
Towards Efficient Algorithms
in Algebraic Cryptanalysis

Thorsten Ernst Schilling

Dissertation for the degree of Philosophiae Doctor (PhD)

The Selmer Center
Department of Informatics
University of Bergen

May 2012

2

Acknowledgements

First and foremost I would like to thank my supervisor Håvard Raddum for his time
and dedication. During the almost four years we have worked together, he has offered
me invaluable assistance and guidance.
Further, I would like to thank Pavol Zajac for the joint work we did during the

Slovak-Norway collaboration in cryptology.
I enjoyed my time at the Selmer Center much thanks to the friendly atmosphere

there. While I would like to thank the whole Department of Informatics at the Univer-
sity of Bergen, a special mention goes out to my good colleagues Tor Erling Bjørstad,
Michal Hojsik, Joakim Grahl Knudsen and Somaye Yari.
During my time at the University of Washington in the spring of 2012, Peter Horak

proved to be an excellent host and made my stay there very comfortable.
My friends, among them Carlos Schaffner, Torbjørn Lium, Johannes Rack, with

whom I enjoyed many interesting discussions and who have had to endure me and my
idiosyncrasies while in Norway, deserve an honorable mention. In the same vein, a big
thank you to the families Bonness-Meyer and Havskov for good food and companion-
ship.
Of course, I’d like to direct a big DANKE to my family, i.e., my parents, brother,

grandfather (and the dog) for all the support these last 30 years.
Last but not least, I would like to thank my girlfriend Laila not only for four happy

years together, but also for contributing at least 100 commas to this thesis.

ii Acknowledgements

List of Papers

1. Thorsten E. Schilling, Pavol Zajac, Phase Transition in a System of Random
Sparse Boolean Equations, Tatra Mountains Mathematical Publications 45, 1–
13, 2010.

2. Thorsten E. Schilling, Håvard Raddum, Solving Equation Systems by Agreeing
and Learning, Springer LNCS 6087, 151–165, 2010.

3. Thorsten E. Schilling, Håvard Raddum, Analysis of Trivium Using Compressed
Right Hand Side Equations, Springer LNCS 7259, 18–32, 2012.

4. Thorsten E. Schilling, Håvard Raddum, Solving Compressed Right Hand Side
Equation Systems with Linear Absorption, Sequences and their Applications, Wa-
terloo, to appear in Springer LNCS 2012.

iv List of Papers

Contents

Acknowledgements i

List of Papers iii

1 Introduction 1

2 Background 3
2.1 Complexity Theory . 3

2.1.1 Computational Problems . 3
2.1.2 Landau Notation . 4
2.1.3 P vs. NP . 4
2.1.4 SAT Problem . 5

2.2 Graph Theory . 6
2.2.1 Graph Problems . 8

2.3 Modern Cryptography . 8
2.4 Algebraic Cryptanalysis . 10

3 Computational Methods in Cryptanalysis 13
3.1 Brute-Force Attack . 13
3.2 Algebraic Methods . 14

3.2.1 Linearization . 15
3.2.2 Gröbner Bases . 15

3.3 Boolean Constraint Propagation . 16
3.3.1 DPLL Family Solvers . 17

3.4 Gluing & Agreeing . 19
3.4.1 Gluing . 19
3.4.2 Agreeing . 21
3.4.3 MRHS . 22

3.5 Other Methods . 24

4 Introduction to the Papers 27

5 Scientific Results 29
5.1 Phase Transition in a System of Random Sparse Boolean Equations . . 31
5.2 Solving Equation Systems by Agreeing and Learning 45
5.3 Analysis of Trivium Using Compressed Right Hand Side Equations . . 63

vi CONTENTS

5.4 Solving Compressed Right Hand Side Equation Systems with Linear
Absorption . 81

6 Other Results 95
6.1 Independent Set Reduction . 95

6.1.1 Reduction . 96
6.1.2 Graph Structure . 97
6.1.3 IS-Solving Algorithm . 99
6.1.4 Experimental Results . 100
6.1.5 Conclusion & Further Work 100

6.2 Algorithm Unification . 101
6.2.1 Syllog Preprocessing . 102
6.2.2 Conclusion & Further Work 104

List of Figures

2.1 Complexity classes P and NP in case of P �= NP. 5
2.2 Directed graph. 7
2.3 Undirected graph with edge labels. 7
2.4 Graph with independent set highlighted. 8
2.5 Attack complexities AES. 10

3.1 Expected Complexities of Agreeing/Agreeing-Gluing. 20

6.1 2-Step Reduction to IS-problem . 98
6.2 Syllogism pockets for x(α)

i ⇒ x(β)j ⇒ x(γ)k 103

viii LIST OF FIGURES

Chapter 1

Introduction

Hiding information is an ancient art that dates back to before 1900 BCE. Throughout
the centuries, it has evolved from rudimentary techniques of hiding simple messages
to the sophisticated algorithms that are used to secure, authenticate and validate digital
information today.
In the very early days of cryptography it was often not more than a distraction or

curiosity for the literate. Strictly speaking, writing information down could be consid-
ered a kind of cryptosystem, since the illiterate would not able to decipher the message
contained. But as soon as more than the communicating parties share a common lan-
guage, written or spoken, and they want to conceal the content of their communication
a more sophisticated method is needed. What would be considered a game children
play in school today was serious business around 100 BCE – 44 BCE: the Caesar ci-
pher. The substitution of one letter with another by shifting the alphabet (e.g., write
B for A, C for B, etc.) to conceal written communication was a method used, e.g., by
Caesar to share military information.
It is not known how secure this form of encryption was at the time, but our current

knowledge about the history of cryptography indicates that it probably took until the
14th century to develop more sophisticated methods, like using different substitution
alphabets.
One early important contribution to the field of cryptography was what is still known

today as Kerckhoffs’ principle. In 1883 Auguste Kerckhoffs stated in a journal article
several design principles of ciphers. We say that the only secret information of a ci-
phersystem should be the key and that the system must be able to fall into the hands
of the enemy without inconvenience. This means that if everything about the cipher,
except the key, is known to an adversary, it should remain secure. In most cases this
maxim is still followed today.
During the First and Second World Wars and the Cold War, the parties involved

used all kinds of cryptographic techniques to hide their intentions. A great deal of the
development of what is the foundation of today’s cryptography was achieved in this
time. The name Alan Turing especially stands out. Not only did Alan Turing play
a central role laying the foundation for the theory of computation and algorithms, he
also was involved in breaking the Enigma cipher. The latter earned the allies a crucial
tactical advantage.
During this time, applications which required intensive computations and the in-

creasing availability of computing devices also caused a rise in the interest for algo-

2 Introduction

rithms. And also today the amount and complexity of data which is collected and
processed by all kinds of algorithms is still growing.
Now, in the age of digital communication electronic devices which receive, store

and transmit information are prevalent at our workplaces and in our homes. Today,
examples of cryptographic applications and the influence of algorithms can be found
in almost all aspects of daily life. From mobile phone communication to electronic
payment systems, ticketing systems and even clothing labels.
Because of the huge impact it has on our daily life, understanding cryptographic

methods is important. By analyzing its design and searching for weaknesses we try to
achieve security.
In this thesis we introduce several techniques to represent and solve equation sys-

tems derived from ciphers. We formulate algorithms to investigate if we can practically
solve such systems and do this to understand how hard it is to break a cipher.
While this chapter gives a generally understandable introduction and explains the

motivation behind this work we will in Chapter 2 introduce some key concepts neces-
sary to understand the central scientific contribution of this thesis. Chapter 3 then will
explain comparable techniques which are closely related to the main contributions in
this work. Chapter 4 outlines the scientific results which are presented in Chapter 5.
Two other additional results are then presented in Chapter 6 which concludes the thesis.

Chapter 2

Background

In this chapter, necessary key concepts and terms are introduced. The sections should
give a very brief overview about the fields of computer sciences and cryptography
which are used in order to clarify the environment of the contributions in this thesis.

2.1 Complexity Theory

Computational complexity theory seeks to determine the inherent difficulty of com-
putational problems. Difficulty can be the time needed to find an answer to a stated
computational problem or the space needed to calculate it. This section introduces
some central aspects which are used throughout the thesis.

2.1.1 Computational Problems

The objects investigated in complexity theory are computational problems. They can
informally be categorized into two general classes:
1. Functional problems

2. Decision problems
The first class contains all those problems which to a given question (input) demand
a certain answer (output). One example of a functional problem is the factorization
problem. Here the input is a number r and the output is a list of the prime factors of r.
A decision problem, on the other hand, can only have the output YES or NO. An

example for a decision problem is the primality problem, i.e., the question if a given
number r is a prime. The input is the number r and the only two possible answers are
YES or NO; often denoted as the binary states 1 and 0, accept and reject or TRUE and
FALSE.
Decision problems can therefore be easily expressed as sets of some formal lan-

guage1. An algorithm seeking to solve a specific decision problem is then nothing else
than a set of instructions to test for the membership in this language. The primality
problem can for example be represented by the set

D= {x ∈ N | x is prime.}
1We omit the definition of an alphabet of a formal language and assume all words of the language to be

encoded in binary.

4 Background

as a formal language [48]. An algorithm seeking to solve the problem for a certain
input y, i.e., test if y is prime, can then be viewed as a set of instructions for testing
if y ∈ D. Such an algorithm is also called a decision procedure. If a problem can be
solved, i.e., if there exists some decision procedure for it, the decision problem is called
decidable.
One reason why decision problems are of special interest is that they are limited in

their output, can be formulated as a formal language, and are easy to study. Further-
more, it turns out that every functional problem whose output is polynomially bounded
in size has an equivalent decision procedure with which it can be solved with a polyno-
mial overhead for the reduction [24]. One can find an example of this in section 2.1.4.

2.1.2 Landau Notation

Computational problems are not only investigated for their decidability, but also for
how difficult it is to decide them. That means how much resources are needed in order
to decide them. The basis of the estimation is the concept of the Turing machine. A
Turing machine is a hypothetical computing machine [30, 48] and can compute the
answer to a certain decision problem with a certain amount of steps. A step can be seen
as an unspecified unit of time.
Usually, one is interested in how many steps some algorithm A takes to output YES

or NO in relation to the length n = |p| of some input p. Since the exact function is in
most cases not really interesting or too complicated, we make use of upper bounds in
the Landau notation.

Definition 1 (Landau Upper Bound). For two functions f ,g and x,x0,c ∈ R we say
f ∈ O(g) if there exists a x0 > 0 such that for all x> x0 it holds that

| f (x)| ≤ c · |g(x)|

for some c> 0.

For example, we can now say that some algorithm A needs O(n2) steps to decide
problem D. This means that there exists some length of input n0 such that all inputs
with length n > n0 can be decided with at most c · n2 steps. This notation dates back
to Edmund Landau [31]. Along with other asymptotical bounds, it predates computa-
tional complexity and is used in almost all aspects of computer sciences to express the
computational complexity of a problem.
One sometimes speaks about polynomial time and by this refer to an amount of

O(f) steps where f is a polynomial.

2.1.3 P vs. NP

A complexity class is defined as a collection of problems that have one or more charac-
teristics. The most fundamental – and in practical applications likely the most interest-
ing – complexity classes are P and NP.
The complexity class P contains all languages for which there exists a deterministic

Turing machine such that the language can be decided in polynomial time. Exam-
ples for problems in this class are the greatest common divisor problem or the shortest

2.1 Complexity Theory 5

P

NP

NP-complete

NP-hard

Figure 2.1: Complexity classes P and NP in case of P �= NP.

path problem in a graph. In general, problems in this class are regarded as feasible or
tractable. That usually means that larger instances can be evaluated due to the relatively
moderate increase in running time, or are expected to be more easily manageable when
the size of the problem instances increases.
On the other hand the complexity class NP contains all languages for which there

exists a non-deterministic Turing machine such that the language can be decided in
polynomial time. A non-deterministic Turing machine might be interpreted as one that
branches at run-time into many copies and evaluates all possible computational paths
in parallel [46]. Each computational path then has at most a polynomial number of
steps until a YES or NO is produced, and all paths are evaluated simultaneously.
This entails certain facts. First, it is true that P is a subset of NP. Second, all prob-

lems in NP have a proof that can be verified in deterministic polynomial time. This
yields that all non-deterministic computations can be simulated on a deterministic Tur-
ing machine, or any deterministic (Turing complete) computer for that matter. The
main problem is that this may require an exponential time overhead since all computa-
tional paths of the non-deterministic Turing machine must be evaluated sequentially.
Since non-deterministic computers are so far believed to remain a thought experi-

ment, our only tools to tackle problems in NP are deterministic devices. Due to the
previously mentioned possible exponential overhead in time, problems from NP are
often called infeasible. Therefore the question if P �= NP is crucial.
If all problems in NP can be reduced to one specific problem, we call this problem

NP-hard. By reducing a problem instance p of some problem D to a problem D′ we
mean to compute some function f :D→D′, s.t., p∈D if and only if f (p)∈D′. In case
this problem D′ is also itself a member of NP, it is called NP-complete. Such problems
are known to exist [28].
In case it would turn out that P=NP, every problem inNPwould suddenly become

feasible. This is widely regarded as highly unlikely, but not proven to be impossible.
It is probably one of the most important questions in the computer sciences, and its
solution would have a fundamental impact in other sciences.

2.1.4 SAT Problem

The Boolean satisfiability problem, or short SAT problem, was the first problem to be
shown to be NP-complete [28]. That is, every problem in the complexity class NP can

6 Background

be reduced in polynomial time onto an instance of SAT and by accepting or rejecting
this instance find an answer to the original problem.
Finding a solution to the SAT problem is one alternative technique to the main

contributions in this thesis. It is also an important topic in complexity theory, so the
problem is outlined in the following.
A Boolean formula φ consists of literals of variables x0,x1, . . . ,xn−1 using the logical

operators ∧ (AND), ∨ (OR) and parentheses. A literal is either a variable (xi) or a
negation of a variable (xi). The Boolean formula φxi=r is the Boolean formula φ with
all occurrences of the variable xi fixed to the value r.

Definition 2 (Boolean satisfiability problem (SAT)). Given a Boolean formula φ in
variables x0,x1, . . . ,xn−1 does there exists an assignment of TRUE and FALSE values
(1 and 0 values) to the variables which makes φ evaluate to TRUE (1)?

This problem is clearly a decision problem and an algorithm solving it does not
obviously entail an algorithm yielding the assignments for the variables x0,x1, . . . ,xn−1.
However, the output of the possible function problem (the values of x0,x1, . . . ,xn−1) is
polynomially bounded in the size of the input. As mentioned at the end of section 2.1.1,
we can derive an algorithm which solves the function problem with only a polynomial
overhead utilizing the algorithm solving the decision problem.
Assume that algorithm A can solve the decision version in time O(f) for some

instance φ . If A outputs YES and we would like to know what the assignment for
x0,x1, . . . ,xn−1 is we can first run A on φx0=1. If A(φx0=1) answers YES we know that
x0= 1, otherwise x0= 0. We can then fix the newly learned value of x0 in φ and proceed
for x1 and so on. This has to be done at most n times, and therefore the running time
for the function problem would be at worst O(n · f). If the decision version for the SAT
problem runs in polynomial time, the functional problem will, too.
Thus, if it would be possible to find an algorithm which solves the decision version

of the SAT problem in deterministic polynomial time, we could find the assignment for
x0,x1, . . . ,xn−1 as well.

Restricted Versions There exist more restricted versions or special classes of the SAT
problem which are still NP-complete. The most common in practical applications is
the restriction in which the Boolean formula has to be in conjunctive normal form or
CNF. That means that the input has to be in the form

φ =
∧
i

(∨
j
x(ri j)i j

)
(2.1)

where ri j ∈ {0,1}, x(1) = x and x(0) = x. The conjunction of literals, e.g., (a∨ b∨ c)
is then called a clause. Most modern solvers for the SAT problem operate on inputs in
the form (2.1) as discussed in section 3.3.

2.2 Graph Theory

The first paper in what is today regarded as the discipline of graph theory was published
by Leonard Euler [19]. In his paper he analyses the famous problem of the Seven

2.2 Graph Theory 7

Bridges of Königsberg. By dismissing the real shape of the city of Königsberg and only
considering the start and end points of the bridges, he introduced the formal concept of
the graph.
This thesis utilizes graph theory mostly as a tool to describe specific algorithms and

to illustrate related problems. In Chapter 6 we will show how to use graph theory, and
one of its problems as a central tool to solve the problem of finding the solution to a
non-linear equation system over a finite field.
In the following we will give the most common definition of two types of graphs

along with some other useful related terms.

Definition 3 (Directed and undirected Graph). A graph is a pair G = (V,E). The set
of points V is called vertices. The set E contains pairs of elements in V and is called
edges. Edges may be either directed or undirected (depending on the graph type) and
connect vertices. If not clear from the context, directed edges are denoted by (vi,v j) and
undirected by viv j for two vertices vi,v j ∈ V. The directed edge (vi,v j) points towards
v j, i.e., expresses a connection from vi to v j, but not in the other direction. The edge
viv j expresses a connection in both directions.

In some cases it might be useful to assign a label to an edge e (directed or undi-
rected). If not stated otherwise we denote the label by ω(e).

a b

cd

Figure 2.2: Directed graph.

a

b

c d

e

α

β

γ

δ

ε

ζ

Figure 2.3: Undirected graph with edge labels.

Example 1 (Two graphs). The directed graph in Figure 2.2 contains four vertices,
namely V = {a,b,c,d} and four directed edges E = {(a,b),(c,a),(c,d),(d,a)}. The
undirected graph in Figure 2.3 additionally contains some edge labels, e.g., ω(ce) = ζ .
The complete undirected graph Kr is a graph G with r vertices where every vertex

is connected to every other with an edge. A complete subgraph of size r is also called
a clique. If r = 3 then the complete subgraph is called triangle. The term anti-triangle
(used in Chapter 6) denotes a set of 3 vertices, none of which are connected.
A subgraph G′ of a graph G, also denoted as G′ ⊆ G, is any graph G′ = (V′,E′) for

which V′ ⊆ V and E′ ⊆ E. We say that a subgraph G′ is induced by a subset V ⊆ V if
G′ = (V,E), V ⊆ V and E = {uv ∈ E | u ∈V and v ∈V}. A subgraph induced by V on
G can be also denoted as G[V].
A path in a graph G = (V,E) is any sequence of vertices p = vi, . . . ,v j,v j+1, . . . ,vk

such that for every consecutive pair of vertices v j,v j+1 there exists an edge (v j,v j+1)
in E if G is directed, or, for the undirected case, either v jv j+1 ∈ E or v j+1v j ∈ E.
A connected component of an undirected graph G is any subgraph G′ in which every

vertex vi can reach every other vertex v j by some path p.

8 Background

A cut-set C between two sets of vertices A and B is here defined as the union of all
edges connecting A and B. I.e.,C = {uv ∈ E | u ∈ A and v ∈ B}.

2.2.1 Graph Problems

Given the above terms and definitions, we can describe several problems in graph the-
ory. One problem which will be discussed in connection to the central topic of the
thesis is the problem of the maximum independent set. It is well known to be NP-
complete [46] and thus unlikely to have an efficient algorithm that provides a solution.

Definition 4 (Independent Set). Given a graph G = (V,E), an independent set is any
subset of vertices I⊆ V where for all u,v ∈ I it is true that uv /∈ E.

The problem of the maximum independent set is then to find the biggest subset of
vertices in G which constitute an independent set by Definition 4. We let α(G) denote
the size of the biggest independent set in G.

Example 2 (Independent Set). In figure 2.4, a graph with one of the possible maximum
independent sets colored orange. In this case α(G) = 2.

a

b

c

d e

f

Figure 2.4: Graph with independent set highlighted.

2.3 Modern Cryptography

Formally any cryptosystem is a quintuple (M,C,K,E,D). Here M is called the mes-
sage space (also plaintext or cleartext space),C is the ciphertext space and K is the key
space. Then E= {Ek | k ∈ K} is a set of functions Ek :M→C, the so called encryption
functions. FurthermoreD= {Dk | k ∈ K} is a set of functions Dk :C→M, the decryp-
tion functions. For each e ∈ K, there exists a d ∈ K such that for each m ∈M it holds
that

Dd(Ee(m)) = m. (2.2)

A cryptosystem is said to be symmetric if d = e and asymmetric if d �= e. Since we as-
sume in the following that all operations of the cipher are carried out by some computer,
we restrictM,C and K to be sets of binary strings of finite length.
The convention is that if the cryptosystem generates so called stream bits which are

combined directly with message bits (usually XORed), it is called a stream cipher. If
the cipher works on groups of bits it is called a block cipher.

2.3 Modern Cryptography 9

Modern Age Cryptography Modern and ancient cryptography served the same purpose:
Hiding messages and make information available only for authorized entities. The
history of cryptography pre-dates modern computer sciences by around 4000 years
[27], while modern cryptography started evolving mainly in the beginning of the 20th
century.
One of the periods which saw the greatest evolution in cryptography was probably

the Second World War. Advances in technology and a new kind of warfare led to a
high demand of secret communication. The most prominent cryptographic device of
the Second World War is the German Enigma. Like many cryptographic devices at
that time it was an electro-mechanical rotor machine. At the time it was thought that it
was impossible to break the Enigma, but a team of mathematicians, among them Alan
Turing, were able to do so in the end [27]. In this context and time the work of Claude
Elwood Shannon (1916-2001) – sometimes dubbed “the father of information theory”
– has to be mentioned since it is to a great extend responsible for the direction modern
cryptography would take. His works Communication Theory of Secrecy Systems [51]
and The Mathematical Theory of Communication [52] laid the foundations for modern
information theory.
After the Second World War most of the work on ciphers was carried out in secret.

Cryptography found new applications in the Cold War and the increasingly important
electronic communication was just one of the fields that benefited from it. Several
ciphers which could be executed by hand were developed in order to be used by spies
in the field.
The introduction of the micro-chip, the civilian use of computers and a further in-

crease in electronic communication in the second half of the last century made a public
cipher system necessary. The National Bureau of Standards – today known as NIST
– invited IBM to develop such an algorithm. The outcome was the symmetric block
cipher Data Encryption Standard (DES), which was adopted as a national standard in
1977 [38]. As recommended by the National Security Agency (NSA) the key size was
56 bits.
Another development in 1976 was the introduction of public key cryptosystems

by Whitfield Diffie and Martin Hellman [17]. A public key cryptosystems allows the
sender of a message to encrypt a message with a publicly known key. An adversary who
only knows the public key has no access to the message since a mathematically related
private key is necessary to decrypt the ciphertext. Since only the public key is used for
encryption, the private key can be kept secret and only available to the receiver. With
symmetric cryptography, trusted parties or secure channels are needed to distribute key
material. With public key cryptography, the keys which are only used for encryption
can be sent over an insecure network. The secret private key used for decryption never
has to leave the owner. This made the key distribution massively easier.
Later, stronger symmetric block ciphers, like Triple DES were introduced since the

security of DES became questionable due to its short key [39]. In 2001, after an open
competition, NIST selected the algorithm Rijndael as the new Advanced Encryption
Standard (AES) [40]. It is a symmetric block cipher in the form of a substitution
permutation network and supports a key length of 128, 192 or 256 bits. In order to
encrypt a message, the cipher works on blocks of 128 bits. In 10, 12 or 14 rounds
(depending on the key size), the same set of linear and non-linear operations with a
changing round key are applied to the message. It is used in all kinds of applications

10 Background

and devices and its security is therefore crucial. As of today, the best known attack on
AES was achieved by Bogdanov et.al. in 2011 [7]. The complexities of the attack with
the different key sizes is summarized in figure 2.5. Technically, the cipher is broken.

Key length Operations
128 2126.1
192 2189.7
256 2254.4

Figure 2.5: Attack complexities AES.

Nevertheless, the time to execute the attack is still prohibitively long and therefore not
practical. Thus, for all practical applications AES is still considered safe.
Other developments in the field were the European ECRYPT eStream project be-

tween 2004 and 2008 [1]. Similar to the NIST competition held in order to find AES,
the eStream project was aimed at creating a portfolio of stream ciphers. During the
project, several stream ciphers were broken and in the end seven different algorithms
were included in the portfolio. One of these ciphers is presented in detail and analyzed
in the contributions of this thesis.
Another important event is the ongoing NIST hash competition to find the new

standard SHA-3 [54]. In the same fashion as in the other competitions, submissions are
evaluated in several rounds. In every round candidates are discarded if they are, e.g.,
not well understood or their security can be shown to be insufficient. As of today, there
are four finalists and the winner will be announced later in 2012.

2.4 Algebraic Cryptanalysis

One condition for a symmetric cryptosystem (2.2) to be called secure is that if we are
given pairs

(m0,Ek(m0)),(m1,Ek(m1)), . . .(mr−1,Ek(mr−1)) (2.3)
it should be computationally infeasible to calculate the key k faster than exhaustive
search. For a cipher system with a key length of |k| bits an attacker should be required
to execute O(2|k|) operations on the average to find k. If an attacker can find a method
to compute k in O(2ε) steps with ε < |k| we say that the cipher is broken.
This case is called a known plaintext attack and every pair is called a plaintext/-

ciphertext pair. There exist other, e.g., plaintext only, chosen plaintext or related key
attacks, but the known plaintext attack is probably the most popular in algebraic crypt-
analysis.

Constructing Equation Systems As (2.2) already suggests, it should be possible to formu-
late a cryptosystem in the form of some equation or set of equations. All unknowns in
this system are then variables, and all the information which is known can be inserted
as constants.
To construct the equation system one wants to create equations which connect plain-

text bits, ciphertext bits, key bits and intermediate values. This can be done in different
ways and there might exist several possibilities to construct such a system.

2.4 Algebraic Cryptanalysis 11

For example, if given a round based symmetric block cipher based on non-linear
and linear operations, all bits in the block can be given variable indices. If a non-linear
operation is applied to one or more of these bits a new variable is introduced. The input
and output bits of non-linear operations can then be described as linear combinations of
these variables. Known variables can be substituted with the appropriate values. One
example for generating such a system for AES can be found in [13].
Symmetric stream ciphers usually work by XORing one-by-one stream bit and mes-

sage bit. Then the decryption function is exactly the same function as the encryption
function. We can then see most symmetric stream ciphers as pseudo random number
generators. As the name suggests, their output are pseudo random bits, the key stream.
We often assume that we know a portion of the key stream and write the equations as
updates of the inner state in relation to the output. Solving such a system might give
us an inner state of the cipher, information which usually has a simple relation to the
secret key.
There also exists examples of equation systems for other cipher systems, see for

example [5].

