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Abstract 

Geological heterogeneity includes variations in porosity, lithology, mechanical properties, 

structure, etc. (Eaton, 2006) and in the case of sedimentary bodies, facies distribution acts as a 

constraint of them. It is proven that heterogeneity plays an important role on the control of 

reservoir production with regard to the fluid flow patterns. 

The objective of this master's thesis was to study the possible impact of reservoir 

heterogeneities on the flow paths applying an analogue outcrop of deep marine depositional 

environment, (Ainsa-1 quarry outcrop, northeast Spain). 

For that purpose it was created (1) a structural model with data loading, cell network and 

surface boundaries modeling, followed by a (2) facies distribution. The resulting reservoir 

model was checked by (3) numerical simulations of fluid flows, applying a petrophysical 

property model (permeability and porosity) using underdevelopment software called 

OpenFlow Suite 2012.  

For testing the influence of large scale heterogeneities we run two-phases fluid flow 

simulations using a quarter five-spots injection production, which were defined for being 

affected mainly by permeability heterogeneities without confounding effects. Thanks to this, 

we provide an intuitive visualization of flow patterns, which are likely similar to the flow 

paths in oil-recovery processes. 
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Chapter 1 Introduction 

Reservoir characterization is a process in which the geological current knowledge is translated 

into parameters in a 3D grid.  

The target of the reservoir modeling is understanding and predicting reservoir's key 

geological, geophysical and engineering components; identification of new prospects; 

estimation of original oil place; quantification of reservoir potential; economic potential 

evaluation; development and field management. 

The usual reservoir management workflow consists in: 

1. Structural model construction of a structural model with data loading, horizons 

modeling and fault network, this means an accurate and precise description of 

subsurface heterogeneities. 

2. The definition o a geological model with geological grid and properties modeling 

(facies and petrophysical). 

3. The definition of a reservoir model with reservoir grid and upscaling. 

4. The numerical simulations to estimate fluids displacements and improve the 

understanding of spatial distribution of heterogeneities. 

Production decisions are made using the results of this modeling and simulation cycle. 

Therefore, it is important to build realistic facies models, with realism being judged by the 

ability of the model to predict the flow-related responses of the reservoir (Falivene et al., 

2006) 

Deep-water clastic reservoirs account for approximately 15% of the world's total oil reserves 

(Bakke et al., 2008) and these reservoirs are highly variable in geometry, size and internal 

character and with the added problem that the key differences are, usually, below seismic 

resolution. For this reason, to create reservoir models based in similar well-known outcrops, it 

is a powerful and useful tool for better understanding, evaluation and success prediction of 
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reservoir potential, impact reservoir heterogeneities on dynamic behavior and relative impact 

of uncertainties. 

1.1 Aims and Workflow 

This master's thesis is focused in the study of the impact of reservoir heterogeneity on 

injection/production strategies in a turbiditic multi-channel system. For that purpose, we 

chose the deep marine Ainsa quarry outcrop (sandstone-filled turbidite channel) to guide our 

comparison, due to the increase importance of these kind or reservoirs in the petroleum 

industry and because it is well-known and has been widely used as an analog in different 

reservoirs characterizations as for example in West Africa (offshore), Brazil, Gulf of Mexico 

and the North sea (Falivene et al. 2006). 

Most common facies in this outcrop are the thick-bedded sandstones, although other facies as 

conglomerates, muddy and heterolithics facies (alternation of muddy-sandy lamination) also 

occur. The presence of these non-reservoir facies generates important effects on the dynamic 

behaviors and flow patterns in these bodies.  

Therefore, it is really important to reproduce and construct realistic facies and petrophysical 

models with stochastic algorithms and perform several numerical simulations once the model 

is built to improve oil recovery predictions. For that purpose we used a software under-

development at IFPEN called OpenFlow Suite. The results presented in this thesis will be 

applicable to similar facies architectures elsewhere. 

The workflow we used involved the following steps: 

1. Checkout and study of previous work. We decided to use the grid created in the work, 

"Quantitative interpretation of multi-dimensional seismic models turbidite channels 

from the Ainsa-1 Quarry analogue (Spain)"  (Zadeh, 2009) because it fits with our 

necessities in terms of grid size, structure and average height for cells for posterior 

fluid flow analysis. 

2. Extraction of soft data from the outcrop and the gridded outcrop 

3. Extraction of hard data from the gridded outcrop by selection of 4 vertical logs across 

the front part of the outcrop, understanding hard data as the one that is intended for 

estimation over the entire grid, guided by the soft data (Scheevel et al, 2001). 
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4. Extraction of hard data from the previous-work model by selection of 4 vertical logs 

across the back part of the model. 

5. Geostatistical simulation of facies distribution. 

6. Modeling of petrophysical properties. Because the outcrop is not in reservoir 

conditions, normal reservoir values have been used to simulate the petrophysics 

properties. 

7. Computations of several fluid-flow simulations in a simple two-wells model, injector 

and producer (static connectivity, effective permeability, and recovery efficiency using 

waterflood simulations, with different rates and time). 

 

Figure 1.1 Flowchart showing the steps undertaken in this study. See text for detailed description.



   2. Geology 

 19 

Chapter 2 Geology 

2.1 Geographic setting 

The Ainsa quarry outcrop is situated in the Ainsa Basin, which is located in the Sobrarbe 

region in the Southern Pyrenees, in Northern Spain (Figure 2.1). It forms part of the central 

subbasin of the South Pyrenean Basin, which is divided in three subbasin by the Segre Fault 

(to the east of the central subbasin) and by Pamplona Fault (to the west of the central 

subbasin). The central subbasin is the best known of these three thanks to the work made by 

Mutti et al. along twenty years. 

The specific outcrop of this study is located 1.4 km southeast of Ainsa town, slightly above 

the western bank of the Zinca River, at an altitude of 540 m above sea level. 

 
Figure 2.1 General geologic map of the Pyrenees. The Ainsa basin is at present thrust and folded in a zone 

of oblique ramps that separates two of the major southward displaced thrust sheets in the southern 

Pyrenees (Arbués et al., 2007). (b) Location of the Quarry outcrop and surrounding areas (Google maps). 

 

a 

b 
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2.2 Geological setting 

Between the time of Eocene and mid Eocene, there is an intense geologic activity in the 

Pyrenees area marked by and intense sedimentation linked with the evolution of basins. This 

joined with the eustatic changes in Sea level are the cause of the different siliciclastic and 

carbonate platforms developed in the area and later eroded and redeposited resulting in 

turbiditic systems.  

The Ainsa basin is part of the slope of the lower Eocene foredeep developed in the footwall of 

the Montsec thrust (Figure 2.2). Eastward the Ainsa basin was fed from a fluviodeltaic 

complex deposited piggyback on top of the Montes thrust sheet. Westward, it grades into the 

more basinal part of the foredeep (referred as the Jaca Basin) (Falivene et al., 2006). 

During the early to Mid Eocene, the basin was developed as a piggyback basin on the 

propagating thrust front belt of the evolving Pyrenees. The filling of this basin (4000m thick) 

consists mainly in deep water deposits which were confined between two structural highs, 

which today are expressed as anticlines and they constitute slope complex deposits from the 

San Vicente Formation (Bakke et al., 2008). The filling of the Ainsa basin was completed 

during middle Lutetian to Bartonian time and is recorded by the northwest-prograding, 

shallow-marine to continental Sobrarbe Complex (Dreyer et al., 1999). 

 

Figure 2.2 Positions of the lower to middle Eocene depositional systems in the south-central Pyrenean 

foreland basin. Arrows indicate provenance and dispersal (Arbués et al., 2007). 
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2.3 Stratigraphic framework 

From largest scale to smallest scale, the basin filling has been subdivided into several 

allogroups (high-rank and large-scale stratigraphic units, NACSN, 1983), which had a 

duration of 2-5 m.y. Their boundaries are subaerial unconformities toward the hinterland and 

submarine angular unconformities toward the foredeep, which represent erosional submarine 

slopes. All allogroups have an overall regressive character and their organization respond to 

cycles of thrust activity. 

The slope complex within the allogroups has been, also, subdivided by unconformities, which 

represent erosive slope conduits, as well. In the bottom part of the unconformity-bounded 

slope, several turbidite systems have been preserved and among them the Ainsa turbidite 

system, which is stratigraphically located in allogroup III (Figure 2.3). It has a width of 8 km 

and 9 km length with a maximum thickness of 305 m. The bottom of the system is an angular 

unconformity but the top is a gradual transition into a mudstone unit. 

 

Figure 2.3 Stratigraphic cross-section of the Ainsa basin deposit. The blue box indicates the stratigraphic 

position of the Ainsa turbidite system (Bakke et al., 2008). 

 

The turbidite system has been subdivided into three cycles of channel-complex development 

and abandonment, which are composed of stacked channel forms, and can have thickness of 

several tens of meters. Channel complexes can also be subdivided in sequences of channel 

forms (Arbués et al., 2007). Each cycle consists of: 
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 A lower segment characterized by the presence of one or two channel complexes. 

 Upper segments (mudstone-dominated) that represent episodes of relative 

abandonment of the system. 

2.3.1 Facies and architecture of the Quarry Outcrop 

The outcrop corresponds to a partial section of one of the two-channel complex in the 

lowermost cycle in the Ainsa turbidite system. 

The Ainsa-1 quarry outcrop characterization is performed through an accurate field study. The 

exposed section, along the road A-138, is up to 42 m thick and 750 m long and oriented in 

direction of SSE-NNW oblique to the mean paleoflow direction (290°) (Falivene et al. 2006). 

The base of the channel complex is not exposed, but it is interpreted to be few meters below 

the stratigraphically lowest bed in the outcrop. On the top of the channel complex, there is a 

sharp-based that corresponds roughly to the base of a 70-m-thick, muddy slump deposit that 

marking the separation between the Ainsa-1-quarry channel complex from the Ainsa-2 cycle 

(Arbués et al., 2007) (Figure 2.4b). 

Based on field study carried out by Arbués et al. (2007), five facies have been distinguished:  

1. Gravelly mudstones (gM): They correspond with soft-sediment deformed material 

with a mudstone-dominated composition, with small amounts (less than 5%) of 

coarser grained sediment. They have been interpreted as cohesive debris-flow deposits 

due to its disorganized character and mudstone-dominated composition.  

2. Heterolithic packages and mudstone beds (H): this facies corresponds to packages of 

layered mudstones and fine-grained sandstone beds up to 10 cm thick but, thicker 

mudstone layers can be observed in this facies, as well. The deposition can be 

described in terms of the Bouma sequence, which corresponds mostly with deposits of 

low-density turbidity currents. 

