Existence of a classical solution of a parabolic
PIDE associated with ruin probability

June 18, 2012

Abstract

In this article we will prove existence of a classical solution of the
integro-differential equation for ruin probability in finite time stated in
Paulsen (2008).
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1 Risk process model
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In Paulsen (2008) the risk model consists of a basic risk process P; with Py = 0,
and a return on investment generating process R, with Ry = 0. The risk process

is defined as

t
Y, ::erPtJr/ Y,_dR,, (1.0.1)
0



with initial value Yy = y. In the above the stochastic process R; is assumed to
be a diffusion process of the form

Rt =rt+ O'RWR,t, (102)

where r and o are nonnegative constants and Wg is a Brownian motion. P, is
assumed to be a jump-diffusion process of the form

Ny
Pr=pt+opWpi =Y S, (1.0.3)

=1

where p and op are nonnegative constants and Wp is a Brownian motion, Ny is
a Poisson process with rate A, and the {S;} are positive, independent and identi-
cally distributed random variables with distribution function F'. Wp;, Wg ¢, Ny
and the {S;} are assumed to be mutually independent. The time of ruin is
defined as the stopping time

T=inf{t:Y; <0}, (1.0.4)

with 7 = o0 if Y stays nonnegative. In the case that op > 0 the infinite variation
of the Brownian process Wp; ensures that

inf{t:Y; <0} =inf{t:Y; <O0}.

With 7 defined as above the probability of ruin in a given finite time ¢ is defined
as

U(yt)=P(r <tYo=y).

2 PIDE for the ruin probability

Let F' be the distribution function of a probability measure that assigns no mass
to (—o0,0]. For every (y,t) € (0,00) x (0,T], let L be the parabolic differential
operator

Oh(y,1)

1 0%h(y,t
Lh(yvt) = 7(0129 + U?Zy2)a(y2) ay )

3 +(+ry)

and let A be the integro-differential operator
Y
Ab(y,t) = Lh(y. ) +A | by = 2 0dF () ~ Auly. ).
0

In Paulsen (2008) it is stated that the ruin probability should be the solution
of the following partial integro-differential equation (PIDE):

’(/J(y,O) =0, y>0
¥(0,t) =1, tel0,T] (2.0.5)
QD) A(y,t) = AF(y), (y.t) € (0,00) x (0,T].

In the above F(y) = 1 — F(y) is the tail distribution function. Asymptotically
a solution of equation (2.0.5) should satisfy

ylg{)lo P(y,t) =0, tel0,7T]. (2.0.6)



We observe that the operator A is linear and uniformly elliptic, while the initial
condition, the boundary condition, and all the coefficients are all analytic for
y > 0. This suggests that equation (2.0.5) ”should” have a smooth solution, at
least if the distribution function F'(z) is smooth. A closer look, however, reveals
a number of properties that violate the standard assumptions in the literature
on PDE and PIDE problems.

e The domain is unbounded.
Some literature, in particular on PDE’s, discusses problems with un-
bounded domains. In general, however, these treatises require that at
least the coefficients of the second space derivative be bounded. In our
case the coefficient of the second space derivative is

1
)
which is obviously not bounded for y € (0, 00), when og > 0.

e Violation of compatibility condition.
The initial condition dictates that lim, o (y,0) = 0, whereas the bound-
ary condition dictates that lim; g (0,¢) = 1 # 0. The initial condition
and the boundary condition are thus incompatible. Any solution of (2.0.5)
must hence be discontinuous at the origin, which violates the requirement
that a classical solution must be continuous at at the boundary.

e Asymptotic boundary condition
In addition to the difficulties mentioned above we need to verify that, for
any t € (0,7, limyyoo ¥(y,t) = 0.

The upshot of this is that standard theory does not immediately ensure existence
and uniqueness of a solution of equation (2.0.5). Instead we have to rely on more
indirect methods, and work mostly with an emulation of (2.0.5) on a truncated
domain (0, ) x (0,1], with the more standard boundary equation ¢ (k,t) = 0
for t € [0,1]. Since there can be no classical solution we will in this article
instead look for a solution that satisfies the requirements of a classical solution,
including continuity to the boundary, except at the origin. We will call such a
solution a classical solution, except at the origin. The last result in Section 3,
Theorem 3.0.4 establishes the existence of such a classical solution, except at
the origin, on any truncated domain.

Our objective is to establish existence on an unbounded domain, with the
asymptotic boundary condition. For this we will need some estimates which
we will obtain in Section 4. To derive these estimates we assume that the
coeflicients satisfy op > 0 and either cg = r = 0 or og > 0 and that the tail
distribution F satisfies

FO<Cc+9™", (=0
for some positive constants C and /3.
In the last part of the article, Section 5, we will establish in Theorem 5.1.2 and

Theorem 5.2.2 the existence of a classical solution on the original unbounded
domain which even satisfies the asymptotic boundary condition.



3 Existence and uniqueness on a truncated do-
main

In this paper we will be working with the Green spaces defined in chapter VII
in Garroni and Menaldi (1992). To be compatible with the definition of these
spaces we will henceforth assume that 7' = 1.

In order to standardize equation (2.0.5) with T # 1 we can just substitute the
parameters p,op,or and X with pT,opvVT,0rVT and XT. We can therefore
without loss of generality assume that 7" = 1, which we will do in the rest
of the paper. In order to have all the coefficients of A bounded we introduce
a truncated domain (0,x) for y. The upper boundary condition is now in a
standard form.

Vi(y, ): . ye(0,K),
¥r(0,8) = e [0,1],

U (K, t) = 0, € [0,1], (3.0.7)
B ( t)=AF(y), (y.t) € (0,x) x (0,1].

Taking a cue from Garroni and Menaldi (2002) we will look for a solution v, (y, t)
of (3.0.7) by considering the three equations

1/’1,;1(% 0) 07 Y S (07 K/) )
LZJL,{(O, t) 1, te [0, 1] , (3.0.8)
U1 (Ii,f) =0, te [0 1] e
dwlgt(y,t) %U%d Y1, n(y t) +paw1§y(y,t)7 (y,1) € (0,5) x (0,1],
z/}Z,H(yv O) = 07 Y S (07 K/) )
1/)2,,.;(0, t) =0, te [0, 1] , (3.0.9)
Vo (K, 1) =0, tel0,1], e
M LQ/} KT HLH (yat) ) (y7t) € (07 H) X (07 1}7
where
1 aZw K ) 8 K Y
Hyp(y,t) = sohy* ——F (2y Dy ry z/u <y ) — A1 (3, 1)
2 d%y
[ = 2 dFG) 4 (),
and
7/’3,5(% 0) = Oa Y € (07 K’) )
¥3.:(0,1) =0, te]l0,1], (3.0.10)
V3. (K, 1) =0, telo,1], o
% - A¢3,n (y7 t) = H2,m (yv t) ) (ya t) € (07 K) X (07 1]
Here

y
Ho (5,) = Mo (3,1) + A / o (y — 2,0 dF(2).



Now we focus our attention on the first of the above three equations (3.0.8). Ex-
istence and regularity of a solution to that equation can be determined from the
close relation between this equation and a certain passage time of the Brownian
motion W, ;. Consider the following three equations.

w{(ya 0) = 0, y > 0,
¥7(0,1) =1, te[0,1], (3.0.11)
limy_)oo wT (y7 t) = O’ t G [O’ 1] b e
* 2 ok
2 = 10324 (y,1) € (0,00) x (0,1].
V1,00 =0, ye(0,rx),
V1.(0,t) =1, tel0,1], (3.0.12)
'l/JiK (k,t) =0, te]l0,1], o
P}, (yt %Yt (y,t
Wipvt) 152 0D () 1) € (0, ) x (0,1].
and
wl (y7 O) = 07 y > 07
1/)1(0,t) = 1, te [O, 1},
limy 00 1 (y,t) =0, tel0,1],
) , 22 , ) ,
Bfud) 30 G +pPHY (1) € (0,00) X <0(,3 12). »
Let
0 :inf{t >0:y+opWp, <0}7
To=inf{t >0:y+pt+opWp, <0},
T =nf{t >0:y+opWp; > K},
and let

Tuly) =inf{t >0:y+pt+opWp; > k}.
Since 7 (y, t) is just the probability P (1o < t) it is well known that

9 [e’e) .2 y t 5 — y;’
Pi(y,t) =1/ — e Tds = s"2e 27p°(s
1\Y
™ vl opV2m Jo
op

is a unique solution of equation (3.0.11). Equation (3.0.12) corresponds to the
probability P (7o < min (7,,t)). It is known (see exercise 2.8.11 in Karatzas and
Shreve (1991)) that equation (3.0.12) has the unique solution

e _ @nety)?

1 b 3
1 1) = E 2nk + /5756 2P (s.
1/)1,5(9 ) O'P\/ﬂ L ( y) 0

Similarly, equation (3.0.13) corresponds to the probability P (7 < ¢) and (3.0.8)
corresponds to the probability P (7p < min (7,t)). Similar applications of Gir-
sanov’s theorem, as in section 3.5.C in Karatzas and Shreve (1991)), yield that

—0o0

y t 3 _(y+58)2
=t [t (3.0.14)



and

oo t | @nrtn? s 1 2 52 2}
_3 o2 TPY+50pD°s
(Y, t) = ———— 2nk + /s 2¢ [ 2ops ds,
Vru(y,t) = ——= n;m( v |
(3.0.15)
h

where e P
0T

We will return to equation (3.0.13) and the solution (3.0.14) later in the ar-
ticle. Unfortunately it will turn out to be much more difficult to establish the
existence of a solution of equation (3.0.9). Uniqueness, however, is relatively
straightforward to establish, as outlined below.

Theorem 3.0.1. If
g1 (y,t) € C*1((0,5) x (0,1])

and
g2 (y,1) € C*1((0, %) x (0,1])
are two classical solutions of equation (3.0.9), then
91 (y,t) = g2 (y, 1),
for every (y,t) € [0, k] x [0, 1].

Proof. Since ¢1 (y,t) and g1 (y, t) are assumed to be solutions of equation (3.0.9)
this follows from Theorem 1.3.1 in Garroni and Menaldi (1992) by considering
the differences

g1 (y,t) — g2 (y,1).
O

Before proceeding to establish existence of a solution of (3.0.9) we will first
need to establish some auxiliary results and then introduce the concept of a
Green function.

Proposition 3.0.1.
For every x € R, t > 0 and for any a,c >0 and 0 < < ¢

x? a z?
sup |z|” exp <—c> < Ctz exp (—(c - 9)) ,
t€(0,1] t t

where
o
«

(27 e (-E
€= < 0 > =P ( 2) '
Proof. Let (t,0) € (0,1] x (0,¢). We observe that since

aN 5 2
2 _ My le—0Z
(9> exp( 2)t exp( (c 9)t>>0,

there must exist some € € (0, %) such that

2 2
|z|* exp <cxt) < Ct% exp <(c - H)xt> ,



for every x € [0, ¢]. Moreover, for every « > €
«@ |'T|2 < <
2| exp | —0— | < (¢?) sup 22 exp (—02)
t 2€[2 00)

Let h(z) = 2% exp (—02). Differentiating h we get that

B(z) = 2% (—9 + %zil) exp (—02z),

and negative for z > %. Thus

SN

which is positive for z € (0, %), 0 for z =
o a2\ % o

sup z2exp(—6z) = <2> exp (77) .
ze[%po) 0 2

Since t was arbitrarily chosen the result follows. O

Proposition 3.0.2. For every (z,t,€,9) € Rx (0,1] x R x [0,t) and p,q,¢ > 0,

pra—1 L' (p)T (q)

/19(15_8);7— (s =N "ds=(t—1) Thra)

/Rexp (—c li:i' + ‘Z__% ]) dz
SO (45

where T'(z) is the Gamma function

and

o0
I'(x) ::/ 2" texp(—2)dz, x>0.
0

Proof. These identities are proven in section 1.1 in Garroni and Menaldi (2002).
O

Proposition 3.0.3. Let ¢ > 0, d € R, let —0c0o < a1 < ags < 00, —00 < by <
by < 00 and let

Dap := (al,ag) X (0, 1] X (bl,bg) X [O,t).

Let h (y,t,£,9) be a continuous function on Dy such that h(y,t,&,9) is differ-
entiable with respect to t on Dy, and for some constant C

h (y,t,€,9)] < C (t—9) " exp (c%) (3.0.16)

and

oh 9 N —6)?
D] <cmu o)



for every (y,t,£,9) € Day. Then, for some constant C
[ (s, €9) = By, £, 0)] < Ot =¥ [ =0) ") 4 (¢ = 9) "]
w92 w97
><<exp< c P + exp Cit’—ﬁ
(3.0.17)

and

. ’ e g —(d+a) 71 (y*§)2
(0 1,6,0) — h(y,#,6,0)] < Cle— 1" | (1= 9)" ) exp [ =%

+ (' — ﬂ)_(d+a) exp (—;C(Z/_%Q)}
(3.0.18)

for every (y,t,£,9) € Dap, every t' € (¥,1], and every a € [0, 1].
Proof. Let to = max (¢,t') and ¢; = min (¢,¢'). Assume first that
to —t1 >t — 0.
We note that in this case
ty— 9 <2ty —t1).
Hence, for every a € [0, 1]

|h(y,t7£,’l9) - h(yvt,7§7ﬁ)| < |h(y7ta§719)| + ‘h(y,t/7£,’l9)|

2
<20t —t|*|(t —9)" T exp <_c(y—€>>

)

From the above it is obvious that for this case the inequality (3.0.17) also holds.
Now, assume instead that

—

+ (' - ﬁ)_(d+a) exp —c(y ¢’
t—4

to —t1 <t1 — 9.

We first observe that under this condition
t2—19<2(t1—19)

and hence we only need to prove that the inequality (3.0.17) holds. Moreover,
it follows from the mean value theorem that

B (y,t,69) = By, ¥, € 0)| < Clt =] [(E = 0) "D 4 (¢ = ) "]

(o <_c<§ - ff) tep (_d@;— fg))




Thus the required bound (3.0.17), and hence (3.0.18), can be obtained, since
[t —t'| <min(t —9,t' — 7).
O

Corollary 1. Assume that h (y,t,&, V) is differentiable with respect to ¥ on Dy,
that (3.0.16) holds and that

‘3h(%uéﬂﬂ‘§(7@7%u+nexp<cﬁr—£f>

99 t—1
for every (y,t,£,9) € Day. Then, for some constant C

b (9,4,6,0) = h (g £, 6 0) < O =" [(E=9)” ) 4 (£ —0) ]
2 2
X <exp <—c(i:? )—l—exp <_C(i:§2 ))

2
h(y,t,€,9) = h(y,t,&0)| < Clt =t [(t_ﬁ)—(d+a) exp< 1 =9 )

Hence

Ty

2
+(t— ﬁ’)_(d+a) exp (—;c(i : 32 )} .

Proposition 3.0.4. Let ¢ > 0, d € R, let —00 < a1 < a3 < 00, —0 < by <
by < 00 and let

Dap = (al,a2) X (0, 1] X (bl,bg) X [O,t).
Let
D&b = [al,ag] X (0, 1] X (bl,bg) X [0775)

and let h(y,t,&,9) be a continuous function on Dgp such that h(y,t,&,9) is
differentiable with respect to y on Dgy. Assume that, for some constant C,

I ( _g\—d _ (y—f)z
Y, t,6,0)| < C(t—9) “exp . (3.0.19)
on Dgp and
2
‘W‘ < C(t—9)"(43) exp (Ji_? > (3.0.20)

on Dgy. Then, for some constant C',

B (y.t.€,9) = h(y' . t.£,9)| <Cexp (c) [y —y/'|* (¢ — 0) ")

X (exp (—c(yt:? ) + exp <—c(yt :g) ))
(3.0.21)

for every (y,t,&,9) € Dap, every y' € [a1,az], and for every a € [0,1].



Proof. Let yo = max (y,y’) and y; = min (y,y’). Assume first that
t=0<ly—y.
We note that in this case
(k=0 <=0 D -y,

and hence in this case it follows from the bound (3.0.19) that the bound (3.0.21)
holds. In the rest of the proof we will assume that

t—9> -y
Because of the continuity on D, we can also assume that
a; <y <y < as.
We note that in this case
ly =3/ (¢ = 9) " <y — g (- 0) (3.0.22)

Assume in addition that & ¢ (y1,y2). For this case it follows from the Middle
Value Theorem and the bounds (3.0.20) and (3.0.22) that,

A (y,t,6,9) = h (Y, £,€,9)| <Cly —y/|" (¢t =)D

The last possible case is that (3.0.22) holds and that £ € (y1,y2). In this case
we note that

min (cxp <_C(yt_§9) ) , eXp (—c%_?)) > exp(—c),

and hence it follows from the Middle Value Theorem and the bounds (3.0.20)
and (3.0.22) that

|h(y7t»§719) — h(y/’t7§,19)| Scexp (c) |y _ y/|a (t _ 0)—(d+%)

(y =&’ (v - &)°
X (exp <—c P > + exp (—CH?)).

O

Corollary 2. Assume that h(y,t,&,0) is differentiable with respect to & on Dy,
that (3.0.19) holds and that, for some constant C,

2
‘m“%é&m‘<C@—m(w2%m<—4i_?>,

for every (y,t,£,9) € D. Then, for some constant C

B (y,t,€,9) = b (y,1,€',9)] <Cexp (o) [¢ = &|" (¢t =)~ )
X (exp <—C(y_)2> + exp (—c(y_gl)Q>>
t—9 t—1o

10



Proposition 3.0.5. (i) Ifa,b> 0, then

and

(ii) Ifa € R and b > 0, then for some constant C

b , 2 2
/ as_%exp (—a)‘ds<0exp (_a) ,
0 S b

(iii) Ifa # 0 and b > 0, then for some constant C

b 2 2
2/ asfgexp (_a> ds SC’b*%exp (—a>,
da Jy 5 b

2

2 b 2
%/ as_%exp (—2) ds| < Cab™ 2 exp (—i)),
0
0 b 3 a2 3 a2
il -5 = < -5 _Z
6b/oas eXp( 5>ds_Cab eXp( b)’

83 b 3 a2 3 1a2
- -3 - <COb 2 ——— .
8a3/0a8 exp( s)dsC’b exp( 2b>

2

Proof. For part (i): This can be calculated using the substitution z = “-.

For part (ii): This is obvious if @ = 0. Assume that a # 0 and that
la| > Vb.

For this case a simple calculation using the identity given in part (i) yields that
the stated claim holds. In the following assume that a # 0. and that

la| < V. (3.0.23)

2

I := /2 |al s77 exp (a> ds,
0 S
b . 2

Iy = / |a|s_% exp <_a) ds.
b s

2

Consider

o

and

11



The identity given in part (ii) yields that

a2

a2 > _ 1 1
< exp - , % exp —52 dz
94

2
< Cexp (—i))

for some constant C. Under the assumption (3.0.23) a simple calculation yields

that
[ <e _—
XP .
2 > I

The other bounds follow from Proposition 3.0.1. O

I :/ zféexp(—z) dz
2

The most important concept in this article is that of a Green function, which
we will now define, adapted to equation (3.0.9). ’

Definition 3.0.1. A function G- . (y,t,£,9) defined in the domain D,., where

D, ={y,t,§,9:y€(0,r),£ € (0,r),0< I <t <1},
0D ={y,t,§,0:y €{0,r},£ € (0,r),0< I <t <1},

D, =D, U0D,

is called a Green function on D, for the differential operator L* with Dirichlet
boundary condition if it satisfies:

(1) Gr-x (y,t,€,9) is continuous in (y,t),
and locally integrable in (€,9),

(i)

GGL*,N (y7 t, 57 19)
ot

- L*GL*,K (yatagﬁ/ﬁ)
=0(y—¢)ad(t—1), inDy,

liHiOGL*’R (y,t,£,9) =06 (y—&), in Dy, (3.0.24)

t—19
GL*# (y7 t7 57 19) = O, m 8DH7

In the above 0 (y,t) is the Dirac measure at 0.

In order to derive existence and some regularity of a solution of equa-
tion (3.0.9) we want to use use Theorem VI.2.2 in Garroni and Menaldi (1992).
This theorem, however, requires the right hand side of the equation (in our case
the function Hy , (y,t)) to belong to the function space C*% ([0, ] x [0,1],R)
defined below.

Definition 3.0.2. Let C°([0,x] x [0,1],R) be the Banach space of bounded,
real valued, continuous functions on [0, k] x [0, 1], with the supremum norm.

12



Let g (y,t) € C°([0,] x [0,1],R). We will say that
g €C™%((0,5] x [0,1],R)

or that g is Hélder continuous on [0, k] x [0, 1] with index o
if g has a finite value for the semi norm

inf{C’>0 lg (y,t) —g (., )| < Cly— |, Vy,y €[0,k] anthG[O,l]}
—i—inf{C’ZO:|g(y,t)—g(y,t')\§C|t—t’|%,Vy€[0,/i] anth,t’e[O,l]}.

Alas, because of the singularity at the origin it is clear that
Hiy . (y,t) ¢ C*%(]0,x] x [0,1],R) and we will have to rely on a more indi-
rect approach. But first we need to explore a bit more the local regularity of
Hj . (y,t) on the inner domain, as we do in the next two results.

Definition 3.0.3. Let 1

Co — 59 -
20%

Lemma 3.0.1. There exists a constant C' such that for every (y,t) € (0,k) X
(0,1]

2
0 S wl,n (y7t) S CeXp (—Coyt> 3

awl’gy(y’t) < Ot~ % exp ( yt>
vt )
b o 18)
S
i P (y,1) _3 Loy
‘(‘3343 < Ct 3 exp (—2c0t> .

Proof. We first observe that in the formula (3.0.15) the singularity at the origin
of Y1, is taken care of by the term n =0, i.e. the term

1 ¢ 3 (y+ps)?
) = ——— —
Y1 (y,t) oov2r )y
From Leibniz’ rule it follows that

Ot _ ¥ -3 e (y + pt)”
ot opV2m 0 '

Because of Proposition 3.0.1 we conclude that for some constant C'

o1 (y,t) -1 I
it AT — gl ).
‘ " Ct™ " exp 5 €0 ;

13



Moreover, similar calculations as in the proof of Proposition 3.0.5 yield that for
some constant C'

oyt t
for I € {1,2,3}. Similar calculations as in the proof of Proposition 3.0.5 yield
that the stated bounds hold for this term. In this calculation it is helpful to use
the fact that the second derivative with respect to y can be expressed in terms
of the derivative with respect to ¢t and the first derivative with respect to y (a
consequence of 1 (y,t) being a solution of equation (3.0.13). The ratio test
shows that the full series expression for 91, (y,t) given in (3.0.15) converges
uniformly and thus 91 . (y,t) can be differentiated term by term. For |n| > 1

l 2
‘W‘ S Ct7% exp <_;C0y>

we note that (2n — ,‘iy)2 > k2, so an application of Proposition 3.0.1 yields that
all the other terms are smooth and sufficiently bounded for the whole series to
obey the stated bounds. O

Lemma 3.0.2. There exists a constant C such that for every (y,t) € (0,k) x
(0,1], every y1,y2 € (0,k), every ty,ts € (0,1] and every « € (0, 1] the following
bounds hold:

2

Y _ 1 B
| Yrnly = 0dF(:) + Fly) < Cexp (4COZ> +F(%),  (3025)

‘/Oy%m(yg — 2 0)dF(2) + Flys)
_ ( Oyl U1 (g1 — 2, 8)dF(2) + F(w))‘

<Clya— [t 2 (3.0.26)

(o (~h) o (~3ent2)
eF ()7 (5)),

/Oy U1,k (y — 2,t2)dF (2) (/ Y1y — 2,01)dF(2) + F(y))

<Clta —ta|* (7 +t2)

1oy Loy | a(y
x(exp <_8602€1)+6Xp (—Scotz +F(§) .
(3.

Proof. Let

¢1,H(y7t)v (y,t) € [Oa /i] X (07 1}7

wl,fi(yvt) = {1’ , (y’t) c (—O0,0) X (07 1]

We note that, for every ¢ € (0, 1], 11,.(0,t) = 1, and thus 1/;17,€(y, t) is continuous
on (—o0, k) x (0,1]. Moreover, since F(y) is a probability distribution it follows
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that, for every (y,t) € [0, ] x (0, 1]

/ Y pinly — 2 O)dF(z) + Fy) = i T Gunly — 2 )dF(2).
0 0

Let § = min (y2,y1). From the identity above it follows that

Y2 Y1
V1,x(y2 — 2,t)dF (z) — Y1.x(y1 — 2,t)dF (2)
0

< || + |12

0

where )
y

L / Y (Wrnlys — 2,8) — (s — 2, 1)) dF(2),
0
and

I, = /{Z:Dg} (V1,6(y2 — 2,t) — 1 5(y1 — 2,t)) dF(2),

The stated bounds (3.0.26) and (3.0.27) can be obtained from considering Iy
and I, applying Proposition 3.0.4 and Proposition 3.0.3 and using the bounds
given in Lemma 3.0.1. O

Proposition 3.0.6. There exists a constant C' such that the bounds stated below
hold for every y,y1,y2 € (0,K) and every t,t1,t2 € (0,1] and every « € [0, 1].

2

Hinlnt) < € (exp (~jeals ) + 7 (3))

[Hiwe(y2,1) = Hin(yi, 1) < Clyz — 3 |“ 472

1y 1 y3
X (exp <_8cot> + exp (—Scot (3.0.28)
o (Y (Y2
+F(G)+F (2))7
and
|Hy x(y,t2) — Hix(y, t1)] < Cltg — t1]™ (17 +159)
1 92 1 92 _
X (exp <_80021{1> + exp (—80027?2) + F <22/)>
(3.0.29)

Proof. The bounds stated above can be obtained from the bounds given in
Lemma 3.0.1 and Lemma 3.0.2 and applying Proposition 3.0.4 and Proposi-
tion 3.0.3. O

Since Hy x (y,t) is not Holder continuous we will instead work with a se-
quence of Hélder continuous functions that converge to Hy , (y,t) .

Definition 3.0.4. For everyn € 2,3, ..., let

0, tel0,5],
() = exp<ﬁ17t+% (1—exp<ﬁ>), te(ﬁ,%),
1, te 1],
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and let
Hyn(y,t) :==nn(t)Hy (y, 1), (0,t) € [0,] x [0,1].

