact replication, as performed in 

Paper I, local replication refers to the analysis of the original marker(s) detected in the 

initial report plus other markers in the same region that were not part of the original 

study. This fine-mapping approach plays an important role in the subsequent steps of 

GWA studies to assemble a more complete catalog of variation present in an 

associated region and to test it for association with the phenotype of interest when it 

is assumed that the associated marker is not the causal variant and possibly not even 

the variant that best tags it [345]. 

Non-coding variants at human chromosome 9p21 near CDKN2A and CDKN2B have 

repeatedly been associated with type 2 diabetes [120, 121, 124, 172], myocardial 

infarction [144, 145, 346], aneurysm [147], stroke [148] and at least five types of 

cancers [347-352]. Hence, this region appears as one of the most interesting regions 

to emerge from the first-generation of GWAS. In Paper I we demonstrated the 

significance of the SNP rs10811661 located close the CDKN2B gene with increased 

odds of having type 2 diabetes in the HUNT2 population. The purpose of Paper III 
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was to explore this finding by performing a fine-map approach. We attempted to 

dissect the genetic complexity of a 138-kb interval on Chr 9p21 with respect to type 2 

diabetes and cardiovascular disease, and subsequently to investigate the relation 

between the association signals. 

By analyzing 19 SNPs, Paper III to some extent highlights the genetic complexity of 

the chromosome 9p21 region. The significant association between marker rs10811661 

and type 2 diabetes, was in agreement with our previous results obtained for this 

marker in more or less identical cases and controls from the HUNT2 population 

(Paper I). However, in Paper III, we revealed a haplotype association tagged by 

rs10811661 and rs10757282 that was more strongly associated with type 2 diabetes 

than either SNP alone. This finding suggests that these SNPs might tag a rarer risk 

haplotype harboring a causative allele or that the candidate region harbors several 

causal polymorphisms.  

We found no evidence of additional type 2 diabetes association signals elsewhere in 

the 9p21 region as suggested by some [124], but not all first-generation GWASs on 

type 2 diabetes [120, 121]. The status of rs564398 as a type 2 diabetes susceptibility 

variant appears to be largely driven by the WTCCC scan and UK data since several 

other studies and replication efforts, including Paper III, have turned out negative for 

this variant [120, 150]. A meta-analysis conducted on type 2 diabetes and 

polymorphisms on chromosome 9p21 demonstrated an overall OR of only 1.08 for 

the T allele of the SNP rs564398 [353].  Thus, the failure to replicate rs564398 as a 

type 2 diabetes susceptibility variant in HUNT2 may possibly be due to lack in 

statistical power to detect association or to the fact that a different population was 

studied.

The risk variants identified in the 9p21 interval by GWASs are in general located in 

non-coding regions, suggesting that their effects probably are mediated by influences 

on gene expression of nearby genes in cis, since most reported risk variants do not 

appear in mature transcripts, and there are no known micro-RNAs mapping to this 

region [168]. On the other hand, if numerous cis-acting effects are present at a locus, 
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determination of a disease association by fine-mapping may not be possible. 

Investigation of gene expression rather than disease phenotype increases the power to 

map cis-acting effects [168], and should perhaps therefore be considered as an better 

fine-map approach for this region. Strong LD, however, might limit the ability to 

separate the potential individual effects that SNPs could have on expression. Thus, 

such a fine-mapping approach would be most appropriate to perform in African 

populations, since Africans have less LD in this region compared to Caucasians [167, 

168, 354]. 

In Paper III, we further confirmed the associations for SNPs in the 9p21 region with 

MI, angina pectoris and any coronary heart disease, among which rs1333040 and 

rs10757278 demonstrated the strongest associations. The associations were driven by 

those subjects having both MI and angina, probably validating the underlying 

diagnosis of coronary heart disease, but this could also be a marker of the severity of 

the disease. Expression studies of the INK4/ARF locus (p15INK4b, p16INK4a, ARF and 

CDKN2BAS) have highlighted the rs10757278 SNP as a potential casual variant for 

the association with coronary artery disease [169]. Moreover, this marker is further 

mapped to one of 33 newly identified enhancers in the 9p21 interval, in which the 

risk variant disrupts a transcription factor binding site, thus having functional 

relevance for an atherosclerosis associated pathway in human endothelial cells [170].  