Solving the System Secret information of the cipher is now given in the form of vari-
ables, and the next chapter will give an outline of various different techniques used in
order to solve a system of equations. If one can solve the equation system faster than
the time necessary for an exhaustive key search, the cipher is broken.
In this process it is quite common to create reduced versions of ciphers for exper-

imentation, e.g., the small scale versions of AES, SR and SR* [8]. In most cases it is
hard to solve the obtained equation system. Often it is even hard to estimate how long
it will take to solve it. Therefore, smaller versions of a cipher with the same princi-
ples involved are designed. Trying to break those small-scale ciphers can give valuable
clues about the complexity of solving the full-scale cipher.
Examples of successful algebraic cryptanalysis can be found in [14, 29].

12 Background

Chapter 3

Computational Methods in Cryptanalysis

This chapter gives an introduction to different computational methods in cryptanalysis.
A short outline of different techniques relevant to the central topic of the thesis is given.
Except for local search only exact methods are presented, i.e., techniques which are
guaranteed to give a result. Probabilistic methods are not considered.

3.1 Brute-Force Attack

One technique to reveal a key which works for most crypto systems is the brute-force
attack. The attack simply tries out all possible keys to a given ciphertext and stops when
intelligible plaintext is revealed. This method is simply to traverse the whole keyspace
in search for the correct key. The practical problem is that the keyspace of a typical
modern cipher is too big to be traversed. In order to break a cipher with a key length of
n bits by brute force, and no other weakness like, e.g., an uneven distribution of keys
or impossible keys which can be skipped during the search, one would have to try 2n−1
keys on average before the correct key is found. On any sequential computing device
this would clearly take O(2n−1) steps and already be infeasible for typical values of n,
like n= 128.
While older ciphers like the Data Encryption Standard with a key size of 56 bits can

today be broken by successively trying each key on a portion of ciphertext [25], modern
ciphers like the Advanced Encryption Standard, with a key length of 128 to 256 bits,
are unlikely to be broken by brute-force.
In fact, the so-called Landauer limit can be utilized to conjecture what is possible to

achieve by brute-force under the assumption of the classical paradigms of computation
and physics [32].
Nevertheless, since there exist ciphers with moderate sized keys, and/or weaknesses

which reduce the effective keyspace to a size that makes it a viable target for the brute-
force attack, several improvements have been made. Here, notable approaches include
utilizing highly specialized processors from other areas like computer graphics. Pro-
cessors on graphics cards that usually do geometrical calculations are used to check a
key on a given ciphertext. Circuits on graphics cards usually contain several thousand
copies of a logical unit assigned a specific task in order to be highly parallel on its in-
put data. If these units can be utilized to try keys of a cipher, they offer a much faster
alternative to normal CPUs and can speed up the search massively, not only by pure par-
allelization but also by the relatively high speed of the logical units themselves [9, 57].

14 Computational Methods in Cryptanalysis

A similar approach is used by systems like COPACOBANA. Here Field Pro-
grammable Arrays (FPGAs) are used to create many specialized key testing instances
on a micro chip [25]. FPGAs offer a cost-efficient way to realize such chips since they
are designed as customizable prototyping or small series devices. Several FPGAs to-
gether then operate by the effect of parallelization and specialization of the circuits at
a much higher speed than one or several all-purpose CPUs.
The most expensive approach in this direction are application-specific integrated

circuits (ASIC). Micro chip design from scratch requires huge resources and great ex-
pertise and is unlikely to be used by for example criminal adversaries. To acheive max-
imum speed for testing keys, a specific chip which can be used in an attack is designed
and manufactured.
Speed increases on this line of development can only be proportional to the speed

increase of the technology used, and the number of copies made. This is the reason
why only relatively small key sizes are possible to brute-force.
Since brute-force is the only attack which works on all encryption methods (except

one-time pad) and therefore the most general attack, it is usually used as a benchmark.
A cipher with a key length of n bits for which the fastest attack is brute-force, i.e.,
O(2n), is called secure (with respect to its key length). Any other method which can
find the key in an amount of steps of O(2εn) with ε < 1 is said to break the cipher, since
it is no longer necessary to search the whole key space for the correct key.

3.2 Algebraic Methods

In this section we describe the two major algebraic approaches for solving equation
systems in cryptanalysis. In the following we consider

f0(X0) = 0, f1(X1) = 0, . . . , fm−1(Xm−1) = 0, (3.1)

a set of equations as the input to algebraic methods.
There exist several specialized methods to extract secret information from equation

systems originating from cryptographic primitives. Such methods are for example the
Cube Attack [18] or the Extended Linearization [11] attack.
The techniques described here can be seen as black-box methods, i.e., general ap-

proaches for all kinds of non-linear equation systems and not limited to specific crypto-
graphic primitives. These techniques have applications in all kinds of different areas in
cryptography and cryptanalysis, and can be seen as the most general methods to solve
a system (3.1).
We say that n is the number of variables and m is the number of equations. We

further assume that we are working in F2, since it is the most common case in algebraic
cryptanalysis or in general for applications arising from the computer sciences. There
exists research which concentrates on overdefined systems [11], i.e., m > n but we
focus on the case m = n. Methods which work for m = n are likely to work equally
well or better for m> n.

3.2 Algebraic Methods 15

3.2.1 Linearization

The most basic and probably best-known algorithm which can solve a linear system of
equations is Gaussian elimination. It is the basic method from linear algebra to, e.g.,
find the rank of a matrix, and is named after Carl Friedrich Gauss.
By applying elementary row operations, a process called forward elimination, one

brings the matrix of equation coefficients into what is called triangular or row echelon
form. Then one can by back substitution find all solutions to the equation system. If
the resulting reduced matrix has a rank lower than full rank, the system of equations
has more than one solution.
The number of arithmetic operations to solve a linear system of equations by Gaus-

sian elimination withm= n isO(n3) and the space requirementO(n2). So the algorithm
is clearly a member of the complexity class P and as such a feasible method for linear
equation systems.
The problem arrises with the fact that all instances from algebraic cryptanalysis are

non-linear and cannot be solved by Gaussian elimination alone.
Here, different strategies of linearization come into action. Monomials of degree

greater or equal to 2 are substituted with a new variable and the resulting linear equa-
tion system is then solved by Gaussian elimination. A requirement for this method to
succeed is that the number of linearly independent equations in the system is approxi-
mately the same as the number of different monomials.
Since this is not always the case, the relinearization technique was introduced [29].

Here, new non-linear equations are added to the linearized system and a second lin-
earization is applied to introduce more linearly independent equations. The XL tech-
nique has the same goal [11, 12], but here the number of equations is increased by
multiplying them with all monomials of a bounded degree.
The complexity of these methods is hard to estimate since they are very much de-

pendent on the structure of the input systems, and at least in the case of XL further
research has shown that its efficiency has been overestimated [45].

3.2.2 Gröbner Bases

Research in commutative algebra with motivation from algebraic geometry led to a
greater interest in polynomials. In his doctoral thesis Bruno Buchberger developed the
theory of Gröbner bases which he named after his supervisor, Wolfgang Gröbner. A
Gröbner basis is a special finite generating subset of an ideal in a polynomial ring and
it is unique if reduced. Furthermore, Buchberger developed a deterministic algorithm
to compute such a generating set which is called Buchberger’s algorithm. Overall,
the theory of Gröbner bases can be seen as the non-linear generalization of Gaussian
elimination in linear systems.
The main idea behind the approach is that the set of equations (3.1) as polynomials

generates an ideal and there exists the so-called elimination property for the Gröbner
basis.
Assume (3.1) has finitely many solutions. Then one consequence of the elimination

property is that the Gröbner basis for polynomials

{ f0(X0), f1(X1), . . . , fm−1(Xm−1)} (3.2)

16 Computational Methods in Cryptanalysis

contains some g(xn−1) which depends on only one variable. Furthermore, there will
be another polynomial g′(xn−2,xn−1) and so on [33]. With their help we can find the
solutions to (3.1). In fact, if (3.1) has a unique solution we can form a linear equation
system with the Gröbner basis for (3.2).

Computing Gröbner bases In order to compute a Gröbner basis from a set of polynomials
(3.2) one has to define an order of monomials, also called a term ordering. Since we
are dealing with multivariate non-linear polynomials it is necessary to define such an
ordering in order to find the leading term. For the univariate case the usual convention
is that αxi > βx j if i > j and therefore αxi would be leading βx j in a polynomial.
Since for the multivariate case it is not immediately clear which term is leading, e.g.,
αx3y4 or αz2, such an order is established. A very common order would be for example
lexicographical, and different term orderings have great influence on the complexity of
computing the reduced Gröbner basis. Some polynomials are then minimal with respect
to that ordering. Algorithms which seek to compute the Gröbner basis then iteratively
try to modify the intermediate basis until, e.g., Buchberger’s criterion is reached and
the algorithm terminates. If that happens the Gröbner basis of the input is found, and it
is guaranteed that such a basis exists [33].

Complexity & Variants The complexity of computing a Gröbner basis is hard to estimate.
As previously mentioned it depends highly on the chosen term ordering. In the worst-
case the complexity of the computation can be worse than O(2n) and thus infeasible
already for small n [11].
There are other methods which improve the running time of Buchberger’s algorithm

but are equally hard to estimate in time and space consumption. The most prominent
examples here are Faugère’s F4 and F5 algorithms [20, 21].
Furthermore, there exist several implementations of those algorithms and compar-

isons of those techniques to other methods in algebraic cryptanalysis, e.g., see [3, 4].

3.3 Boolean Constraint Propagation

In the last four decades SAT solvers have probably made the biggest advancements in
solving huge instance of non-linear Boolean problems which were originally thought to
be infeasible. Today they are used in many practical applications besides cryptanalysis.
In cryptanalysis they were for example successfully applied on reduced versions of

the Trivium crypto system [36]. Further modified versions of a popular solver were
developed which introduced the capability of dealing more efficiently with lineari-
ties [53]. There exist a big SAT solver community and hundreds of different imple-
mentations as well as a yearly SAT race (or challenge) to determine the current fastest
solver implementation [2].
While there exist other solver fundaments than the DPLL algorithm, e.g., random

walk based techniques [49], we will concentrate on the former due to its applications
in cryptanalysis.

3.3 Boolean Constraint Propagation 17

3.3.1 DPLL Family Solvers

Most of the successfully applied solvers today are derivations and extensions to the
Davis-Putnam-Logeman-Loveland algorithm (DPLL) [15, 16], a complete backtrack-
ing algorithm which searches for a satisfying assignment of a Boolean formula in con-
junctive normal form. It is based on the following observations on Boolean formulas
in CNF.

1. Pure literal. If an unassigned literal l occurs only in one form, i.e., either in its
pure form or as the negation of a variable, it can be assigned the value TRUE.

2. Unit propagation. Assume φ contains a clause with r literals

(l0∨ l1∨ . . .∨ lr−1),

l0 = l1 = . . . = lr−2 = FALSE and only lr−1 is unassigned. We call such a clause
unit clause. In order to satisfy φ we must set lr−1 = TRUE and call this process
unit propagation.

The most basic DPLL algorithm is then constructed by recursively applying these two
rules. The algorithm takes as input a Boolean formula φ in CNF and returns TRUE or
FALSE depending on wether there exists a satisfying assignment for φ .

Algorithm 1 Basic DPLL Algorithm
1: procedure DPLL(φ)
2: if φ contains a satisfying assignment then
3: return TRUE
4: end if
5: if φ contains a clauseC = FALSE then
6: return FALSE
7: end if
8: for every pure literal l do
9: φ ← φl=1
10: end for
11: for every unit clauseC with unassigned literal r do
12: φ ← φr=1
13: end for
14: l← choose an unassigned literal in φ . � Guess/decision.
15: return DPLL(φl=1)∨DPLL(φl=0) � Splitting of the formula.
16: end procedure

Algorithm 1 has three states at which it can return. First, in case a satisfying assign-
ment is found in line 3. Second, a conflict occurs, i.e., a clause becomes unsatisfied (it
evaluates to FALSE in line 6) and third, the result of the recursive call for both assign-
ments in line 15. Clearly, DPLL runs for a formula φ with n variables in at most O(2n)
steps. In order to terminate as fast as possible, it is important to reach one of the three
points at which it can return as quickly as possible.
Furthermore, for this algorithm the satisfying assignment for φ (if it exists) can be

easily derived by backtracking the steps of the algorithm.

18 Computational Methods in Cryptanalysis

Heuristics At line 14 in algorithm 1 we did not specify how the unassigned literal l is
to be selected. This step is essentially a guess. In the SAT solving community it is also
called a decision step. At this point it is of great importance to select the optimal literal
l. With optimal we mean a literal that can lead us into one of the three possible return
states as soon as possible. Essentially, for the basic DPLL algorithm we would like to
reach two states in the algorithm:

I. We want to guess l correctly, i.e., φ has a satisfying assignment in which
l = TRUE. (since this is the first assumption in which the algorithm branches
at line 15).

II. If the latter is not possible (or very unlikely) we want to guess l so that it leads us
to a conflict as soon as possible.

The reason for I. is that in line 15 we branch first into φl=1. In order to reach line 3
recursively as fast as possible, we would like this guess to be correct so that we do not
need to evaluate φl=0. If this is not possible, we would like to produce short conflicts.
In II. we try to minimize the steps or recursive calls of the algorithm until we can reach
line 6.
These two objectives are obviously highly influenced by the selection of the right

or best literal on line 14. This is the topic of the decision heuristics and there exists a
great deal of research on this topic.
Early research suggested the use of static heuristics based on the frequency at which

a literal occurs in φ , or additionally in relation to the clause size in which it occurs [26,
34]. Every literal is assigned a score based on this measure, and the literal with the
highest score will be selected for the next decision. Those static heuristics do not take
information which can be retrieved during run-time into account, e.g., how often a
literal is involved in a conflict or how often it is assigned due to a unit clause.
Dynamic heuristics which incorporate such information, e.g., the Variable State

Independent Decaying Sum (VSIDS), were found to be much more efficient [23, 37].
Unfortunately these complex heuristics can make the run-time behavior of a SAT solver
hard to analyze.

Learning & Non-Chronological Backtracking The techniques of learning new clauses and
to jump back non-chronologically are another important improvement for SAT solvers
based on the DPLL algorithm [35, 37], and we will give an outline of the procedure in
the following.
What a learning procedure essentially does is to analyze the reason behind a conflict

and try to avoid it in future branches of the search by appending a new clause to φ .
Introducing new guesses into φ usually yields several unit propagations which in turn
may yield others. Assume that d0 = d1 = . . . = dr−1 = TRUE is a series of decisions
that was introduced into φ . This caused several unit propagations by which the literals
p0, p1, . . . , ps−1 got TRUE, but not necessarily in that order. Furthermore, φ for example
contains the clause (p0∨ p1∨ p2). At this point φ is not satisfied, therefore at least one
of the introduced guesses were wrong.
By an extension of the DPLL algorithm and by analyzing how the situation p0 =

p1 = p2 = TRUE came to be, we can learn which subset of d0,d1, . . . ,dr−1 is directly
responsible for the conflict. This is usually a small subset of all the decisions made. In

3.4 Gluing & Agreeing 19

order to avoid this subset of assignments in other branches of the search, a so called
conflict clause C is introduced and the algorithm is continued on φ ∧C. Depending on
which literals C contains, returning further than the last call in the recursion might be
necessary. This is then so-called non-chronological backtracking which avoids other
futile branches of the search tree.
In order to avoid running out of space during the calculation, learnt clauses have to

be deleted from φ sporadically and there exists several different heuristics for this as
well.

CNF Conversion The methods above work on CNF instances in the form (2.1). For the
most applications arising from cryptanalysis it is necessary to convert equations in the
form (3.1) to a set of clauses in CNF. There exist different approaches, e.g., [6], but
it is not ultimately clear which one is the most efficient. Also, the conversion of in-
stances (2.1) into another form should not affect the information the instance contains.
Therefore the technique used for conversion should only result in small changes in the
overall complexity of the problem.

3.4 Gluing & Agreeing

Efforts in the analysis of symmetric block ciphers, DES and AES, led to the develop-
ment of the family of Gluing and Agreeing algorithms [42, 43]. These represent a new
class of solving techniques that were primarily developed for problem instances from
algebraic cryptanalysis.
For these techniques to work, equations must be sparse, i.e., each equation is only

defined in a small number of variables.

Definition 5 (Symbol). Let f (x0,x1, . . . ,xl−1) = 0 be an equation over some finite field
Fq. Every vector in variables x0,x1, . . . ,xl−1 which satisfies the equation is called a
satisfying assignment. A symbol is then the pair (X ,V), where X = {x0,x1, . . . ,xl−1} is
the ordered set of all variables and V = {v ∈ F

l
q | f (v) = 0} is the set of all satisfying

assignments of f (x0,x1, . . . ,xl−1) = 0.

From definition 5 it becomes clear that only an equation with a relatively small
number of satisfying assignments can be efficiently represented as a symbol. Probably
one of the most interesting applications of techniques described in this section, then, is
on systems consisting of sparse equations. That is because the maximum number of
satisfying assignments for a random equation over Fq is ql − 1 and large l will make
storing the equation as a symbol impractical. Specifically, when we speak of a l-sparse
equation system we mean a system in which every equation contains at most l variables.
An in-depth analysis of the expected complexity of the algorithms by I. Semaev

in [50] produced, among other results, the running times shown in figure 3.1, something
that encouraged further research in the area.

3.4.1 Gluing

The Gluing procedure is the first important operation on a pair of symbols. It takes as
an input two symbols Si = (Xi,Vi),S j = (Xj,Vj) and outputs a new symbol containing

20 Computational Methods in Cryptanalysis

l 3 4 5 6
Gluing 1.262n 1.355n 1.425n 1.479n

Agr.-Gluing 1.113n 1.205n 1.276n 1.334n

Figure 3.1: Expected Complexities of Agreeing/Agreeing-Gluing.

all common solutions of the input symbols.
In the following, Xi j = Xi ∩Xj and v[X] denotes the projection of vector v on to

the variables X . Furthermore, v◦w denotes the concatenation of vectors v and w with
respect to overlap. By that we mean the combination of two vectors into a new one, but
only if common variables have equal values. Thus, for two vectors v,w with common
variables X , this operation is only possible if v[X] = w[X]. In case v[X] �= w[X] the
result is empty.
To represent all common solutions the new symbol Sr = (Xr,Vr) must be defined in

the union of the symbol variables, i.e., Xr = Xi∪Xj. The satisfying assignments to both
input symbols can be then computed as follows:

Vr = {v◦w | v ∈Vi,w ∈Vj}. (3.3)

After this computation for every u ∈ Vr it will be true that u[Xi] ∈ Vi and u[Xj] ∈ Vj.
Then Vr contains all vectors which satisfy both equations simultaneously.
This Gluing of two symbols is also denoted as Si ◦ S j since it can be interpreted as

a concatenation of the solutions to the individual symbols while eliminating solutions
which do not satisfy both.
If one is given a set of symbols and one would like to find a solution which satisfies

all symbols at once, i.e., find a common solution, one possibility would be to glue all
symbols together. In fact, if given symbols S0,S1, . . . ,Sm−1 representing an equation
system, and applying repeated gluing, i.e.,

S= S0 ◦S1 ◦ . . .◦Sm−1,

then S will contain all solutions that satisfy the equation system. Thus gluing all sym-
bols together is one way to find a solution to an equation system (3.1). If the intermedi-
ate symbol Sr gets empty during the process of gluing all symbols together, i.e., Vr = /0,
we know that the system is inconsistent and it has no solution.

Worst-case complexity Computing the set (3.3) is the predominant contributor to the
complexity of the Gluing operation. In order to calculate Vr one has to compare all
pairs of vectors v ∈ Vi,w ∈ Vj with each other and write their concatenation into Vr in
case their subvectors in common variables are equal.
While projecting vectors and concatenating them can be neglected as linear factors

in the estimation of the complexity, the comparison of all vector pairs yields a time
complexity of O(|Vi| · |Vj|). Likewise, the space complexity of the result is O(|Vi| · |Vj|),
since the result which has to be stored can at most be of that size.
Example 3 (Gluing). Suppose the following two symbols S0 and S1 in (3.4) are given.
Symbol S0 is defined in variables X0 = {x0,x1,x2} and has the (horizontally written)

3.4 Gluing & Agreeing 21

satisfying assignmentsV0= {a0,a1,a2,a3}. Likewise, symbol S1 is defined in variables
X1 = {x2,x3,x4} and contains the satisfying assignments V1 = {b0,b1,b2}.

S0 x0 x1 x2
a0 0 0 0
a1 0 1 0
a2 1 0 0
a3 1 1 1

,

S1 x2 x3 x4
b0 1 0 0
b1 1 0 1
b2 1 1 1

(3.4)

In order to calculate the gluing S0 ◦ S1 we need to calculate the set of pairs of vectors
which we can concatenate. In this case only a3 of V0 can be combined with any of the
vectors in V1. More specifically, the resulting symbol of the gluing operation in this
case will be (X0∪X1,{a3 ◦b0,a3 ◦b1,a3 ◦b2}) as shown in (3.5).

S0 ◦S1 x0 x1 x2 x3 x4
c0 1 1 1 0 0
c1 1 1 1 0 1
c2 1 1 1 1 1

(3.5)

3.4.2 Agreeing

The Agreeing procedure takes as input two symbols and deletes all assignments whose
projection on common variables do not appear in both symbols. If no assignments can
be deleted, the symbols are said to be pair-wise agreeing. If this property is true for a
whole set of symbols, the system is said to be pair-wise agreeing.

Algorithm 2 Agreeing Procedure
1: procedure Agree((Xi,Vi),(Xj,Vj))
2: Xi j← Xi∩Xj
3: for v ∈Vi do
4: if ∀w ∈Vj : v[Xi j] �= w[Xi j] then
5: Delete v from Vi
6: end if
7: end for
8: for v ∈Vj do
9: if ∀w ∈Vi : v[Xi j] �= w[Xi j] then
10: Delete v from Vj
11: end if
12: end for
13: end procedure

Algorithm 2 takes as input two symbols and modifies them until all pairs are pair-
wise agreeing. Preprocessing the symbols and translating the relations of the subvectors
of the assignments into tuples [50] or pockets [47] allows for a faster Agreeing proce-
dure, but the output is equivalent to that of algorithm 2.
Running the Agree procedure on a whole equation system for all pairs propagates

knowledge by deleting assignments throughout the equation system. This is done until
no further changes to the symbols occur and all pairs are in an agreeing state.

22 Computational Methods in Cryptanalysis

By successively deleting assignments from symbols one arrives at a unique solution
for the equation system if it holds for all symbols Si that |Vi|= 1 and they are pair-wise
agreeing. The gluing of all those symbols then naturally contains a single assignment
which satisfies all symbols simultaneously.

Worst-case complexity The complexity of algorithm 2 is clearly dominated by the two
for-loops in line 3-7 and 8-12. Here again the time complexity mostly depends on
the number of assignments per symbol and is in the range of O(|Vi| · |Vj|). The space
complexity on the other hand is constant to the size of the input since only the existing
symbols are modified.

Guessing Unlike what happens in the Gluing procedure, applying Agreeing alone does
not solve an equation system. In fact, most equation systems from ciphers are pair-wise
agreeing when they are constructed.
In order to solve a system by Agreeing one has to introduce guesses. Such guesses

are deletions of specific assignments of a symbol and then running Agreeing in order to
see if any new knowledge is propagated. If a symbol becomes empty during agreeing
it is clear that the introduced guess was wrong and one has to backtrack. If all |Vi|= 1,
we know that we have found a solution to the system. Different guessing heuristics are
possible here, too.
Example 4 (Agreeing). Consider symbols (3.4) as input to algorithm 2. On line 2 the
algorithm computes Xi j = {x2}. The following for-loop deletes all vectors v from S0
for which v[{x2}] = 0 since w[{x2}] = 1 for all vectors w in symbol S1. The following
for-loop does nothing since both symbols are already pair-wise agreeing. The result of
the computation is therefore:

S0 x0 x1 x2
a3 1 1 1 ,

S1 x2 x3 x4
b0 1 0 0
b1 1 0 1
b2 1 1 1

.

3.4.3 MRHS

The analysis of block ciphers, especially the analysis of DES and AES, gave rise to the
technique of Multiple Right Hand Side equation systems, or short MRHS [42, 44] due
to I. Semaev. A MRHS equation extends linear equation systems in such a way that it
can have multiple right hand sides. Such an MRHS equation is written as

Ax= L

where A is a matrix with n columns and l rows. Similarly, L is a matrix with r columns
and l rows. Every column vector l in L then forms a linear equation system

Ax= l

which can be easily solved for variables in x, e.g., by Gauss’ algorithm. Every solution
for x using any column l in L is a solution to the MRHS equation.

3.4 Gluing & Agreeing 23

Equations of this type are similar to a symbol as they contain a set of assignments.
Here, as opposed to the symbol representation, an assignment (or column) in L does not
directly encode a solution to the equation, but provides solutions to a linear equation
system. As such they give an advantage for equations and equation systems containing
much inherent linearity, e.g., equation systems representing cryptographic primitives.
Similar to symbols one can by a list of MRHS equations

A0x= L0,A1x= L1, . . . ,Am−1x= Lm−1

express a system of equations and if the Hamming weight of each row in Ai is equal to
1 the representation is equivalent to the symbol representation. That is, every Li is a list
of satisfying assignments for linear combinations containing only one variable.

