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Preface

This thesis is a submission for the degree of philosophiae doctor (PhD) at the University 

of Bergen, Norway. The thesis has been structured to include an introduction, 

methodology, main results, conclusion, suggestions for further work, critique of methods 

and a collection of papers. The thesis consists of four (4) papers; two (2) published one 

(1) in press and one (1) manuscript. The papers are based on experimental work carried 

out in the Department of Chemistry of the University of Bergen (Papers I, II and IV) and 

the University of Agder, Kristiansand (Paper III). 

The PhD program was sponsored by the Agder fund as part of an attempt to find 

remediation methods for environmental pollution since the West and East Agder districts 

are home to a number of industries including an aluminium processing plant which 

discharges hazardous compounds such as polycyclic aromatic hydrocarbons (PAHs) in its 

electrolytic hall process.

The thesis considers 3 methods of remediation of PAHs namely: pyrolysis, adsorption 

and photochemical degradation.  

During the three year period of my doctoral studies, I have had the privilege of 

participating in 4 international conferences namely; NATO SFP 982590 Project 

Workshop in September, 2010 at Dubrovnik, the International Launching Ceremony of 

the International Year of Chemistry (IYC) in January 2011 at Paris, 15th Annual Green 

Chemistry and Engineering Conference & International Conference on Green and 

Sustainable Chemistry in June 2011 at Washington DC and a Statoil Travel Grant to 

attend ISPAC23 (23rd International Symposium on Polycyclic Aromatic Compounds) 

held in September 2011 at Munster. These exposures have broadened my horizon and 

offered the platform for constructive scientific discourse and exchange. 
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in it, for your gifts of life, wisdom, knowledge, understanding, health, endurance and 

sustenance throughout this 3 year journey. 

I certainly made it because you care” 
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Abstract

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous persistent semi-volatile organic 

compounds. They are contaminants that are resistant to degradation and can remain in the 

environment for long periods due to their high degree of conjugation, and aromaticity.

PAHs are present in industrial effluents as products of incomplete combustion processes 

of organic compounds. Petroleum, coal and shale oil contain extremely complex mixtures 

of these PAHs, and their transport and refining process can also result in the release of 

PAHs.  

It is therefore prudent that such effluents are treated before discharge into the 

environment.  

In this project, different approaches to the treatment of PAHs have been investigated. 

Hydrous pyrolysis has been explored as a potential technique for degrading PAHs in 

water using anthracene as a model compound.  The experiments were performed under 

different conditions of temperature, substrate, redox systems and durations.  

The conditions include oxidising systems comprising pure water, hydrogen peroxide and 

Nafion-SiO2 solid catalyst in water; and reducing systems of formic acid and formic acid 

/ Nafion-SiO2 /  Pd-C catalysts to assess a range of reactivities. Products observed in GC-

MS analysis of the extract from the water phase include anthrone, anthraquinone, 

xanthone and multiple hydro-anthracene derivatives (Paper I). 

In addition a modified version of the Nafion-SiO2 solid catalyst in water oxidising system 

was tested; and reducing systems of formic acid and formic acid / Nafion-SiO2 / Pd-C 

catalysts were adopted for the conversion of a mixture of anthracene, fluorene and 

fluoranthene. The rate of conversion in the mixture was high as compared to that of only 

anthracene (Paper II).

Also the use of LECA (Lightweight expanded clay aggregates) as an adsorbent (Paper 

III) for PAHs (phenanthrene, fluoranthene and pyrene) removal from water has been 
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successfully achieved as well as photodegradation (UV) studies of fluorene in different 

aqueous media (Paper IV). 
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CHAPTER 1 

1. Introduction 

1.1 Polycyclic aromatic hydrocarbons: Physical and chemical properties 

In the strictest definition, PAHs are composed of "two or more fused aromatic (benzene) 

rings. However, most people consider the most important criteria in classifying PAHs to 

be whether or not two benzene rings are present in the chemical structure. Biphenyl is 

considered by most environmental chemists to be a PAH even though the two rings are 

joined by only a single bond rather than fused (Irwin et al., 1997). However “fused 

aromatic rings” is probably the best definition. One can also use “carbocyclic systems” in 

describing some types of compounds (PAC, 1995). 

 

PAHs are to a certain degree resistant to biodegradation (Maliszewska-Kordybach, 1999) 

and are sometimes included in a class of persistent organic pollutants (POPs) (Wild and 

Jones, 1995).

 

PAHs are hydrophobic compounds and their persistence in the environment is also linked 

to their low water solubility and electro-chemical stability (Cerniglia, 1992). Of the over 

900 agents compiled by the International Agency for Research on Cancer (IARC), 400 

have been classified as carcinogenic (this includes PAHs) (IARC, 2009).  

 

The properties and environmental fate of PAHs are dependent on the number of rings and 

molecular weight. High molecular weight (HMW) PAHs are compounds with four or 

more fused benzene rings, whereas the low molecular weight (LMW) compounds consist 

of two to three fused benzene rings (Law et al., 2002). The low molecular weight PAHs 

are less persistent, highly volatile, slightly soluble in water and less carcinogenic but are 
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toxic to fish and other marine organisms  since they accumulate in their tissues 

(bioaccumulation) and are able to move up the  food chain (biomagnification) and 

adversely affect humans upon consumption (Law et al., 2002). 

High molecular weight PAHs persist (less volatile and more resistant to oxidation) and 

are more insoluble when alkyl substituent groups are attached to one or more rings. The 

substitution of an alkyl or chlorine group to PAHs changes the fate and characteristics 

making them more reactive and potentially more toxic than the parent PAHs (Irwin et al., 

1997; Opperhuizen et al., 1993).  

 

The observed effects caused by PAHs can be grouped according to their carcinogenicity, 

mutagenicity, teratogenicity, direct toxicity and/or combinations of all (Groenendijk, 

1993). There are several hundred PAHs which often exist as mixtures rather than as 

single compounds (Chun et al., 2002).  

 

The most common PAHs are anthracene, benzo(a)pyrene, chrysene, fluorene and pyrene 

(Environmental Programs Directorate, 2011) however benzo[a]pyrene (BaP) is 

commonly used as an indicator species for PAH contamination and most of the available 

data refer to this compound (Bull, 2008.) Details of the properties of the 16 PAHs of 

importance to the European Union (priority contaminants) are presented in Table 1.1. 
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1.2 Occurrence and environmental fate of PAHs 
PAHs can be formed from both natural and anthropogenic sources, though the 

anthropogenic sources contribute most to the hazards associated with PAHs.  

 

The natural sources of PAHs include biosynthesis by algae and bacteria as well as 

volcanoes and forest fires (Lee et al., 1981). Low to moderate temperature diagenesis of 

sedimentary organic material to form fossil fuel is also a natural source of PAHs (Neff, 

1979). 

 

The anthropogenic sources include products of incomplete combustion of organic 

material in the coal, petroleum and metal smelting industries (Keith, 1977; Bradley et al., 

1994). They also include urban runoffs and deterioration of asphalt pavement surfaces 

and car tyres. 

 

PAHs are ubiquitous and there exist several hundreds of them in the environment 

(Ramesh et al., 2004; Wild and Jones, 1995). They are usually found as a mixture 

containing two or more of these compounds and commercially available pure PAHs are 

usually colourless, white or pale yellow - green solids which are odourless or have a 

faintly pleasant odour (Buha, 2011).  

 

Some PAHs are used in medicines, dyes, plastics and pesticides. Others are contained in 

asphalt used in road construction as well as found in substances such as crude oil, coal, 

coal tar pitch, creosote and roofing tar (ATSDR, 1995).  

 

The natural and anthropogenic sources of PAHs and the ubiquitous global transport 

phenomenon result in the world-wide distribution of these compounds,  which are subject 

to short and long-range transport, and are removed by wet and dry deposition onto soil, 

water and vegetation.  
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PAHs exist in air, water, soil and sediment at low concentrations with high thermal 

stability (Johnsen et al., 2004; ATSDR, 2006).  

 

In air, PAHs are present in the gaseous phase or sorbed to particulates. PAHs having two 

to three rings are predominantly found in the vapour phase, those with four rings exist 

both in the vapour and particulate phase, and those with five or more rings exist 

predominantly in the particle phase (Jones et al. 1992). In surface water, PAHs can 

undergo volatilisation, photolysis, oxidation, biodegradation, bind to suspended particles 

or sediments (adsorption) or accumulate in aquatic organisms (with bioconcentration 

factors often in the 10-10,000 range). In sediments, PAHs can undergo biodegradation or 

accumulation in aquatic organisms. PAHs in soil can volatilise, undergo abiotic 

degradation (photolysis and oxidation), biodegrade, or accumulate in plants. PAHs in soil 

can also seep into groundwater and be transported within an aquifer (ATSDR, 1995). 

 

Due to the widespread release of PAHs which consequently results in considerable health 

and environmental hazards (Ntainjua and Taylor, 2009), the European Union as well as 

the United States Environmental Protection Agency (USEPA) has specified permissible 

limits for the 16 priority PAHs (Campro Scientific, 2011; USEPA, 2008). 

1.3 Reactivity of PAHs 

Polycyclic aromatic hydrocarbons are classified as chemically inert and are mainly 

transformed into other polycyclic aromatic compounds (PACs) by electrophilic 

substitution reactions rather than addition (although addition reactions sometimes occur). 

