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Abstract

The work in this thesis is part of a project led by the Institute of Marine Research 

(IMR), with partners at the Department of Biomedicine (University of Bergen, UiB),

the National Institute of Nutrition and Seafood Research (NIFES), and Department of 

Chemistry (UiB) financed by the Research Council of Norway. 

Fish in the North Sea experience exposure to xenobiotic compounds from historic 

pollution and releases from industry and other human activities. A number of adverse 

biological effects of persistent organic pollutants (POPs) have been shown, including 

alterations in the cell membrane. This study is a follow-up of a previously published 

study from IMR that showed that Atlantic cod (Gadus morhua) that were exposed to 

short-chained alkylphenols had altered lipid composition and fatty acid distribution in 

the liver and brain compared to un-exposed fish. The study in this thesis consists of 

two exposure experiments where Atlantic cod were given pollutants in the diet through 

4 weeks. In experiment 1 Atlantic cod were exposed to para-substituted nonylphenols 

(NPs), either the straight-chained isomer 4-n-NP, or a mixture of branched isomers, 4-

T-NP. In experiment 2 Atlantic cod were given crude oil and/or a mixture of 

halogenated POPs. The POPs included polychlorinated biphenyls (PCB), chlorinated 

pesticides, polybrominated diphenyl ether (PBDE) and perfluorooctanesulfonic acid

(PFOS). The fish were given doses corresponding to chronic pollution or higher doses 

analogous to acute spill accidents. The main focus of the thesis has been detailed 

studies of lipid composition, with emphasis on the phospholipids in the membranes, 

and fatty acid distribution in membrane lipids. Toxicogenomic studies have also been 

performed on the transcriptional levels, as well as biophysical studies of model lipid

membranes as Langmuir monolayers and their interactions with selected POPs.

The treatments with NPs or oil/POPs did not induce large changes in membrane 

composition (lipid class composition and fatty acid distribution) in the liver and brain 

of male Atlantic cod. However, the transcriptional data suggest that the fish were 
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affected by the treatment at the molecular level. Differential expression in selected 

genes in phase I and II metabolism of xenobiotic compounds, PL biosynthesis and 

antioxidant responses were shown.
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1. Introduction

1.1 Background 
Fish and other organisms in the marine environment are exposed to a complex mixture 

of pollutants from human activity. Hazardous substances including heavy metals, 

organohalogens, pesticides and polycyclic aromatic hydrocarbons (PAHs) can be 

found in sediments, marine organisms and seawater. During the last decades many 

chemicals have been banned or phased out, however, historic pollution is still posing 

an environmental threat as e.g. polluted sediments may act as continued sources of 

release (OSPAR 2010). Pollution from hazardous substances might be local, regional 

or global (Vallack et al. 1998). Atmospheric long-range transport and ocean currents 

distribute chemicals from anthropogenic activities to remote areas like the Arctic. This 

has made especially persistent organic pollutants (POPs) like polychlorinated 

biphenyls (PCBs), perfluorooctanesulfonic acid (PFOS) and brominated flame 

retardants a global problem (Hung et al. 2010). PAHs are among the most widespread 

organic pollutants in the North-East Atlantic, and PAH pollution may be both a 

regional and global issue as they enter the sea from offshore activities, operational or 

accidental oil spills from shipping and as discharges from rivers and air (OSPAR 

2010). Offshore oil production release oil and chemicals to the marine environment 

through routine operation in addition to occasional accidental oil spills. Most of the 

routine releases come from produced water discharges and some come from drill 

cuttings. Produced water is the term for the water that comes with the oil from the 

reservoir, and it contains hazardous substances that might be naturally occurring in the 

reservoir, or chemicals connected with the production process. Offshore oil and gas 

production is widespread in the North Sea and Norwegian Sea, and activities are 

expected to increase in the Barents Sea and in areas like Northern Norway, Greenland, 

the Faroe Islands and Iceland in the years to come (OSPAR 2010). In order to get a 

realistic picture of the pollution the fish is experiencing it is important to study the 

combined effects of all the different polluting compounds. 
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POPs are known to cause a number of adverse effects (see Section 1.5, and references 

therein), including disruption of biological membranes (Sections 1.6 and 1.7, and 

references therein). The effects of nonylphenols, oil pollution and/or mixtures of 

halogenated persistent organic pollutants, on the composition of membrane lipids in 

liver and brain of Atlantic cod (Gadus morhua) is the main focus of the thesis.

