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Abstract. In this paper we describe an approach for solving complex
multivariate equation systems related to algebraic cryptanalysis. The
work uses the newly introduced Compressed Right Hand Sides (CRHS)
representation, where equations are represented using Binary Decision
Diagrams (BDD). The paper introduces a new technique for manipu-
lating a BDD, similar to swapping variables in the well-known sifting-
method. Using this technique we develop a new solving method for CRHS
equation systems. The new algorithm is successfully tested on systems
representing reduced variants of Trivium.
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1 Introduction

Keystream generators produce pseudo-random sequences to be used in stream
ciphers. A strong keystream generator must produce the sequence from a secret
internal state such that it is very difficult to recover this initial state from the
keystream. The security of a stream cipher corresponds to the complexity of
finding the internal state that corresponds to some known keystream.

The relation between the keystream sequence and the internal state of the
generator can be described as a system of algebraic equations. The variables in
the system are the unknown bits of the internal state (at some time), and possibly
some auxilliary variables. Solving the equation system will reveal the internal
state of the generator, and hence break the associated stream cipher. Solving
equation systems representing cryptographic primitives is known as algebraic
cryptanalysis, and is an active research field.

This paper explores one approach for efficiently solving big equation systems,
and is based on the work in [1], where the concept of Compressed Right Hand
Side (CRHS) equations was introduced. A CRHS equation is a Binary Decision
Diagram (BDD) together with a matrix with linear combinations of the variables
in the system as rows. The problem of solving CRHS equation systems comes
mainly from linear dependencies in the matrices associated with the BDD’s. In
this paper we introduce a new method for handling linear dependencies in CRHS
equations, which we call linear absorption. The basis for linear absorption are
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two methods for manipulating BDD’s. One of them is the technique of swapping
variables in the well-known sifting method [2]. The other is similar, but, to the
best of our knowledge, not described in literature earlier. We call it variable
XOR.

We have tested the method of linear absorption on systems representing
scaled versions of Trivium [3]. We are able to break small versions of Trivium
using linear absorption, proving that the method works. From these tests we
derive an early estimate for the complexity of breaking the full Trivium using
linear absorption. Our results indicate that the complexity of solving systems
representing scaled Triviums increases with a factor 20.4 each time the size of
the solution space doubles.

2 Preliminaries

2.1 Binary Decision Diagrams

A Binary Decision Diagram (BDD) [4, 5] is a directed acyclic graph. BDDs were
initially mostly used in design and verification systems. Later implementations
and refinement led to a broader interest in BDDs and they were successfully
applied in the cryptanalysis of LFSRs [6] and the cipher Grain [7]. For our
purposes, we think of a BDD in the following way, more thoroughly described
in [1].

A BDD is drawn from top to bottom, with all edges going downwards. There
is exactly one node on top, with no incoming edges. There are exactly two nodes
at the bottom, labelled � and ⊥, with no outgoing edges. Except for � and ⊥
each node has exactly two outgoing edges, called the 0-edge and the 1-edge. Each
node (except for � and ⊥) is associated to a variable. There are no edges between
nodes associated to the same variable, which are said to be at the same level.
An order is imposed on the variables. The node associated to the first variable
is drawn on top, and the nodes associated to the last variable are drawn right
above � and ⊥. Several examples of BDDs are found in the following pages.

A path from the top node to either � or ⊥ defines a vector on the variables.
If node F is part of the path and is associated to variable x, then x is assigned
0 if the 0-edge is chosen out from F , and x is assigned 1 if the 1-edge is part of
the path. A path ending in � is called an accepted input to the BDD.

There is a polynomial-time algorithm for reducing the number of nodes in
a BDD, without changing the underlying function. It has been proven that a
reduced BDD representing some function is unique up to variable ordering. In
literature this is often referred to as a reduced, ordered BDD, but in this work
we always assume BDDs are reduced, and that a call to the reduction algorithm
is done whenever necessary.

2.2 Compressed Right Hand Side Equations

In [1] the concept of the Compressed Right Hand Side Equations was introduced.
CRHS equations give a method for representing large non-linear constraints
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along with algorithms for manipulating their solution spaces. In comparison to
previous methods from the same family of algorithms [8–10] they offer an efficient
way of joining equations with a very large number of solutions.

CRHS equations are a combination of the two different approaches Multiple
Right Hand Side Equations [9] (MRHS equations) and BDDs. While MRHS
equations were initially developed for cryptanalysis, BDDs were developed for
other purposes. Combining the two provides us with a powerful tool for algebraic
cryptanalysis. For instance, using CRHS equations it is possible to create a
single large BDD representing the equation system given by the stream cipher
Trivium.

Definition 1 (CRHS Equation [1]). A compressed right hand side equation
is written as Ax = D, where A is a binary k × n-matrix with rows l0, . . . , lk−1

and D is a BDD with variable ordering (from top to bottom) l0, . . . , lk−1. Any
assignment to x such that Ax is a vector corresponding to an accepted input
in D, is a satisfying assignment. If C is a CRHS equation then the number of
vertices in the BDD of C, excluding terminal vertices, is denoted B(C).

Example 1 (CRHS Equation). In order to write:

f(x1, . . . , x6) = x1x2 + x3 + x4 + x5 + x6 = 0

as a CRHS equation one chooses a name for every linear component in f(x1, . . . , x6) =
0. Here we decide to name the linear components l0 = x1, l1 = x2, l2 = x3+x4+
x5+x6. Furthermore one needs to define an ordering on these linear components.
For this example we we select the order l0, l1, l2, from top to bottom.

The matrix A formed by the linear components is then our left hand side
of the CRHS equation. The BDD formed by the possible values of l0, l1, l2 in
f(x1, . . . , x6) = 0 together with the before defined order forms the right hand
side of the CRHS equation.