The lemma below states that, for any fixed n, the Hi , ,(y,t) is indeed a
Holder continuous function. Because of this property we can invoke Theorem
VI.2.2 in Garroni and Menaldi (1992) to establish existence of a solution of the
following equation:

%,n,n(%@ =0, Yy € (O ”i)

VYo,en(0,t) =0, tel0,1],

V2,em (K,t) =0, te[0,1], (3.0.30)
3w2.mé;;(y7t) 1 (UP + O,Ryz) 9 ¢2 " n(%t) —(p+ry) 02, n;(% )

- Hl,n,n(ya t)’ (yv ) (Ov “) (07 1]'

Moreover, Theorem VI.2.2 also gives us a representation formula for s . ,,(y, 0),
which we will later use to show that

hm ¢2,n,n(ya t)
n—oo

is a classical solution of equation (3.0.9).
Lemma 3.0.3. For everyn € 2,3,...,
(i) ma(t) is differentiable on (0, L), and for every t € [0,1]

0<n(t) <1.

(ii) There exists a constant Cy,, depending on n, such that, for every o € (0, 1],
every (y,t) € [0,k] x [0,1], every y1,y2 € [0, k] and every t1,ty € [0, 1]

‘Hl,m,n(ylyt) - Hl,fs,n(y27t)| < Cnly2 — 7!1|a

and
|H1,n,n(yat2) - Hl,fe,n(yytl” S On ‘t2 - t1|a

Proof. Without loss of generality we can assume that to > ¢;. It follows from
the bounds given in Proposition 3.0.6 that there exists a constant C such that,
for every (y,t) € [0, k] x [i, 1], every y1,y2 € [0, k], and every 1,2 € [Qn, 1],

[Hy ey, t) = He(y1,1)] < Cn % Jyo — w1 (3.0.31)
and
|H1,H(y,t2) - H17n(y,t1)| <cn™! [ta — t1]. (3.0.32)
Now, for fixed n € 2,3,..., consider the function 7,(¢). An inspection yields
that
0<n(t) <1

for every t € (5, +). Since 0 < 1,,(¢) < 1 and since 7, (t) vanishes for t < 3- it
follows from the bound (3.0.31) that, for every y1,y2 € [0, k],

|H o (y2,t) — Hi o (y1,8)] < Cn7% |ys — 1] -

16



Moreover, Hy . n(y,t) is a bounded function, thus, for some (other) constant C,

_1
|Hy on (Y2, 1) — H1 o (y1,8)] < Cn™2 Jy2 — 11|,

for any « € (0,1]. Now, consider n,(t). Taking the limit we observe that

lim 7, (t) =0,
tot

while
limn,(t) =1,
trd

thus 7, (t) is continuous. Moreover, it can be calculated that the limit

lim 7, (¢)
tri

exists. Hence 1/, (t) is bounded by some constant C' on (0,1). From the bound
and the identities above, it follows that, for some other constant K

[ (t2) = n(t1)] < K [tz — 1],
for any « € (0,1], and thus, for some constant C,,

|H1,K,,n(yat2) - Hl,n,n(yvtl)‘ S |H1,H(y7t2) (nn(tQ) - nn(tl))l
+ |(H175(y,t2) - Hl,m,n(ya t1)) (1)
< Cp lta —t|*

O

Since Hi xn(y,t) is Holder continuous, we get an existence and representa-
tion result for equation (3.0.30), as stated in the theorem below.

Theorem 3.0.2. (i) There exists a unique Green function Gr, . (y,t,£,9) as-
sociated with the differential operator L and Dirichlet boundary conditions
on the domain Dy, i.e. satisfying the conditions in Definition 3.0.1. Fur-
thermore, there exist positive constants Cy, and ¢, depending on K, such
that, forl € {0,1,2},

0'Gp . (y,1,€,0) 1 (y —€)°
R e EL eXp(‘Cw_m7

and such that

8GL7H (ya ta ga 19) —% (y B 5)2
‘m‘ SCK/ (t_'lg) exp <_cn(tﬂ)> .

(ii) For any firedn € 2,3,...,,
t K
V) = [ [ G (08.6,9) H (6. 0)d0.
0o Jo
is a unique, bounded classical solution of equation (3.0.30).
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Proof. This can be shown to follow from Theorem VI.2.1 and Theorem VI.2.2
in Garroni and Menaldi (1992). O

The next result is the first step to prove that g, »(y,t) converges to a
solution of (3.0.9) of the form given below.

Definition 3.0.5. Let
0, (y,t) €(0,x)x {0},

Pon(y,t) =10, (y.t) € {0.5} x 0,1],
fg foﬁ GL# (ya ta §a 19) Hl,m<£7 ﬁ)dgd'& (ya t) € (Oa H) X (07 1]'

Lemma 3.0.4. There exists a constant C\, depending on k, such that, for any
(yO»tO) € (0, H) X (07 1];

(i)
[2.n(w0,t0)| < Cuto. (3.0.33)
Moreover, for every (y1,t1) € {0,k} x [0,1]
lim 4o, (y,t) = 0.
(ot ey P20
(i)

1/;2,;{(3/;15) € C2)1 ((Oa K:) X (Oa 1) ,R) .
Moreover, forl € {0,1,2} and n > %,

811/32,5(:% tO) _ ale,m,n(:% tO) < C (;
8yl Y=Yo ayl Y=Yo § 7
and ~
81/]2711(2/07 t) _ a¢2,n,n(y07 t) < C E
ot —to ot —| T m

Proof. For part (i): It follows from the bounds given in Theorem 3.0.2 and the
boundedness of (Hp . (£,V) that there exists a constant K, depending on &,
such that .

|GLx (y,t,&,9)| |H1(§,9) < K, (t—09) 2, (3.0.34)

for every (y,t,£,9) (0,k) x (0,1] x (0,K) x [0,¢). A calculation using the bound
above yields the bound (3.0.33). Moreover, because of the bound (3.0.34), the
Dominated Convergence Theorem can be invoked to yield that

)122,K(y7 t) =0,

lim
(y,t)—=(y1,t1

for every (y1,t1) € {0,k} x [0,1].

18



For part (ii): Let (yo,to0) € (0,x) x (0,1], and let

2 2 2
— — 1, [— 2...,.
"e [tow[foer ’[toer ’
We observe that, for every (y,t) € (0,x) x (%,1],
1/;2,5(% t) = wQ,n,n(:% t) + In (y7 t) 5
where

L (5.1) = /0 i /O G (s, 6,0) (Hy n(€,9) — Hy o n(€,0)) dEdD.

It follows from Theorem 3.0.2 that s . n(y,t) € C*1 ((0,x) x (0,1),R). Fur-
thermore, a similar calculation as in part (i) yields that

|In (yOa t0)| S Cn

)

S|

for some constant C, depending on k.

Moreover, we note that

1t

n= 2

and it can be shown that the function G, . (y,t,§,9) is sufficiently regular that
the partial differential operators a%’ 8%22 and % can be taken inside the integral.
Thus similar calculations as in part (i) yield that, for I € {1, 2},

‘al-[n (y,t()) <C t_él
—_— > Ugklg )
8yl Y=Yo n
and o, ( ) )
n (Y0, to -1
Z7n 150,70/ <C.471=
‘ ot —ty O
for some constant C, depending on k. O

Theorem 3.0.3. lﬁgﬁ(y,t) is a unique classical solution of equation 3.0.9.
Moreover, 12 . (y,t) € C ([0, K] x [0,1] ,R).

Proof. Let (yo,t0) € (0, k) x (0,1], and let

B Lo YR 13y 0]
27 2 1

We know from Theorem 3.0.2 that, for every n € 2,3,. .., 2 ,.»(y,t) is a unique,
bounded classical solution of equation (3.0.30), and, from Lemma 3.0.4, that
wQ,H,(y’t) eCc! ((O’ K‘) X (Ov 1]’R)
Moreover, similar bounds as those stated in Lemma 3.0.4 yield that the
sequences
{ 8lw2,/{,n(y7 t)

. 1€{0,1,2)
8yl }n—O
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converge uniformly on E to

5%2,;{(% t)

8yl ) l 6 {0’ 1’2}3

and that 67’02’“6*7?(?”” converges uniformly on F to %t(y’t). It follows from the
above that, for (y,t) € F

al;Q,H(yat) 1 2 2 2 621;2,/%(3/775) 8'(2)2,/%(yvt)
TR =15 (b k) BT AR e v

= nh—>120 Hl,m,n(yv t)
= Hl,n(yv t)‘

Since (yo,to) (the point used to define F) was an arbitrarily chosen point in
(0, k) x (0,1] it follows that

8¢2,H(y17t) _ 1 2 2,2 82w2>ﬁ7n(y7t1) _ an,n,n(yvt)
o §(UP+0Ry)67y2 (P+TQ)T
= Hl,m(y7 t>7

on (y,t) € (0,r) x (0,1]. Lastly, we observe that by definition vy . (y,t) sat-
isfies the initial condition and the boundary condition, and it follows from
Lemma 3.0.4 that 99 . (y,t) is continuous on [0, ] x [0, 1]. O

In the following we will refer to 1;27,1 as 1Y . To obtain existence also of a
solution to the last equation (3.0.10) we need 92 . (y,t) to be Holder continuous
on [0, k] x [0, 1] with respect to both y and ¢, not just continuous. To obtain the
Holder continuity in ¢ we first need the result below.

Lemma 3.0.5. There exists a constant C, depending on K, such that, for every
t €10,1], every v,y € [0,&], t,t' € [0,1], and every o € [0, 1]

‘7/]2,#@(1/7 t) - 1/}2,n(y/7 t)‘ S Cn\/% |y - ylla . (3035)

Proof. It is trivial that the bound (3.0.35) holds if t = 0. If ¢ > 0 the bound
follows from the bounds given in Theorem 3.0.2, the boundedness of Hy ,(y,t)
and Proposition 3.0.4. O

Lemma 3.0.6. There exists a constant C;, depending on K, such that, for every
to,t1 €[0,1], every a € [0, 1] and every y € [0, K]

V2, (y, t2) — 2,k (y, t1)| < C |ta — t1|% .

Proof. Let « € [0,1]. Without loss of generality we can assume that to > t;.
Assume first that

1
tl S §t2

For this case it follows from Lemma 3.0.4 and Proposition 3.0.3, that, for some
constant C), depending on &,

W2, (ys ta) — o (y,11)] < Cr (b2 — 1) % .
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Assume instead that t; > %tg. We then have the bound

[V2,r (Y, t2) — Y2,k (y, t1)| < || + |I2],
where

to K
L= / G (4 t2.€,9) Hy (€, 0)dEd0),
t1 0

and

t1 K
I2 = / / (GL,R (y,t2,§719) - GL,K (y7t17§719)) Hl,n(gvﬂ)dgdﬂ
0 0

A similar calculation as in the proof of Lemma 3.0.4 yields that, for some con-
stant C; depending on &,

[I] < Cy (t2 — t1)
< C (t2 *tl)% .

Lastly, a calculation, using the bound given in Proposition 3.0.3, yields that,
for some constants C, C, and ¢, depending on &,

|| < Cy (ty —t1)2 .
O

Before proceeding with equation (3.0.10) we will need a regularity result con-
cerning the function Ho . (y,t), which is the right hand side of equation (3.0.10).

Lemma 3.0.7. There ezists a constant C,, depending on k, such that, for
every (y,t) € (0,k) x (0,1], every y1,y2 € (0,K) every t1,t3 € (0,1], and every
a € [0,], the following bounds hold:

|Ha (Y2, t) — Haw(y1,t)] < Ck ly2 — 11|,

and .
|Ha (Y, t2) — Haw(y,t1)| < Ci [ta — 1] .

Proof. Let

111)2,&(?/7 t)a Y € [Ov H] ’

1;2,;»;(1/7'0 = {0 y < 0.

We observe that, for every ¢t € (0,1], 12,.(0,¢) = 0, and that, for every (y,t) €
(0,1]

/\/O Yoy — 2, 8)dF(2) = /\/O Doy — 2 )dF(2).

The stated bounds can be calculated using the identity above and the Holder
bounds in y and ¢ for i .(y — 2,t), given in Lemma 3.0.5 and Lemma 3.0.5,
respectively. O

In Garroni and Menaldi (1992) they also define Green functions for parabolic
integro-differential equations. Below we have adapted definition IV.2.1 from
Garroni and Menaldi (1992) to the PIDE (3.0.10). In this section we will not
examine this Green function, but later, in Section (4.1.2) we will study this
Green function more closely in the special case that op =7 = 0.
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Definition 3.0.6. A function Ga , (y,t,&,9) defined in the domain D, where

Dy ={y,,§,0:y€(0,5),£ € (0,r),0<9 <t <1},
BDH:{y,t,ﬁ,ﬁzye{Om},fG (0,&),0§19<t§1},

D, =D, U 0D,

is called a Green function on D, for the differential operator

0
——A
a7
with Dirichlet boundary conditions if it satisfies:

(1) Gax (y,t,&,9) is continuous in (y,t)
and locally integrable in (€,7),

(ii)
0G A (y,t, 8,0
% - AGA,H (ya t7 fa ﬁ)
:5(y7§)6(t719)7 in Dy,
(iii)
tl—igiOGA’K (y,t,é,ﬁ) :5(y_€)a in D,
(iv)

GA,H (yu tv §, '19) - 07 n aDn

Theorem 3.0.4. There exists a unique Green function G4 . (y,t,€,9) associ-
ated with the integro-differential operator % — A with Dirichlet boundary condi-
tions (i.e., satisfying the requirements of Definition 3.0.6). Let

0 (y,t) €(0,k) x {0},

0 (y,t) € {0,x} x [0,1],

f(;t fOH GAW (y7 ta €7 19) H27K, (5, 19) dfdﬂ
(y,t) € (0,r) x (0,1].

V3,k(y,t) = (3.0.36)

and let
3
%(l/, t) = Z wj,n (y, t) (ya t) € [07 H} X [07 1] :

With the definition above, for any given k > 0 the following holds:
Ye(y,t) € C*1((0,K) x (0,1]) and . (y,t) is a classical solution except at the
origin of the integro-differential equation (3.0.7), i.e.,

wﬁ(ya O) =0, RS (07 H) s

Ve(0,8) =1, te€ [O, 1} ,

Yy (kyt) =0, te€]0,1],

bl — Apy,t) = AF(y), (y,t) € (0,x) x [0,1].
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Proof. Since we have already established existence and uniqueness of equa-
tion (3.0.8) and equation (3.0.9), we only need to consider equation (3.0.10),
i.e. the PIDE

1/)3,/{(:% 0) =0, ye (07 ’{) )
P3..(0,8) =0, tel0,1
Y3k (K,t) =0, te]0,1
PG Aty (1) = =Mooy, ) + A Yo (v = 2, 8) dF (),
(y,t) € (0,k) x [0,1].

(3.0.37)
It follows from Lemma 3.0.7) that Hs,.(y,t) € C33 ([0,] x [0,1]). Thus,
existence and uniqueness will follow from Theorem VIII.2.1 in Garroni and
Menaldi (1992), once we have verified that the conditions (VIIL.1.2), (VIIL.1.3),
(VIIL.1.11),(VIIT.1.12, (VIII.1.14)) and (VIII.1.15) in Garroni and Menaldi (1992)
all hold.

The conditions (VIIL.1.2) and (VIIL.1.3) concern the coefficients of differ-
ential terms of the operator A, while the conditions (VIIL.1.11), (VIIIL.1.12,
(VIIL.1.14)) and (VIIL.1.15)) concern the terms

Yy
A / Py — 2, AP (2) — Mg (s t).
0

We note that none of these coefficients depend on ¢, and that they are all
bounded and Lipschitz continuous in y on the truncated domain [0, ] x [0, 1].
It follows that the coefficients of A are in C*% ([0, x] x [0, 1]) for any « € (0, 1).

Since we are assuming that op > 0 it is obvious that the second order coefficient

1 (0% 4 0%y?) is bounded away from 0. From these observations it follows that

the conditions (VIIL.1.2) and (VIII.1.3) are satisfied.

Let g(y,t) be a Borel-measurable function defined on [0, ] x [0,1], and let

_ g9(y.t), yel0,k],
,t =
g(y,t) {07 ) <0,

and let 7 be the finite Borel measure on [0, c0) defined by
7 ((a,b]) = A (F(b) — F(a)), b>0,—00<a<h.

Let
Jly,t,2) =—=2, (y,t,2) €[0,k] x [0,1] x (—00,00),

let
J(t,2,0) =05 (y,t.2), (y,t,2,0) €[0,5] x [0,1] x (—o0,00) x [0,1],

and let
m(y,t,z) =1, (y,t,2) € [0,5] x [0,1] x [0, 00).
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Since F' is a probability measure that assigns all its mass to [0, 00) it follows
that

A / " gy — 2 0)dF(2) — Aglu. )

/Ooo (9015 (0, 1,2),0) — gl ) m (.1, 2) dre (2)

Since both j (y,t,2,0), and m (y,t,z) are invariant of y and ¢ it follows that
conditions VIII.1.12, VIII.1.14 and condition VIII.1.15 are all satisfied. Since

0<m(y,t,z) <1,

and
7 ([0,00)) = A,

it follows that the last condition, VIII.1.11, is also satisfied. Hence, it follows
from Theorem VIIL.2.1 in Garroni and Menaldi (1992) that s ,.(y,t) as defined
in (3.0.36) is a unique solution of the PIDE (3.0.10). O

4 Global estimates

So far we have shown existence and uniqueness of a classical solution except at
the origin of equation (3.0.7). However, what we really want is to prove existence
and uniqueness of a solution of equation (3.0.7) on the full unbounded domain,
subject to an asymptotic upper boundary condition rather than a conventional
Dirichlet boundary condition. Unfortunately, since so much of the conventional
theory for PDE’s and PIDE-s breaks down when the domain is unbounded we
will not in this article be able to prove uniqueness of a solution of (3.0.7) on the
full unbounded domain. The breakdown of conventional PDE-theory is also the
reason we in this section will need to do extensive work with Green functions
and representation formulas like the one in Definition 3.0.5. In this article we
take the approach of first working with Green functions to obtain regularity
bounds on the solutions of equations (3.0.8) and (3.0.9) that are independent of
the upper domain boundary constant k.

In the general case the main problem is that when the domain is not bounded,
then both the first and second order coefficients go to infinity as y — oo.
When 0’%_3 > 0 we deal with this problem by making the change of variable
z =1n(1+ y) and consider the functions

1227K(a:,t) =19 ,(e® —1,t), x€0,In(l+ k)] x[0,1]

and R
Y k(. t) =3 (e® —1,¢), x€0,In(1+k)]x][0,1].

For now though, we will assume that op = r = 0 (constant coefficients). Under
this assumption regularity bounds not depending on x can be obtained by work-
ing directly with the Green functions Gp« . (y,t,&,9) and Ga- , (y,t,&,9) and
the formulas (3.0.5) and (3.0.36). The case with constant coefficients is much
simpler than the other two cases, and some central ideas are considerably easier
to understand in this setting. We will later see that several of these results can
be recycled for the case when og > 0.
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To make things work on unbounded domain we will for the rest of this ar-
ticle make the assumption that for some 5 > 0 and some constant C, the tail
distribution F' satisfies the inequality

FO<ca+¢". (4.0.38)

The bounds we will obtain at the end will depend on this 8. These bounds will
not be sharp, but still sufficient to show that the derivatives evaluated at points
bounded away from the origin are bounded, that the solution vanishes as the
space variable y goes to infinity, and that the asymptotic boundary condition is
thus satisfied.

4.1 Constant coefficients
4.1.1 Global estimates for a subproblem with constant coefficients

In this section we will obtain regularity estimates of the PDE (3.0.9) that are
independent of the constant 7, for the special case that ogp = r = 0. In the
next section we will do the same for the PIDE (3.0.10), still assuming that
or = r = 0. In both cases the main tools that we want to use are representations
of the solutions of the PDE (3.0.9) and the PIDE (3.0.10) in terms of Green
functions. For the PDE the representation formula is given in Theorem VI.2
in Garroni and Menaldi (1992), while for the PIDE the representation formula
is given in Theorem VIII.2.1. Unfortunately constructing these Green functions
is quite a lot of work. In addition, since the end goal is to prove existence on
an unbounded domain, we will need suitable estimates that we can later use to
show that the solutions of the PDE (3.0.9) and the PIDE (3.0.10) converge in an
appropriate manner, as we let the upper boundary constant v tend to infinity.

In Garroni and Menaldi (1992) it is suggested to use fundamental solutions,
a notion defined below, to construct Green functions for PDE problems with
Dirichlet boundary conditions. We will follow this approach except that we
will first focus on the construction of a Green function associated with the
operator % — %0%8‘9—;. After having constructed a Green function associated
with this simpler operator we will use Proposition VIII.1.2 to construct a Green
function associated with the larger operator % — %01238%22 — pa%. Finally, in
section 4.1.2 we will use Proposition VIII.1.2 again to construct the full Green
function G4~ ~ (y,t,€,9), still assuming that op = = 0. In section 4.2 we will
show that an analogous approach, with a different variable, yields similar results
when or > 0 as in the case when or = r = 0. The last case, when op = 0 but
r > 0, will not be treated in this article. We will use the following definition of
a fundamental solution, taken from the definition in chapter IV in Garroni and

Menaldi (1992).
Definition 4.1.1. A function 'y, (y,t,§,7) defined in the domain
D={y,t,§,0:9, €R0<V <t <1}

is called a fundamental solution for the differential operator

0
E_L

if it satisfies the following:
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(1) T'p (y,t,&,9) is continuous in (y,t)
and locally integrable in (£,19),

(i)

aFL (y7 t7 é-a 19)

It - LFL (yutagv’ﬁ)

=6(y—-¢§a(t—-1v), D,

(iii)

lim T = — in D.

Ji T (v, 1,§,9)=0(y—¢&), in
In the above 6 (y,t) is the Dirac measure at 0. As discussed in section IV.1
in Garroni and Menaldi (1992) we need a further boundedness condition,
like the one given below, to ensure uniqueness of the fundamental solu-
tion. In Garroni and Menaldi (1992) a function satisfying this condition
in addition to the condition below is referred to as a principal fundamental

solution. In this article we will, for simplicity, use this condition as part
of our definition of a fundamental solution.

(iv) For every 6 > 0, there exists a finite positive constant My such that

‘FL(y7t7£719)|§M57 fOT’ |t719|+|y75‘226

Condition (ii) means that the volume potential,

t o0
uly,1) = / / Ty (5.t €,0) f (€, 9) dedd

is a classical (i.e. C*1 ((—00,00) x (0,1],R)) solution of the equation

% = Lu(y,t) = f(y,t), ,Vyte (071],

for any smooth function f (y,t) with compact support in R x (0,1]. (iii) means
that for every smooth function ¢(y) with compact support in R the potential

wolpt) = [ Tot80)6(©de

— 00

is a continuous and bounded function, i.e. in C° (R x [9,1),R), and satisfies
the limit condition

I t) = R.
GJm o (yt) = 0(y), vy €

Now, consider the function

o 2
Doy (5, €,9) = v —¢) ) (11, ,9) € D.

1
NI (‘201% (t— )
(4.1.1)

It is easy to verify that this function satisfies the identities and bounds stated
in the results below.
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Proposition 4.1.1. For every (t,9) € (0,1] x [0,t)) and y,§ € R,

/DO I‘UP (yatvga’l?) d£ =1

—0o0
Proposition 4.1.2. For every (y,t,&,9) € D

FO’p (yatagaﬂ) = Fo’p (ZU - §7t70719) )
Fa'p (yvtagvﬁ) = 1_‘0'}3 (yvt - 797570) )

Oy, (y,t,€,9 —
(v, ,80) _ y 521“0},(3/,7575719)’

o0& (t—1)o%
aFUP (yvtagaﬁ) _ 78]-—‘013 (y7t7§719)
dy B o ’
PTop (4::69) _ Top w,t,69) | | =9’
Ay (t—7v)op t—=v)op |
gy (y,1,€,9) _ 1 2 aQFUP (y,t,&,0)
ot %P Oy? and
8Fop (yatagaﬂ) _ _aFUP (y,t,f,ﬁ)
o0 N ot '

Because of Proposition 3.0.1 we also have the following bounds:

Proposition 4.1.3. There exists a positive constant C' such that for every
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(y,t,&,9) € D the following inequalities hold:

2
[Pop (3.1, E9)| < C (1= 0) 2 exp (—co G ) :

<Cly—¢&[(t—1) 2 exp

‘8FUP (y,t,f,ﬁ)

t
. [
“W <Cly—¢l(t—0) Fexp (‘CO (i:?)2> ’
P L0 < ey g (4 0=
‘W <C(t—9) % exp <;Co ((Zi_fg);) !
W <CO(t—9)"% exp <—;CO ((yt_fg))2> ’

Oop (y.1.€,0) -3 1 (-9’
W <Cly—¢[(t—V) *exp _500 (t— )>a
oto¢

aBFUP (yv ta €a 19)
oy?

9Ty, (y,t,,9) s 1 (y-¢°
W <C((t—17) exp<—2co E=A

The most important consequence of the results above is that 'y, (y,t,&, 1)
is a fundamental solution in the special case when o = p = r = 0. Moreover,
it follows from Theorem V.3.5 in Garroni and Menaldi (1992) that this funda-
mental solution is unique. Following the discussion in section VI.1.5 it is clear
that the problem of constructing a Green function associated with the operator
8% — 10% can be reformulated as finding a solution of a PDE, as indicated in
the next result.

Lemma 4.1.1. Let gzo,,y(y, t,&) be the unique classical solution of the equation

9504(4,0,8) =0, ye€[0,9],
95,,0,1,6)  =T,,(0,t,&0), te(0,1],

gzoﬁ (77t’§) = I‘<7P (’Y,t,g,O), te (07 1]7 (4.1.2)
09L4.~W:t:€) 1 2 9%ah, (Wit
- ot =30p— oy2

(y,t) € (0,7) x (0,1],

and let -
9oy 1,6,9) == g7, (Y, t =9,8),  (y,t,9,§) € D,.
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Assume that fov" any smooth function f(&,9) with compact support and any
(y,t) x (0,1], and I € {1,2}

//ng Uy ,6,0) (€, 0) dE = // O 9t LS 1 (6, 0)de,

8t/ / Groy (U, 6,€,9) f(€,9)dE = / / 99Lo, ( y,t £, ﬂ)f(é“,z?)dg
(4.1.3)

and that for any smooth function ¢(y) with compact support

~

i g, (4,4,6,9) 6(€)dg = 0. (4.1.4)
- 0

Then
GLo.,’y (yu tv 67 19) = FUP (ya tv 57 19) —9Lo,y (ya tv ga 19)
is the Green function associated with the differential operator
9 1,
ot 2 Pay
with Dirichlet boundary conditions on (y,t) € (0,7) x (0,T].