The work described in this thesis is a follow-up to a previously published study from 

IMR that showed that Atlantic cod that were exposed to short-chained alkylphenols 

had altered lipid composition and fatty acid distribution in the liver and brain 

compared to un-exposed fish. The observations included increases in the saturated 

fatty acids (SFA) and a decrease in (n-3)-polyunsaturated fatty acids (PUFA) in the

phospholipid (PL) fraction of cod liver, and a significant reduction in brain cholesterol

(Meier et al. 2007). Similar findings have also been observed in fish near oil 

installations in the North Sea (Grøsvik et al. 2009; Balk et al. 2011, see Section 1.7).

1.1.1 In vivo study

During November and December 2008 an in vivo exposure experiment with Atlantic 

cod was performed at IMR. The treatment consisted of one, or a mixture of, 

pollutant(s). The feed was administered with a tube directly to the stomach of 

anaesthetized fish. The different treatments included branched or straight-chained 

para-substituted NPs, chlorinated pesticides, PCBs, PBDEs, PFOS and weathered 

crude oil from Troll. The doses which were given to the fish corresponded to realistic 

levels of fish from Norwegian waters (Paper 2, Paper 3). Each fish was given one 

weekly dose for 4 weeks. Extensive chemical analyses were performed on the sampled 

tissues. Uptake and metabolism of the POPs were assessed by determination of 

concentrations of PCBs, chlorinated pesticides, PBDE, PFOS and NPs in the liver. 

Bile metabolites of NPs and PAH were quantified. Lipids were extracted from the liver 

and separated into lipid classes for which the fatty acid distribution and cholesterol 

content was determined by GC-FID of the corresponding fatty acid methyl esters 

(FAME). The fatty acid distribution, total lipid and cholesterol content in the brains 
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were determined by GC-FID of FAME prepared by direct methylation. Liver mRNA 

was extracted to be studied by the reverse transcription polymerase chain reaction 

(RT-PCR) (Paper 2 and Paper 3) and a microarray (Paper 3). The focus in the

genomic study was on genes in the phospholipid biosynthesis, in phase I and II 

metabolism of xenobiotics and in antioxidant responses.

1.2 A brief introduction to lipids

Lipids constitute a large class of compounds that may be defined, as Christie does; as

“fatty acids and their derivatives, and substances related biosynthetically or 

functionally to these compounds” (Christie 2012). Other definitions also exist, often 

based on the (lack of) solubility in water for these compounds (Nelson & Cox 2008a).

Lipids have important roles in biological functions, e.g. as energy stores and 

components in membranes. The main lipid class used as energy storage in eukaryotic 

cells is triacylglycerol (TAG) also called triglyceride. TAG has a glycerol backbone 

with three fatty acids in ester linkages (Figure 1) (Fahy et al. 2005).

Figure 1: The molecular structure of a 
triacylglycerol with three saturated fatty acids 
attached to the glycerol backbone.

In biological membranes lipids form a semi-permeable bilayer. The lipids responsible 

for this structure are mainly phospholipids (notably the glycerophospholipids, Figure 

2) characterized by a polar/hydrophilic “head group” (Figure 3) and fatty acyl chains 

as hydrophobic “tails” (Nelson & Cox 2008b).
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Figure 2: Schematic figure of a typical glycerophospholipid. R and R’ denotes 
hydrocarbon chains. P-X bond denotes the bond to the oxygen in the hydroxyl group 
of choline (a), ethanolamine (b), serine (c), inositol (d) or glycerol (e) (shown in 
Figure 3).
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Figure 3: Molecular structures of a, choline; b, ethanolamine; c, serine; d, inositol;
and glycerol.

Cholesterol (Figure 4) is another important lipid component of membranes (Bach & 

Wachtel 2003). It is recognized as a lipid that yields a more ordered structure in the 
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membrane and plays an important role in the formation of lipid rafts (Mouritsen & 

Zuckermann 2004; Nelson & Cox 2008b).

Figure 4: The molecular structure of 
cholesterol.

1.2.1 Nomenclature

The simple convention for naming fatty acids, which is used in this thesis, is to specify 

the chain length and the number of double bonds (if any), separated by a colon, and to 

give the position of the first double bond in parenthesis, counting from the carbon at 

the opposite end of the carboxyl carbon (Nelson & Cox 2008a); an example is given in 

Figure 5.

Figure 5: The molecular structure of arachidonic acid (AA) (trivial name); or 20:4(n-6)
with the nomenclature convention used in this thesis.

Fatty acids are categorized by their degree of saturation. Saturated fatty acids (SFA) 

have no double bonds; mono-unsaturated fatty acids (MUFA) have one single double 

bond, whereas poly-unsaturated fatty acids (PUFA) have at least two double bonds.