3. Thick-bedded sandstones (TkS): this facies includes sandstone beds thicker than 10 

cm with grain size ranges from very fine to pebble, although up to 75% of sandstones 

correspond to medium to coarse grain size. The clasts include mudstone clasts and less 

than 5% limestone clasts gravel-size. Usually, the thicker beds are erosively based and 

formed by several amalgamated beds, whereas other thick-beds have sharp soles and 

are non-amalgamated. This facies has been interpreted as deposits of both high and 

low-density turbidity currents. 
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4. and 5. Mudstone-clast conglomerates (McC) and Conglomerates (C): both facies are 

up to 1m thick and have erosive bases, are clast supported (clast size ranges up to 

cobble) with a matrix of sand and they are very poorly to poorly sorted. Pebble and 

cobble-size clasts include rounded to subrounded limestone clasts and mudstone 

clasts. 

Both facies represent the deposits left behind from hyperconcentrated flows that were 

experiencing a transformation into high-density turbidity currents (Arbués et al. 2007). 

The Ainsa quarry outcrop division is based on erosional surfaces of turbidite channels, 

because their filling is multistory and includes facies associations that represent variable 

degrees of erosion and sediment bypass by turbidity currents (Arbués et al., 2007). Based on 

stacking pattern and lithology, the outcrop can be subdivided in three channel-form sets (C1–

C3) (Figure 2.4b). 

 Interval C1 composed by five random, laterally stacked channel forms (Figure 2.4b), 

with gravelly mudstone and heterolithics as dominants facies, but a small percentage 

of thick-bedded sandstones facies is present. 

 Interval C2 is a 24 m thick channel form which overall characteristics are: (1) thick-

bedded sandstones dominated composition, (2) coarse-grained and amalgamated 

toward the base and south, and (3) finer grained, thin-layered-bed, towards the top and 

north, where there is a major percentage of heterolithics facies. C2 is composed by 

two channel forms, C2.1 and C2.2, in which C2.1 can be subdivided as well in three 

packages: lower, middle and upper. 

 Interval C3 of 30 m thick is mostly composed by gravelly mudstones facies, although 

there are a small percentage of lenticular units of other facies (Figure 2.4b). The base 

of this channel-form cuts deep the top of the channel form C2, which represents an 

episode of cannibalistic rejuvenation. 
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Figure 2.4 Ainsa-1 quarry channel-complex data. (A) General view of the Ainsa turbidite system, south of Ainsa. Here the Ainsa system is 210 m thick. Another 

turbidite system (Morillo) is visible to the south. The intervals labeled Ainsa-1, Ainsa-2 and Ainsa-3 are the three cycles of channel-complex development and 

abandonment that make the Ainsa turbidite system. The Ainsa-1 quarry channel-complex consists of the lower segment of the ainsa-1 cycle and is overlain by 

slump-deformed mudstones. (B) Characterization of the Ainsa -1 quarry channel-complex at the quarry outcrop. The scale bars are 100 m and 10 m. It resolves 

sandstone beds thicker than 10 cm and is base on correlation of 14 logs that also have been show in (A). Three channel form sets (C1-C3) can be distinguished based 

on lithological and architectural differences. (C) Local view of the deeply incised base of C3. (D) Local view of the erosional base of C2. (E) Facies details along log 

8. 
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Chapter 3 Facies modeling 

3.1 Previous work 

The objective of the previous work: "Quantitative interpretation of multi-dimensional seismic 

models turbidite channels from the Ainsa-1 Quarry analogue (Spain)" (Zadeh, 2009) was to 

create a high resolution seismic modeling of channel complexes heterogeneities to better 

understand the links between seismic images and sedimentological models, to analyze the 

possibilities of delineating channel limits using reflectivity contrasts and to evaluate if seismic 

amplitude variations and estimated acoustic impedance can be used to identify the facies 

channel inside channels. 

For this, they performed: 

1. A 1D convolution model from the facies logs extracted from the outcrop (well log 

measurements of velocity and density provide a link between seismic data and the 

geology of substrata). 

2. After the 1-D convolution model, a 3-D geological model was built which contained 

surfaces, lithology description and petroelastic parameters, which were useful for 

seismic modeling. In this step, they built a structural model (grid) based on geological 

point of view and outcrop studies and this is the grid chosen in our study.  

They divided the outcrop in five sedimentary zones by six horizons zones (Figure 3.1).  



   3. Facies modeling    

 26  

 

Figure 3.1 Ainsa-1 Quarry outcrop, different sedimentary zones with dominant facies in each area, 

explained in geology chapter (Arbués et al., 2007) 

 

Then, they interpolate their bounding horizons using geomodeling tools and making bounding 

surfaces. The surfaces were limited to have an area of about 1 km2 and made in Petrel 

software. A variety of algorithms are available in Petrel and they used the convergent 

interpolation as the default method for generating surfaces. 

Top Model

Base C3

Top C2.1 

Base C2

Base Model

Top C2.1 mp 

 

Figure 3.2 Surfaces generated for Ainsa in Petrel. Vision is from the East (Zadeh, 2009). 

 

The first step in order to generate a model is to build a network of cells limited in a boundary 

at which the model is being to be constructed. Each cell has been assigned a value of the 

property while the value is the same all over the cell. Gridding and the size of the grids have 

direct effect on the quality of the model because they control the stochastic operation used for 

populating the property. In this case, they chose: 

1. Grid size: ni × nj × nk = 64 × 70 × 145 
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2. Average size of cells in horizontal and vertical dimensions is: dx/dy/dz = 15/15/0.5 

meters. 

3. Based on geometry and architecture of the lithofacies, the space between each two 

horizons is divided to several zones. 

4. Each zone is itself subdivided to some layers and the height of each layer corresponds 

to the height of the cells locating at that layer. 

5. Zone division depending on the geometry of the lithofacies may be performed 

proportionally, following top, following base or following a reference surface.  

Table 3.1 describes the zones and the layering done in this grid. 

 

Figure 3.3 Different depositional modes for the stratigraphic model, depending on the reference level 

(courtesy of Brigitte Doligez, IFPEN). 
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Zone Name Bounding Horizons Zone Division Number of layers 

C3 
Top model 
Base of C3 

Proportional 20 

C2.2 
Base of C3 

Top of C2.1 
Follow Base 

Each 50 cm=one 

layer 

C2.2 Upper 
Package 

Top of C2.1 
Top of C2.1 mp 

Follow Base 
Each 50 cm=one 

layer 

C2.1 Lower & 
Middle packages 

Top of C2.1 mp 
Base C2 

Follow Top 
Each 50 cm=one 

layer 

C1 
Base C2 

Base model 
Follow Top 

Each 50 cm=one 
layer 

Table 3.1 The zones of the model and their layering 

 

At the end, they performed the next structural model (Figure 3.4): 

 

Figure 3.4 Structural model, showing the different stratigraphical zones defined in Petrel software 

(Zadeh, 2009). 

With the structural model defined they created the facies model with extraction of soft data 

and hard data from the gridded outcrop by selecting four synthetic vertical logs across the 

outcrop; the logs and their situation in outcrop are displayed in Figure 3.5 and Figure 3.6. 

With this data and applying the sequential indicator simulation stochastic algorithm, they 

achieved to simulate the facies model. Figure 3.7 shows the 3D model in Petrel software. 
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Well 5 Well 8

Well 12
Well 14

 

Figure 3.5 Logs and facies display in Ainsa-1 Quarry outcrop from (Zadeh, 2009). 

 

 

Figure 3.6 The vertical well logs considered as hard data and their corresponding upscaled facies logs 

(Zadeh, 2009). 
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Figure 3.7 3D facies model (Zadeh, 2009). Network cells can be observed. 

3.2 Stochastic facies modeling 

From the grid created in the previous work: "Quantitative interpretation of multi-dimensional 

seismic models turbidite channels from the Ainsa-1 Quarry analogue (Spain)"  (Zadeh, 2009), 

that we chose due to the grid size, structure and average height for cells which they have a 

good size for posterior fluid flow analysis, we simulated a 3D facies model with a software 

under-development called OpenFlow Suite. This means that we infilled the previous structural 

model (grid with zones and bounding surfaces). The 3D model is actually a 2D symmetrical 

model referring to the fact that it is well accurate in Y and Z direction, due to the works made 

in this outcrop during the last 20 years, but not well constrained in X direction. 

The facies modeling involves both hard and soft data. Hard data has to remain constant during 

modeling without any change and the parameters modeled should get the hard data values at 

the locations where this kind of data exists. Hard data is discretely distributed and exist in 

limited number of locations. In these kinds of models, usually, well logs offer some valuable 

hard data for modeling geological parameters because they can reproduce an extremely well 

known subsurface setting, although only in the zone where they have been drilled.  
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For this study, the selected hard data consisted of four synthetic vertical logs were taken from 

the outcrop (the same vertical logs of the previous study). The four synthetic logs are from 

well numbers of 5, 8, 12 and 14. The logs and their situation in outcrop are displayed in 

Figure 3.5. Apart from this, another 4 vertical logs where extracted from the gridded 

characterization of the previous model (Petrel model) in the back part. In this way the filling 

of facies will be better constrained. In Figure 3.8 is shown the situation of these 4 new 

synthetic vertical logs in Petrel facies model and in Figure 3.9, the well logs. 

Soft data required for conditioning the model is extracted from the outcrop characterization: 

facies proportions, variograms and indicator variograms. Depending on using stochastic 

method, some of these kinds of data may be applied.  

 

Figure 3.8 New four well logs location and facies display in the back part Ainsa-1 Quarry outcrop (Zadeh, 

2009).  
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Figure 3.9 The vertical well logs, from Petrel simulation, considered as hard data situated in the back part 

of Ainsa-1 Quarry outcrop. 

 

Moreover, as it can be observed in Figure 3.8 and Figure 3.9, the lithofacies scale used for 

demonstrating the different facies (Figure 3.10) is the same as the one used by Zadeh M.K. in 

2009. 

 

Figure 3.10 Lithofacies scale used in both studies. 

After choosing the representative vertical well logs for this outcrop, the facies data of the logs 

is discretized to be imported into the layers created in the structural model. In other words, the 
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set of facies corresponding to each layer depth are being resampled by an averaging method 

and the output is considered to be the "upscaled facies" at the depth of the layer and the 

location of the log. In this study, the averaging method is “the most represented facies”, 

which takes the more frequent facies that appears at the corresponding depth of each cell and 

attributes it as the unique facies existing at that cell. In the Figure 3.11, Figure 3.12, Figure 

3.13, Figure 3.14 and Figure 3.15, it can be observed the discretized wells logs in the different 

units which is divided Ainsa-1 Quarry outcrop. 

 

Figure 3.11 The discretized well logs in CobraFlow (OpenFlow Suite 2012) for the unit C3 of the Ainsa-1 

Quarry outcrop (see Figure 3.10 for color-code). 
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Figure 3.12 The discretized well logs in CobraFlow (OpenFlow Suite 2012) for the unit C2.2 of the Ainsa-1 

Quarry outcrop (see Figure 3.10 for color-code). 