MRHS Gluing & Agreeing Similarly to the way symbols are represented one can define the
Gluing and Agreeing procedure for MRHS equations. Instead of working with direct
assignments of variables one has to take care of linear combinations.
In order to glue A0x= L0 and A1x= L1 together one has to augment the first equa-

tion with the second: [
A0
A1

]
x=

[
L0
0

]
�

[
0
L1

]
. (3.6)

Here 0 stands for an all zero (sub-)matrix. The operationM�N on two matrices denotes
the addition modulo q of all possible pairs of columns, one from N and one from M,

to form a new matrix. Then one has to bring
[
A0
A1

]
into upper triangle form. This is

done while applying the same operations on both matrices on the right hand side, just
as for an ordinary linear equation system, but now for all columns on the right hand
side simultaneously.
If the left hand side matrix has full rank, all pairs of right hand sides can be com-

bined together (XORed). However, it is possible that the left hand side has less than
full rank and so contains zero rows after triangularizing. Then only columns (assign-
ments) from the two right hand sides can be combined, if their sum is 0 where the left
hand side has zero rows. Otherwise the subsystem resulting from the sum of the right
hand side columns would be inconsistent.
The Agreeing procedure on MRHS equations seeks to delete right hand sides which

cannot be combined.
Proofs the correctness, further analysis and examples of this procedures can be

found in [42, 44].

Example 5 (MRHS Gluing). Suppose the MRHS equations

⎡⎣ 1 0 1 0 0
0 1 0 0 0
0 1 1 0 0

⎤⎦
⎛⎜⎜⎜⎝
x0
x1
x2
x3
x4

⎞⎟⎟⎟⎠=

⎡⎣ 0 0 1 1
0 1 0 1
0 0 0 1

⎤⎦

24 Computational Methods in Cryptanalysis

and ⎡⎣ 0 0 1 0 1
1 0 0 1 0
1 1 0 0 1

⎤⎦
⎛⎜⎜⎜⎝
x0
x1
x2
x3
x4

⎞⎟⎟⎟⎠=

⎡⎣ 0 1 0
0 1 1
1 0 0

⎤⎦
are given.
In order to glue them one has to to augment the first with the second one. That is⎡⎢⎢⎢⎢⎢⎣

1 0 1 0 0
0 1 0 0 0
0 1 1 0 0
0 0 1 0 1
1 0 0 1 0
1 1 0 0 1

⎤⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎝
x0
x1
x2
x3
x4

⎞⎟⎟⎟⎠=

⎡⎢⎢⎢⎢⎢⎣
0 0 1 1
0 1 0 1
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦�
⎡⎢⎢⎢⎢⎢⎣
0 0 0
0 0 0
0 0 0
0 1 0
0 1 1
1 0 0

⎤⎥⎥⎥⎥⎥⎦
By row operations we can find that on the left hand side row 6 is the sum of row 1,3
and 4 and therefore the left hand side does not have full rank (note the modified right
hand side): ⎡⎢⎢⎢⎢⎢⎣

1 0 1 0 0
0 1 0 0 0
0 1 1 0 0
0 0 1 0 1
1 0 0 1 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎝
x0
x1
x2
x3
x4

⎞⎟⎟⎟⎠=

⎡⎢⎢⎢⎢⎢⎣
0 0 1 1
0 1 0 1
0 0 0 1
0 0 0 0
0 0 0 0
0 0 1 0

⎤⎥⎥⎥⎥⎥⎦�
⎡⎢⎢⎢⎢⎢⎣
0 0 0
0 0 0
0 0 0
0 1 0
0 1 1
1 1 0

⎤⎥⎥⎥⎥⎥⎦ .

That tells us that we can only combine columns 1,2 and 4 from the first equation with
column 3 from the second. Column 3 from the first equation on the other hand can only
be combined with column 1 and 2 from the second equation. Any other combination
would yield a 1 in the zero row on the left hand side and therefore an inconsistent
equation system.
Thus the gluing of the initial equations with the all 0-row removed is:⎡⎢⎢⎢⎣

1 0 1 0 0
0 1 0 0 0
0 1 1 0 0
0 0 1 0 1
1 0 0 1 0

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝
x0
x1
x2
x3
x4

⎞⎟⎟⎟⎠=

⎡⎢⎢⎢⎣
0 0 1 1 1
0 1 1 0 0
0 0 1 0 0
0 0 0 0 1
1 1 1 0 1

⎤⎥⎥⎥⎦ .

3.5 Other Methods

Syllogism In [58] A. Zakrevskij and I. Vasilkova describe another method for dealing
with large systems of Boolean polynomial equations.
Assume that (3.1) is given as a set of symbols (X0,V0),(X1,V1), . . . ,(Xm−1,Vm−1).

We say that a symbol (Xi,Vi) has a 2-ban if there exists a,b ∈ {0,1} such that for all

v= (x0, . . . ,xr, . . . ,xs, . . . ,xl−1) ∈Vi

3.5 Other Methods 25

it is true that
(xr+a)(xs+b) = 0. (3.7)

In other words, a specific value of projection onto variables xr and xs does not exist in
Vi, therefore this projection is banned. Equation (3.7) can also be written as x

(a)
r ∨ x(b)s ,

where x(0) = x and x(1) = x. Both representations are TRUE under the same assignments
for xr,xs,a and b.
That information can in itself be propagated to other symbols, e.g., if symbol

(Xi,Vi) yields constraint x
(1)
r ∨ x(1)s we know that there exists no vector v ∈ Vi such

that v[{xr,xs}] = (1,1). What follows from this is that no other symbol can contain
any vector (1,1) if projected onto xr,xs. Deleting those vectors is essentially what the
Agreeing method does, here just limited on vectors in 2 variables.
There is another representation of such a 2-ban with implications wich makes the

Zakrevskij method different. We can also write (3.7) as

x(a+1)r ⇒ x(b)s or x(b+1)s ⇒ x(a)r . (3.8)

The implications in (3.8) contain the same information in the sense that they both re-
move the same vector.
From Boolean algebra we know, that if implications x⇒ y and y⇒ z are TRUE then

x⇒ z has to be TRUE, too. This method of deriving new information is also called
syllogism. We can use this fact to create new 2-bans. In case we have two 2-bans,
(xr+a)(xs+b) = 0 and (xs+b+1)(xt+c) = 0 we can derive that for all vectors in the
equation system

(xr+a)(xt+ c) = 0.
By applying this method repeatedly one can compute the transitive closure of all im-
plications. Then all information which can be derived using only 2-bans is propagated
and can be done in O(n3) [56].
Applying this method alone does not solve the equation system and so, e.g., guesses

have to be introduced in order to find a solution to the system.

Local Search There exist different definitions of the concept of local search and as it is
the only not necessarily exact method that is presented here, only the general idea is
outlined. It is a popular concept in Constraint Programming, and frequently used for
different industrial applications [55].
In order to initiate a local search, one guesses or chooses (by some heuristic) an

assignment to the input instance. The input instance can be from any computational
problem in which an assignment and a solution can be identified. Examples are the
satisfiability of a Boolean formula or the shortest path between two points in a graph.
The chances that this assignment is the solution is low for most applications. How-

ever, it is usually possible to identify some modification in which this intermediate as-
signment can be improved. This modification is then applied and the process repeated
to the new intermediate assignment. In doing so, the initial assignment is modified it-
eratively until a solution is found. Usually some form of randomization is introduced
in order to avoid endless-loops.
Unlike the other methods, and depending on the implementation, a termination of

the algorithm is not guaranteed. The method which decides the modification to the

26 Computational Methods in Cryptanalysis

intermediate assignment is crucial for the run-time, and there exist huge differences
between different applications. Therefore it is hard to determine the run-time for crypt-
analytic applications.
Our own experiments have shown that instances from cryptographic problems have

too many local minima, i.e., intermediate assignments for which it is unknown how to
improve them.

Chapter 4

Introduction to the Papers

Paper I: Phase Transition in a System of Random Sparse Boolean Equations

In this paper we study two algorithms that can be used to solve Boolean random sparse
equation systems. The Agreeing algorithm and the Syllogism method are compared.
We show that a phase transition occurs and give threshold values for when it can be
expected to occur.
The work was done in collaboration with Pavol Zajac from the Slovak University

of Technology in Bratislava. It was presented in August 2010 at the NIL-0004 project
workshop in Smolenice, Slovakia.

Paper II: Solving Equation Systems by Agreeing and Learning

The main contribution of the paper is a learning strategy for the Agreeing algorithm.
Furthermore, a technique for non-chronological backtracking is introduced. Experi-
mental data on the extended algorithm on Boolean random sparse equation is presented.
The work on the paper was done in collaboration with Håvard Raddum. It was

presented in June 2010 at the International Workshop on the Arithmetic of Finite Fields
in Istanbul, Turkey.

Paper III: Analysis of Trivium Using Compressed Right Hand Side Equations

The paper introduces a new representation of non-linear multivariate equations. Then
the new representation is applied to an equation system yielded by the cipher Trivium.
It enables us to represent Trivium as one single equation in a manageable size and
processing time. Furthermore, we introduce a small-scale variant of Trivium for further
experimentation.
The work on the paper was done in collaboration with Håvard Raddum. It was pre-

sented in November 2011 at the 14th Annual International Conference on Information
Security and Cryptology in Seoul, Korea.

Paper IV: Solving Compressed Right Hand Side Equation Systems with Linear Ab-
sorption

28 Introduction to the Papers

This paper builds heavily on the contribution of the predecessor. The single compressed
right hand side equation from the previous paper does not immediately yield a solution
to the equation system. In order to extract a solution, we have to introduce a new op-
eration on binary decision diagrams which enables us to get to the solution. We then
successfully apply it to reduced versions of Trivium.
The work on the paper was done in collaboration with Håvard Raddum. It will be

presented in June 2012 at SETA 2012: SEquences and Their Applications in Waterloo,
Canada.

Chapter 5

Scientific Results

30 Scientific Results

Paper I

5.1 Phase Transition in a System of Random Sparse Boolean Equa-
tions

Thorsten E. Schilling, Pavol Zajac
Tatra Mountains Mathematical Publications 45, 1–13, (2010)

32 Scientific Results

5.1 Phase Transition in a System of Random Sparse Boolean Equations 33

Phase Transition in a System of Random Sparse

Boolean Equations

Thorsten Ernst Schilling and Pavol Zajac

University of Bergen, KAIVT FEI STU Bratislava
thorsten.schilling@ii.uib.no, pavol.zajac@stuba.sk

Abstract. Many problems, including algebraic cryptanalysis, can be
transformed to a problem of solving a (large) system of sparse Boolean
equations. In this article we study 2 algorithms that can be used to
remove some redundancy from such a system: Agreeing, and Syllogism
method. Combined with appropriate guessing strategies, these methods
can be used to solve the whole system of equations. We show that a
phase transition occurs in the initial reduction of the randomly gener-
ated system of equations. When the number of (partial) solutions in
each equation of the system is binomially distributed with probability
of partial solution p, the number of partial solutions remaining after the
initial reduction is very low for p’s below some threshold pt, on the other
hand for p > pt the reduction only occurs with a quickly diminishing
probability.

Key words: Algebraic cryptanalysis, Agreeing, Boolean equations, SAT
problem.

1 Introduction

Given an equation system (1) over a finite field Fq it is a well known NP-complete
problem to determine a common solution to all equations. Finding a solution to
such an equation system can be interesting in algebraic cryptanalysis, e.g. when
the solution to the equation system is a constraint to a used, unknown key.

Experiments with different solving algorithms suggest that during the solving
the number of possible solutions is not decreasing continously. That means that
during the solving process the overall number of solutions does not decrease
constantly, but that at some point the number of possible solutions decreases
rapidly.

In this paper we try to determine this point of phase transition in order to
get a better measure for the hardness of a given problem.

The paper is organized as follows. In Section 2 we explain the basic repre-
sentation of equations and the idea how the number of potential solutions to
the equation system can be reduced. Section 3 explains the Agreeing algorithm
and the reduction by Agreeing. Section 4 explains the reduction technique by
syllogisms. In Section 5 we make a direct comparison of these both techniques.
Section 6 shows our experimental results on a series of random sample instances
and Section 7 concludes the paper.

34 Scientific Results

2 Representation of the system of sparse Boolean

equations and its reduction

Let X = {x1, x2, . . . , xn} be a set of variables (unknowns), and let Xi ⊂ X for
i = 1, ..m, such that |Xi| = l. We consider Xi to be chosen uniformly at random
from all possible l-subsets of X. Let F be a system of Boolean equations

f1(X1) = 0, ...fm(Xm) = 0, (1)

such that fi depends only on variables from the set Xi. Let Vi be a set of vectors
that are projections of solutions of fi(X) = 0 into variables ofXi. We call (Xi, Vi)
a symbol, and we say that the symbol represents the equation fi(Xi) = 0. We
call vectors of Vi partial solutions of the system.

To compute all solutions of the whole system we can apply the so called
Gluing procedure [2]. The procedure is as follows: We merge two symbols (Xi, Vi),
(Xj , Vj) together and enumerate all possible solutions Vij of a new symbol (Xi∪
Xj , Vij). Then we replace the original two symbols with a new one. Until some
point the total number of solutions grows (very quickly). Gluing new symbols
together removes some of the partial solutions, until only the valid solutions
of the system remain. More advanced algorithms based on Gluing use different
Gluing strategies, and strategies for removal excess solutions before/without
Gluing, and some combinations with guessing variable values or solutions of
individual equations. The fastest algorithm based on Gluing up to date is the
Improved Agreeing-Gluing Algorithm introduced in [5].

In this article we want to focus on methods that do not use Gluing or any
guessing. Consider the situation where Vi contains just one solution. We know
immediately the values of l variables. Thus these values can be substituted into
all other equations, and conflicting partial solutions get removed. Solutions from
the set Vj can be removed if it shares some variables with Vi. If the remaining
number of possible solutions in Vj is small, we can find new ”fixed” values of vari-
ables, and spread this information, until (almost) all variables have fixed values.
This technique is also called the Spreading of constants [9]. A more advanced
version, the local reduction technique [9], uses fixed /resp. forbidden/ solutions
for groups of variables. The similar method, although differently formulated is
the Agreeing method. Agreeing uses a more efficient representation, and can be
extended to more efficient variants [3, 4]. A different reduction method based on
Syllogism rule (transitiveness of the implication relation) was also presented in
[9], and was later adapted to the symbol representation [7].

We investigate the behavior of the reduction methods in a random sparse
Boolean equation system as a function of one additional parameter: The prob-
ability of a partial solution p. We do not explicitly write down the closed form
for fi, instead we generate each symbol in a stochastic manner. We want to
investigate the systems that have at least one solution, so we generate first a
random solution x. Then for each symbol we generate the set Vi in such a way
that the probability of v ∈ Vi is 1, if v is a projection of x to Xi, and p oth-
erwise. The number of solutions in each symbol is then binomially distributed
|Vi| ∼ Bi(2l, p).

5.1 Phase Transition in a System of Random Sparse Boolean Equations 35

We call the variable xj fixed, if the projection of all v ∈ Vi to xj in some
equation (Xi, Vi), with xj ∈ Xi contains only one value, either 0 or 1. The system
is solved by an algorithm A, if all variables are fixed after the application of the
algorithm A. To investigate various algorithms we run the following experiment:

1. Given the set of parameters (m,n, l, p)1, generate a set ofN random equation
systems (as defined above).

2. For each system, apply the reduction algorithm A.
3. Compute the fixation ratio r = f/n, where f is the number of fixed variables

(after the application of A).
4. Compute the average fixation ratio r̂ = 1/N

∑
r for the whole set of exper-

iments.

If the average fixation ratio stays near 0, then we didn’t learn any significant
information about the solution of the system by the application of the algorithm
A. To solve the system, we must either use a different algorithm, or reduce the
system by guessing some solutions. The basic guessing is exponential in nature,
thus the system (in our settings) need an exponential time to solve. On the
other hand, if the average fixation ratio is near 1, we have a high chance to
solve the whole (randomly generated) system just by applying A. In this case, if
the runtime of algorithm A is bounded in polynomial time, we can say that the
average instance of the problem (m,n, l, p) is solvable in polynomial time.

3 Reduction by Agreeing

In order to find a solution to a set of symbols the Agreeing algorithm attempts
to delete vectors from symbols Si which cannot be part of a common solution.
In the following, the projection of a vector vk on variables X is denoted by vk[X]
and V [X] denotes the set of projections of all vectors vk ∈ V on variables X.

Given two symbols Si = (Xi, Vi) and Sj = (Xj , Vj) with i �= j we say that
Si and Sj are in a non-agreeing state if there exists at least one vector ap ∈ Vi

such that ap[Xi∩Xj] �∈ Vj [Xi∩Xj]. If there exists a solution to the system, each
symbol will contain one vector that matches the global solution. The vector ap
cannot be combined with any of the possible assignments in symbol Sj , hence
it cannot be part of a solution to the whole system and can be deleted. The
deletion of all vectors ap ∈ Vi and bq ∈ Vj which are incompatible with all
vectors in Vj and Vi, respectively, is called agreeing. If by agreeing the set of
vectors of a symbol gets empty, there exists no solution to the equation system.
The agreeing of all pairs of symbols in a set of symbols S = {S0, . . . , Sm−1} until
no further deletion of vectors can be done is called the Agreeing algorithm.

After running Algorithm 1 on S we call S pair-wise agreed. On the average
all Si ∈ S have exactly one one vector left. The solution to the system is then
the gluing of the remaining vectors and the system can be regarded as solved. If
on the other hand one or more symbols get empty, i.e. Vi = ∅, the system has
no common solution.
1 We use m = n, as this is the most important situation.

36 Scientific Results

Algorithm 1 Agreeing Algorithm

1: procedure Agree(S)
2: while (Xi, Vi), (Xj , Vj) ∈ S which do not agree do

3: Y ← Xi ∩Xj

4: Delete all ap ∈ Vi for which ap[Y] �∈ Vj [Y]
5: Delete all aq ∈ Vj for which aq[Y] �∈ Vi[Y]
6: end while

7: end procedure

Example 1 (Agreeing). The following pair of symbols is in a non-agreeing state:

S0 0 1 2
a0 0 0 0
a1 0 0 1
a2 0 1 0
a3 1 1 1

S1 0 1 3
b0 0 0 0
b1 1 0 1

.

The vectors a2, a3 differ from each bj in their projection on common variables
x0, x1 and can be deleted. Likewise, b1 cannot be combined with any of the ai
and can also be deleted. After agreeing the symbols become:

S0 0 1 2
a0 0 0 0
a1 0 0 1

S1 0 1 3
b0 0 0 0

.

Guessing and Agreeing In a usual setting, e.g. given as an input equation
systems from ciphers, Agreeing does not yield a solution immediately. The algo-
rithm has to be modified in a way that one has to introduce guesses.

4 Reduction by Syllogisms

Let (X,V) be an equation, xi, xj ∈ X. Let us have two constants a, b ∈ F2

such that for each v = (xi1 , . . . , xi, xj , . . . , xil) ∈ V : (xi + a)(xj + b) = 0.
We say that equation (X,V) is constrained by (x1 + a)(x2 + b) = 0, or that
(x1+a)(x2+b) = 0 is a 2-constraint for the equation (X,V). A solution x of the
whole system F projected to variables Xi must also be a partial solution in Vi.
Thus x is constrained by every 2-constraint we place on each of the equations in
the system. Thus we can apply 2-constraints found in (Xi, Vi) to remove those
partial solutions of (Xj , Vj), that violate some of the 2-constraints. This is the
basis of the syllogism reduction technique, that is similar to Agreeing. The main
difference is the addition of creating new 2-constraints by the syllogism rule (see
below).

We can see each 2-constraint (xi + a)(xj + b) = 0 as one clause of type

x
(a)
i ∨ x

(b)
j , , where x(0) = x (negation of x), and x(1) = x. All such clauses must

be satisfied by the solution of the system. However, if some vector y satisfies all

5.1 Phase Transition in a System of Random Sparse Boolean Equations 37

such clauses, it does not automatically mean it is a solution of the system2. To
check whether the set of 2-constraints written in a form of clauses is satisfiable
is the well known 2-SAT problem. We must note, that we are not solving the
2-SAT problem, if we already know that the solution exists. However, if the
system contains a large set of 2-constraints, we expect that if we remove the
correct solution the system becomes unsatisfiable. Then we expect to be able to
remove almost all invalid solutions from the system using just the 2-constraints.

We can also rewrite the 2-constraint in the form of two (equivalent) impli-

cations: x
(a+1)
i ⇒ x

(b)
j , and x

(b+1)
i ⇒ x

(a)
j . Implication is a transitive relation,

i.e. if x ⇒ y and y ⇒ z, it follows that x ⇒ z. This derivation is also called
the syllogism rule. Thus, if we have two 2-constraints (xi + a)(xj + b) = 0,
(xj + b+ 1)(xk + c) = 0, we can derive a new 2-constraint (xi + a)(xk + c) = 0.
The new 2-constraints then can be used to remove additional partial solutions
from the system. It is also possible to derive special 2-constraints in the form
(xk + a)(xk + a) = 0, which simply means that xk = a, and thus xk is fixed.

A set of 2-constraints is transitively closed, if we cannot derive any more
2-constraints using the transitiveness property of the underlying implications. A
transitively closed set of 2-constraints thus contain the maximum of information
we can get from the system (using just 2-constraints). We represent a set of 2-
constraints in a form of the implication graph. Vertices of the graph are labelled
by {x1, x2, . . . , xn, x1, x2, . . . , xn}. Edge (x, y) exists if there is an implication
x ⇒ y (so a single 2-constraint is always represented by 2 edges). To find the
transitively closed set of 2-constraints, we compute the transitive closure of the
implication graph (by some of the known algorithms).

The Syllogism reduction method thus works as follows:

1. Examine the set of equations, and find all 2-constraints.
2. For each 2-constraint, add corresponding implications to the implication

graph.
3. Compute the transitive closure of the implication graph.
4. Apply all 2-constraints back to the set of equations, i.e. remove all solutions

from each Vi that violate any of the 2-constraints stored in the implication
graph.

5. If some solutions were removed, repeat the algorithm, otherwise output the
reduced system.

The transitive closure of an implication graph can be computed e.g. by War-
shall’s algorithm [6] in O(n3). After each repetition of the transitive closure algo-
rithm, we must remove add at least one partial solution, otherwise the method
stops. Thus the worst case complexity is upper bounded in O(Mn3), where
M ≈ mp2l is the initial number of solution. Actually the number of repetitions
of the algorithm is very small in practice, especially if the system cannot be
reduced (usually just one repetition). However, we need an additional O(n2)

2 It is only true, if we the set of 2-constraints is tight, i.e. for each equation (X,V)
we can find such a set of 2-constraints, that no other assignment of variables is
permissible except those in V .

38 Scientific Results

memory storage for the implication graph. A more detailed analysis is provided
in [8].

The original method presented in [9] uses immediate resolution of transi-
tive closure after adding each new 2-constraint (also the implication graph is
represented differently), but the algorithm gives the same results (although the
running times differ, but these depend also on the implementation, and the
platform used, respectively). Experimental results in [9] also show that a phase
transition effect exists, but no theoretical explanation or expected parameters
are provided.

4.1 The heuristic model for the expected behavior

The phase transition in the syllogism method can be connected to the corre-

sponding representation of the problem in CNF clauses x
(a)
i ∨x

(b)
j . Each of these

clauses must be satisfied simultaneously, so we get a 2-SAT problem instance in
n variables with k clauses, where k is the total number of clauses (2-constraints)
in the system. It was shown in [1] that if we have a random 2-SAT problem with
k clauses in n variables, having k/n = α fixed as n→∞, then for α > 1 almost
every formula is unsatisfiable, and for α < 1 almost all formulas can be satisfied.
To use this result for the syllogism method, we must first estimate the number
of constraints in the system.

Lemma 1. Let S = (X,V) be a randomly chosen symbol with l = |X| ≥ 2
active variables, and s = |V | distinct solutions. Let ps,l denote a probability, that
a randomly chosen constraint (xi+a)(xj + b) = 0, xi, xj ∈ X, a, b ∈ {0, 1} holds
for an equation defined by symbol S. Then

ps,l =

s−1∏
i=0

3 · 2l−2 − i

2l − i
(2)

Proof. There are 2l possible solutions. For s = 1, there are 2l−2 solutions for
which the constraint (xi + a)(xj + b) = 0 does not hold, namely those where
xi = a+1 and xj = b+1. For all other 3 ·2v−2 solutions the constraint holds, so

the probability p1,l =
3·2l−2

2l
= 3/4. If we have already i constrained solutions,

we can choose the next constrained solution from only 3 · 2l−2 − i vectors out

of 2l − i, thus pi+1,l = pi,l
3·2l−2

−i
2l−i

. By expanding this recursion we get equation
(2).

Using ps,l from equation (2), we can compute the probability of a constrained
solution in a symbol from system generated with the binomial distribution:

Pl,p =

2l∑
s=0

(
2l

s

)
ps(1− p)2

l
−sps,l. (3)

The expected number of constraints in an equation is α(l, p) = 4
(
l

2

)
Pl,p. The

total number of expected constraints is k = αm. We do not take into account

5.1 Phase Transition in a System of Random Sparse Boolean Equations 39

the constraints found by the syllogism rule. The phase transition point should
be near the value pt for which k/n = 1. For our experiments m = n, thus we
are looking for pt for which α(l, pt) = 1. If p > pt we get α(p, l) < 1, thus the
corresponding 2-SAT problem is very likely satisfiable, and the syllogism method
cannot eliminate much solutions. If p < pt, α(p, l) > 1, and the corresponding
2-SAT problem is very likely unsatisfiable. Then almost all excess solutions get
removed by 2-constraints during the application of the syllogism method. The
expected phase transition probabilities are summarized in Table 1.

l pt pt · 2
l

5 0.3694 11.8
6 0.2258 14.5
7 0.1293 16.6
8 0.0711 18.2
9 0.0381 19.5

10 0.0201 20.6

Table 1. Probabilities pt at which the phase transition in syllogism method is expected
to occur.