Proof. We first observe that, because of Theorem 3.0.2, existence and uniqueness
of the Green function is already established.

It follows from the proof of Theorem VI.2.1 in Garroni and Menaldi (1992)
that gr, ~(y,t,&,9) must satisfy the equation below, which is the same as equa-
tion VI.2.8 in Garroni and Menaldi (1992) adapted to equation (3.0.9):

hmtlﬁ gLo,’Y(ya ta&a 19) =0, ye€ ( ) )

gLo/‘/(O?t’g?ﬂ) =T, (0 t, &, 19) , te (197 1}7

9Lo v (7775’6719) = FC"P ( L 5 19) € (197 1}7

e = 13 To0s D) for (y,1) € (0,7) x (9, 1]

(4.1.5)
Moreover, it follows from Proposition 3.0.1, Proposition 4.1.2 and Proposi-
tion 4.1.3 that for some constant C' the following equality and bounds hold,
for every (y,t,€,9) € 0D, and every ta,t1 € (9,1]:

FGP (y>ta€>19) = FUP (yat - 197570)7
|F0'P (yat7§aﬂ)| < C|y _E‘_S (t_’ﬂ)7

and
‘Pap (yth,faﬂ) - FO’P (y,tl,f,ﬁ)I < C |y - £|73 |t2 - t1| .

Because of the bounds above and the smoothness of the coefficients (trivial since
they are constants) of I'y, (7, — 9,&,0) it follows from Theorem 1.2.1 in Gar-
roni and Menaldi (1992) that, for every fixed £ € (0,§), there exists a unique
classical solution g7 (y,t,€) of the PDE (4.1.2). Also, this solution satisfies
the boundedness condition given in part (iv)) of Definition 4.1.1 (the definition
of the corresponding fundamental solution). Because of how g, ~(y,¢,&, 1) was
defined it is obvious that gr, ,(y,t,&,¥) also satisfies that boundedness condi-
tion.
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Lastly, it follows from the symmetry property (in ¢t and 9) of Iy, (y,t,&, 1)
and the chain rule that gr,-(y,t,&,7) is a solution of equation (4.1.5) and
satisfies the other requirements in Definition 3.0.1, when og = r = 0. O

To solve the PDE (4.1.5) we will rely on Theorem V.5.5 in Garroni and
Menaldi (1992), which in the theorem below is adapted to our situation.

Definition 4.1.2. For
g € C([0,1],R)
let

g(ﬂ)dﬁ7 yZOate[071]7
n="

1 50T, (y,t,m,9)
1 L 2 o y Uy 1y
Pg(,'\a (y,1) ~—/0 §0PP3—77

and

g(0)dd, y=0,tel01].

t
ﬂm@J%:/ﬂlz@bd&Qﬁ@
0 n=0

2P on

For
g= (90 ®.9% 1) € C (0,1,

let
1 2
Pery (y:t) =P\ _(y,) = P (1), te0,1].

Theorem 4.1.1. Assume that op = p = r = 0. Also assume that u(t) =
(pV (1), p P (2)) € C ([0,1],R?) is a solution of the integral equation

_%M(l)(t) + PMKY (77t) = FUP (’y,t,§,0) ’ te (07 1] (4 1 6)
=3P (t) + Py (0,8) =Topp (0,£,€,0), € (0,1]
such that
lim M (t) = 0.
im p1(t) = 0
Then

PP«W (y7 t)
is a classical solution of the PDE (4.1.5).

Proof. This follows from Theorem V.5.5 and more generally the discussion in
section V.5.2 in Garroni and Menaldi (1992). O

We will proceed to construct a solution of the integral equation above using
the method of successive approrimations. This entails constructing a recursively
defined sequence, the sum of which is the solution of the integral equation. It will
be clear from the next result that the limit of this sequence exists. It will turn
out that in order to obtain regularity estimates of the entire Green function we
will need regularity estimates for each ”building block”. We therefore include
bounds for the first two derivatives with respect to ¢, as well as bounds for

gLo,"/ (ya tv ga ’19)
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Definition 4.1.3. Let
Vo, (8) i= =20, (1,1,£,0),  (£,€) €[0,1] x (0,7),
V& (1) = —2T,, (0,£,£,0), (t.€) € [0.1] x (0,7) and let
Ve (1) = (Vi 0. V{0, ).
Forne€0,1,2,..., and (t,£) € [0,1] x (0,7) define
Vens (6.8 = (V5 6.9.VE ¢.9)

recursively by

1 2
Venrin (t) = (Vi 0.V, ®).

Let .
Ul ) =3V ®, tel0,1],ne0.1,. ..,
k=0
Uéil,y (t) = ng(i)7 neo,l,...,
k=0
let . )
Uy (1) := (Ug,ﬁﬁ (t), Ug(,n77 (t)) , ne0,1,...,
let 0 o
UE"Y (t) := 7}1_>Ir010 Ug,n,w(t)’ telo,1],
(2) BT (2)
U () = nh_}rr;o Ugno(t), te]o,1],
and let

Ue, (1) := (U (0,02 ).

Lemma 4.1.2. (i) For every g = (9(1)79(2)) € C([0,1],R?)

1 Lor,, (v,t,m,09
Py (7,t) = _50123/ % 9@ (9) dv,
0 n n=0
and . ( )
1 oLy, (0,t,m,9
P, (0,t :”02/ —ae o b g (9) dy.
g7’)’( ) 9 P o 877 ey ( )

(i) (Pgy (7,t), Pg, (0,1)) maps C ([0,1],R?) to C*([0,1],R?). Moreover,
there exists a constant C' such that for every t € (0,1] andl € {0,1,2} the
following inequalities are all valid:

0' Py (1,1) 1 4 !
278\~ _Ten (2)
ol Cexp( 5007 )/0 ’g (19)‘6&9

6lpg +(0,1) 1 92 !
78TV <« ——Cn — (1) 3
1 _C’exp( 5C0 >/0 ‘g (ﬂ)‘dﬂ

and
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(iii) For everyn €0,..., and every t € [0, 1]
_7U£(1?3 L)+ Poe, 1) (1) = Top (1, 4,6,9) + Py, (7:1),

and

(iv) There exists a sequence {kn},, of positive constants, such that

lim Fnta

n— oo

:07

n

and such that the inequalities

1 2
‘v(;{7 )‘ < fept"h exp< 5¢ 0’1) (4.1.7)

2

1 n— L v
‘Vﬁn,y()’<kt 26XP< 20t)’

2

(1 // 1 v
0] < ().

1 2
‘Vgi)«, ‘<k " QC()eXP( 2’1)7

1 2
‘V(i)ﬁ’ )’ < k™ 200 exp( 21) ,

and )

2) n 1y
’VEnv ()’<ktn QCoeXp( Qt)’

all hold for every t € [0,t] and everyn € 1,2...,.

Proof. For (i): This is obvious because of Proposition 4.1.2.

For (ii): It follows from Proposition 3.0.1 and Leibniz’ rule that

anW 7t / 82FJP (v:t,m,9) (2)
) dv
ot0n o’ (9)
. (0.6) _ [ 0T0y (0.1,7,9)
(9ng\/ O,t / 0 FO'P O,t7’l7,19 (1)
Tea ) [ Zoee D0 ) dv.
ot 0 om0 W

The stated bounds in part (ii) can be calculated from the identities above and the

identities and bounds given in Proposition 3.0.1, Proposition 4.1.2 and Propo-
sition 4.1.3.
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For (iii): The equalities given in part (iii) obviously hold for n = 0. Assume
that for every k € 0,1,...,n

1
_7U§( 73 e ( ) + PUE,n,'y:'Y (77t) = FO'P (77t’§a19) + PVn,'y (’Yat) .
Since by definition
1
VrE—&-)l,'y (t) = 2PV'n,,'y (77 t) )
it follows that

1
o 7U£( 724—1 Y () + PUg niriy (1)

(1 1 a4
= _7U§ vz e + PU&,n,’Yv’Y (’Vvt) - 5‘/5(,71)—&-1,'y + Pvg,n-%-l,'y (’77 t)

= FO’P ('7715’5719) + PVg,n+1,~,77 (77t> .

A similar argument yields that for every n € 0,1,. ..,

_7U<2>

enny ()t Pue, 4 (0,8) =1+ Py, _(0,).

For (iv): Let m, = ¢ (ni . We first observe that for some constant C'

2
“/5(%)7 ’ < Ct 2 exp (—cowtf)> .

Because of the bounds given in part (ii) and the identity given in Proposi-
tion 3.0.2 it can be calculated by induction that, for some (different from above)
constant C' and n € 1,2,...,

SIS
~—|

va o] < onft

My

Because of Proposition 3.0.2 a simple calculation yields that

yielding the bound (4.1.7). Similar calculations also yield the other bounds
given in part (iv). O

In Definition VII.1.1 in Garroni and Menaldi (1992) they define certain func-
tion spaces, denoted by g,f’f, that we we will work with in the rest of the article.
O P y,t . . a

Specifically we want the function UE#M) to be in the function space gf ’2

for every « € (0,1). For that we need a few more regularity results given below.

Lemma 4.1.3. (i) There exists a constant C such that the following inequal-
ities are all valid for every (y,t,&,9) € Dy and every | € {0, 1,2}.

' 0, atvfﬂg 14 1 — 2+ 6_ 2
gLVa(zl)SC(t_ﬁ) 2 {exp<_200[(y 7>t_1§ )

2 2
reo (g )}
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ot t—1

2 2
reo (g5}

PoraW b 60) _ gy {exp (100 [(y —)’+ (- w)QD

agLon(?ﬁt’g?ﬂ) < C(t _ 19)—% {exp (_;cO [(y _7)2 + (g _7)2]>

Oyot

090 W1 60) _ (4 _ gyt {exp (_; [(y—vf + (5—7)1)

and

Pgroq (Y, t,€,9) -3 1 =1+ E-°
5y3§ <C(t—-9) {exp(—Qcol P—

(ii) Let
GLO;’Y (y’ t’ 5’ 19) = FUP (y7 t? 6; 19) - gLO,V (yv t? ga 19) .

There exists a constant C' such that for every (y,t,&0) € Dy the following
inequalities are all valid:

’8ZGL0,7 (y,t,&ﬂ)‘ < Cltm 9 e (_160 (y—€)2>

oyt

‘8GL0,’Y (y7t7§>19> ‘ S C(t _ 19)71 exp <_i00 (y - £)2> ,

o€ t—1
2
’aGLO,’Y((;ivtaé719)’ < C(t_,ﬁ)_é exp <_£1]:CO (i:%) > ,

82G’Lo,'y (ya t, 67 19)
0x0€

82GL0.,’Y (ya t, 57 79)
ozxot

and
2
‘ < C(tfﬁ)fgexp (ico(y_g) ) .

(iii) Assume that or =p =1r =0. Then for every (y,t,§,9) € D,

GL,’Y (yatvga 19) = GLO,’Y (y?tagvﬁ) .
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Proof. For (i): It follows from Lemma 4.1.1, Theorem 4.1.1 and Lemma 4.1.2
that for (y,t,&,9) € D,

gLo,’y(yv t, 57 19) = gzogy(yv t— 197 é—) = PU5,7 (y7 t— 19) .

In the above g7 . is defined in Lemma 4.1.1. We note that the biggest sin-
gularities of Ug¢, stem from the first term V¢ .. Furthermore the partial
derivatives of the integral kernel T, (y,t,n,9) are all interconnected, as indi-
cated in Proposition 4.1.2. The stated bounds can be calculated by means of
partial integration. In doing this it is helpful to consider separately the two
halves of the domain of integration, corresponding to 0 < ¥ < % and % <¥<t
respectively.

For (ii): Since, for any y, £ € [0,7],
(y—&)° < min (y2+§27(y—7)2+(§—7)2), (4.1.8)

this follows from the bounds given in part (i) and the regularity bounds of the
function Ty, (y,t,&,9).

For (iii): What remains for G, ~ (y,t,§,?) to be a Green function for the
special case or = p = r is to show that gr, ~ (y,t,§, ) satisfies the require-
ments (4.1.3) and (4.1.4). Because of the bounds given in part (ii) it follows
that for any such smooth f (§,1) there exists a constant C' such that

K 1 (y—n)°
/ |9Lo,’v (yat7£aﬁ)f(£aﬁ)|d§§0<exp —500ﬁ
0
2
+ exp (—;cotyﬁ)),

760 dear < OE (60 +0)

and such that

/ / 99104 (¥, 1,€,9) y,t £,9)

From these two inequalities it follows that the requirement (4.1.4) is satisfied
and that

3t/ / Iroqy (Y, 1, €0) f(§,0) d€dv = / / 99 ( yvt £, 19>f(5719)d§d19_

Similar calculations also yield that

il e _ L 6lgL07’Y (y,t,g,ﬂ)
oy /O /O Loy (4:4,€,9) f (€, 9) d€dd) = /O /0 oy f(&,9) dédv,

for I € {1,2}.

O
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The next step is to solve another integral equation in order to construct a
slightly more general Green function corresponding to p > 0. To this end we
will first need to do some preparatory work that is a bit similar to what we did
to solve the integral equation (4.1.6).

Definition 4.1.4. Let
8GL0J€ (ya tv 5, 19) (ya t7 5, 19)
Ay ’

Define the sequence of functions {Q,Qyn};l'ozo recursively for
n € 1,2,..., and (y,t,&,9) € Dy by

QK,O (yat7§’19) =p (%tfﬂ% S DK'

t K
Qromst (5 £,€,0) = /9 /0 Qro (0 1.7:8) Qum (2 5,€,0) dadls,
and let -
Qn (1, 1,6,9) =D Qun (,1,€,9).
n=0

The result below shows that the sequence defined above solves the integral
equation (4.1.9). This in turn will turn out to make it possible to conclude that

t K
GLyK (yatvfa 19) = GLO,K (y7t,£719) + / / Qli (Za 575719) dst?
9 JO

in the case that og = r = 0. In addition to solving the integral equation (4.1.9).
we will need some regularity results, also given below, for the limit Q (v, ¢, 2, s).
These regularity results are a part of the effort in showing that the solution
2. (y,t) has bounded first two derivatives with respect to y, and bounded
derivative with respect to t.

Lemma 4.1.4. Let o € (0,1) and let g,‘j’% be the Green function spaces defined
in Definition VII.1.1 in Garroni and Menaldi (1992).

(i) Qx € Qla’%, Moreover, Q, is the unique solution in gf’% of the integral
equation

t K
Qli (y7t7§>19> = QH,O (y7t7€719) + [9 A Qn,O (y7t7 2, 8) QH (27 576719) dzds.

(4.1.9)
(ii) There exists a sequence {k,} of positive constants and a constant C' such
that L
lim ~* =0
n— oo

n

and such that for every (y,t,&,9) € D

n=2 1 —6)?
Qun (1,6 9)| < i (1= 9) T exp (—4COM>
and such that

2
Qu (€ 0)| < C(t=9) Fexp (‘i@f)> .
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(iii) For every (y,t,&,9) € Dy
QK, (y7 ta 67 19) = QR (ya t— ﬁa 67 O) . (4110)

(iv) There exists a constant C such that, for every (y,t,£,9) € Dy, every
y', & € (0,k),and every t' € (0,t,) the following inequalities are both valid:

|QH (yat7£)’l9) - Qli (y/atagaﬁ)‘ S C|y_y/|% (t_ﬁ)_%
_£)? 4.1.11
Xexp<_100<y 3 ) (41.11)

4 t—1

and

_5
1

Qe (4 £, €.0) — Qu (.. £,9)| < CJt — | (' — )
_ )2 4.1.12
XeXp(_lcO@ e>>) (4.1.12)

47 t—9

2
bt <ot o ol

Proof. For part (i): It follows from Lemma VII.1.3 in Garroni and Menaldi
(1992), and the bounds given in Lemma 4.1.3, that W € Q?’f, and

hence Q0 € Q;’%. Since Q0 € gf"% it follows from Proposition VIII.1.2
in Garroni and Menaldi (1992) that @ is the unique solution, in the function
space G, 2, of the integral equation (4.1.9).

For (ii): It can be shown by induction, following the technique outlined in the
proof of Lemma V.3.3 in Garroni and Menaldi (1992), that for some constants

C and c
n—1 1 (yff)Z
exp (4 t—19 .

=0.

N

w1
|QI~{,'IL (yvta§7’l9)| S cC r (% (n + 1))

This yields the stated bounds, since

(t—1)

- I'(3(n+1))

T (Lt 2)

[

For part (iii): We first note that it is obvious that

QI{,O (y7 ta 57 19) = QK,O (y7 t— 197 57 0) .

Assume that
Qn,k (y> ta fa 19) = Qn,k (y,t - 193 57 0) )
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for k € 0,1,...,n. It then follows, using the substitution o = s — ¢, that

t K
Qmﬂwmam=[;£Qm@mmﬁgm@@ammw

t—19 K
:/ / QmO (y7t_’l972a IQ) Qp,n (zagagao) dZan
0 0

and hence

Q;D,n (ya ta 5, 79) = Q;DJL (yvt - 197€a 0)
for any n € 0,1,2,...,. Since for any € > 0 we can pick an N such that for
every (y,t,&,9) € D

S 1Qpn (5, 1,6,9)] < €

k=N
we conclude that the identity (4.1.10) holds for every (y,t,&,9) € D.

For part (iv): We observe that, if

t—t' >t -9,

then the inequality (4.1.12) follows from the bounds given in part (ii). Assume
instead that
t—t <t —9. (4.1.13)

We conclude from the regularity of G, . (y,t,&,9) given in Lemma 4.1.3 and
the auxiliary result Proposition 4.1.3 that the inequality (4.1.12) holds for n = 0.
Let n€1,2,...,. It is obvious that

Qn,n (ya t, Ea 19) - in,n (y7 t/7 fa 19) = Il,n + IQ,na

where

t’ K

Il,n = / / (QN,O (yytvzys) - QH,O (yvt/7z78))Qn,n—l (Z,&g,'ﬁ) dzds
9 0

and .o

IQ,n == / / QH,O (y,t,Z,S) Qn,n—l (27875319) dzds.

t’ JO

Let {k,} be the sequence from the bound given in part (ii). It follows from the
regularity of G, « (y,t,&,9) and Proposition 3.0.2 that, for some constants K
and C, not depending on n

1 t/ K 5 .
|Il,n‘ S Kkn (t — t’)Z/ / (t/ _ 8)_1 (S _ 19)5(71—1)71—1
9 0
1l (y=2" (=97
Xexp<—4(30[ ro— + p— dzds
1,1 1 _ )2
A )

Similar calculations yield that |I5 ,,| satisfies an inequality of the form given in
equation (4.1.12), and that

QR (y,t,f,ﬁ) - QR (y/7t,€719)

satisfies an inequality of the form given in equation (4.1.11).

IS

< Chn (t—1t)
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For (v): The real problem here is to obtain an appropriate bound for the
second function in the sequence, i.e. w, which we do below. Forn > 1
we can obtain appropriate estimates using induction and similar calculations as

in part (ii) and in the proof of Lemma V.3.1 in Garroni and Menaldi (1992).

To accomplish the needed bound for %@’t’w the most important idea is
to split the domain of integration into appropriate parts. This technique is
used throughout the book Garroni and Menaldi (1992) and we will tacitly (and
sometimes explicitly) make use of it to obtain other bounds later on. We note

that
t
/

K 4
/ Qn,o (y’ t, 2, 8) aQ"’O(z’S’f’ﬂ)dz‘ ds < le7
0 =1

29
where
% H K ) 9y 3’0
L = /19 /0 (Qu0 (Y, t, 2,8) — Qo (¥, 1, &, 8)) Wdz ds,
% " KR ) 519
12 = /19 QI{,O (y7 ta 57 5) - QH,O (y7 tv 55 ;) ‘ /U Wdz‘ ds,
I3 - ‘QK,O (y7t7§a 2) ’[9 /0 8&' dz‘ ds

and

/ QH,O (ya ta 57 S) Wdz’ ds.
0

t
- |

2

Because of the local Holder-continuity of Qx ¢ (2, s,, ¥), an application of Propo-
sition 3.0.1 and Proposition 3.0.2 yields that, for some constants C' and K,

e 3 3 1 1(y—27°
I1§/79/0 K({t—s)*(s—9) *exp (860 [H?]>dzds

<C(t—19) "exp (—;co(yt:?> .

2
For I, and I3 we recall that 6Q"’°f;’s’§’ﬁ) — 2 F“g(gg’g’ﬂ) and apply Proposi-

tion 3.0.5 to obtain that these terms also obey a bound of the form stated in
part (v). For I, there are no strong singularities and the stated bound can be ob-
tained from a straightforward calculation. We conclude from the above that the
differential operator can be taken inside the integral (the order of differentiation
and integration can be interchanged) and that for some constant C

K s Uy 719 - —¢)?
3@ ,1%}§tf )§C(t719) 1exp<éco(yt_§9) )

For n > 1 a similar induction as in the proof of Lemma V.3.1 in Garroni and
Menaldi (1992) yields that there exists a sequence of constants {k,} such that
lim,, o Fut1 — () and such that

k",
aan (y,t,f,ﬁ) n—3
— 7 T2 K _ 2
o < ke (£ — )
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Because of this property we then conclude that the sequence

i aQn,O (ya t, 57 19)

STL (y7tv€7"‘9) = 85

Jj=0

converges uniformly on D, which justifies differentiating the sequence term by
term. O

Definition 4.1.5. Let

Gr, x (y,8,6,9) = // Grox (Y,1,2,8) Qu (2,8,§,0) dzds.

Lemma 4.1.5. There exists a constant C such that following identities and
bounds are valid for every (y,t,&,9) € Dy and every l € {0,1,2}:

GLl,n (y,t,f,ﬁ) = GLl,H (y,t - ﬁvfao) .

(i)
!
8Gm y,tfﬁ / / aGLo%xyl,tzs)QK(Z’s’g,ﬂ)dzdS,
(4.1.14)
t K
aGLl,n527 tagvﬁ) _ [9 A GLQ,I{ (y’t’z’ 5) QK (Z, 3,57’19) dZdS,
G,k (y:1,€,9)
o =Qx (y,1,€.9)
/ / 0G Ly .. yaLZ S)QN (z,5,&09) dzds,
(4.1.15)
O'Gry o (y,1,6,9 4 1 (y—¢)°
ot oyl
) - 1 ’
Grun (1t.60) | < C0=0) e <—4C°(i_? ) (4110
kK \Yr by 719 -3 1 —¢)°
‘3GL1, éz t,€,9) <C(t—19) 2exp <4Co(yt_? ) )
and oo
‘/ GLl,n(yvta§719)d(y_€)’ SC\/E
(iii)

GL,K, (yvtagvﬁ) = GLO,H (y,t7f,’l9) + GL17H (yvtagvﬁ) .

Proof. For (i): This follows from making the substitution o = ¢ — s.
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For (ii): As in the proof of Lemma 4.1.4 these results can be proven by
splitting the domains of integration into appropriate parts. To obtain the iden-
tity (4.1.15) we will consider the functions

Il (y7t7§75719) = /0 GLg,n (yatazas) (QK (27376319) - QH (y787€>19)) dZ,

I (5, 1.€,5,9) = (Qn (4, 5,6,0) — Q. (5, £,6,9) /O Grox (4,1, 2,5) dz,

I (5, 1.6, 5,9) = Qu (5, £,6,9) / Ty, (gt 2, ) d2,
0

and

Iy (y,t,6,8,0) = —Qx (y,t,&ﬂ)/o 9Lox (U, 1, &, 5) dz.

Because of the way Gr, .« (v,t,2,s) was constructed it is obvious that

4

| G 08,2050 Qu (215,60 d2 = " L (9 t.6.5.9).
0

=1

Because of the local Holder continuity of Qy (y,t,£,1), the bounds obeyed by
9ok (U,t,&,19) and application of Proposition 3.0.2, we see that, for some con-
stant C

2
L (y,t,6,0) <C{t—09)"2(t—s)% (s—10) % exp (iCO(yt _? ) ’

IQ (yatvgaﬂ) S O(t—ﬁ)_% (t— 5)i (3_19)_%€‘Xp <_1CO(y :5) ) 7

and

2
Lyt &9) < C(t—9) " (t— )} exp (_leO (y—©) )

From these identities it is clear that, for any fixed y, £ € (0, &)
lil)r}‘, [Il (y? t? 57 S? 1‘9) + I2 (y7 t’ 67 87 19) + I4 (y7 t? é" 87 19)] = 0‘

For the last term I3 (y,t,&,9) we get from the substitution
w = \/200\3;% that

i 7 1,6,5.9) = Qu (1.60) [ —ienp (~5u?)
5—

oo V2T

= Qn (y,t,ﬁ,i?) .
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Similar calculations as above and as in the proof of Lemma 4.1.4 yield that, for
some constant C, the following inequalities are all valid for (y,t,&,¥) € D, and

1€{0,1,2}:
t
/

ds

K 9l
/ 6 GLOH{ (y’t’Z’S) QR (27575’19) dz
0

oyt

2
<C(t-9) Fexp <—3100(?Jt:? ) ,

L% 0G L.k (4,1, 2, 5) (4.1.17)
Lo,k \Y,0,2,8
/19 /() o€ Qﬁ(zvS,faﬁ)dZ ds
2
<C(t—)* exp (zllco(yt_? ) :
and
t K
/ / OGry.n ézt/,t,z,s) O (oo5.6.9) 2| ds
o 1 2 (4.1.18)

The stated identity (4.1.15) follows from the discussion above and the
bound (4.1.18). The other stated bounds follow from the bound (4.1.17).

For part (iii): Since GLO w (Y, t,&,0) is the Green function associated with the

differential operator = — lafp aayg and Dirichlet boundary conditions, and Q) is
a solution of the mtegral equation (4.1.9), this follows from the bounds given in
part (ii). O

We are now in position to get some regularity results for the solution
2. (y,t) of the PDE (3.0.9). The representation formula given in (3.0.5) de-
pends on the jump measure F as well as the Green function. In this article
we will assume that the measure F satisfies the bound (4.0.38), and that the
regularity results we get for ¢, . (y,t) and ¥3 «(y,t) will depend on the values of
(B for which this inequality is satisfied. In this article we will not discuss what
happens if we let § — oco.