The double bonds in natural PUFA are rarely conjugated, rather they are most often 

separated by a methylene group, and the double bounds usually occur in the cis-

configuration (Nelson & Cox 2008a).

OH

CH3 CH3

CH3CH3

CH3
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1.3 Biosynthesis of phospholipids

Altering of the membrane lipids in an organism after exposure to toxicants might 

indicate alterations of the regulating mechanisms of the phospholipid biosynthesis 

pathways. Environmental impacts e.g. temperature changes have been shown to affect 

enzymatic activity of the PL biosynthesis. Thus an overview of the main pathways for 

biosynthesis is shown (Figure 6). Biological phospholipids can either be synthesized 

de novo through the Kennedy Pathway, or by remodeling in the Lands’ cycle. In 

general, saturated and monounsaturated FAs are esterified at the sn1-position of a 

phospholipid, while PUFA are esterified at the sn2-position (Shindou et al. 2009b).

Figure 6: Overview of the two main pathways in phospholipid biosynthesis, the 
Kennedy (de novo) pathway and the Lands’ cycle (remodeling pathway). Red arrows 
indicate reactions catalyzed by acyltransferases, and green arrows indicate reactions 
catalyzed by phospholipases. The enzymes for the remaining reactions are 
described in the text. (This representation is based on figures in (Shindou & Shimizu 
2009a) and (Tocher et al. 2008).) 
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1.3.1 De novo pathway (Kennedy pathway)

The synthesis of phospholipids takes place near the membrane with either cytoplasmic 

or membrane-embedded enzymes (Moessinger et al. 2011; Vance & Vance 2004).

Phosphatidic acid (PA) is the “starting point” for the de novo synthesis of 

phospholipids. PA itself is synthesized from glycerol-3-phosphate (G3P) catalyzed by 

acyltransferases; reaction is shown below (with enzymes in brackets):

Glycerol-3-phosphate [glycerol-3-phosphate acyltransferase, GPAT]

Lysophosphatidic acid (LPA) [LPA acyltransferases, LPAATs]

phosphatidic acid (PA)

PA can either be dephosporylated to diacylglycerol (DAG) or it can be activated to 

CDP-diacylglycerol by CDP-diacylglycerol synthase (CDS). PC and PE are 

synthesized in the CDP-choline and CDP-ethanolamine pathways respectively, starting 

from DAG, and PI is made in a pathway from CDP-DAG and inositol catalyzed by a 

phospahtidylinositol synthase (PIS) (Tanaka et al. 1996; Yamashita et al. 1997; Zubay 

1998). There is not much information known about the regulation of PI synthesis 

(Hermansson et al. 2011). CTP: phosphocholine cytidyltransferase (CT) converts 

phosphocholine into CDP-choline, and in the final step of this pathway 

phosphocholine is transferred from CDP-choline to diacylglycerol by CDP-

choline:1,2-diacylglycerol cholinephosphotransferase (CPT) (Vance & Vance 2004).

The synthesis of PE has a similar pathway; CTP:phosphoethanolamine 

cytidyltransferase (ET) catalyzes the conversion of phosphoethanolamine to CDP-

ethanolamine which is further transferred to DAG by CDP-ethanolamine:1,2-

diacylglycerol ethanolamine phosphotransferase (EPT) to form PE. The CT and ET 

activity is regarded as the rate-limiting and thus regulatory step in the de novo

synthesis of PC and PE respectively, provided adequate amounts of DAG 

(Hermansson et al. 2011).  PS can be synthesized from PC or PE by exchange of the 

head group with L-serine (Lykidis 2007; Zubay 1998). The reaction is catalyzed by PS 

synthase-1 (PSS1) to convert PC or PS synthase-2 (PSS2) to convert PE, and it is 
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Ca2+-dependent (Zwingelstein et al. 1998a). Studies on mice have shown that only 

animals lacking both of the PS synthases are not viable but it can be sufficient to have 

only PSS1 or PSS2 to function normally. It is indicated that in normal tissues there are 

PSS in excess and that they are regulated by feed-back inhibition by the product, PS 

(Hermansson et al. 2011).   