Thus, large amounts of energy are required to transform an aromatic compound into a 

non-aromatic product. The electron distribution over the PAH molecule determines the 

positions of the molecule that are most reactive (Lee et al., 1981; Wheland, 1942 in 

Lundstedt, 2003). 
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According to the work of Zander, naphthalene reactivity is higher for position 1 than 2 

whilst anthracene and phenanthrene undergo redox reactions at positions 9 and 10, 

though the reactivity of anthracene is higher. Anthracene also forms an endoperoxide in 

the presence of light (Zander, 1979 in Lundstedt, 2003). Fluorene is most reactive at 

position- 9 while the other PAHs (like fluoranthene and pyrene) resemble anthracene and 

phenanthrene in terms of the types of reactions they undergo (Mojelsky and Strausz, 

1986; Lloyd, 1989). The localisation energy concept seems to be the underlying principle 

that helps in explaining the mechanisms associated with PAH-degradation and PAH-

derivative formation (Zander, 1979 in Lundstedt, 2003). The numbering system of the 

carbon atoms in all PAHs follows a systematic order with the exception of anthracene 

and phenanthrene (Lee et al., 1981). The numbered positions of the PAHs used in this 

study are shown in Figure 1.1. 

 

                                 
     

    Anthracene                       Fluoranthene               Phenanthrene                  Fluorene  

 

       
     

             Pyrene                      

 

Figure 1.1: Chemical structures indicating numbered positions of selected PAHs
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CHAPTER 2 

2. Objectives of the study

2.1 General objective 

PAHs are released as byproducts of industrial activities such as the electrolytic process in 

aluminium smelting plants. These PAHs end up in effluents like process water and 

sludge. It is therefore prudent that such effluents are cleaned before discharge into the 

environment. The primary objective of the study is therefore to determine clean-up 

procedures for aqueous polycyclic aromatic hydrocarbons.  

2.2 Specific objectives

The specific objectives of the study are: 

To explore different hydrous pyrolysis approaches for the degradative remediation 

of anthracene (I). 

To explore catalytic hydrous pyrolysis for the degradative remediation of a 

mixture of PAHs (anthracene, fluorene and fluoranthene) (II). 

To explore lightweight expanded clay aggregates (LECA) as sorbent for the 

removal of aqueous PAHs (phenanthrene, fluoranthene and  pyrene) (III), and  

To investigate the photochemical degradation of fluorene: A sparingly soluble 

PAH (IV). 
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CHAPTER 3 

3. Overview of sources, cleanup methods and analytical 

measurement techniques for PAHs 

3.1 Environmental polycyclic aromatic hydrocarbons, industrial perspectives 

and the need for remediation  

Environmental monitoring of the levels of the 16 priority PAHs (Table 1.1) from 

anthropogenic sources is an issue of global concern (Wenzl et al., 2006). PAH emissions 

from industries are produced mainly by burning fuels such as gas, oil and coal (Chen et 

al., 2007) and in the industrial production of metals. 

In the aluminium industry for instance, alumina is obtained from bauxite by the Bayer 

process. Aluminium is produced by reduction of alumina by the Hall-Heroult electrolytic 

process. Aluminium reduction cells are at present of two types: those with pre-baked 

anodes and those with baked-in-place anodes (Soderberg). PAHs are produced during the 

manufacture of the anode for modern "pre-bake" aluminium smelters as well as during 

the electrolytic process itself in the older (Soderberg) type facilities. Current air emission 

levels of PAHs from pre-bake plants are 0.05 kg per tonne and 0.25kg per tonne from 

Soderberg plants. In recent years levels have been reduced considerably. Modern plants 

based on pre-bake technology emit less than 0.01 kg per tonne (ECLAC, 2007; 

Electrochemistry Encyclopedia, 2008).  

Other industrial activities like petroleum production and spillage, cement, bitumen and 

asphalt production, municipal and medical solid waste incineration, wood preservation 

products, commercial heating and power production stations (Pelletier et al., 1997; Eisler, 

1987; Dyke, 1981) also release PAHs into the environment. These PAHs are released in 

gaseous emissions as well as in aqueous and solid effluents (Busetti el al., 2006; Slaski et 
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al., 2000). These contaminate air, soil and water bodies. Estimates of levels and probable 

types of PAHs released as a result of the various industrial activities from different 

countries is presented in Table 3.1.  

Remediation of environmental organic pollutants such as PAHs include physical methods 

like soil washing, land filling, immobilisation; thermo-chemical methods like 

incineration, thermal desorption, radio frequency heating; chemical methods like 

oxidation, ion exchange , adsorption, absorption, electrolysis and chemical precipitation ; 

bioremediation methods like natural attenuation, biostimulation and bioaugmentation and 

phytoremediation such as rhizofiltration, phytoextraction,  phytostabilisation and 

phytodegradation (Rushton et al., 2007; Chun et al., 2002).  

The following sub-sections will review literature on the cleanup methods used in this 

thesis, namely; thermal, sorption and photochemical procedures for the removal of PAHs. 
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Table 3.1: PAH emission from industrial processes for some countries  

* (tpa: tonnes per annum) Source: IPCS, 1998 

# Source of emission  Likely emission /profile 

1. Coal Coking  PAHs: 15.2 mg/kg coal charged (general for most 

countries) 

2. Coal Conversion PAHs: 1500 g/g burnt coal (general for most countries) 

3. Petroleum Refining  PAHs:0.1tpa (Canada), 11 tpa (Germany) 

4. Power plants using fossil 

fuel 

PAHs: 0.15 tpa (Germany), PAHs: 0.1 tpa Norway , PAHs: 

11 tpa Canada 

5 Incinerators (refuse 

burning) 

B(a)P: 0.001 tpa (Germany) , PAHs: 50 tpa (USA),  

PAHs: 2.4 tpa (Canada) 

6 Aluminium Production 

(vertical process) 

PAHs:1000 tpa (USA) , 930 tpa (Canada) 

7 Iron & steel Production PAHs: 34 tpa (Norway) , PAHs: 19 tpa (Canada) 

8 Foundaries PAHs: 1.3 tpa (Netherlands) 

9 Sinter Process PAHs:1.3 tpa (Netherlands) 

10 Phosphorous Production  PAHs: 0.2 tpa (Netherlands) 
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3.2 Thermal approaches to the removal of polycyclic aromatic hydrocarbons 

Thermal treatment of polycyclic aromatic hydrocarbons under controlled conditions is 

one of the more effective methods of degradation (Pakpahan et al., 2009). The method 

has applications at different reaction temperatures and under various conditions. Thermal 

degradation can occur at low, intermediate or high temperatures. It can also occur in the 

presence of additives with or without the presence of oxygen. Extraction with water or 

degradation in the presence of water is also a feasible method of PAH degradation (Lui et 

al., 2001). 

 

3.2.1 Low temperature processes 

Low-temperature thermal processes are generally classified as operating below 177 ooC, 

though temperatures slightly above this are acceptable (Health care without harm, 2001). 

Uncontrolled low temperature thermal treatment of organic waste leads to the formation 

of PAHs with more than 4 rings while degradation occurs for only those with less than 4 

rings (Pakpahan et al., 2009).  

According to a study conducted on the thermal stability of benzo[a]pyrene (BaP), 

benzo[a]anthracene (BaA) and dibenzo[a,h]anthracene (DBahA) at temperatures 100- 

200 oC , the loss of each PAH, whether found as a solid or in solution depends on time. 

More of the original compounds were lost at 200 oC than at 100 oC (Chen and Chen, 

2001). Low temperature thermal degradation of PAHs is sometimes enhanced in the 

presence of biochemical processes (Eriksson et al., 2003). 

 

3.2.2 Intermediate temperature processes  

Medium or intermediate temperature thermal processes usually take place between 177 -

370 oC (Health care without harm, 2001). Successful removal of PAHs from sediment by 

thermal desorption at 300 oC has been documented by Kopinke and Remmler (Kopinke 

and Remmler, 1995). Intermediate thermal treatments usually employ sub-critical water 

for the removal and H2O2 for the oxidation of PAHs (Pakpahan et al., 2009). 



13

3.2.3 High temperature processes 

High temperature thermal processes occur between 540 and 830 oC or higher and are 

typical for those utilised for medical waste treatment (Health care without harm, 2001). 

Treatment of medical waste by Wheatley and Sadhra at 800-1000 oC indicated that no 

PAHs were found in fly ash but high molecular PAHs (MW 228-252) were found in the 

bottom ash (Wheatley and Sadhra, 2004). Heating usually goes beyond 1000 oC in order 

to ensure the destruction of the higher molecular weight PAHs. 

 

3.2.4 Hydrothermal processes (Hydrous pyrolysis) 

Pyrolysis is a physico-chemical action belonging to the umbrella group of thermal 

processes. It is the thermal decomposition of organic material with no or very limited 

oxygen at temperatures ranging between 300 and 600 oC (Brown and Stevens, 2011).

 

Under hydrothermal conditions, toxic and refractory organic compounds undergo 

oxidation and reduction among other reactions, however oxidation is the most widely 

used method for waste remediation purposes (Rice and Steven, 1998). 

Interest in the use of water as a ‘green’ solvent and reaction medium is increasing. This 

has resulted in a lot of research work on the reactions of organic molecules at 

hydrothermal sub-critical (100-350 oC, 5-20MPa) and supercritical water ( 374 oC, 

22.1MPa) conditions (Savage, 1999 in Kim et al., 2008). 