Lemma 4.1.6. (i) Assume that op = r = 0. There exists a constant Cg,
depending on the 8 from (4.0.38), such that for 1 € {0,1}

’ 8'(/}2,/%(3/’ t)

o \ <Cptm (1+y) "

(ii) Let Hyx (y,t) be as in section 3.
2
a"/’2n y7 / / 8GLI€ y)tgﬁ)Hl’n(é-,ﬁ)dé-dﬁ

and

Ms (1, 0G . (v, 0,
Waelv:D) _ g,y // L W&y, (e, ) da
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(ili) There exists a constant Cg, depending on the [ such that the following
inequalities are all valid:

" 92T, €0 B
P(zgf)HL” (5719) dedv| < Cg (1+y) ,57
10) ,t 9 )
‘Hlm y,t |+‘/ / y & )Hl,n(f719)d§d19 Scﬁ(l—i—y) ,37
F G,k (y,t, 6,0 )
G, 8;/2 3 )HL"G (&,0) dgdd Scﬁ\/%(l-i-y) ﬂ’
(4.1.19)
3G1, y,t £,9)

e B S T L (6,9) dEdY| < CavVE(L+y) 7L (4.1.20)

Proof. Because of the representation formula given in Definition 3.0.5 and the

local Hélder continuity of the function Hi , (€,1), these identities and bounds

follow from similar calculations as in the proof of Lemma 4.1.5. O
. . . . . . 03 . (y,t)

It is a bit more technical to obtain appropriate estimates of T and

oy} . . .
%@’0. In particular the proof of the next result involves a change in the

order of integration.

Lemma 4.1.7. Assume that op = r = 0 and that the tail distribution of the
Jumps satisfies the bound (4.0.38) for some 8 > 0. Then there exists a constant
Cjs, depending on 3, such that, for every (y,t) € (0,k) x (0,1], every y’ € (y, k),
every t' € (0,t) and every o € (0,1] the following inequalities are all valid:

‘W‘ <Cy(1+y)°°, (4.1.21)

o (s t) — o n(y )] < Ca(y =)t =" (1+y)77,

and
o (1) — oy, )] < Cy (t— )t (1+y) 7.

Proof. Thanks to Lemma 4.1.6 we only need to show that the integrals

and ¢ o a2
/ / O*Gro.n (?sztafvﬁ) Hy . (€,0) dedy (4.1.23)
o Jo dy

satisfy the stated bounds. We will do that by first showing that the order of
integration can be interchanged as explained below.

43



Let US") (t) and U (t) be the limits defined in definition 4.1.3, let U (€, 1) =
Ug(lﬁ) (t) (i-e. Uélﬁ) (t) considered as a function of £ as well as ¢) and likewise let
U (€,t) = UZ) (#). Let

BUe) = [ U0 s e (0.1

0
and let

B@(s) = /K U,gQ)(f,s)df, s € (0,1].

0

// agLoK y7t§ﬂ)d£dﬂ:117]2’
_ 1 / / /t‘” 0°Ty,, (y,t — 0, 2,5)
270 ) Lo otdz
I 71 Q/t/n/tﬁazrop(yvtﬁvzas)
2= Z0p
2 0 0 0 otoz

We observe that the function 'y, (y,, 2, $) is independent of the variable £ and

that B,({l)(s) and B{Y (s) do not depend on . Moreover, because of the bounds
given in Proposition 4.1.3 and Lemma 4.1.2 we are, for fixed (y, t) € (0, k)x (0, 1],
free to interchange the order of integration, as in the calculation below.

dsdi

t—19
8I‘UP y,t —19, 2,8
b= ’“P/ / B (8t8z :

=5 02Ty, (y,t — s, 2,9)
—_ - 2 (1) (TP bl g
2"1’/0 By (5)/0 8200

1, [ Ty, (y,t —s,2,0)
- B(l) op I » <~
UP/O K (8) Oz

In the last step above we have also used the symmetry property between the
second and fourth variables of the fundamental solution. A similar calculation
yields that

We note that

where

U (¢, 5)dsdgd,

Z=R

and

U (¢, s)dsdedd.
z=0

ddds

Z=K

ds.

Z=K

1 k oy (y,t — 9, 2,9)
I - B( op ) ) %y )
2= 20'13 . (s) 92 Z:0d3
Since we also have that
10_2 62:[‘ (y7t7£719)) _ F(yatvgaﬂ)
2 P oy? ot ’
we get the following identities:
/ / ang y7 tvg 19) déd’lg
:/BN()(?F - (y,t—s,2,0) ds
0 6,2 —k
/ BO(s )('9ng (y,t —9,2,9) ds,
0 82 2=0
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and

ot

1 ¢ Oy, (y,t —s,2,0)
= 50%/0 B ()22 5 Z:de

1, [ @) O op (Yt =V, 2,5)
iapA Bn (8) 9z

t K
/ / 89L0,I€ (yvtvaﬁ) dfdﬂ
0 JoO

ds.
z2=0

Because of the bounds given in Proposition 4.1.3 and Lemma 4.1.2 and the

inequality (4.1.8) it is straightforward to calculate that B,(gl)(t) and Bff)(t) are
both bounded functions and, hence, for some constant C

t R
[ ‘dedﬁ‘<ca
o Jo ot

and

t K 92
[ [ P 08D sy < .
o Jo y

Because of this boundedness and the bounds and Holder continuity of Hy . (§,9),
similar calculations as in the proof of Lemma 4.1.5 yield that the stated bounds
are valid for the integrals (4.1.22) and (4.1.23). O

Lemma 4.1.8. Assume that or = r = 0 and that the tail distribution satisfies
the bound (4.0.38). Then, for some constant Cg, depending on [3, the bounds
stated below all hold for every 0 <y <y’ < k, every 0 <t <t <1 and every
a € (0,1]:

[Ha(y, 1) < Cat (1+4) ™7,

[ Hoe(y,1) — Han(y' 1) < Caly—o/|7t = (L4y) ™" (4.1.24)
and
|[Ho e (y,) = Hae(y, #)|" < Ca (t = )" 7 (14 y) 77 (4.1.25)
Proof. Let
7 VYo.x(y,t), (y,t) € 10,K] x (0,1],
w(y,t) == 7
Van(y:1) {o, (y.£) € (—00,0) x (0, 1].

We note that for every t € (0,1]

li =

ylirol d}Q,K(O? t) 07
that 1y . (y,t) is continuous on (—oco, k) x (0,1], and that

Yy oo
/ Vo,u(y — 2, )dF (2) = / Vo, (y — 2, t)dF(2).
0 0

A similar calculation as in the proof of Lemma 3.0.2, using the identity above,
the bounds given in Lemma 4.1.6 and Lemma 4.1.7, as well as the auxiliary

results Proposition 3.0.4 and Proposition 3.0.3, yields that all the stated bounds
hold. O
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4.1.2 Global estimates for a subproblem with an integral term and
constant coefficients

In the remaining part of this section we will obtain regularity estimates of the
PIDE (3.0.10) that are independent of the constant k, still assuming that op =
r = 0. Analogous to the previous section we will do that by working with the
Green function

GA,& (y7 t, 57 19)

defined in Definition 3.0.6. The main idea is to construct this Green function
from the Green function Gy, (y,t, ¢, v), using the parametrix method. The first
step is to construct the Green function defined below. It is known to exist and
be unique because of Theorem VI.1.10 in Garroni and Menaldi (1992).

Definition 4.1.6. Let L) be the differential operator
Ly=1L -\
and let Gr, « (y,t,&,9) be the Green function associated with L.

We will do this by first looking for a function @), , that solves the integral
equation given in the next lemma. Also, because of the next lemma, the sequence
of functions defined below is well defined.

Definition 4.1.7. Let

Q>\7Vv70 (y7 ta 57 19) = _AGL#@ (y7 t’ §7 19) )

and let the sequence of functions {Q)\,,ivn}zozo be defined recursively for n €
]"2""’ and (y’t,é'???) GDKJ by

i K
Q)\,K,nJrl (yatvé-vﬁ) = / / QA,N,O (y,t,Z,S) Q)\,n,n (275757?9) dst7
¥ JO

and let -
Qrr (1, 6:6,0) = Qxen (1,1,6,9).

n=0

Lemma 4.1.9. Assume that og = r = 0 and let « € (0,1) and Qg’% be the
Green function spaces defined in Definition VIIL.1.1 in Garroni and Menaldi
(1992).

o o
(i) Qaro € g§72 and Qi € g;“ . Moreover Q, . is the unique solution in
a, g

5 2 of the integral equation

Q)\,N (1117 ta Z, 19) = - AGL,N (y7 t? 67 19)

) / / G (st 2,5) Qo (2,5, €,9) dds.
29 0

(i) Qxar (y,1,€,9) is differentiable with respect to all four variables on Di.
Furthermore, there exists a constant C' such that for every (y,t,£,9) € Dy
the following identity and inequalities are all valid for 1 € {0,1}:

Q)\,Ii (y7 t7 57 19) = Q/\,Ii (y7 t— 197 ga 0) )
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2
‘asz <y,t,w>’ < Clt— 8P exp (_100 (v—©) ) |

oy’ 47 t-9
0 K \Js by aﬁ - 1 —¢)?

and

K ) Uy 519 -2 B 2
‘aQ)" (gttf )‘§C(t—19) 2 exp (—ico(i_? )

Proof. For part (i): It follows from Lemma VII.1.3 in Garroni and Menaldi
(1992) and the bounds given in Proposition 4.1.3, Lemma 4.1.3 and Lemma 4.1.5,

that Gr . (y,1,£,7) € QSL% and hence Q.0 € gg’%. Since Qx k0 € g;"% it
follows from Proposition VIIL.1.2 in Garroni and Menaldi (1992) that Qx , is

the unique solution in the function space Q;’%, of the integral equation (4.1.26).

For part (ii): This can be shown using the same calculations and reasoning,
based on induction and uniform convergence, as in the proof of Lemma 4.1.4
and the proof of Lemma V.3.1 in Garroni and Menaldi (1992). O

Lemma 4.1.10. Assume that
OR =T7= 0.

(i) For every (y,t,&,9) € Dy and l € {0,1,2}
t K
/ / GL,R (y,t,z,s) Q)\,fi (Z7Sa§77~9) dzds
9 JO

t—1 K
= / / GL,)@ (y,t*ﬂ,zaS) QA,H (2353570) dzds,
0 0

[ t K
%/ / GL,N (y7t7273) Q)\,/{ <Z737§,’19) dzds
9 JO

t Kk 0l . /
= / / MQXJ; (Z,S’g,’ﬂ) dzds,
9 Jo Oy

t K
%/ Grx (y,t,2,8) Qxr .k (2,8,6,9) dzds
- Q)\m yat € 19)
/ / aGLK y,t = S)Q)\,R (27575’19) dzds.
0

Furthermore, for some constant C
al t K
’8yl/ / GL,H (y7t7273) Q)\,I{ (27835719)(12(18
9 Jo

<C(t— 19)174 exp <—1co(y_§)2> )

47 t-9
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and

t K
ﬁ/ / Gr (yrt,2,8) Qrn (2, 5, €,9) d=ds
at ,'9 O ’ ’

<C(t- 19)7% exp (—100 v = QQ) .

4 t—49

(ii) For every (y,t,&,9) € Dy
GL,\,n (y7 t,¢, 19) = GL,N (y’ t,¢, 19)

t K
+/ / GL»H (y,t,z,s) Q}\,H (Z,S,ﬁ,ﬁ)dzds.
9 JO

Proof. For (i): These identities and bounds can be derived from similar calcu-
lations as in the proof of Lemma, 4.1.5.

For (ii): Since G« (y,t,&,7) is the Green function associated with the differ-
ential operator L and Dirichlet boundary conditions, and Q , (y, t, &, ) satisfies
the integral equation (4.1.26), this can be derived from the identities and bounds
given in part (i). It follows from the way the Green function was constructed
that it satisfies the boundary conditions. O

After the next result we will begin the process of constructing the Green
function associated with the entire operator A.

Definition 4.1.8. Let

t K
Vaan(yst) = /0 /0 G (st 6, 0) Ha (€,9) dEd.

Lemma 4.1.11. Assume that o =1 = 0. There exists a constant Cg, depend-
ing on B, such that, for every (y,t) € (0,k) x (0,1] and every I € {0,1,2} the
following inequalities are all valid:

al¢3,a,n(y> t) it —p
' oy ‘Scﬁt T {1+)
and o0 (0.1)
,a, K Y, t -

Proof. This follows from the inequalities given in Lemma 4.1.9, Lemma 4.1.10
and Lemma 4.1.8 by making similar calculations as in the proofs of Lemma 4.1.4
and Lemma 4.1.5.

O

Definition 4.1.9. Let
Yy
QI,R,O (yatagaﬁ) :A/ GLX,K, (yfcvtaffﬂ) dF(C)
0

Let the sequence of functions

{Ql,n,n}zo:o
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be defined inductively by

t K
Q[,I{,’ﬂ (y7t7§719) = / / QLK,O (y7t7278) QI,n,nfl (zvsvfa’ﬁ) dZd87
¥ JO

nel,2 ...,
let -
Ql,n (yat7§7’l9) = Z Ql,n,n (y,t,&ﬁ)a

n=0

let
t K
Gran (. 60)i= [ [ Gy (0:8:509) Qs (25, €.9) s,
9 Jo

and let

t K
GIA,H (y,t,f,'&) ::/ / GL)\7I$ (y,t,Z,S) QLK (27575519) dzds.
9 JO

Lemma 4.1.12. Assume that the tail distribution of the claims satisfies the

inequality (4.0.38) and let Q;’% be the Green function space defined in Definition
VII.1.1 in Garroni and Menaldi (1992).

(i) For every a € (0,1)
QI,H,O (ya tv Ea 19) € g;rf'

(ii) For every(y,t,&,9) € Dy
Q60 =2 [ Gronly- Gt 0)ar(Q

[0,9] (4.1.27)
+>\ [ ]GIA,R(y_C7t7£aﬂ)dF(C)'
0,y

(iii) There exists a sequence {ky},- o such that

kn
lim +

n—oo Kk

=0,

and such that, for every finite n € 0,1,...,, and every (y,t,&,9) € D, the
following inequalities are valid:

‘Qfﬁ,n (y?t7€a19)‘ S kn (t - 19)”_5

n 2
A B G2

X dF (Co)dF(C1), - - - dF (Cn),
(4.1.28)
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Ql,n,n (ya ta €> 19) - QI,H,TL (y/> ta 57 19)‘

< Chyly —y/|(t—0)"""

) (exp 1 (v-e-0m06)

2

—=c
17 t—9 (4.1.29)

L

1 (y/—é—Z?:onf )

x dF((1), .-, dE(Cn),

and
|QI,H,7L (y7 tv §7 19) - Ql,n,n (% tlv 57 19)|
< Cho [t =t ([—9)""1

n 2
1 (y —{— Zj:O Cj) (4.1.30)
X exp _ZCO PO 19

X dF (1), ..., dF(Cn).

Q1w (y:,6,0)| < C(t— )2,
Q1 (0,1, 6,9) — Qri (v, 1,6,9)] <Cly—y|(t—9)",

and

N

|QI,:‘€ (y,t,f,'ﬁ) - QI,K (yat/agvﬂ” S C‘t_t/‘i (t/ _19)

Proof. For part (i): Let a € (0,1). We first observe that it follows from Lemma
VII.1.3 in Garroni and Menaldi (1992) and the bounds given in Lemma 4.1.10
that Gr, » € Gy = Moreover, using similar arguments as in the proof of Theo-
rem 3.0.4, it can be shown that all the requirements of Lemma VII.3.2 hold and
hence a

_AGLMK (y7 ta 67 19) + QI,V»,O (ya t: 57 19) € g;’i .

Since Qr.k.0 (y,t,&, V) is the difference between two functions that are both in

kel

the space G, ' it is trivial to show that Qr.r,0 (Y, t,€,9) is also in Gy'?.

For (ii): It follows from Proposition VIIL.1.2 in Garroni and Menaldi (1992)
and part (i) that, for any o € (0,1), Q1. (y,%,£,9) is a solution in the function

o

2

space Gy of the integral equation

QI,K (ya t7 fa 79) = QI,H,O (ya t7 Ea 19)
t K
+ /ﬁ /O Qroo (4,1 2,8) Qr.n (2. 5,€,0) dsdz.

Since Qg (y,t,£,9) € gg’% it follows from the Fubini Theorem that we are
allowed to change the order of integration, yielding the identity (4.1.27).
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For (iii): We first observe that since, for every ¢t > 4,
lim GL/\,N (ya ta 5’ 19) = 07
yl0

the stated bound (4.1.28) holds for n = 0. A similar induction as in the
proof of Lemma 4.1.4 and Lemma V.3.1 in Garroni and Menaldi (1992) yields
that (4.1.28) holds for any finite n. The most important difference is that this
time we need to also invoke Fubini’s theorem in order to change the order of
integration.

Next, we observe that, if
t—t' >t -9,

then the inequality (4.1.30) follows from the bounds given in part (iii). Assume
instead that

t—t' >t -9
Because of the regularity of Gz, , and Proposition 3.0.3, it is trivial that under
this assumption the inequality (4.1.30) holds for n = 0. Let n € 1,2,...,. It is

obvious that

QLH,TL (y7t7§719) - QI,K,TL (yatlagvﬁ) = Il,n + IQ,ru

where

t’ K
Il,n = / / (QI,R,O (yatazas) 7@[,:@,0 (yat/azas))QLﬁ,n—l (23535719) dzds
9 0
and .o
IQ,n = / / QI,H,O (y»tvzws) Ql,n,n—l (2757£a19) dzds.
t Jo

Let {k,,} be the sequence from the bound (4.1.28). It follows from the regular-
ity of Gy, ., Proposition 3.0.3, the bound (4.1.28), Fubini’s theorem (to allow
the changlng of the order of integration) and Proposition 3.0.2, that, for some
constants K and C, not depending on n,

D1a] < Kk (t— 1) / / / @ — 5t (s — o)
e ()

1 (2_5 Z] ocj)z

X e —Zc
*P 470 s—1

N

dzds

x dF (¢)dF (Co) - - - dF (Ca—1)
gcm”mJt—tﬂi@’—ﬂY“%

1 (y*S* Z?:on)z

X exp — 70 g

X dF(Co)y .-, dF((n).
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Similar calculations yield that
Lol < C2 kit — ¥ (¢ — )"
2
1 (y —&- Z?:o Cj)

X exXp —100 —0

x dF(Co), - --,dF (Cn)

and that
QI,n,n (97 t> 67 19) - Ql,m,n (y/7 t7 £7 19)

satisfies an inequality of the form given in part (4.1.29).

For part (iv): Since F' is a probability distribution this follows from the
bounds given in part (iii). O

Lemma 4.1.13. There exists a sequence {ky} -~ such that

lim Fni1 =0,

n—oo n

and such that, for every finite n € 0,1,..., every I € {0,1,2} and every
(y,t,&,9) € Dy the following identities and inequalities are valid:

(i)

l
8G1Mn y,t £,9) / / aGLM y,t z, S)Qnm (2,5,¢,0) d=ds,
9

and

aGIA,n,n (y7 t, 57 19)
ot

= Q[7,{7n (yv t? 57 7‘9)
t K

+// G,k (y’t’Z’S)Ql,n,n (2,5,&,0) dzds.
9 JO

ot
(i)

alGIA,n,n (y, t7 gu 19)
oyt

‘ <k (t—0)" 7

></oom/ooexp _1co(y§Z?=0§j)2
0 0 4

t—19

X dF(C]_), .. ,dF(Cn)a

‘ aGIA,n,n (y7 t» 57 19)

< _y)ne
5t ’kn(t 9)

x/oo-.-/ooexp _100(1152?—0@)2
0 0 4

t—19

x dF(¢1),...,dF((),
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and

1

|G1A7K,’I’L (yv ta 57 19)' S kn (mll’l (ya K — y))E (t - 7‘9)n+Z

2
[ (o et ER)

1 (“_5_2?:043‘)2

+ exp _ZCO Pa—

+ exp _ZCO P

L (s 5r00) )

x dF (1), ..., dF ().

(iii)
alGI K (yat7£afl9) ¢ " alc;L K (yvtﬂ Z? S)
A ayl _ /9 /O A ayl QI,K, (2,5’6719) dzds,
and
aGb\,rc (y,t,{,ﬁ) _
ot = Q[,fi (y7t7§a’l9)
t K
+/ / 0Cry (0,12, S)Qfﬁ(z,s,f,ﬁ) dzds,
19 0 8t ’

Furthermore, there exists a constant C' such that for every (y,t,&,9), and
every l € {0,1,2}

alGlx ,@(y,t,ﬁ,l?) t)
3 < _ 2
o <C-9)'T,

and

Nl=

’aGI)HK/ (y,t,f,b‘)

o ‘gcu—m

(iv) For every € € (0,k) and 0 <9 <t <1
GA,H (ya t7 ga ﬂ) = GLMK (y7 ta 57 19) + Glmfi (y7 ta 57 19) .

Proof. For part (i): These identities follow from similar calculations as in the
proof of Lemma 4.1.5, using the bounds given in Lemma 4.1.12.

For part (ii): It follows from the identities in part (i) that, for every finite n

2 3
0 GI/\,N (y,t,f,ﬁ) — le,ru

2
dy =
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where

eI N (TR
Il,n S /9 /0 L)\’a;:g ) (Q[,n,n (27875319) - QI,KJL (yvs,é-?ﬂ)) dstv

¢ *OGL, . (Y.t 2, s
-[2,77,:/19 (Ql,n,n (yvsvgaﬁ)_QLf{,n (yvt7£719))/ L, (y )dZdSv

0 3yl

and

t K 9l
IS,n = Ql,n,n (ya t7 fa ?9)/ / 8 GLM%(Zl/’ t’ = S) dzds.
9 Jo Y
A calculation using the bounds given in Lemma 4.1.10, Lemma 4.1.12 and
Proposition 3.0.2, and invoking the Fubini’s theorem to change the order of
integration, yields that, for some constant C, not depending on n

2
I, | <Ck, (t—0) 2 oo - 1 (y— 2 j=0 Cj)
‘ 1,n| = n( - ) /0 /0 exp —ZCOW

« / (t— )" F (s —9)" " dsdF (¢1)...dF (Ca)
9

N E G T
SC—Frn =)
t 1 y_zn: C
></19 (t—s) 2exp 41160(75—J1;)J>

x dF ((1)...dF (¢,),
where {k,} -, is a sequence of positive constants, such that

lim Frtt g,

n—oo n

It follows from the above that the stated bound for

aQGIA,n (y7 ta 57 19)
Oy?

is valid for |I,|. Similar calculations yield that bounds of the form given in
the claim are also valid for |15 ,,| and |I3 .|, and thus the stated bound for

82GI)\,/1 (yv ta 57 19)
Oy?

is valid. Other calculations along these lines also yield that the stated bounds

for
alGI)”K (?/7 ta 57 19)
oyt

, 1€{0,1},

and

)

aGIA,I{ (117 ta 57 19)
ot

are also valid.
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For part (iii): This follows from uniform convergence and similar considera-
tions as in the proof of Lemma 4.1.5.

For part iv: Since Gy, . (y,t,§,9) is the Green function associated with the
differential operator Gy, « (y,t,&,?), with Dirichlet boundary conditions, and
because of the properties given in part (iii), the only property that remains to
be shown is that, for every £ € (0,x) and 0 < ¥ <t <1,

?}% GIA# (y7t7§a 19) = ;E}I}{ GIA#% (ya t7£a 19) = O

Since G, « (y,t,&,9) is continuous and vanishes at y = 0 and y = &, a similar
calculation as in the proof Proposition 3.0.4 yields that, for some constant C,
the following bound is valid for every (y,t,&,9) € Dy:

G Ly (1, 6,9)] < Cmin (i, Vi —y) (t—9) 77 .

Because of this inequality and the bound on Qg (y,t,&,9), the Dominated
Convergence Theorem can be applied to yield the inequality stated in part (iv).
O

Theorem 4.1.2. Assume that or = r = 0 and that the bound (4.0.38) on the
tail distribution function F holds. Then there exist constants C' and Cg, where
Cjs depends on 3, such that for everyn € 0,1,..., and every l € {0,1,2}

the following inequalities are all valid:

4.1.31
‘a%,y(y,t) (4.1.31)

-8
<
5t ’_Cgt(l—Fy) ,

=

|3, (y, £)| < Ctimin (y,v —y)? (4.1.32)

ald]&’y (ya t)
oyt
‘ 8¢3,7 (ya t)

’ <Ot T (1 +y),
(4.1.33)

ot

o ,t 1 1 92 2-1 _
‘%‘SC(I? é(31)(p(—4:c0yt)—|—t = O (1+vy) B) and

‘&’Z]’Y(y’t)‘ <C (tlexp <£1160y2) +Cs(1 +y)_ﬁ> :

’ <Cst(1+y)~",

(4.1.34)

ot t
Proof. For every n € 0,1,..., and (y,t) € [0,7] x [0,1] let

t oy
Vo (yst) = /O / Gy (1, €.9) Hy o, (€.9) dEd
0

and let R
o (4,1) = / / Gy oy (5o t,6,0) Hoy (€,0) dEd0.
0 0
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It follows from Lemma 4.1.11 that the inequalities given in equation (4.1.31)
are valid for ¢34 ~(y,t) (defined in Definition 4.1.8). Thus, to establish these
bounds, what remains is to show that they also hold for 3 ; 4 (y,t). Once this is
done, it will follow from the already established regularity properties of ¢ (y, t)
and v - (y,t) that the inequalities given in equation (4.1.34) are all valid. This
can be done in 3 steps.