 

Figure 3.13 The discretized well logs in CobraFlow (OpenFlow Suite 2012) for the unit C2.1 -up of the 

Ainsa-1 Quarry outcrop (see Figure 3.10 for color-code). 
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Figure 3.14 The discretized well logs in CobraFlow (OpenFlow Suite 2012) for the unit C2.1-mp-lp of the 

Ainsa-1 Quarry outcrop (see Figure 3.10 for color-code). 

 

Figure 3.15 The discretized well logs in CobraFlow (OpenFlow Suite 2012) for the unit C1 of the Ainsa-1 

Quarry outcrop (see Figure 3.10 for color-code). 
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In this step, it is crucial to check the "quality" of the discretization and that can be done by 

histograms. Figure 3.16 to Figure 3.20 show the different histograms for each discretized well 

in each unit of the Ainsa outcrop. 

 

 

Figure 3.16 Histogram of well-log facies in the unit C3, CobraFlow (OpenFlow Suite 2012). 

1:  Gravelly mudstone; 2: Heterolithics ; 3: Thic-bedded sandstones. 
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Figure 3.17 Histogram of well-log facies in the unit C2.2, CobraFlow (OpenFlow Suite 2012). 

1:  Gravelly mudstone; 2: Heterolithics ; 3: Thic-bedded sandstones; 5: Conglomerates. 
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Figure 3.18 Histogram of well-log facies in the unit C2.1-up, CobraFlow (OpenFlow Suite 2012). 

2: Heterolithics ; 3: Thick-bedded sandstones. 
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Figure 3.19 Histogram of well-log facies in the unit C2.1-mp-lp, CobraFlow (OpenFlow Suite 2012). 

1:  Gravelly mudstone; 2: Heterolithics ; 3: Thic-bedded sandstones; 4: Mud-clast conglomerates; 5: 

Conglomerates. 
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Figure 3.20 Histogram of well-log facies in the unit C1, CobraFlow (OpenFlow Suite 2012). 

1:  Gravelly mudstone; 2: Heterolithics ; 3: Thic-bedded sandstones; 5: Conglomerates. 

 

3.2.1 Geostatistical approach. Stochastic Algorithms  

The modeling workflow, as we have showed, consists of the following steps: 

1. Interpretation of lithofacies 

2. Construction of lithostratigraphic units 

3. Computation of geostatistical parameters 

4. Simulation of the distribution of lithofacies 

5. Attribution of petrophysical properties 

3 

1 

3 

1 

3 

1 
2 

3 

1 

2 

3 

1 

2 

3 5 

2 

3 5 

1 



   3. Facies modeling    

 41  

Therefore, after importing the existing model grid, which has the same geometry and 

dimensions of the outcrop and after choosing the correct hard data and discretize those logs in 

the different units (to have the well log information on the corresponding cells of the 

stratigraphic grid), stochastic algorithms are implemented to populate the discretized facies all 

over the gridded model. 

Two categories of these algorithms exist: 

1. Pixel-based methods such as Plurigaussian simulation based on Truncation Gaussian 

Simulation (TGS) and Sequential Indicator Simulation (SIS), which have in common 

that to obtain a simulated field, a value is assigned to each cell according to a 

probability distribution function (PDF), (Falivene et al., 2006). At each cell the PDF is 

calculated taking into account both hard data and soft data. 

2. Object-based methods, which consist on inserting an object in the model replacing the 

background. Those objects can have different geometries and dimensions but they are 

discretized according to the grid geometry. In other words, each object spans several 

cells.  

A channel filled with debris flow cuts deep-water sediments in Ainsa-1 outcrop. Therefore, 

the approach developed for the geostatistical modeling of the distribution of lithofacies in this 

study is based on the pixel-based methods, which correspond to stochastic, sequential, 

geostatistical-based facies modeling algorithms (Falivene et al., 2006), because this approach 

has already been applied successfully in many depositional settings, including deep offshore 

settings (Lerat et al., 2007). We used both plurigaussian simulation and SIS. 

The Plurigaussian simulation is based in the Truncated Gaussian simulation algorithm; this 

means that it requires a preliminary estimation of facies proportions, in order to define the 

thresholds which back transform the values of the underlying Gaussian Random Function 

(GRF) into lithofacies. 

 

The simulation process consists of the following steps: 

1. Generation of GRF, using the variogram model fitted to the experimental variograms 

calculated from data, then truncation of this GRF using thresholds to divide the 

random space into classes: above, between and below the thresholds. In stationary 

configurations, heterogeneities are assumed homogeneously distributed in the 
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simulation volume. In this case, the thresholds are constant. Non stationary 

configurations correspond to cases showing lateral trends in the distribution of 

lithofacies proportion, for which the thresholds are variable. 

2. The vertical proportion curve (VPC) represents the relative distribution of facies in the 

main vertical facies sequences of the geological unit (Lerat et al., 2007). It is linked to 

the truncation threshold of the GRF. Instead of using one single vertical proportion 

curve, the algorithm can deal with a 3D matrix of proportions that represents the 

spatial variations of facies proportions. The truncation thresholds of the GRF are 

variable in space and the simulated lithofacies values follow these variations. A 

classical method of constructing a 3D grid of proportions is to interpolate local vertical 

proportions curves, calculated from each well or groups of wells from similar 

geological environments. 

 
 

Figure 3.21 Principle of the truncated Gaussian approach for a synthetic two-facies case (courtesy of 

Brigitte Doligez, IFPEN). 

In this study, we have used Plurigaussian simulation, non-stationary case, in the unit C2.2 and 

unit C1. After several runs with different methods in these units, the plurigaussian simulation 

created the most accurate and "realistic" facies distribution, in comparison with Ainsa-1 

Quarry outcrop (Figure 2.4). 

To analyze the data with this method, comparisons defined for each facies in each 

stratigraphical zone while trying to keep the relative proportion of each lithofacies based on 

the correlation panel prepared from outcrop data. 
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The variogram can be described as a basic tool to analyze the spatial variability of data, 

because it tries to capture the regional organization of data, which is not purely random. They 

are linked with the measure of spatial correlation between data values separated by a given 

distance, and reflect the intuitive idea that data values are generally more correlated for short 

distances than for long distances. The characteristics of a variogram are (Figure 3.22): 

 Sill: plateau reached after a certain distance called the range. This plateau exists if 

there is no trend in the data. The sill is the data variance. 

 Nugget effect: extrapolation of the variogram towards the distance origin. It is the 

short scale variability. 

 Range: distance at which the variogram reaches the sill. Two points separated by a 

distance larger than the range are not correlated. 

 

Figure 3.22 Principal variogram characteristics (courtesy of Brigitte Doligez, IFPEN). 

 

For this reason the experimental variograms created for the units C1 and C2.2, can be 

described by determining values of range, sill and nugget. Since the sill and nugget has been 

assigned to have constant values of 1 and 0.1 respectively, the variability of the model mostly 

in vertical direction (2D symmetrical model) is dependent on the values attributed for the 

range values in major horizontal, minor horizontal and vertical directions. Referring to the 

study of Falivene et al.  (2006), the values for major direction range, minor direction range 

and vertical direction range for all the facies can be considered to be the same with a good 

approximation and they can get the values of 500, 100 and 0.5 m respectively (vertical values 

should be at least the height of the cells). As mentioned before, the major direction can be 

oriented towards WSW-NSN and the minor direction will be towards SSE-NNW.  
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The SIS method which is based on indicator approach and when it deals with categorical 

variables like facies, the indicator approach transforms each facies into a new variable, and 

the value of each variable corresponds to the probability of finding the related facies at a 

given position (Falivene et al., 2006). The principle of the SIS method (Figure 3.23 and 

Figure 3.24) is that points are simulated one after another, provided that their conditional 

distribution given previously simulated points was known. The probability that the indicator 

at a target points takes the value 1 is estimated by indicator kriging (when hard data exist the 

value of the variable corresponding to the facies present is 1 and for the other is 0). For a 

better understanding, the different methods and parameters used in the different units are 

summarized in tables in the section 3.2.2. 

 

Figure 3.23 Principle of the Sequential indicator simulation (courtesy of Brigitte Doligez, IFPEN). 
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Figure 3.24 Sketch showing how SIS gives values to the hard data, (courtesy of Brigitte Doligez, IFPEN). 

SIS method has been used for the units C3, C2.1-up and C2.1-mp-lp. 

To analyze the data in these cases, an indicator variogram is defined for each facies in each 

zone, using the same values of the experimental variograms created for the Plurigaussian 

method. The values used for the variograms in the different methods are summarized in tables 

in the next section. 

The next step in the stochastic facies simulation is creating the vertical proportion curves 

(VPC, see Figure 3.25), for each well as well as the matrix of proportion from the VPC 

created for both methods in each unit. The matrix of proportion in each zone is adjusted, so 

the facies proportions in the model come out to be identical with the real proportions in 

outcrop. 
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Figure 3.25 Sketch showing how a VPC is defined from well discretized logs (courtesy of Brigitte Doligez, 

IFPEN). 

We decided to use proportion matrix (non stationary cases) because this tool allows to define 

realistic situations like one or two channel trend. The VPC assumes that the vertical 

proportion of lithotypes has no lateral trend. 

For each VPC the proportion of the lithotype is calculated layer by layer. Several methods are 

available to assign VPC to the vertical proportion matrix macro cells: 

1. Computing vertical Proportion Matrix from VPC. 

2. Designing areas in which you can assign specific VPC. 

3. Computing averaged VPC from wells information in a macro cell. 

For this study, we chose computing vertical Proportion Matrix from both VPC and areas, 

depending on the geometry, sedimentation and sequence stratigraphy of each unit. 
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The VPC matrix construction is divided in four steps: (1) Matrix parameters (define the 

number of X and Y cells you want to put together to create the proportion Matrix grid), (2) 

computation method selection, (3) kriging parameters and (4) constraint definition (optional). 

In the next section, it is described how the matrix was constructed for each unit of the outcrop 

and why. 

3.2.2 Geostatistical approach. Analysis of the simulation results 

In the next pages, we display the results of the facies distribution (Figure 3.26 to Figure 3.54 and Table 3.2 

to  

Table 3.6). For each unit, it can be observed: 

1. Matrix of proportion curve 

2. Table displaying the method used in that unit and the values used for the variograms 

3. View from the top of the unit 

4. View from the bottom of the unit 

5. View from the front part of the unit 

6. View from the back part of the unit 

7. Cross-sections, if necessary. 

The final facies model is finally displayed in Figure 3.55. 
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UNIT C3 

 
 

 
 

Figure 3.26 Matrix proportion curve for the unit C3 with a grid of 10X10 for X and Y and computing by 

the VPC created. In this unit the infill of the VPC is made with the facies gravelly mudstone because is the 

dominant composition and it is  not used the smooth tool. It can be observed major percentage of sand 

composition in the SE of the outcrop. If one checks Figure 3.11, it is shown that the wells AA-05 and AA-

08 have big percentage of sandstones facies and they are situated in the SE region of the outcrop. 