 

The use of pressurised water (Pressurised Hot Water Extraction, PHWE) in removing 

PAHs from sludge and sediments has proved effective with maximum efficiency at 300 
oC. When the temperature of water is increased above 380 oC, it is called Super-Critical 

Water (SCW) (Kronholm, et al., 2003) and the density of water decreases very rapidly up 

to 410 oC due to thermal expansion. The dielectric constant of water decreases with 

decreasing density. Supercritical water is a fluid with both liquid and gaseous properties 

and behaves as a non-aqueous fluid dissolving organic compounds like alkanes, 
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aromatics, etc. (Shaw et al., 1991).  The use of SCW oxidation, PHWE and Wet Air 

Oxidation, WAO (hydrothermal oxidation with an external source of oxygen as oxidant) 

are very common methods of organic waste remediation (Onwudili and Williams, 2007; 

Kronholm, et al., 2003).  
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3.3 Adsorption processes for removal of polycyclic aromatic hydrocarbons 

from water 

Adsorption or sorption of a substance involves separation by accumulation at the 

interface between two phases, such as a liquid and a solid or a gas and a solid. In 

principle adsorption can occur at any solid-fluid interface. The molecule that accumulates 

on the surface is called an adsorbate and the solid on which adsorption occurs is the 

adsorbent. Adsorption can be classified as chemisorption or physisorption. Chemical 

adsorption (chemisorption) involves an interaction caused by the formation of chemical 

bonds between the surface of solids (adsorbent) and adsorbate. The energy involved is 

similar to that of chemical reactions which can be exothermic or endothermic processes 

ranging from very small to very large energy magnitudes (Al-Anber, 2011). 

Physisorption is a physical adsorption process which involves intermolecular forces like 

Van der Waals forces. The energies of interaction between the adsorbate and adsorbent 

have the same order of magnitude and there is no activation energy involved (Al-Anber, 

2011). 

 

Adsorbents of interest in water treatment include activated carbon; ion exchange resins; 

adsorbent resins; metal oxides, hydroxides, and carbonates; activated alumina; clays; and 

other solids that are suspended in or in contact with water (Summers and Snoeyink, 

1999). Activated carbon remains the most widely used sorbent for water treatment to 

remove specific organic molecules responsible for taste, odour, mutagenicity and 

toxicity, as well as natural organic matter (NOM) responsible for colour (American 

Water Works Association, 1977). 

 

Adsorption is central to a number of physical, biological and chemical processes and 

operations in environmental studies. Adsorption of dissolved impurities from solution has 

been widely employed for water purification and is currently viewed as a superior 

method for wastewater treatment and water reclamation. Sorption methods have been 
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proved to be effective for the removal of dissolved organic compounds including PAHs 

(Weber, 1972).  

 

The factors that affect adsorption equilibrium are (i) surface area of adsorbent (larger 

surface area implies a greater adsorption capacity), (ii) Particle size (smaller particle sizes 

reduce internal diffusion and mass transfer limitation due to the penetration of the 

adsorbate inside the adsorbent. Thus, equilibrium is more easily achieved and nearly full 

adsorption capability can be attained), iii) contact or residence time (the longer the time 

the more complete the adsorption will be) and (iv) solubility of solute (adsorbate) in 

liquid (Al-Anber, 2012). 

3.3.1 Adsorption isotherms: Basic theories 

Isotherms are generally used to predict and evaluate the sorption capacity of a sorbent 

(Chiang et al., 1993). Adsorption results in the removal of solutes from solution and their 

concentration at a surface, until the amount of solute remaining in solution is in 

equilibrium with that at the surface. This equilibrium is described by expressing the 

amount of solute adsorbed per unit weight of adsorbent q, as a function of C, the 

concentration of solute remaining in solution. An expression of this type is termed an 

adsorption isotherm. The most widely used isotherms for water and wastewater treatment 

applications are the Freundlich and the Langmuir equations (Weber, 1972).  

 

The Langmuir isotherm is based on the assumptions that sorption is limited to one 

monolayer where all surface sites are equivalent (Langmuir, 1918 in Allen et al., 2004). 

The linearised Langmuir isotherm equation is mathematically expressed as in equation 

3.1. 

 

1/qe=1/Q0b.1/C + 1Q0                                                                                                     (3.1) 
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Where Q0 is the Langmuir constant analogous to maximum amount of adsorption 

corresponding to complete monolayer coverage (mg/g) and b is the Langmuir constant 

which is related to the rate of adsorption intensity, qe is mass of adsorbed pollutant per 

unit of sorbent (mg/g) at equilibrium, C (mg/l) is the concentration of dissolved adsorbate 

in solution. 

 

The Freundlich isotherm is a non-linear model which is based on the assumption that the 

sorption system involves heterogeneous surfaces, limited sorption sites and potential 

energy interactions (Freundlich, 1906 in Allen et al., 2004). The Freundlich model is 

expressed mathematically as shown in equation 3.2. 

 

qe =KFC1/n                                                                                                                                                                                      (3.2) 

 

Where KF and n are constants and n> 1 

Data are usually fitted to the logarithmic form of the equation, which gives a straight line 

with a slope of 1/n and an intercept equal to the value of log KF for C = 1 (log C= 0) and 

C is the concentration of dissolved adsorbate in solution. 

The intercept is roughly an indicator of sorption capacity and the slope, 1/n, of adsorption 

intensity. The Freundlich equation generally agrees well with the Langmuir equation and 

experimental data cover moderate ranges of concentration (Weber, 1972).
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3.4 Photochemistry

Photochemical processes are initiated by the absorption of a photon by a molecule. The 

functional groups that absorb photons are referred to as chromophores and include groups 

such as double bonds, carbonyls and aromatic systems (Jacobs, 2008).  

When organic molecules absorb light they are converted to an electronically excited state 

(i.e the molecule attains a higher potential energy than the ground state energy) 

Absorption ranges of some chromophores are ; Simple alkene 190-200 nm ; Acyclic 

diene 220-250 nm , Cyclic diene 250-270 nm , Styrene 270-300 nm , Saturated ketones 

270-280 nm , , -Unsaturated ketones 310-330 nm , Aromatic ketones/aldehydes 280-

300 nm and aromatic compounds 250-280 nm (Konig, 2011). When a molecule absorbs 

radiation, one of the following can occur:  

i) Vibronic relaxation brings the molecule quickly into the new energy minimum 

structure for the excited state. Energy is released into the solvent.  

ii) Intersystem crossing leads to triplet states by spin inversion and the new energy 

minimum is reached by vibrational relaxation.  

iii) Emission of light and return to the ground state (eg. fluorescence, phosphorescence) 

iv) Quenching of the exited state: this involves energy transfer to another molecule.  

v) Radiationless deactivation: the molecule goes back to ground state by vibrational 

(thermal) deactivation (no light emission). The energy goes to the solvent/environment of 

molecule and  

vi)  A photochemical reaction may occur (Konig, 2011). 

 

3.4.1 Singlet oxygen and photochemical reactions 

Singlet oxygen is the first excited state (1
g) of molecular oxygen (O2) which lies 22.4 

Kcal/mol above the ground triplet state, 3 g
-, (Frimer, 1985).   Molecular oxygen has 

another singlet excited state (1
g

+) lying 31.5 kcal/mol above the triplet state. 
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The transition from the 1 g state to the 3 g
- state is spin forbidden, thus the 1 g O2 is a 

relatively long-lived species. The 1 g
+) state of oxygen however is short-lived due to a 

spin-allowed transition to the 1 g state. Figure 3.1 represents the lowest singlet and triplet 

states of molecular oxygen (DeRosa and Crutchley, 2002). 

 

2nd Singlet State, 1 g
+                                  31.5 kcal/mol        Lifetime: 10-12 sec                  

 

1st Singlet State, 1 g                                               22.4Kcal/mol          Lifetime: 10-4 sec 

 

Ground State, 3 g
-                                                                        

 

Figure 3.1: Lowest singlet and triplet states of molecular oxygen 

Quenching: The deactivation of excited molecular oxygen by another species and the 

subsequent return of the molecular oxygen to the ground state is called quenching. The 

two types of quenching are: 

Physical quenching in which interaction leads to deactivation and no consumption 

of O2 to form products is involved. The process can be expressed as shown in 

equation 3.3. 

1O2 + A  3O2 + A                                                                                                          (3.3)            

                                                                                                  

Chemical quenching in which the quencher reacts with singlet oxygen to form 

products as shown in equation 3.4 (Wasserman and Murray, 1979). 
1O2 + A  P                                                                                                                     (3.4) 
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3.4.2 Photochemistry of aqueous PAHs 

The interaction of aqueous organic molecules (including PAHs) with light has received a 

lot of attention. This interaction occurs by two main routes, namely:   

(i) Direct photolysis: by directly absorbing light and being transformed afterwards and  

(ii) Indirect photolysis: involves the absorption of light by naturally present constituents 

defined as photosensitizers which produce reactive agents that subsequently react and 

transform or degrade other organic molecules (Jacobs, 2008).  

 

Photolysis can come into play whenever an absorbing molecule can transfer energy, a 

proton or an electron to another species. Photosensitisation generally referred to as the 

transfer of energy from a photochemically excited molecule to an acceptor, most often 

oxygen to form a reactive transient form of oxygen, singlet oxygen (1
g). Examples of 

photosensitizers of environmental importance are humic substances, flavins, PAHs, 

tetrapyrroles and mineral surfaces (Rodgers and Snowden, 1982). 

 

Most PAHs can absorb surface solar radiation directly, allowing for the possibility of 

direct photodegradation. Indeed, several studies have shown that a number of PAHs are 

destroyed when irradiated with 313 and 366 nm light in pure water (Fasnacht and 

Blough, 2002). Reactions associated with the direct photolysis of organic compounds are 

usually kinetically simple and easily modelled in cases where the absorption spectrum of 

the compound and its quantum yield of disappearance are measurable. 

 

Photochemical reactions of adsorbed PAH such as BaP have received a lot of attention 

and their modes of transformation and distribution are similar to that of PAHs in bulk-

liquid phase (National Academy of Sciences, 1993). The photo-transformation of 

aqueous PAHs by singlet oxygen has been extensively studied and shown to give various 

oxygenated products including diones and endoperoxides. These partially oxidised 

intermediates are often more biodegradable than the parent compounds and they can 



21

serve as primary substrates for reactions of the high-molecular-weight PAHs (Mueller et 

al., 1996).  