The first step is to use the bounds given in Lemma 4.1.13 to show that, for
every (y,t) € (0,7) x (0,1], every finite n € 0,1,..., and every [ € {0,1,2}

!
3¢3b’yn 3/, / / aGIA,'yn 2’7 (f,ﬁ)dfdﬁ (4135)
and
o t ’Y
sp7m(y:t) / Gt g, (e, 9) deav. (4.1.36)
ot o Jo ot

The second step is to establish that there exists a sequence {k,} of positive
numbers and a constant Cj, depending on /3, such that

lim kn+1 - 07
n— 00 n
and such that, for every (y,t) € (0,7) x (0,1], every n € 0,1,..., and every
l€{0,1,2}
8l " t — _
[Pistants] g5 140 4137
dy
and P
n 7t n -
‘%M(y)' < Cpt"2 (1+y) 7. (4.1.38)

ot
The last step is to establish that

ale,b,'y(yat) _ i ald}fﬂ,b,w,n(yat)

ayl 2 ayl (4.1.39)
and that
awB,bﬁ(y? t) _ - a’(/)?),b;y;n (y7 t)
o = 2 . (4.1.40)

n=0

It follows from the identity (4.1.36), the regularity bounds obeyed by G, ~.n
stated in Lemma 4.1.13, and Fubini’s theorem, that there exists a sequence
{kn},~, and a constant Cg, depending on f3, such that

kn
lim +

n—oo

=0.

n
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Also

P%ww,‘ . ‘//t_

></0 exp —ico(y €t_21; OCJ) Hoy ., (§,7)

w\

x d¢dOdF (Go) ... dF (Cp)
S Il,n + I2,n + IS,na

where

Ilnzcgkn(uy)ﬁ/ooo.../ooo/ot(t—ﬁ)”%19
X/W 1 (y—f—Z?:on)Z

e e t—1

2

x dedVdF (Co) ... dF (Cp)

1 2
Iz,n =k, exp <—Coy> /
128 7t ) J{cortnz0:00 <4}

t 1
></ (t—9""29
0

x/g 1 (y—f—Z}’:on)Q
0

exp —gCQ —0

x dedddF (Co) ... dF (Cp)

and

Isn = kntn+2/ dF (). ..dF (¢).
{Cor G20 ;> %}

From the above it is clear that the stated bounds holds for I; ,, and I3 ,. More-
over, we observe that it follows from the assumption (4.0.38) on the tail distri-
bution function F' that, for every (o, (1,...,(, >0,

%0 F (Go) F(G1) - F(Gn) SCM[(1+Go) (L4 G) o x (L+G)] 7

-8
<Cm|1+)0¢
j=0

Since lim,, kZII =0, it follows from this inequality that the stated
bound (4.1.38) also holds for I3 ,,. Similar calculations also yield that the bounds
given in equation (4.1.37) and (4.1.32) also hold. Similar reasoning, also based
on uniform convergence, as in the proof of Lemma 4.1.5, yields that the dif-
ferentiation can be done term by term, as indicated in the identities (4.1.39)

and (4.1.40). O
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4.2 Unbounded coefficients
4.2.1 Global estimates for a subproblem with unbounded coefficients

In this section we will study the equation (3.0.9)) when o > 0. We will
assume that og is positive, and not look into the case o = 0,7 > 0. In much
the same way as we did in Section 4.1.1 and Section 4.1.2, we will do this by
obtaining bounds for some Green functions, denoted G P and G A with the
above assumption. Because the coefficients of L are not bounded on (0, o) it is
very hard to prove directly the existence of the fundamental solution associated
with L. This is only one of the number of problems that arise when op is
positive. Instead of working with the original Green function we will work with
something we call an auxiliary Green function.

The basic idea is to consider the function
Gog (2,8) 1= (€ — 1,1),  (x,t) €[0,In (5 + 1)].
From the definition above it is obvious that
Yo (U,t) = Pos (z,t)  (y,t) €[0,4].
and the chain rule yields the result below.

Definition 4.2.1. Let

a1 (x) := % (012,6_2’” + o2 (1 — e_‘)z) , x>0,
let

ay (x) :== (pe_”” +r (1 —e” )) —a11(x), >0,
and let

. 0* 0
L:= <a171 (x) 922 + a4 (x) 833) , x>0.

Lemma 4.2.1. Let the function H; . be as in Section 3. 1&2;{ (z,t) is the unique
solution of the PDE

¥2,5(2,0) =0, z€(0,In(1+k)),
U2,4(0,1) =0, telo,1],
Yo (In(1+ k), 1) =0, tel0,1],
2s @) _ [y o (w,t) = Hiy (€" —1,8), (2,t) € (0,In(1+ k) x (0,1].
(4.2.1)
Proof. Let ( |
r=In(1+y).

From the definition and the chain rule it follows that

o i (z,1) o 0o s (y,t)

or dy

)
y=e®—1
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and that

P (2,8) _ o (awz,n (v:1) L s (u.1)

Oy

Ox? Oy

y=e*—1

y=ez—1>

The claim follows from the identities above, the maximum theorem (similar
to the uniqueness of the PDE (3.0.9)) and 2, (y,t) being a solution of the
PDE (3.0.9). 0

Crucially the coefficients of the differential operator L are bounded on (0,00).
As we shall see this property enables us to obtain regularity estimates for
oz (2, 1) similar to those we obtained for the PDE (3.0.9), where we assumed
constant coefficients.

Starting with the representation formula below, much of what will follow will
resemble the discussion in sections 4.1.1.

Definition 4.2.2. Let
R:=In(1+k),
and let
Dy ={z,t,,0:2,£ € (0,k),0< I <t <},
0Dy = {x,t,&,9 : 2,£ € {0,k},0 <9 <t <1},

D,z = D; UD;.

Theorem 4.2.1. There exists a unique Green function éL s (@, 1,6,0) associ-

ated with the differential operator L and Dirichlet boundary conditions on the
domain Dy, i.e. satisfying the conditions in Definition 3.0.1 with L replaced by
L and k replaced by k. Furthermore, for every (y,t) € (0,%) x (0, 1]

t R
duslat) = [ [ Gy 0n0.60) Houlef = 1, 0)dcd0

Proof. This can be shown using arguments similar to those that lead to the
result in Theorem 3.0.3. O

In the next section we will discuss the regularity of a function we will refer to
as the auwxiliary fundamental solution. Similar to what we did in Section 4.1.1
and Section 4.1.2, we will use this function to construct the Green function
G LA After that a similar calculation as in Section 4.1.2 will yield estimates

of the derivatives of 1/32,,%(x,t), which in turn can be used to obtain estimates
of the derivatives of ¥y .(x,t). We will construct the Green function & L.i DY
first constructing a fundamental solution and a Green function associated with,
not the differential operator I:, but a ”smaller” equation, that only includes
the second order term. We then use the Green function associated with the
second order term as building material for G LA similar to our construction of
the Green function for the whole operator A from a simpler equation (assuming
constant coefficients) in section 4.1.2. For technical reasons (we want to invoke
Theorem V.1.3.5 and Theorem V.5.5) we will define a fundamental solution
associated with an extension of the second order term a1 1 (x) 88722 to the whole
line, that preserves the differentiability, uniform ellipticity and boundedness of
the coefficients.
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Definition 4.2.3. Let

7t | (2) a11(x) x>0,
ayq (z) = ;
b1 302+ [(1—e") o} + sopa?e™] + 5 (0%, 4 203) 2%e”, x <0,

let
0 (z) = {&1 () =>0,
a1 (0) x<0,
let o
io = @*{,1 () oz
and let .
By (a,4,6,0)

be the fundamental solution associated with the differential operator Lo.

It can be calculated that the extended second order coefficient aj ; and the
first order coefficient a; (restricted to 2 > 0) are smooth, uniformly elliptic and
bounded. We state these properties in the next result without giving a proof.

Proposition 4.2.1. The extended second order coefficient aj y and the re-
stricted ay (z) are bounded and two times continuously differentiable, on the
real line and for positive x, respectively. Furthermore, for every x > 0

2.2
0,0R

1
<apq(z) < 5 max (0123, 0’%)

lay ()] < C
a1’ (z)] < C
a," (z)] < C
a1, " (z)| < C
la, " (z)] < C.

Definition 4.2.4. For (z,t,£,9) € D let

: 1 (x —&)”
0. (2,t,6,9) = exp |- S ) (429

and let

1
Co 1= 5 max (J?J, 0%) .
Basic calculations yield that the function defined above has certain properties
that we state in the next two results without giving a proof. Because of these
basic properties it follows that r i, Isa fundamental solution associated with
the extended second order term, as stated in Lemma 4.2.2 below. The main idea
that be inferred from these results is that the principal term can be split into
two terms, where the first term behaves very much like the principal term in the
case of constant coeflicients, while the second term has a weaker singularity than
the first. We will use these properties primarily when, as part of the effort to
construct the auxiliary Green function, we want do integration by parts similar
to what we relied on in the proof of Lemma 4.1.3.
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Proposition 4.2.2. For every (z,t,£,9) € D

U; (.6,69) =T} (x,t—10,£,0),
ol (x,t,6,0) x—£

o @0 LY
Oy, (@.t,60) Ty (2t.6,9) —1+($_5)2]
9z? 2a1, (&) (t =) 2a7, ()t —9)|’
or; (z,t,609) | 0%} (x,t,€,0)
T:am )T’
ol (x,t,6,0) ol (x,t,€,0)
0& ox
S at, " (€ 1 1 r—&)>2
+1p, (2,t,6,9) 7&1{1 é)) [_2+4&T,1 (5)(25_? ]
0°T';, (x,t,6,0) 1 [ar, ' (©ar;, (z,6,60) 92T (x,1,6,9)
0206 i, () [ama N BT ]

Proposition 4.2.3. There exists a positive constant C' such that,
for every (z,t,£,9) € D x R, the following inequalities hold:

[Ps, (@60 <Ot =) Fexp (é(’ (é—?>2> |
W <C(t—9) %exp (—@o(é:?;)’

‘/oo fﬁo (xat7£aﬁ)d($§)1‘ SCVt*ﬁa

— 00

oz (x,t,€,9) N oz (x,t,€,9)

<Ot )}
D¢ oz = C(t=)

1, (z-¢)°
X exp <—260 (t—’l9) > s

<Clo—¢/(t—0)"2

1. (z-¢)°
X exp (200 (t—ﬁ) ) ,

0T, (x,t,6,9) 0Ty (2,1,€,0)
0z06 022
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and

a3fﬁ0 (x7ta§719) 1 {afﬁo (1’715,5719) &T(Q?) 8fﬁ0 ($7ta§719) }‘

dEDx? () aEDN a4 (z) a0

<C(t-9) % <1 + |;E_§|> exp <_;éo((t_f9))> :

Lemma 4.2.2. f‘ﬁ is the unique (principal) Fundamental solution associated
AO

with the equation Lg.

Proof. This can be calculated using the identities and inequalities given in
Proposition 4.2.2 and Proposition 4.2.3. [

Analogous to the construction of the Green function Gy ; in Section 4.1.1
(where we assumed constant coefficients), we can construct the Green function
associated with just the second order term by solving the PDE given in the next
result below.

Lemma 4.2.3. Let gzo k(:z:, t,€) be the unique classical solution of the equation

QEO’;{(O,O,Q :07 xr € [O’/%]’
75, 4(0,1,6) P (0,4,6,0), te(0,1],

97 [ 4.2.3
gp . (56,600 =Tp (kt,60), t€(0,1], (4.2.3)
095 . (z,t,8) R o5 )
Lo'ait =ay1(x) aié” (z,t,6), (z,t) € (0,&) x (0,1].
Let

gﬁoyg(xvtvaﬁ) = gzoﬁ(xvt - 19)5)7 ((E,t,’l?,g) € bﬁo’g'

Assume in addition that for any smooth function f (&,9) with compact support,
any (z,t) € (0,x) x (0,1], and I € {1,2}

ol t f%A t Kalﬁﬁo,;{(%t,f,ﬁ)
/0 /O G (0, 1,6,0) £ (6,0) de = /0 /0 S (6 0) d,

dal

0 t R t ’%aA” i ,t,f,ﬂ
o [swrensoie= [ [ P00 pe
(4.2.4)

and that for any smooth function ¢(y) with compact support
Jim [y, g 0) o(€)ds =0, (4.2.5)
Then R A
Gion@t,609) =13 (2,4,£,9) = g5, 4 (#,£,€9)

is the unique Green function associated with the differential operator Lo and
Dirichlet boundary conditions.

Proof. Because of the symmetry property between the variables ¢ and 1 this
follows from reasoning similar to the proof of Lemma 4.1.1. O
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It follows from the lemma following after the definitions below that the
sequences and series in the definitions below are actually well defined.

Definition 4.2.5. For
g€ C([0,1],R)

let
R ¢ ol (z,t,m,9
%Qmez/%uu@L“") g(9)dd, y>0,te(0,1]
’ 0 o n=%
and
. t or: (x,t,n, 0
%”quzjkuumL“") g(@)dv, y>0,te(0,1],
0 on n=0
and for
g= (91,9 ) €C (0,1,
let

(1 (2
Pys (w,t) = PG, (a,t) = PC) (1), t€0,1].

Definition 4.2.6. Let
Vi, (1) == —20; (3,4,6,0), (t.€) €[0,1] x (0,4),
(2 s ~
VAo (8) == =20 (0,4,€,0), (£,€) €[0,1] x (0,3), and
Veos (1) = (VA0 0, VE, 1)
Forne€0,1,2,..., define
O (1 (2
Vf,n,’y = (V;;:(n)’fy (tv 6) ’ va(m,),—} (tv g))
recursively by
(1 ~
Vil 0 =2Pg (1), telo1],
s R
VL0 =2Pg L (0,t). te[0,1], ne0,..., teo1],

Vemirs @) = (VD @), 7P (t)), neol,..., telo1].

’ &n+1,9 55n+17:y

Let .

(1 (1

O ) =3V ), tel0,1],ne0,1,...,

k=0
U2 (1) =Y V3, neon
&n.g ' &k TR
k=0

let A 0 o

Uens (1) = (0, 0. 08 ), neo,...,
let

P (t) := lim S

€4 Jim Ug o 5(8), t€0,1],

63



U2 () := lim U2 (1), tel0,1],

’AY n—oo
and let
Ues (1) = (Ug}g (t), U2 (t)) .
Lemma 4.2.4. (i) For everyn €0,1,..., f/f(;)ﬁ (t) and ‘75(,273,& (t) are contin-
uous on [0,1] and differentiable on (0, 1], and the same holds for Uf(,lnz and
05(2,3 Furthermore, there exists a sequence of positive constants {kn}zozo

such that Y " kn, < 00, and a constant C, such that for every t € (0,1]
and | € {0,1,2} the identities and inequalities stated below are all valid:

_%Ug(,lﬁ,w (1) + Po,,, () =T (1,660 + Py, (3:1),

508 0+ Po, (0.0 =Ty, 0,660 + By, 0.1),
5117%:7 O] 5t (iéoﬁtm),
31‘7522% O] < k™ exp (‘ié‘)g:)’
alﬁgj () <Ot lexp (—Co (@—t§)2> |
81[]5%3 ] - (_1CO ﬁ—tf)2>7
8lU§(3 @) knt™2 ' exp <11160£tz>

(iii) There exists a constant C' such that for every (z,t,&,9) € D5

Oesd (x,t)‘ <C(t-9)? (exp (-;éo Chnke) ttiﬁ(f -9 )

1, 2?4362
+ exp (—QCot%)).

(iv) Pg. . (x,t) is the classical solution of the PDE (4.2.3).

Proof. Because of the symmetry property between the variables ¢t and ¥ and
the bounds given in Proposition 4.2.2 and Proposition 4.2.3, the lemma follows
from Theorem V.5.5 in Garroni and Menaldi (1992) and similar calculations as
in the proof of Lemma 4.1.2. O
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Definition 4.2.7. For everyn € 0,1,..., and (§,t) € (0,7) x (0,1] let

P (e, t) =V (1),

let ) @
(&) == Voo 5 (1),
let R
Mgty =0,
and let R R
Det)y:=02 ().

Proposition 4.2.4. (i) For everyn €0,1,2,.. V(1 5 (&,t) and V(1 5 (&:0)
are differentiable with respect to & on (,t) € (0 ) (0,1]. Furthermore
there ezists a constant C', and a sequence of positive constants {kn}fzo
such that,

and such that, for every (¢,t) € (0,7) x (0,1], and I € {0,1} the following
inequalities are all valid:
. 2
) exp (—éo (-9 ) 7
4
§0%

(1)
8‘/507(5715) <Ct_,
) exp (_0062) )
23

; (
oY) (€,1) . 1 (5-¢)°
N T B knt? =040 exp _Zéo

vy Gl
ocot! t

and
81+l‘/£ (5 t)

<kt~ exp —lé i
658151 = 1% )

t

(
;Y
,7) X (0,T). Moreover, there exists a constant C' such that, for every

(0
(&t) € (0,7) x (0,1],

(1) ~ . 2
00" &1 _ oy <1+ Iv—€|>exp (_160(7—5) )

(ii) U D (&,t) and Uf) (&,t) are differentiable with respect to £ on (§,t) €

o€ t 4 t

ou® ,t L 2
“/85(6) S Ct™2 (1 + i) exp (—iéoi) s
UM (&) ) 1 (3-¢?
g{@t s O "exp (4 ¢ >

P20 (&,1)
dEDt

and

47t

2
<Ot 2 exp (—16()5) .
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Proof. For part (i): It follows from Proposition 4.2.2 that a bound of this form
holds for n = 0. The claim can be established by exploiting the symmetry
property between ¢t and 9, and doing a similar induction as in Lemma 4.1.2.
The main problem is the singularity at ¢ = 1, but this is only a problem for the
first few terms in the sequence.

For part (ii): This can be established from part (i) and the uniform conver-

gence of the derivatives of 0,5n) (&,t) as n — oo. O

Lemma 4.2.5. There exists a constant C such that, for every (z,t,9,€) € Ds,
and every 1 € {0,1,2} the following inequalities are all valid:

(i)

algﬁo)»‘y (.’E, tv 5; 19)

62§£0,fy (1‘7 ta €7 19)
Oxot

4y, - (2.4,€,0)
0&0x

(ii) For every (x,t,&,9) € D5
GAﬁO,’? ($7t75719) = fio (xatvgaﬂ) - gio)&(x,t,f,ﬂ)

is the Green function associated with the differential operator Lo and
Dirichlet boundary conditions.
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(iii)

8yl 17—

8GLo@é§’t &9 C(t—9)"" exp <—i@0 (i_ff) ’
3GLM; LEY)) C (t—9)" 2 exp (—iéo(iifgf) )
ool )

and

82Gi - (2,1,€,9) 3 1 (m—f)Q
0,7 _ 2 _ A
; <C(t—19) 2exp Co .

Proof. For (i): It follows from the inequalities in Proposition 4.2.3 that the
derivatives of F _(x,t,§,9) can be written as the sum of terms which be-
have like the fundamental solution with constant coefficients discussed in Sec-
tion 4.1.1. Thus we can calculate bounds for the derivatives using integration
by parts as in the proof of Lemma 4.1.3. Some extra terms have a weaker
singularity. A calculation along these lines yields the stated inequalities.

For part (ii): Because of Lemma 4.2.2 this follows from similar calculations
as in the proof of part (iii) of Lemma 4.1.3.

For part (iii): Since, for any z,¢ € [0,4],
(e =& <min (22 + €% (@ =9’ + (- 9)°).

this follows from the bounds given in part (i) and the regularity bounds of the

function I'; . O
0
Proposition 4.2.5. There exists a constant C such that, for every (x,t) €
(0,9) x (0,1]:
7 0%§ x,t,&,9 1 _4)?
gLo’y &5 )d&w §C<eXp (260(9: tv) )
n 1. z2
p [ —Zn
exp ( 5
and

by agﬁoyfy (mvtvé-?ﬂ)
/0 /0 — dédi| <

67



Proof. Let A

. 2l

B = [ Ui e (0.1)
and let

. bl
B (s) = /O UD€ s)de, s e (0,1]

A similar calculation as in the proof of Lemma 4.1.7 yields that

/t/’y 891207&(3:’7&75’19)6[&(119211—12
0 0

ot
where
¢ t=9 9T (x,t—1,1,s)
I :/ B(l)(s)/ apq (§) —2— o ddds,
1 ; ; 1,1 oton s
and
I /tB(Q)( >/MA (0) NGl VLI Y
= S a S.
2 ; ; 1,1 ton o

Calculating the integrals above, using the bounds given in Proposition 4.2.3,
yields that the stated inequalities are valid. O

Analogous to what we did in Section 4.1.1, we will construct the Green
function G; 40 associated with the entire differential operator L and Dirichlet
boundary condition, by solving an integral equation.

Definition 4.2.8. Let

0G}, 5 (x,1,€,9)

Ox ’

Q40 (z,1,6,9) := al (x) (2,t,€,9) € Ds.

Let the sequence of functions {Qvn} be defined recursively for
n=
n € 1,2,..., and (z,t,£,9) € D, by

. tory .
Q'Ay,n-i-l (zytagyﬂ) :A [) Q’?,O (.I,t,Z,S) Q’AY,TL (27575519) dZdSa

and let

Q’y ($>ta§719) = Z Q’%n (!L‘,t,&ﬁ) .

n=0

Lemma 4.2.6. Assume that og > 0. Let o € (0,1) and let g,(j’% be the Green
function spaces defined in Definition VII.1.1 in Garroni and Menaldi (1992).

(1) Q:y € gf’%. Moreover, Q:y is the unique solution in Q?’% of the integral
equation

. . Loy, .
Q’AY (‘rat?g’ﬁ) :Q’%O ($7ta€7ﬁ)+[9 /(; Q’AY,O ((E7t,Z7S) Qﬁ/ (Zasaé-?,l?) dzds.
(4.2.7)
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(ii) There exists a constant C such that, for every (x,t,£,9) € Ds, every
', € (0,%),and every t' € (0,t,) the following identities and inequalities
are all valid:

Qs (2,t,6,9) = Q5 (z,t — 9,£,0),

2
R e =]

NI

@5 (@,4,6,9) = Q5 (¢, 4,6, 9)| < Clo —a/|* (¢ = 0)

and

_5
1

Q’? (ZL‘,t,g,’ﬂ) - Q’AY ($,t/,§,19)’ < C|t - t/|% (t/ - 19)
2
X exp (—iéo(i:?> .

(iii)
Qs (x,t,€, )

o€ 17—y

<C(t- 19)7% exp <_160(:1c—§)2> .

Proof. For part (i): It follows from Lemma VII.1.3 in Garroni and Menaldi
(1992), and the bounds given in Lemma 4.2.5; that W € Q?’%, and

hence Q%O € Q;’%. Since Qmo € Qla’% it follows from Proposition VIII.1.2
in Garroni and Menaldi (1992) that (:2;, is the unique solution in the function

space gj"% of the integral equation (4.2.7).

For part (ii): It follows from similar calculations as in the proofs of
Lemma 4.1.12, that these regularity bounds hold for the function
Z;-L:O QA:M- (z,t,€,9), for any n. Furthermore, it can be shown that these sums
converge uniformly.

For part (iii): We first observe that this bound holds for %w. A
similar calculation as in the proof of Lemma 4.1.4 part (v) yields that, for some

constant C
0Qx1 (w,1,&,0) ~1 1 (z—¢)°
. <C(t-9 ——fp—— | .
Ot SO(=0) “exp | —gé—
For n € 2,3,... it can be shown by induction that the functions %ﬁ’t’w

are less singular, and that the sum 7", w converges uniformly on

D4, thus allowing the sum to be differentiated term by term. O

Lemma 4.2.7. There exists a constant C' such that following identities and
bounds are valid for every (x,t,€,9) € Dy and every | € {0,1,2}:
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G’Loﬁ (z,t,2,8) Qs (2, 5,€0) dzds

—

/19
t—10 R R
= / GLO;AY (I,tfﬁ,Z,S) Q’? (2757530) dZdSa
0

. J]

C)

(z,t,2,8) Q5 (2,5,€,9) dzds

1 'G; t, .
/ b3 8020 (o) o,

\

// xtzs)Q.y(zsfﬁ)dzds
5 (z,t,&,0)

Gl (x,t,2,8) 4
/ / bl 201 (2156, 0) dds,
al t
@/,9 ) GLO,»Y (z,t, 2, S)Qw (2,8,&,9)dzds

2
<O —i) F e (—}1 o )

o [t . A
5 | [ s etz @ o) deas

o [t 7. )

‘85/19 /o Giyq (0,1, 2,5) Q5 (2, 5,8, 0) dads
2

Sc(t—ﬁ)_%exp <_leéo(m_f9) >’

t

‘/ // Lo’ythS)Q»}(Z,S,é,ﬁ)dzdsd(x5)’
< CVt.

// oy (@ ,2,8) Q4 (2,5,€,0) dzds.

Proof. For (i): These identities and bounds can be derived from similar calcu-

lations as in Lemma 4.1.5.

For part (ii): Since G 1,04 18 the Green function associated with the differential

operator Lo and Dirichlet boundary conditions, and Q’y is a solution of the

integral equation (4.2.7), this follows from the bounds given in part (i).
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After the next result we will finally be ready to obtain regularity bounds on
o (y,t) (using the original variable y).

Proposition 4.2.6. Assume that or > 0, and that the tail distribution F
satisfies the bound (4.0.38). Let the function Hy, be as in section 3. Then
there exists a constant Cg, depending on 3, such that, for every x’ > x > 0 and
every 1 >t > t' > 0, the following inequalities are valid:

(i)
|Hy . (e —1,1)| < Cge™P?,

and for every a € (0,1]

Hy, (" —1,8) — Hy (e’”/ - l,t’) <Oy (t—t) () e Pa,

(ii) For every a € (0,min (1, 3))

|Hi (¥ —1,t) — Hy . (" — 1,t)| < Cg |z — x'|at*% exp(— (8 —a)).

Proof. For part (i): These inequalities follow trivially from the bounds given in
Proposition 3.0.6.

For part (ii): Assume first that

—x>

DN | =

For this case the stated inequality is trivially true because of the bound on the
function H; . itself given in Proposition 3.0.6. Assume instead that

/
r—xr < —=.
2

We observe that in this case
z’ P S
e’ —e" < 3¢ (2" —x).

Because of this bound and the bounds in Proposition 3.0.6 it can be calculated
that the stated bound holds even for this case. O

Lemma 4.2.8. There exists a constant Cg, depending on 3, such that, for every
(x,t) € (0,&) x (0,1] and every y € (0,k) the following inequalities are valid:

(i)
/Ot
/Ot

t o929 (x,t,8,9)
#,0,R H ¢ B 1
/o /0 912 1 (€8 = 1,9) dédv

kO (x,t,60
/ i ( )Hl,n (ef —1,) de
0

1
< -
922 d¥ < Cgexp ( Qﬁx) ,

kROD: (6,60
/ M.y 069) )HLH (ef —1,0) de
0

ot

1
d¥ < Cgexp (—25$> ,

1
< Cgexp (—2630) ,
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5 0G;. 4 (@,69)

Hy o (e —1,9) dédv

< Cgexp (—;5:;:) .
(ii) For everyl € {1,2}, the following identities are all valid:

z 9'G; . (01,69
ALTAC) // “ = ) (€ = 1,9) dedo.