1.3.2 Remodeling pathway (Lands’ cycle)

The fatty acid composition of biological phospholipids does not fully reflect the 

composition in their precursor PA (Yamashita et al. 1997), indicating that the 

phospholipid molecular species is a result of further remodeling of the acyl chains 

after the de novo synthesis. These reactions are catalyzed by phospholipases degrading 

the PLs to lysophospholipids (LPLs), and by acyltransferases and transacylases 

reacylating the lysophospholipids. This is also called a deacylation-reacylation cycle 

(Yamashita et al. 1997). The phospholipases are characterized by where they cleave 

the phospholipid: Phospholipase A1 (PLA1) remove FAs at the sn1-position of the PL 

while PLA2 remove FAs at the sn2-position. There also exists phospholipases C (PLC) 

and phospholipases D (PLD), respectively hydrolyzing the bond between the 

phosphate and the glycerol backbone, and the bond between the phosphate and the 

head group, though their roles in PL homeostasis are not as well-studied as the role of 

PLAs  (Hermansson et al. 2011). An example of the deacylation/reacylation cycle is 

the removal of fatty acids at the sn-2 position of PC by phospholipase A2 (PLA2) to 

yield lysophosphatidylcholine (LPC) followed by re-acylation by 

lysophosphatidylcholine acyltransferases (LPCAT) (Moessinger et al. 2011).

Phospholipases A2 degrades phospholipids and generates unsaturated free fatty acids 

(FFA) and lysophospholipids (LPL). At low concentrations FFA and LPL can be 

second messengers, but they are cytotoxic at higher concentrations. Lysophospholipids 

may alter membrane fluidity and permeability, or might be converted to bioactive 
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molecules; e.g. platelet activating factor, PAF. More than 30 different PLA2 enzymes 

have been characterized in mammals to this date (Murakami et al. 2011) and they have 

been subdivided into different classes (Farooqui et al. 1997; Murakami et al. 2011). A 

usual way of distinction is “the big three” protein families; secretory PLA2s (sPLA2)

that are low-molecular weight and Ca2+-dependent, cytosolic PLA2s (c PLA2) that are 

unique to vertebrate species, and Ca2+-independent PLA2s (i PLA2) (Murakami et al. 

2011). Some types of PLA2s do not fit into either of the aforementioned families e.g. 

because they are unique for lysosomes or adipose tissue, or substrate-specific to PAF 

(Murakami et al. 2011).

Acyltransferases and transacylases in Lands’ Cycle

Transacylases catalyzes the reactions where fatty acids (acyl chains) are transferred 

from glycerophospholipids (phospholipids or lysophospholipids) to lysophospholipids 

to form new molecular species of phospholipids. There exists CoA-dependent and 

CoA-independent transacylase systems, and lysophospholipase/transacylases (Jackson 

et al. 2008; Yamashita et al. 1997). Acyltransferases transfers the acyl chain of an 

acyl-CoA to a lysophospholipid (Yamashita et al. 1997). Lysophospholipid 

acyltransferases (LPLATs) are divided into two different protein family groups, the 

acylglycerophosphate acyltransferases (AGPAT) and the membrane bound O-acyl 

transferases (MBOAT) (Hermansson et al. 2011). Some of the LPLATs are substrate-

specific (e.g. LPIAT1 and LCLAT1) while others are able to acylate 

lysophospholipids with several different head groups; e.g. LPCAT3 and LPCAT4 may 

use LPE and LPS as well as LPC as substrates (Hermansson et al. 2011). Less is 

known about the other enzymes involved in the remodeling of LPLs, namely the 

proteins constituting CoA-independent acyltransferases and transacylases. The 

transacylases catalyzes reactions between PLs, “sending” an acyl group from one PL 

to another. The CoA-independent transacylase (CoA-IT) is often involved in 

transferring acyl chains from PCs to PE plasmalogens (Astudillo et al. 2011). Little is 

known about the regulation of LPLATs to this date (Hermansson et al. 2011).
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Regulatory coordination in PL metabolism

The cross-regulation of the biosynthesis of the various PL classes is complex and not 

fully understood (Hermansson et al. 2011). Regulation of the pathways synthesizing 

PC, PE and PS or PI, phosphatidylglycerol (PG) and cardiolipin (CL) may happen at 

the step where PA is converted to DAG. Furthermore when the synthesis of PC or PE 

is inhibited, more TAG is produced from DAG. It is believed that the CPT/EPT 

reactions in the synthesis of PC/PE are reversible, thus making the bifunctional CEPT 

a regulatory mechanism, being able to convert PC back to DAG and further to PE 

when the PC levels are too high, or vice versa (Hermansson et al. 2011). There is 

evidence for cross-regulation of the pathways in which PE is synthesized (in 

mammals), the de novo (Kennedy) pathway and the decarboxylation of PS (see 

below). The total content of negatively charged PL species in the membrane seems to 

be regulated to maintain a constant charge of the membrane (Hermansson et al. 2011).