 

In natural waters, the sun's radiant energy is associated with the degradation of organic 

compounds including PAHs and the rate of natural degradation reactions in most parts of 

the world surpasses the quantity (volume) of the waste released (Legrini et al., 1993). 

 

The use of ultraviolet (UV) photo-degradation of PAHs as a treatment method has been 

studied extensively. UV photolysis has been used to eliminate chlorinated and nitrated 

aromatics, phenols and other hazardous wastes present in water. Low pressure Hg lamps 

emitting at 253.7 nm have been used in PAH degradation. Medium to high pressure Hg 

lamps (emitting mostly from 200 to 1000 nm with the most intense lines) have also be 

used for treatment of pure and substituted aliphatics as well as substituted aromatics. 

Most of these UV investigations were made in order to quantify the contribution of the 

electronic excitation of the organic pollutant in combined oxidation processes like 

H2O2/UV, O3/UV and H2O2/O2/UV (Legrini et al., 1993; IUPAC, 2007). 
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3.5 Review of analytical procedures for the measurement of PAHs
Measurements of PAHs in environmental matrices mostly require difficult analytical 

chemical procedures as a result of the complexity encountered in environmental samples. 

This complexity is readily seen when one considers the general categories of phases into 

which environmental samples may be categorized, namely; aqueous, air (gaseous or 

condensates/particulate matter), oil or organic liquid, solids or sludge, biological samples 

and even multiphase samples (Poster et al., 2006).  

 

Sampling, sample preparation, isolation and concentration from sample matrices are 

critical in the analytical determination of PAHs. Typical sample preparation procedures 

include extraction, concentration and clean-up (Speight, 2005). Extraction methods 

explored over the years include: Soxhlet, sonication, liquid-liquid extraction, purge and 

trap, headspace, shaking, vortex, solid-phase, supercritical fluid extraction, solid-phase 

micro extraction (SPME), stir-bar sorptive extraction (SBSE), miniaturized solid-phase 

extraction (SPE), liquid-phase micro extraction (LPME), membrane-assisted solvent 

extraction techniques (MASE) etc., (Tang and Isacsson, 2008). Sample concentration 

methods employed include; nitrogen blowing, vacuum evaporation, micro-Snyder 

column technique and adsorbent or cryogenic trapping (Tang and Isacsson, 2008; 

USEPA, 1996).  

 

Some identification and quantification methods include the use of Gas Chromatography 

(GC), Gas Chromatography-Mass Spectrometry (GC-MS) and High Performance Liquid 

chromatography (HPLC).  

 

In this thesis, liquid-liquid extraction was used in all cases where PAHs were extracted 

from aqueous media. Extracts were then dried with Na2SO4, filtered with membrane filter 

(0.45 μm) and analysed by GC-MS. 
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However, the following sections review general sampling, extraction, clean-up and 

analysis protocols (including those employed in this research) for the analysis of 

environmental PAHs. 

 

3.5.1 Sampling  

Sampling procedures differ depending on the matrix in which PAHs are found. 

 

3.5.1.1Air sampling 

As a result of the wide range of vapour pressures of PAHs, most atmospheric PAHs are 

adsorbed on particulate matter while some may exist in the gas phase (Noto et al., 1996). 

The sub-cooled liquid vapor pressures of 2- to 4-ring PAHs are greater than or equal to 

10-6 torr at 298 K, and ambient air measurements have shown that while the 2- to 4-ring 

PAHs, as well as the 2-ring nitro-PAHs, are largely gas-phase species; the many ring 

species are mostly adsorbed on particulates. As of the early 1980s, sampling methods that 

were used were impingement, precipitation (thermal or electrostatic), cyclone, cascade 

impactor and high volume filtration through a porous filter which is the most common 

method for particulate PAHs determination (Lee et al., 1981). 

Typical filters used are: glass-fiber, with a collection efficiency of 99% for 0.3μm 

particles, cellulose filters and others like the silver membranes. The National Institute of 

Occupational Safety and Health (NIOSH) and the Occupational Safety and Health 

Administration (OSHA) recommend filters with glass fiber as well as silver membranes 

for personal monitoring purposes (Lee et al., 1981). 

Recently there have been additions to the sorbents used in filters for sampling namely 

sorbents and filters which contain PUF and XAD-2 (Li-bin et al., 2007). 
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3.5.1.2 Soil and sediment sampling  

The purpose of soil sampling is to determine the presence of contaminants. There are two 

basic techniques for soil sampling. Samples can either be collected with (i) some form of 

core sampling through the drilling of boreholes, or (ii) by excavations or trenches in 

which the samples are cut from the soil mass with hand-held corers. Soil samples 

collected from a backhoe excavation, the ground surface, soil stockpiles or by means of a 

manual soil coring device are usually collected in a thin-walled stainless steel or brass 

cylinder at least 3 inches long. All samples should be packed in a cooler with dry or blue 

ice in a manner that should prevent damage during transport to the analytical laboratory. 

Temperature during transport should be maintained at 4°C or below. A thermometer 

should be placed in the cooler. Samples are kept at 4°C or below at the laboratory until 

they are analysed. Holding time should not exceed 14 days from the time of collection 

(Mason, 1992). 

3.5.1.3 Water sampling 

The collection, transport and storage of water samples if not properly done before 

analysis, could alter the final composition at the time of analysis. Inasmuch as plastics, 

polypropylene or polyethylene containers must be avoided in water sampling for PAHs 

(due to their predisposition to bacteria growth), the recommended containers are those 

made from PTFE (polytetrafluoroethylene), stainless steel and borosilicate glass (Petrick 

et al.,1996). It is recommended that water samples be stored at a temperature of +4oC for 

up to 24 hours or 96 hours at -20 C in stainless steel containers. However, extracts may 

be stored as long as one month in a freezer in glass vials closed with PTFE stoppers (Law 

and Biscaya, 1994).

Sample deterioration before analysis can occur as a result of (i) physical processes (e.g. 

analyte adsorption on the walls of samplers and vessels used and evaporation of volatile 

components), (ii) chemical reactions (e.g. oxidation, reduction and complexation) and 

(iii) biological reactions (e.g. photolysis and biodegradation) (Namie´snik, 2002).  
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3.5.2 Extraction 

Soxhlet Extraction, Ultrasonic Agitation/Sonication and Mechanical Agitation which are 

conventional methods of extraction are still in use today. Modern extraction methods 

include Solid Phase Extraction-SPE (which is like a ‘miniature chromatography’) (Skoog 

et al., 2004), Supercritical Fluid Extraction (SCF) (mostly the use of CO2 at critical 

temperature and pressure as a ‘green’ replacement to solvents) (Bell, 2009), Microwave-

Assisted Extraction (MAE) (which utilises microwave energy to heat the solvent) 

(Lopez-Avila et al., 1994) and Membrane Extraction (ME) (Rawa-Adkonis et al., 2006). 

Improved forms of some of the conventional methods have also evolved. 

3.5.2.1 Solvent Extraction 

PAHs are known to be soluble in a wide range of organic solvents. Solvent extraction 

comes highly recommended for solid environmental samples particularly particulate 

matter from air and combustion effluent collected on filters (Lee et al., 1981). Solvents 

like acetone, benzene, cylcohexane, chloroform, methanol and other alcohols, acetic acid, 

benzene-methanol, petroleum ether, dichloromethane and tetrahydrofuran have been 

used.  Acetone, benzene, cylcohexane have proved to be ~ 100 % efficient in Soxhlet 

Extraction of benzo[a]pyrene from filters among others (Lee et al., 1981). 

The use of ultrasonic vibration at room temperature has also been explored for extraction 

of atmospheric dust (Mitra, 2003).  

 

Accelerated Solvent Extraction (ASE) or Pressurized Fluid Extraction (PFE) is a modern 

solvent extraction technique similar to Soxhlet extraction, except that the solvents are 

used near their supercritical region where they have high extraction properties and the 

solvent below its boiling point, enables a high penetration of the solvent in the sample. 

This method is unique because it allows high extraction efficiency with a low solvent 

volume (15-40 ml) and a short extraction time (15-20 min).The method is applicable to 

the extraction of water insoluble or slightly water soluble organic compounds (USEPA, 

2007).  
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Liquid -Liquid Extraction (LLE) which involves the partitioning of an analyte between an 

organic solvent and aqueous solution has been widely used for the extraction of aqueous 

PAHs. Improved versions of LLE include Microscale Solvent Extraction-MSE, Single 

Drop Micro Extraction-SDE, Gulden Large Sample Extraction-GLSE and Continuous 

Liquid-Liquid Extraction-CLLE (Pino et al., 2002)

3.5.3 Concentration and clean-up 

Clean-up methods for PAHs analysis include solvent partitioning and chromatographic 

procedures (column chromatography and thin layer chromatography). Adsorbents in use 

include silica, alumina (classical), florisil, BioBeads S-X3, polydimethylsiloxane, PDMS-

divinylbenzene (PDMS-DVB), PDMS-Carbowax (Rawa-Adkonis et al., 2006) 

 

The following are examples of some selected concentration and clean-up schemes that 

are adaptable to various matrices. Though these schemes were not directly employed in 

this research, they give a broad perspective on the pre-analysis treatment of PAH 

extracts. 

3.5.3.1 Extraction and clean-up procedure of PAHs in soils and sediments used by 

Giger and Blumer  

i) Soxhlet extraction with methanol-benzene (75 ml each for 24 hr) 

ii) Partitioning into n-pentane (3x75 ml) 

iii) Concentration: S8 removal on Cu column (benzene-pentane eluent) 

iv) GPC on Sephalex LH-20 (20 g) (benzene-methanol eluent) 

v) Alumina (silica gel) chromatography, elution with n-pentane followed by CH2Cl2 

vi) Charge transfer complexation with trinitrofluorenone 

vii) PAHs concentrate ready for analysis (Lee et al., 1981). 
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3.5.3.2 Rosen procedure as used by Moore et al. for PAHs in air 

i) Cyclcohexane extraction of 10-25 mg extractable material 

ii) Reduce in volume / TLC on silica gel 

iii) Isooctane extraction (separates aliphatics) / benzene extraction (separates 

aromatics) (Lee et al., 1981). 