9t
0P s(w,t) .
8t = Hl,,{ (6 ].,t)
t RaéﬁA<xat7€’ﬁ)
B IL AN = £€_1q .
+/O /O . L (€€ = 1,09) dedv

(iii) For every l € {0,1}, every (z/,t') € (z, k) X (0,t) and every o € (0, 1] the
following bounds are all valid:

0o i () 2-1

ol < Cpt™2 exp(—pz),
0o 5 () 2-1 1
= T < 2 —

‘ 92 < Cpt™ 2 exp ( Zﬁx) ,

o () 1
‘(‘% SCBeXp 7§ﬂ$ 9

oi(@,t) — o s (@) t)’ < Oy (2! — )" 77 exp (—fz) ,

[ i t) = ol t)| < O (£ =) 117 exp (=)

and

i

j ,A(af,t)‘ < (g (min(:c,/%—x))%t .

(iv) There ezists a constant Cg such that for every (y,t) € (0,x) x (0,T] and
every l € {0,1}

o e (y,t) 21 —(148)
oL P 1
01 s (y,t) -18

dy? <Csg(l+y) )
el < o1y

Proof. For parts (i)-(ii): We first observe that for any a,b > 0 there exists a
constant C depending on a and b such that for any z,£ >0and 0 < <t <1

exp (—a(i_? ) exp (—bf) < Cexp (—;a(m —9) ) exp (—bz). (4.2.8)

t—19

The identities and bounds given in part (i) and part (ii) follow from the bound
above and similar calculations as in the proof of Lemma 4.1.6 and Lemma 4.1.5.
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For part (iii): This follows from the bound (4.2.8), the bounds given in part (i),
and the identities and bounds given in Proposition 4.2.2, Proposition 4.2.3,
Lemma 4.2.5, Lemma 4.2.7 and Proposition 4.2.5.

For part (iv): Since

w2,f€ (y7 t) = 7&2,.‘% (h’l (1 + y) 7t) ’
this follows from the bounds given in part (ii) and the chain rule. O

Lemma 4.2.9. Assume that o > 0 and that the tail distribution satisfies
the bound (4.0.38). Let the function Hs, be as in section 3. Then, for some
constant Cg, depending on 3, the bounds stated below all hold for every 0 < z <
&' <&, every 0 <t' <t <1 and every o € (0, 3 min (8, 1)]:

[H, (" = 1,1)] < Cptexp (=fz),

|Hy . (e — 1,t) — Ha . (6" — 1,1)| < Cp (t — ') ' “exp (—Bz),
and
2—a

Hy, (e —1,t) — Ha <€m, - 1,t)‘ <Cg(a' —2)"t 2 exp(—(B—a)x).

Proof. Tt follows from similar calculations as in Proposition 4.2.6 that the stated
inequalities are valid for v . (y,t). Similar calculations as in Lemma 4.1.8 yield
that the bound inequalities are valid for Hs . (e — 1,1). O

4.2.2 Regularity estimates for for a subproblem with an integral
term and unbounded coefficients

In this section we will consider the function
s (z,t) =15, (e —1,8), (x,t) €[0,In(k+1)], (,t)€][0,i] x[0,1],

where as before & = In (1 + k). Since 3, (e* — 1,t) is a classical solution of

the PIDE 3.0.10 it follows from the chain rule that the function s 4 (z, 1) is a
solution of a different PIDE defined in the result below.

Definition 4.2.9. Let the operator A be defined for any function
g(z,t) € CH1((0,/) x (0,1]) as

Ag<x,t>=ﬁg<w,t>—xg<x,t>+x/j g (n (e —Q),0)dF ().

Lemma 4.2.10. Let the function Hy ,, be as in section 3. 1[)3,;{ (z,t) is a classical
solution of the PIDE

U3.a(z,0) =0, wze(0,k),
Ps3.x(0,t) =0, telo,
U (Rt) =0, telo,
a11’%;(5”) ,/11[,3,% (2,t)
=Hy,(e®* = 1,t), (z,t) € (0,In(1+k)) x (0,1].

1]
1], (4.2.9)
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Proof. This is similar to Lemma 4.2.1. O

Theorem 4.2.2. 93 z(z,t) is a unique classical solution of the PIDE (4.2.9)).
Furthermore, there exists a unique Green function GA%(x,t,ﬁ,ﬂ) associated
with the differential operator L and Dirichlet boundary conditions on the domain

Dy, i.e. satisfying the conditions in Definition 3.0.1 with L replaced by L and
k replaced by k. Furthermore, for every (x,t) € (0,%) x (0,1]

t R
dnaant) = [ [ G o600 Haef = 1.0)deat

Proof. This can be shown using similar arguments as those that lead to the
result in Theorem 3.0.3. The most important difference is that in this case we
define the function j (z,t,() as

(2,1, C) = —z+In(e®-(), (z,t) €0,%] x][0,1] x [0,e* —1]
JARS) = —z+4e”, (x,t,() €[0,k] x [0,1] x (e —1,00).

It can be shown that j (z,t,() is continuously differentiable with respect to x
on [0, %], and that, for z € [0, &],

9j (x,1,¢)

<
0< ox

< 00,

thus satisfying the requirement (VIII.1.23) in Garroni and Menaldi (1992). O

Analogous to what we did in Section 4.1.2 we will construct the Green func-
tion G 4 . (x,t,&,9) in two steps. The first step is to use the Green function and
Proposition VIIL1.2 to construct a Green function G i,.s associated with the
differential operator R

L=
and the second step is to do the same once again to construct the full Green
function from GﬁA s, as was the case in Section 4.1.2.

Definition 4.2.10. Let . A
Qxi0 = —AGj 4,

oo

and let the sequence of function {QAAFM}
1,2,..., and (z,t,£,9) € Dy, by

. be defined inductively for n €

n=

t prR
Q)\,f%,n (zyta§719) = / / Qk,fi,o (ZE,t,Z,S) Qk,fi,n (Z757€719) dZdSv
9 JO

and let -
Qk,f@ (Ia ta 57 19) = Z Q)\,f%,n (‘T7 tv 67 19) .

n=0

Lemma 4.2.11. Assume that ogp > 0. Let o € (0,1) and let g,‘j’% be the Green
function spaces defined in Definition VII.1.1 in Garroni and Menaldi (1992).
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o

(i) QA,,%O € g§’2 and QA,F: € Q;’E. Moreover QA,F: is the unique solution in
gg’? of the integral equation

Qi (@,8,2,0) = = MG ; (2, 1,£,9)

t i
— )\/ / G‘LK (z,t,2,5) QA,R (z,8,&,9) dzds.
9 Jo ’
(4.2.10)
(i) QA,;Q (z,t,&,9) is differentiable with respect to all four variables. Further-

more, there exists a constant C, such that, for every (z,t,&,9) € Dy, the
following identities and inequalities are all valid:

QAX,/% (I7ta§719) = QA,/% (1‘,t - ’ﬂyfa O) )

A 2
‘8682;’” (06,6,9)| < Ot~ 9) " exp (—}1 z-d) ) ,
o TN 2
’agg“ (,6,6,9)| < C(t—9) " exp (-iéo (“Z _? ) ,
and
A 2
‘8%;’“ (@6,69) <€t - 9)F e (i w8 ) .

Proof. For part (i): It follows from Lemma VII.1.3 in Garroni and Menaldi
(1992), and the bounds given in Lemma 4.2.5 and Lemma 4.2.7, that G,  (x,t,&,9) €

Q;’% and hence Q,\ﬁ@ S Q;E Since Q,\ﬁ@ S Q;E it follows from Proposition
VIII.1.2 in Garroni and Menaldi (1992) that Q)\’,g is the unique solution in the
function space Gy 2 of the integral equation (4.2.10).

For part (ii): This can be shown using the same calculations and reasoning
as in the proof of Lemma 4.1.4, based on induction, the symmetry property
between the ¢t and ¢ variable, and uniform convergence. O

Lemma 4.2.12. Assume that og > 0.

(i) For every (x,t,&,9) € D, and l € {0,1,2}
t R R .
/ / G (.t 2,5) Qi (2,5,€,0) dzds
9 JO ’

t—9 pR
:/ / Gf,;%(xatfﬁvzﬂs) Q)\,R (Z,S,E,O)dZdS,
0 0 '

I st R
a—l/ / G‘ik(:ﬂ,t,z,s)QM@ (2,8,&,9) dzds
al’ 9 Jo ’

! g aléﬁ,fe (xatv Z, 3) ~
:/19 /0 T Qas (2,8,6,9) dads,
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t R
g// éﬁ‘(x7th7S)QA%(Z,S,f,ﬂ)dzds
(9t 9 lad ’
*an x, t 5 '19)
8GLK z,t,2,8) .
/ / ———— 0\ (2,5,§,7) dzds.

Furthermore, for some constant C

p) l/ / P (2,t,2,8) Qa i (2,5, 0) dzds
xr

2
<C(t-)7 exp <—iéo(“;_f9) ) :

and

t rR
g/ / éﬁA(SL',t,Z,S)QAR(Z7S,£,’l9)d2:d8
ot 9 Jo o ’

2
<C(t— 19)7% exp <_11160 (Z:? ) .

(ii) For some constant C

IN
Q
—~
g
=]
—
&
>
|
&
~

[N

(,t,2,8) Qr.z (2,8,&0) dzds| <

(iii)
GIA/)”;% (l‘,t,f,’&) = Ai,%(x t, &, 19)

// xtzs)QAK(zsfﬂ)dzds

Proof. For (i): These identities and bounds can be derived from similar calcu-
lations as in Lemma 4.1.4 and Lemma 4.1.5.

For part (ii): This can be calculated from the bounds given in Lemma 4.2.7.
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For part (iii): Since G i » is the Green function associated with the differential

operator L it can be derived from the bounds given in part (i) and (i) that

t I
Gﬁg(%ﬁfﬂ”*i/(/ Go (@t 205) Ong (25, €,0) deds
| ] e

is the unique (principal) Green function associated with the differential operator
L—2
and Dirichlet boundary conditions. O

Definition 4.2.11. For (z,t,&,0) € Dy let

e’ —1
Q[,%,O (Z‘,t,f,’ﬁ) = A/0 GA([A,MQ (h’l (em - C) 7ta§719) dF (C) 5

and let the sequence of functions

{QI'”L }ZO:O

be defined inductively by

Qlﬁn(wtfﬁ //leoxt'zs)@]ﬁn 1(256’(9)0[2(18

nel2 ...

Let -
QI,I% (37, ta 57 19) = Z Ql,k,n (l‘, ta Ev 19)
n=0
and

t R
Gl,k (z,t,€,9) = / / GﬁA s (x,t,2,8) QLR (z,8,&,9) dzds. (4.2.11)
9 Jo ’

Proposition 4.2.7. Assume that og > 0 and that the tail distribution F sat-
isfies the inequality (4.0.38). Then there exists a constant Cg, depending on 3,
such that the following inequalities are valid for every (z,t,&,9) € Dy, every

(x',t') € (z,k) x [0,t) and every a € (O,min (%’ g))

‘Q[,f@,o (x7t7€719)’ < Cp(t— 19)7% X <6XP < (;200 (z—&)>+28|z — §|)>

«+exp(_ﬁx)).
(4.2.12)
@mpmuam—QMQ@ﬂgﬂﬂ
<Cy(t—t)T (' —9)"1
« (o (- <% SRE IR 4219
+exp(— B:z:))

7



Also
QI,I%,O (’I,t,f,’ﬂ) - QAI,R,O ($,,t,§,19)’

< Cale =" (- 075 (e (- (o (o0 420101 )

rop (- (gl -9+ 2000~ o]) )
Fo (- (3= a)a))
(4.2.14)
Proof. Tt is obvious that the stated bounds hold if
lz— ¢l < 1.
Furthermore, it follows from the bounds given in Lemma 4.2.5, Lemma 4.2.7 and
Lemma 4.2.12 that there exists a constant C' such that, for every ¢ € [0,e” — 1]
and (y,t,£,9) € Dg,
G (e = 0 1.6,0)] < Ot = 0) Hoxp (~Jeo tm (e = ) - € ).
(4.2.15)
Thus a simple calculation yields that, if

r<e—1 (4.2.16)

then for some (other) constants K and C and a constant Cj, depending on /3,

T 2
éﬁx,% (hl (efﬂ - C) at7§7 19) S K (t — 19)_% exp <_iéo (111 (6 — C) - f) )

t—19
<C(t—9) exp (i @ sf) .

Assume that
z>&+ 1. (4.2.17)

Another simple calculation yields that, if (4.2.17) holds and
C<e® — e%(iﬂ-l-&),

then
(II? - 5)2 )

| =

(In(e® —¢) — €)* >

while for any ¢ such that
(>e" — e%(“‘g),

it follows from the assumed inequalities (4.2.17) and (4.0.38) that
F(C) < Cgeiﬁw.

From the inequalities above it is clear that the inequality (4.2.12) holds. The
inequalities (4.2.13) and (4.2.14) follow from similar calculations as above and
as in the proof of Proposition4.2.6. O
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Lemma 4.2.13. Assume that o > 0 and that the tail distribution F obeys the
bound (4.0.38).

(i) Let a € (0,1) and let G, "% be the Green function spaces defined in Deﬁ

nition VIL 1 1 in Garroni and Menaldi (1992). Then QI .0 € g2 and
Q] i € Q2 2 . Moreover QI & 1S the unique solution in QQ 2 of the integral
equation

e’ —1
Ors (,,€,9) =\ / Gi (e =) 1,60)dF (O)

e’ —1
- )\/0 Gri(n(e® =), t,6,9)dF (C).

(4.2.18)
(ii) There exists a constant Cj, depending on 3 such that, for every
(x,t,&,9) € Di, and every (z',t) € (x, k) x (9,1)
Qui (@ ,69)| < Ca (b —0) " Fexp(—Ble — ). (4:2.19)
Qs (ot 0] < € (0= 0)E x (oxp (2010 - €)
(4.2.20)

+ eXp(—ﬁx)>,

o

Qs (,8,6,0) = Qus (2,8,6,0)] < Co (¢ = 1)F (¢ )
(exp( 28z —£]) (1221
+exp () ).

and
14+

QI,I% ($7ta§719> - Q[ﬂ% (Z‘/,t,g,ﬁ)‘ S Cﬁ |$ - x/|a (t - 19)_7
« (oxp (2810 - €)
+exp (=282 — )

+exp((ﬁa)x)>.

(4.2.22)

(iii) For every (z,t,£,9) € D and every l € {0,1,2} the following identities are

all valid:
I'Gr i (z,1,€,9) DG, (a2 D)
I o : // axl Q1.4 (2,5,&,9) dzds,
and
G (2,,6,9 A
G (,,6,9) _ Qr.i(2,1,6,0)

ot

8OG; . (x,t,2,9)
+// = Q[,%(Z,S,f,ﬁ) dzds.
9 Jo ot ’
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(iv) There exists a constant Cg depending on B such that for every (z,t,£,9) €
D and every l € {0,1} the following inequalities are all valid:

alél,k (Ia t7 ga 19)
Ox!

<Cyt—9)7 (eXp(—% & — €]) + exp <—ﬂx>),

<Cs(t— 19)_% (exp(—ZB |z — &) + exp (—;ﬁx))

(exp (<28 )z — €]) + exp (—;m))

32617,% (a:, t, 5, 19)
Ox?

aé[,k (.’IJ7 t7 57 19)
ot

[NIE

<Cp(t—0)

and

‘éf,g (x,t,g,ﬁ)] < Cpmin (z, & — 2) (t—9)* <exp (—;ﬁ |z — 5)
N
rowp (-306:-9))).

éA,fg (l‘,t,f,ﬁ) = é[:)”,% (Z‘,t,g,’l?) + é[,% (xatvfaﬂ) .

(v)

Proof. For part (i): Because of the bounds obeyed by G 1.« this follows from a
similar argument as in the proof of Lemma 4.1.12.

For part (ii): Because of the bound (4.2.8) and the bounds given in Proposi-
tion 4.2.7, this follows from similar calculations, based on induction and uniform
convergence, as in the proof of Lemma 4.1.12. O

For part (iii) and part (iv): This follows from similar calculations as in the
proofs of Lemma 4.1.5 and Lemma 4.2.12, and using the bounds given in part (ii)
and the bound (4.2.8).

For part (v): Since G’m & s the Green function associated with the differential
operator

L=,
this follows from the bounds and identities given in part (1)-(iv).

Theorem 4.2.3. Assume that or > 0 and that the tail distribution I satisfies
the bound (4.0.38).

(i) For every (z,t) € (0,/) x (0,1] and every l € {1,2}

L t oo OLG (2,60
M:// Ag (@16 )Hz,,:; (eé—l,ﬁ)dfdﬁ
0 Jo

oz! ozl
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and

81/33,:%(587 t)

=Hsy; (e —1
at Q,H(e aﬁ)

t oo 9G ;- (x,t, €0
+// 9G4 (@06 0) )Hg,g(eé—lsﬁ) dedy.
O O at ’

(ii) There exists a constant Cg, depending on 8, such that, for every (x,t) €

(0,k) x (0,1] and every I € {0,1} the following inequalities are all valid

817&3,%(3;7 t)
Ox!

82’(213 g(.’lﬁ, t) 1
— 0 T <K ——
922 Cptexp ( 2ﬁx> ,

F%A%ﬂ

< Cﬂt% exp (—pz),

1
< E—
5 < Cgtexp ( 25m>

and R
[, 1)] < Cptmin (2,5~ ).

(iii) There exists a constant Cg, depending on [3, such that, for every (y,t) €
(0,x) x (0,1] and every l € {0,1}

8lw3,n (ya t)
oyt
‘ 82¢3,I€ (yv t)

‘ < Cpt'T (14y) HD

h? ‘ < Cst (1+y)~ 37+

and
’ 811[)3,5 (ya t)

< Cat(1+y) %7
s < ca+)

(iv) There exists a constant C and a constant Cg, depending on 3, such that,
for every (y,t,) € (0,k) x (0,1] and I € {0,1},

|34 (2,t)] < Catmin (y,k —y),

2

"y (y, t 1 - -
‘w 4 )‘ <Ct 2 exp (_400yt> +Cpt™ T (L4y)" D

oyt
9? (o (y, t)
Oy>?

2

1 (1
‘ <Ot exp (_40031) +Cp (1 +y) (26+2) ;

and

<Ot Vexp [~ L) 4 Co (14430
< p 1607 +Cp(1+y) .

Oy (y,t)
ot

Proof. For part (i)-(ii): This can be calculated from the representation formula
given in Theorem 4.2.2 the bounds on H ,; given in Lemma 4.1.8 and the bounds
on the Green functions given in Lemma 4.2.12 and Lemma 4.2.13.
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For part-(iii)-(iv): These bounds follows from the bounds given in part (ii),
the bounds already obtained for for #; , and s ., the Middle value theorem
and the chain rule. O

5 Existence on an unbounded domain

In this section we will finally prove the existence of a classical solution, except
at the origin, of the equation

w(y70) =0, y>0,

¥(0,t) =1, te][0,1],

hmy_)oow (y,t) =0, f €1[0,1],

QD) — A(y,t) = AF(y), (y,t) € (0,00) x (0,1].

(5.0.23)

Analogous to what we did in Section 3 we will look for a solution (y,t)
of (5.0.23) by considering the three equations

¥1(y,0) =0, y>0,
1(0,1) =1, teo.1],
limy o0 ¥ (y,t) =0, tel0,1],
2erfe) = 103 Pt | p2lud) () ) € (0,00) x (0,1],
(5.0.24)
Ya2(y, 0) =0, y>0,
z/)g(O,t) =0, te [O7 1] , (5.0.25)
limy_>oo va (y,t) =0, te]0,1],
WD Lpy = Hy (y,1), (y,1) € (0,00) x (0,1],
where
Hy (y,t) = %U%yQ 821212;‘2’0 + ryawla(;’t) — My (y,t)
I\ / " (g — 2 1) AP () + AF(y),
and
¥3(y,0) =0, y>0,
Y3(0,1) =0, tel0,1], (5.0.26)
limy 00 ¥3 (y,t) =0, tel0,1],
sVt _ Adpy (y,t) = Ha (y,t), (y,t) € (0,00) x (0,1],
where

Hy (y,t) = —Mba(y, t) + )\/Oy Yo (y — 2,t) dF(2).

As discussed in section (3) we already have a solution for the first equation,
given as

9 [ 2 (y+213)2
t) =+1/— 2 d 2 295 ds. 5.0.27
1(y,t) Vw/y\[e ap\/ﬂ s ze P° ds ( )
opVt

82




Since we also have the representation formula (3.0.15) we immediately get the
regularity result given below.

Lemma 5.0.14. (i) There exists a constant C' such that for every (y,t) €
(0,00) x (0,1], every l € {0,1,2,3} and every m € {0,1,2}, the following
identity and inequalities are all valid:

I (y,t) 1 5 0% (y,t) | O (y,t)
ot 27P T g2 TP g, o

0< wl(yvt) < 17

‘811%125;;;,7,‘) < Ct‘éexp (—; oy:> )
mallp{;;ly’t) < C’t_lme exp <—lecoy:> )
‘W < Ct texp <—icoyt2) ‘

(ii) There exists a constant C' such that for every (y,t) € (0,x) x (0,1] and
every 1 € {0,1,2,3} the following inequalities are all valid:

1 ! 2
00000 gy (1)

oy oyt t

8w1 (y7 t) 6%1 f@(% t) 1 KZ2
_ ) < —Zen— ).

‘ ot o < Cexp 400 "

Proof. For (i): This follows from similar calculations as described in
Lemma 3.0.1.

For (ii): For every (y,t) € (0,x) x (0,1] the symmetry properties of the
function I',,, ,, yield that

tarUP —£&,5,0,0

V1.x(y,t) — Y1y, t) = g,{/ ,p(yagﬁ s )‘
=K

/taFUPP Yy — 5,570 0)

0 L—o

X(UQ)t—S U(t—s))ds},

UW (t —s)dv

(5.0.28)
from which the stated bounds can be calculated using integration by parts. [

In a way that is analogous to the discussion in section 4 we will need reg-
ularity results for the functions Hj (y,t) and Hs (y,t). Because of the result
above we immediately get the regularity result below, which is very similar to
Proposition 3.0.6.
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Lemma 5.0.15. Assume that the tail distribution F satisfies the
inequality (4.0.38).

(i) There exists a constant Cg, depending on B, such that, for every (y,t) €
(0,00), every y' > 0, every t' € (0,t) and every a € (0,1] the following
inequalities are all valid:

|H1<yvt)
|H1(yat)
|H1(y7t)
and, for every o € (O,m ( g)), and x,z’ >0

Hy(e® —1,t) — Hy (ez, — l,t)‘ <Cglr— 2 |Mt7% exp (—?) .

(ii) There exists a constant C, such that, for every (y,t) € (0,k), every
"€ (0,k), every t' € (t,1) and every a € (0,1]

/432
(H (g, t) — Hyn(y )] < Coxp (—icOt) ,
|(H1(y?t) - Hl,m(?ﬁt)) - (Hl(ylvt) - Hl,/i(y/’t)” S c ‘y - y/|01

o 1 k2
exp | —=co— |,
P75

((Hi(y,t) = Hin(y, 1) — (Hi(y,t') = Hik(y, £))| < C (¢ = t)"

x 1c v

exp | —=co— |-
PR

and, for every xz,z’ € (0,1n (1 + K)),

(i (e = 1,6) = Hie (e" = 1,0)) = (Hy (¢ = 1,t) = Hy (e = 1,1) )]

1 2
<Clz—2|" exp( T6¢ R).

Proof. For (i): This follows from the bounds given in 5.0.14 and similar calcu-
lations as in Lemma 3.0.2 and Proposition 4.2.6.

For (ii): This follows from the bounds given in Lemma 5.0.14 and similar
calculations as in Lemma 4.1.8 and Proposition 4.2.6. O

5.1 Constant coefficients

In this section we will again assume that o = r = 0. The main idea is to show
that, for any sequence {x,} -, such that

lim k, = oo,
n—oQ
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the sequences of functions {1 ., } -, and {13 ., }_, and their derivatives con-
verge uniformly to solutions 12 and 13 and their derivatives of equations (5.0.25)
and (5.0.26), respectively.

Definition 5.1.1. For { > 0 and ¢ € (0,1] let
‘/570(t) = _2FO'P (Oat7€a 0) 5
and forn € {0,1,2...,}, let
Veni1(t) = —2PF (0,1).
Let

)= Venl(t)
n=0

Lemma 5.1.1. Assume that or =1 = 0.

(i) Ue is differentiable. Furthermore, there exists a constant C' such that for
every t € (0,1], every & > 0 the following identity and inequalities are all

valid:
S Uelt) — P2 =T, (0,4,6,0),
1 2
|Ue(t)] < Ct% exp (—005)
2 7t
and

|U:(t)] < Ct™ % exp —lc &
el = 270 )

(ii) There exists a constant C such that for every t € (0,1], every & € (0, k)

(2) K?
‘Ug(t) ~ U )‘ < Cexp (—c t)
and )
‘Ué(t) — ng/(t)‘ < Cexp (c F;)
(iii) For every fived & > 0
97, () == PG (4, 1)
is a classical solution of the PDE
91,(1,0,¢) =0, y>0,

gzo(o7t’§) = FUP (O7t’§70)7 te (Oa 1]a

hmy—mo 920 (ya t 5) =0,
g3, (y:t:€) .
e = Lg; (y,1,€),  (y,) € (0,00) x (0,1],

Proof. For parts (i) and (ii): We observe that

2
Veolt) = V. (8).

The stated identity and inequalities follow from similar calculations, based on
induction and uniform convergence, as in Lemma 4.1.2.
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For part (iii): Let {x,},., be a sequence of positive numbers such that

lim &, = oo,
n—oo

and consider the sequence of functions

{950, (.0}

It follows from the bounds given in Lemma 4.1.3 that there exists a constant C'
such that, for any n such that k, >+ 1

1 2
|gzo,l€n (y7t7£)| < C (1 =+ 572) exp (800i> )

Thus, g7, ., satisfies the initial condition. Also, for any ¢y € [0, 1]

lim 7 (y,t,€) = lim lim I (y,t,
(y)t)_)(o)to)gLo(y 3 A 9L, L(,t,€)

_ FUP (Ovt07§70)7 tO >0
10, to=0.