Phospholipid interconversions

The PE-to-PC-pathway (by methylation) is restricted to liver cells in mammals 

(Hermansson et al. 2011; Zubay 1998), and it has also been shown in hepatic cells in 

rainbow trout (Zwingelstein et al. 1998b). PE can be methylated to form PC in hepatic 

cells by the enzyme phosphatidylethanolamine N-methyltransferase (PEMT) (Vance & 

Vance 2004) using S-adenosylmethionine as a methyl donor (Sundler & Akesson 

1975; Zwingelstein et al. 1998b). Zwingelstein and co-workers showed that this 

conversion to PC was significantly slowed down in rainbow trout (Oncorhynchus 

mykiss) and European eel (Anguilla anguilla) when acclimated to high temperatures 

(Zwingelstein et al. 1998b).

PE can be synthesized by decarboxylation of PS catalyzed by PS-decarboxylase (PSD) 

(Vance & Vance 2004), an enzyme situated at the inner mitochondrial membrane 

(Hermansson et al. 2011). The rate-limiting step of this pathway is not the PSD 

activity but is rather considered to be the transport of PS from the endoplasmic 

reticulum (ER) and its subcompartment mitochondria-associated membranes (MAM) –
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where PS is synthesized- to the mitochondria (Hermansson et al. 2011). However the 

decarboxylation pathway may be up-regulated when the CDP-PE pathway is 

compromised.

Desaturases and elongases

Fatty acid acyl chains may be modified by elongation with elongases, and by 

introduction of double bonds in the acyl chain with desaturases. In the elongation of a 

fatty acid, 2-carbon-units are added to a fatty acyl-CoA. Malonyl-CoA functions as the 

donor of 2-carbon-units, and NADPH is the reducing agent. The elongation 

mechanism involves four separate enzymatic reactions; condensation, reduction, 

dehydration and reduction (Guillou et al. 2010) where the rate-limiting step is the first 

condensation reaction, catalyzed by elongase enzymes (Elongation of very-long chain 

fatty acids (ELOVLs)). Seven ELOVLs are known to this date. ELOVL1, 3 and 6-7 

prefer saturated and monounsaturated FAs as substrates while ELOVL2 and 4-5 prefer 

PUFAs. Some of the Elovl genes (Elovl1, 5 and 6) are expressed ubiquitously while 

others are tissue-specific (Guillou et al. 2010). Marine teleosts, including Atlantic cod, 

appear to lack the ELOVL2 enzyme that elongates C20 and C22 HUFAs and which is 

thus an essential enzyme for the synthesis of 22:6(n-3) (Monroig et al. 2011).

ELOVL4 proteins have been characterized in zebrafish and are, in contrast to the 

human ELOVL4, able to participate in the synthesis of 22:6(n-3) as it can convert 

22:5(n-3) to 24:5(n-3) (which can then be desaturated and shortened) (Monroig et al. 

2010).

-CoA desaturases 

(SCDs) and fatty acid desaturases (FADS). SCDs add a single double bond at position 
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18:2(n-6) and 18:3(n-3) are essential fatty acids (EFA) for all vertebrates including 

- -desaturases, and vertebrates must thus obtain

the EFA from the diet (Tocher 2003).

The EFA are precursors for the physiologically important PUFAs such as 20:4(n-6), 

20:5(n-3) and 22:6(n-3). Carnivores, that can eat other animals with high (enough) 

levels of the HUFAs, often have little or no ability to themselves synthesize the HUFA 

from 18:2(n-6) and 18:3(n-3). While freshwater fish species have evolved to be able to 

synthesize the HUFAs because of lack of these FAs in their diet, marine fish 

surrounded by HUFA-rich zooplankton have not “needed” this (Tocher 2003). So far, 

-FAD found in Siganus canaliculatus (Li et al. 2010),

-FAD has not been isolated from a marine fish species (Monroig et al. 2011), a fact 

that has led to a hypothesis that some fish are not able to biosynthesize HUFA because 

of lack of certain genes in the biosynthesis pathway (Zheng et al. 2009) -

FAD has been isolated from all fish species studied, including Atlantic cod, but the 

activity and expression of this enzyme and gene is very low for cod compared to 

salmon (Tocher et al. 2006; Zheng et al. 2009).  Also, while the salmon’s expression 

-FAD is regulated by the diet, with a low-HUFA-diet leading to up-regulation of 

the FAD, no such correlation is seen for cod (Tocher et al. 2006). Recently a third 

-FAD, have been isolated from a vertebrate for the first time, namely the 

herbivorous marine fish Siganus canaliculatus, indicating a more direct route for the 

biosynthesis of 22:6(n-3) from 22:5(n-3) (Li et al. 2010). Stimulation of desaturase 

activity when the membrane fluidity decreases, is proposed to be one of the 

mechanisms behind the regulation of membrane fluidity in homeoviscous adaptation 

(section 1.4) (Hulbert & Else 1999).