 

Method 
Fitting 

model 
Range X Range Y Range Z Azimuth 

SIS 
Non-

stationary 
500 100 0.5 -70 

 

Table 3.2 Stochastic method used in unit C3 (the one chosen after comparing several runs with different 

methodology and parameters values) and the correspondent values of the parameter that describe the 

variogram. X, Y and Z in meters. The azimuth chosen is related with the orientation of the anisotropy and 

we used an average value parallel to the current directions (290°, i.e., WNW-ESE) cf., Chapter 2. 
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Figure 3.27 Top view of the facies distribution in unit C3 and for this reason the top of the Ainsa-1 Quarry 

outcrop. The blue arrow marks the orientation of the anisotropy. The dominant facies is gravelly 

mudstones as one expected after checking the outcrop characterization with major presence of sandstone 

in the SE region of this unit, cf., Figure 3.26 matrix proportion. 

 

Figure 3.28 Bottom view of the facies distribution in unit C3 on Ainsa-1 Quarry outcrop. It is shown as 

well the anisotropy with its parallel orientation to current direction but it should take into account, that 

this is a mirror image of Figure 3.27. 
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Figure 3.29 Front view of the facies distribution in unit C3 on Ainsa-1 Quarry outcrop. In the bottom part 

there is a layer of thick-bedded sandstones, which is continue in Y direction but not in X direction, as it 

can observed from the bottom view. The shape of the base of this unit is the erosive surface that cuts the 

top of the channel form C2, due to this unit corresponds to a muddy slump deposit, which represents an 

episode of cannibalistic rejuvenation. 
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Figure 3.30 Bottom view of the facies distribution in unit C3 on Ainsa-1 Quarry outcrop. Sandstone layer 

remains in the South zone of the outcrop but it disappears from the North and this is related with the 

proportions of this facies displayed for the Proportion Matrix  cf., Figure 3.26. 
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UNIT C2.2 

 

 
 

Figure 3.31 Matrix proportion curve for the unit C2.2 with a grid of 5X5 for X and Y and computing with 

areas. In this unit the infill of the VPC is made with the facies thick-bedded sandstones because is one of 

the dominant composition in this zone; although heterolythics facies appear quite often as well, it was 

decided to fill the VPC with sandstones on top (the layering of the grids in this zone follow the base, it is 

parallel to the base) because this unit is the top of the reservoir. It can be observed a channel form 

crossing from east the west the matrix of proportion, with high percentage of sandstone composition and 

less of heterolythics or non reservoir facies. This is because we divided the matrix of proportion in two 

areas and in the area that corresponds with the channel we assigned the VPC created from the logs AA-05 

and AA-08 in the front part of the model and AA-05bis and AA-08bis in the back part of the model, which 

contain high percentage of sandstone facies in the discretized logs. Next picture shows the property map 

used to create these two areas. 
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Figure 3.32 Property map used to create the matrix of proportion of the unit C2.2 showing the thickness 

of the lithofacies (thick-bedded sandstones), where red colors represent high thickness whereas blue 

represent low ones. 

 

Method 
Fitting 

model 
Range X Range Y Range Z Azimuth 

Plurigaussian 
Non-

stationary 
500 100 0.5 -73 

 

Table 3.3 Stochastic method used in unit C2.2 (the one chosen after comparing several runs with different 

methodology and parameters values) and the correspondent values of the parameter that describe the 

variogram. X, Y and Z in meters. The azimuth chosen is related with the orientation of the anisotropy and 

we used an average value parallel to the current directions (290°, i.e., WNW-ESE) cf., Chapter 2. 
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Figure 3.33 Top view of the facies distribution in unit C2.2. Only thick-bedded sandstones lithofacies 

appear on top of this unit because the infill of the different VPC was made with this unit, considering that 

forms part of the reservoir. 
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Figure 3.34 Bottom view of the facies distribution in unit C2.2 on Ainsa-1 Quarry outcrop. In here the 

proportion of heterolithics lithofacies is much bigger than in other areas of this unit. This is because the 

base of the channel form C2.2 is a package of facies heterolithics onlapping the base of the channel form 

northward so this run simulates in an accurate form the infill of this channel form. 
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Figure 3.35 Front view of the facies distribution in unit C2.2 on Ainsa-1 Quarry outcrop. In the bottom 

part there is a layer of H cf., Figure 3.34, and this is overlain by vertically stacked and amalgamated beds 

of the thick-bedded sandstones with heterolithics layers interbedded. This layers look blocky, almost 

northward because not all the facies trends could be set up due to the modeling methods but all the 

algorithms were set up to reach the facies proportions. It appears a layer of conglomerates lithofacies 

southward.  
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Figure 3.36 Back view of the facies distribution in unit C2.2 on Ainsa-1 Quarry outcrop. Conglomerates 

facies disappear towards the west and the amount of H increases and it looks more plane-parallel-bedded. 
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Figure 3.37 Cross section of the unit C2.2 of the Ainsa-1 quarry outcrop in K = 7. The orientation of the 

anisotropy is shown by the different non reservoir and reservoir lithofacies (H and C) with an angle of 

287° in this unit. Conglomerates percentage decreases westwards and Northwards. If one checks the 

Matrix of proportion, conglomerates lithofacies are localized SE in the channel area created from the 

property map, where the well AA-05 is set up.  
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UNIT C2.1_up 

 

 
 

Figure 3.38 Matrix proportion curve for the unit C2.1-up with a grid of 5X5 for X and Y and computing 

by the VPC created. In this unit the infill of the VPC is made with the thick-bedded sandstones because is 

the dominant composition and it is not used the smooth tool. There are only two lithofacies, sandstones 

and heterolithics. It can be observed major percentage of sand composition on the East of the matrix. If 

one checks Figure 3.13, wells AA-05 and AA-08 have big percentage of sandstones facies and they are 

situated in the SE region of the outcrop. Also, well log AA-12bis is composed mainly by sandstones and in 

the Matrix or Proportion, it can be seen that tendency on the West (layers 7 and 8). 

 

Method 
Fitting 

model 
Range X Range Y Range Z Azimuth 

SIS 
Non-

stationary 
500 100 0.5 -64 

Table 3.4 Stochastic method used in unit C2.1-up (the one chosen after comparing several runs with 

different methodology and parameters values) and the correspondent values of the parameter that 

describe the variogram. X, Y and Z in meters. The azimuth chosen is related with the orientation of the 

anisotropy and we used an average value parallel to the current directions (290°, i.e., WNW-ESE) cf., 

Chapter 2. 
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Figure 3.39 Top view of the facies distribution in unit C2.1-up. The orientation of the anisotropy is 

marked by the heterolithic layering (green). The dominant facies is thick -bedded sandstones as one 

expected after checking the outcrop characterization. 
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Figure 3.40 Bottom view of the facies distribution in unit C2.1-up on Ainsa-1 Quarry outcrop. It is shown 

as well the anisotropy with its parallel orientation to current direction but it should take into account, that 

this is a mirror image of Figure 3.39. There is more presence of heterolithic material on the base of this 

unit than on top and this is related with the depositional boundary between the middle package and upper 

package in C2.1 channel form. 
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Figure 3.41 Front view of the facies distribution in unit C2.1-up on Ainsa-1 Quarry outcrop. The convex-

up top bottom is draped with a base of H facies, as it is shown in Figure 3.40. Above, there are a beds of 

TkS that increase southwards.  
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Figure 3.42 Bottom view of the facies distribution in unit C2.1-up on Ainsa-1 Quarry outcrop. Sandstone 

has more presence in the middle part of this unit, as we explained in Figure 3.38, the Matrix of 

Proportion. The H facies as basal filled continue at the back part, as well. 
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UNIT C2.1-MP-LP 
 

 

 

Figure 3.43 Matrix proportion curve for the unit C2.1-mp-lp with a grid of 5X5 for X and Y and 

computing with areas. In this unit the infill of the VPC is made with the TkS facies because is the 

dominant composition and it is used the smooth tool to avoid sharp boundaries. From the property map, 

one can observe to areas with TkS as dominant facies, on the East and West and these two areas can be 

part of a channel. For this reason, we created two areas, one the interpreted channel with the VPC of AA-

05, AA-08, AA-05bis and AA-08bis and the other with the rest of the VPC. Figure 3.44 shows the property 

map used to create these two areas. 
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Figure 3.44 Property map used to create the Matrix proportion of the unit C2.1-mp-lp, showing the 

thickness of the TkS facies, where red colors represent high thickness whereas blue ones represent low 

ones 

 

Method 
Fitting 

model 
Range X Range Y Range Z Azimuth 

SIS 
Non-

stationary 
500 100 0.5 -64 

Table 3.5 Stochastic method used in unit C2.1-mp-lp (the one chosen after comparing several runs with 

different methodology and parameters values) and the correspondent values of the parameter that 

describe the variogram. X, Y and Z in meters. The azimuth chosen is related with the orientation of the 

anisotropy and we used an average value parallel to the current directions (290°, i.e., WNW-ESE) cf., 

Chapter 2. 
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Figure 3.45 Top view of the facies distribution in unit C2.1-mp-lp. The layering of the facies marks the 

orientation of the anisotropy. The dominant facies, in the whole unit, is TkS as one expected after 

checking the outcrop characterization. In this unit a bed of H facies covers the sandstones. 

 

 



   3. Facies modeling    

 67  

 

Figure 3.46 Bottom view of the facies distribution in unit C2.1-mp-lp on Ainsa-1 Quarry outcrop. There 

are only TkS and this is related with the fact that the VPC infill is made with this facies and the layering 

of the unit is parallel to top. 
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Figure 3.47 Front view of the facies distribution in unit C2.1-mp-lp on Ainsa-1 Quarry outcrop. The 

division between the middle package and the lower package is situated at the base of a h facies bed, which 

in this simulation we can follow almost across the entire channel form set. The dominant facies is TkS and 

McC and C appear as well and these layers are important features that should be preserved and for that 

reason it is particularly important to check during the modeling process  
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Figure 3.48 Back view of the facies distribution in unit C2.1-mp-lp on Ainsa-1 Quarry outcrop. The 

differences with the front view are the percentage of H facies and the presence of McC and C almost 

across the entire main body of the unit. 
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Figure 3.49 Cross-section of the facies distribution in unit C2.1-mp-lp. The cross section on. k = 12 show 

the distribution of the different facies following the anisotropy defined (Table 3.5). It can be observed 

some small percentage of gravelly mudstones facies as well, proximal to the bottom of this unit. 
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UNIT C1 
 

 
 

Figure 3.50 Matrix proportion curve for the unit C1with a grid of 5X5 for X and Y and computing by the 

VPC created. In this unit the infill of the VPC is made with the facies gravelly mudstone because is the 

dominant composition and it is not used the smooth tool. It can be observed major percentage of 

heterolithic facies in the SW of the outcrop. This is related with the vpC of the discretized wells AA-05bis 

and AA-08bis. 