The uniqueness follows from Theorem 1.3.1 in Garroni and Menaldi (1992) and

similar arguments as in the proof of Theorem 3.0.1. O

Definition 5.1.2. For every y,£ >0 and 0 <9 <t <1 let
2
9Lo (yvta§779) = _P[Efg) (y7t - 19) .

Lemma 5.1.2. Assume that or =1 = 0.

(i) There ezists a constant C' such that for every y,€ >0 and 0 <9 <t <1
and 1 € {0,1,2} the following inequalities are all valid:

0'gry (y, t,€,9) _xp Ly 458
9 9Le\Y: 4,6, V)1 _ 3 _ 1.y Taes
‘ ay <C((t—-"7) exp ( 50 g )

and
‘ agLo (ya t7 57 19)

_3 1 24 12
T ‘ <C(t—9) 2exp (—COW>.

2 t—19

(ii) There exists a constant C such that for every (y,t,&,9) € D, and
1 €{0,1,2} the following inequalities are all valid:

l l 2 2
lagLO(y’tvg’ﬁ) g (y,t—m’SC(t—ﬁ)‘éexp (_1%& = )

oy’ oyt U )

agLo(y7ta§7’0) 0 (2) 1 1 K2 +£2
_ZH0TT T 7 —P — < — 2 N
‘ o + ot e (yt —9)| < C(t—19) 2exp SOy )

algLo (yvtagvﬁ) _ 3l9Lo,n(y7t,§aﬁ)

oyt oy
2 1 2
_14l 1 (k—y) " +35(k—&
<ot exp <—200( )t—219( ) >’
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and

ot a ot
_a)2 a1 _ )2
< Ct= 3 exp (—;co (k—y) +5(r=¢) ) .

‘89%(3/, t,6,9)  0gr,.x(y,t,&0) ’

(iii) There exists a constant C such that for every y,& >0 and 0 <9 <t <1
the following inequalities are all valid:

/t /oo a2gLo(yvta€7l9)
0 K ayQ

2
/ / ‘3‘“0 v48,9) ‘ dedi < Ctexp (—icolz) .

(iv) There exists a constant C such that for every (y,t,£,9) € Dy, and
le{0,1,2}

2
'dgdﬂ < Ctexp <z1f°ﬁt> :

and

<8lgL0 y,t, &, 19) 'gLe.x (Y, )) dgdﬁ‘

oy
2
< Ot exp <1<—y>> |

2 t

and such that

(agLo yvt 5 19) agLo,n(yatvga’ﬁ)

T > dfdﬁ‘
2
< Cexp (—;co(ﬁ_ty)> .

Proof. This follows from similar calculations as in the proof of Lemma 4.1.3 and
also the bounds given in Lemma 4.1.3. O

Definition 5.1.3. For every y,£ >0 and 0 <9 <t <1 let

GLo (yatagaﬁ) = FO’P (y,t,f,ﬂ) —JL, (y7t7§719)7

let

oG S, &0
QO (y7t7£719) = p%a

let the sequence of function {Qy,},—, be defined inductively for
n € 1,2,..., by

Qu (4,1,6,0) = // Qo (5.t 28) Quor (2,5, €,9) d=ds,

and let -
Q(y,t7§;ﬂ> = ZQTL (y7ta€719) °
n=0
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Lemma 5.1.3. Assume that og > 0 and let o € (0,1).

(i) @ solves the integral equation

t o]
Q(yatvgaﬁ):QO (yvta€7§)+/’0 /0 QO (y,t,Z78)Q(Z7S,£,’l9)dZd$.
(5.1.1)

(ii) There exists a constant C, such that, for every y,y',& > 0 and every
0<¥9 <t <t<1 the following identities and inequalities are all valid:

Q(y7ta§719) :Q(yvt_’ﬂ7£a0)7

2
Q (y,t,€,9)| < C(t—0) " exp (-jfo (yt_%) ) ’

5

Q0 t,6,9) — Q(/,,&,0) < Cly—y/|> (t— )~ F
2
X exp <_41100(yt_? ) ,

and

|Q (y>ta€>19) - Q(y7t/7€719)| < Clt_t/li (t/ _79)

(iii) There ewists a constant C, such that, for every (y,t,&,9) € D,., every
y', € (0,k),and every t' € (0,t,) the following identities and inequalities
are all valid:

1Q (4, t,6,9) — Qi (y, £,6,9)| <C (t —9) "
2 2
- (i%(ny) + (k= ¢) )

t—19
Q(y,1,6,7) = Q (', £,6,9) — (Qx (y,£,£,9) — Qn b8, 19))I

1 _5 1 K—Y
<Cly—y|? (t—9) T exp (—800(

and

|Q (y7ta€719) - Q (yat/7§719) - (QH (yat7£aﬂ) - QK (yatlaévﬁ))‘

(r—y)* + <n—a>2>
t—20 ’

1 _5 1
< O|t—t’|i (t—9) % exp <—860

Proof. This follows from similar calculations and reasoning as in the proofs of
Lemma 4.1.4. O
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Proposition 5.1.1. (i) Foreveryy,£ >0and0 <9 <t <1landl € {0,1,2}
al t oo
@/ / GLO (y,t,z, S)Q(Z, 5,6,19) dzds

11
// G, y’t“b(z,s,g,ﬁ)dzds,

and
a i o]
o || entas @G g naas

=Q(y,t,&9) + // G L y’tZS)Q(z,s,g,ﬁ)dzds.

(ii) There exists a constant C such that for every y,€ > 0 and every
0<9I<t<1

! t poo
’al/ / GLO (y7t,Z78)Q(Z7S7£’19) dzds
' Jo Jo

<C(t— 19)_% exp (—100@_5)2> ,

47 t—9

and
a t fe’e]
—// Gr, (y,t,z,8)Q(z,s,&,9) dzds
at Js Jo

<C(t-— 19)_1 exp (—1co(y — §)2> ,

4 t—1

(iii) There exists a constant C' such that for every (y,t,£,9) € D, and every
1e{0,1,2}

‘3@/ / (/ Gry (9,1, 2,5) Q (2, 5,€,9) dzds
_/ Grox (Y, t,2,8) Qr (2,8,6,7) dz)
0
(K—y)2+(m—5)2>

_1 1
<C((t-9) éexp(—gco r—

and

t 00
‘;L (/0 Gro (y,t,2,8) Q (2,5,&,9) dz

B / Crom (1, 2,8) Qu (2, 5,6, 0) dz> ds
0

(r—y)* + <n—£>2>
t—19 ’

<C(t—9) "exp <—;co
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Proof. Because of the regularity bounds obeyed by @, given in Lemma 5.1.3,

this follows from similar calculations as in the proof of Lemma 4.1.5.

Definition 5.1.4. Let
G (y,t,§,9) = G, (y,t,£,9)

t [e%e]
+/ / Gr, (y,tz,s)@(z,s,g,ﬁ) dzds,
9 Jo

and let
Uy, 1) —// i (5,1, €,9) Hy . (3. 9) dédo.

O

Theorem 5.1.1. Assume that og = r = 0 and that the tail distribution F

satisfies the inequality (4.0.38).

(i) For everyy > 0, every t € (0,1] and every I € {1,2}
8l 02 (y,1) > oq ,t 19

and

ot

(ii) There exists a constant Cg, depending on 3, such that, for every y > 0
and t € (0,1] and every I € {0,1,2} the following bounds are all valid:

"y (y,t 21 -
[Porte) oy,
Da (y, ¢ _
%a(ty’)‘ <Cs(1+y) "

and, for everyy' >y, t' € (0,t) and a € (0, 1]

W (y,t) — 2 (¥, 1) < Ca (v —9)“ 7= (L+y)7,

and
[ (y,t) — 2 (y, )| < Cp (t =) = (1 +9) 7

(iii) There exists a constant Cg, depending on 8, such that, for every (y,t) €
(0,k) x (0,1] and every I € {0,1,2} the following bounds are all valid:

0'a (y,1) _ 0'vae (y,1) 6 1L (k—y)’
o oy ’ < Cj tz (1 + k) " exp T
0s (9,1) s (1 (5P

‘ 5 <Cs(l+r) "exp|— 1660 ¢ .
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Also, for every y' € (y,k), t' € (0,t) and o € (0,1]
(W2 (y, 1) — o (y,1) — (V2 (¥, 1) — Yo (1))

/ a 2-a -8 1 (“*y/)Q
<Cs(y —y) t= (1+k) “exp T B

and

|(¢2 (y7 t) - wQ,n (yv t)) - (¢2 (y’ t/) - wQ,m (yv t/))|

o - 1 (k—y)’
<Cp(t—t) 7 (1+ k) 5 exp <_1600(th))'

(iv) 9 (y,t) is the unique classical solution of the PDE (5.0.25).

Proof. For (i) and (ii): These follow from the regularity bounds obeyed by
Hi(y,t) and Hy(y,t)—Hy . (y,t), given in Lemma 5.0.15 and similar calculations
as in the proof of Lemma 4.1.5.

For (iii): This can be calculated from the bounds given in
Lemma 5.1.2, that are obeyed by Hy(y,t) — Hy ,(y,t), and examining the three
cases

£<

K,

N

k<&

IN

1
2 i
and

&> k.

For (iv): It follows from Lemma 5.1.1 and part (i) that ¢ (y,t) satisfies the
equation (5.0.25) on the inner domain. It follows from part (ii) that s (y,t)
satisfies the asymptotic boundary condition. Similar reasoning as in the proof
of Lemma 5.1.1 yields that, for every ¢y € (0, 1],

lim )wg(y,t) =0.

(y:,£)=(0t0

Definition 5.1.5. Fory > 0 and t € (0,1] let
y
Ha(w: ) i= o2 (0 0) + X [ (y = 2.) dF (o).
0

Proposition 5.1.2. Assume that op = r = 0 and that the tail distribution I’
satisfies the inequality (4.0.38).
(i) Then there ezists a constant Cg, depending on 3, such that, for every
y>0,t,ae (0,1 andy’ >0

|Ha(y,t)| < Cs(1+y)7",

|Ha(y,t) — Ha(y' . 0)| < Co(y' — )"t 2 (1+y) 7,
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and such that

|Ha(y,t) — Ha(y, t')] < Cp(t — )" ¢ " (1+y)7".

(ii) There exists a constant Cg, depending on (3, such that, for every (y,t) €
(0,k) x (0,1] every (y',t') € (y,k) x (0,t) and o € (0,1]

2
[Hy, 1) — H o, 1)] < Gt (14 4) " exp (;M) ,

‘(HQ(y’t) - H2,n(y7t)) - (H2(y/at) - H2,K(y/7t))‘

’ a 2o -8 1 (H_y/>2
<Cs(y —y) t = (1+k) "exp BTl K

and

|(Ha(y,t) — Hax(y,t)) — (Ha(y,t') — Han(y,t"))]

2
<Cp(t—t) "t (1+ k)7 exp (11660(th)> .

Proof. This follows from the bounds given in Theorem 5.1.1 and similar calcu-
lations as in Lemma 4.1.8. O

We will now proceed to show existence of the equation (5.0.25) analogous to
the results in Section 4.1.2.

Definition 5.1.6. Let

QA,O (y7 ta 57 19) = 7/\GL (ya t7 ga 19) ’

and let the sequence of functions {Q,\m}fbozo be defined inductively for n €
1,2,...,and 4y, >0 and 0 < I <t <1 by

t [’
Qo (. 1,6,9) = / / Ono (4,62, 8) Qrmr (2,5, €, 9) dds,
9 0

and let -
Qk (y7 tv £7 19) = Z Q)\,TL (ya t7 5? ﬂ) .

n=0

Lemma 5.1.4. (i) Qx is a solution of the integral equation
Qx (y:1,2,0) = =AGL (y,1,€,9)

t poo
_)\/ﬁ /O Gr(y,t,2,5)Qx(z,5,§,0) dz((j;,l ,

(ii) Qx (y,t,&,0) is differentiable with respect to y,t and ¥ on (0,00) x (0, 1] x
(0,00) x [0,t). Furthermore, there exists a constant C' such that for every
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¥,€ >0 and 0 <9 <t <1 the following identity and inequalities are all
valid for 1 € {0,1}

Q)x(y7ta€719) :QA (y7t7195§70)a
l 141 — 2
’a Qs <y,t,f,ﬁ>‘ < Cl—9)F e (_i%(yt_? > |

oyt

and

9 _3 _6)?
) s )

(iii) There exists a constant C' such that for every (y,t,€,9) € Dy and every
1 €{0,1} the following inequalities are all valid:

‘81Q>\ (yatafaﬁ) _ aQ)\,m (yat7€719)’ S C(t—’lg)_lTH

oy! oy!
1 2
X exp <8co (ﬂt _31/9) >
1 M2
X exp <—8co(lz_? ,
(5.1.3)
and
aQ/\ (y7t7€719) _ aQA,H (y7t7§>19) < C( %
ot ot
< o ( L,=0) )

fr‘r

1 (k—¢)°
X exp ( i ) .
(5.1.4)

Proof. For part (i): Similar calculations as in Lemma 4.1.4, based on induction
and uniform convergence yield that the inequalities given in part (i) are all valid.
In particular, it can be shown that there exists a sequence {kn}zozo of positive

constants such that lim,,_, o kk: L = (0 and such that

—1 o 2
‘Q)\v” (y7t7£719)| S kn (t - 19) n2 eXp <_41]:CO (yt _fg) ) .

Also by induction it can be shown that, for every n € 1,2, ...,

D Qi (yst,2,9) = =AGL (y,1,€,9)
3=0
t o) n
[ Gtz Y Qu s ) dsds
9 Jo =
t o]
+)\// Gr (y,t,2,8) Qxn (2,8,&,0) dzds.
9 Jo
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Because of the bounds obeyed by Qi (2, s,&,9) it follows that

Z Q)uj (y7 2 57 19)

Jj=0

converges uniformly to a solution of the integral equation (5.1.2).

For part (ii): It follows from the regularity bounds obeyed by the Green
function G, (y,t,&,9) derived in section 4.1.1 that the stated bounds hold for
Qro (y,t,&,9) and Qao (y,t,€,9)—Qx k0 (Y, 1, €, 0). Similar calculations, based
on induction and uniform convergence as in the proof of
Lemma 4.1.4 yields that these bounds also hold for the limits Q) (y,t,&,¢) and

Q)\ (y7 ta 67 19) - Q)\,H (y7 tv 57 19)
For part (iii): We first note that it follows from the bounds given in

that, for some constant C, (y,t,&,9) € D, and [ € {0, 1}

alQ)\,O (y7 t7 67 19) _ alQ)\,O,K (yu t7 5, ﬁ)
6yl 8yl

141

‘<C(t—19)2

 exp <_100(ny)2+§(n£>2>.

2 t—19

Furthermore, an application of Proposition 3.0.2 yields that, for some constant C'

[Too (e (G525 )

SC&p(_%JH—m2+m—ff>u_ﬁ)

m\»—-
N
Wl

(t—s)2(s—1)

8 t—19

Similar calculations as in Lemma 4.1.4, based on induction, uniform convergence
the symmetry property between there ¢ and ¢ and the bound above, yield that
the stated bounds (5.1.3) and (5.1.4) all hold. O

Definition 5.1.7. Fory,£ >0 and 0 <9 <t <1 let

GL)\ (yvtagaﬂ) GL (y7t E 19 / / GL y,t z, S) Q)\ (Z S f 19) dzds.

Lemma 5.1.5. Assume that op =1 = 0.
(i) For every y,£ >0 and0<9¥<t<1andlc {1,2}

[ t [e'e)
9 / / G (y,1.2,8) Qx (2, 5., 9) dzds
3Z/l 9 Jo

t oo 9l
= [ [ EEEEE G, s 0) deds,
9 Jo ay!

and

t oS
%/ / Gr (y,t,2,5) Qx (2, 5,€,9) dzds

=Qx(y,1,§,9) + // 961 ( y’tZS)Q,\(z,s,f,ﬁ)dzds.
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(ii) There exists a constant C' such that, for every y,& >0 and 0 <9 <t <1

the following inequalities are all valid:
al t )
’1/ / Gr (y,t,z,s) Q)\ (szafaﬁ)dZdS
oyt Jo Jo

<C(t- 19)% exp (100(31 — §)2> )

4 t—19

and

t e’}
g/ / Gr (y,t,z,5)Qx (2,5,€,9)dzds
ot Js Jo

2
<C(t— 19)_% exp (—ico (‘Z:? > .

(iii) There exists a constant C such that, for every (y,t,&,9) € Dy, and
I € {0,1,2} the following inequalities are all valid:

8[ t %)
‘W/ﬂ(/o Gr(yt,z,5)Qx(z,8,§,09)dz

- /Oo GL,H (y,t,z,s) Q/\ (27875,19) dZ)dS
0
11 ( 1 (/{—y)2+é(n—§)2>

<C({t—9)7 exp —5¢0 —
and
a t o0
‘/ (/ GL (1t ,5) Qn (2,5, 6,0) da

— / Grx (Y t,2,8) Qx (2,8,6,0) dz)ds
0

(n—y>2+;<n—§>2>
t—1 '

<C(t-— 19)_% exp (—;CO

Proof. This follows from the bounds given in Lemma 5.1.4 and Lemma 5.1.2

and similar calculations as in the proof of Lemma 4.1.5.

Definition 5.1.8. Let
Yy
Qro (4,1,6,9) == A / Gry (y— G 1,6,9) dF (O).
0

Let the sequence of functions

{QI,n (y,t,¢, 19)}20:0
be defined inductively by

t o0
Qrn (5 £,6,9) = /9 /O Q10 (st 2,8) Qrr (25, €, 9) deds,

nel,2 ...
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Let -
Qr(,t,69) = Qrn(y,t,6,0).
n=0

Let

t [e%s)
Gron (y,8,6,9) = / / Gr, (Y, t,2,8) Qr.n (2,5,&,9) dzds,

9 JO

and let
t o0

GI,\ (y7t7£719) ::/ / GL/\ (y7t7275> QI (27876719) dzds.

9 JO

Lemma 5.1.6. Assume that ogr = r = 0 and that the inequality (4.0.38) holds.

(i) There exists a sequence {ky} -, such that

Ky
lim +1

n—oo n

207

and such that, for every finite n € 0,1,..., every y,& > 0 and
0<9<t<,

|Q1,n (y,t,ﬁ,ﬂ)| <k, (t — 19)"_2

n 2
o0 o0 1 (yfgfzj':o(j)
X/o /0 exp | = co pa—

X dF(Co)dF (1), ..., dF (Cp),

(5.1.5)
Ql,n (Z/, ta 67 19) - Ql,n (3/7 t7 ga 19)’
< Cknly — y/| (t— 79)”_1
n 2
1 (y —{- Zj:O CJ')
S e t— 0 (5.1.6)

+exp | ——c¢o

1 (y/—f—Z?:onY )
4 t—1

X dF((1),...,dF ().
Also

|Ql,n (y,t,é,ﬁ) - Ql’n (y,t’,§,ﬁ)| < Ck, |t_t/|% (E—ﬁ)n_%
2
L (e T06)

X exXp _ZCO PR

x dF(C1),...,dF(Cy),
(5.1.7)
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Q1 (y,1,6,9)| < C (t— )%,
‘QI (y7t7§519) - QI (y/7t,§,’l9)| S O‘y - y/| (t - 19)_17

and

3
1

|Q1 (yatagﬁﬁ) - QI (y7t/,§,79)| S C|t_t/|% (t/ _19)

(iii) For every (y,t,&,0)

Yy
QI (y>tv§>19) = )‘/0 C:L,\ (y - <7t7£= 19) dF (C)
(5.1.8)

Yy
+AA Glx(y_gvufvﬁ)dF(C)

Proof. For part (i)-(ii): This follows from similar calculations as in
Lemma 4.1.12.

For part (iii): This follows from similar calculations as in the proof of
Lemma 5.1.4. O

Lemma 5.1.7. Assume that or = r = 0. There exists a constant C such
that for every (y,t,£,9) € Dy, and every (y',t') € (y,k) X (0,t) the following
inequalities are all valid:

ol

|QI (y7t7§719) - Q[,H (y7t7§719)| S C(t - 19)7

2 2
< exp (—éw(”_y)t =9 ) |

(5.1.9)

‘(QI (y,t,f,ﬁ) - QI,K (y,t7£7ﬁ)) - (QI (yl7t,£719) - QI,/{ (y/,t,f,ﬁ)”

<CW -y (t—) Fexp <;00 (k- y’):jﬁ(n - 5)2> ’ (5.1.10)
and
Q1 (1, £,6,9) = Qr (0,1, 6,9)) — (Qr (y, £, 6,9) — Qe (y, ', £,9))]
<C@t—t)1t Texp <;CO (k= y):jéﬂ - 5)2> ' (5.1.11)

Proof. For (y,t,&,9) € D, and n €0,1,..., let

AC)I,n (y,t,f,ﬁ) = Qf,n (y7t7£719) - QI,H (y7ta§’19) .

and let
AQ[ (ya ta €a 19) = QI (y7 t7 57 19) - QI,N (y7 ta 57 19) .

Because of the bounds given in Lemma 5.1.2 similar calculations as in Proposi-
tion 3.0.3 and Proposition 3.0.4 yield that

AQryo (y,t,&,7),
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AQI,O (y; tv 67 19) - AC)I,O (yl7 ta fa 19)

and

AQI,O (ya t7 Ea ?9) - AQI,O (y7 t,7 ga 19)

obey bounds of the stated form (5.1.10). Similar calculations, based on induction
and uniform convergence, as in the proofs of Lemma4.1.4 and Lemma (5.1.4)
part (iii), yield that the stated regularity bounds for AQy (y,t,&,1) all hold. O

Lemma 5.1.8. Assume that or = r = 0. There exists a sequence {ky}
such that &
lim —*L =,

n—o0

n

and such that, for every finite n € 0,1,...,, every l € {0,1,2}, y,& > 0 and
0 <9 <t <1 the following identities and inequalities are valid:

(i)

"Gy (y,1,€,9) L O\GL, (y,t, 2, 8)
ayl —/19/0 5yl QLTL (Za87€7’l9) dZdSa

and

aGI)\,’I’L (ya t7 ga 79)
ot

= QI,n (yata§779)
0GL, (y,t,z,s)

t oo
+/19 /0 TQIn (2,8,€,9) dzds.
(ii)

—1

‘ <k (t—0)"T

2
X/OOO.../OOOGXP _i60<y_£;_21;_0<j>

8lGTA,n (y7 t,§, 19)
oyt

X dF(C1)s -, dF(Cn)s

‘ aC:I)\,n (yv tv 57 19)

<k, (t—0)" 2
e,y

0\
N ER G

X dF((y), ..., dF(¢)
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and

‘Gb\n(yvt 5 19)‘ S y% (t_ﬁ)n+Z

X dF(Cl)a o adF(Cn)

(iii)

0'G1, (y,t,€,9) O'Gr, (y,t,2,5)
78yl / / —8y Q1 (2,8,69)dzds

and

8GI>\ (y> tv 5, 19)

ot :QI.R (yat,g 19)

/ / W29, (zs.60) dzds,

Furthermore, there exists a constant C' such that for every (y,t,&,v), and
every 1 € {0,1,2}

8ZG1A (y,t,f,’ﬁ) 1—1
— A T T < t — 2
. <C@t-9)7,

and

.

’8GIA (y,t,f,ﬁ) ’

< —9) 2.
= <C(t—1)

(iv) For every (y,t,&,9) € Dy and l € {0,1,2}

alGlx (y,t7§,19) o alGIA,K (y7ta€>19)

oyt oyt
<C(t—19) 7 exp flc (n =)+ (r = )"
8" t—19 ’

and

3G1>\ (y,t,ﬁ,ﬁ) . 6GI>\,,‘; (yat7§779)
ot ot

2 2
<C(t— 19)7% exp (;co (v = y)t jg{ —9) ) .

Proof. This follows from the bounds given in Lemma 5.1.6 and Lemma 5.1.7
and similar calculations as in the proof of Lemma 4.1.13. O
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Definition 5.1.9. Fory,£ >0 and 0 <9 <t <1 let

GA (ya tv 55 19) = GL>\ (ya t7 53 19) + GIA (y7 t?év 19)

and let L e
sy t) = /O /O Ga(y,t,€,0) Hy (€, 9) dEdY.

Theorem 5.1.2. Assume that o = r = 0 and that the bound (4.0.38) on the
tail distribution function F holds.

(i) Then v3(y,t) is a classical solution of the PIDE (5.0.25). Furthermore,
there exists a constant Cg, depending on [, such that for every y > 0 and
t € (0,1] the following inequalities are all valid:

6l¢3(y7t) B

‘ oy ‘ <Cptz (1+y) 7,

M3(y, 1) 8

<

’ Bt Cat(1+y)™ ",
O (y,t) 1 1 2 2-1 -3
— 7 < 2 —— - 2
‘ 9y ‘_C(t exp( 400Tt>+t Cs(1+y) ) and
a¢(y,t) —1 1 y2 —B
‘815 <C |t texp —1c0T7 +Cs(1+vy) .

(ii) There exists a constant Cg, depending on 8, such that, for every y €
(0,1k), t € (0,1] and I € {0,1,2} the following bounds are all valid:

i i il N2
‘Bws(y,t) Mg,ﬁ(y’t)‘ < Oy (14 m) P ep (121860@ ) )

Dyl oyl
O3y 1)  Dsx 5 L (n—y)’
_ : < SN CA VA
‘ 5t 5 (y, )| < Cpt (1 + k) " exp 1280 3

Proof. This follows from the identities and bounds given in Lemma 5.1.5 and
Lemma 4.1.13, the bounds obeyed by Hj (y,t) given in Proposition 5.1.2 and
similar calculations as in the proof of Theorem 4.1.2. For part (ii) it is helpful
to consider separately the cases & < r%—y and & > "%"y O
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5.2 Unbounded coefficients

In this section we will prove the existence of a classical solution of the

PDE (5.0.25) and the PIDE (5.0.26) under the assumption that o > 0. Quite
similar to what we did in Section 4.2, the main idea is to consider a transformed
equation of equation (5.0.25), using the change of variables x = In (1 + y), and
look for a solution 1/}2(50, t) of the equations

P (2, 0) =0, >0
(0, 1) =0, telo,1], o
ale) _ Juhy (x,t) = Hy(e* —1,1) = >0,t € (0,1],

and
s(z, 0) =0, z>0,
Pa(0,1) =0, tel0,1], (522)
limy o0 13 (2, 1) =0, telo,1], -

Qdset) _ Ay (w,t) = Hy(e" —1,8), x>0,t€(0,1],

where Hs(y,t) is defined in Definition 5.1.5. As we did in Section 5.1 we will
also consider the convergence of the solutions as v — oco. For the PDE (5.2.1)
the first step is to establish bounds on a Green function G (z,t,£,9) that is

very similar to the auxiliary Green function G i & (@, t,&,0) except that, instead
of satisfying R

lim G} . (x,t,&,9) =0,

T—KR ’

G} (z,t,€,9) will satisfy the asymptotic condition
lim G'I: (x,t,&,9) =0.