5 Qualitative comparison of the methods

There exists a set of equations with all partial solutions in Agreeing state, that
can be reduced by the Syllogism method. One of the examples is presented in
Table 1. In the example, we get constraints between variables 1, 2 (x2 ⇒ x1),
variables 2, 3 (x3 ⇒ x2), but originally no constraint between variables 1, 3. A
new constraint (x3 ⇒ x1) can be derived using the transitive closure. This new
constraint removes one partial solution (x1 = 0, x3 = 1, x6 = 1), and furthermore
allows us to find a fixed solution x6 = 0. We remark that the same effect is
obtained, if we glue two of the equations together, and agree them with the
third equation. It is thus possible, that the syllogism method can reduce the
system that the agreeing method is unable to.

S0 1 2 4

a0 0 0 0
a1 0 0 1
a2 1 0 1
a3 1 1 1

,

S1 2 3 5

b0 0 0 1
b1 1 0 0
b2 1 0 1
b3 1 1 1

,

S2 1 3 6

c0 0 0 0
c1 0 1 1
c2 1 0 0
c3 1 1 0

Fig. 1. Example of the agreeing equation system (or a part of one) reducible by the
method of Syllogisms.

40 Scientific Results

If two equations have only one or two common variables, and if they are
not agreeing, it is possible to find a 2-constraint in at least one of them, that
can be used to reduce the solutions in the second one. After the reduction we
get the same result as if agreeing was run. However, if we have more than two
common variables, it is possible that no 2-constraints can be found that restrict
the solutions, one such example is provided in the Figure 2. As l — the number of
variables per equation — grows, this situation becomes more probable, and the
agreeing method will be able to reduce more solutions as the syllogism method.

S0 1 2 3

a0 0 0 0
a1 0 0 1
a2 0 1 0
a3 1 0 0
c4 1 1 1

,

S1 1 2 3

b0 0 0 0
b1 1 1 0
b2 0 1 1
b3 1 0 1
b4 0 0 0

Fig. 2. Example of the disagreeing equation system without any 2-constraints.

The Syllogism method is preferable, if only weak connections (usually only
one common variable) are between equations. In these cases, we can derive more
information using the Syllogism rule than just by Agreeing (which only checks
projection to this single common variable). In a system of random equations, this
situation is more probable, when the system is very sparse. The Agreeing method
provides more information when there are 3 or more common variables, and a
low probability of 2-constraints. The practical experiments show (see Section 6)
that the two methods have almost the same behaviour when l = 7. The method
of syllogisms is preferable for l < 7, and vice-versa.

6 Experimental Results

In this section we present the results of the experiments used to locate the point
of phase transition for equation systems with m = n = 80 variables and varying
sparsity. We used each of the methods on the same set of N = 1000 random
equation system, and p = 0, 0.005, . . . , 0.35 and sparsities l = 6, 7, 8. Figure 3
shows the phase transition for different methods, and sparsities, respectively.

Table 2 summarizes the upper and lower bound for the transition in systems
with m = n = 100. Precision for p is 0.02. The lower bound is the highest p, for
which all 1000 equations were solved, and the upper bound is the lowest p, for
which no equation was solved, respectively.

7 Conclusions

The experimental results confirm the phase transition effect. The transition is
not sharp for smaller systems and sparsities. There is a region of probabilities p,

5.1 Phase Transition in a System of Random Sparse Boolean Equations 41

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.05 0.1 0.15 0.2 0.25 0.3 0.35

fix
ed

 n
 /

n

p

Phasetransition, m=n=80

agree l=6
sylog l=6
agree l=7
sylog l=7
agree l=8
sylog l=8

Fig. 3. Plot of the average fixation ratio showing the phase transition effect.

Agreeing Syllogisms
l low up low up

5 0.26 0.42 0.34 0.46
6 0.18 0.32 0.22 0.34
7 0.12 0.20 0.14 0.22
8 0.08 0.14 0.06 0.14
9 0.04 0.10 0.04 0.08

Table 2. Experimental bounds on phase transition for m = n = 100.

where it is possible to generate both solvable and unsolvable systems. However,
as the number of variables and equation grows, the phase transition becomes
sharper, and it is less probable to reduce the system above the phase transition
point.

A typical situation for the random equation system is p = 1/2, which is above
the phase transition point in every case examined. However, the consequence of
the phase transition effect for smaller p’s is that we can reduce the required
number of guesses required before we can solve the whole equation system even
if it is originally above the phase transition point.

Let us suppose we have a system of m (random) equations with n = m
variables, l-sparse. Each of 2l {0, 1}-vectors can be a solution of an equation in
the system with probability p (usually 1/2), i.e. the expected number of solutions
in each equation is p2l. The expected total number of partial solutions (listed
in symbols) is then mp2l. Let us guess the value of one variable, without the
loss of generality x1. We expect x1 to be an active variable on average in l

42 Scientific Results

equations. Thus we expect that we remove on average a half of lp2l partial
solutions. The expected new number of solutions is thus mp2l − p2l−1, which is
the same number, as if expect from a system generated with a lower solution
probability p′ = p(1− l

2m).
After x (independent) guesses we expect the same number of partial solutions

as in a system generated with px = p(1 − l
2m)x. To reach the zone below the

phase transition point, we need to find px ≤ pt. The expected number of required
guesses to reach this point is then

x =
log pt − log p

log(1− l
2m)

It means, that we have to check only 2x instead of the full 2n possible vectors to
eliminate incorrect/find the correct solution. If we can write x = cn for some con-
stant c, we get the complexity estimate O(2cn) to determine the whole solution
of the system by the guessing algorithm (in combination with A, e.g. Agreeing or
Syllogism method). Estimates based on lower bounds from experimental results
(see Table 2) are summarized in Table 3. We must stress, that this is only an
estimate based on experiments. It is necessary to provide proper mathematical
models to find the exact asymptotic behaviour of the methods. However, a full
mathematical model for the reduction that takes into account all parameters
m,n, p, l for both the Agreeing and Syllogism methods is still an open question.

Table 3. Estimated complexities O(Cn) of the guessing algorithm for different l’s.
pA is the experimental lower bound for phase transition of Agreeing, and pS is the
experimental lower bound for phase transition of Syllogism method. Columns Worst
and IAG are provided for comparison with [5].

l pA C pS C Worst IAG

5 0.26 1.199 0.34 1.113 1.569 1.182
6 0.18 1.266 0.22 1.209 1.637 1.239
7 0.12 1.327 0.14 1.287
8 0.08 1.373 0.06 1.444

Another consequence is for the guessing order. If we want to guess a new
value, we should choose the variable in such a way, so that we affect the highest
number of partial solutions by the guess (resp. by guessing 0 as well as guessing
1). In this way, after removing the partial solutions that have an incorrect value
for the guessed variable, we get nearer to the phase transition point. This should
be the best generic guessing strategy possible. If we want to evaluate more
advanced guessing strategy, e.g. applications of learning [4], it can be considered
effective, if it gives a solution to the system in lower number of guesses (on
average) than the guessing strategy using the phase transition.

The phase transition point is also useful for evaluating the different reduction
algorithms. If two polynomial time reduction algorithms A1, A2 both have a

5.1 Phase Transition in a System of Random Sparse Boolean Equations 43

phase transition effect at solution probabilities p1 < p2, then a theoretically a
more effective one is A2. However in practice the advantage of A2 can only be
realized in large systems, which cannot be solved in practice with the present
computational resources.

References

1. Goerdt, A.: A threshold for unsatisfiability , J Compute System Sci 53 (1996),
469–486.

2. Raddum, H., Semaev, I.: New Technique for Solving Sparse Equation Systems,
Cryptology ePrint Archive: Report 2006/475. Available at http://eprint.iacr.
org/2006/475.

3. Raddum, H., Semaev, I.: Solving Multiple Right Hand Sides linear equations, De-
signs, Codes and Cryptography 49 (2008), 147–160.

4. Schilling, T.E., Raddum, H.: Solving Equation Systems by Agreeing and Learning,

preprint (2010).
5. Semaev, I.: Improved Agreeing-Gluing Algorithm, Cryptology ePrint Archive: Re-

port 2010/140. Available at http://eprint.iacr.org/2010/140.
6. Warshall, S.: A theorem on Boolean matrices, Journal of the ACM 9, No. 1 (1962),

11–12.
7. Zajac, P.: Solving SPN-based system of equations with syllogisms, in: 1st Plenary

Conference of the NIL-I-004, Bergen, August, 24–27, 2009. (A. Kholosha — K.
Nemoga — M. Sýs eds.), STU v Bratislave, 2009, pp. 21–30.

8. Zajac, P.: Implementation of the method of syllogisms, preprint (2010).
9. Zakrevskij, A., Vasilkova, I.: Reducing Large Systems of Boolean Equations, in: 4th

International Workshop on Boolean Problems, Freiberg University, September, 21–
22, 2000.

44 Scientific Results

Paper II

5.2 Solving Equation Systems by Agreeing and Learning

Thorsten E. Schilling, Håvard Raddum
Springer Lecture Notes in Computer Science 6087, 151–165, (2010)

46 Scientific Results

5.2 Solving Equation Systems by Agreeing and Learning 47

Solving Equation Systems by Agreeing

and Learning

Thorsten Ernst Schilling and H̊avard Raddum

Selmer Center, University of Bergen
{thorsten.schilling,havard.raddum}@ii.uib.no

Abstract. We study sparse non-linear equation systems defined over a
finite field. Representing the equations as symbols and using the Agreeing
algorithm we show how to learn and store new knowledge about the sys-
tem when a guess-and-verify technique is used for solving. Experiments
are then presented, showing that our solving algorithm compares favor-
ably to MiniSAT in many instances.

Key words: agreeing, multivariate equation system, SAT-solving, dy-
namic learning

1 Introduction

In this paper we present a dynamic learning strategy to solve systems of equa-
tions defined over some finite field where the number of variables occuring in
each equation is bounded by some constant l. The algorithm is based on the
group of Gluing-Agreeing algorithms by H̊avard Raddum and Igor Semaev[1, 2].
Solving non-linear systems of equations is a well known NP-complete problem
already when all equations are of degree 2; this is known as the MQ-problem
[3]. Finding a method to solve such systems efficiently is crucial to algebraic
cryptanalysis and could break certain ciphers that can be expressed by a set of
algebraic equations, such as AES [4], HFE [5], etc.

Several approaches have been proposed to solve such systems, among them
SAT-solving [6], Gröbner-basis algorithms [7] and linearization [4]. Since our
algorithm falls into the category of the guess and verify methods, we compared
our solving technique to a state-of-the-art SAT-solving implementation, namely
MiniSAT [8].

We adapt the two past major improvements to the DPLL [9] algorithms,
which are watching and dynamic learning [10]. During the search for a solution
the method obtains new information from wrong guesses and requires for many
instances much less or almost no guessing to obtain a solution to the equation
system. The method we present learns new constraints on vectors over some
finite field Fq and can therefore be seen as a generalization of the most common
learning method SAT-solvers use, which operates on single variables over F2. Like
in SAT-solving the learning routine of our algorithm runs in polynomial time.
Furthermore we show by experimental results that our approach outperforms

48 Scientific Results

MiniSAT for a certain class of equation systems, while there still is space for
improvement of the method.

The paper is organized as follows. In Section 2 we explain the symbol rep-
resentation of equations and the basic idea for agreeing. Section 3 introduces
the concept of pockets, and how pockets efficiently integrate with guessing and
agreeing. Section 4 shows how the solving technique can gather new (valuable)
information from wrong guesses, and Section 5 compares our proposed method
to MiniSAT. Section 6 conculdes the paper.

2 Preliminaries

Let
f0(X0) = 0, f1(X1) = 0, . . . , fm−1(Xm−1) = 0 (1)

be an equation system in m equations and n = |X| = |X0 ∪ X1 ∪ . . . Xm−1|
variables over some finite field Fq. Equations fi are often given in their ANF-
form using the variables in Xi, but here we will use symbol representation.

Definition 1 (Symbol). Let fi(Xi) = 0 be an equation over some finite field
Fq. We say that Si = (Xi, Vi) is its corresponding symbol where Xi is the set of
variables in which the equation fi is defined and Vi is the set of vectors over Fq

in variables Xi for which fi(Xi) = 0 is satisfied.

Following this definition the system (1) can be expressed by a set of symbols
{S0, S1, . . . , Sm−1}. The cost of transforming (1) to a set of symbols is clearly
dominated by the number of equations and the variables involved per equation.
Let l = max{|Xi| | 0 ≤ i < m}. Transforming the system (1) to a set of symbols
can be done in time O(mql) and we say that (1) is l-sparse. The examples in
this paper will only consider q = 2, which is the case for most equation systems
arising in practice.

Example 1 (Symbol). Let the equation

f0(X0 = {x0, x1, x2}) = x0 ⊕ x1x2 = 0

be given over F2. In order to construct S0 = (X0, V0) we need to know V0.
Every vector vi ∈ V0 represents by definition a solution to f0(X0) = 0 and by
searching over all 23 vectors in 3 variables and evaluating them we can compute
V0. Therefore the corresponding symbol is

S0 = (X0 = {x0, x1, x2}, V0 = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 1, 1)}).

Throughout the paper a symbol S0 is represented in table-form for better read-
ability. For this example S0 it is

S0 0 1 2
a0 0 0 0
a1 0 0 1
a2 0 1 0
a3 1 1 1

5.2 Solving Equation Systems by Agreeing and Learning 49

where the integers 0, 1, 2 in the first row indicate the variables x0, x1, x2 and
a0, . . . , a3 are identifiers of the vectors in V0.

2.1 Agreeing

In order to find a solution to (1) the Agreeing algorithm attempts to delete
vectors from symbols Si which cannot be part of a common solution. In the
following, the projection of a vector vk on variables A is denoted by vk[A] and
V [A] denotes the set of projections of all vectors vk ∈ V on variables A.

Given two symbols Si = (Xi, Vi) and Sj = (Xj , Vj) with i �= j we say that
Si and Sj are in a non-agreeing state if there exists at least one vector ap ∈ Vi

such that ap[Xi∩Xj] �∈ Vj [Xi∩Xj]. If there exists a solution to the system, each
symbol will contain one vector that matches the global solution. The vector ap
cannot be combined with any of the possible assignments in symbol Sj , hence
it cannot be part of a solution to the whole system and can be deleted. The
deletion of all vectors ap ∈ Vi and bq ∈ Vj which are incompatible with all
vectors in Vj and Vi, respectively, is called agreeing. If by agreeing the set of
vectors of a symbol gets empty, there exists no solution to the equation system.
The agreeing of all pairs of symbols in a set of symbols {S0, . . . , Sm−1} until no
further deletion of vectors can be done is called the Agreeing algorithm.

Example 2 (Agreeing). The following pair of symbols is in a non-agreeing state:

S0 0 1 2
a0 0 0 0
a1 0 0 1
a2 0 1 0
a3 1 1 1

S1 0 1 3
b0 0 0 0
b1 1 0 1

.

The vectors a2, a3 differ from each bj in their projection on common variables
x0, x1 and can be deleted. Likewise, b1 cannot be combined with any of the ai
and can also be deleted. After agreeing the symbols become:

S0 0 1 2
a0 0 0 0
a1 0 0 1

S1 0 1 3
b0 0 0 0

.

2.2 Guessing

In the example above a further simplification of the equation system by agreeing
is not possible. One has to introduce a guess to the system. With Example 2,
that can be the deletion of vector a0. The system is in an agreeing state and
there exists only a single vector in V0 and V1 which gives us a local solution to
the equation system, namely the combination of a1 and b0, that is x0 = 0, x1 =
0, x2 = 1, x3 = 0.

Since practical examples of equation systems are fully or almost fully pair-
wise agreeing, a single run of the Agreeing-algorithm obtains no or little extra

50 Scientific Results

information about the solution to the system. Thus guessing a vector g ∈ Vi and
deleting all other v ∈ Vi, v �= g of a symbol and verifying the partial solution by
agreeing is a way to find a solution. If the guess was wrong the changes to the
equation system are undone and another guess is introduced.

3 Pocket-Agreeing

We introduce an improvement of the Agreeing algorithm based on the tuple
propagation by I. Semaev [11]. The Pocket Agreeing is closer to a potential
software implementation and offers some speed advantages and a simple learning
process.

The goal is to implement a software method to verify a guess fast. Another
aspect is fast backtracking. That means that when a guess is confirmed as in-
correct, the guess should be undone fast to avoid unnecessary overhead during
the computation.

Definition 2 (Pocket). Let Si = (Xi, Vi) and Sj = (Xj , Vj) be two pair-wise
agreeing symbols with Xi ∩ Xj = Xi,j and |Xi,j | > 0. For every projection
ρ ∈ Vi[Xi,j] one creates a pair of pockets

pα = ({a | a ∈ Vi and a[Xi,j] = ρ}, β), pβ = ({b | b ∈ Vj and b[Xi,j] = ρ}, α))

with α and β as unique identifiers or ∅. For the pocket pα = (A, β), we use the
notation V (pα) = A and I(pα) = β.

The purpose of pockets is to have a system that easily identifies vectors that
cannot be part of a global solution. Assume that all the vectors in a pocket p
are identified as incompatible with a global solution for the system in its current
state, and get deleted. Then we can immediately delete all vectors in pocket I(p)
since these have the same assignment of variables also found in p, and so must
be inconsistent with a global solution too. Also note that one particular vector
from a symbol will in general appear in several different pockets. When a vector
is deleted from one pocket it is also simultaneously deleted from all the other
pockets where it appears.

Example 3 (Pocket). Given the symbols S0, S1 from Example 2 after they are
pairwise agreeing, X0 ∩ X1 = X0,1 = {0, 1}. There exists only one projection
V0[X0,1] = {(0, 0)}, thus there is only one pair of pockets to create, namely

p0 = ({a0, a1}, 1)

p1 = ({b0}, 0).

3.1 Propagation

Given a set of pockets generated from symbols S0, . . . , Sm−1 one can run agreeing
through pockets. In order to do so efficiently one assigns a flag to each vector

5.2 Solving Equation Systems by Agreeing and Learning 51

in the problem instance instead of actually deleting them. The flag of a vector
ai can have three values: undefined, marked, and selected, where the flags of
all vectors are initially undefined. If a vector ai is marked, denoted by ai, it is
not suitable for extending the current partial solution, i.e. it is considered to be
deleted. If an ai is selected, denoted by a+i , it is considered to be part of the
current partial solution, and cannot be deleted. In other words a+i is guessed.

The main rule of propagating information in Pocket-Agreeing for the set of
pockets is: “While there is a pocket pq = (A, b) where all ai ∈ A are marked,
mark all vectors in the pocket pb, if b �= ∅.”

This method is analogous to agreeing, where vectors whose projection is not
found in another symbol are deleted. In Pocket-Agreeing equal projections are
calculated beforehand, stored as pockets, and instead of being deleted as soon
as they are not suitable for extending a partial solution, the vectors are flagged
as marked.

3.2 Watching

One technical improvement of the Pocket-Agreeing is the possibility to introduce
watches as done in SAT-solving. If one wants to implement the Pocket-Agreeing
one has to check constantly if all ai ∈ A are marked in a pocket (A, b). Experi-
ments show that this consumes a lot of time during the propagation.

In order to avoid this, one assigns in every pocket p a watch w ∈ V (p). Only
if the w gets marked it is checked if all the other ai ∈ V (p) are marked too. If w
gets marked there are two possible cases to distinguish:

1. All ai ∈ V (p) are marked, and by the propagation rule all vectors in the
pocket I(p) have to be marked, too.

2. There exists at least one ai ∈ V (p) which is not marked. This is then the
new watch.

This technique reduces the time used in the propagation phase. Also backtrack-
ing, i.e., undoing a guess in case it was wrong, is sped up. If at some point in
the program the conclusion is reached that the guess was wrong, one wants to
undo the changes - namely markings - caused by the last guess, in order to try
another guess.

To do so one just undoes the marking of vectors from the last guess, since
pockets were not changed. The watches can stay the same, since they were by
construction the last vectors which got marked in the pocket, or they are not
marked at all.

3.3 Guessing

The process of guessing starts with selecting one symbol Si where all but one
vector from Vi are marked. The remaining vector v+ gets flagged as selected
in order to remember that it is guessed to be part of a correct solution. Then
Pocket-Agreeing based on the latest markings is started.

Two possible outcomes of the agreeing are possible:

52 Scientific Results

1. Only non-selected vectors get marked. The system is in an agreeing state.

2. At some point the algorithm marks some g+, which is by the description
above the last vector remaining for some symbol. This is called a conflict.

If the system ends in an agreeing state, we pick another symbol, select one of its
vectors, mark the others and continue the propagation. In the case of a conflict
the extension of the partial solution with the previous guess(es) was not possible,
and we must backtrack.

4 Learning

During the computation of a solution to the input equation system, it is nat-
ural that wrong guesses occur. It is now interesting why these occur, since a
wrong guess implies that a wrong branch of the search tree was visited. Usually,
the implications that show a guess must be wrong only involve a subset of the
introduced markings. The purpose of this section is to identify exactly which
markings yield a proof of inconsistency for the system. By storing this informa-
tion the solver learns new facts about the system, and the overall number of
guesses needed to find the solution is reduced.

Definition 3 (Implication Graph). An implication graph G is a directed
graph. Its vertices are vectors which are marked.

For a marked vector ai the pocket P (ai) is the pocket where all vectors became
marked, and by propagation caused the marking of ai. If the marking of ai is due
to an an introduced guess then P (ai) = ∅. The set of directed edges E consists
of all markings due to propagation, i.e.:

(ai, aj) ∈ E if ai ∈ V (P (aj)).

Edges (ai, aj) are labeled by P (aj).

Example 4 (Implication Graph). Let the following pockets be given.

p0 = ({a0}, 1)

p1 = ({c0, c1}, 0)

p2 = ({b0, b1}, ∅)

p3 = ({c0}, 2)

Introducing the marking a0 would yield the following implication graph.

The implication graph is not unique and depends on the order in which empty
pockets are processed.

5.2 Solving Equation Systems by Agreeing and Learning 53

Fig. 1. Example Implication Graph.

4.1 Conflict Analysis

Let g+ be the vector which yielded the conflict, that is it was flagged as selected
and by agreeing became marked. The immediate source of the conflict is the
marking of all hj ∈ V (P (g+)). But for further analysis we are more interested
in vectors which caused the conflict by introducing a guess. These are hj ’s con-
nected to g+ in the implication graph, where P (hj) = ∅. By analyzing the graph
we can find the hj ’s recursively:

R(g) = {hj |hj ∈ V (P (g)) and P (hj) = ∅} ∪
⋃

hj∈V (P (g))

P (hj) �=∅

R(hj). (2)

R(g) will then be the set of marked vectors due to guesses, that caused g to be
marked. In other words, R(g) tells us exactly which of the introduced guesses
that are incompatible with g being part of the solution. This information can be
stored as a new pocket, as shown in the following.

4.2 Conflict Construction & Reduction

Assume the marking of g+ yields a conflict and we have found that R(g) =
{h0, h1, . . . , hr} are the marked vectors that imply the marking of g+. We can
now create a new pair of pockets with the implication

R(g)⇒ g,

i.e., if all vectors in R(g) are marked, then g must be marked. The pockets
expressing this are

ps∗ = ({h1, . . . , hr}, t)
pt = (g, ∅).

(3)

However, storing (3) for further computation does not give us any new infor-
mation, since it is a direct consequence of agreeing. We are more interested in
a reduced condition under which we can mark g and exclude it from a common
solution during the search process. The following lemma shows how to find a
reduced condition for when g can be marked.

Lemma 1. Let the pockets p = ({h1, . . . , hr}, q) and pq = ({g1, . . . , gs}, ∅) be
given. For any hj and gi, let Xgihj

be the set of variables that are common to both

54 Scientific Results

hj and gi. Let H be the set of vectors hj ∈ V (p) such that hj [Xgihj
] �= gi[Xgihj

]
for all i. Then marking all vectors in V (p) \ H implies marking all vectors in
V (pq).

Proof: Mark all vectors in V (p) \H and assume that some gi is part of the
solution to the system and should not be marked. Since any vector hj ∈ H
is different in its projection on Xgihj

from gi[Xgihj
], no vectors in H can be

combined with gi in a global solution, so all vectors in H must be marked. Then
the pocket p yields that gi must also be marked. This conflict shows that gi
cannot be part of the solution to the system after all, so all vectors in V (pq)
should be marked once the vectors in V (p) \H are marked. ��

Using this lemma, we delete from the vectors in R(g) all hj for which is true
that

hj [Xghj
] �= g[Xghj

],

and save the implication in a pair of pockets:

ps = ({hj |hj ∈ R(g) and hj [Xghj
] = g[Xghj

]}, t)

pt = (g, ∅).

These two pockets are then added to the list of pockets the system already
knows.

From the conflict described above we can also derive further new knowledge.
Up until now we have our reduced implication ps ⇒ pt, i.e. if all vectors in ps
are marked, mark the vector g ∈ V (pt). Also, it holds for any vector g that

g+ ≡ g1, g2, . . . , gr with gi �= g and g, g1, . . . , gr are all vectors in a symbol (4)

Thus g can become an implicit guess by marking all other gi’s in the same
symbol. From the pair of pockets ps, pt we can now further derive that if g is
guessed, at least one of the vectors in ps has to be selected. Otherwise all hj in
ps would be marked, and the pockets ps, pt would yield a conflict. We express
this with the following lemma.

Lemma 2. Let the pockets ps = (h1, . . . , hr, t) and pt = (g, ∅) be given. For any
symbol Sγ = (Xγ , Vγ) such that Vγ ∩ V (ps) �= ∅ the implication of the following
pockets must hold:

psγ = ({g1, . . . , gr|gi �= g} ∪ (V (ps) \ Vγ), tγ)

ptγ = (Vγ \ V (ps), ∅)

Proof: Let ps = ({au, . . . , av, bx, . . . , by}, t) where {bx, . . . , by} = V (ps) ∩ Vγ .
Then the condition g+, au, . . . , av implies that one of bx, . . . , by has to be selected
(guessed). Otherwise, if none of bx, . . . , by are selected all vectors in V (ps) are
marked, and g has to be marked too (by ps ⇒ pt). This would be a conflict since
g+ is implicitly selected. Guessing one of bx, . . . , by implies the marking of all
vectors in Vγ \ {bx, . . . , by}, which is exactly the set of vectors in ptγ . ��

By using Lemma 1, we should also reduce the condition for when the vectors
in V (ptγ) can be deleted by excluding vectors in V (psγ) that differ in projection
on common variables to all vectors in V (ptγ).