 

 

Method 
Fitting 

model 
Range X Range Y Range Z Azimuth 

Plurigaussian 
Non-

stationary 
500 100 0.5 -70 

 

Table 3.6 Stochastic method used in unit C1 (the one chosen after comparing several runs with different 

methodology and parameters values) and the correspondent values of the parameter that describe the 

variogram. X, Y and Z in meters. The azimuth chosen is related with the orientation of the anisotropy and 

we used an average value parallel to the current directions (290°, i.e., WNW-ESE) cf., Chapter 2. 
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Figure 3.51 Top view of the facies distribution in unit C1 and for this reason the top of the Ainsa-1 Quarry 

outcrop. The orientation of the anisotropy is followed by the facies gravelly mudstones (blue ones) and 

heterolithics (green ones), which are the dominant facies. 
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Figure 3.52 Bottom view of the facies distribution in unit C1 and for this reason the bottom of the Ainsa-1 

Quarry outcrop. The dominant facies is gravelly mudstones as one expected after checking the outcrop 

characterization. The presence of heterolithics is greater on the SW and W of the outcrop. Note the abrupt 

change of facies between wells AA-12bis and AA-08bis (black arrow), due to an artefact of simulation. 

This artefact is related: (1) to the high difference in facies proportion between the two wells (AA-08bis: 

71%  of gravelly mudstones and AA-12bis: 8% ) and (2) by the small interwell distance. It will be corrected 

in the next version of the software. 
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Figure 3.53 Front view of the facies distribution in unit C1. On the front view the heterolithics facies look 

well simulated and displayed. Moreover, in this unit we can observe some presence of conglomerates and 

the most noticeable aspect in here, it is the presence of a thick-bedded sandstones layer, crossing almost all 

the outcrop parallel to the main horizontal direction as well as in the perpendicular direction. For possible 

future works this layer could be part of the reservoir joining both zones (the main reservoir and the small 

one) creating a possible flow path. 
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Figure 3.54 Back view of the facies distribution in unit C1. The sandstone layers continue backwards as 

we can check from this picture, which means that has a great continuity. Also, there is a presence of 

conglomerates as well, on the north and south of the outcrop. Arrow marks the abrupt facies change 

discussed in Figure 3.52. 
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FINAL FACIES MODEL (GoCad view) 

 
Figure 3.55 Three-dimensional facies simulation showing the architecture and facies distribution of the Ainsa-1 Quarry outcrop (GoCad software) from an pixel-

based methods simulation. Vertical exaggeration is 5x. Each color corresponds to one facies, as it is shown in the legend. It is displaying the vertical section crossing 

the 3D model through the well logs set up in the front, so it can be compared with the correlation panel achieved from the outcrop field studies, (Figure 2.4A) to be 

aware about the weaknesses of the model. 
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It is obvious that the generated model cannot resemble completely the reality. Based on the 

purpose of the modeling and its forward application, some characteristics can be defined as 

the criteria of correctness of the model. Since this facies model is supposed to be used for 

fluid flow simulations, some important features should be preserved in the facies model: 

1. Pinch out geometries, which are truncated to surfaces Base C2, Top C2.1 and Base 

C3. 

2. Levee depositional sediments (i.e. heterolithics and gravelly mudstone) at both ends of 

the model. 

3. Distribution and proportion of the heterolithics facies such as conglomerates and mud 

clast conglomerates in the reservoir area (units C2.2, C2.1). 

These criteria have to be preserved during the modeling operation and are crucial to provide 

some guidelines for the manipulator. Also, the migrated channels during the depositional time 

can be observed from the top view. The periodic stacks of sandstone (central channel 

deposits) and heterolithics (channel margin facies) in channel form set C2 can be indicative of 

migrating the channel through time. 

For these reasons, from the final model (Figure 3.55) we can test out that: 

1. The model is well defined in terms of orientation, structure and architecture, i.e., 

vertical layering for each unit: proportional for C3, follow Base for C2.2 and C2.1up, 

follow top for C2.1mp-lp and C1. 

2. The simulations of every unit have the minor problem of the “blocky” vertical layering 

(mostly for H lithofacies in units C2 and C1) and the lateral continuity, but in general 

terms the geometry is well accurate and the facies proportions obtained are well 

constrained, cf., histograms for each facies in each unit.  

3. Globally, except for unit C3, comparing all the simulation made for each unit, we 

chose matrix of proportion of 5X5 because the lateral continuity of facies distribution 

seems to be better than for Matrix of 10X10. 

4. It is observed a minor problem in the unit C2.1mp+lp, regarding to the facies 

distribution at the border of the channel but this is related with the same problem than 

in PETREL at the border of the channel because of the choice of "Follow Top" in the 

modeling grid step. 
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5. In this study we adopt the connectivity definition given by Pardo-Iguzquiza and Dowd 

(2003), so connectivity is defined as the percentage of pairs of connected cells for a 

particular facies, direction and separation. This means that in here we measured both 

vertical and horizontal connectivity, mostly in the reservoir zone. 
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Chapter 4 Fluid flow simulation 

4.1 Petrophysical parameters 

As discussed before, the Ainsa-1 channel sediments include five geological facies as follows: 

gravelly mudstone, heterolithics, thick-bedded sandstone, conglomerates and mud clast 

conglomerates. Eight synthetic wells across the outcrop were selected and their facies 

distribution along the well was considered. 

The fluid flow simulation required the assignation of several rock properties. Because the 

outcrop is not at reservoir conditions, typical reservoir values for these kinds of materials 

were used (properties taken from subsurface reservoirs in the same depositional environment) 

and diverse scenarios were assumed for the petrophysical values. 

Petrophysical properties can be assigned to lithofacies after simulation using a simple average 

value attribution or a more refined law based on spatial trends deduced from wells (Lerat et 

al., 2007). In this case, average, isotropic and uniform values were assigned to lithofacies for 

the sake of simplicity. On one hand, the values of density, volume of clay, porosity, 

permeability (Kx, Ky, Kz), P-impedance and P-velocity employed for each of the facies, are 

listed in the Appendix 1, together with graphical representations of these properties. Table 4.1 

summarizes the porosity and permeability values applied for each of the facies observed in the 

synthetic logs. 

The permeability chosen for thick-bedded sandstones and gravelly mudstones lithofacies falls 

into the same order of magnitude used by Falivene et al., (2007) paper, whereas for 

Heterolithics, Conglomerates and Mud-clast Conglomerate lithofacies, we decided to increase 

by one or two order of magnitude respectively, for the first simulation and keep decreasing 

them in the next runs to be able to check the real influence of heterolithics in the fluid flow 

inside a reservoir.  

Moreover, we gave a noticeable permeability to these facies rather than 1mD (Falivene et al., 

2007) because they are quite different; conglomerates and mud-clast conglomerates 
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correspond to a sandy matrix with pebbles of sandstone (conglomerates) or mudstones 

(mudstone-clast conglomerates) i.e. a fair to bad reservoir, whereas gravelly mudstones 

correspond to a muddy matrix (non reservoir). 

 Facies 
Ø 

(porosity) 
Kx (mD) Ky (mD) Kz/Kx 

1 
Gravelly 

mudstones 
0.000 0 0 0 0 0 0 0 

2 Heterolithics 0.050 40 40 40 40 40 40 0.001 

3 
Thick-bedded 

sandstones 
0.300 2000   2000 2000 2000 2000 2000 0.1 

4 
Mud-clast 

conglomerates 
0.150 500 50 5 500 50 5 0.1 

5 Conglomerates 0.250 2000 2000 2000 2000 2000 2000 0.1 

 

Table 4.1 Petrophysical parameters corresponding to each facies observed in Ainsa outcrop section and 

for each run. 

Table 4.1 clarifies that gravelly mudstones and heterolithics are non-reservoir facies because 

of their low porosity and permeability values, even zero for mudstones, whereas thick-bedded 

sandstones and conglomerates have larger values of porosity and horizontal and vertical 

permeability. Mud-clast conglomerates are considered a reservoir material with bad quality 

(low permeability). 

From these values the pretrophysical model was built in GoCad software only for the 

reservoir zone, for C2 channel form set; In other words, we created an active grid block 

(ACTNUM equal to 1 in C2 and zero in C1 and C3) including the units which could be good 

reservoir by looking at reservoir facies percentage in each area. In Figure 4.1 it can be 

observed that there are two main isolated areas in the reservoir: a small zone situated on the 

south of the model and a big one occupying almost the centre of the model. Moreover, 

underneath these zones, there is a non-reservoir layer followed by a thin layer of thick-bedded 

sandstones. Because of computing time restriction, in this study we only focused in the main 

big reservoir area. 
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Figure 4.1 View of the reservoir zone with the different facies, which includes C2.2, C2.1-up and C2.1-mp-

lp units. The injector and producer wells used for the different fluid flow simulations are displayed. 

The petrophysical models for porosity and permeability are shown in Figure 4.2, Figure 4.3 

and Figure 4.4. 
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Figure 4.2 3D porosity model for Ainsa-1 Quarry outcrop. 

 

 

Figure 4.3 3D X and Y permeability model for Ainsa-1 Quarry outcrop. 
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Figure 4.4 3D Z-permeability model for Ainsa-1 Quarry outcrop. 

4.2 Fluid flow simulation workflow 

The general workflow to construct reservoir model is illustrated in Figure 4.5. This section 

corresponds to the upscaling and fluid flow simulation components of this workflow, 

nevertheless, applying upscaling was not required on either set of models, because the fluid-

flow simulator could directly handle the geological grid in terms of number of cells (649650). 

 

Figure 4.5 Usual reservoir characterization workflow showing the different inputs to construct a 

geological model. Based on this geological model, a reservoir grid can be defined allowing fluid flow 

simulation and production data integration into the final model, gaining understanding on the reservoir 

behavior. 
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For flow simulation we have to take into account: 

1. Structure parameters. 

2. Rock parameters. 

3. Fluid parameters. 

4. Production parameters, related with the reservoir production system. 

Structure parameters: 

In terms of geostatistical parameters, it is important to check the quality of the grid referring 

to cell thickness, structure and spatial variability model, the facies model, the facies 

connectivity, etc. In Table 3.1, one can check the structure model of the Ainsa-1 Quarry 

outcrop, divided by units and their layering. Table 4.2 shows the total number of cells of the 

grid and for each unit, which is directly related to the simulation time. 