3.5.3.3 Summary of extraction and cleanup procedures for the determination of 

PAHs in Standard Reference Materials (SRMs) for Marine Sediments 

The different approaches of the extraction of PAHs from an SRM have been presented in 

the Figure 3.2. 
 

Method 1                 Method 2                     Method 3                    Method 4                  Method 5                 Method 6                               

 

Pressurized fluid              PFE                              Soxhlet                          PFE                              PFE              Interlab                      
Extraction (PFE)          extraction                      extraction                     extraction                       extraction        study                   
2x10 samples               6 samples                       6 samples                      6 samples                    6 samples          (1999) 
CH2Cl2                          CH2Cl2                   Hexane:acetone 1:1      Hexane:acetone 1:1             CH2Cl2      38 datasets                 
 
 
Solid phase             size exclusion                     solid phase                 solid phase                     solid phase  
extraction             chromatography                    extraction                   extraction                      extraction 
  (NH2)                         (SEC)                               (silica)                        (NH2)                              (NH2)                                   
 
 
GC/MS I                     solid phase                     GC-MS III                       liquid                       normal –phase  
5 % phenyl                 extraction (NH2)                non-polar              chromatography-          liquid chromatography   
Methyl-polisiloxane                                            proprietary                fluorescence                           (NH2)                                   
(DB-5MS)                                                           (DB-XLB)          (total PAH fraction)       PAH isomer fractions  
                                                 
 
                                   GC-MS II 
                                  50 % phenyl   
                             Methyl-polisiloxane     
                                    (DB-17MS)                                                                                         
 

Figure 3.2: Methods for the determination of PAHs (Source Poster et al., 2006) 
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3.5.4 Identification and quantification 

Column, paper, gel permeation and thin layer chromatography, High performance liquid

chromatography (HPLC), LC-MS or HPLC-MS, Supercritical-Fluid Chromatography 

(SFC) LC-GC-MS, GCXGC-TOFMS, LC-ToFMS and GC-IRMS have successfully been 

used for identification and quantification of environmental PAHs. However, attention 

will be paid to the most widely used methods namely Gas Chromatography (GC) and Gas 

Chromatography-Mass Spectrometry (GC-MS), which was used in the instrumentation 

part of this dissertation). Detailed information on the techniques that were specifically 

used in this research is presented. 

3.5.4.1 Gas Chromatography (GC)  

Gas Chromatography (GC) is an analytical technique used to separate compounds based 

primarily on their volatilities and thermal stability. Gas chromatography provides both 

qualitative and quantitative information for individual Compounds present in a sample. If 

all or some of a compound or molecules are in the gas or vapour phase at 400-450°C or 

below, and they do not decompose at these temperatures, the compound can probably be 

analysed by GC.  

 

Compounds move through a GC column as gases, either because the compounds are 

normally gases or they can be heated and vaporised into a gaseous state. The compounds 

partition between a stationary phase, which can be either a solid (Gas  

Solid Chromatography, GSC), or a liquid (Gas Liquid Chromatography, GLC), and a 

mobile phase (gas). The differential partitioning into the stationary phase allows the 

compounds to be separated in time and space (J&W Scientific, 1998).  

In GLC usually referred to as GC, the stationary phase is almost always a relatively 

nonvolatile liquid. This liquid is coated on either solid particles or on the inside walls of a 

capillary tube. 
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The mobile phase in Gas Chromatography is an inert gas, usually helium but sometimes 

nitrogen or argon (Armarego and Chai, 2009). A schematic diagram of the GC set-up is 

shown in Figure 3.3. 

 

  
Figure 3.3: Schematic diagram of a Gas Chromatograph 

 

In the 1950s and throughout the 1960s GC was used in the separation of smaller aromatic 

hydrocarbons like separation of xylene isomers and alkylated benzenes. Since PAHs 

cover a wide range of volatility, for example 218 oC and 525 oC are boiling points for 

naphthalene and coronene respectively, it is necessary to maintain high column 

temperatures in order to ensure elution of all the different sizes of molecules. In the 

1960s, advances in columns for GC analysis of PAHs led to the introduction of 

thermostable silicone solid phases (Lee et. al., 1981). 

 

With time conventional packed columns became undesirable due to their inability to 

separate complex isomeric mixtures of PAHs. Glass capillary columns were introduced 

which offered greater resolution and inertness. Thin- film coating of stationary phase also 

offered reduced temperatures required to elute high molecular weight molecules of 

PAHs. Typical stationary supports for columns for GC analysis have been silicone and 

carborane polymers (Lee et. al., 1981). 
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In the course of time eutectic mixtures were considered as solid support in an attempt to 

eliminate column bleeding. Graphitized carbon black solid support has been used with 

very little success as well as liquid crystalline phases such as N, N`-bis (p-

methoxybenzylidene) - , ´-di-p-toluidine (Lee et. al., 1981).

The traditional GC determination of PAHs has undergone a lot of innovations all aimed 

at better output. Modern approaches to GC analysis include Large-volume injection GC, 

fast GC, thermal desorption and others. 

GC Detection systems 

GC detection systems include Flame Ionisation Detector (FID), Thermal Conductivity 

Detector (TCD) and the Electron Capture Detector (ECD). FID is the most commonly 

used GC detector since it responds to any molecule with a carbon-hydrogen bond, is mass 

sensitive and destroys the sample afterwards (Lee et al, 1981; SRI Instruments, 2011). 

TCD is not as sensitive as other detectors but it is non-specific and non-destructive 

(Grob, 2004). ECD is selective to electronegative compounds; it is as sensitive as the FID 

but has a limited dynamic range and finds its greatest application in analysis of 

halogenated compounds (SRI Instruments, 2011).  

3.5.4.2 Mass Spectrometry (MS) 

Mass Spectrometry (MS) is an analytical technique used for mass identification and 

quantification and also acts as a detector for hyphenated methods. Mass spectrometry is 

essentially a "weighing" technique for molecules based on the motion of a charged 

particle, in an electric or magnetic field. The mass to charge ratio (m/z) of the ion affects 

this motion (Van Bramer, 1997). 

MS has three essential components namely the ion source, the mass analyser and the 

detector (Figure 3.4). The sample under analysis is ionised and fragmentation of the 

charged particles may occur due to instability. The ions are then accelerated by the 

electric field and sent to the mass analyser where ions are separated according to their 

mass to charge ratios m/z. The separated ions are transferred to a detector and signals are 
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sent to a data system for the output mass spectrum.  The ion source, the mass analyser 

and the detector are maintained under high vacuum to enhance ion mobility. Modern MS 

have all the components synchronised by a data control system (Ashcroft, 2011).  

 

Figure 3.4: Schematic diagram of a simple Mass Spectrometer 

I)  Sample introduction 

Before a sample goes though the process of ionisation, it has to be introduced into the 

MS. The choice of sample introduction method depends on the type of ion source in use 

as well as the sample complexity. Sample can be (i) introduced directly or (ii) treated by 

a prior separation method (mostly chromatography) which is normally coupled to the 

MS. This method normally involves the separation of the sample into components before 

they are consecutively sent into the MS individual analysis and identification (Ashcroft, 

2011).  
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II) Sample ionisation 

The sample ionisation methods available for MS are Matrix Assisted Laser Desorption 

Ionisation (MALDI) and Thermospray Ionisation (TSP) (typically not used for Mass 

Spectrometry analysis of PAHs) and Electrospray Ionisation (ESI), Atmospheric Pressure 

Chemical Ionisation (APCI), Chemical Ionisation (CI), Electron Impact (EI) Fast Atom 

Bombardment (FAB) and Liquid Secondary Ion MS (LSIMS) (used for samples such as 

PAHs) (Martin-Smith, 2004).

Electron Impact (EI)

Electron impact ionisation is the oldest and best-characterised of all the ionisation 

methods. In this method, gaseous analyte molecules interact with a beam of fast moving 

electrons. Electrons are usually accelerated through a potential difference 50-70 eV. The 

electron beam is produced from burning electrons off a tungsten-rhenium strip or coil of 

wire.  When a high energy electron enters the electron density field of the gaseous sample 

molecule closely enough, energy is transferred to overcome the ionisation potential of the 

molecule which results in the ejection of an electron from the orbitals (bonding or non-

bonding) of the molecule to form the molecular ion (M+). Since the potential energy 

applied is sufficiently high, more electrons can be knocked off to produce +2 or +3 

charges. Fragmentation of M+. usually occurs because of the instability of the parent 

molecular ion.  Compounds that are likely to produce multiple charge are those 

containing aromatic rings and hetero-atoms (hence PAHs). The analyte molecule can also 

absorb electrons at low energy (~ 0.1eV) to form negative ions (Martin-Smith, 2004). 

Direct Analysis in Real Time (DART) 

DART is one of the recent modes of sample ionisation which when coupled with MS, 

gives high resolution mass measurements for gases, liquids and solids samples which 

may contain chemicals like pharmaceuticals, narcotics, metabolites, pesticides, PAHs and 

environmentally significant compounds (Cody et al., 2005). 
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DART involves atmospheric pressure interaction of sample and inert gas species, 

typically helium or nitrogen (containing atmospheric gases like water vapour and 

oxygen), that have been excited to a metastable state through an electrical discharge.  . 

Analytes present in the sample are ionised in the open air of the laboratory 

environment. This ionising medium is purged to retain only neutral species as the charged 

ones are removed prior to exiting the source. The DART is usually mounted close to the 

inlet of a mass spectrometer such as ToF-MS (Time-of- Flight-Mass Spectrometer). 