5.2 Solving Equation Systems by Agreeing and Learning 55

Remark 1 (Cycle-rule). Lemma 1 is an extension to the cycle-rule by Igor Se-
maev [12]. The cycle-rule states that through (4) it is possible to delete from
an implication a0, . . . , ar ⇒ h0, . . . , hs those ai which belong to the same sym-
bol as h0, . . . , hs. However, the cycle-rule is extended by removing vectors from
a0, . . . , ar which do not belong to the same symbol, but only differ in their pro-
jection from the vectors h0, . . . , hs. Note that if two vectors belong to the same
symbol, they always differ in their projection on common variables.

4.3 Non-chronological Backtracking

After the learning is completed the last guess should be undone and based on
the extended pocket database Agreeing should run again. If the system is now
in a non-agreeing state it can only be due to newly learnt pockets ps. Thus any
change to the system that does not involve vectors in V (ps) will necessarily result
in a conflict again. Therefore we can jump back to the tree-level at which the
last change in an ps occurred, depending on which pocket yielded the conflict.
This way we cut futile branches of the search tree and economize the search in
the number of guesses.

Example 5. Let the following equation system be given:

S0 1 2 3
a0 0 0 0
a1 0 1 1
a2 1 1 0
a3 1 1 1

,

S1 2 4 5 6 12
b0 0 1 0 0 0
b1 0 1 0 1 0
b2 0 1 1 0 1
b3 1 0 1 1 1

,

S2 4 7 8
c0 1 0 0
c1 1 0 1
c2 0 1 0
c3 0 1 1

,

S3 1 9 10
d0 0 0 1
d1 0 1 0
d2 1 0 0
d3 1 1 1

,

S4 10 11 12
e0 0 0 1
e1 0 1 0
e2 1 0 0
e3 1 1 1

,

S5 9 11 12
f0 0 0 1
f1 0 1 0
f2 1 0 0
f3 1 1 1

.

The intersection graph in Figure 2 indicates pairs of symbols from which
pockets are generated. The labled edges between symbols show intersections in
the sets of variables. No pockets are generated from the pair S1, S5 since changes
of variable x12 will propagate through the path S1, S4, S5 while agreeing.

Assume that by some heuristic the order of symbols to be guessed is S0, S1, S2,
S3, S4, S5. The partial solutions a

+
0 , b

+
0 , c

+
0 are selected in that order. This results

in the following equation system after agreeing:

S0 1 2 3
a0 0 0 0

,
S1 2 4 5 6 12
b0 0 1 0 0 0

,
S2 4 7 8
c0 1 0 0

,
S3 1 9 10
d0 0 0 1
d1 0 1 0

,
S4 10 11 12
e1 0 1 0
e2 1 0 0

,
S5 9 11 12
f1 0 1 0
f2 1 0 0

.

For a further extension of the partial guess one tries to extend the partial
solution by d0. The resulting implication graph after marking d1 is shown below.
Marking d1 causes e1 to be marked by pocket p18, which again causes f1 and
d0 to be marked by pockets p26 and p21. This is clearly a conflict, since d0 was
previously selected but should be marked now. Now we analyze the source of
the conflict in order to learn from it.

R(d0) = {a1, a2, a3, b2, d1}

56 Scientific Results

S0

S3 S5 S1

S4

S2

{1}
{2}

{4}

{12}

{12}{10}

{9}

{11, 12}

p0 = ({a0}, 1) p1 = ({b0, b1, b2}, 0)
p2 = ({a1, a2, a3}, 3) p3 = ({b3}, 2)
p4 = ({a0, a1}, 5) p5 = ({d0, d1}, 4)
p6 = ({a2, a3}, 7) p7 = ({d2, d3}, 6)
p8 = ({b0, b1, b2}, 9) p9 = ({c0, c1}, 8)
p10 = ({b3}, 11) p11 = ({c2, c3}, 10)
p12 = ({b0, b1}, 13) p13 = ({e1, e2}, 12)
p14 = ({b2, b3}, 15) p15 = ({e0, e3}, 14)
p16 = ({d0, d3}, 17) p17 = ({e2, e3}, 16)
p18 = ({d1, d2}, 19) p19 = ({e0, e1}, 18)
p20 = ({d0, d2}, 21) p21 = ({f0, f1}, 20)
p22 = ({d1, d3}, 23) p23 = ({f2, f3}, 22)
p24 = ({e0}, 25) p25 = ({f0}, 24)
p26 = ({e1}, 27) p27 = ({f1}, 26)
p28 = ({e2}, 29) p29 = ({f2}, 28)
p30 = ({e3}, 31) p31 = ({f3}, 30)

Fig. 2. The intersection graph and the resulting pockets. Dotted edges in the intersec-
tion graph are ignored.

Fig. 3. Implication Graph of guess a0, b0, c0, d0.

5.2 Solving Equation Systems by Agreeing and Learning 57

To create the reduced ps we compare projections of a1, a2, a3, b2, d1 in common
variables to projections of d0. We see that a2 and a3 have a different projection
than d0 on their common variable x1, so these vectors can be excluded from ps
by Lemma 1. d1 can obviously also be excluded since it belongs to the same
symbol as d0. After this reduction we get:

p32 = ({a1, b2}, 33)

p33 = ({d0}, ∅).

Using Lemma 2 we also derive:

p34 = ({d1, d2, d3, a1}, 35)

p35 = ({b0, b1, b3}, ∅)

p36 = ({d1, d2, d3, b2}, 37)

p37 = ({a0, a2, a3}, ∅)

After this learning process we agree the system again, with our newly ob-
tained knowledge. The pockets p32 and p33 cause d0 to be marked. This implicitly
selects d+1 , which immediately yields another conflict, without introducing any
new guess. Thus the guesses a+0 , b

+
0 , c

+
0 cannot all be right. We can immediately

read from p32 where to backtrack. We see from p32 that the guessing of c+0 was
not a cause for the conflict, otherwise there would be some ci-vectors in p32. This
tells us that if we now backtrack and select, say c+1 , we will end up in the very
same conflict again. Hence we can go back to the point where b0 got guessed
(and b2 marked) and try selecting another bj-vector. Bypassing the guesses on
all ci-vectors that would be due in a naive search algorithm saves a lot of time.

Figure 4 shows the decision tree until the first solution is found. Branches
not incorporating vectors from all symbols indicate conflicts. Connected to the
dotted lines are the newly learned pockets. In comparison the naive search tree,
without learning, is depicted in Figure 5.

4.4 Variable-based guessing

In the algorithm we have explained, we guess on which of the possible assign-
ments in a symbol that is the correct one. It may look more natural to guess
on the value of single variables as is done in SAT-solving. Given an instance
S0, S1, . . . , Sm in variables X there exists a simple way to realize variable-based
guessing. Instead of establishing a separate mechanism of introducing the guess
on a single variable one inserts new symbols of the form Sxi

= ({xi}, {v0 =
0, v1 = 1}) for every xi ∈ X before the pocket generation. These symbols con-
tain no information but can easily be integrated into the system. Assume one
wants to guess that xi = 0. From the newly inserted symbol one just marks v1
and propagates the guess by agreeing instead of keeping a separate table of all
vectors in which xi occurs as 1 and marking them. Another advantage is that
this way of introducing variable guessing integrates with the learning without
problems.

58 Scientific Results

Fig. 4. Search tree with learning.

Fig. 5. Naive search tree.

5.2 Solving Equation Systems by Agreeing and Learning 59

Of course this approach works for other fields than F2, too. Assume an equa-
tion system over Fq then one inserts for every xi ∈ X a symbol Sxi

= ({xi}, Vxi
=

{vj |vj ∈ Fq}).

5 Experiments

5.1 Results

In order to evaluate the strength of the proposed solving algorithm, several
experiments were made with random equation systems over F2. A software,
calledGluten, that implements the algorithm was developed. To get a comparison
with another solving technique we took a SAT-solver, namely MiniSAT since the
guess/verify technique to obtain a solution is similar. Furthermore SAT-solving
is a well researched field and MiniSAT among the fastest programs in this field.

Rather than comparing pure solving time we compare the number of vari-
able guesses needed until a solution to the system is obtained. During all the
experiments it holds m = n, i.e. the number of equations is equal to the number
of variables. We make sure the systems have at least one solution. The sparsity
l is also fixed to l = 5. The ANF degree for the equations we generate will be
randomly distributed, but will of course be upper bounded by the sparsity. Fur-
thermore every m = n was tested with 100 randomly generated instances and
the arithmetic mean calculated afterwards.

Figures which display both very large and very small values are log-scaled
for better readability.

5.2 Random Instances

In this experiment the expected number of roots for every equation is E(|Vi|) =
24 and binomially distributed, as would be the case when the symbols are ob-
tained from random ANF’s.

 10

 100

 1000

 10000

 100000

 60 80 100 120 140 160 180 200 220

G
ue

ss
es

Variables (m=n)

Gluten
miniSAT

Fig. 6. Gluten vs. MiniSAT (log-scale)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 60 80 100 120 140 160 180 200 220

G
ue

ss
es

Variables (m=n)

Error
Average

Fig. 7. Gluten average and error (log-scale)

60 Scientific Results

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 10 20 30 40 50 60 70 80 90 100

G
ue

ss
es

Sample nr.

Gluten
miniSAT

Fig. 8. n = m = 200

 10

 100

 1000

 10000

 100000

 60 80 100 120 140 160 180 200 220

G
ue

ss
es

Variables (m=n)

Error
Average

Fig. 9. MiniSAT average and error (log-
scale)

In Figure 6 one can see that Gluten performs clearly better up til around
m = n = 170. Afterwards the average values for MiniSAT stay low while the
number of guesses for Gluten rise fast. Figure 7 shows that the error margin is
very high to the average in comparison to the error margin of MiniSAT, shown
in Figure 9. In other words, Gluten runs into a few cases where it makes an
extremely high number of guesses whereas MiniSAT is able to keep its number
of guesses not too far from the average.

To get a better comparison of both methods in Figure 8, the case of n =
m = 200 along with the sample number is given. For every of the 100 samples
the black bar indicates the number of variable guesses Gluten took to obtain a
solution and the grey bar shows the number of guesses MiniSAT took to find a
solution. In approximately 1/3 of all samples Gluten performs worse, in the rest
approximately equally or better.

5.3 Uniformly distributed number of roots

The case when the number of roots in the equations are distributed uniformly at
random was also investigated. That means that the size of Vi is taken uniformly
at random from [1, 2l − 1] for each symbol.

In this scenario Gluten performs much better on the whole spectrum of the
experimental data. As Figure 10 and 11 shows the number of guesses for Gluten
rise linearly while the curve giving the number of MiniSAT’s guessings seems to
be quadratic (the polynomial 0.0232n2 + 1.6464n − 15.4 fits the dashed curve
very well). The Gluten values are less than 50; note the different scalings in
Figure 10 and 11. It is also interesting to notice that Gluten only needs to make
very few guesses, even for systems with over 250 variables.

6 Conclusion & Further Work

We have shown how new knowledge about the equation system can be obtained
in polynomial time when guessing partial solutions and running the Agreeing

5.2 Solving Equation Systems by Agreeing and Learning 61

 0

 500

 1000

 1500

 2000

 2500

 50 100 150 200 250

G
ue

ss
es

Variables (m=n)

Gluten
miniSAT

Fig. 10. Gluten vs. MiniSAT

 0

 5

 10

 15

 20

 25

 30

 35

 40

 50 100 150 200 250

G
ue

ss
es

Variables (m=n)

Error
Average

Fig. 11. Gluten average and error

algorithm. New constraints on vectors defining partial solutions can be added
and using this, futile search-regions can be pruned. Our experiments show our
proposed algorithm performs better than SAT-solving in a large number of in-
stances. In particular, the experimental data shows that it is only necessary to
make a small number of guesses to solve systems where the number of roots are
uniformly distributed.

Several mechanisms are not yet introduced to our algorithm. Among them are
random restarts during the search process or random guesses. It is obvious that
a good guessing heuristic is crucial for the success of a solver of this kind. While
SAT-solving is well studied and a lot of different search-heuristics are available,
this is still an open field and topic for future research for the algorithm proposed
in this paper.

References

1. Raddum, H.: MRHS Equation Systems. Lecture Notes in Computer Science 4876

(2007) 232–245

2. Raddum, H., Semaev, I.: Solving Multiple Right Hand Sides linear equations.
Designs, Codes and Cryptography 49(1) (2008) 147–160

3. Courtois, N., Patarin, J.: About the XL Algorithm over GF(2). Lecture Notes in
Computer Science 2612 (2003) 141–157

4. Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Sys-
tems of Equations. Lecture Notes in Computer Science 2501 (2002) 267–287

5. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE Public Key Cryptosystem by
Relinearization. In: CRYPTO ’99: Proceedings of the 19th Annual International
Cryptology Conference on Advances in Cryptology, London, UK, Springer-Verlag
(1999) 19–30

6. Massacci, F., Marraro, L.: Logical cryptanalysis as a SAT problem. Journal of
Automated Reasoning 24(1) (2000) 165–203

7. Faugère, J.: A new efficient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra 139(1-3) (1999) 61–88

8. Een, N., Sörensson, N.: Minisat v2.0 (beta). Solver description, SAT Race
http://fmv.jku.at/sat-race-2006/ (2006)

62 Scientific Results

9. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7) (1962) 394–397

10. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
efficient SAT solver. In: Proceedings of the 38th conference on Design automation,
ACM New York, NY, USA (2001) 530–535

11. Semaev, I.: Sparse algebraic equations over finite fields. SIAM Journal on Com-
puting 39(2) (2009) 388–409

12. Semaev, I., Schilling, T.: Personal correspondence (2009)

Paper III

5.3 Analysis of Trivium Using Compressed Right Hand Side Equa-
tions

Thorsten E. Schilling, Håvard Raddum
Springer Lecture Notes in Computer Science 7259, 18–32, (2012)

64 Scientific Results

5.3 Analysis of Trivium Using Compressed Right Hand Side Equations 65

Analysis of Trivium Using

Compressed Right Hand Side Equations

Thorsten Ernst Schilling, H̊avard Raddum
thorsten.schilling@ii.uib.no,havard.raddum@ii.uib.no

Selmer Center, University of Bergen

Abstract. We study a new representation of non-linear multivariate
equations for algebraic cryptanalysis. Using a combination of multiple
right hand side equations and binary decision diagrams, our new repre-
sentation allows a very efficient conjunction of a large number of separate
equations. We apply our new technique to the stream cipher Trivium

and variants of Trivium reduced in size. By merging all equations into
one single constraint, manageable in size and processing time, we get a
representation of the Trivium cipher as one single equation.

Key words: multivariate equation system, BDD, algebraic cryptanaly-
sis, Trivium

1 Introduction

In this paper we present a new way of representing multivariate equations over
GF (2) and their application in algebraic cryptanalysis of the stream cipher
Trivium.

In algebraic cryptanalysis one creates an equation system of the cipher being
analyzed and tries to solve it. The solution will reveal the key or some other
secret information. Solving the system representing a cipher in time faster than
exhaustive search will be a valid attack on the cipher.

There exist several ways to represent such a system, e.g., ANF, CNF [1] or
MRHS [2]. Along these representations different families of algorithms to solve
equation systems have been proposed, e.g., Gröbner Basis like algorithms [3],
XL [4] SAT-solving [1] and Gluing/Agreeing algorithms [5, 2, 6].

For the stream cipher Trivium, which has an especially simple structure,
one can easily construct an equation system describing its inner state constraints
using some known keystream bits. Attempts at solving this system have never-
theless been unsuccessful. While reduced versions of Trivium could be broken
[1], there is no attack better than brute-force known for the full version.

Previous methods describe the Trivium-equation system as a set of non-
linear constraints, which have to be true in conjunction. One can simplify those
equation systems by joining several constraints into a single new one. Unfor-
tunately the conjunction operation usually leads to exponentially big objects,
which quickly become too big for today’s computers.

66 Scientific Results

In this paper we present a new way of representing the constraints given
by a non-linear equation system. This representation allows all equations in the
Trivium-equation system to be merged into one single equation. The process
of merging equations has asymptotically exponential complexity, but using our
new technique we are nevertheless still able to complete it in practice, with an
actual complexity far lower than the O(280)-bound for Trivium.

The paper is organized as follows. In Section 2 we explain the Multiple Right
Hand Side equation representation and Binary Decision Diagrams as well as
some operations on both constructions. The cipher Trivium is also briefly de-
scribed. Section 3 introduces Compressed Right Hand Side equations and shows
how a solution to such equations can be found. In Section 4 we present our
experimental results and explain how to reduce the Trivium equation system
to a single Compressed Right Hand Side equation. Section 5 concludes the pa-
per. The appendix contains examples for several of the used constructions and
algorithms.

2 Preliminaries

2.1 Multiple Right Hand Side Equation Systems

The Multiple Right Hand Side (MRHS) representation [2, 5] is an efficient way to
represent equations containing much inherent linearity. Equation systems com-
ing from cryptographic primitives are well suited for MRHS representation, since
cryptographic algorithms are usually built using both linear and non-linear com-
ponents.

A MRHS equation is a linear system with, as the name suggests, multiple
right hand sides. We write one MRHS equation as Ax = B, where A and B
are matrices with the same number of rows, and x is a vector of variables. Any
assignment of x such that Ax equals some column in B satisfies the equation.

We construct a system of MRHS equations from a cryptographic primitive
as follows. First we assign variable names to the bits of cipher states at several
places in the encryption process. The assignment of variables should be done
such that the bits of the input and output of any non-linear component can
be written as linear combinations of variables. Then we construct one MRHS
equation Ax = B for each non-linear component f . The rows of A are the input
and output linear combinations of f . Finally, we list all possible inputs to f ,
with their corresponding outputs. Each input/output pair becomes a column in
B. An example of this can be found in the appendix.

Following this procedure we can construct a system of MRHS equations

A1x = B1, . . . , Amx = Bm

for any cryptographic primitive that uses relatively small non-linear components.
For a given solution to the system, there is exactly one column in each Bi

corresponding to this solution. We say such a column is correct. If the system has
a unique solution, there is only one correct right hand side in each Bi. Solving

5.3 Analysis of Trivium Using Compressed Right Hand Side Equations 67

MRHS equation systems means identifying columns in the Bi that cannot be
correct, and delete them.

Several techniques for solving MRHS systems exist. One of them is called
gluing and is used in this paper. Gluing means to merge two equations into one,
making sure that only solutions that satisfy both original equations are carried
over into the new (glued) equation.

Gluing two equations reduces the number of equations by one. The process
of gluing can be repeated, packing all initial equations into one MRHS equation.
The resulting equation is nothing more than a system of linear equations, and
can easily be solved. The solution we find will necessarily satisfy all the original
initial MRHS equations, so this strategy will solve the system in question.

The problem we face when applying the technique of gluing in practice,
is that the number of right hand sides in glued equations tends to increase
exponentially. Only when there are just a few equations remaining, with large
A-matrices, will the restrictions on potential solutions be so limiting that the
number of possible right hand sides rapidly decreases. As we shall see, however,
the problem of exponential growth in the number of right hand sides may be
circumvented using binary decision diagrams.

2.2 Binary Decision Diagrams

In this section we will introduce binary decision diagrams (BDDs). A BDD is
a directed acyclic graph used to represent a set of binary vectors or a Boolean
formula. They are mostly used in design and verification systems and were intro-
duced by S.B. Akers [7]. Later implementations and refinements led to a broad
interest in the computer science community as BDDs allow the manipulation of
large propositional formulae [8, 9] in compressed form. Sometimes they are used
as an alternative to guess-and-verify solvers of propositional problems since they
enable one to keep track of all satisfying assignments at once and offer polyno-
mial time algorithms to count the number of solutions of a propositional problem
given in the form of a BDD.

The use of BBDs in cryptanalysis for LFSRs was proposed by Krause [10]
and successfully applied to Grain with NLFSRs by Stegemann [11].

Definition 1 (Binary Decision Diagram). A binary decision diagram is
a pair D = (G,L) where G = (V,E) is a directed acyclic graph, and L =
(l0, l1, . . . , lr−1, ε) is an ordered set of variables.

The vertices of G are V = {v0, v1, . . . , vs−1} ∪ {�,⊥} where all vi denote
inner vertices and contain exactly one root vertice with no incoming edges. Every
inner vertex v has exactly two outgoing edges, which we call the 1-edge and the
0-edge. We call � and ⊥ terminal vertices, they have no outgoing edges. Every
vertex v is associated with a variable, denoted L(v), and for all edges (u, v) we
have L(u) appearing before L(v) in L. We always have L(�) = L(⊥) = ε.

We denote with G(v) the subgraph of G rooted at v, i.e., the graph consisting
of vertices and edges along all directed paths originating at v. For any pair of
vertices u,w it holds that if G(u) = G(w) then u = w.

68 Scientific Results

There exist other definitions of BDDs which do or do not include the order L
or the reducedness property of unequal subgraphs. The definition above is also
known as a reduced ordered BDD and is canonical [9]. We denote the number
of vertices in a binary decision diagram D by B(D) = |G|. The size of a BDD
depends heavily on the order L. Finding the optimal ordering to minimize B(D)
is an NP -hard problem [9].

In Definition 1 L induces a partial order of the vertices. We visualize a BDD
by drawing it from top to bottom, with vertices of the same order on the same
line, and we say that these vertices are at the same level. There is only one root
vertex and it must necessarily associated with the first variable in L. This node
associated with l0 is drawn on top, and the nodes � and ⊥ are drawn on the
bottom. An example of a BDD can be found in the appendix.

Definition 2 (Accepted Inputs of a BDD). In a BDD D every path from
the root vertex to the terminal vertex � is called an accepted input of D.

Since every inner node is associated with a variable, we can regard every
edge as a variable assignment. To find a variable assignment (or vector) which
is accepted by the BDD, we start with an empty vector of length |L|. Following
a path from the root vertex to � we visit at most one node at each level.

Whenever we go from v through a 1-edge, we say that L(v) is assigned to 1,
and L(v) = 0 whenever we go via a 0-edge. A path that ends up in � gives us
one accepted input in terms of variable assignments. Likewise, a path from the
root vertex to ⊥ gives us a rejected input to a specific BDD. By traversing all
paths to � we can build the set of all vectors which are accepted by the BDD.

If a path from the root to � jumps a level, i.e. the assignment to a variable
lk is undefined since the path does not contain a vertex v with L(v) = lk,
both assignments to this variable are accepted and we get two different variable
assignments. If an accepted input jumps r levels in total we get 2r different
satisfying assignments from this path. An example of accepted inputs of a BDD
can be found in the appendix.

AND-Operation on BDDs. As shown above, we can use BDDs to represent the
set of vectors that satisfy a Boolean equation. By the nature of our equation
systems, we need a way to merge solution sets from different equations. Below
is a simple recursive algorithm which does this. A more general version of the
algorithm can be found in [12].

Let D and D′ be two BDDs with v0 as the root of D and u0 the root of D′.
The conjunction of D and D′ into a new BDD E is done as follows.

First we need to define an ordering on the union of variables from D and D′.
Next, we set the root node of E at the top level, and label it (v0u0). Then we
perform Algorithm 1, which will fill in nodes and edges in E , from top to bottom.

The paths in the BDD that results after merging D and D′ using Algorithm
1 will correspond to vectors that satisfy both Boolean equations related to D
and D′. One feature of the conjunction of two BDDs is that all nodes in the new
BDD can be labelled with (vu) where v and u come from the two orginal BDDs.

5.3 Analysis of Trivium Using Compressed Right Hand Side Equations 69

Algorithm 1 Merging BDDs D and D′ into E

while ∃ a node (vu) in E without outgoing edges do
Let ve be child of v in D through e-edge
Let ue be child of u in D′ through e-edge
if L(v) = L(u) then � v and u are at the same level

Insert (v0u0) at level min{L(v0), L(u0)} with 0-edge from (vu).
Insert (v1u1) at level min{L(v1), L(u1)} with 1-edge from (vu).

end if

if L(v) < L(u) then � v is higher up than u

Insert (v0u) at level min{L(v0), L(u)} with 0-edge from (vu).
Insert (v1u) at level min{L(v1), L(u)} with 1-edge from (vu).

end if

if L(v) > L(u) then � u is higher up than v

Insert (vu0) at level min{L(v), L(u0)} with 0-edge from (vu).
Insert (vu1) at level min{L(v), L(u1)} with 1-edge from (vu).

end if

end while

It is then not hard to see that the following upper bound holds

B(E) ≤ B(D)B(D′). (1)

We will use this fact later in the paper. For a more detailed description and
analysis of operations on BDDs one might consult [12, 9, 8]. An example of the
AND-operation on BDDs can be found in the appendix.

2.3 Trivium

Trivium [13] is a synchronous stream cipher and part of the ECRYPT Stream
Cipher Project portfolio for hardware stream ciphers. It consists of three con-
nected non-linear feedback shift registers (NLFSR) of lengths 93, 84 and 111.
These are all clocked once for each key stream bit produced.

Trivium has an inner state of 288 bits, which are initialized with 80 key
bits, 80 bits of IV, and 128 constant bits. The cipher is clocked 1152 times
before actual keystream generation starts. The generation of keystream bits and
updating the registers is very simple. The pseudo-code in [13] is a good and
compact description of the whole process of generating keystream as shown in
Algorithm 2.

Here zi is the key stream bit, and the registers are filled with the bits
s1, . . . , s288 before clocking.

For algebraic cryptanalysis purposes one can create four equations for every
clock; three defining the inner state change of the registers and one relating the
inner state to the key stream bit. Solving this equation system in time less than
trying all 280 keys is considered a valid attack on the cipher.