Arachidonic acid (AA) - a precursor to the eicosanoids

Arachidonic acid (Figure 5), a reaction product after PLA2-catalyzation, metabolizes 

into eicosanoids. Eicosanoids are hormones, or hormone-like compounds, with local 

effects, targeting the cell where they are made or different neighboring cells, and 
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mediated through specific cell surface receptors (Zubay 1998). The eicosanoids are 

involved in inflammation, fever and pain (Funk 2001). The mechanisms of eicosanoid 

action are complex, e.g. depending on the context, prostaglandins may be both pro-

and anti-inflammatory (Funk 2001; Stables & Gilroy 2011). Prostaglandins also evoke 

hyperalgesia (i.e. increased pain sensitivity). AA is found in the membrane, normally 

at the sn2-position of PLs. The amount of free AA depends on two competing 

regulatory reactions; the deacylation of PLs by PLA2s and the reacylation by 

acyltransferases and transacylases. In a resting cell the acyltransferase mechanism is 

dominating, whilst the PLA2-catalyzed degradation dominates in an active and 

stimulated cell (Astudillo et al. 2011; Balgoma et al. 2010). The CoA-independent 

transacylase  system might also be active in a stimulated cell (Astudillo et al. 2011). In 

addition there exist lipid mediators that have EPA and DHA as precursors, resolvins 

(from both) and protectins (from DHA) (Stables & Gilroy 2011). These signal 

molecules reduce cardiovascular disease and the inflammations associated with it 

(Stables & Gilroy 2011).

Peroxisome proliferator-activated receptor (PPAR)
PPARs comprise a subfamily of nuclear receptors that are lipid-related transcription 

factors that might be activated also by xenobiotic molecules. 

bind with the retinoid X receptor (RXR) to peroxisome proliferator 

response elements in genes. Fatty acids are the natural ligands for PPARs, but might 

also be responsive to POPs (Hahn et al. 2005). PPARs activate genes related to lipid 

metabolism, e.g. in fatty acid oxidation. -inflammatory (Ahmed 

et al. 2007; Arzuaga et al. 2007; Zambon et al. 2006; Zandbergen & Plutzky 2007).

1.4 Thermal acclimation in fish- effects on the membrane 
lipids

The membrane fluidity is an important property that may be defined as “a 

measurement of the relative mobility of the phospholipid bilayer of the cell membrane. 

The fluidity of membranes allows movement within the plane of the membrane, 
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providing the basis for lipid-lipid, lipid-protein and protein-protein interactions “(Hu 

et al. 2003). The membrane fluidity is a structural property that depends on the 

composition of the membrane, e.g. the ratio of cholesterol to phospholipids, and the 

ratio of saturated to un-saturated fatty acids. Fluidity is higher in a membrane with low 

ratios (cholesterol/phospholipids and saturated/unsaturated fatty acids) than in a 

membrane with the opposite properties. The transcriptional regulation of the 

biosynthesis of several lipids in the membrane is dependent of the physical state of the 

membrane (by feed-back signals) (Thewke et al. 2000).

The phospholipid cell membrane in poikilothermic organisms, including fish, is plastic 

to environmental impacts caused by thermal change. This plasticity has been explained 

by compensations of altering physical properties of the membrane such as fluidity. It 

has been hypothesized that the fluidity change in a PL membrane when exposed to 

POPs is analogous to the fluidity change when environmental temperature changes 

(from cold to warm) (Meier et al. 2007) thus an overview of the effects of temperature 

change in poikilotherms are given in the following. 

Homeoviscous adaptation (HA) is a concept that has been used about biological 

membranes for decades (Sinensky 1974) in the context of ambient temperature 

changes. Poikilothermic organisms are able to regulate the composition of the 

membrane in order to maintain homeostasis and constant optimal viscosity of the 

membrane (Cossins & Prosser 1978).This means that the bulk property of the 

characteristic membrane fluidity remains the same. This is observed by e.g. change of 

the saturation degree or length of the acyl chains in the membrane lipids (Sinensky 

1974) or by change in the head groups of the phospholipids (Pruitt 1988; Tocher 

1995). There are both short-term “emergency” mechanisms and long term 

compensation to thermal acclimation. The mechanism(s) behind the HA seen in a large 

range of animals are not well known, but are believed to be common for the different 

species (Crockett 2008). Although there are also exceptions to the “rule” of 

homeoviscous adaptation, e.g. lack of HA in sarcoplasmic reticulum, and the 
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adaptation is not always perfect, HA is present in species from bacteria to animals 

(Hulbert & Else 1999). Aspects of membrane remodeling with temperature change that 

are not fully explained by HA include the accumulation of PUFA at cold temperatures 

(monoenes have approximately the same transition temperatures as PUFA, and are 

thus more effective per double bond) and increases of membrane-stabilising lipids 

when temperature decreases. This proves that HA cannot explain all the changes that 

happen in the membrane when temperature changes, but HA still is a paradigm that 

may explain much of the membrane alterations (Hazel 1995).