Thus, organic compounds in the sample can be determined directly, and in real time 

devoid of laborious analytical protocols (Cody et al., 2005). 

III) Mass separation and analysis  

The separation of ions in the mass spectrometer takes place within the mass analyser. 

There are different types of mass analysers which function on different physical 

principles but these devices separate ions with different m/z to allow for their separate 

detection. The different types of mass analysers available are magnetic sector analyser, 

electrostatic sector analyser, ion trap analyser, time-of-flight analyzer, ion cyclotron 

resonance (ICR) and Quadrupole analyser (De Hoffman and Stroobant, 2001). 

Quadrupole analyser 

The MS mass separation technique employed in this research was the quadrupole mass 

analyser which consists of four parallel rods. The opposing rods have the same polarity 

whilst adjacent rods have opposite polarity. Each rod is connected to a DC (direct 

current) and an RF (radio frequency) voltage. Ions produced in the source of the 

instrument are then focused and passed along the area enclosed by the quadrupoles. The 

motion of the ions will depend on the electric fields so that only those of a particular m/z 

will have a stable trajectory and thus pass through to the detector. The RF is varied to 

bring ions of different m/z into focus on the detector and thus build up a mass spectrum. 

The trajectory of the ions through the quadrupole is actually a very complex motion that 

is directly proportional to the mass of the ion, voltage on the quadrupole, and the radio 
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frequency. The ions would remain orbiting in the area between the poles with no 

translation along the length of the poles but for the fact that the ions have a constant 

velocity applied as they enter the quadrupole. Before entering the analyser, the ions travel 

through a potential of a certain voltage, usually created by ring electrode, in order to give 

the ions a constant velocity so they can transverse along the center of the quadrupole 

(Stafford et al., 1984). 

Quadrupole mass spectrometers generally have two configurations in the modern 

laboratory. They are very commonly used in conjunction with either gas-chromatography 

or liquid-chromatography as a simple high throughput screening system. Quadrupoles 

can also be placed in tandem to enable them to perform fragmentation studies - the most 

common set-up is the triple quadrupole (Stafford et al., 1984).  

Time-of-flight analyser  

The Time-of-flight (ToF) mass spectrometer is based on a simple mass separation 

principle. ToF Analysers separate ions by time without the use of an electric or magnetic 

field. In a crude sense, ToF is similar to chromatography, except there is no stationary or 

mobile phase; instead the separation is based on the kinetic energy and velocity of the 

ions. When ionised species are accelerated by means of a constant homogeneous 

electrostatic field, their velocities are unambiguously related to their mass-to-charge ratio 

and times of arrival at a detector directly indicate their masses as shown in equation 3.5. 

t = (2md/Ee) 1/2 +L (m/2eVo) ½                                                                                       (3.5) 

Where m = mass of particle, e = electronic charge, E = electrostatic field applied in 

source, d = length of accelerating region, L = length of field-free region, and Vo = 

accelerating potential (Skoog et al., 1992). 
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Ions of the same charges have equal kinetic energies; kinetic energy of the ion in the 

flight tube is equal to the kinetic energy of the ion as it leaves the ion source shown in 

equation 3.6. 

KE = mv2/2 = zV                                                                                                            (3.6) 

The time-of-flight instrument possesses a number of extraordinary advantages over most 

other types of mass analyser. Advantages of ToF include theoretically unlimited mass 

range, ideal where ionisation is pulsed or spatially confined, complete mass spectrum for 

each ionisation event , high transmission, no need for scanning the ion beam, spectra can 

be obtained for extremely small sample amounts (<10-18 mole in the most modern 

instruments), relatively low cost (Skoog et al., 1992). 

IV) Detection and data analysis  

A number of detector types are available. The selection of detector depends on the design 

of the instrument and the analytical applications that will be performed. A variety of 

approaches are used to detect ions usually based on their m/z ratio or their velocity. The 

Faraday cup detector, photographic plate, electro-optical ion detector and the electron 

multiplier are available but the later is the most popular detector currently in use 

(Hoffmann and Stroobant, 2007).   

 

Electron multiplier 

The detector within a mass spectrometer is typically an electron multiplier. The function 

of the electron multiplier is to detect every ion reaching it: i.e. ions of the mass specified 

at any particular instant by the mass filter. The mode of action of an electron multiplier is 

based on secondary electron emission. This occurs with the collision of ions or electrons 

with a charged anode called a dynode which leads to an avalanche of increasing number 

of electrons.  A series of dynodes are so arranged that each succeeding beam of electrons 
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is directed to the next dynode. For example, if 4 electrons are released at the first dynode, 

then 16 will emerge from the second and so forth (Encyclopedia Britannica, 2011).  

 

The millions of ions formed can be detected by an electrical circuit connected to a 

computer or data storage system. However other types of detectors exist which may be 

destructive or less frequently non-destructive.  

 

The data obtained is used to generate a mass spectrum which shows intensity relative to 

mass/charge ratio, m/z. It should be noted that mass/charge ratio is calculated on the basis 

of elapsed time from scan start. The peak with the highest intensity is called the base 

peak (Hoffmann and Stroobant, 2007).   

3.5.4.3 Gas Chromatography-Mass Spectrometry (GC-MS) 

This is the method used for the determination of PAH levels in this dissertation.  

A combination of GC and MS is a very effective approach to the identification and 

quantification of mixtures of PAHs which usually contain isomers. GC-MS combines the 

best features of both techniques and eliminates the disadvantages of each technique. The 

combined technique allows the GC to vaporise and separate the components of the 

sample and to sequentially introduce them into the MS source where distinct mass spectra 

of each component are obtained (Girard, 2005).  

 

The mass spectra of many isomers are identical. It is therefore essential to be able to 

separate mixtures by high resolution capillary GC in order to eliminate any doubt in the 

identity of components.  

 

Modern GC-MS systems have the quadrupole mass analyser which has a rapid scan 

speed and produces a number of mass spectra per peak.  The number of spectra per peak 

can vary greatly, being determined either by time or by intensity changes etc. Since its 

introduction in 1972, the power of the combined GC-MS system for the analysis of PAHs 
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is evident in its wide application in the separation and identification of air particulates, 

combustion effluents, coal tar, aqueous industrial effluents, fossil fuels, tobacco and 

marijuana smoke condensates, carbon black, forest fire smoke and sediments.   

In analyses where individual components have identical retention times, there could be 

interference which could result in too low or high concentration of the analyte of interest. 

Single ion monitoring (SIM) is one of the approaches at minimizing this interference. In 

this method, the mass spectrum is focused on a single mass to charge (m/z) value 

characteristic of the compound under consideration. This improves selectivity and 

sensitivity. Multiple ion detection (MID) can also be applied. It involves presetting a 

number of m/z values characteristic of the compound under consideration which thus 

improves selectivity since only compounds showing all of these ions will cause 

interference. Sensitivity is enhanced due to the longer time spent on each chosen mass. 

The MS acts as a detector in both cases (Lee et al., 1981).  
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CHAPTER 4 

4. Materials and methods 

The chemicals, equipment and analytical procedures used in the study are briefly 

described in this section. Detailed descriptions can be found in the Papers I-IV. 

4.1 Materials 

All reagents used were of analytical grade. Formic acid of 99 % purity was obtained from 

Riedel-de Haen®, Seelze-Germany. Anthracene, phenanthrene, fluorene, fluoranthene 

and pyrene of 98 % purity, acetone, ethanol, ethyl acetate, dichloromethane, sodium 

chloride, sodium hydroxide, concentrated hydrochloric acid, Nafion-SiO2 and Pd-C were 

obtained from Sigma Aldrich, St. Louis, MO 63103-USA. LECA (Lightweight Expanded 

Clay Aggregate) was obtained from the Saint-Gobain Weber Company, Filtralite 

Department - Oslo, Norway. 

4.2 Equipment  

The major equipments used in the study are: 

Thermo Scientific Trace GC Ultra coupled with Thermo Scientific DSQ II 

quadrupole mass spectrometer 

 Agilent Technologies 7820B GC / 5975 MSD system by Agilent Technologies 

from J&W Scientific- USA 

Zeiss Supra 55 VP FEG scanning electron microscope (SEM) 

Carbolite oven by, Hope Valley-UK 
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Direct Analysis in Real Time, DART -100 ion source from IonSense Inc. (Saugus, 

MA, USA) interfaced to an AccuTOFtm LC mass spectrometer from JEOL USA, 

Inc. (Peabody, MA, USA) 

Ramses-ACC-UV- Hyperspectral UVA/UVB Irradiance Sensor: 280 - 500 nm 

from Germany and  

Medium pressure mercury lamp with immersion well reactor system from the 

Photochemical Reactors Ltd. UK. 

 

4.3 Hydrothermal reactions of anthracene

A 20 ml capacity cylindrical stainless steel (SS 316) reactor (Figure 4.1) was used in all 

reactions in this section with the exception of the peroxide reaction where a 5.0 ml 

narrow corrosion resistant stainless steel (SS 316) cylindrical tube reactor (Figure 4.2) 

was used (Paper 1).

4.3.1 Anthracene at 400 oC

Anthracene in the solid form was pyrolysed with water in a pre-heated oven set at  

400 oC. The weight of the assembled reactor was determined before and after heating to 

ascertain any change in mass due to leakage. Time series were performed at durations of 

24, 48, 72 and 96 hours.  The product was extracted with GC-MS grade ethyl acetate by 

shaking for 15-20 minutes to ascertain complete extraction of products into the organic 

phase and analysed by GC-MS. 
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Figure 4.1: Disassembled reactor (20 ml) for pyrolysis oxidation reactions  

4.3.2 Anthracene with formic acid at 400 oC 

Anthracene was treated in a similar manner as described in section 4.3.1 above but with 

the addition of 0.1 ml of formic acid to the water phase before pyrolysis at 24, 48,72 and 

96 hours respectively. 