The resulting CRHS equation is then:

⎡
⎣x1 = l0
x2 = l1
x3 + x4 + x5 + x6 = l2

⎤
⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l0

l1

l2

� ⊥

v0

v1

v2 v3

. (1)

The right hand side of the CRHS equation represents the possible values of
l0, l1, l2 in f(x1, . . . , x6) = 0 in compressed form. The set of solutions of (1) is
the union of all solutions of Ax = L, where L is a vector contained in the right
hand side as an accepted input to the BDD. Naming equation (1) as E0, we have
B(E0) = 4.
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2.3 Joining CRHS equations

Given two CRHS equations A and B it is natural to ask: What are the common
solutions to A and B?

In [1] an algorithm, called CRHS Gluing is introduced. The algorithm takes as
input two CRHS equations and has as output a new CRHS equation which con-
tains the solutions of the conjunction of the input. This algorithm is exponential
in space and time consumption. Nevertheless, the constant of this exponential
has been shown to be small enough for practical applications.

Here, we use a simpler and cheaper method of joining two CRHS equations.
Given two BDDs D1 and D2, the notation (D1 → D2) is defined to simply mean
that � in D1 is replaced with the top node in D2. The two ⊥-nodes from D1

and D2 are merged into one ⊥, and the resulting structure is a valid BDD.

Given the two CRHS equations [L1]x = D1 and [L2]x = D2 the result of
joining them is [

L1

L2

]
x = (D1 → D2)

Any accepted path in (D1 → D2) gives accepted paths in both D1 and D2.

In other words, any x such that

[
L1

L2

]
x yields an accepted path in (D1 → D2)

gives solutions to the two initial CRHS equations.

When there are linear dependencies among the rows in

[
L1

L2

]
we get paths

in (D1 → D2) that lead to false solutions. The problem of false solutions is the
only problem preventing us from having an efficient solver for CRHS equation
systems. This problem is addressed in Section 3.3.

Example 2 (Joining CRHS equations). The following two equations are similar
to equations in a Trivium equation system. In fact, the right hand sides of the
following are taken from a full scale Trivium equation system. The left hand
matrices have been shortened.

⎡
⎣x1 = l0
x2 = l1
x3 + x4 = l2

⎤
⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l0

l1

l2

� ⊥

u0

u1

u2 u3

,

⎡
⎣x4 = l3
x5 = l4
x6 + x7 = l5

⎤
⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l3

l4

l5

� ⊥

v0

v1

v2 v3

(2)
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The joining of the equations above is

⎡
⎢⎢⎢⎢⎢⎢⎣

x1 = l0
x2 = l1
x3 + x4 = l2
x4 = l3
x5 = l4
x6 + x7 = l5

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l0

l1

l2

l3

l4

l5

�

w0

w1

w2 w3

w4

w5

w6 w7

, (3)

where ⊥-paths in this last graph are omitted for better readability. The resulting
equation has 8 nodes, where the corredsponding MRHS equation would have 16
right hand sides.

Joining two CRHS equations E0 and E1 is really nothing more than putting
one on top of the other and connect them. If E0 and E1 are joined to form E,
it is easy to see that B(E) = B(E0) + B(E1). The complexity of joining CRHS
equations is linear, and we can easily build a single CRHS equation representing,
for instance, the full Trivium. The CRHS equation representing the full Trivium
will have less than 3000 nodes, but 21336 paths in the long BDD, of which maybe
only one is not a false solution.

3 Solving Large CRHS Equation Systems

After joining several CRHS equations together the left hand side of the resulting
equation may contain linear dependencies which are not reflected in the right
hand side BDD. The matrix of the CRHS equation contains rows which sum to
0. The BDD on the other hand is oblivious to this fact and contains paths which
sum to 1 on the affected variables.

Since the set of solutions of the CRHS equation is the union of solutions to
the individual linear systems formed by each vector of the right hand side, we
need to filter out those vectors which yield an inconsistent linear system. Let for
example the left hand side of a CRHS equation contain the linear combinations
li, lj and lk and assume we found that li+lj+lk = 0. The BDDmight nevertheless
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contain a path which assigns li, lk and lk to values that make their sum equal to
1. Since we know that this path in the BDD does not correspond to a solution
we would like to eliminate it from the BDD.

In practical examples from the cryptanalysis of Trivium we end up with the
situation that almost all paths on the right hand side are of this kind, i.e., not
corresponding to the left hand side. The major problem is that we cannot easily
delete a path by some simple operation, e.g., deleting a node. This is because
there are many paths passing through a single node.

In order to delete all invalid solutions from a CRHS equation, we introduce
the techniques Variable XOR and Linear Absorption in the following. They are
new methods for the manipulation of BDDs and can be used to take care of
removing paths which correspond to false solutions.

3.1 Variable Swap

A usual operation on a BDD is to swap variable levels [2] while preserving the
function the BDD represents. This means to change the permutation of variables
in a BDD by exchanging adjacent positions of two variables. This is done for
example to change the size of a specific BDD. We will use this technique in the
following and give a short introduction to it.

The origins of the BDD data structure lie within the Shannon Expansion [11].
In the following let be F = f(x0, . . . , xn−1), Fxr

= f(x0, . . . , xr−1, 1, xr+1, . . . , xn−1)
and Fxr

= f(x0, . . . , xr−1, 0, xr+1, . . . , xn−1). Then by the Shannon expansion
every Boolean function can be represented in the form

F = x · Fx + x · Fx. (4)

We write the function as a BDD with the root node denoted F = (x, Fx, Fx).
Here x is the variable defining the level of the node, Fx is the node connected
through the 1-edge and Fx is the node connected to the 0-edge. Fx and Fx are
called the co-factors of the node F .