Small Scale Trivium. For our experiments we considered small scale versions of
Trivium. While reduced versions of a cipher sometimes dismiss some structural

70 Scientific Results

Algorithm 2 Trivium Pseudo-Code

for i = 1 to N do

t1 ← s66 + s93
t2 ← s162 + s177
t3 ← s243 + s288

zi ← t1 + t2 + t3 � Keystream bit

t1 ← t1 + s91 · s92 + s171
t2 ← t2 + s175 · s176 + s264
t3 ← t3 + s286 · s287 + s69

(s1, s2, . . . , s93) ← (t3, s1, . . . , s93)
(s94, s95, . . . , s177) ← (t1, s94, . . . , s176)
(s178, s179, . . . , s288) ← (t2, s178, . . . , s287)

end for

component of the full scale cipher, e.g. Bivium [1], we try to keep our reduced
versions as close to Trivium as possible.

We scale with respect to the number of bits in the state. When we speak
about Trivium-N , we are speaking about a cipher with N bits of internal state,
that is, scaled down by a factor α = N/288. The lengths of the two first registers
will be 93α and 84α, rounded to the nearest integers. The length of the last
register will be what remains to get N as the total number of state bits (either
�111α� or �111α�).

In the full Trivium, the three top positons in each register are all used as tap
positions. This property is also carried over to all the scaled versions. For the
tap positions appearing elsewhere in the registers, we simply scale their indices
with α. For example, as 66 is used as a tap position in the full Trivium, for
Trivium-N the corresponding tap position will be 66α, rounded to the nearest
integer, with the following exception: Tap positions that are close to each other
in the full Trivium may get the same indices in some Trivium-N if α is small
enough. When this happens, we reduce the tap position of the smaller index by
one, thus ensuring that all tap positions in Trivium-N are distinct. The equation
systems representing Trivium-N and Trivium will then have similar structures.

3 Compressed Right Hand Side Equation Systems

With MRHS equations a clear separation between the linear and the non-linear
part of an equation was introduced. Overall it yielded a much smaller repre-
sentation for equations typical in algebraic cryptanalysis. Nevertheless, solving
MRHS equations has been limited to relatively small-scale examples because of
the problem with a big number of right hand sides.

It was shown in [7] that representing Boolean equations as BDDs is canonical
with respect to the ordering of variables. This way of recording sets of assign-

5.3 Analysis of Trivium Using Compressed Right Hand Side Equations 71

ments gives us the advantage that we may have a moderate number of nodes in
a BDD, but very many paths from the root leading to �. Rather than writing
out all satisfying assignments, or a truth table for a Boolean equation, only a
BDD is retained in memory. However, when experimenting with equations from
certain ciphers, BDDs may also become too big to keep in computer memory
[11].

By combining the MRHS and BDD approaches, we get a new way to handle
large equation systems in algebraic cryptanalysis. We call this representation of
equations Compressed Right Hand Sides (CRHS) equations.

Definition 3 (CRHS). A compressed right hand side equation is written as
Ax = D, where A is a k × n-matrix with rows l0, . . . , lk−1 and D is a BDD
with variable ordering (from top to bottom) l0, . . . , lk−1. Any assignment to x
such that Ax is a vector corresponding to an accepted input in D, is a satisfying
assignment.

An easy example of a CRHS equation can be found in the appendix.

CRHS Gluing. If we are given two Boolean equations f1(X1) = 0, f2(X2) = 0
and we want to find vectors in variables X1 ∪X2 which satisfy both equations
simultanously we can do this by investigating their individual satisfying vectors
at common variables. If two vectors have the same values at common variable
indices we have found a vector which satisfies both equations. This operation is
part of the Gluing operation described in Section 2.1.

If we are given two CRHS equations [C1]x = D1, [C2]x = D2 and we want to
compute their common solutions we use a similar technique called CRHS Gluing.
The result of gluing both equations above is

[
C1

C2

]
x = D1 ∧ D2.

Any assignment of x such that

[
C1

C2

]
x is an accepted input in the conjunction

D1∧D2 gives a solution to both initial equations simultanously. Like the Gluing
operation on MRHS equations the right hand side BDD contains all possible
combinations of vectors from the original equations. The difference is that sat-
isfying vectors are no longer explicit in the computer memory, but are recorded
in a compressed format, namely as paths in the BDD.

It is easy to output all possible vectors from the paths in a BDD. There also
exists an easy polynomial-time (in the number of nodes) algorithm to count the
number of accepted inputs to a BDD. An example of CRHS-gluing can be found
in the appendix.

3.1 Dependencies among linear combinations

The left hand side in a CRHS equation is equal to the left hand side in a MRHS
equation, namely a set of linear combinations {l0, . . . , lk−1} in the variables of

72 Scientific Results

the system. If we glue several CRHS equations together, it might happen that
the resulting left hand side matrix in the glued equation does not have full
rank, that is, the set of linear combinations in the left hand side contains linear
dependencies.

The BDD on the right hand side treats the li as variables, and is oblivious
to the constraint that some of them should sum to zero or one. Therefore, an
accepted input in the BDD may or may not satisfy the linear dependencies
known to the left hand side. These paths should be taken out of the BDD in
order to not produce false solutions.

The straight-forward way to remove paths that do not satisfy some linear
dependency is to use the AND-operation. The number of nodes in the BDD
representing a linear equation g(l0, . . . , lk−1) is two times the number terms in
g. It is then easy to construct the BDD for any g, and combine it with the BDD
in the equation using the AND-operation. This will remove all false solutions.

4 Experimental Results

While exploring the possibilities of CRHS equations we used a software library
called Cudd [14]. The Cudd software library implements various types of BDDs
and algorithms/operations which can be performed on BDDs. The code base is
optimized and usable on a personal computer even for very big BDDs.

We used Cudd together with C++ code and developed a program capable of
reading different equation systems representing scaled Triviums and then gluing
the equations together.

It was crucial in the experiments to find out the size of the resulting CRHS
equation when gluing many of them together. This number is important to
determine in order to evaluate the feasability of our method. Theoretically the
size of the final CRHS equation C is upper bounded by

B(C) ≤ B(c0) · B(c1) · . . . · B(cr−1)

when gluing CRHS equations c0, c1, . . . , cr−1 into C. This value is exponential in
the number of nodes and might lead to infeasible sizes of BDDs, even for quite
small versions of Trivium. However, our experiments showed that the size of the
BDD for the glued CRHS equations was far smaller than the upper bound, and
stayed manageable. Thus we are indeed, in contrast to MRHS equation systems,
able to glue all equations in large CRHS equation systems together. For MRHS
equation systems, gluing all equations together will reveal the solutions to the
system. As we explain below, it is more complicated for CRHS equation systems,
due to false solutions in the right hand side BDD.

In the experiments reported below, we created CRHS equation systems rep-
resenting Trivium-N for various values of N . Then we glued all equations into
one single big CRHS equation. We examined different aspects of the equation
systems, which can tell us something about their solvability with our method.
For several small scale versions we measured the following properties:

5.3 Analysis of Trivium Using Compressed Right Hand Side Equations 73

Value Description
n # of variables = # of initial CRHS equations
k # of different linear combinations of variables
B # vertices in BDD in final equation
lc # of linear constraints for solution
Sol. # paths in final BDD
Mem. Memory consumption in MB

N n k B lc Sol. Mem.

35 85 173 218.86 88 285.67 87
40 94 191 220.57 97 293.77 182
45 106 215 221.68 109 2106.60 358
50 115 233 221.15 118 2115.60 258
55 127 257 221.55 130 2127.60 329
60 138 282 222.34 144 2140.35 560
65 148 299 222.66 151 2148.60 687
70 160 323 222.42 163 2160.49 588
75 171 349 222.78 178 2173.83 742

Table 1. Experimental results

Initial equations have 4 nodes in the BDD, so we see from Table 1 that the
size of the BDD after gluing all equations together is far from the theoretical
upper bound. However, the growth of B is exponential just with a very small
constant. It is worth to notice that B is not strictly increasing with N . We also
see that the expected number of paths that satisfy all constraints given by lc is
between 2−4 and 2−2.

A point worth mentioning is that the exponential upper bound for gluing
CRHS equations together is tight, in general. There are equations that will
achieve the bound when glued together. Equation systems coming from ciphers
tend to be very sparse, in the sense that each initial equation contain few vari-
ables, and each variable only appears in a few equations. This is also the case for
Trivium. Two equations that do not share any variables have a linear size when
glued together. As shown in (5), the gluing in this case is basically putting one
BDD on top of the other. This may explain why it is particularly easy to glue
together CRHS equations coming from scaled versions of Trivium.

Full Trivium. So what about N = 288? For full Trivium our computer ran out
of memory before finishing gluing all equations together. On the other hand, we
were able to glue 404 of the 666 initial equations together, producing a CRHS
equation C1 of size 222.9. Then we glued the remaining initial equations into C2,
of size 224.8. By using the upper bound (1) for merging two BDDs, we have then
demonstrated that the single CRHS equation representing the full Trivium has a
size smaller than 247.7. The true size of the BDD for the full Trivium is probably

74 Scientific Results

a lot smaller than 247.7, given that the upper bound we use has proved to be
very loose for the systems we study. In any case, we know that the size of the
CRHS equation representing the full Trivium is quite far from the 280-bound for
a valid attack.

4.1 Solving Attempts

If a single CRHS equation gave a solution as readily as a MRHS equation, we
would be done, and have an algebraic attack on Trivium with complexity much
smaller than the O(280)-bound for exhaustive search. As noted above, we can not
deduce a solution straight from the CRHS equation, since we have eventually to
find a path in the BDD that satisfies a number of linear constraints. For scaled
Triviums, we have of course tried the straight-forward approach mentioned in
Section 3.1. Gluing BDDs representing linear constraints onto the BDD of the
cipher CRHS equation unfortunately makes the size grow too large very rapidly.

Another solving method we have tried works as follows. Let the set of linear
constraints to be satisfied be contained in a matrix LC. We set LC at the (single)
top node in the BDD, and will propagate the matrix through the whole BDD
according to Algorithm 3.

Algorithm 3 Propagating linear constraints through BDD with k levels.

for i = 0 to k do

for every node a at level i do
if a contains matrix then

Build matrix M of linear constraints present in all matrices in a

if li = 0 is consistent with M then

Send M |li=0 through 0-edge
end if

if li = 1 is consistent with M then

Send M |li=1 through 1-edge
end if

end if

end for

end for

What we are bascally doing is to fix the value of li in LC to 0 or 1 when
passing LC through a 0- or 1-edge out of a node at level i. If the linear constraints
of LC would become inconsistent by sending it across an edge, the matrix is not
propagated in that direction. Nodes receiving more than one LC-matrix will
only keep linear constraints present in all matrices.

A node containing a matrix could be interpreted as saying “Any path below
me must satisfy the linear constraints in my matrix.” We hope that the matrix
ending up in the �-node will contain some other linear constraints than the ones
we started with. If this is the case, we can repeat Algorithm 3 with increasingly
large LC.

5.3 Analysis of Trivium Using Compressed Right Hand Side Equations 75

In small examples (that can be checked by hand) the method of propagating
the linear constraints through the BDD works, but for Trivium-35 it did not,
as there were no new linear constraints in the matrix arriving at the bottom.
What we did see for Trivium-35 however, was that there is a significant amount
of nodes at levels 113− 138 in the BDD that did not receive any matrices (due
to inconsistencies). At some levels almost half of the nodes were empty. We
learn from this that there is no path satisfying the linear constraints in LC that
can pass through these nodes, and so they can be deleted. Hence we can use
Algorithm 3 to prune the BDD, and reduce its size.

5 Conclusion & Further Work

In this paper we have introduced a new way of representing algebraic equations,
and shown its advantages compared to previously known representations. With
the CRHS representation it is possible to merge many more equations together,
than what is possible by other approaches. Building the CRHS equation system
for Trivium, we have shown that Trivium may be described by a single CRHS
equation with a BDD of size 247.7 nodes, at most.

We have not yet been able to solve big CRHS equation systems, due to the
many false solutions appearing in the right hand side BDD. The problem that
needs to be solved is: How do we efficiently find a path in a BDD that

satisfies a set of linear constraints? The method of matrix propagation helps
in reducing the size of the BDD, and may be an approach worth pursuing. This
is a topic for further research.

Finally, we should keep in mind that the operation of merging equations in
a system is a process with exponential complexity. This is also true for CRHS
equations, but for systems representing versions of Trivium we can do full merg-
ing anyway, because of the structure of the system. Solving non-linear equation
systems is NP-hard in general, so we cannot hope to have a solving algorithm
without any exponential step in it. Gluing all equations together is an exponen-
tial step, and full gluing normally solves the system. We can then speculate that
after gluing all initial equations into one, we have overcome the exponential step
and that the remaining problem for finding a solution can be solved efficiently.
It is not clear that the problem of finding a path in a BDD subject to a set
of linear constraints must have exponential complexity in the number of nodes.
Further investigation into this question is needed.

References

1. McDonald, C., Charnes, C., Pieprzyk, J.: Attacking Bivium with MiniSat. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2007/040 (2007) http://www.
ecrypt.eu.org/stream.

2. Raddum, H., Semaev, I.: Solving Multiple Right Hand Sides linear equations.
Designs, Codes and Cryptography 49(1) (2008) 147–160

3. Faugère, J.: A new efficient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra 139(1-3) (1999) 61–88

76 Scientific Results

4. Courtois, N., Alexander, K., Patarin, J., Shamir, A.: Efficient algorithms for solv-
ing overdefined systems of multivariate polynomial equations. Lecture Notes in
Computer Science 1807 (2000) 392–407

5. Raddum, H.: MRHS Equation Systems. Lecture Notes in Computer Science 4876

(2007) 232–245
6. Semaev, I.: Sparse algebraic equations over finite fields. SIAM Journal on Com-

puting 39(2) (2009) 388–409
7. Akers, S.: Binary decision diagrams. IEEE Transactions on Computers 27(6)

(1978) 509–516
8. Somenzi, F.: Binary decision diagrams. In: Calculational System Design, volume

173 of NATO Science Series F: Computer and Systems Sciences, IOS Press (1999)
303–366

9. Knuth, D.: The Art of Computer Programming. Number Vol 4, Fascicles 0-4 in
The Art of Computer Programming. ADDISON WESLEY (PEAR) (2009)

10. Krause, M.: BDD-based cryptanalysis of keystream generators. Lecture Notes in
Computer Science 1462 (2002) 222–237

11. Stegemann, D.: Extended BDD-Based Cryptanalysis of Keystream Generators.
Lecture Notes in Computer Science 4876 (2007) 17–35

12. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers 35 (1986) 677–691

13. Cannière, C.D., Preneel, B.: Trivium specifications. ECRYPT Stream Cipher
Project (2005)

14. Somenzi, F.: CUDD: CU Decision Diagram Package. http://vlsi.colorado.edu/

~fabio/CUDD/ (2009)

Appendix

Example 1 (MRHS). The basic non-linear component in Trivium is the bitwise
multiplication found in the function updating the registers. The new bit (x6)
coming into a register at some point is related to the old ones (x1, . . . , x5) by

x1 · x2 + x3 + x4 + x5 = x6.

The multiplication is the non-linear component, with inputs x1 and x2, and
a single linear combination as output, namely x3 + x4 + x5 + x6. There are
four different inputs to this function, hence there will be four columns in the
B-matrix. The corresponding MRHS equation is

⎡
⎣1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 1 1 1

⎤
⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

x6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎣0 1 0 1
0 0 1 1
0 0 0 1

⎤
⎦ . (2)

Example 2 (BDD). Figure 1 shows an example BDD. The vertex v0 is the root.
Solid lines indicate 1-edges and dashed lines indicate 0-edges. In this example
the order is (l0, l1, l2) as indicated to the left.

5.3 Analysis of Trivium Using Compressed Right Hand Side Equations 77

v0

v1 v2

v3

⊥ �

l0

l1

l2

Fig. 1. Example BDD

Example 3 (Accepted Inputs). The accepted inputs for the BDD in Figure 1 are
the vectors (l0, l1, l2):

(0, 0, 0)

(0, 0, 1)

(0, 1, 1)

(1, 0, 1) .

One can see that (0, 0, 0) and (0, 0, 1) are on the same path from v0 to �. On
that path no node associated with l2 is visited, so l2 can be assigned both values.

A Boolean equation may be characterized by its set of satisfying assignments.
Building a BDD whose accepted inputs match the set of satisfying assignments,
gives us another representation of the same equation. For example, the Boolean
equation corresponding to the BDD in Figure 1 is l0l1 + l0l2 + l1l2 + l0 + l1 = 0.

Example 4 (AND operation). The top half of Fig. 2 shows the BDDs of two
Boolean functions. The left BDD shows l0+ l1+ l2 = 0, the right BDD represents
l0l1 + l2 = 0. Both BDDs share the same order of variables, and the resulting
BDD of their conjunction after reduction is shown below the two original BDDs.

Example 5 (CRHS). We write equation (2) from Example 1 as a CRHS equation
by converting the right hand side into a BDD.

Instead of writing out the left hand matrix of equation (2), we write down
the corresponding linear combinations, and give them the names l0, l1, l2.

⎡
⎣x1 = l0
x2 = l1
x3 + x4 + x5 + x6 = l2

⎤
⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l0

l1

l2

� ⊥

v0

v1

v2 v3

(3)

78 Scientific Results

l0 v0 w0

l1 v1 v2 w1

l2 v3 v4 w2 w3

� ⊥ ⊥ �

v0 ∧ w0l0

l1

l2

v2 ∧ w3

v3 ∧ w3

�⊥

Fig. 2. AND-operation example

The right hand side of the CRHS equation is a compressed version of the right
hand side in a MRHS equation. Every accepted input in the graph of the CRHS
equation stands for one right hand side of the corresponding MRHS equation.
The example above contains the edge (v0, v3). This edge is jumping over a level,
i.e. every path through this edge does not contain any vertex at level l1. That
means that for a path containing the edge (v0, v3), the variable l1 can take
any value. The path 〈v0, v3,�〉 thus contains two vectors for (l0, l1, l2), namely
(0, 0, 0) and (0, 1, 0).

Example 6 (CRHS Gluing). The following two equations are similar to equations
in a Trivium equation system. In fact, the right hand sides of the following are
taken from a full scale Trivium equation system. The left hand matrices have

5.3 Analysis of Trivium Using Compressed Right Hand Side Equations 79

been shortened.

⎡
⎣x1 = l0
x2 = l1
x3 + x4 = l2

⎤
⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l0

l1

l2

� ⊥

u0

u1

u2 u3

,

⎡
⎣x4 = l3
x5 = l4
x6 + x7 = l5

⎤
⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l3

l4

l5

� ⊥

v0

v1

v2 v3

(4)
The gluing of the equations above is

⎡
⎢⎢⎢⎢⎢⎢⎣

x1 = l0
x2 = l1
x3 + x4 = l2
x4 = l3
x5 = l4
x6 + x7 = l5

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l0

l1

l2

l3

l4

l5

�

w0

w1

w2 w3

w4

w5

w6 w7

, (5)

where ⊥-paths in this last graph are omitted for better readability. Note that
omitting these paths does not decrease the overall number of vertices. The re-
sulting equation has 8 nodes where the corredsponding MRHS equation would
have 16 right hand sides.

80 Scientific Results

Paper IV

5.4 Solving Compressed Right Hand Side Equation Systems with Lin-
ear Absorption

Thorsten E. Schilling, Håvard Raddum
Sequences and their Applications, Waterloo, to appear in Springer LNCS, (2012)

82 Scientific Results

5.4 Solving Compressed Right Hand Side Equation Systems with Linear Absorption 83

Solving Compressed Right Hand Side Equation

Systems with Linear Absorption

Thorsten Ernst Schilling, H̊avard Raddum
thorsten.schilling@ii.uib.no,havard.raddum@ii.uib.no

Selmer Center, University of Bergen

Abstract. In this paper we describe an approach for solving complex
multivariate equation systems related to algebraic cryptanalysis. The
work uses the newly introduced Compressed Right Hand Sides (CRHS)
representation, where equations are represented using Binary Decision
Diagrams (BDD). The paper introduces a new technique for manipu-
lating a BDD, similar to swapping variables in the well-known sifting-
method. Using this technique we develop a new solving method for CRHS
equation systems. The new algorithm is successfully tested on systems
representing reduced variants of Trivium.

Key words: multivariate equation system, BDD, algebraic cryptanaly-
sis, Trivium

1 Introduction

Keystream generators produce pseudo-random sequences to be used in stream
ciphers. A strong keystream generator must produce the sequence from a secret
internal state such that it is very difficult to recover this initial state from the
keystream. The security of a stream cipher corresponds to the complexity of
finding the internal state that corresponds to some known keystream.

The relation between the keystream sequence and the internal state of the
generator can be described as a system of algebraic equations. The variables in
the system are the unknown bits of the internal state (at some time), and possibly
some auxilliary variables. Solving the equation system will reveal the internal
state of the generator, and hence break the associated stream cipher. Solving
equation systems representing cryptographic primitives is known as algebraic
cryptanalysis, and is an active research field.

This paper explores one approach for efficiently solving big equation systems,
and is based on the work in [1], where the concept of Compressed Right Hand
Side (CRHS) equations was introduced. A CRHS equation is a Binary Decision
Diagram (BDD) together with a matrix with linear combinations of the variables
in the system as rows. The problem of solving CRHS equation systems comes
mainly from linear dependencies in the matrices associated with the BDD’s. In
this paper we introduce a new method for handling linear dependencies in CRHS
equations, which we call linear absorption. The basis for linear absorption are

84 Scientific Results

two methods for manipulating BDD’s. One of them is the technique of swapping
variables in the well-known sifting method [2]. The other is similar, but, to the
best of our knowledge, not described in literature earlier. We call it variable
XOR.

We have tested the method of linear absorption on systems representing
scaled versions of Trivium [3]. We are able to break small versions of Trivium
using linear absorption, proving that the method works. From these tests we
derive an early estimate for the complexity of breaking the full Trivium using
linear absorption. Our results indicate that the complexity of solving systems
representing scaled Triviums increases with a factor 20.4 each time the size of
the solution space doubles.

2 Preliminaries

2.1 Binary Decision Diagrams

A Binary Decision Diagram (BDD) [4, 5] is a directed acyclic graph. BDDs were
initially mostly used in design and verification systems. Later implementations
and refinement led to a broader interest in BDDs and they were successfully
applied in the cryptanalysis of LFSRs [6] and the cipher Grain [7]. For our
purposes, we think of a BDD in the following way, more thoroughly described
in [1].

A BDD is drawn from top to bottom, with all edges going downwards. There
is exactly one node on top, with no incoming edges. There are exactly two nodes
at the bottom, labelled � and ⊥, with no outgoing edges. Except for � and ⊥
each node has exactly two outgoing edges, called the 0-edge and the 1-edge. Each
node (except for � and ⊥) is associated to a variable. There are no edges between
nodes associated to the same variable, which are said to be at the same level.
An order is imposed on the variables. The node associated to the first variable
is drawn on top, and the nodes associated to the last variable are drawn right
above � and ⊥. Several examples of BDDs are found in the following pages.

A path from the top node to either � or ⊥ defines a vector on the variables.
If node F is part of the path and is associated to variable x, then x is assigned
0 if the 0-edge is chosen out from F , and x is assigned 1 if the 1-edge is part of
the path. A path ending in � is called an accepted input to the BDD.

There is a polynomial-time algorithm for reducing the number of nodes in
a BDD, without changing the underlying function. It has been proven that a
reduced BDD representing some function is unique up to variable ordering. In
literature this is often referred to as a reduced, ordered BDD, but in this work
we always assume BDDs are reduced, and that a call to the reduction algorithm
is done whenever necessary.

2.2 Compressed Right Hand Side Equations

In [1] the concept of the Compressed Right Hand Side Equations was introduced.
CRHS equations give a method for representing large non-linear constraints

5.4 Solving Compressed Right Hand Side Equation Systems with Linear Absorption 85

along with algorithms for manipulating their solution spaces. In comparison to
previous methods from the same family of algorithms [8–10] they offer an efficient
way of joining equations with a very large number of solutions.

CRHS equations are a combination of the two different approaches Multiple
Right Hand Side Equations [9] (MRHS equations) and BDDs. While MRHS
equations were initially developed for cryptanalysis, BDDs were developed for
other purposes. Combining the two provides us with a powerful tool for algebraic
cryptanalysis. For instance, using CRHS equations it is possible to create a
single large BDD representing the equation system given by the stream cipher
Trivium.

Definition 1 (CRHS Equation [1]). A compressed right hand side equation
is written as Ax = D, where A is a binary k × n-matrix with rows l0, . . . , lk−1

and D is a BDD with variable ordering (from top to bottom) l0, . . . , lk−1. Any
assignment to x such that Ax is a vector corresponding to an accepted input
in D, is a satisfying assignment. If C is a CRHS equation then the number of
vertices in the BDD of C, excluding terminal vertices, is denoted B(C).

Example 1 (CRHS Equation). In order to write:

f(x1, . . . , x6) = x1x2 + x3 + x4 + x5 + x6 = 0

as a CRHS equation one chooses a name for every linear component in f(x1, . . . , x6) =
0. Here we decide to name the linear components l0 = x1, l1 = x2, l2 = x3+x4+
x5+x6. Furthermore one needs to define an ordering on these linear components.
For this example we we select the order l0, l1, l2, from top to bottom.

The matrix A formed by the linear components is then our left hand side
of the CRHS equation. The BDD formed by the possible values of l0, l1, l2 in
f(x1, . . . , x6) = 0 together with the before defined order forms the right hand
side of the CRHS equation.

The resulting CRHS equation is then:

⎡
⎣x1 = l0
x2 = l1
x3 + x4 + x5 + x6 = l2

⎤
⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l0

l1

l2

� ⊥

v0

v1

v2 v3

. (1)

The right hand side of the CRHS equation represents the possible values of
l0, l1, l2 in f(x1, . . . , x6) = 0 in compressed form. The set of solutions of (1) is
the union of all solutions of Ax = L, where L is a vector contained in the right
hand side as an accepted input to the BDD. Naming equation (1) as E0, we have
B(E0) = 4.

86 Scientific Results

2.3 Joining CRHS equations

Given two CRHS equations A and B it is natural to ask: What are the common
solutions to A and B?

In [1] an algorithm, called CRHS Gluing is introduced. The algorithm takes as
input two CRHS equations and has as output a new CRHS equation which con-
tains the solutions of the conjunction of the input. This algorithm is exponential
in space and time consumption. Nevertheless, the constant of this exponential
has been shown to be small enough for practical applications.