We performed association analyses conditioning on the lead SNPs in the region and 

observed two independently and potential single SNP association signals for MI, 

which are located close to, but not in LD with the former and well-confirmed 

cardiovascular disease-associated region. One of these signals, the rs3217986 SNP, is 

located in the 3’ UTR of the CDKN2B gene as well as in intron 1 of the non-protein 

coding CDKN2B antisense RNA, CDKN2BAS. It is therefore tempting to hypothesize 

that the rs3217986 risk variant exerts its effect on MI susceptibility by influencing 

expression of one or both of these two genes. At present, there are no reports on 

whether the rs3217986 risk variant is correlated with expression of CDKN2B and/or 

CDKN2BAS, thus this hypothesis needs further examination. However, we have 
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realized that more in-depth haplotype analyses, as performed for type 2 diabetes, 

should also have been performed for the multiple cardiovascular outcomes of Paper 

III. It is important to investigate whether there are haplotypes that are more 

significantly associated with cardiovascular disease than the single top GWA SNPs 

rs1333040 and rs10757278, since the aim of this study was to explore and find better 

tags of the causal variant and not only to test the association of the region. Although 

rs10757278 is suggested to be casual for some diseases, it is still not certain for all 

the cardiovascular diseases. 

We found no association between SNPs of the 9p21 region and stroke, as suggested 

by a previous GWASs [148]. One could anticipate that SNPs in this interval associate 

with ischemic stroke, but not hemorrhagic stroke, since studies have indicated that 

sequence variation on chromosome 9p21 influences atherosclerosis development and 

progression [164]. Participants of the HUNT2 survey were identified having stroke 

through a self-administered questionnaire, hence details regarding type of stroke 

(hemorrhagic versus ischemic), or subtypes (atherothrombotic versus cardioembolic) 

were not available. This could be one explanation why we failed to confirm the 

associations between variants in the region and stroke. Interestingly, in a sub-analysis 

some SNPs demonstrated tentative associations with stroke in subjects with type 2 

diabetes, but not in those without type 2 diabetes. In support of this, a significant 

interaction has been found between poor glycemic control and a variant within the 

9p21 region on the risk of coronary heart disease [166]. 

Despite their close proximity, there seems to be no apparent overlap between the 

CVD and type 2 diabetes risk regions. Theories with reference to the disease 

mechanism mediated by the causative risk variants of the 9p21 interval have 

increased in numbers during the last years. However, since most of them still remain 

exploratory, the exact nature of the causative variants and the target proteins or genes 

is still somewhat elusive. The disease mechanism and the causative risk variants may 

possibly differ between CVD and type 2 diabetes.



86

Paper III has several limitations. Data on MI, angina, stroke and diabetes were self-

reported, not medically confirmed. There are, however, studies that support the 

agreement between medical records and self-reported MI, stroke and diabetes [313, 

355, 356]. In the present manuscript, we estimated the odds ratios based on additive 

effects of allele dosage for all SNPs. It would have been relevant to test whether the 

results remained similar under a recessive or dominant model. The P-values presented 

are point-wise estimates of an individual SNPs significance and based on 1000 

permutations implemented in the regression models. While certain types of 

permutation procedures can correct for multiple comparisons, they do not do so by 

definition. To properly account for multiple comparisons in the current study, the 

observed test statistic should have been compared to the permuted statistics of all 

SNPs in each replicate. Thus, our results are not corrected for multiple comparisons. 

For our detailed analysis of the 9p21 region, we selected 18 SNPs tagging a 138 kb 

interval using the Haploview implementation of the Tagger algorithm [286] applying 

the following criteria: MAF of >5% and pairwise r2 >0.80, according to HapMap 

CEU LD data. In addition, we added two previously GWAS-identified type 2 diabetes 

susceptibility variants (rs564398 and rs10811661) and three confirmed CVD 

susceptibility variants (rs1333040, rs10757278 and rs1333049) to the SNP set, 

making a total of 23 SNPs. Of these, 19 SNPs were included in the subsequent 

analyses since four SNPs did not pass quality control criteria. Thus, our tagging of the 

138 kb region is not best possible given the abovementioned criteria, owing to the fact 

that we did not include other SNPs to replace the four excluded SNPs. Furthermore, 

for fine-mapping purposes, investigators have been more relaxed about MAF >5%, 

given our knowledge of the importance of rarer variants.  