Let the variable coming after x in the variable order be y. To expand (4) by
the variable y, we have to expand the subfunctions Fx and Fx accordingly:

F = x · (y · Fxy + y · Fxy) + x · (y · Fxy + y · Fxy). (5)

Again, as a root node of a BDD we have F = (x, (y, Fxy, Fxy), (y, Fxy, Fxy))
but this time with explicitly written co-factors. Assume we would like to swap
the order of x and y. Then we can equivalently write (5) as

F ′ = y · (x · Fxy + x · Fxy) + y · (x · Fxy + x · Fxy) (6)

which leads us to the new node representation of F ′ = (y, (x, Fxy, Fxy), (x, Fxy, Fxy)).
Now the order of the variables x and y is swapped. Since (5) and (6) are equiv-
alent so are our BDD nodes before and after the swap.

Moreover, it becomes clear that swapping two variables is a local operation,
in the sense that only nodes at levels x and y are affected. If one would like to
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swap the levels x and y (where as above x is before y in the BDD permutation)
one has to apply the operation above to every node at level x and change it
accordingly.

Example 3 (Variable Swap).

l0

l1

l2

� ⊥

u0

u1

u2 u3

−→

l0

l2

l1

� ⊥

u0

u′

1
u3

u′

2 u′

3

Fig. 1. Swapping l1 and l2.

On the left side in Fig. 1 a BDD along with its permutation (l0, l1, l2) is de-
picted. In order to swap levels l1 and l2, i.e., change the permutation to (l0, l2, l1),
one has to apply the swapping routine described above to all nodes at level l1.
In this case u1 = (l1, u2, u3) is the only node affected. With explicitly written
co-factors we get u1 = (l1, (l2,�,⊥), (l2,⊥,�)). From the swapping procedure
above we know that the resulting new node is u′

1 = (l2, (l1,�,⊥), (l1,⊥,�)) =
(l2, u

′

2, u
′

3). Node u3 stays unchanged.

3.2 Variable XOR

In this section we introduce a new method for manipulating BDDs, the variable
XOR operation. As the name suggests, we change a variable by XORing a dif-
ferent variable onto it. To preserve the original function we have to change the
BDD accordingly. Below we explain how this is done. In fact, the procedure is
quite similar to Variable Swap, and is only a local operation.

Let x and y be two consecutive BDD variables (x before y) and σ = x + y.
We want to transform (5) into:

F ′ = x · (σ · Fxσ + σ · Fxσ) + x · (σ · Fxσ + σ · Fxσ). (7)

We can see that if x = 1 then Fxσ = Fxy and Fxσ = Fxy. Similarly if x = 0 then
Fxσ = Fxy and Fxσ = Fxy. With that in mind (7) can be written as

F ′ = x · (σ · Fxy + σ · Fxy) + x · (σ · Fxy + σ · Fxy) (8)

which leads immediately to the new node representation
F ′ = (x, (σ, Fxy, Fxy), (σ, Fxy, Fxy)). With this manipulation extra care has to
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be taken of edges incoming to nodes at the y-level that jumps over the x-level.
Here temporary nodes have to be introduced since y goes over into σ and cannot
longer be addressed directly.

Example 4 (Variable XOR).

l0

l1

l2

� ⊥

u0

u1

u2 u3

→

l0

l1

l2

� ⊥

u0

u1

u2 u3

t0

→

l0

l1

l1 + l2

� ⊥

u0

t′0

u′

2 u′

3

The first diagram shows the initial BDD in which the variable levels l1 and
l2 are to be XORed. The second diagram represents how the auxilliary node
t0 needs to be introduced since the edge (u0, u3) ignores the l1 level. Then the
variable XOR procedure is applied to both u1 and t0, and the resulting BDD
is reduced. After the application of the modification of equation (5) to (7) the
result of the variable XOR method to variables l1 and l2 of the initial diagram
is depicted.

3.3 Linear Absorption

We are now ready to explain the method of linear absorption.
Assume we have a BDD with (l0, . . . , lk−1) as the ordered set of linear com-

binations associated with the levels. We can easily find all linear dependencies
among the li’s. Assume that we have found the dependency li1+li2+. . .+lir = 0,
where i1 < i2 < . . . < ir.

By using variable swap repeatedly, we can move the linear combination li1
down to the level just above li2 . Then we use variable XOR to replace li2 with
li1 + li2 . Next, we use varlable swap again to move li1 + li2 down to the level
just above li3 , and variable XOR to replace li3 with li1 + li2 + li3 . We continue
in this way, picking up each lij that is part of the linear dependency, until we
replace lir with li1 + li2 + . . .+ lir . Let us call the level of nodes associated with
li1 + li2 + . . .+ lir for the zero-level.

We know now that the zero-level has the 0-vector associated with it. This
implies that any path in the BDD consistent with the linear constraint we started
with has to select a 0-edge out of a node on the zero-level. In other words, all
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1-edges going out from this level lead to paths that are inconsistent with the
linear constraint li1 + li2 + . . .+ lir = 0, and can be deleted.

After deleting all outgoing 1-edges, there is no longer any choice to be made
for any path going out from a node at the zero-level. If F is a node at the
zero-level, any incoming edge to F can go directly to F0, jumping the zero-level
altogether. After all incoming edges have been diverted to jump the zero-level,
all nodes there can be deleted, and the number of levels in the BDD decreases
by one. We are now certain that any path in the remaining BDD will never be
in conflict with the constraint li1 + li2 + . . . + lir = 0; we say that the linear
constraint has been absorbed.

We can repeat the whole process, and absorb one linear constraint at the time,
until all remaining li are linearly independent. At that point, any remaining path
in the BDD will yield a valid solution to the initial equation system.