There are both short-term (“emergency”) mechanisms of thermal acclimations (within 

hours) and the slower acclimatory thermal compensation that might be seen in 

seasonal fluctuations in temperature.

The de novo synthesis of phospholipids adapts its product to temperature, but is also 

slowed down when the temperature decreases. The remodeling pathway is faster (more 

energy-effective) and the simple reshuffling of already existing fatty acyl chains in the 

membrane to form new molecular species is able to alter the membrane fluidity. This 

has been shown for trout hepatocytes after only 6 hours cold acclimation (Williams & 

Hazel 1994).

Another membrane effect that occurs after short time is a change in the PC/PE-ratio, 

which is decreased when the temperature decreases. The reason for this decrease can 

be that de novo synthesis of PE is less sensitive towards temperature than PC 

synthesis. Also decarboxylation of PS to PE is increased while the methylation of PE 

to PC in some cases is decreased as the temperature drops (Williams & Hazel 1994).

However the PE-to-PC-methylation is not always positively correlated with 

temperature (Hazel & Williams 1990; Zwingelstein et al. 1998b) It is not straight-

forward to explain a decrease in PC/PE ratio with cold-acclimation in light of the 

membrane fluidity. The phase transition temperatures of PC are generally lower than 

the fatty acids analogs of PE (Pringle & Chapman 1981; Silvius 1991) and studies of 

artificial lipid bilayers with homogenous SFA composition show more fluid bilayers at 
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low temperatures for PC-head-groups than for the PE analogs (Pringle & Chapman 

1981; Pruitt 1988). It has also been shown that methylation of PE (to PC) increases the 

membrane fluidity in rat erythrocytes (Hirata & Axelrod 1978). A change in the PC/PE 

ratio may be an adaptation of membrane function to maintain an optimal balance of the 

membrane-stabilizing and –destabilizing lipids; PE tends to decrease the order of a 

lipid bilayer as it prefers a conical rather than a cylindrical geometry (Williams & 

Hazel 1994).  It has also been hypothesized that the small head group size and anionic 

character of PE makes it able to interact with small molecules (e.g. small sugars) that 

increase membrane fluidity (Pruitt 1988).

The slower process of acclimating thermal compensation demands several days to 

weeks to function and is a helpful tool for poikilothermic organisms to cope with 

seasonal changes. The main characteristic of cold acclimated poikilotherms is an 

increased level of PUFA. The desaturase system does not work as an emergency HA 

as it needs days to desaturate SFA and MUFA to PUFA at low temperatures (Williams 

& Hazel 1994). -desaturase transcription after cold-acclimation 

has been shown for several fish species (Logue et al. 1995; Williams & Hazel 1994; 

Wodtke & Cossins 1991; Zerai et al. 2010).

1.5 Persistent organic pollutants (POPs)
POPs may be defined as  “organic substances that possess toxic characteristics in

a broad sense, are persistent, bioaccumulate, are prone to long-range

transboundary atmospheric transport and deposition, and are likely to cause

significant adverse human health  or environmental effects near to and

distant from their sources” (Ballschmiter et al. 2002). The use of many

“classic” POPs such as organochlorine pesticides and PCBs were banned or 

restricted in the 1970’s in most Western countries and were globally banned 

by the Stockholm Convention on POPs in 2001 (Muir & Howard 2006).

More POPs were added to the list in 2009, e.g. certain polybrominated 

diphenyl ethers (PBDE) congeners and perfluorooctanesulfonic acid (PFOS) 
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(United Nations Environment Programme 2009). However due to their 

persistent nature background levels of these compounds are still found in 

biological tissues in the marine environment (Cleemann et al. 2000; Julshamn 

et al. 2004; Voorspoels et al. 2004). Substances like PCBs may also still be 

released to the environment from pollutant-containing equipment that is still 

in use and from waste disposal and marine sediments contaminated from 

historic pollution (OSPAR 2010).

POPs comprise a large group of many thousand chemicals that may be further 

divided into several subgroups of compounds, such as the 209 PCB 

congeners. However, they have several important characteristics in common. 

POPs are characterized by relatively long half-lives in biota, sediments or air. 