Here, we use a simpler and cheaper method of joining two CRHS equations.
Given two BDDs D1 and D2, the notation (D1 → D2) is defined to simply mean
that � in D1 is replaced with the top node in D2. The two ⊥-nodes from D1

and D2 are merged into one ⊥, and the resulting structure is a valid BDD.

Given the two CRHS equations [L1]x = D1 and [L2]x = D2 the result of
joining them is [

L1

L2

]
x = (D1 → D2)

Any accepted path in (D1 → D2) gives accepted paths in both D1 and D2.

In other words, any x such that

[
L1

L2

]
x yields an accepted path in (D1 → D2)

gives solutions to the two initial CRHS equations.

When there are linear dependencies among the rows in

[
L1

L2

]
we get paths

in (D1 → D2) that lead to false solutions. The problem of false solutions is the
only problem preventing us from having an efficient solver for CRHS equation
systems. This problem is addressed in Section 3.3.

Example 2 (Joining CRHS equations). The following two equations are similar
to equations in a Trivium equation system. In fact, the right hand sides of the
following are taken from a full scale Trivium equation system. The left hand
matrices have been shortened.

⎡
⎣x1 = l0
x2 = l1
x3 + x4 = l2

⎤
⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l0

l1

l2

� ⊥

u0

u1

u2 u3

,

⎡
⎣x4 = l3
x5 = l4
x6 + x7 = l5

⎤
⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l3

l4

l5

� ⊥

v0

v1

v2 v3

(2)

5.4 Solving Compressed Right Hand Side Equation Systems with Linear Absorption 87

The joining of the equations above is

⎡
⎢⎢⎢⎢⎢⎢⎣

x1 = l0
x2 = l1
x3 + x4 = l2
x4 = l3
x5 = l4
x6 + x7 = l5

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l0

l1

l2

l3

l4

l5

�

w0

w1

w2 w3

w4

w5

w6 w7

, (3)

where ⊥-paths in this last graph are omitted for better readability. The resulting
equation has 8 nodes, where the corredsponding MRHS equation would have 16
right hand sides.

Joining two CRHS equations E0 and E1 is really nothing more than putting
one on top of the other and connect them. If E0 and E1 are joined to form E,
it is easy to see that B(E) = B(E0) + B(E1). The complexity of joining CRHS
equations is linear, and we can easily build a single CRHS equation representing,
for instance, the full Trivium. The CRHS equation representing the full Trivium
will have less than 3000 nodes, but 21336 paths in the long BDD, of which maybe
only one is not a false solution.

3 Solving Large CRHS Equation Systems

After joining several CRHS equations together the left hand side of the resulting
equation may contain linear dependencies which are not reflected in the right
hand side BDD. The matrix of the CRHS equation contains rows which sum to
0. The BDD on the other hand is oblivious to this fact and contains paths which
sum to 1 on the affected variables.

Since the set of solutions of the CRHS equation is the union of solutions to
the individual linear systems formed by each vector of the right hand side, we
need to filter out those vectors which yield an inconsistent linear system. Let for
example the left hand side of a CRHS equation contain the linear combinations
li, lj and lk and assume we found that li+lj+lk = 0. The BDDmight nevertheless

88 Scientific Results

contain a path which assigns li, lk and lk to values that make their sum equal to
1. Since we know that this path in the BDD does not correspond to a solution
we would like to eliminate it from the BDD.

In practical examples from the cryptanalysis of Trivium we end up with the
situation that almost all paths on the right hand side are of this kind, i.e., not
corresponding to the left hand side. The major problem is that we cannot easily
delete a path by some simple operation, e.g., deleting a node. This is because
there are many paths passing through a single node.

In order to delete all invalid solutions from a CRHS equation, we introduce
the techniques Variable XOR and Linear Absorption in the following. They are
new methods for the manipulation of BDDs and can be used to take care of
removing paths which correspond to false solutions.

3.1 Variable Swap

A usual operation on a BDD is to swap variable levels [2] while preserving the
function the BDD represents. This means to change the permutation of variables
in a BDD by exchanging adjacent positions of two variables. This is done for
example to change the size of a specific BDD. We will use this technique in the
following and give a short introduction to it.

The origins of the BDD data structure lie within the Shannon Expansion [11].
In the following let be F = f(x0, . . . , xn−1), Fxr

= f(x0, . . . , xr−1, 1, xr+1, . . . , xn−1)
and Fxr

= f(x0, . . . , xr−1, 0, xr+1, . . . , xn−1). Then by the Shannon expansion
every Boolean function can be represented in the form

F = x · Fx + x · Fx. (4)

We write the function as a BDD with the root node denoted F = (x, Fx, Fx).
Here x is the variable defining the level of the node, Fx is the node connected
through the 1-edge and Fx is the node connected to the 0-edge. Fx and Fx are
called the co-factors of the node F .

Let the variable coming after x in the variable order be y. To expand (4) by
the variable y, we have to expand the subfunctions Fx and Fx accordingly:

F = x · (y · Fxy + y · Fxy) + x · (y · Fxy + y · Fxy). (5)

Again, as a root node of a BDD we have F = (x, (y, Fxy, Fxy), (y, Fxy, Fxy))
but this time with explicitly written co-factors. Assume we would like to swap
the order of x and y. Then we can equivalently write (5) as

F ′ = y · (x · Fxy + x · Fxy) + y · (x · Fxy + x · Fxy) (6)

which leads us to the new node representation of F ′ = (y, (x, Fxy, Fxy), (x, Fxy, Fxy)).
Now the order of the variables x and y is swapped. Since (5) and (6) are equiv-
alent so are our BDD nodes before and after the swap.

Moreover, it becomes clear that swapping two variables is a local operation,
in the sense that only nodes at levels x and y are affected. If one would like to

5.4 Solving Compressed Right Hand Side Equation Systems with Linear Absorption 89

swap the levels x and y (where as above x is before y in the BDD permutation)
one has to apply the operation above to every node at level x and change it
accordingly.

Example 3 (Variable Swap).

l0

l1

l2

� ⊥

u0

u1

u2 u3

−→

l0

l2

l1

� ⊥

u0

u′

1
u3

u′

2 u′

3

Fig. 1. Swapping l1 and l2.

On the left side in Fig. 1 a BDD along with its permutation (l0, l1, l2) is de-
picted. In order to swap levels l1 and l2, i.e., change the permutation to (l0, l2, l1),
one has to apply the swapping routine described above to all nodes at level l1.
In this case u1 = (l1, u2, u3) is the only node affected. With explicitly written
co-factors we get u1 = (l1, (l2,�,⊥), (l2,⊥,�)). From the swapping procedure
above we know that the resulting new node is u′

1 = (l2, (l1,�,⊥), (l1,⊥,�)) =
(l2, u

′

2, u
′

3). Node u3 stays unchanged.

3.2 Variable XOR

In this section we introduce a new method for manipulating BDDs, the variable
XOR operation. As the name suggests, we change a variable by XORing a dif-
ferent variable onto it. To preserve the original function we have to change the
BDD accordingly. Below we explain how this is done. In fact, the procedure is
quite similar to Variable Swap, and is only a local operation.

Let x and y be two consecutive BDD variables (x before y) and σ = x + y.
We want to transform (5) into:

F ′ = x · (σ · Fxσ + σ · Fxσ) + x · (σ · Fxσ + σ · Fxσ). (7)

We can see that if x = 1 then Fxσ = Fxy and Fxσ = Fxy. Similarly if x = 0 then
Fxσ = Fxy and Fxσ = Fxy. With that in mind (7) can be written as

F ′ = x · (σ · Fxy + σ · Fxy) + x · (σ · Fxy + σ · Fxy) (8)

which leads immediately to the new node representation
F ′ = (x, (σ, Fxy, Fxy), (σ, Fxy, Fxy)). With this manipulation extra care has to

90 Scientific Results

be taken of edges incoming to nodes at the y-level that jumps over the x-level.
Here temporary nodes have to be introduced since y goes over into σ and cannot
longer be addressed directly.

Example 4 (Variable XOR).

l0

l1

l2

� ⊥

u0

u1

u2 u3

→

l0

l1

l2

� ⊥

u0

u1

u2 u3

t0

→

l0

l1

l1 + l2

� ⊥

u0

t′0

u′

2 u′

3

The first diagram shows the initial BDD in which the variable levels l1 and
l2 are to be XORed. The second diagram represents how the auxilliary node
t0 needs to be introduced since the edge (u0, u3) ignores the l1 level. Then the
variable XOR procedure is applied to both u1 and t0, and the resulting BDD
is reduced. After the application of the modification of equation (5) to (7) the
result of the variable XOR method to variables l1 and l2 of the initial diagram
is depicted.

3.3 Linear Absorption

We are now ready to explain the method of linear absorption.
Assume we have a BDD with (l0, . . . , lk−1) as the ordered set of linear com-

binations associated with the levels. We can easily find all linear dependencies
among the li’s. Assume that we have found the dependency li1+li2+. . .+lir = 0,
where i1 < i2 < . . . < ir.

By using variable swap repeatedly, we can move the linear combination li1
down to the level just above li2 . Then we use variable XOR to replace li2 with
li1 + li2 . Next, we use varlable swap again to move li1 + li2 down to the level
just above li3 , and variable XOR to replace li3 with li1 + li2 + li3 . We continue
in this way, picking up each lij that is part of the linear dependency, until we
replace lir with li1 + li2 + . . .+ lir . Let us call the level of nodes associated with
li1 + li2 + . . .+ lir for the zero-level.

We know now that the zero-level has the 0-vector associated with it. This
implies that any path in the BDD consistent with the linear constraint we started
with has to select a 0-edge out of a node on the zero-level. In other words, all

5.4 Solving Compressed Right Hand Side Equation Systems with Linear Absorption 91

1-edges going out from this level lead to paths that are inconsistent with the
linear constraint li1 + li2 + . . .+ lir = 0, and can be deleted.

After deleting all outgoing 1-edges, there is no longer any choice to be made
for any path going out from a node at the zero-level. If F is a node at the
zero-level, any incoming edge to F can go directly to F0, jumping the zero-level
altogether. After all incoming edges have been diverted to jump the zero-level,
all nodes there can be deleted, and the number of levels in the BDD decreases
by one. We are now certain that any path in the remaining BDD will never be
in conflict with the constraint li1 + li2 + . . . + lir = 0; we say that the linear
constraint has been absorbed.

We can repeat the whole process, and absorb one linear constraint at the time,
until all remaining li are linearly independent. At that point, any remaining path
in the BDD will yield a valid solution to the initial equation system.

4 Experimental Results

We have tested Linear Absorption on equation systems representing scaled ver-
sions of Trivium.

4.1 Trivium & Trivium-N

Trivium is a synchronous stream cipher and part of the ECRYPT Stream Cipher
Project portfolio for hardware stream ciphers. It consists of three connected non-
linear feedback shift registers (NLFSR) of lengths 93, 84 and 111. These are all
clocked once for each keystream bit produced.

Trivium has an inner state of 288 bits, which are initialized with 80 key
bits, 80 bits of IV, and 128 constant bits. The cipher is clocked 1152 times
before actual keystream generation starts. The generation of keystream bits and
updating the registers is very simple. For algebraic cryptanalysis purposes one
can create four equations for every clock; three defining the inner state change
of the registers and one relating the inner state to the keystream bit. Solving
this equation system in time less than trying all 280 keys is considered a valid
attack on the cipher.

Small Scale Trivium. In [1] a reduced version of Trivium, called Trivium-N was
introduced. N is an integer value which defines the size of the inner state of that
particular version of Trivium. Trivium-288 is by our construction equivalent to
the originally proposed Trivium.

All versions of Trivium-N with N < 288 try to preserve the structure of
the original Trivium as well as possible. This yields equation systems which
are comparable to the full cipher. Other small scale version of Trivium e.g.,
Bivium [12], in which an entire NLFSR was removed, seems to be too easy to
solve.

92 Scientific Results

4.2 Results

We have constructed CRHS equation systems representing Trivium-N for several
values of N , and run the algorithm for absorbing linear constraints described in
Section 3.3. For N ≤ 41 we were able to absorb all linear constraints, which
means that any remaining path in the BDD is a valid solution to the system (we
have also verified this).

The number of nodes in the BDD grows very slowly when absorbing the
first linear constraints, but increases more rapidly when the linear constraints
of length two have been absorbed. We know, however, that the number of paths
will be very small once all linear constraints have been absorbed since we expect
a unique, or very few, solution(s). Thus the number of nodes must also decrease
quickly after the number of absorbed constraints is past some tipping point.
For each instance we have recorded the maximum number of nodes the BDD
contained during execution, and used this number as our measure of complexity.
The memory consumtion is dominated by the number of nodes, and in our
implementation each node took 60 bytes. The memory requirement in bytes can
then be found approxiamtely by multiplying the number of nodes with 60.

The results for testing the algorithm on Trivium-N for 30 ≤ N ≤ 41 is
written below.

N max. # of nodes
30 219.92

31 221.02

32 221.15

33 220.84

34 221.41

35 222.32

36 221.61

37 223.27

38 223.49

39 223.79

40 223.69

41 224.91

The number of solutions (paths) in each instance was found to be between
1 and 3. The number of levels in the final BDD was 73 for N = 30, and 97 for
N = 41.

The numbers above have been produced using only a single test for each N .
We can expect some variation in the maximum number of nodes when re-doing
tests using different initial states for some particular Trivium-N . The numbers
are plotted in Fig. 2 to show the general trend in the increase of complexity.

5.4 Solving Compressed Right Hand Side Equation Systems with Linear Absorption 93

 19.5

 20

 20.5

 21

 21.5

 22

 22.5

 23

 23.5

 24

 24.5

 25

 30 32 34 36 38 40 42

""

Fig. 2. Trend of complexities for Trivium-N

4.3 Extrapolating

We can use the least-square method to fit a linear function to the data points we
have. Letting 2M be the maximum number of nodes needed, the linear function
that best approximates our data is M = 0.4N + 7.95.

When N increases by 1, the size of the solution space for the variables in
the initial state doubles. However, the total number of variables in the system
increases by three when N increases by 1. This is because we need to clock the
cipher one step further to have enough known keystream for a unique solution,
and each clock introduces three new variables. Hence we can say that the size
of the problem instance increases by a factor 23 for each increase in N . The
complexity of our solving method only increases with a factor of approximately
20.4 on the tested instances, which we think is quite promising.

Admittedly, we have too little data to draw any clear conclusions, but it is
still interesting to see what value of M we get for N = 288. Based on the data
we have, we find that currently we need to be able to handle around 2123 nodes
in a BDD for successfully attacking the full Trivium.

5 Conclusions and Future Work

We have introduced how to alter a BDD to preserve the underlying function when
two variables are XORed. Together with variable swap, we have introduced a
new solving method in algebraic cryptanalysis, which we call linear absorption.
The solving technique works on equations represented in CRHS form.

94 Scientific Results

The work in this paper gives more insight into how to solve some of the
open questions in [1], and provides a complete solving method. We have shown
how the method works on systems representing scaled versions of Trivium. The
structure of the equations is exactly the same in the down-scaled and the full
versions of Trivium, it is only the number of equations and variables that differ.
Our tests thus gives some information on the complexity of a successful algebraic
attack on the full Trivium.

Unfortunately, we have not had the time to test linear absorption on other
ciphers, or test more extensively on Trivium-N . This is obviously a topic for
further research. We also hope to further investigate the problem of how to find
a path in a BDD that satisfies a set of linear constraints. There may be tweaks
to the algorithm of linear absorption, or there may be a completely different and
better method. In any case, we hope to see more results on solving methods for
CRHS equation systems.

References

1. Schilling, T.E., Raddum, H.: Analysis of trivium using compressed right hand side
equations. 14th International Conference on Information Security and Cryptology,
Seoul, Korea, November 30 - December 2, 2011, to appear in Lecture Notes in
Computer Science (2011)

2. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. Pro-
ceedings of the 1993 IEEE/ACM international conference on Computer-aided de-
sign 12 (1993) 42–47

3. Cannière, C.D., Preneel, B.: Trivium specifications. ECRYPT Stream Cipher
Project (2005)

4. Akers, S.: Binary decision diagrams. IEEE Transactions on Computers 27(6)
(1978) 509–516

5. Somenzi, F.: Binary decision diagrams. In: Calculational System Design, volume
173 of NATO Science Series F: Computer and Systems Sciences, IOS Press (1999)
303–366

6. Krause, M.: Bdd-based cryptanalysis of keystream generators. CRYPTO ’98,
Lecture Notes in Computer Science 1462 (1998) 222–237

7. Stegemann, D.: Extended BDD-Based Cryptanalysis of Keystream Generators.
Selected Areas in Cryptography 2007, Lecture Notes in Computer Science 4876

(2007) 17–35
8. Raddum, H.: MRHS Equation Systems. Selected Areas in Cryptography 2007,

Lecture Notes in Computer Science 4876 (2007) 232–245
9. Raddum, H., Semaev, I.: Solving multiple right hand sides linear equations. De-

signs, Codes and Cryptography 49(1) (2008) 147–160
10. Schilling, T.E., Raddum, H.: Solving equation systems by agreeing and learn-

ing. Proceedings of Arithmetic of Finite Fields, WAIFI 2010, Lecture Notes in
Computer Science 6087 (2010) 151–165

11. Shannon, C.E.: The synthesis of two-terminal switching circuits. Bell Systems
Technical Journal 28 (1949) 59–98

12. McDonald, C., Charnes, C., Pieprzyk, J.: Attacking Bivium with MiniSat. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2007/040 (2007) http://www.
ecrypt.eu.org/stream.

Chapter 6

Other Results

This chapter contains two other results which did not fit in any other publication. They
represent new approaches either on how to solve the main problem studied in this thesis
or to reduce the technical complexity of the task. As opposed to the other scientific
results in this thesis the ones presented in this chapter are works in progress.
The first result might make the main approach used in this thesis easier to under-

stand. Primarily for those working more in the fields of algorithms and graph theory,
the presented method might transfer the theme of cryptanalysis into a more familiar
realm. Due to the relatively intuitive structure of the presented reduction of the prob-
lem, one can say that it bridges the two areas.
The second result represents more of a technical improvement. One algorithm is

incorporated into another by preprocessing the input of the former. By doing this,
additional information can be obtained which would otherwise require a whole separate
processing from a second algorithm. This reduces the implementation complexity of a
potential solving algorithm.

6.1 Independent Set Reduction

One technique to show the NP-hardness of a problem A is to give a deterministic poly-
nomial time reduction of another problem B, known to be NP-hard, to A. By such a
reduction we mean a function f , which takes as input a problem instance b ∈ B and has
as output a problem instance of A. That is a function f : B→ A which can be computed
in polynomial time and f (b) ∈ A⇔ b ∈ B.
Such a reduction demonstrates that problem A is at least as hard to solve as B since

all instances of B can be solved if we can solve A. Reductions which satisfy these
requirements are also called Karp- or Cook-reductions [10, 28, 41] and are in the fol-
lowing denoted by B≤p A.
Since those reductions can be done in deterministic polynomial time, the asymptot-

ical running time of B cannot be larger than that of A, and therefore the complexity of
A is dominant.
The problem of solving a set of equations is almost intuitively NP-complete since

there exists an obvious relation to SAT solving. Other decision problems – such as
the INDEPENDENT SET-problem – belong to one of the first problems shown to be
NP-complete [46], but might need a proper formal reduction for clarification.

96 Other Results

In the following we will show an alternative reduction of the decision version of
the Gluing/Agreeing algorithm to the INDEPENDENT SET-problem (IS-problem). Not
for the purpose of demonstrating (again) the NP-completeness of the IS-problem, but
rather to provide an alternative formulation of the Gluing/Agreeing in the context of
graph theory. Along with it, we will present some remarks on the structure of the
resulting graphs. A similar reduction of the SAT-problem ≤p IS-problem along with
more details on polynomial time reductions and complexity theory in general can be
found in [46].
Then we will present an algorithm by Fomin et. al. [22] to solve the IS-problem

on instances yielded by random equation systems and/or by a cipher. Finally, we will
present some experimental results and conclusions.
To begin, we define the problem of finding a solution to a set of equations as a

decision problem of the Gluing/Agreeing algorithm.
Definition 6 (GA-problem). Let

S= {S0,S1, . . . ,Sm−1} (6.1)

be an input to the Gluing/Agreeing algorithm where Si = (Xi,Vi) is a symbol consisting
of a set of variables Xi and a set of satisfying vectors Vi = {v0,v1, . . . ,vr−1} defined in
Xi.
The decision problem is then to ask if there exists a set of vectors V ⊆ V0 ∪

V1∪ . . . ∪ Vm−1 such that
1. for each Vi it holds that |Vi∩V|= 1, and

2. for each a,b ∈ V with a ∈ Vi and b ∈ Vj it is true for Xi, j = Xi∩Xj that a[Xi, j] =
b[Xi, j].

It is easy to see that every such set V satisfying both conditions in definition 6
constitutes a solution to the input of the Gluing/Agreeing algorithm.
We want to reduce the GA-problem to the well known k-IS-problem. Again, we

will give a definition of the problem as the decision version.
Definition 7 (k-IS-problem). Given a graph G = (V,E) with vertices V , edges E and
a non-negative integer k, does there exist a subset I ⊆ V of size k such that I is an
independent set, i.e., I induces an edgeless subgraph on G?

6.1.1 Reduction

Now we will introduce our new reduction GA-problem ≤p IS-problem. That is a
method to transform an input to the GA-problem to an input of the k-IS-problem. Then
we will show that this reduction is correct, i.e., the instance of the GA-problem with
m symbols has a solution if and only if the resulting k-IS-problem has a solution with
k = m and that the reduction can be done in polynomial time.
The reduction consists of two steps:

Step 1 First we create an empty undirected graph G= (V,E). For every Vi in (6.1) we
construct a clique consisting of vertices labeled by vectors in Vi and insert them into G.
That is for every vector v ∈Vi we insert a vertex labeled v intoV and connect the vertex
labeled by v to all other vertices with labels in Vi.

6.1 Independent Set Reduction 97

Step 2 After Step 1 there exists for every vector v in V0 ∪V1 ∪ . . . ∪ Vm−1 a corre-
sponding vertex in G labeled v. For all pairs of symbols Si,S j with Xi, j = Xi∩Xj �= /0
we compare every pair of vectors u ∈ Vi,w ∈ Vj. If u[Xi, j] �= w[Xi, j] we insert the edge
uw into G.
Lemma 1. G has an independent set of size m, if and only if S has a solution. Further-
more, the reduction above can be done in polynomial time.
Proof. We will show that the vertices of G which form an independent set of size m are,
as their corresponding vectors, a solution set for S.
(⇒) Assume G has an independent set I of sizem. By Step 1 G consists ofm cliques,

so I can contain at most 1 vertex of every clique. Since all vertices labeled by vectors
inVi form a clique, the first requirement of the GA-problem is met, namely that at most
one vector per Vi is selected.
Furthermore, since by Step 2 all vertices whose corresponding vectors are unequal

in their projection on common variables are connected, I can only contain those vertices
whose corresponding vectors are equal in their projection. That satisfies the second
requirement of the GA-problem.
(⇐) Assume S has a solution V. Then we can form an independent set I in G by

selecting all vertices with labels in V. This is an independent set of size m in G since
only one vertex per clique is selected (by construction in Step 1). Furthermore none of
these vertices share an edge, since by Step 2 only those vertices are connected whose
corresponding vectors are unequal in their projection of common variables. Thus, if
I would not be an independent set of size m, V would not be a solution to S, which
contradicts the assumption.
Step 1 of the reduction can be done in O(m · |V |max2) where |V |max is the maximum

number of vectors in any Vi. Step 2 is comparing each pair of vectors for each pair of
symbols and therefore runs in O(m2 · |V |max2). The whole reduction can therefore be
done in O(m2 · |V |max2).

Example 6 (Reduction example). Let
S0 x0 x1 x2 x3
a0 0 0 0 1
a1 0 1 0 0
a2 1 0 1 0

,

S1 x2 x3 x4 x5
b0 0 0 0 1
b1 0 1 0 0
b2 1 0 1 0

,

S2 x0 x1 x4 x5
c0 0 0 0 1
c1 0 1 0 0
c2 1 0 1 0

(6.2)

be a given GA-problem instance. We will apply the two-step reduction explained above
in order to transform S0,S1,S2 into an IS-problem instance. In Step 1 we create a clique
for every symbol.

The only possible independent set of size k = 3 in Step 2 of Figure 6.1 is indicated
in orange. The only solution to equations (6.2) is therefore the combination of vectors
a2,c2,b2 which is written (1,0,1,0,1,0) in the variables (x0,x1,x2,x3,x4,x5).

6.1.2 Graph Structure

Graphs resulting from this reduction are different from random graphs, even when the
input was a random equation system. Let us assume that we know the following about
the input instance:

98 Other Results

a0

a1

a2

b1

b0

b2c2

c0 c1

Step 1

→

a0

a1

a2

b1

b0

b2c2

c0 c1

Step 2

Figure 6.1: 2-Step Reduction to IS-problem

1. The equation system is over Fq,

2. in m equations,

3. with a sparsity of ≤ l,

4. all equations are pair-wise agreeing,

5. and the system contains no trivial partial solutions, i.e., fixed variables.

Then we can make the following observations about the resulting graph:

Lemma 2. The graph will contain m complete subgraphs. I.e., for each (Xi,Vi) with
r = |Vi| there exists the complete subgraph Kr in G.

Proof. By construction.

Lemma 3. For any pair of complete subgraphs Kir,K
j
s containing r and s nodes, re-

spectively in G = (V,E) let ηi j be the size of the cut-set between Kir and K
j
s , i.e.,

ηi j = |{uv ∈ E | u ∈ Kir and v ∈ K
j
s }|. Then either ηi j = 0 or r ≤ ηi j ≤ r(s−1), r ≤ s.