There are several approaches that would have been better suited for a more 

comprehensively assessment of the genetic variation in the region such as imputation 

of variants directly from targeted sequencing, from a genotyped reference panel 

derived from sequencing or from 1000 Genomes Project low-coverage data. A recent 

study conducted by Shea and colleagues compared different strategies to fine-map the 
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association of common SNPs at chromosome 9p21 with type 2 diabetes and 

myocardial infarction [345]. By applying the more sophisticated fine-mapping 

approaches listed above, they did not find evidence for stronger association at 

chromosome 9p21 to SNPs in moderate LD with the initial tag SNPs. Moreover, they 

did not observe lower-frequency variants with effect sizes that could individually 

explain the common variant associations, but they did identify additional common 

variants in LD with the SNPs with the strongest GWAS signals that could underlie 

each association. These additional common variants are important to identify, since a 

complete list of all variants that might explain the association signals in the region 

will be attractive for subsequent functional studies aiming to understand how non-

coding variants at 9p21 can lead to such varied and clinically relevant phenotypic 

associations [345]. 
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5.4 DISCOVERY OF DISEASE RISK GENES BY DEFINING THE 

GENETIC BACKGROUND OF INTERMEDIARY PHENOTYPES 

(PAPER IV) 

Definition and accuracy of the phenotype is one of the key issues in designing any 

genetic study for which the goal is to detect genetic susceptibility variants. To 

increase the chance of finding relevant susceptibility genes for complex diseases, one 

may have to look more narrowly and start dissecting them according to their 

pathophysiology or clinical characteristics. Most multifactorial diseases can be 

considered as cases, a binary definition versus controls. Some of them can also be 

characterized by or decomposed into descriptive quantitative traits, frequently called 

partial phenotypes or intermediate phenotypes. Most physiological systems have a 

hierarchical component to them, leading from the gene to its product, to intermediate 

phenotypes of greater complexity, to the ultimate phenotypes used to diagnose 

disease (Figure 9).  

Especially obesity and type 2 diabetes can by far be approached through the 

quantification of descriptive traits, which could further be used as quantitative traits 

for genetic analysis. In contrast to genome-wide searches, genetic analysis of an 

intermediate or low-level phenotype is eased by greater proximity to the genetic 

variant, thus reducing the effects of other factors surrounding and possibly 

influencing the effect of individual genes [357].  

Studying intermediate or low-level phenotypes can also bridge the gap between the 

two strategies of modern complex disease research: the “top-down” approach, linking 

complex phenotypes with genotypes, and the “bottom-up” approach, which starts 

with the gene of interest and then works up to the complex phenotype [358]. GWAS 

are basically a top-down approach, whereas most candidate gene studies are typical of 

the bottom-up approach. Trying to relate common genetic variants to intermediate 

phenotypes is an attempt to make sense of what is going on between the top and the 

bottom. Studying intermediate phenotypes may also help to get by both epistatic 
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interaction between genes and pleiotropy [357]. This approach has now been widely 

used in genome scans for new susceptibility loci for type 2 diabetes and obesity. It is 

important to bear in mind that the intermediate phenotype can be implicated in both 

the causal mechanisms and be a result of the disease status. Nevertheless, it is also 

important that the preferred intermediate phenotype relates to the ultimate phenotype 

of interest. 

Figure  9 The effect of common genetic variants on different hierarchical components of a 

physiological system. Yellow to red gradients in the eight normal distributions represent the 

effect of each of the different red and blue common unlinked genetic variants at the different 

ends of the spectrum of the phenotypes. The power to investigate the genetic variants 

associated with the phenotypes decreases as one goes from cellular phenotypes to the 

ultimate phenotypes used to diagnose disease. Redrawn and modified from [359].

Poor glucose control (expressed as high HbA1c) is a well-known risk factor for long-

term diabetic complications and has for a long time been recognized as an interesting 

intermediate phenotype in relation to diabetes. There is variability in glycemic control 

both between and within individuals, and HbA1c have a heritability estimate that 

makes it as a phenotype suited for genetic analysis [236, 237]. Initiatives dissecting
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the genetic influences of HbA1c levels will be important not only to better understand 

the genetic and biologic determinants of HbA1c variation in the general population, 

but also to inform the healthcare system to focus diabetes diagnosis and care more 

centrally on HbA1c [242]. 

Linkage studies of measures of glycemia (e.g. fasting glucose or HbA1c), 

predominantly in non-diabetic individuals, did not lead to the identification of novel 

genes. More recently, several GWA scans on fasting glucose in both diabetic and 

non-diabetic subjects have shown that genetic studies of glycemic traits can identify 

type 2 diabetes risk loci, as well as loci containing gene variants that are associated 

with a modest elevation in glucose levels [179-182, 238-240]. Several loci have also 

reached evidence for association with HbA1c in diabetic individuals, as well as in 

non-diabetic subjects [242-245]. 