4 Experimental Results

We have tested Linear Absorption on equation systems representing scaled ver-
sions of Trivium.

4.1 Trivium & Trivium-N

Trivium is a synchronous stream cipher and part of the ECRYPT Stream Cipher
Project portfolio for hardware stream ciphers. It consists of three connected non-
linear feedback shift registers (NLFSR) of lengths 93, 84 and 111. These are all
clocked once for each keystream bit produced.

Trivium has an inner state of 288 bits, which are initialized with 80 key
bits, 80 bits of IV, and 128 constant bits. The cipher is clocked 1152 times
before actual keystream generation starts. The generation of keystream bits and
updating the registers is very simple. For algebraic cryptanalysis purposes one
can create four equations for every clock; three defining the inner state change
of the registers and one relating the inner state to the keystream bit. Solving
this equation system in time less than trying all 280 keys is considered a valid
attack on the cipher.

Small Scale Trivium. In [1] a reduced version of Trivium, called Trivium-N was
introduced. N is an integer value which defines the size of the inner state of that
particular version of Trivium. Trivium-288 is by our construction equivalent to
the originally proposed Trivium.

All versions of Trivium-N with N < 288 try to preserve the structure of
the original Trivium as well as possible. This yields equation systems which
are comparable to the full cipher. Other small scale version of Trivium e.g.,
Bivium [12], in which an entire NLFSR was removed, seems to be too easy to
solve.
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4.2 Results

We have constructed CRHS equation systems representing Trivium-N for several
values of N , and run the algorithm for absorbing linear constraints described in
Section 3.3. For N ≤ 41 we were able to absorb all linear constraints, which
means that any remaining path in the BDD is a valid solution to the system (we
have also verified this).

The number of nodes in the BDD grows very slowly when absorbing the
first linear constraints, but increases more rapidly when the linear constraints
of length two have been absorbed. We know, however, that the number of paths
will be very small once all linear constraints have been absorbed since we expect
a unique, or very few, solution(s). Thus the number of nodes must also decrease
quickly after the number of absorbed constraints is past some tipping point.
For each instance we have recorded the maximum number of nodes the BDD
contained during execution, and used this number as our measure of complexity.
The memory consumtion is dominated by the number of nodes, and in our
implementation each node took 60 bytes. The memory requirement in bytes can
then be found approxiamtely by multiplying the number of nodes with 60.

The results for testing the algorithm on Trivium-N for 30 ≤ N ≤ 41 is
written below.

N max. # of nodes
30 219.92

31 221.02

32 221.15

33 220.84

34 221.41

35 222.32

36 221.61

37 223.27

38 223.49

39 223.79

40 223.69

41 224.91

The number of solutions (paths) in each instance was found to be between
1 and 3. The number of levels in the final BDD was 73 for N = 30, and 97 for
N = 41.

The numbers above have been produced using only a single test for each N .
We can expect some variation in the maximum number of nodes when re-doing
tests using different initial states for some particular Trivium-N . The numbers
are plotted in Fig. 2 to show the general trend in the increase of complexity.



5.4 Solving Compressed Right Hand Side Equation Systems with Linear Absorption 93

 19.5

 20

 20.5

 21

 21.5

 22

 22.5

 23

 23.5

 24

 24.5

 25

 30  32  34  36  38  40  42

""

Fig. 2. Trend of complexities for Trivium-N

4.3 Extrapolating

We can use the least-square method to fit a linear function to the data points we
have. Letting 2M be the maximum number of nodes needed, the linear function
that best approximates our data is M = 0.4N + 7.95.

When N increases by 1, the size of the solution space for the variables in
the initial state doubles. However, the total number of variables in the system
increases by three when N increases by 1. This is because we need to clock the
cipher one step further to have enough known keystream for a unique solution,
and each clock introduces three new variables. Hence we can say that the size
of the problem instance increases by a factor 23 for each increase in N . The
complexity of our solving method only increases with a factor of approximately
20.4 on the tested instances, which we think is quite promising.

Admittedly, we have too little data to draw any clear conclusions, but it is
still interesting to see what value of M we get for N = 288. Based on the data
we have, we find that currently we need to be able to handle around 2123 nodes
in a BDD for successfully attacking the full Trivium.

5 Conclusions and Future Work

We have introduced how to alter a BDD to preserve the underlying function when
two variables are XORed. Together with variable swap, we have introduced a
new solving method in algebraic cryptanalysis, which we call linear absorption.
The solving technique works on equations represented in CRHS form.
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The work in this paper gives more insight into how to solve some of the
open questions in [1], and provides a complete solving method. We have shown
how the method works on systems representing scaled versions of Trivium. The
structure of the equations is exactly the same in the down-scaled and the full
versions of Trivium, it is only the number of equations and variables that differ.
Our tests thus gives some information on the complexity of a successful algebraic
attack on the full Trivium.

Unfortunately, we have not had the time to test linear absorption on other
ciphers, or test more extensively on Trivium-N . This is obviously a topic for
further research. We also hope to further investigate the problem of how to find
a path in a BDD that satisfies a set of linear constraints. There may be tweaks
to the algorithm of linear absorption, or there may be a completely different and
better method. In any case, we hope to see more results on solving methods for
CRHS equation systems.
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Chapter 6

Other Results

This chapter contains two other results which did not fit in any other publication. They
represent new approaches either on how to solve the main problem studied in this thesis
or to reduce the technical complexity of the task. As opposed to the other scientific
results in this thesis the ones presented in this chapter are works in progress.
The first result might make the main approach used in this thesis easier to under-

stand. Primarily for those working more in the fields of algorithms and graph theory,
the presented method might transfer the theme of cryptanalysis into a more familiar
realm. Due to the relatively intuitive structure of the presented reduction of the prob-
lem, one can say that it bridges the two areas.
The second result represents more of a technical improvement. One algorithm is

incorporated into another by preprocessing the input of the former. By doing this,
additional information can be obtained which would otherwise require a whole separate
processing from a second algorithm. This reduces the implementation complexity of a
potential solving algorithm.