4.3.3 Anthracene with H2O2 at 380 oC

Anthracene was hydrous pyrolysed in the presence of hydrogen peroxide (H2O2 in a pre-

heated oven at 380 oC. The process was repeated for durations of 15 minutes to 1 hour.  

The product was extracted GC-MS grade ethyl acetate and analysed by GC-MS.  
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Figure 4.2: Disassembled reactor (5 ml) for peroxide oxidation reactions  

4.3.4 Anthracene with Nafion-SiO2 at 300 oC

Anthracene was hydrous pyrolysed in the presence of Nafion-SiO2 catalyst in a pre-

heated oven at 300 oC for 1 hour. The process was repeated with an hourly increment of 

duration until all anthracene had degraded. The product was extracted with ethyl acetate 

and analysed by GC-MS. 

 

4.3.5 Anthracene with formic acid / Nafion-SiO2 / Pd-C catalysts at 300 oC

Anthracene was hydrous pyrolysed with HCOOH (formic acid) in the presence of 

Nafion-SiO2 and Pd-C catalysts. Product was extracted with GC-MS grace ethyl acetate 

and analysed by GC-MS.  
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4.4 Hydrothermal reactions of mixture of PAHs (anthracene, fluorene and 

fluoranthene)

A 20 ml capacity cylindrical stainless steel (SS 316) reactor was used in all reactions in 

this section. Details of experiments can be found in Paper II.    

4.4.1 Oxidation reaction system 

A mixture of anthracene, fluorene and fluoranthene of equal mass ratios were hydrous 

pyrolysed in the presence of Nafion-SiO2 catalyst in a pre-heated oven set at 300 oC. 

Ethyl acetate extract of the product was analysed by GC-MS. 

4.4.2 Hydrogenation reaction system 

A mixture of anthracene, fluorene and fluoranthene of equal mass ratios were hydrous 

pyrolysed with formic acid in the presence of Nafion-SiO2 and Pd-C catalysts in a pre-

heated oven set at 300 oC. 
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4.5 Sorption studies of phenanthrene, fluorene and pyrene with LECA 

Sorption studies were performed with a special commercially available clay material 

called lightweight expanded clay aggregate (LECA) (Figure 4.3). The LECA used in the 

study was baked in a preheated oven at 320 oC for 3 hours. 

Spike solution of concentration of 0.02 mg/l (phenathrene, fluoranthene and pyrene) was 

prepared by adding 0.2 ml of ~ 0.1 mg/ml of standard solution to 1000 ml of doubly 

distilled water and shaking at 300 rpm for 2 hours to ensure a homogeneous distribution 

of the PAHs. A summary of the rest of the experiments have been presented in the 

sections below and details can be found in Paper III attached. 

Figure 4.3: Leca particles of 1.5 - 2.5 mm size range 
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4.5.1 Batch experiments 

Batch experiments were performed with a 100 ml aliquot of 0.02 mg/l. Aliquots were 

transferred into borosilicate glass bottles and 0.2 g of LECA was added. The bottles were 

covered with aluminium foil, screw capped and shaken for durations between 1 and 21 

hours at 300 rpm. For each batch, a blank containing only distilled water and LECA was 

performed. PAH remaining in the solution before and after each LECA interaction was 

extracted with dichloromethane (DCM). 

A second set of batch experiments were performed by increasing the mass of sorbent 

from 0.2 - 4.0 g for 21 h duration for each batch. 

4.5.2 Extraction of PAHs 

The amounts of PAHs in the solution before and after each LECA interaction were 

extracted by shaking with DCM (3, 4, 3ml) in a separating funnel. The combined 

dichloromethane extracts were dried with anhydrous Na2SO4 before GC-MS analysis.  

4.5.3 Sorption isotherms 

In order to obtain figures for the sorption isotherms, solutions of PAH (phenanthrene, 

fluoranthene and pyrene) of concentrations 0.0005, 0.0025, 0.005, 0.01 and 0.02 mg//l 

were shaken with 0.2 g each of LECA for 6 hours (the time period during which the most 

rapid sorption occurs). These concentrations are lower than the solubility of the 

individual PAHs in water and a realistic choice for this kind of study. 
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4.6 Photochemical studies of aqueous fluorene  

A 0.1 ml aliquot of 20 mg/ml solution of fluorene was used to spike 1000 ml of distilled 

water to make 2x10-3 mg/ml of solution. 

A summary of the rest of the experiments have been presented in the sections below and 

details can be found in Paper IV attached. 

4.6.1 UV-Irradiation of aqueous fluorene

A 700 ml volume of the fluorene spiked water was transferred into a 1liter immersion 

well reactor operated by 125 W power supplies with emission wavelength in the range of 

250-500 nm. The aqueous solution was transferred into a 1litre reactor and the lamp is 

immersed as shown in Figure 4.4. Batch irradiation experiments were performed for 

different 700 ml aliquots for durations of 1, 3, 6, 12, 18, 24 and 48 h durations. 

4.6.2 Extraction of aqueous PAHs and analysis  

A duplicate of 100 ml aliquots of spiked water solution were extracted with 

dichloromethane (3, 3, 4 ml, DCM) before and after each irradiation time by shaking in a 

separating funnel. The DCM extracts were combined, concentrated under nitrogen and 

GC-MS analysed for peak identification. Fluorene content was determined by peak 

comparison with a calibration curve.  DART analysis was used for the confirmation of 

products identified by GC-MS. 

 

4.6.3 Effect of pH on fluorene degradation  

pH adjustments of distilled water were done with concentrated hydrochloric acid (HCl) 

and sodium hydroxide (NaOH) solutions to pH values of to ~ 3.0 and ~ 13 respectively. 

Solutions were then spiked, extracted and irradiated according to the procedures outlined 

in sections 4.6, 4.6.1 and 4.6.2.  



47

4.6.4 Effect of salinity (NaCl) on degradation  

A salt solution was prepared by dissolving 30 g of NaCl in distilled water and making it 

to the mark of a 1000 ml volumetric flask to make 30 % solution. The solution was 

spiked, extracted and irradiated according to the procedures outlined in sections 4.6, 4.6.1 

and 4.6.2. 

Figure 4.4: Photochemical reaction set-up 
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CHAPTER 5 

5.  Summary of major findings 

This thesis follows the article- based approach and the following sections give a summary 

of the findings as presented in Papers I-IV attached.  

5.1 Hydrous pyrolysis of anthracene under different conditions (Paper 1) 

In the last several years, there has been the development of hydrothermal analytical 

techniques ideally suited to investigating the reaction of solid, liquid and gaseous 

hydrocarbons with water under conditions ranging from room temperature and pressure 

up to 450 oC and 2 Kb (Knauss et al, 1997).  

 

Hydrous pyrolysis (mostly oxidative) is currently one of the principal thermal treatment 

methods for PAHs and chlorinated hydrocarbons (Knapp et al., 1998). Though 

hydrogenation by hydrous pyrolysis is not a typical treatment method for PAHs, several 

thermal methods have been successfully explored in the conversion of PAHs into 

hydrogenated forms of different degrees of hydrogen substitution (Jacinto et al., 2009; 

Yang and Stock, 1996). 

 

In Paper I, the remediation of PAH contaminated industrial water using anthracene as a 

model compound is considered. The behavior of pure anthracene in a number of redox 

reaction conditions was considered. These include the use of Nafion-SiO2, in a novel 

catalytic oxidation and hydrogenation of anthracene under different hydrous pyrolysis 

conditions at 300 oC. Distilled water and O2 from air as oxidants for anthracene oxidation 

at 400 oC, a modified form of peroxide oxidation at 380 oC and formic acid 
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hydrogenation at 400 oC (Figure 5.1) were also considered. These methods proved 

effective with various degrees of anthracene reactivity. The extent of anthracene 

degradation was time dependent in all cases. The least effective method is the reduction 

with HCOOH (formic acid), which gave 47.2 % conversion of anthracene in 4 days. The 

most effective was the H2O2 (hydrogen peroxide) oxidation in which there was 100 % 

oxidation of anthracene to anthrone in 1 h reaction time. However, though H2O2 is 

considered quite environmentally safe due to its ability to break down into oxygen and 

water when dissolved in water, it is also very reactive (especially under pressure) and 

corrosive to reaction vessels (Yanong, 2012).  

The Nafion-SiO2 catalyst under hydrothermal conditions formed 9, 10-anthracene-dione 

while Nafion-SiO2 catalyst combined with Pd-C and formic acid formed predominantly 

9, 10 - dihydoranthracene and 1, 2, 3, 4 - tetrahydroanthracene. 

 

Figure 5.1: Duration of hydrous pyrolysis versus amount of degraded anthracene  
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5.2 Hydrothermal reactions of anthracene, fluorene and fluoranthene

(Paper II)  

PAHs usually exist as mixtures in the environmental samples and though it is important 

to study their individual behaviours under reaction conditions, the reactivity in the 

presence of other compounds closely resembles what exists in nature. 

 

Paper II looks at the behaviour of a mixture of fluorene, anthracene and fluoranthene 

under different catalytic hydrous pyrolysis conditions. 

 

The PAHs in this paper were subjected to the catalytic oxidation and reduction systems 

described in Paper I with the aim of studying the reactivity of PAHs existing in a mixture. 

 

Nafion-SiO2, catalyst which was successfully used in the oxidation of anthracene in the 

presence of H2O in Paper I, proved effective for the oxidation of anthracene when mixed 

with other PAHs as well as fluorene whilst fluoranthene remained stable under the 

reaction conditions. The resistance of fluoranthene to oxidation could be attributed to its 

high molecular weight due to the increased number of benzene rings. A strong oxidation 

system is more likely to achieve a reaction since it has been observed in the case of the 

use of ozone, peroxide and permanganate (Rivas, 2006). 