It is also required to define our trap properties, which in this case, has a reference depth 

situated at -2220 m and a base depth at -2255 m. The initial pressure at the reference depth is 

253.52 bar, the reservoir temperature is 50°C (no thermal effects) and the initial oil-water 

contact (OWC) is situated at -2255 m depth. 

Units Number of cells Zones 

C2.2 98560 
Reservoir 
250880 

C2.1-up 40320 

C2.1-mp-lp 112000 

C1 309120 Non reservoir 
398720 C3 89600 

All facies 649650 All grid 
 

Table 4.2 Number of cells in Ainsa-1 structural model. 

 

Rock parameters: 

About the petrophysical parameters, as it is explained before, the permeability in horizontal 

dimension is isotropic and it remains the same for all the facies except for the Mud-clast 

Conglomerate lithofacies that varies from 500 mD to 5 mD in the different simulations. The 

porosity remains the same for all the facies in each simulation. Moreover, for the rock 

compressibility we used a constant value of 0.0000330 bar-1. 
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Fluid parameters: 

The next step is introducing a PVT model (Figure 4.6), which in this case consists of two 

phases (Oil and water), set a single relative permeability model for all the facies and no 

capillary pressure. The relative permeability model is given by a tabulation (Figure 4.7). The 

residual oil saturation was zero for all facies and the irreducible water saturation was 

approximately 0.29. Oil density is 0.833 g/cc and water density is 1.08 g/cc at surface 

conditions, simulating a highly favorable displacement. Temperature at surface conditions is 

15.5 °C. 

 

Figure 4.6 Oil viscosity and volume factor vs. pressure in PVT model. 
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Figure 4.7 Kr-Pc model. We designed a single model for all the facies. Figure a) end values of water and 

oil saturation and relative permeability. Figure b) Kr vs. Sw. 

 

Production parameters: 
 

The two-phase fluid flow simulation was achieved using a quarter five-spots injection 

production, using PumaFlow from the underdevelopment software, OpenFlow Suite 2012. 

The producer and injector wells are located in opposite corners of the Ainsa-1 model, as it can 

be seen in Figure 4.8. The bottom perforation for both is -2300 m depth and the BHP for 

injector well is 400 bar and for producer is 15 bar. The water/oil rates and their behaviors, 

vary from one simulation to another, this will be described in the section 4.3. However, in all 

the cases the rates are maintained constant and the pressure can vary, this means that the flow 

through the wells is controlled by the rate. 

 

a) 

b) 
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Figure 4.8 Reservoir thickness map showing the production wells location. They are situated one in front 

of the other in diagonal corners, in zones where the thickness tends the decrease. 

Finally, the PumaFlow simulations were run to predict two-phase flow results for the outcrop 

and facies models. These simulations were conducted on the finely gridded outcrop 

characterization and on the finely gridded facies models obtained from the Plurigaussian and 

SIS simulations. 

The simulations were run at least until water breakthrough at the production well because the 

simulation run time was relatively high given the number of cells, and the primary focus was 

on checking the flow paths inside the reservoir due to heterogeneities. Fluid-flow variables 

investigated checked were oil production rate, water injection rate, producer and injector 

bottom-hole pressures, watercut at the producer, water saturation distribution. Moreover, in 

some of the simulation, we reproduced a natural depletion before the water injection, during a 

period of six months. 

Because of computing time restrictions, only 15 realizations were simulated, from which we 

chose four to show in this study because there were the most relevant ones, in terms of 

changing in petrophysical parameters, simulation times and rates. 
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4.3 Fluid flow simulation results 

In the next pages, we display the results of the fluid flow simulations. Each simulation 

contains: 

1. Table showing the parameters introduced to do the run, oil and water rate, BHP, 

period simulated and natural depletion if is simulated. 

2. Table with petrophysical properties’ used. 

3. Pictures which show the water saturation distribution: 

 Front view. 

 Back view. 

 Top view. 

 Bottom view. 

 Cross-section, if necessary. 

4. Water in place at surface conditions versus oil in place at surface conditions. 

5. BHP for injector and producer. 

At the end of this section it can be seen a comparison of the three flows simulations by 

displaying the top views (Figure 4.33). From this perspective it is easier recognize the flow 

paths that the water injected follows through the reservoir, until it reaches the producer well. 

4.3.1 First simulation 

 

Well BHP (bar) 
Water rate 

(m3/day) 

Oil rate 

(m3/day) 

Natural 

depletion 

Simulation 

time 

Injector 400 400 / 
Open after 6 

months 
10 years 

Producer 15 / 500 
Yes during 

first 6 months 
10 years 

 

Table 4.3 Production parameters values used in this first fluid flow simulation for Ainsa-1 reservoir 

model. 
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 Facies 
Ø 

(porosity) 
Kx (mD) Ky (mD) Kz 

1 
Gravelly 

mudstones 
0.000 0 0 0 

2 Heterolithics 0.050 40 40 0.004 

3 
Thick-bedded 

sandstones 0.300 2000 2000 200 

4 
Mud-clast 

conglomerates 
0.150 500 500 50 

5 Conglomerates 0.250 2000 2000 200 

 

Table 4.4 Petrophysical properties values used in this simulation. 

 

 
 

Figure 4.9 Front view of the water saturation in the main body of the reservoir at the end of the simulation 

period and the situation of the injector and producer wells. Layers with stronger blue colors means higher 

water saturation and they correspond with facies with high permeability and porosity. The whiter parts 

correspond with the zones where there are heterolithic facies. In this case, it seems there is no difference in 

behaviors between TkS and McC and C facies. The small volume reservoir is not connected due to the C3 

erosive unit on top, which created a break on the unit C2 and for that reason it does not receive any water 

injection. 
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Figure 4.10 Back view of the water saturation in the main body of the reservoir at the end of the 

simulation period and the situation of the injector and producer wells. The whiter parts correspond with 

the zones where there are heterolithic facies. In this case, there is more presence of H facies in the back 

part than on the front. 

 



    4. Fluid flow simulation 

 91 

 
 

Figure 4.11 Top view of the reservoir for the first simulation showing the situation of the wells and the 

water saturation after the time applied in this run. The water reaches the producer well, most of the 

reservoir is charged by this water and most of the oil is drained after 10 years production thanks to the 

natural depletion first and the water injection after (second recovery). There is an accumulation of water 

near the injector well in comparison with other zones of the reservoir and this is a normal and expected 

behavior even if in that zone we can find a big range of heterogeneities, almost in the vertical direction. 

Facies gravelly mudstones, McC, heterolithics, conglomerates and of course, TkS appear in this area of 

the outcrop. It is shown some path flows mostly related with the channels directions, with the sandstones 

and good-reservoir facies. In Figure 4.33 is displayed a comparison of these path flows patterns from the 

top map views of the three simulations. 
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Figure 4.12 Bottom view of the first simulation facies distribution in the reservoir. As one expected, most 

of the base of the reservoir presents strong blue colors, which means that all the porosity in the facies is 

filled by water from the injection. This is because during the facies modeling step we designed (following 

the outcrop) the bottom of C2.1-mp-lp with only thick-bedded sandstones, which have high porosity and 

permeability and thus, it is a good reservoir facies. 
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Figure 4.13 Cross-section and top view in K117 showing the paths flow related with good reservoir facies 

for stronger blue colors. The white colors that perform a "strange form" perpendicular to the main 

horizontal direction of the outcrop, correspond with the "blocky" heterolithics facies. There is one 

situated in Y=4699000 and X=264580 and crosses almost all the reservoir and another one situated at the 

end of the outcrop that crosses all the outcrop. These two flow paths, although they are related with the 

petrophysical properties of the facies, they are formed by the accumulation of heterolithic facies due to the 

"problem" of the grid geometry in this unit.  
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Figure 4.14 Graphic of the oil-water production at surface conditions. Brown line corresponds to oil 

production and it can be observed some anomalies at the beginning of the simulation. After 8 years of 

production trying to maintain a rate of 280 m
3
/day, after the failed attempt of producing 400 m

3
/day the 

production drops and quite rapidly after the breakthrough. The water (blue line) reaches the producer 

well after 7.5 years production. 
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Figure 4.15 Bottom hole pressure on the water injector well. It presents an anomaly at the beginning of 

the simulation, the pressure drops until less than 30 bars and this is not realistic. It can be related with a 

problem of trying to maintain the water rate during all the simulation time, but also it could be related 

with a numerical diffusion of time steps during the running of the simulations. 

 

 

Figure 4.16 Bottom hole pressure on the oil producer well. It presents the same anomaly that the injector 

BHP at the beginning of the simulation and until the end, the pressure drops unti l less than 30 bars and 

this is not realistic. It can be related with a problem of trying to maintain the water rate during all the 

simulation time, but also it could be related with a numerical diffusion of time steps during the running of 

the simulations. 
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4.3.2 Second simulation 

Well BHP (bar) 
Water rate 

(m3/day) 

Oil rate 

(m3/day) 

Natural 

depletion 

Simulation 

time 

Injector 400 400 / 
Open after 6 

months 
8 years 

Producer 15 / 500 
Yes during 

first 6 months 
8 years 

 

Table 4.5 Production parameters values used in this first fluid flow simulation for Ainsa-1 reservoir 

model. 

 

 Facies 
Ø 

(porosity) 
Kx(mD) Ky (mD) Kz 

1 
Gravelly 

mudstones 
0.000 0 0 0 

2 Heterolithics 0.050 40 40 0.004 

3 
Thick-bedded 

sandstones 
0.300 2000 2000 200 

4 
Mud-clast 

conglomerates 
0.150 50 50 50 

5 Conglomerates 0.250 2000 2000 200 

 

Table 4.6 Petrophysical properties values used in this simulation. 
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Figure 4.17 Front view of the water saturation in the main body of the reservoir at the end of the 

simulation period and the situation of the injector and producer wells. In this case, second simulation, 

there are no big differences with respect the other simulation. However, it can be distinguish more the 

McC layers along the horizontal direction of the reservoir. As in the previous simulation it can be 

observed clearly the heterolithic facies, whiter zones and “the black holes” are the gravelly mudstones  

lithofacies, which represent non-reservoir facies. 
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Figure 4.18 Back view of the water saturation in the main body of the reservoir at the end of the 

simulation period and the situation of the injector and producer wells. Comparing with the previous 

simulation it is possible to observe big differences, because on the first simulation apart from the 

heterolithic beds, the rest of the back part was filled from bottom to top by the water injection. However 

in here, it is shown four distinct areas: (1) the bottom part completely saturated by water, (2) the middle 

of the channel form set C2.1 undersaturated, (3) the upper part almost completely filled by water and (4) 

the unit C2.2 which remains undersaturated. This is related with the petrophysical properties of each 

facies, more or less permeability and porosity, although in here one should take into account that in this 

simulation for the same water rate than the previous one, the simulation time is less and for this reason 

the water does not reach those areas on the back of the reservoir. 
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Figure 4.19 Top view of the reservoir for the second simulation showing the situation of the wells and the 

water saturation after the time applied in this run. There are no big differences on top of the reservoir 

between the first simulation and this one. There is less water saturation near the producer well than in the 

other case and along the entire reservoir as well and this is related with the simulation time for same 

water rate. 