6.1 Independent Set Reduction

One technique to show the NP-hardness of a problem A is to give a deterministic poly-
nomial time reduction of another problem B, known to be NP-hard, to A. By such a
reduction we mean a function f , which takes as input a problem instance b ∈ B and has
as output a problem instance of A. That is a function f : B→ A which can be computed
in polynomial time and f (b) ∈ A⇔ b ∈ B.
Such a reduction demonstrates that problem A is at least as hard to solve as B since

all instances of B can be solved if we can solve A. Reductions which satisfy these
requirements are also called Karp- or Cook-reductions [10, 28, 41] and are in the fol-
lowing denoted by B≤p A.
Since those reductions can be done in deterministic polynomial time, the asymptot-

ical running time of B cannot be larger than that of A, and therefore the complexity of
A is dominant.
The problem of solving a set of equations is almost intuitively NP-complete since

there exists an obvious relation to SAT solving. Other decision problems – such as
the INDEPENDENT SET-problem – belong to one of the first problems shown to be
NP-complete [46], but might need a proper formal reduction for clarification.
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In the following we will show an alternative reduction of the decision version of
the Gluing/Agreeing algorithm to the INDEPENDENT SET-problem (IS-problem). Not
for the purpose of demonstrating (again) the NP-completeness of the IS-problem, but
rather to provide an alternative formulation of the Gluing/Agreeing in the context of
graph theory. Along with it, we will present some remarks on the structure of the
resulting graphs. A similar reduction of the SAT-problem ≤p IS-problem along with
more details on polynomial time reductions and complexity theory in general can be
found in [46].
Then we will present an algorithm by Fomin et. al. [22] to solve the IS-problem

on instances yielded by random equation systems and/or by a cipher. Finally, we will
present some experimental results and conclusions.
To begin, we define the problem of finding a solution to a set of equations as a

decision problem of the Gluing/Agreeing algorithm.
Definition 6 (GA-problem). Let

S= {S0,S1, . . . ,Sm−1} (6.1)

be an input to the Gluing/Agreeing algorithm where Si = (Xi,Vi) is a symbol consisting
of a set of variables Xi and a set of satisfying vectors Vi = {v0,v1, . . . ,vr−1} defined in
Xi.
The decision problem is then to ask if there exists a set of vectors V ⊆ V0 ∪

V1∪ . . . ∪ Vm−1 such that
1. for each Vi it holds that |Vi∩V|= 1, and

2. for each a,b ∈ V with a ∈ Vi and b ∈ Vj it is true for Xi, j = Xi∩Xj that a[Xi, j] =
b[Xi, j].

It is easy to see that every such set V satisfying both conditions in definition 6
constitutes a solution to the input of the Gluing/Agreeing algorithm.
We want to reduce the GA-problem to the well known k-IS-problem. Again, we

will give a definition of the problem as the decision version.
Definition 7 (k-IS-problem). Given a graph G = (V,E) with vertices V , edges E and
a non-negative integer k, does there exist a subset I ⊆ V of size k such that I is an
independent set, i.e., I induces an edgeless subgraph on G?

6.1.1 Reduction

Now we will introduce our new reduction GA-problem ≤p IS-problem. That is a
method to transform an input to the GA-problem to an input of the k-IS-problem. Then
we will show that this reduction is correct, i.e., the instance of the GA-problem with
m symbols has a solution if and only if the resulting k-IS-problem has a solution with
k = m and that the reduction can be done in polynomial time.
The reduction consists of two steps:

Step 1 First we create an empty undirected graph G= (V,E). For every Vi in (6.1) we
construct a clique consisting of vertices labeled by vectors in Vi and insert them into G.
That is for every vector v ∈Vi we insert a vertex labeled v intoV and connect the vertex
labeled by v to all other vertices with labels in Vi.
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Step 2 After Step 1 there exists for every vector v in V0 ∪V1 ∪ . . . ∪ Vm−1 a corre-
sponding vertex in G labeled v. For all pairs of symbols Si,S j with Xi, j = Xi∩Xj �= /0
we compare every pair of vectors u ∈ Vi,w ∈ Vj. If u[Xi, j] �= w[Xi, j] we insert the edge
uw into G.
Lemma 1. G has an independent set of size m, if and only if S has a solution. Further-
more, the reduction above can be done in polynomial time.
Proof. We will show that the vertices of G which form an independent set of size m are,
as their corresponding vectors, a solution set for S.
(⇒) Assume G has an independent set I of sizem. By Step 1 G consists ofm cliques,

so I can contain at most 1 vertex of every clique. Since all vertices labeled by vectors
inVi form a clique, the first requirement of the GA-problem is met, namely that at most
one vector per Vi is selected.
Furthermore, since by Step 2 all vertices whose corresponding vectors are unequal

in their projection on common variables are connected, I can only contain those vertices
whose corresponding vectors are equal in their projection. That satisfies the second
requirement of the GA-problem.
(⇐) Assume S has a solution V. Then we can form an independent set I in G by

selecting all vertices with labels in V. This is an independent set of size m in G since
only one vertex per clique is selected (by construction in Step 1). Furthermore none of
these vertices share an edge, since by Step 2 only those vertices are connected whose
corresponding vectors are unequal in their projection of common variables. Thus, if
I would not be an independent set of size m, V would not be a solution to S, which
contradicts the assumption.
Step 1 of the reduction can be done in O(m · |V |max2) where |V |max is the maximum

number of vectors in any Vi. Step 2 is comparing each pair of vectors for each pair of
symbols and therefore runs in O(m2 · |V |max2). The whole reduction can therefore be
done in O(m2 · |V |max2).