To identify loci for glycemic control in persons with type 1 diabetes, Paterson and 

colleagues [241] analyzed longitudinal repeated measures of HbA1c from the 

Diabetes Control and Complications Trial (DCCT). They performed a GWAS using 

the mean of quarterly HbA1c values measured over 6.5 years, separately in the 

conventional (n=667) and intensive (n=637) treatment groups of the DCCT. They 

identified a major locus for HbA1c levels in the conventional treatment group near 

the SORCS1 gene, which was also associated with mean glucose. The same locus was 

confirmed using HbA1c in the intensive treatment group. In addition, three other loci, 

namely 14q32.13 (GSC), 9p22 (BNC2), 15q21.3 (WDR72) achieved evidence close to 

genome-wide significance in the intensive group. All four loci were carried forward 

for replication in two independent replication samples. These included the GoKinD 

study, a case–control collection of patients with type 1 diabetes with and without 

diabetic nephropathy, and healthy subjects from the MAGIC meta-analysis. The

SORCS1 association was replicated in GoKinD controls and the BNC2 association 

with HbA1c was replicated in non-diabetic individuals from MAGIC. Both SNPs 

were also associated with diabetes complications in the expected direction; SORCS1
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with hypoglycemia (and less robustly with both retinopathy and nephropathy) and 

BNC2 with microvascular end points [241, 242] 

Although a major locus for HbA1c levels in type 1 diabetes was identified, a number 

of questions remained. These included evaluation in other groups such as non-white 

individuals, type 1 diabetes not meeting DCCT eligibility criteria, and type 2 

diabetes. In either case, it appears that at least the top signals reported from the 

DCCT study deserve further study [241, 360]. 

Paper IV is the first attempt to evaluate the effect of the SNPs found by Paterson 

[241] with regard to glycemic control in type 2 diabetes. We typed 1486 subjects with 

type 2 diabetes from the HUNT2 cohort, and subsequently assessed the effect of the 

four top signals reported from the DCCT study on HbA1c and non-fasting glucose 

levels individually and in a combined genetic score by summing the number of risk 

alleles carried by each patient. We detected no significant associations with HbA1c or 

glucose individually or by using the genetic score model and partially inconsistent 

direction of associations – the WDR72 SNP showed a borderline association with 

reduced and not increased HbA1c levels in our study. The different pathophysiology 

between type 1 and type 2 diabetes could be one explanation why our results did not 

support that the four investigated loci are genetic susceptibility factors for glycemic 

control in type 2 diabetes. 

There are some prior data suggesting a role of the SORCS1 gene in glycemic traits. 

SORCS1 encodes a sortilin-related vacuolar protein sorting 10 domain-containing 

receptor, which binds to platelet-derived growth factor. A quantitative trait locus for 

fasting insulin in the syntenic region in mice has been described [361], with further 

independent evidence obtained in rats for post-intra-peritoneal glucose tolerance 

[362]. Two studies have also demonstrated modest evidence for association between 

SNPs in SORCS1 and fasting insulin, insulin sensitivity and insulin resistance in 

humans [125, 363]. However, no association has been found with type 2 diabetes. 

Considering our results in light of the previously reported results and features for 
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SORCS1, we can not refute a possible link between common variants in SORCS1 and 

glycemic control in type 2 diabetes.  

Figure 10 A schematic illustration exemplifying the potential contributors to HbA1c levels in 

the native (top) or treated (bottom) states. Modified and redrawn from [360].  

In this regard, it should be noted that there are several limitations of our study. We 

had access to only one HbA1c and non-fasting blood glucose value for each case, in 

contrast to the repeated measurements used by the DCCT investigators during the 

course of a carefully controlled clinical trial. Furthermore, the use of HbA1c as a 

quantitative trait modulated by genetic factors must be taken with caution in the 

context of pharmacological treatment, since treatment as an environmental variable 

may overwhelm the genetic signal [360]. This is, above all, true for insulin as a 

therapeutic modality. Except for hypoglycemia and some other practical limitations, 
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insulin dosage can be gradually increased until the target HbA1c has been reached. 

Thus, higher insulin doses should be able to overcome most genetic barriers against 

lowering HbA1c [360]. Thus, for treated HbA1c, which was the case for most of our 

diabetic patients, the non-genetic contributions to the variability in the trait plays a 

much larger role than that in the native state (Figure 10). Whereas the DCCT 

investigators attempted to control for this, we, on the other hand, had no access to 

information on medical treatment in the current study. Thus, our data may be 

confounded by environmental factors and cannot be considered a straight-forward 

replication study. 