T—00

Definition 5.2.1. For £ > 0 and t € (0,1] let ]59(2) be the operator defined in
Definition 4.2.5. Let R .
‘/5,0 (t> = _21—‘];0 (07 ta é-a O) .

Fornel,2,..., define Vgn (t) recursively as

Ve (t) = 2P (1),

Ven—1
and let

Uet) =3 Ve (1)

n=0

Lemma 5.2.1. Assume that og > 0.

(i) There exists a constant C' such that for every t € (0,1] and every & € (0, k)

~ 2 (2) 1A R
Ue(t) — Ug,g(t)‘ < Cexp <400t> )

and

N 1.
‘Ué(t) - Ufg’(t)‘ < Cexp <—4c0) .

)



(i) Ug(t) is differentiable on (0,1]. Ue(t) is a solution of the integral equation
1~ . A
—5Ue(t) = P =T, (0,1,6,0).

Let

Then g% (x,t,&) is a classical solution of the PDE
Lo

gzo (1’70,6) O, xr > O’
g5 (0,4.€) =1}, (0,4,6,0), te(0,1],

lim, o0 g5 (2,4,6) =0, t€(0,1],

093 (x,t,8) . 929% (z,t,€)
— =a11(z)—F=—, (x,t) € (0,00) x (0,1].

Proof. This follows from similar reasoning and calculation also making use of
the bounds given in Lemma 5.2.2, as in the proof of Lemma 5.1.1) below, . O

Definition 5.2.2. Define
gio(ﬂf,t,g,’&) = gzo(x7t - 1975)
Lemma 5.2.2. Assume that og > 0.

(i) There exists a constant C' such that for every ,& >0 and 0 <9 <t <1
and | € {0,1,2} the following inequalities are all valid:

< _ T2 —
52l <C(t—7) exp 50 p—
and 0g; (x,t,&,9) 24 Lle2
gﬁ,o z,l,q, -3 1, =z §€
—=0 = < — 2 — g —=— ] .
5 <C(t—9) 2exp ( r—

(ii) There exists a constant C' such that for every (z,t,£,9) € Dy and
1 €{0,1,2} the following inequalities are all valid:

1. &2 +¢2

6ZAA )L 719 !
gi, (@, t,£0) 0 <Cexp<—860

+ —IP(E]??) (z,t — )

ozl oz

097, (€, 6,6,9) 0 N
‘8t + apéé (z,t— 19)‘ < Cexp <8CO

09z (x,1,€,0)  0'9p, (,t,6,0)
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and

agﬁo (.T, t’ f’ 19) _ 6@L07K($, ta 53 19)
ot ot

; 1 L(k—¢)?
< Ct zexp (—260 t_219(’f o) )

(iii) There exists a constant C such that for every y,& >0 and 0 <9 <t <1
the following inequalities are all valid:

/t /°° >g; (x,t,6,9)
0 R

Oy?
b roo19g; (x,t,6,9) 1. /2
v hwichihaluts < ——éy— ).
/0/;% ‘ ET ‘dfdﬁ_Ctexp( 4COt)

L
dedi < Ctexp <4é0”t> :

and

(iv) There exists a constant C such that for every (z,t,&,9) € Di and
1e{0,1,2}

/t/m 091, (@,1,6,9)  0'9p, 4 (2,1.6,9) dedy
o Jo Oa! 0!

_ 1 (k—qy)?
< Ot exp (260(th)> ,

and such that

COe 09, (#,t,69) 1% 0g;, (@, 1,6,9)
/0(/0 S0 g [ sl ) df)dﬁ

. 2
< Cexp <—;éo(l{_ty)> .

Proof. Because of the bounds given in Lemma 5.2.1 this follows from similar
reasoning and calculations as in the proof of Lemma 5.1.2 and the proof of
Proposition 4.2.5. O

_In the coming results we will establish the existence of a function
G} (z,t,€,9) that has very similar properties on the entire unbounded domain

(y,t) € (0,00) x (0,1] as the Green function (A}’fdﬁ (x,t,&,1), does on the trun-
cated domain. Moreover, we will show that the function G i (z,t,&,09) will

converge to Gi (x,t,&,9) if we let 7y tend towards infinity.
Definition 5.2.3. Forz,£ >0 and 0 <9 <t <1 let

G, (0.t,69) =15 (2,t,69) = g; (2.£,£,9),
let

. 8G;: (x,t,€,0
Qo 1,6,9) = () a5 00D
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be defined inductively for

R o)
and let the sequence of functions {Qn}
n
n € 1,2,..., by

t [e’¢)
QH (Ivtagvﬁ) = /19 /0 QO (I,t,Z,S) Qn—l (25575719) dZd57

and let -
Q@.t,60)=>_ Qn(x,t,69).
n=0

Lemma 5.2.3. Assume that og > 0 and let @ € (0,1).

(i) @ solves the integral equation

t [e%}
Q(x,t7£,19):Q0 <x7t’§719)+/:9 /(; QO (l‘,t,Z,S)Q(Z,S,&,ﬁ)dZdS-
(5.2.3)

(ii) There exists a constant C' such that, for every x,z’,& > 0 and every 0 <
9 <t <t <1 the following identities and inequalities are all valid:

Q (z,t,6,09) = Q (x,t —0,£,0),
) -1 1 (z—¢)°
Q(I’,t,g,ﬁ)’ S C(t—ﬁ) exp _icoﬁ ,

5
4

Q(l’,t,g,ﬁ) - Q(.’El,t,g,ﬂ)’ < C|£E - x/|% (t - 19)7
2
con (405 ).

and

Bl

Qo,t,6,0) = Q¥ &, 0)| < Clt— )" (¢~ v)
2
X exp <_41160(ﬁ—§9)> .

(iii) There ewists a constant C such that, for every (z,t,&,9) € D, every
2',€ (0,k),and every t' € (0,t,) the following identities and inequalities
are all valid:

Q@69 = Qn (. t.&,0) | < Ct=v) !
X exp <_11160 (k=)' + (b= 5)2> .

Q@ .69) = Q@ 1,6,9) — (Qr (w.,6,9) — Qs (¢, £,6,9))|

~ 2 " 9
<Cle—a'|*(t—9) Texp (_160('196) + (-9 ) ’

ot

8 t—19
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and
Q (x7t7£719) - Q (‘T,t/,g,’ﬁ) - (Qk (l’,t,g,ﬁ) - Qk (ilj,tl,f,'l?))’

(A —2)° + @@2)
t—29 '

1 _s 1
< O|t—t’|i (t—9) % exp (—860

Proof. For (i)-(ii): This follows from similar calculations and reasoning as in
the proofs of Lemma 4.2.6 and Lemma 5.1.4.

For (iii): This follows from similar calculations as in the proof of
Lemma (5.1.4) part (iii), and Lemma 5.1.7. O

Proposition 5.2.1. (i) Foreveryz,§ > 0and0<v¥ <t<1landl € {0,1,2}

3xl/ / G (E t Z S)Q(Z>S7€,19)d2d8

_ oG Gi, (z,t,2,8) 4 9\ dod
*/19/0 TQ(Z’S’& ) dzds,

and

at// i xtzS)Q(z,s,ﬁ,ﬁ)dzds:Q(%t,f,ﬁ)

8Gi (x,t,2,8) 4
+// —= - Q(z,s,&9)dzds.
9 Jo ot

(ii) There exists a constant C such that for every x,& > 0, every
0<9<t<1 and every and | € {0,1,2}

2 [ @t ias
2
<C(t—9) " exp (—1CO<z—f> )

t—19

and

t 00
Q// G’I: r,t,z,s)@(z,s,f,ﬁ)dzds
ot s Jo
2
<C(t—0) "exp (—leco (i:? )

(iii) There exists a constant C such that for every (z,t,&,9) € Di and every
1€{0,1,2}

Ity oo
671/ </ Gi (x,t,2,8)Q(z5,0) dzds
ozt Jy \Jo o

_ ‘/,i éﬁo,k (x,t,Z,S) QA;{ (Z,S,fﬂ?) dz) ‘
0

N 2 R 2
S C(t — 19)7% exp <_;éo <K' — I>t j_rth/ _5) > :

105



and

t 00
‘;fA(A éﬁo(x?tazas)Q(Z,S,E’ﬂ)dz

fy A~ A
_ / Gro (@31, 2,8) O (2,5,€,9) dz) ds
0

Proof. For (i)-(ii): Because of the regularity bounds obeyed by Q (z,t,¢,9),
given in Lemma 5.2.3, and the regularity bounds obeyed by G Lo this follows
from similar calculations as in the proof of Lemma 4.1.5.

For part (iii): Because of the bounds given in Lemma 5.2.3 this follows from
similar calculations as in the proof of Lemma (5.1.4) part (iii). O

Definition 5.2.4. Let
Gy (z,6,6,9) :=Gg (x,t,60)
/ / i xtzs)@(z,s,f,ﬂ)dzds.

and let L e
Vo, 1) ::/ / G} (x,t,6,9) Hyy (e — 1,9) dédv.
0 0

Theorem 5.2.1. Assume that og > 0 and that the tail distribution satisfies the
inequality (4.0.38).

(i) For every z > 0,t € (0,1] and [ € {1,2}

el
M // 356—75519)]{17(6_119)(156119

oz! ox!
and

81/)28(:70 = Hiy(e" —1,1)
t oo 9/ .
+/ / 8GL (xat7£u79)H1 . (GE _ 1719) dfdﬂ
O O at ?

(ii) There exists a constant Cg, depending on 3, such that for every
x> 0,t € (0,1] and every I € {0,1} the following bounds are valid:

My (z, 1)
ox!

D%y (x, 1) 1
—a < Cgexp (—25I> ,

O 1
] cml-12)

< Cpt’T exp (—fz),
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and
)1;2(96,75)‘ < Cgt% min (:v%,ti exp (—5:1:)) )

(iii) o(x,t) is a classical solution of the PDE (5.2.1) and

Ya(y.t) == Pa(In (1 +y) 1)
is a classical solution of the PDE (5.0.25).
(iv) For every z’ > z,t' € (0,t) and a € (0, %) the following bounds hold:

Yo(x,t) — @Zg(x',t)‘ <Cps(2' — x)a 15 exp (—fz) and

oz, t) — 1&2(1‘, < Cp(t—t) "t exp (—Bz) .

(v) There exists a constant Cg, depending on 3, such that for every (z,t) €
(0,k) x (0,1] and every I € {0,1}

‘ 6%2(1‘, t) _ 3%2,&(% t)

2—1 1 (/% — 33)2
< Cagt'? exp(—pfkr)exp | —<éo——— |,

0zt Ox! 8 t
O*iho(z,t) PPy s(x,t) 1. 1 (h—a)
and
Obo(x,t) iy i (x,1) 1 . 1 (h—x)?
_ i < _ = - )
‘ 2 5 < Cgexp > Bk | exp 800 ;

(vi) There exists a constant Cg, depending on 3, such that for every
(y,t) € (0,7) x (0,1] and everyl € {0,1}

a(y,t) a5 (y,t)
oy’ oyt

’ <Cut'T (14477

1. 147 2
X exp <—8c0 [ln (1_’_y>} ) ,

Pia(yt) P2 (y,t) 2

Oy? oy?

2-1 —1ip —
<Cptz (147) 2" (1+y)
1, 147 2
—Zé | [ =2
xexp< 860[n<1+y>} ),
‘ < Cpt’7 (147)7 27
1. 147+ ?
——éy |In [ —1L .
con (e (322)])

107

and

Opa(y,t)  Othay(y,1)
ot ot



(vii) For every 0 < z < 2’ < &, every t' € (0,t) and o € (0, 3] the following
bounds hold:

|(da(@,t) (s t) = (da(@,0) = o', 1)

N2
< Cy(a) —2)" 72 exp (—BR)exp (—;éow> ,

’(%(%t) - 1[12,;%(90,1?) - (@2(96775’) - 222,,%(55,15/))‘
<COp(t—t) "t *exp (;B;%) exp (;éo(}%txl)z) .

Proof. This follows from similar considerations and calculations as in the proof
of Lemma 4.1.5 using the bound given in Lemma 4.2.8, Theorem 5.1.1 and
Proposition 5.2.1. We also need to use the chain rule and consider the change
of variable

y=e"—1.

The bounds given in part (vii) follow from the bounds given in part (v), Propo-
sition 3.0.3, Proposition 3.0.4 and considering the function

A’(/JQ,’Y(x7t) = ¢2($at) - ¢2,7(9U7t>-
O

Lemma 5.2.4. Assume that or > 0 and that the tail distribution satisfies the
bound (4.0.38). Let the function Hy be as in Definition 5.1.5.

(i) There exists a constant Cg, depending on (3, such that the bounds stated
below all hold for every ' > x > 0, and every 0 < t' <t < 1 and every
= (O min(2,6’,1)]

|Hz (e* — 1,t)| < Cgtexp (—fx),
|Hy (€ — 1,t) — Hy (e — 1,¢)| < Cg (t — )" t' "% exp (),
and

2—a

Hj (e® —1,1) — H (ewl - 1,t)’ <Cg(a' —2)"t 2 exp(—(B—a)x).
(ii) Let v = €® — 1. There exists a constant Cp, depending on [, such that

the bounds stated below all hold for every 0 < z < 7’ < R, and every
0<t <t<1 andeveryae(o,%]

‘H2 (ez - 1>t) - H2,'y (er - 17t)| S Cﬁt'y_ﬁ €xXp (_B’%)

1. (h—2)°
X exp —gc()T ,

|(H (e —1,t) — Hoy (e" — 1,t)) — (Ha (¢" — 1,t) — Ha 5 (e® — 1,))]

o 2-a 1 1. (k—2)?
<Cp(x' —x)"t72 exp (—26,‘%> exp (—Séo(ﬁtx)> ,
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and

|(Ha (" = 1,6) = Hp (" = 1,1')) = (Hapy (¢ = 1,1) = Hapy (e = 1,1))]
2 2
scnv-o7 e en{ o Ja55)

Proof. This follows from the bounds given in Theorem 5.2.1 and similar calcu-
lations as in Lemma 4.2.9. O

The last part of this article will be a discussion on the PIDE (5.0.26) (trans-
formed to the PIDE (5.2.2)) for the case og > 0. Most of this discussion will
be analogous to the discussions in Section 4.2.2.

Definition 5.2.5. Forz,£ >0 and 0 <9 <t <1 let
QA,O (x,t,f,ﬁ) = 7/\éf, (.’,E,Lf,’ﬂ) 3

and let the sequence of functions {QAJL} be defined inductively for
nel,2,...; by

QAn(xtfﬁ // Q,\o xtzs)Q,\nl(zsfﬁ)dzds

and let -
QA ((E,t,f,ﬁ) = Z Q)\,n (x,t,{,ﬁ) .

n=0
Lemma 5.2.5. Assume that o > 0. Let a € (0,1).

(i) Qx is a solution of the integral equation
Or (@, 2,9) = — AG (,4,€,9)
(5.2.4)
—)\// xtzs)QA(zsé“ﬁ)dzds

(i) Ox (z,t,&,9) is differentiable with respect to all four variables. Further-
more, there exists a constant C, such that, for every x,& >0 and 0 < 9 <
t <1 the following identities and inequalities are all valid:

Q)\ (I7ta§719) :QAA (‘Tatiﬁaé.vo)a

A a2
%(‘T7t7§7’9) Sc(ti ) exp <ico(t fg );
2
8;?( 46D <C(t—0) " exp (—100(2_? >,
and
A a2
"?j(mg,m <C-0) tew (—}léo(ﬁ_? )
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(ili) There exists a constant C such that for every (z,t,€,9) € Dy and every
1 €{0,1} the following inequalities are all valid:

alQ)\ (33’ t: év 19) _ a@)\,fﬁ (xv ta 57 19)
Ox! Ox!

<c(-o ¥

and

aC?/\ (mv ta 57 19) _ 8@)\,R (Z‘, ta g) 19)
ot ot

(5.2.6)

Proof. For part (5.2.4) and part (ii): This follows from similar calculations as
in the proof of Lemma 5.2.5.

For part (iii): This follows from similar calculations as in the proof of
Lemma 5.1.4. O

Definition 5.2.6. Forz,£ >0 and 0 < v <t <1 let
t oo
G, (0t.69) = Gy et 0) [ [ Gy (1,205 Qu (a5, 0) s,
o Jo

Lemma 5.2.6. Assume that og > 0.

(i) For every z,€ >0 and 0 <9 <t <1 andl e {1,2}
Bml// G xtzs)Q (2,8,&,9)dzds

oG t,
_ // a:;l TCL@25) 5 (4 s €.9) deds,

and
bl t oo R
o[ ] itz s e s
at |y J,

A t oG (x,t,2,8) A
:Q)\ (l'vtagvﬁ)'i_/ﬁ /0 wQ)\ (Z,S,f,’ﬂ) dzds.
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(ii) There exists a constant C' such that, for every z,£ >0 and 0 < V¥ <t <1
the following inequalities are all valid:

le// G (2,t,2,5) Qx (2, 5, &,0) dzds

and

2
<C(t— 19)_% exp (—iéo (i:i) > .

(ili) There exists a constant C' such that, for every (z,t,£,9) € Dy and
I € {0,1,2} the following inequalities are all valid:

8xl/(/ G (@,t,2,8) Qx (2,5,6,0) dz

_/0 CA?LK (x,t,2,5) O (Z,s,f,ﬂ)dz)ds
m—xf+;m—§f>

1=l 1
<C(t—10)3 exp<—260 —

t 00
‘gt/ﬁ</0 Gﬁ(xﬂtvzas)QA(Z,S,g,’ﬂ)dZ

_/ GAI;,/% (l‘,t,Z,S) Q)\ (Za 875719) dZ)dS
0

N2 1a 2
SC(t—ﬁ)_;eXp<_;@O(K x)tt%(” f))

and

Proof. Because of the bounds on G and on G -G 1.4 given in Lemma 5.2.5,
this follows from similar calculatlons as in the proof of Lemma 5.1.5. O

Definition 5.2.7. For z,£ >0 and 0 <d9¥ <t <1 let

e’ —1
Qro@t&) =\ [ Gy (e = Q) te0)dF Q).

Let the sequence of functions

be defined inductively by

an(xtﬁﬁ // Qjoa:tzs)QInl(zsfﬁ)dzds

nel,2 ...
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Let -
QI (x,t,§,19) = ZQLH (x,t,§,19).
n=0

Let
t oo
Gp (z,t,€,) :/ / (A;EA (z,t,2,8) Qr (2,5,€,0) dzds. (5.2.7)
9 Jo

Lemma 5.2.7. Assume that og > 0 and that the tail distribution F obeys the
bound (4.0.38).

(i) There exists a constant Cg, depending on (B such that, for every
(x,t,€,9) € D and every (2',t) € (x,00) X (9,t)

Q1@ 60| <Cat—v) Fexp(-Blo—¢),  (528)

Q60| < Co 0= 0)F x (exp (2810 - €)
(5.2.9)

oxp () ).

o

‘Ql (2,,6,9) — Op (.1 w)‘ < Cy(t—t) (¢ —0)
< (ow(-20-€) 210
—|—exp(—5m)),

and

e

QI ($7ta§?19> - Q[ (.I'/7t,€7’l9)‘ S Cﬁ ‘.’E - $/|a (t - 19)_ Jg

(exp< 261z — €])

(5.2.11)
+exp (—28 |2 - ¢])
Foxp(= (5= a)a) ).
(i) Q1 is a solution of the integral equation
~ e®—1 ~
Urten) = [ Gy, e - Q)60 dF Q)
0 . (5.2.12)

e’ —1 R
i [ G -0 g0 ©).
0

(iii) For every (z,t,£,9) € D and every l € {0,1,2} the following identities are
all valid:

8ZG1xt§19 // 0'Gy (,t,2,9) .

8 - a1 Q (’278757,’9) dstv
X
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and

Gy (x,t,€,0)

8t :QI (xatvaﬁ)

ROG; (w,t,2,9)
+// — Q1 (2,5, 70) deds.
9 J0o ot

(iv) There exists a constant Cg depending on § such that for every
(z,t,€,9) € D and every l € {0,1} the following inequalities are all valid:

alél ($7 t7 67 19)

(1D < 6= 9)'S (exp (28— €l) +exp (=61 ).

82(;] (LE, t, 57 ?9)

oS < 0p e 0)7E (e (2810 - ) e (~500) ).

aCATVI (JC, t, fa 19)

S8 < -0yt (exp (2810 - €+ oxp (50 ) ).

and

]é, (x,t,f,ﬁ)‘ < Cpmin (z,1)7 (t —9)7 x (exp (—;ﬁ lz — g|)

o (b))

Proof. This follows from similar calculations as in the proof of Lemma 4.2.13.
O

Lemma 5.2.8. Assume that og > 0 and that the tail distribution F satisfies the
bound (4.0.38). There exists a constant C such that for every (z,t,&,9) € Dg,
and every (a',t') € (x, k) x (0,t) the following inequalities are all valid:

|QI (I,t,g,’ﬂ) - QLH (xatvga’l?” S C<t _19)_%
~ 2 ~ 2
% exp (_;éo(ﬁ—y) + (A =¢) >’

|(QI ($7ta§719) - Ql,l@ (I7t7£519)) - (Ql (I,,t,g,ﬁ) - QI,/{ (I/,t,f,ﬂ)”

: 3 i—y)’ + (-9 5.2.14
sc(y'—w<t—ﬁ>—4eXp<_;@0<ﬂ V) £>>’ (521
and
|(Q1 ($7t7§719> - QI’” (x’t’g’ﬁ)) - (QI (x,t/,f,ﬁ) - QI,n ($7t/7§;19))|

N 2 R 2
<CO@t—t)Tt Texp <_;éo (R — y)t jl(gff — ) ) 7 (5.2.15)
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Proof. Because of the bounds given in Lemma 5.2.7 this follows from similar
calculations as in the proof of Lemma 5.1.7 O

Definition 5.2.8. For xz,£ >0 and 0 <9 <t <1 define
Gilx,t,69) =Gy (2,t,6,0) + Gy (2,,6,0),
define
o(, 1) // (@t €,9) Hy (¢f — 1s,9) dedo,
and fory > 0 define )
¥3(y,t) = ¥ (In(1 +y),1).
Lemma 5.2.9. (i) For every z >0 and t € (0,1] and I € {1,2}
8@;; t) / / G 4 axxlt g 19) Hy (¢€ — 15, 9) dedd
and

8123(1'7 t)

= Hy (e — 1,9
ot 2(6 7)

t oo AA
. / / VA8 0) g (& 1,9) deav.
o Jo ot

(ii) There ezists a constant Cg, depending on B, such that, for every x > 0
and t € (0,1] and every l € {0,1} the following inequalities are all valid:

8l7213 (l‘, t)
Ozt

0*1hs(x, t) 1
T < Oﬁt exp (—2,833) y

877;3(3:’” _1
‘8t < Cgtexp Qﬁx ,

< Cpt’s exp (—fa),

and R
‘wg(x,t)‘ < Cgtmin (x,1).

(ili) There exists a constant Cg, depending on B, such that, for every y > 0,
every t € (0,1] and every l € {0,1}

8l¢3 (yv t)
oy
62¢3 (yv t)
Oy
aw?) (97 t)

ot

<Cpt’s (149",

< Cpt (1 +y)~(302)

< COgt (1 +1y) 27

and
[t (z,t)| < Cptmin (y,k —y).
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iv) There exists a constant C' and a constant Cg, depending on (3, such that,
B
for every (y,t,) € (0,x) x (0,1]

2

o (y,t) L 1.y (B+1)
Tyl S Ct 3 exXp (—400 + Cﬁt (1 + y) 5
2

2
. 121(127t)‘ SO e (_iCOy) 4O (1+y) (3512)

and

9 (y, t) - 1, 4 1
‘ Y < Ct lexp —ZCO— +Cs(1+y)” 2h

(v) There exists a constant Cg, depending on 3, such that for every (z,t) €
(0,%) x (0,1] and every l € {0,1}

aZQ/;S(xvt) al,&S I%(:Evt) 21 ~
_ ’ < 3 —
o ol < gt exp (=f) exp | — 5060
iy, ) 8243 4 (x,t) 1.
R R I Y <25 ”) P | ~ 15
and
Os(x,t) g p(x,t) 1.
| o ot < Cpoxp | =5 B Jexp | = 1556

(vi) There exists a constant Cg, depending on B, such that for every
(y,t) € (0,k) x (0,1] and every l € {0,1}

3l¢3(y»t) 3l¢3 n(yvt) B
— 2 <
)l )l ‘ Cp t (1 +r) ")

821/}3(3/7 t) _ 82¢3,n(y7 t)
Oy? Oy?

and

Ops(y,t)  Ovsk(y.t)
ot ot

Proof. This follows from similar calculations as in the proof of Theorem 4.2.3.
O
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We are now finally in position to establish existence on unbounded domain
for the main case og > 0.

Theorem 5.2.2. Assume that og > 0 and that the tail distribution F satisfies
the bound (4.0.38). 3(x,t) is a classical solution of the PIDE (5.2.2) and
Y3(y,t) is a classical solution of the PIDE (5.0.26).

Proof. 1t follows from the identities given in Lemma 5.2.6 and Lemma 5.2.9
that 3(x,t) satisfies the PIDE (5.2.2) on the inner domain, i.e for y > 0 and

€ (0,1]. Similar arguments as in the proof of Lemma 5.1.1 yield that ts(x, t)
satisfies the initial condition and the boundary conditions. Since 1&3(:10715) is a
classical solution of the PIDE (5.2.2) it follows from the chain rule that 13(y,t) =
¥s(In (1+1y),t) is a solution of the PIDE (5.0.26). O
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