Example 6 (Reduction example). Let
S0 x0 x1 x2 x3
a0 0 0 0 1
a1 0 1 0 0
a2 1 0 1 0

,

S1 x2 x3 x4 x5
b0 0 0 0 1
b1 0 1 0 0
b2 1 0 1 0

,

S2 x0 x1 x4 x5
c0 0 0 0 1
c1 0 1 0 0
c2 1 0 1 0

(6.2)

be a given GA-problem instance. We will apply the two-step reduction explained above
in order to transform S0,S1,S2 into an IS-problem instance. In Step 1 we create a clique
for every symbol.

The only possible independent set of size k = 3 in Step 2 of Figure 6.1 is indicated
in orange. The only solution to equations (6.2) is therefore the combination of vectors
a2,c2,b2 which is written (1,0,1,0,1,0) in the variables (x0,x1,x2,x3,x4,x5).

6.1.2 Graph Structure

Graphs resulting from this reduction are different from random graphs, even when the
input was a random equation system. Let us assume that we know the following about
the input instance:
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Step 2

Figure 6.1: 2-Step Reduction to IS-problem

1. The equation system is over Fq,

2. in m equations,

3. with a sparsity of ≤ l,

4. all equations are pair-wise agreeing,

5. and the system contains no trivial partial solutions, i.e., fixed variables.

Then we can make the following observations about the resulting graph:

Lemma 2. The graph will contain m complete subgraphs. I.e., for each (Xi,Vi) with
r = |Vi| there exists the complete subgraph Kr in G.

Proof. By construction.

Lemma 3. For any pair of complete subgraphs Kir,K
j
s containing r and s nodes, re-

spectively in G = (V,E) let ηi j be the size of the cut-set between Kir and K
j
s , i.e.,

ηi j = |{uv ∈ E | u ∈ Kir and v ∈ K
j
s }|. Then either ηi j = 0 or r ≤ ηi j ≤ r(s−1), r ≤ s.

Proof. If two pair-wise agreeing equations have no common variables, their vectors
cannot disagree – hence their cliques have no common edges, i.e., ηi j = 0. If they
on the other hand have common variables, we know that they must have vectors that
differ in these variables since by assumption there are no trivial partial solutions. Each
vector in Kir therefore has to be unequal to at least one vector in K

j
s , i.e., r ≤ ηi j. Since

the equations are agreeing pair-wise we also know that no vector can be unequal to all
vectors of K js and therefore ηi j ≤ r(s−1).

This casts some constraints on the structure of the resulting graph after the trans-
formation, even if the input equation system was purely random (and then pair-wise
agreed). Unfortunately, it is unclear at this point if this observations can give any
advantage when implementing a solving algorithm and the question remains an open
problem.
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6.1.3 IS-Solving Algorithm

We have now established a method to reduce the problem of solving a set of equations
to the problem of finding a k-independent set in a graph. The next step is obviously to
try to solve the transformed instances, and to do so we will present the algorithm mis

introduced by Fomin et. al. [22]. The algorithm will return the size of the biggest inde-
pendent set in the input instance. If we know that our input instance of equations before
the transformation has a solution, we can actually answer that question immediately,
i.e., the size is m. On the other hand, we cannot say which vertices are contained in the
set. By tracing mis’ calculation we can reconstruct the independent set and ultimately
provide the solution to our input equation system.
The reason for mis’ significance in the context of equation solving is that one of its

operations, namely folding, transforms the equations (which correspond to the com-
plete graphs Kir) in a non-trivial way. That means that the modification to the input
equations is new and to our knowledge not duplicated by any other algorithm.
In the following we call N(v) = {u∈V |uv∈ E} the open neighborhood of v. N[v] =

N(v)∪{v} is the closed neighborhood of v. Further, we say that α(G) denotes the size
of a maximum independent set in a graph G.
We can then find that for a graph G the following two observations are true:

• For every connected componentC of G,

α(G) = α(C)+α(G\C).

• For any two vertices v,w s.t. N[w]⊆ N[v] it is true that

α(G) = α(G\{v}).

The following two Lemmas along with their proofs can be found in [22]. They will
play a central role in the algorithm mis.

Folding A vertex v is foldable if N(v) = {u1,u2, . . . ,ud(v)} contains no anti-triangle.
Folding a vertex v is then applying the following steps to G in order to obtain the mod-
ified graph G̃(v):

1. Add vertex ui j for each anti-edge uiu j in N(v)

2. Add edges between each ui j and vertices in N(ui)∪N(u j)

3. Add one edge between each pair of new vertices

4. Remove N[v]

Lemma 4. Consider a graph G, and let G̃(v) be the graph obtained by folding a foldable
vertex v. Then

α(G) = 1+α(G̃(v)).
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Mirroring Amirror of a vertex v is any u∈
⋃
w∈N(v)N(w) s.t. N(v)\N(u) forms a clique

or N(v)\N(u) = /0. M(v) denotes the set of all mirrors of v.

Lemma 5. For any graph G and for any vertex v of G,

α(G) = max{α(G\ ({v}∪M(v))),1+α(G\N[v])}.

With the observations and lemmas above we are ready to state the algorithm mis. It
takes as an argument a graph G and returns the size of the biggest independent set in G.
As stated before, the set of vertices forming the maximum independent set in G can be
derived by backtracking mis’ steps.