In the future, it will be important to expand the study of genetic influences on HbA1c 

to pre-diabetic and diabetic populations, even though the confounding effects of 

treatment might obscure any role of these polymorphisms in the diabetic population. 

Additionally, genetic associations may be revealed from studies of low-to-

intermediate frequency variants through imputation from the 1000 Genomes Project, 

direct association using whole-genome sequencing data, and in-depth replication and 

locus fine-mapping. These genetic efforts will hopefully contribute to the detection of 

new loci involved in hemoglobin glycation, glucose metabolism, and diabetes [242].
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“One can prefer to be an optimist or a pessimist, but the best approach is to be an 

empiricist.” 

- Eric S. Lander, 
Leader of the international Human Genome Project 

5.5 CONCLUDING REMARKS AND FUTURE PERSPECTIVES 

Throughout Paper I - IV, we have shown that SNPs near IGFBP2, CDKAL1,

SLC30A8, CDKN2B, HHEX and FTO are associated with diabetes in non-selected 

patients with type 2 diabetes from a population-based, Norwegian sample (the 

HUNT2 survey). Furthermore, we have identified that a variant in FTO alters type 2 

diabetes risk partly independent of its observed effect on BMI, and that the additional 

weight gain as a result of the FTO risk variant seems to occur before adulthood, and 

the BMI difference remains stable thereafter. Through a fine-mapping approach of the 

9p21 region we confirmed the association of variants with type 2 diabetes and 

coronary heart disease. We also identified one haplotype strongly associated with 

type 2 diabetes and two potentially novel and independent signals associated with 

CVD in the region. Finally, we have shown that four recently reported loci affecting 

glycemic control in type 1 diabetes patients had no apparent effect on HbA1c levels 

in type 2 diabetes, neither individually nor by using a combined genetic score model.  

Despite the stimulating success of the recent SNP-based genome scans, the results of 

studies investigating specific complex diseases such as type 2 diabetes, indicate that 

the approach frequently identifies common variants that account for only a small 

fraction (< 10%) of the heritable component of the disease. Although these studies 

have provided some new biological insights, only a limited amount of the heritable 

factor of any complex trait has been identified and it remains a challenge to clarify 

the functional link between associated variants and phenotypic traits. It is, 

nevertheless, crucial to continue to perform in-depth follow-up studies for these and 

future susceptibility loci in unselected samples of patients and control participants, 
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since inclusion criteria based on age of onset, family history of the trait and BMI may 

affect the type of loci detected.

Several resources and procedures that are considered necessary to progress from 

current findings of GWA studies have been highlighted [364]: a) even larger samples 

from various populations of different ethnicities for multiple diseases or traits; b) a 

more complete synopsis and better knowledge of common variation across the 

genome in different populations; c) improved technical and analytical methods for 

investigation of structural variation (e.g CNVs) in large samples; d) improved next-

generation sequencing strategies for detection and further investigation of low 

frequency variation; e) development of novel and more sophisticated statistical and 

computational methods for analysis of high-throughput sequence data from large 

samples; f) collection of spatio-temporal gene expression data from densely 

genotyped human samples to enable search for associations between genetic variants 

and gene expression; g) improved genome annotation, particularly of non-coding 

regions, since SNPs usually occur in non-coding regions more frequently than in 

coding regions; h) applicable functional assays for associated genes; i) advanced 

animal models or suitable in vitro models, wherein possible causal variants can be 

evaluated; j) large cohort studies with available DNA samples and coordinated 

measurements of environmental exposures and disease outcomes; k) improved 

analytical methods for comprehensive assessment of gene×gene and 

gene×environment effects; and l) methods for evaluation of the role of epigenetics in 

the inherited risk of disease. 

A recent interesting study adapted the techniques used in GWA studies, and instead 

conducted a pilot environment-wide association (EWA) study to consider 266 

separate environmental factors with diabetes [365]. The factors most associated with 

diabetes had size effects on type 2 diabetes that are comparable to the highest risk 

gene loci found in GWA studies. Future studies might therefore benefit from 

combining GWA and EWA data and methodologies, to consider the combined effects 

of genes and environment [365]. 
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Figure 11 Possibility of identifying genetic variants by risk allele frequency and penetrance 

(strength of genetic effect). Frequency and the effect are essential factors when it comes to 

the likelihood of detecting genetic variants. Most emphasis lies in identifying genetic 

associations with characteristics shown within the diagonal lines. Future research adapting 

next-generation sequencing strategies will in particular focus on identifying low-frequency 

variants with intermediate penetrance. Adapted from [366, 367].