Proof. If two pair-wise agreeing equations have no common variables, their vectors
cannot disagree – hence their cliques have no common edges, i.e., ηi j = 0. If they
on the other hand have common variables, we know that they must have vectors that
differ in these variables since by assumption there are no trivial partial solutions. Each
vector in Kir therefore has to be unequal to at least one vector in K

j
s , i.e., r ≤ ηi j. Since

the equations are agreeing pair-wise we also know that no vector can be unequal to all
vectors of K js and therefore ηi j ≤ r(s−1).

This casts some constraints on the structure of the resulting graph after the trans-
formation, even if the input equation system was purely random (and then pair-wise
agreed). Unfortunately, it is unclear at this point if this observations can give any
advantage when implementing a solving algorithm and the question remains an open
problem.

6.1 Independent Set Reduction 99

6.1.3 IS-Solving Algorithm

We have now established a method to reduce the problem of solving a set of equations
to the problem of finding a k-independent set in a graph. The next step is obviously to
try to solve the transformed instances, and to do so we will present the algorithm mis

introduced by Fomin et. al. [22]. The algorithm will return the size of the biggest inde-
pendent set in the input instance. If we know that our input instance of equations before
the transformation has a solution, we can actually answer that question immediately,
i.e., the size is m. On the other hand, we cannot say which vertices are contained in the
set. By tracing mis’ calculation we can reconstruct the independent set and ultimately
provide the solution to our input equation system.
The reason for mis’ significance in the context of equation solving is that one of its

operations, namely folding, transforms the equations (which correspond to the com-
plete graphs Kir) in a non-trivial way. That means that the modification to the input
equations is new and to our knowledge not duplicated by any other algorithm.
In the following we call N(v) = {u∈V |uv∈ E} the open neighborhood of v. N[v] =

N(v)∪{v} is the closed neighborhood of v. Further, we say that α(G) denotes the size
of a maximum independent set in a graph G.
We can then find that for a graph G the following two observations are true:

• For every connected componentC of G,

α(G) = α(C)+α(G\C).

• For any two vertices v,w s.t. N[w]⊆ N[v] it is true that

α(G) = α(G\{v}).

The following two Lemmas along with their proofs can be found in [22]. They will
play a central role in the algorithm mis.

Folding A vertex v is foldable if N(v) = {u1,u2, . . . ,ud(v)} contains no anti-triangle.
Folding a vertex v is then applying the following steps to G in order to obtain the mod-
ified graph G̃(v):

1. Add vertex ui j for each anti-edge uiu j in N(v)

2. Add edges between each ui j and vertices in N(ui)∪N(u j)

3. Add one edge between each pair of new vertices

4. Remove N[v]

Lemma 4. Consider a graph G, and let G̃(v) be the graph obtained by folding a foldable
vertex v. Then

α(G) = 1+α(G̃(v)).

100 Other Results

Mirroring Amirror of a vertex v is any u∈
⋃
w∈N(v)N(w) s.t. N(v)\N(u) forms a clique

or N(v)\N(u) = /0. M(v) denotes the set of all mirrors of v.

Lemma 5. For any graph G and for any vertex v of G,

α(G) = max{α(G\ ({v}∪M(v))),1+α(G\N[v])}.

With the observations and lemmas above we are ready to state the algorithm mis. It
takes as an argument a graph G and returns the size of the biggest independent set in G.
As stated before, the set of vertices forming the maximum independent set in G can be
derived by backtracking mis’ steps.

Algorithm 3 mis
1: procedure mis(G)
2: if(|V (G)| ≤ 1) return |V (G)|
3: if(∃ connected componentC ⊂ G) return mis(C) + mis(G\C)
4: if(∃ vertices v,w such that N[w]⊆ N[v]) return mis(G\{v})
5: if(∃ vertex v with deg(v) = 2) return 1+mis(G̃(v))
6: select a vertex v of maximum degree which minimizes |E(N(v))|
7: return max{α(G\ ({v}∪M(v))),1+α(G\N[v])}
8: end procedure

Algorithm 3 represents just one method utilizing the previously presented lemmas
on the properties of independent sets to solve the problem. Other algorithms, e.g.,
more specialized in solving instances resulting from the reduction, can be imagined
and might improve the running time profoundly. For further details on the method used
to find a maximum independent set, along with examples of the techniques, one can
consult [22].

6.1.4 Experimental Results

We applied this algorithm to a small set of instances coming from random equation
systems and examples from algebraic cryptanalysis. Unfortunately our simple imple-
mentation of the presented algorithm did not yield any improvement over the other
techniques presented. Furthermore, the case of a foldable vertex occurred rather rarely.
Another problem during the short phase of experimentation, was the insufficiently

optimized approach in handling the graphs generated from input equation systems.

6.1.5 Conclusion & Further Work

We have presented an alternative approach for solving a system of sparse equations
over some finite field. A reduction to the well-known IS-problem was shown, along
with a very short analysis of the resulting graph structure. Furthermore, we presented
an algorithm by Fomin et. al. to solve the general IS-problem.
The presented algorithm by Fomin et. al. is directed toward the general IS-problem,

i.e., not specialized on input from equation system. It is possible that additional heuris-
tics in the algorithm can speed up the solving process.

6.2 Algorithm Unification 101

It is furthermore unclear how much the graph structure, which is rather specific even
for random equation systems, influences the hardness of the IS-problem. A further
analysis of the graph structure of equation systems might lead to a greater insight and
to more efficient algorithms.
Another problem during the investigation of the possibilities of this approach were

the rather intricate implementational details. It might be possible that an efficient imple-
mentation of the presented approach can already compete against other existing tech-
niques and we therefore think that a further investigation of the IS-problem in relation
to the solving of equation systems might be worthwhile.

6.2 Algorithm Unification

When experimenting with versions of the Gluing/Agreeing algorithm and with the Syl-
logism method of solving equation systems [58], it becomes clear that running either
one of them on one and the same instance can lead to different new information. That
is, one algorithm can produce a different output from another. This fact is not very sur-
prising in itself since they are two different algorithms. Nevertheless, the aim of both
algorithms is the same and their guess and verify strategy is similar.
We denote by A(r) the output of the Agreeing algorithm, by S(r) the output of

the Syllogism algorithm on an instance r. We can say that in general A(r) �= S(r)
(there might exists r where the output is equal). We can illustrate this by the following
example.
Example 7 (Agreeing vs. Syllogism). The equation system r = {S0,S1,S2} is pairwise
agreeing

S0 x0 x1 x3
a0 0 0 0
a1 0 0 1
a2 1 0 1
a3 1 1 1

,

S1 x1 x2 x4
b0 0 0 1
b1 1 0 0
b2 1 0 1
b3 1 1 1

,

S2 x0 x2 x5
c0 0 0 0
c1 0 1 1
c2 1 0 0
c3 1 1 0

(6.3)

and A(r) = r would not yield any modification. On the other hand S(r) would result
in a modification to S2, i.e., the vector c1 would not be contained in S(r).
The case for the Syllogism algorithm is similar. Let us assume that our instance r is

now
S0 x0 x1 x2
a0 0 0 0
a1 0 0 1
a2 0 1 0
a3 1 0 0
a4 1 1 1

,

S1 x0 x1 x2
b0 0 0 0
b1 0 1 1
b2 1 0 1
b3 1 1 0
b4 1 1 1

.

ThenS(r) = r despite the fact that we can learn from A(r) that a1,a2,a3,b1,b2 and b3
cannot be part of any common solution to S0 and S2.
The straightforward way to make use of both algorithms simultaneously would be to

run them consecutively on the same instance. While this is a a very easy solution which
guarantees that the output contains no information which either algorithm would not be
able to filter out, it would make the code of an implementation more complicated,

102 Other Results

therefore more error-prone and probably less efficient. Less efficient since it is not
guaranteed that Syllogism might yield additional information over Agreeing, and vice
versa.
Another problem is that the analysis of the run-time of this compound algorithm

might be more complicated, and it seems to be the least favorable solution. A unified
algorithm, which would behave exactly as the compositionA◦S, could circumvent this
problem. The following section describes how such an algorithm can be constructed
by adding extra information to an Agreeing instance during a separate stage of prepro-
cessing, and how this information is used during Agreeing to yield the same result as
running first Agreeing, and then the Syllogism algorithm on the same instance.
This preprocessing step can then be applied to any Agreeing instance and changes

complexity estimates of the algorithm only relative to the size of the input instance.

6.2.1 Syllog Preprocessing

First we have to recall that the Agreeing algorithm can work on tuples [44] or pock-
ets [47]. Both approaches exploit the fact that it is not necessary to repeatedly calculate
projections of vectors in common variables to other symbols. Instead, tuples or pock-
ets are used to keep track of pairs of sets of vectors which are equal in their projection
across different symbols. While the tuple-approach is limited to equivalences between
sets1, we make use of pockets which can express one-way implications and give us a
higher degree of freedom to form the necessary constraints.
We will explain the preprocessing technique with the help of the following three

symbols:
Sa xi x j
a0 0 0
a1 0 1
a2 1 0
a3 1 1

,

Sb x j xk
b0 0 0
b1 0 1
b2 1 0
b3 1 1

,

Sc xi xk
c0 0 0
c1 0 1
c2 1 0
c3 1 1

. (6.4)

These symbols are obviously pair-wise agreeing and do not contain any informa-
tion. They contain each possible binary vector in two variables for all pairs (xi,x j),
(x j,xk) and (xi,xk). In order that the Agreeing algorithm becomes active (as in propa-
gating knowledge) one has to delete at least two vectors from either symbol. However,
we know that if we delete the two correct vectors from two different symbols, the Syl-
logism algorithm can propagate some knowledge.
For example the deletion of a0 (denoted as a0) yields the implication xi⇒ x j. The

deletion of either b2 or b3 can give us new information which can be used to reduce Sc,
i.e.:

• b2 would yield x j⇒ xk and therefore xi⇒ xk which deletes c0, or

• b3 which would yield x j⇒ xk and therefore xi⇒ xk which deletes c1.

1The tuple {A,B} represents the fact that: If the set of vectors A is excluded from a common solution then B
must be excluded, and vice-versa.

6.2 Algorithm Unification 103

We can express this fact with the following implications in the terms of marking vec-
tors:

{a0,b2} ⇒ {c0}
{a0,b3} ⇒ {c1},

where A⇒B is to be understood as that the marking (deletion) of all vectors in A entails
the marking of all vectors in B, but not the other way around.
Proceeding in the same way for all possible implications

x(α)
i ⇒ x(β)j ⇒ x(γ)k , x(α)

i ⇒ x(β)k ⇒ x(γ)j
x(α)
j ⇒ x(β)i ⇒ x(γ)k , x(α)

j ⇒ x(β)k ⇒ x(γ)i
x(α)
k ⇒ x(β)i ⇒ x(γ)j , x(α)

k ⇒ x(β)j ⇒ x(γ)i

where α,β ,γ ∈ {0,1}, x(0)r = xr and x
(1)
r = xr can give us all pockets we need to express

the behavior of the Syllogism algorithm.
All pockets which can be derived from all possible implications x(α)

i ⇒ x(β)j ⇒ x(γ)k
on (6.4) is shown in Figure 6.2.

p0 = ({a0,b2},8)
p1 = ({a0,b3},9)
p2 = ({a1,b0},8)
p3 = ({a1,b1},9)
p4 = ({a2,b2},10)
p5 = ({a2,b3},11)

p6 = ({a3,b0},10)
p7 = ({a3,b1},11)
p8 = ({c0}, /0)
p9 = ({c1}, /0)
p10 = ({c2}, /0)
p11 = ({c3}, /0)

Figure 6.2: Syllogism pockets for x(α)
i ⇒ x(β)j ⇒ x(γ)k .

Again, just like in the Syllogism algorithm, the transitive closure of the implications
is maintained, but this time with the help of pockets and the Agreeing algorithm. In-
stead of finding new implications we have expressed the technique of Syllogism as the
deletion of vectors in an equation system.
The following algorithm spre implements such a preprocessing. It takes as input an

equation system S= {S0,S1, . . . ,Sm−1} and returns all newly derived pockets according
to the rules above from S.
The crucial operations begin at line 5 in the algorithm, i.e., the generation of the

pockets. Assume without loss of generality that (α,β ,γ) = (0,0,0). Then set A will
after the execution of line 5 contain all vectors from symbol Sa such that v[xi,x j] =
(0,0). The deletion of all these vectors suggests that if xi = 0 then x j = 1 which is the
implication xi⇒ x j. In line 6 all vectors of symbol Sb are collected in B for which it is
true that v[x j,xk] = (1,0). A deletion of all these vectors would immediately yield that
if x j = 1 then xk = 1, i.e., x j⇒ xk. If both implications become simultaneously true due
to the deletion (marking) of all vectors in A and B, we can derive by xi⇒ x j⇒ xk the
fact that xi⇒ xk. We therefore know that in this case from symbol Sc all vectors with
v[xi,xk] = (0,0) need to be deleted, exactly the vectors which are collected in line 7.

104 Other Results

Algorithm 4 Syllogism Preprocessing
1: procedure spre(S)
2: N← /0
3: for all triples (xi,x j,xk), s.t., xi,x j ∈ Xa, x j,xk ∈ Xb and xi,xk ∈ Xc do
4: for all binary vectors (α,β ,γ) do
5: A←{v ∈Va | v[xi,x j] = (α,β)}
6: B←{v ∈Vb | v[x j,xk] = (β ,γ)}
7: C←{v ∈Vc | v[xi,xk] = (α,γ)}
8: pr← (A∪B,s)
9: ps← (C, /0)
10: Insert pr and ps into N
11: end for
12: end for
13: return N
14: end procedure

Example 8 (spre algorithm). Assume we apply spre on equation system (6.3) and we
say that xi = x0, x j = x1 and xk = x2. At some point the algorithm would be in the
state that (α,β ,γ) = (0,1,1). At that point A would be empty since there is no vector
v[x0,x1] = (0,1) in V0. Likewise there does not exist any vector v[x1,x2] = (0,1) in V1
and therefore B= /0. This situation is equivalently expressed by the two implications

x0⇒ x1
x1⇒ x2

which yield x0⇒ x2. The set C contains all vectors v[x0,x2] = (0,1). Since A∪B is
empty we get an empty pr pocket and all vectors in ps, namely c1 have to be deleted
immediately.

6.2.2 Conclusion & Further Work

In this section we presented a method to emulate the Syllogism algorithm in the Agree-
ing algorithm without any modification of the Agreeing. With the preprocessing routine
spre, we make full use of the transitive closure on implications throughout the equation
system by running the Agreeing algorithm on the augmented set of pockets.
Open questions are for example if and how this augmentation of the pocket database

influences the learning described in [47]. The overall complexity of Agreeing is only
influenced by the number of the pockets, but a new estimate on the complexity in
terms of the number of equations, number of variables and sparsity for the augmented
algorithm would be interesting.

Bibliography

[1] 2012. http://www.ecrypt.eu.org/stream/. 2.3

[2] 2012. http://www.satcompetition.org/. 3.3

[3] ALBRECHT, M., CID, C., FAUGÈRE, J. C., AND PERRET, L. On the relation
between the MXL family of algorithms and Gröbner basis algorithms. Cryptology
ePrint Archive, Report 2011/164, 2011. http://eprint.iacr.org/. 3.2.2

[4] ARS, G., FAUGÈRE, J. C., IMAI, H., KAWAZOE, M., AND SUGITA, M. Com-
parison between XL and Gröbner Basis Algorithms. In Advances in Cryptology
— ASIACRYPT 2004, Springer-Verlag (2004), pp. 338–353. 3.2.2

[5] BARD, G. V. Algebraic Cryptanalysis. Springer-Verlag, 2009. 2.4

[6] BARD, G. V., COURTOIS, N. T., AND JEFFERSON., C. Efficient Methods for
Conversion and Solution of Sparse Systems of Low-Degree Multivariate Polyno-
mials over GF(2) via SAT-Solvers. Cryptology ePrint Archive, Report 2007/024,
2007. http://eprint.iacr.org/. 3.3.1

[7] BOGDANOV, A., KHOVRATOVICH, D., AND RECHBERGER, C. Biclique Crypt-
analysis of the Full AES. Cryptology ePrint Archive, Report 2011/449 (2011).
http://eprint.iacr.org/. 2.3

[8] CID, C., MURPHY, S., AND ROBSHAW, M. J. B. Small Scale Variants of the
AES. In Proceedings of the 12th international conference on Fast Software En-
cryption (Berlin, Heidelberg, 2005), FSE’05, Springer-Verlag, pp. 145–162. 2.4

[9] COOK, D., AND KEROMYTIS, A. CryptoGraphics: Exploiting Graphics Cards
For Security (Advances in Information Security). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006. 3.1

[10] COOK, S. A. An overview of computational complexity. Communications of the
ACM 26 (1983), 401–408. 6.1

[11] COURTOIS, N., ALEXANDER, K., PATARIN, J., AND SHAMIR, A. Efficient Al-
gorithms for Solving Overdefined Systems of Multivariate Polynomial Equations.
Lecture Notes in Computer Science 1807 (2000), 392–407. 3.2, 3.2.1, 3.2.2

[12] COURTOIS, N., AND PATARIN, J. About the XL Algorithm over GF(2). Lecture
Notes in Computer Science 2612 (2003), 141–157. 3.2.1

106 BIBLIOGRAPHY

[13] COURTOIS, N., AND PIEPRZYK, J. Cryptanalysis of Block Ciphers with Overde-
fined Systems of Equations. Lecture Notes in Computer Science 2501 (2002),
267–287. 2.4

[14] COURTOIS, N. T., BARD, G. V., AND WAGNER, D. Algebraic and Slide Attacks
on KeeLoq. In Fast Software Encryption, K. Nyberg, Ed. Springer-Verlag, Berlin,
Heidelberg, 2008, pp. 97–115. 2.4

[15] DAVIS, M., LOGEMANN, G., AND LOVELAND, D. A Machine Program for
Theorem-Proving. Commun. ACM 5, 7 (1962), 394–397. 3.3.1

[16] DAVIS, M., AND PUTNAM, H. A Computing Procedure for Quantification The-
ory. J. ACM 7, 3 (1960), 201–215, doi: 10.1145/321033.321034. 3.3.1

[17] DIFFIE, W. The First Ten Years of Public-Key Cryptography. In Innovations in
Internetworking. Artech House, Inc., 1988, pp. 510–527. 2.3

[18] DINUR, I., AND SHAMIR, A. Cube Attacks on Tweakable Black Box Polynomi-
als. Cryptology ePrint Archive, Report 2008/385, 2008. http://eprint.iacr.

org/. 3.2

[19] EULER, L. Solutio problematis ad geometriam situs pertinentis. Commentarii
academiae scientiarum Petropolitanae 8 (1741), 128–140. 2.2

[20] FAUGÈRE, J. A new efficient algorithm for computing Gröbner bases (F4). Jour-
nal of Pure and Applied Algebra 139, 1-3 (1999), 61–88. 3.2.2

[21] FAUGÈRE, J. A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). Proceedings of the 2002 international symposium on Sym-
bolic and algebraic computation (2002), 75–83, doi: 10.1145/780506.780516.
3.2.2

[22] FOMIN, F. V., GRANDONI, F., AND KRATSCH, D. A Measure & Conquer Ap-
proach for the Analysis of Exact Algorithms. J. ACM 56 (2009), 25:1–25:32. 6.1,
6.1.3, 6.1.3

[23] GOLDBERG, E., AND NOVIKOV, Y. BerkMin: A fast and robust SAT-solver.
Discrete Applied Mathematics 155, 12 (2007), 1549–1561. 3.3.1

[24] GREENLAW, R., AND HOOVER, H. Fundamentals of the Theory of Computation:
Principles and Practice. Morgan Kaufmann, 1998. 2.1.1

[25] GÜNEYSU, T., KASPER, T., NOVOTNÝ, M., PAAR, C., AND RUPP, A. Crypt-
analysis with COPACOBANA. IEEE Trans. Comput. 57, 11 (Nov. 2008), 1498–
1513, doi: 10.1109/TC.2008.80. 3.1

[26] JEROSLOW, R. G., AND WANG, J. Solving propositional satisfiability prob-
lems. Annals of Mathematics and Artificial Intelligence 1 (1990), 167–187.
10.1007/BF01531077. 3.3.1

[27] KAHN, D. The Codebreakers: The Comprehensive History of Secret Communi-
cation from Ancient Times to the Internet, rev sub ed. Scribner, 1996. 2.3

BIBLIOGRAPHY 107

[28] KARP, R. Reducibility Among Combinatorial Problems. In Complexity of Com-
puter Computations, R. Miller and J. Thatcher, Eds. Plenum Press, 1972, pp. 85–
103. 2.1.3, 2.1.4, 6.1

[29] KIPNIS, A., AND SHAMIR, A. Cryptanalysis of the HFE Public Key Cryptosys-
tem by Relinearization. Lecture Notes in Computer Science 1666 (1999), 788–
788. 2.4, 3.2.1

[30] KNUTH, D. The Art of Computer Programming Vol. 1. Addison-Wesley, 1973.
2.1.2

[31] LANDAU, E. Handbuch der Lehre von der Verteilung der Primzahlen. B. G.
Teubner, 1909. 2.1.2

[32] LANDAUER, R. Irreversibility and Heat Generation in the Computing Process.
IBM Journal of Research and Development 5 (1961), 183–191. 3.1

[33] LAURITZEN, N. Concrete Abstract Algebra: From Numbers to Gröbner Bases.
Cambridge University Press, 2003. 3.2.2, 3.2.2

[34] MARQUES-SILVA, J. The Impact of Branching Heuristics in Propositional Satisfi-
ability Algorithms. In Proceedings of the 9th Portuguese Conference on Artificial
Intelligence: Progress in Artificial Intelligence (London, UK, 1999), EPIA ’99,
Springer-Verlag, pp. 62–74. 3.3.1

[35] MARQUES-SILVA, J. P., AND SAKALLAH, K. A. GRASP: A Search Algorithm
for Propositional Satisfiability. IEEE Transactions on Computers 48 (1999), 506–
521. 3.3.1

[36] MCDONALD, C., CHARNES, C., AND PIEPRZYK, J. Attacking Bivium with
MiniSat. ECRYPT Stream Cipher Project (2007). 3.3

[37] MOSKEWICZ, M., MADIGAN, C., ZHAO, Y., ZHANG, L., AND MALIK, S.
Chaff: Engineering an Efficient SAT solver. In Proceedings of the 38th conference
on Design automation (2001), ACM New York, NY, USA, pp. 530–535. 3.3.1,
3.3.1

[38] NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. Data Encryption
Standard. In Federal Information Processing Standards Publication 46 (1977).
2.3

[39] NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. Triple DES. In
Federal Information Processing Standards Publication 46-3 (1999). 2.3

[40] NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. Advanced En-
cryption Standard. In Federal Information Processing Standards Publication 197
(2001). 2.3

[41] PAPADIMITRIOU, CH. H. Computational Complexity. Addison-Wesley, 1994.
6.1

108 BIBLIOGRAPHY

[42] RADDUM, H. MRHS Equation Systems. Lecture Notes in Computer Science
4876 (2007), 232–245. 3.4, 3.4.3, 3.4.3

[43] RADDUM, H., AND SEMAEV, I. New Technique for Solving Sparse Equation
Systems. IACR Cryptology ePrint Archive (2006). 3.4

[44] RADDUM, H., AND SEMAEV, I. Solving Multiple Right Hand Sides linear equa-
tions. Designs, Codes and Cryptography 49, 1 (2008), 147–160. 3.4.3, 3.4.3,
6.2.1

[45] RØNJOM, S., AND RADDUM, H. On the Number of Linearly Independent Equa-
tions Generated by XL. Lecture Notes in Computer Science 5203 (2008), 239–
251. 3.2.1

[46] ROTHE, J. Complexity Theory and Cryptology. An Introduction to Cryptocom-
plexity. EATCS Texts in Theoretical Computer Science. Springer, 2005. 2.1.3,
2.2.1, 6.1

[47] SCHILLING, T. E., AND RADDUM, H. Solving Equation Systems by Agreeing
and Learning. Lecture Notes in Computer Science (2010), 151–165. 3.4.2, 6.2.1,
6.2.2

[48] SCHÖNING, U. Theoretische Informatik — kurzgefaßt (3. Aufl.). Hochschul-
taschenbuch. Spektrum Akademischer Verlag, 1997. 2.1.1, 2.1.2

[49] SELMAN, B., KAUTZ, H. A., AND COHEN, B. Local Search Strategies for
Satisfiability Testing. InDIMACS Series in Discrete Mathematics and Theoretical
Computer Science (1996), pp. 521–532. 3.3

[50] SEMAEV, I. Sparse Algebraic Equations over Finite Fields. SIAM Journal on
Computing 39, 2 (2009), 388–409, doi: 10.1137/070700371. 3.4, 3.4.2

[51] SHANNON, C. Communication Theory of Secrecy Systems. Bell System Techni-
cal Journal 28 (1949), 656–715. 2.3

[52] SHANNON, C. E. A Mathematical Theory of Communication. Bell system tech-
nical journal 27 (1948). 2.3

[53] SOOS, M., NOHL, K., AND CASTELLUCCIA, C. Extending SAT Solvers to
Cryptographic Problems. In SAT (2009), pp. 244–257. 3.3

[54] U.S. DEPARTMENT OF COMMERCE, NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY. Announcing Request for Candidate Algorithm nominations
for a New Cryptograhpic Hash Algorithm (SHA–3) Family. Federal Register 212
(2007). 2.3

[55] VAN HENTENRYCK, P., AND MICHEL, L. Constraint-Based Local Search. The
MIT Press, 2005. 3.5

[56] WARSHALL, S. A theorem on Boolean matrices. J. Assoc. Comput. Mach. 9
(1962). 3.5

BIBLIOGRAPHY 109

[57] YANG, J., AND GOODMAN, J. Symmetric Key Cryptography on Modern Graph-
ics Hardware. In Proceedings of the Advances in Crypotology 13th international
conference on Theory and application of cryptology and information security
(Berlin, Heidelberg, 2007), ASIACRYPT’07, Springer-Verlag, pp. 249–264. 3.1

[58] ZAKREVSKIJ, A., AND VASILKOVA, I. Reducing Large Systems of Boolean
Equations. In 4th International Workshop on Boolean Problems (2000), pp. 21–
22. 3.5, 6.2