 

 

Figure 4.20 Bottom view of the second simulation facies distribution in the reservoir. In the bottom part of 

the reservoir, there is no difference and this is caused by the TkS infilled during discretization step, as it is 

explained before in Figure 4.12. 
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Figure 4.21 Cross-section and top view in K117 showing the paths flow related with good reservoir facies 

As it explained before, the water injected does not reach the same areas than in the previous simulation 

and for this reason the zones with low saturation are more intensified. It is possible to observe perfectly 

the problem of the “blocky” heterolithic facies, mostly on the north of the reservoir, where the boundary 

between the good reservoir facies and non reservoir facies follow almost at straight line, perpendicular to 

the main horizontal direction. 

 

 

Figure 4.22 Graphic of the oil-water production at surface conditions. Green line corresponds to oil 

production and brown line to water production. it can be observed same anomalies behavior then the 

previous run. Moreover, after 8 years the production drops quite rapidly after the breakthrough. The 

water reaches the producer well after 7.5 years production. 
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Figure 4.23 Bottom hole pressure on the water injector well. It presents the same anomaly in BHP at the 

beginning of the simulation and also it tries to increase the pressure at the end-time, like in the previous 

run. 

 

 

Figure 4.24 Bottom hole pressure on the oil producer well. It presents the same anomaly than the previous 

producer well in the first simulation, the BHP drops until 15 bars and remains the same during all the 

simulation time. 
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4.3.3 Third simulation 

Well BHP (bar) 
Water rate 

(m3/day) 

Oil rate 

(m3/day) 

Natural 

depletion 

Simulation 

time 

Injector 400 400 / Open  8 years 

Producer 15 / 400 No 8 years 

 

Table 4.7 Production parameters values used in this first fluid flow simulation for Ainsa-1 reservoir 

model. 

 

 Facies 
Ø 

(porosity) 
Kx(mD) Ky (mD) Kz 

1 
Gravelly 

mudstones 
0.000 0 0 0 

2 Heterolithics 0.050 40 40 0.004 

3 
Thick-bedded 

sandstones 
0.300 2000 2000 200 

4 
Mud-clast 

conglomerates 
0.150 5 5 0.5 

5 Conglomerates 0.250 2000 2000 200 

 

Table 4.8 Petrophysical properties values used in this simulation. 
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Figure 4.25 Front view of the water saturation in the main body of the reservoir at the end of the 

simulation period and the situation of the injector and producer wells. On the third simulation, it is 

reduced the horizontal permeability and vertical permeability of the McC lithofacies in two order of 

magnitude regarding the first simulation. This decrease is observed on the front of the reservoir model by 

the black holes or layers that are situated near the bottom of the model. On the south these black areas are 

bigger because the McC lithofacies are closed to Gravelly mudstone lithofacies (non-reservoir). The rest of 

the model has no big differences in terms of water saturations and path flows. 
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Figure 4.26 Back view of the water saturation in the main body of the reservoir at the end of the 

simulation period and the situation of the injector and producer wells. 

Comparing with the previous simulations it is possible to observe big differences. In here, the water rate 

remains the same than the others runs and the simulation time is the same than the second simulation, 

however the water injection starts at the beginning of the simulation, there is no natural depletion. This 

produces an increase of the water saturation on the back part of the reservoir with respect to the second 

simulation. Moreover, it is shown the really clear the paths followed by the water from the injector to the 

producer well and they correspond, as it is mentioned before with high quality sands. 
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Figure 4.27 Top view of the reservoir for the third simulation showing the situation of the wells and the 

water saturation after the time applied in this run. This simulation looks the same on top than the top of 

the first simulation (Figure 4.11) and this can be related with the fact that the water injection starts from 

day 1, which means an increase of volume of water (in total) drainage the reservoir.  

 

 

Figure 4.28 Bottom view of the second simulation facies distribution in the reservoir. As it was noticed 

before, the bottom part of the reservoir is completely water saturated, first of all, because this is the first 

zone for being filled and secondly because it is formed by thick-bedded sandstones which, have great 

porosity and permeability. 

 



    4. Fluid flow simulation 

 106 

 

Figure 4.29 Cross-section and top view in K117 showing the paths flow related with good reservoir facies. 

As it happens for the top view, this cross -section has the same features of path flows than the first 

simulation (Figure 4.13), which means that in first simulation the reservoir was overestimated in terms of 

oil production, because in seven years and six months (the time for natural depletion in second simulation) 

the water reaches the producer well (breakthrough) and quickly it arrives until the point of watercut. This 

can be seen as well in the oil/water rate plot. 

 

 

 

Figure 4.30 Graphic of the oil-water production at surface conditions. Green line corresponds to the water 

production and brown line to oil production. It can be observed an anomalies behavior an early time, 

which means, as it was considered a priori that this anomaly is caused probably by the intention of 

keeping a large water rate during all simulation time. Other possibility could be a numerical error of the 

software but what it is clear is that this anomaly is not related with the production mechanism in terms of 

natural depletion or water injection. 
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Figure 4.31 Bottom hole pressure on the water injector well. It presents a bigger anomaly in BHP at the 

beginning of the simulation than the rest of the simulations, it tries to increase the pressure several times  

but it fails and the pressure remains behind 30bars during all the simulation. 

 

 

Figure 4.32 Bottom hole pressure on the oil producer well. It presents the same anomaly than the previous 

producer well in the others simulations with the difference that, as in the case of the injector BHP it looks 

like the software during the run tries to reaches again the designed BHP (different peaks) but fails as well, 

remaining in a value of 15 bars approximately.  
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Figure 4.33 Flow paths of the three fluid flow simulations, after 8 years simulation for cross-sections K 98. Blue color corresponds to water saturation zones. Figure 

a) corresponds to first simulation and thus a Kv of 50 and Kh of 500 mD for McC, with natural depletion the first six months. It can be seen that most of the 

reservoir domain is almost completely filled by the water injected from the injector situated on the lower right corner. Moreover, it is shown paths with stronger 

blue color corresponding with the high quality sands defined by the channels (paleocurrents) and mark areas with good efficiency of the recovery process . Figure b) 

shows the flow paths for second simulation when Kv is 5mD and Kh is 50mD for the McC lithofacies. This simulation starts with natural depletion the first six 

months as well. It can be observed less water saturation comparing with figure a) and a series of low water saturation paths (reddish colors within the main blue 

color domain) that correspond with the H lithofacies and possible McC facies as well. The water reached the producer well but the reservoir is not completely filled 

by water as in the other case. Figure c) corresponds with the third simulation with a decreasing of Kv until 0.5mD and Kh of 5 mD. The water injection is applied 

from the beginning of the simulation and because of that it can be seen that the reservoir contains more injected water than in case b). However, there are larger 

zones with low water saturations as one expected from the reduction of permeability, which results in increasing of the heterogeneities in the reservoir volume and 

more differences among the facies. 
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Chapter 5 Discussion 

5.1 Facies modeling 

The result of the stochastic approach is an integrated geological model that honors the hard 

data (well data) in terms of structural and stratigraphical and lithofacies interpretation. 

However, the results show that there are differences between the responses measured from the 

outcrop and the facies distribution obtained after simulation. These differences are related to  

- The number of synthetic wells (8 wells) used to control the facies simulation 

- The parameters used in the geostatistical approach 

- The stratigraphic model resulting from the geological interpretation of the outcrop. 

For this reason, to obtain reliable facies distributions with stochastic methods, the following 

steps should be accomplished (Falivene et al., 2007): 

1. Depending on the geological context, one should consider stationarity or trends in 

proportions, geometrical characteristics of facies elements in terms of statistical properties, 

such as proportions, variograms, standard deviation, etc.  

2. For reproducing the facies distribution by stochastic modeling, the grid size should be 

adapted to the vertical and lateral sizes of the heterogeneities. 

3. Take into account the relationship between the soft data used for the modeling 

algorithms and the geometrical parameters describing the facies distribution, i.e. the resultant 

sizes of the facies patterns are correlated with the variogram ranges or with the slope of the 

variogram in the SIS methods. 

4. Finally, the hard data conditioning the simulation (synthetic well-log data in this case) 

should remain inchanged by the modeling approach. 
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In this study the facies modeling was achieved following two kinds of pixel-based methods 

(described in chapter 2): (1) Plurigaussian simulation and (2) Sequential indicator simulation, 

after evaluating the scale of the problem, the depositional setting, the objective and mostly the 

limited data available. Due to the limited dataset and the complexity of the heterogeneities 

visible on the outcrop, the two methods were combined to reproduce the depositional model. 

Moreover, this approach has been applied successfully in other studies dealing with such 

deep-water deposits. 

In both cases, plurigaussian (for units C1 and C2.2) and SIS (for units C3, C2.1-up and C2.1-

mp-lp), in order to account for anisotropy (flow direction 290°, on the outcrop), we 

introduced for the variography constant values of sill and nugget (1 and 0.1, respectively), but 

we changed the ranges. Moreover, the variograms were computed for the vertical direction 

because the number of wells is too low to interpret with confidence horizontal variograms 

(not enough geological sampling in the horizontal domain). 

As we explained before, the variability of the model is dependent on the values attributed for 

the range values in major horizontal X = 500m, minor horizontal Y = 100m and vertical 

directions Z = 0.5m (vertical values should be at least the height of the cells), for all the 

facies. These values were chosen after checking several simulations because they reproduced 

the best spatial continuity on the facies distribution, as observed on the outcrop. 

Some of the variograms exhibited oscillations (channel-form set C.2), which correspond to 

wavelengths of associated periodicity. In this case, it can be related with the continuity of the 

lithofacies and the lengths of lithofacies patterns. However, these two tendencies are quite 

closed (0.8 and 1.1), thus we assumed as one tendency. 

Apart from the variogram criteria, we decided to choose a 3D matrix of proportion to 

introduce lateral trends in the relative vertical distribution of facies of the geological units. 

Furthermore, in most of the units, except for unit C3, the simulation was made with a matrix 

of proportion of 5X5, which allows a better lateral continuity of facies distribution than 

Matrix of 10X10. 

On other hand, another kind of criteria was defined in this case to check the accuracy of the 

final model and these characteristics are explained on the chapter 2 of this study, but as a 

summary are: (1) Pinch out geometries, (2) levee depositional sediments, (3) distribution and 

proportion of heterolithic facies and (4) distribution of mud-clast conglomerates and 

conglomerates in the channel form set C2. 