 

This Nafion-SiO2 catalyst system under hydrothermal conditions gave 100 % conversion 

of anthracene and fluorene to 9, 10- anthracene dione and 9H-fluorene-9-one respectively 

in 7 h (Figure 5.2). However it is worth noting that the oxidation reactions of anthracene 

both when studied alone and in the presence of other PAHs followed the first order 

kinetics with rate constants (k) of 0.3504 and 0.4514 respectively. The rate of oxidation 

of fluorene was however faster than that of anthracene with rate constant of 0.642.This 

could be attributed to the low molecular weight and the high reactivity of  fluorene at 

position- 9 (Mojelsky  and Strausz, 1996).  
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The C-9 position of fluorene ring is weakly acidic with estimated pKa  of 22.6 in 

dimethyl sulphoxide (Bordwell, 1988). It undergoes deprotonation to give the stable 

fluorenyl carbanion (C13H9
-) which is nucleophilic in nature and allows electrophilic  

addition at the 9-position (Scherf and Brown, 1960). 

 

 

Figure 5.2: Percent PAHs remaining versus time of oxidative hydrous pyrolysis
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In the second part of Paper II, a combination of Nafion-SiO2 and Pd-C catalysts in the 

presence of H2O and HCOOH was used for reductive hydrogenation purposes. The 

hydrogenation system also confirmed 100 % conversion for anthracene and 57.26 % 

conversion for fluoranthene while fluorene remained stable (Figure 5.3).  

 

The reductive hydrogenation of anthracene and fluoranthene does not fit pseudo-first 

order kinetics. However it is worth noting that the rate of anthracene conversion in the 

mixture was faster as compared to when it was hydrous pyrolysed alone. The stability of 

fluorene can be explained by the fact that position-9 which is highly reactive is acidic 

(Mojelsky and Strausz, 1996) and not susceptible to the addition of hydrogen atoms 

(nucleophilic addition). 

 

 

Figure 5.3 Percent of PAHs remaining versus time of reductive hydrous pyrolysis
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5.3 The use of LECA in sorption studies of aqueous solution containing 

phenanthrene, fluoranthene and pyrene (Paper III) 

The use of adsorption for the treatment of industrial waste water has been widely studied 

over the years due to the generally high removal capacity achieved and activated carbon 

is the most widely used material (Changchaivong and Khaodhiar, 2009). 

 

Recently, a wide range of adsorbents of varied origins and capacities have been explored;  

and materials of  both natural (organic and inorganic) as well as artificial sources have 

given different degrees of PAH removal (Crisafully et al., 2008 ; Hall et al., 2009 ; Jung 

et al., 2007; Khan et al., 2007; Yuan et al., 2010 ; Zeledon-Toruno et al., 2007).  

 

In Paper III, the use of LECA as an adsorbent in the treatment of water contaminated by 

PAHs is considered. LECA finds wide application in the building and construction 

industry and has been used in treating heavy metal polluted water. The removal of PAHs 

with LECA as an adsorbent is novel since no such work has been reported. 

 

A maximum of 92.61, 93.91 and 94.15 % removal of phenanthrene, fluoranthene and 

pyrene respectively was achieved when 4.0 g of LECA was shaken with 100 ml of 

aqueous solution containing ~ 0.02 mg/l of each PAH for 21 h. This is an improvement 

on the 70.7, 70.83 and 72.12 % of phenanthrene, fluoranthene and pyrene removal when 

0.2 g of LECA was used.   

 

Sorption was found to be independent of molecular weight but more on the 

hydrophobicity of the compounds involved, and the sorption process fitted quite well 

with the Freundlich isotherm. 

 

The removal obtained for 4.0 g of LECA was 0.4631, 0.4696 and 0.4708 μg/g for 

phenanthrene, fluoranthene and pyrene respectively. The usefulness of LECA as an 
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adsorbent compared favourably with other natural and synthetic kinds like leonardite 

(naturally occurring clay adsorbent) and p-phenylene-2,6-benzobisoxazole, PBO ( a 

speciality product) in terms of removal capacity (Jung et al., 2007 ; Zeledon-Toruno et 

al., 2007). LECA was found to cost effective when compared to leonardite and PBO. 
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5.4 Photochemical Studies of aqueous fluorene (Paper IV) 

Photolysis is one of the major degradation pathways for PAHs in the aquatic 

environment. Since PAHs are chromophore containing compounds, they readily absorb 

sunlight in the visible (400 -760 nm) and ultraviolet regions (280-400 nm) and are 

particularly sensitive to the photochemical effects of UV radiation (Arften et al., 1996). 

 

As a result of the natural photochemical reactions associated with PAHs, artificial 

sources of UV have been used to study the possible reaction trends of aqueous PAHs in 

an attempt at achieving degradation and / or remediation (Shemer and Linden, 2007; 

Ledakowicz et al., 1999; Sanches et al., 2011). 

Most of the work on photolysis of organic contaminants including PAHs in 

environmental samples involve a combination of UV irradiation and advanced oxidation 

processes like ozonation or the use of catalysts (like TiO2), H2O2 or other oxidising agents 

(Beltran et al., 1995; Ledakowicz et al., 1999; Zhang, 2008); and sometimes a follow up 

with biodegradation (Guieysse et al., 2004; Cooper et al., 2010). 

 

Paper IV reports the outcome of the use of an old fashioned medium-high pressure Hg 

lamp for UV-irradiation of aqueous fluorene solution; and the effect of irradiation time, 

pH and NaCl (salinity) on the extent of fluorene degradation.  

 

Irradiation was done in a photochemical immersion well under closed static conditions 

for 1, 3, 6, 12, 18, 24 and 48 h durations. 

 

The rate of degradation of fluorene in the various aqueous media followed pseudo-first 

order kinetics. The rate constant and R2 of the rate curve as well as the amount of 

fluorene remaining after 48 h irradiation are presented in Table 5.1.  
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The outcome of the study indicated that the reaction medium had little significance on the 

extent of fluorene degradation though the reaction in the presence of NaCl gave the 

highest fluorene degradation rate. 

Table 5.1: Kinetic parameters of fluorene degradation in different aqueous media 

 

*Fle: fluorene 

 

 

 

Reaction medium R2 K/h-1 % Fle  removed 

after 48 h 

Fle + neutral H2O 0.910 0.039 95.95 

Fle + HCl solution 0.986 0.018 92.35 

Fle + NaOH solution 0.991 0.044 96.65 

Fle + NaCl 0.716 0.049 97.15 
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5.5 Critique of cleanup techniques explored in this thesis  

The methods considered in Papers I and II involve a combination of chemical and 

thermal treatment procedures. These techniques are among the most explored for 

industrial waste remediation. However, the most effective methods lead to the conversion 

of PAHs and other organic wastes to light hydrocarbons, CO2 and H2O which are 

environmentally benign (Kawahara et al., 1995; Ferrarese et al., 2008) 

 

In the case where other polycyclic aromatic compounds (PACs) like oxygenated PAHs 

(O-PAHs) are formed, another challenge emerges, since O-PAHs have been documented 

to be more toxic than their parent PAHs (Huang et al., 1993; Shen et al., 2011). However, 

hydrogenated PAHs are less toxic (Jacinto et al., 2009). 

 

The outcome of the thermal / chemical methods explored in this thesis either contained a 

percentage of the parent compounds, oxidised or hydrogenated derivatives. The products 

from the photochemical reaction with an artificial source of UV were also either O-PAHs 

or the parent compound. 

 

Products of this nature require further treatment since they can generate problems if 

allowed to enter the environment. Some of the additional treatment methods available 

include biodegradation and advanced oxidation process (AOP) involving stringent 

oxidation conditions (Kawahara et al., 1995; Levitt et al., 2003; Ferrarese et al., 2008) 

 

The removal of used of PAHs by adsorption with LECA proved effective with > 90% 

removal efficiency. The method is safe and requires no technical know-how to set up. 

LECA is an economical and available on the market and the PAHs adsorbed on LECA 

can be treated by either biodegradation or AOP as mentioned above. 

 

The method based on the adsorption with LECA therefore turns out to be the most 

attractive of all the techniques explored in this study worth exploring on industrial scale. 
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CHAPTER 6 

6. Concluding remarks and recommendations on future perspective   

6.1 Concluding remarks  

Three different clean-up approaches for aqueous polycyclic aromatic hydrocarbon 

removal have been presented.  

 

The use of hydrothermal conditions for the conversion of anthracene alone as well as a 

mixture of PAHs (anthracene, fluorene and fluoranthene) to various oxidised and 

hydrogenated products has been successfully carried out. 

 

Light weight clay aggregates (LECA) a commercially available and cost effective clay 

material has been used for the removal of aqueous phenanthrene, fluoranthene and 

pyrene. 

 

Photochemical degradation of aqueous fluorene under acidic, basic and neutral conditions 

has been studied. 

 

The outcomes of this research indicate that different methods, thermal, adsorptive and 

photolytic, alone or in combination with already established techniques should be 

considered for the removal of PAHs.  
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6.2 Recommendations on future perspective  

Polycyclic aromatic hydrocarbons with many rings (4 or more) could be explored 

to ascertain the effectiveness of the methods on them. 

Application of the pyrolysis, adsorption and photochemical methods explored in 

this thesis to real environmental samples to test their effectiveness. 

A look at biodegradation (which has proven to be one of the most environmentally 

benign and effective methods) and the possibility of removing the oxygenated 

PAHs (which are fit candidates for bacterial activity) generated in the pyrolysis 

and photochemical processes.  

Recovery of used LECA by thermal and biological methods.
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