Algorithm 3 mis
1: procedure mis(G)
2: if(|V (G)| ≤ 1) return |V (G)|
3: if(∃ connected componentC ⊂ G) return mis(C) + mis(G\C)
4: if(∃ vertices v,w such that N[w]⊆ N[v]) return mis(G\{v})
5: if(∃ vertex v with deg(v) = 2) return 1+mis(G̃(v))
6: select a vertex v of maximum degree which minimizes |E(N(v))|
7: return max{α(G\ ({v}∪M(v))),1+α(G\N[v])}
8: end procedure

Algorithm 3 represents just one method utilizing the previously presented lemmas
on the properties of independent sets to solve the problem. Other algorithms, e.g.,
more specialized in solving instances resulting from the reduction, can be imagined
and might improve the running time profoundly. For further details on the method used
to find a maximum independent set, along with examples of the techniques, one can
consult [22].

6.1.4 Experimental Results

We applied this algorithm to a small set of instances coming from random equation
systems and examples from algebraic cryptanalysis. Unfortunately our simple imple-
mentation of the presented algorithm did not yield any improvement over the other
techniques presented. Furthermore, the case of a foldable vertex occurred rather rarely.
Another problem during the short phase of experimentation, was the insufficiently

optimized approach in handling the graphs generated from input equation systems.

6.1.5 Conclusion & Further Work

We have presented an alternative approach for solving a system of sparse equations
over some finite field. A reduction to the well-known IS-problem was shown, along
with a very short analysis of the resulting graph structure. Furthermore, we presented
an algorithm by Fomin et. al. to solve the general IS-problem.
The presented algorithm by Fomin et. al. is directed toward the general IS-problem,

i.e., not specialized on input from equation system. It is possible that additional heuris-
tics in the algorithm can speed up the solving process.
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It is furthermore unclear how much the graph structure, which is rather specific even
for random equation systems, influences the hardness of the IS-problem. A further
analysis of the graph structure of equation systems might lead to a greater insight and
to more efficient algorithms.
Another problem during the investigation of the possibilities of this approach were

the rather intricate implementational details. It might be possible that an efficient imple-
mentation of the presented approach can already compete against other existing tech-
niques and we therefore think that a further investigation of the IS-problem in relation
to the solving of equation systems might be worthwhile.

6.2 Algorithm Unification

When experimenting with versions of the Gluing/Agreeing algorithm and with the Syl-
logism method of solving equation systems [58], it becomes clear that running either
one of them on one and the same instance can lead to different new information. That
is, one algorithm can produce a different output from another. This fact is not very sur-
prising in itself since they are two different algorithms. Nevertheless, the aim of both
algorithms is the same and their guess and verify strategy is similar.
We denote by A(r) the output of the Agreeing algorithm, by S(r) the output of

the Syllogism algorithm on an instance r. We can say that in general A(r) �= S(r)
(there might exists r where the output is equal). We can illustrate this by the following
example.
Example 7 (Agreeing vs. Syllogism). The equation system r = {S0,S1,S2} is pairwise
agreeing

S0 x0 x1 x3
a0 0 0 0
a1 0 0 1
a2 1 0 1
a3 1 1 1

,

S1 x1 x2 x4
b0 0 0 1
b1 1 0 0
b2 1 0 1
b3 1 1 1

,

S2 x0 x2 x5
c0 0 0 0
c1 0 1 1
c2 1 0 0
c3 1 1 0

(6.3)

and A(r) = r would not yield any modification. On the other hand S(r) would result
in a modification to S2, i.e., the vector c1 would not be contained in S(r).
The case for the Syllogism algorithm is similar. Let us assume that our instance r is

now
S0 x0 x1 x2
a0 0 0 0
a1 0 0 1
a2 0 1 0
a3 1 0 0
a4 1 1 1

,

S1 x0 x1 x2
b0 0 0 0
b1 0 1 1
b2 1 0 1
b3 1 1 0
b4 1 1 1

.

ThenS(r) = r despite the fact that we can learn from A(r) that a1,a2,a3,b1,b2 and b3
cannot be part of any common solution to S0 and S2.
The straightforward way to make use of both algorithms simultaneously would be to

run them consecutively on the same instance. While this is a a very easy solution which
guarantees that the output contains no information which either algorithm would not be
able to filter out, it would make the code of an implementation more complicated,
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therefore more error-prone and probably less efficient. Less efficient since it is not
guaranteed that Syllogism might yield additional information over Agreeing, and vice
versa.
Another problem is that the analysis of the run-time of this compound algorithm

might be more complicated, and it seems to be the least favorable solution. A unified
algorithm, which would behave exactly as the compositionA◦S, could circumvent this
problem. The following section describes how such an algorithm can be constructed
by adding extra information to an Agreeing instance during a separate stage of prepro-
cessing, and how this information is used during Agreeing to yield the same result as
running first Agreeing, and then the Syllogism algorithm on the same instance.
This preprocessing step can then be applied to any Agreeing instance and changes

complexity estimates of the algorithm only relative to the size of the input instance.

6.2.1 Syllog Preprocessing

First we have to recall that the Agreeing algorithm can work on tuples [44] or pock-
ets [47]. Both approaches exploit the fact that it is not necessary to repeatedly calculate
projections of vectors in common variables to other symbols. Instead, tuples or pock-
ets are used to keep track of pairs of sets of vectors which are equal in their projection
across different symbols. While the tuple-approach is limited to equivalences between
sets1, we make use of pockets which can express one-way implications and give us a
higher degree of freedom to form the necessary constraints.
We will explain the preprocessing technique with the help of the following three

symbols:
Sa xi x j
a0 0 0
a1 0 1
a2 1 0
a3 1 1

,

Sb x j xk
b0 0 0
b1 0 1
b2 1 0
b3 1 1

,

Sc xi xk
c0 0 0
c1 0 1
c2 1 0
c3 1 1

. (6.4)

These symbols are obviously pair-wise agreeing and do not contain any informa-
tion. They contain each possible binary vector in two variables for all pairs (xi,x j),
(x j,xk) and (xi,xk). In order that the Agreeing algorithm becomes active (as in propa-
gating knowledge) one has to delete at least two vectors from either symbol. However,
we know that if we delete the two correct vectors from two different symbols, the Syl-
logism algorithm can propagate some knowledge.
For example the deletion of a0 (denoted as a0) yields the implication xi⇒ x j. The

deletion of either b2 or b3 can give us new information which can be used to reduce Sc,
i.e.:

• b2 would yield x j⇒ xk and therefore xi⇒ xk which deletes c0, or

• b3 which would yield x j⇒ xk and therefore xi⇒ xk which deletes c1.