For diabetes, obesity and lipid disorders there are several examples of rare mutations 

causing monogenic forms of disease and more common at-risk variants in the same 

gene [219, 368]. Several genes implicated in MODY has been validated as type 2 

diabetes genes through GWAS (see Table 2 in section 1.3.2). Mutations in the 

HNF1A gene are the most common cause of MODY, and there is a substantial 

variation in the age at diabetes diagnosis, even within families where diabetes is 

caused by the same mutation. In a recent study we therefore investigated the 

hypothesis that common polygenic variants that predispose to type 2 diabetes might 

account for the difference in age at diagnosis in HNF1A- MODY [369]. In a sample 

of 410 individuals with a known mutation in the HNF1A gene, we assessed the effect 
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of 15 robustly associated type 2 diabetes variants on the age at diagnosis both 

individually and in a combined genetic score. We observed that each risk variant for 

type 2 diabetes was found to lower the age of MODY onset by 0.35 years, 

independent of other genetic and environmental modifiers. Thus, this is one of the 

first studies to demonstrate that clinical characteristics of a monogenic disease (i.e. 

MODY) can be influenced by common variants that predispose to the polygenic form 

of that disease (i.e., common type 2 diabetes). There will definitely be more examples 

to come of polygenic risk variants of complex diseases influencing the phenotype of 

the corresponding monogenic diseases [369, 370].

The current generation of genome-wide association studies tags common SNPs to 

some extent adequately, but is less efficient in detecting SNPs of lower allele 

frequency or in technologically difficult genomic regions [366]. These limitations 

have been widely recognized and it now seems more likely that each common disease 

is mostly caused by large numbers of rare variants, ones too rare to have been 

catalogued by the HapMap. Recent advances in next-generation sequencing 

technologies could rapidly facilitate substantial progress. This conclusion is based on 

the assumption that much of the missing genetic control is due to gene variants that 

are too rare to be picked up by GWA studies and have relatively large effects on risk 

[371] (Figure 11). Both large-scale exome-sequencing and whole-genome sequencing 

are currently being performed in numerous individuals of different ethnicities and will 

without doubt contribute to identification of rare variants and serve as a reference for 

other studies.

As an example, genome-wide association studies have revealed that common non-

coding variants in MTNR1B gene increase type 2 diabetes risk [179, 180]. Although 

the strongest association signal was highly significant, its contribution to type 2 

diabetes risk was only modest (OR of ~1.10–1.15). By performing large-scale exon 

re-sequencing in 7,632 Europeans, including 2,186 individuals with type 2 diabetes, 

Bonnefond and colleagues [372] identified 40 non-synonymous variants, including 36 

very rare variants (MAF <0.1%), associated with type 2 diabetes. Four of these were 
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very rare with complete loss of melatonin binding and signaling capabilities. This 

study establishes a solid link, both genetically and functionally, between the MTNR1B

gene and type 2 diabetes risk, and further highlights the importance of rare variants in 

health and disease.

Another way to identify rare genetic variants with expectedly large effects is to study 

families with particular accumulation of disease. Genetic variations that cause disease 

will occur with much higher frequency in the affected relatives than in a reference 

population. Exome-sequencing will then be an appropriate approach for tracking 

down the gene variations, as recently demonstrated for the MITF gene and malignant 

melanoma [373]. Sequencing of families with extreme quantitative traits could also be 

an important next step in the dissection of the genetics of type 2 diabetes. 

Finally, most genetic research has an overall aim of translating the findings into 

progression in clinical care. The mechanistic insights generated by gene discovery 

might identify new therapeutic targets and lead to novel pharmaceutical and 

preventative approaches. In addition, there is a growing belief that individual patterns 

of genetic predisposition will be valuable in health-care delivery and contribute to the 

development of a more personalized medicine. However, the development of 

personalized medicine beyond monogenic diseases expects a more complete picture 

of the genetic predisposition and the disease mechanisms. Hopefully, in a few years 

large-scale genome-wide re-sequencing efforts have provided a systematic and a more 

complete description of the associations between genome sequence variation and 

major clinical phenotypes, thus facilitating the use of personalized medicine [23]. 
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