   5. Discussion 

 111 

These criteria were preserved during the modeling operations and in compilation with 

structural parameters, we could check that: 

• The geological model of the Ainsa Quarry outcrop is well defined in terms of (1) 

orientation with the major direction oriented towards WSW-NSN and the minor direction 

towards SSE-NNW, (2) structure and architecture. It is easy to observe that the boundary 

surfaces that divide the model in different units follow the same shapes than in the outcrop, 

starting with the base of the C3 (the most noticeable and easiest to observe due to the erosive 

nature), to a smaller scale as the convex-up top on the top part of the middle package of C2.1-

mp-lp. 

• The main problem related with the structural parameters that can be seen in this model 

is in the unit C2.1mp+lp. The facies distribution at the border of this zone seems quite blocky 

and onlapping the unit C1. This is because the C2.1 mp-lp layer geometry was designed 

following the Top and as we explained before the grid layering style has large impact on the 

later facies modeling. An alternative option would have been an isoproportional gridding. 

• In general terms, the simulation of the facies distribution seems slightly “blocky”, 

mostly in the vertical direction for Heterolithic facies and with lateral continuity lower than in 

the outcrop. This can be related with the matrix of proportion used, which gives the lateral 

trend and also due to the lack of horizontal variograms. However, these differences between 

the facies model and the outcrop are small if we take into account the aim of this study. 

• With regard to the connectivity, we adopted the definition given by Pardo-Iguzquiza 

and Dowd (2003), meaning that we measured both vertical and horizontal connectivity, 

mostly in the reservoir zone, because the potential heterogeneities can play an important role 

in terms of barriers or baffle zones. From the different simulations we could check that in 

most of the cases the sand connectivity in horizontal and in vertical direction is greater than 

for the outcrop. Also, it is possible to observe sand-paths parallel to the anisotropy direction. 

This can be related with the lack of horizontal variograms that can result in the simulation of 

too narrow or not well connected heterolithics beds. 

• Finally, this model is only constrained by the hard data from the wells logs which 

means that using a seismic constraint, for example for computing the matrix of proportions, 

would optimize the modeling of the facies distribution and some problems as the lateral 

continuity would decrease. 
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5.2 Fluid flow simulation 

For the fluid flow simulation we created a petrophysical property model from the facies 

model. To each facies is assigned a constant value of porosity and permeability (Table 4.1). 

Only for Mud-clast conglomerates we changed the permeability from run to run, based on the 

studies of Falivene et al. 2007. For each simulation, we tried to maintain a constant value of 

water rate and oil rate from a given bottom hole pressure. The simulation consisted of single-

phase fluid flow through the reservoir volume created from the Ainsa-1 quarry outcrop. 

Geological heterogeneity is recognized as a major control on reservoir production and it 

includes variations in grain-size, porosity, mineralogy, lithologic texture, rock mechanical 

properties, structure and diagenetic processes (Eaton, 2006). All these factors cause variations 

in hydraulic conductivity, storage, and porosity, and thus control flow and transport through 

these rocks. The type of geological heterogeneity that was taken into account in this study 

basing on the scale of the problem it was related with the petrophysical properties of the 

facies and large scale structure, as layering, bedding, etc. 

For testing the influence of large scale heterogeneities in the reservoir, first of all, we checked 

the simulation-model properties. This means that we observed zones where the simulation 

model preserves high-permeability geologic features such as channels (paleocurrents) and we 

assumed that probably the flow would follow these paths, verifying the high-quality sands and 

would be affected by shales, mostly on vertical dimension.  

It is commonly observed that vertical permeability is lower than horizontal permeability and 

this happens due to vertical flow crosses strata (the presence of a thin shale layer can reduce 

Kv dramatically while having only minor effect on horizontal permeability). This relation is a 

direct result of the flows in the fine-scale reservoir description (Stern, 2005). 

After this test, we run the different simulations, which were defined for being affected mainly 

by permeability heterogeneities without confounding effects. Thanks to this, they give an 

intuitive visualization of flow patterns, which can be probably similar to the flow paths in oil-

recovery processes. 

First of all, we could check that in our model when the injection starts the reservoir is 

charging radially from the injector until the water reaches the producer well (BTT). Therefore, 

it looks that most of the oil is drained, vertically and horizontally, and this confirms that the 
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well pattern-geometry chosen (quarter five-spots injection production) is a good choice for 

this reservoir. 

Secondly, large scale flow paths, reservoir volume swept by the waterflood are related with 

the continuity of the heterogeneities in both vertical and horizontal dimension along the 

reservoir volume. However, the overall flow distribution is quite similar on the three 

simulations, because the percentage of McC is not big enough inside the reservoir. But when 

one checks that at fine scale, when the model is observed locally the next variations can be 

observed: 

1. Fluid-flow simulations demonstrate that relatively long-range heterogeneities features, 

such as vertical and horizontal interbedded contrasts, may have significant effects on flow 

behavior.  

2. The extent of flow path decreases with increasing range of heterogeneity. In other 

words, with an increase of non-reservoir facies (from 500 mD to 5mD for Kv in McC) the 

time that injected water needs to reach the producer well increases and, thus the volume of 

reservoir filled by water is less. 

3. Water saturation maps (Figure 4.13, Figure 4.21 and Figure 4.29) indicate differences 

in the degree of flow path within the reservoir as a function of petrophysical heterogeneity. 

These models are obtained after 8 years of flow simulation. 

4. The differences in saturation distributions are attributed mostly to the range of 

permeability values among the facies models. 

5. As, we expected from the modeling (constant values of porosity and permeability) 

there is no presence of fingering tendency on the front of the path flow, being fingering 

referred as preferential channeling of fluids (Pranter, M.J. et al. 2006). 

6. On the water saturation pictures appear some zones with really low saturation values 

and this is related with low petrophysical properties; they are not artifacts.  

The oil production rate exhibits, usually, an anomaly at an early time and this anomaly is also 

reflected on the bottom-hole pressure and the ratio of injection/production rate. Moreover, this 

anomaly occurs as well in the injector well and it is shown in the BHP, also. 

This anomaly was interpreted at first as a consequence of natural depletion, which causes a 

pressure drop until the "bubble point" (PT state which generates gas) and for this reason the 

oil production could drop until almost zero. However, after simulating the fluid-flow with 
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water injection since the beginning, the anomaly continues to appear on the graphics. 

Therefore, it was considered as a consequence of the excessive water injection (to keep 

constant rate the well should be under high pressures) that affects the mechanics in the 

simulator which constrains the bottom-hole pressure. Injection/production flow-rate profiles 

show that the three models have no good injectivity due to the pressure anomaly. 

The watercut, in the models, increases rapidly after breakthrough and this can be correlated 

with the length and the range of permeability values of the different facies, which influence 

this flow behavior. 

Finally, the lateral variation observed at the Quarry outcrop during flow simulation is mostly 

perpendicular but also parallel to the paleocurrent directions. The possibility to observe the 

parallel variations is closely linked to the creation of the other four synthetic wells on the back 

of the outcrop. This gives a better constraint of the facies distribution creating an "illusion" of 

3D modeling. 

This suggests one important conclusion of the modeling and flow-simulation study: the 

crosscutting relationships of heterolithics inside a reservoir (analogue outcrop) should be 

captured in the modeling process as 3D data. However, nowadays, most facies modeling 

based on outcrops are restricted to 2D due to the shortage of 3D data, but this may change 

with new technologies (LIDAR and GPR), which give access to 3D information. 
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Chapter 6 Summary and conclusions 

 

This study presents a specific workflow developed to build a geological model, which could 

reproduce in detail the heterogeneities distribution inside the analogue outcrop chosen (Ainsa-

1 quarry outcrop). Through, this study we have arrived to next conclusions: 

1. The good accuracy of a facies model distribution depends on stochastic algorithms and 

the structural model created (network cells and surfaces boundaries which give the geometry) 

2. In general terms, the geology model built for this study is well accurate with realistic 

simulation of geometric and stratigraphic model oriented with the major direction towards 

WSW-NSN. The only problem is the wrong impact that the reference surface creates at the 

border of this zone in the unit C2.1-mp-lp.  

3. This facies model, presented in this study, honors the hard data from the well logs but 

the final design looks slightly blocky and with no large lateral continuity. This can be related 

with matrix of proportion used in every unit. This could be improved with a seismic constraint 

to be introduced for the construction of a new matrix. 

4. Sand connectivity follows channel flows and it is overestimated in this model on the 

horizontal dimension. This is related with the small dataset (only 8 vertical synthetic wells) 

that cannot simulate reliable horizontal variograms. 

5. Vertical permeability is lower than horizontal permeability, because the presence of 

non-reservoir layers can reduce mostly Kv with minor effect on Kh. This can be observed at 

smaller scale on the heterolithic lithofacies, which has a permeability ratio of 0.001 because it 

is a facies forms by packages of layered mudstones and sandstones beds up to 10 cm. 

6. The reservoir is charging with water from the injector radially, confirming the well-

pattern choice for this reservoir (quarter five-spots injector-producer). 

7. Overall flow distribution is quite similar on the three runs but looking a smaller scale, 

it can be observed some patterns on the flow behavior produced by heterogeneities: 
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- Long range heterogeneities features have significant effects on the flow behavior. 

- Decreasing of flow extension with increasing the range of heterogeneity on the model. 

Water saturation is related with the petrophysical parameters of the facies, mostly with the 

permeability. 

- The water cut increases fast after breakthrough due to the constant permeability values 

among the facies. 

- There is an anomaly on the pressure behavior at early times, usually and it is 

correlated with an excessive water injection that affects the BHP. 

- There are perpendicular and parallel lateral variations during the flow simulation 

related with the paleocurrents directions. 

Following the results of this study the further studies can be suggested: 

• Improve facies model and structural model, decreasing the size of the cells at the first 

step of modeling design, for later upscaling. 

• Using seismic constraint to build a more detailed geological model to improve the 

uncertainties in heterogeneity distribution, mostly perpendicular to the major horizontal 

direction of the outcrop. 

• Use different well patterns injector/producer, increasing the number of wells or using 

the peripheral water injection pattern, to check the flow responses and the relation with the 

heterogeneities. 

• Join the two parts of the reservoir volume by creating a possible flow path, thanks to 

the thick-bedded sandstone on the unit C1, which has a large lateral continuity. 

• Use other petrophysical properties to better constraint the heterogeneities in the 

reservoir model, as the volume of shales. 

Allow the petrophysical properties as porosity and permeability to vary within facies to have 

the opportunity to check short-scale heterogeneities within the reservoir model
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Appendix 1- Selected petrophysical 

properties for the different facies of the 

Ainsa-1 quarry outcrop 
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