1The tuple {A,B} represents the fact that: If the set of vectors A is excluded from a common solution then B
must be excluded, and vice-versa.
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We can express this fact with the following implications in the terms of marking vec-
tors:

{a0,b2} ⇒ {c0}
{a0,b3} ⇒ {c1},

where A⇒B is to be understood as that the marking (deletion) of all vectors in A entails
the marking of all vectors in B, but not the other way around.
Proceeding in the same way for all possible implications

x(α)
i ⇒ x(β )j ⇒ x(γ)k , x(α)

i ⇒ x(β )k ⇒ x(γ)j
x(α)
j ⇒ x(β )i ⇒ x(γ)k , x(α)

j ⇒ x(β )k ⇒ x(γ)i
x(α)
k ⇒ x(β )i ⇒ x(γ)j , x(α)

k ⇒ x(β )j ⇒ x(γ)i

where α,β ,γ ∈ {0,1}, x(0)r = xr and x
(1)
r = xr can give us all pockets we need to express

the behavior of the Syllogism algorithm.
All pockets which can be derived from all possible implications x(α)

i ⇒ x(β )j ⇒ x(γ)k
on (6.4) is shown in Figure 6.2.

p0 = ({a0,b2},8)
p1 = ({a0,b3},9)
p2 = ({a1,b0},8)
p3 = ({a1,b1},9)
p4 = ({a2,b2},10)
p5 = ({a2,b3},11)

p6 = ({a3,b0},10)
p7 = ({a3,b1},11)
p8 = ({c0}, /0)
p9 = ({c1}, /0)
p10 = ({c2}, /0)
p11 = ({c3}, /0)

Figure 6.2: Syllogism pockets for x(α)
i ⇒ x(β )j ⇒ x(γ)k .

Again, just like in the Syllogism algorithm, the transitive closure of the implications
is maintained, but this time with the help of pockets and the Agreeing algorithm. In-
stead of finding new implications we have expressed the technique of Syllogism as the
deletion of vectors in an equation system.
The following algorithm spre implements such a preprocessing. It takes as input an

equation system S= {S0,S1, . . . ,Sm−1} and returns all newly derived pockets according
to the rules above from S.
The crucial operations begin at line 5 in the algorithm, i.e., the generation of the

pockets. Assume without loss of generality that (α,β ,γ) = (0,0,0). Then set A will
after the execution of line 5 contain all vectors from symbol Sa such that v[xi,x j] =
(0,0). The deletion of all these vectors suggests that if xi = 0 then x j = 1 which is the
implication xi⇒ x j. In line 6 all vectors of symbol Sb are collected in B for which it is
true that v[x j,xk] = (1,0). A deletion of all these vectors would immediately yield that
if x j = 1 then xk = 1, i.e., x j⇒ xk. If both implications become simultaneously true due
to the deletion (marking) of all vectors in A and B, we can derive by xi⇒ x j⇒ xk the
fact that xi⇒ xk. We therefore know that in this case from symbol Sc all vectors with
v[xi,xk] = (0,0) need to be deleted, exactly the vectors which are collected in line 7.
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Algorithm 4 Syllogism Preprocessing
1: procedure spre(S)
2: N← /0
3: for all triples (xi,x j,xk), s.t., xi,x j ∈ Xa, x j,xk ∈ Xb and xi,xk ∈ Xc do
4: for all binary vectors (α,β ,γ) do
5: A←{v ∈Va | v[xi,x j] = (α,β )}
6: B←{v ∈Vb | v[x j,xk] = (β ,γ)}
7: C←{v ∈Vc | v[xi,xk] = (α,γ)}
8: pr← (A∪B,s)
9: ps← (C, /0)
10: Insert pr and ps into N
11: end for
12: end for
13: return N
14: end procedure

Example 8 (spre algorithm). Assume we apply spre on equation system (6.3) and we
say that xi = x0, x j = x1 and xk = x2. At some point the algorithm would be in the
state that (α,β ,γ) = (0,1,1). At that point A would be empty since there is no vector
v[x0,x1] = (0,1) in V0. Likewise there does not exist any vector v[x1,x2] = (0,1) in V1
and therefore B= /0. This situation is equivalently expressed by the two implications

x0⇒ x1
x1⇒ x2

which yield x0⇒ x2. The set C contains all vectors v[x0,x2] = (0,1). Since A∪B is
empty we get an empty pr pocket and all vectors in ps, namely c1 have to be deleted
immediately.

6.2.2 Conclusion & Further Work

In this section we presented a method to emulate the Syllogism algorithm in the Agree-
ing algorithm without any modification of the Agreeing. With the preprocessing routine
spre, we make full use of the transitive closure on implications throughout the equation
system by running the Agreeing algorithm on the augmented set of pockets.
Open questions are for example if and how this augmentation of the pocket database

influences the learning described in [47]. The overall complexity of Agreeing is only
influenced by the number of the pockets, but a new estimate on the complexity in
terms of the number of equations, number of variables and sparsity for the augmented
algorithm would be interesting.
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