These compounds are hydrophobic and lipophilic, and often resistant to 

metabolism rendering them prone to accumulate in the food chain. In the 

marine environment POPs prefer partitioning to solid organic matter rather 

than water, and in biota POPs stores in fatty tissues. POPs can be volatile and 

vaporize making them prone to atmospheric long-range transport. 

Reproductive impairment and carcinogenicity were among the first described 

effects of POPs (Jones & de Voogt 1999; Tyler et al. 1998) and later other 

effects such as neurotoxicity and endocrine disruption have been shown 

(Colborn 2004; Diamanti-Kandarakis et al. 2009; Fonnum & Mariussen 

2009).

The following is an overview of representative POPs found in the 

environment with a description of their biological effects. Molecular 

structures are shown in Figure 7. This is merely a short overview; thorough 

reviews are given elsewhere (e.g. (Darnerud 2003; Lau et al. 2007; Reynaud 

& Deschaux 2006; Safe 1994; Servos 1999; Smith 1991). The effects of these 

compounds on biological membranes are treated separately in Section 1.6 (in 

vitro effects) and Section 1.7 (in vivo effects).
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Figure 7: Molecular structures of POPs included in this study; a, polychlorinated 

biphenyl (PCB); b, dichlorodiphenyltrichloroethane (DDT); c, 

dichlorodiphenyldichloroethane (DDD); d, dichlorodiphenyldichloroethylene (DDE); e, 

lindane; f, chlordane; g, toxaphene; h, polybrominated diphenyl ether (PBDE); i, 

perfluorooctanesulfonic acid (PFOS); j, phenanthrene, a polyaromatic hydrocarbon 

(PAH); k, 4-(2,4-dimethylheptan-3-yl)phenol which is an example of a 4-tert-

nonylphenol (4-tert-NP); and l, 4-n-nonylphenol (4-n-NP).



30

1.5.1 Polychlorinated biphenyls (PCBs)

There are 209 possible PCB congeners (Figure 7a), although a mere 36 of them are 

environmentally relevant. PCBs were introduced in the 1920’s and gained popularity 

as e.g. capacitors, plasticizers in paint and transformer fluids (Kimbrough 1995). Even 

though the use of PCBs was banned in Western Europe in the 1980’s it is still found 

in, and released to, the marine environment. Current sources of PCB contamination 

include waste disposals and releases from sediments (OSPAR 2010). PCBs are 

immuno- and neurotoxic, carcinogenic and affect the reproductive, developmental and 

endocrine systems (van den Berg et al. 1998). Toxicity differs for different PCB 

isomers, and especially ortho-substitution may determine toxicity. Non-ortho-

substituted PCBs may have a co-planar configuration and are often referred to as 

dioxin-like, with biological effects similar to the toxicologically potent dioxins. The 

effects are mainly caused by interaction with the aryl hydrocarbon receptor (Safe 

1994).  The aryl hydrocarbon receptor is a transcription factor that induces phase I and 

II metabolism of xenobiotics (Ko et al. 1996). However, ortho-substituted PCBs are 

non-planar and their toxicities may be mediated by a different biological mechanism 

than the coplanar PCBs (Ganey et al. 1993; Tan et al. 2003; Voie et al. 2000a; Voie & 

Fonnum 2000b). It has been suggested that the effects of ortho-substituted PCBs are 

due to disruption of the lipid membrane (Campbell et al. 2008; Nishihara et al. 1985; 

Nishihara et al. 1992; Tan et al. 2003; Tan et al. 2004).

1.5.2 Organochlorine pesticides

Many effective pesticides, such as dichlorodiphenyltrichloroethane (DDT), lindane, 

chlordane and toxaphene are organohalogens. Their use is banned in most of the 

world, but there are restricted exceptions such as the use of DDT (Figure 7b) in 

malaria protection (Eskenazi et al. 2009).
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Technical DDT formulations typically contained about 77 % of the para-para’ 

substituted isomer (p-p’-DDT) with the remainder including para-ortho substituted 

isomers and the DDE (Figure 7d) and DDD (Figure 7c) analogs. Sublethal doses of 

DDT exposure cause effects on the nervous system, the reproductive system and is 

found to be mutagenic and carcinogenic (Smith 1991). DDT and metabolites may act 

on the estrogenic receptor (Klotz et al. 1996) or through other transcription factors e.g. 

activator protein1 (Frigo et al. 2002).

- -HCH, Figure 7e) is an insecticide. By the year 

2000 most Western European countries (the Oslo-Paris (OSPAR) Commissions) had 

phased out the use of lindane together with five other priority pesticides. The current

marine and atmospheric levels of lindane are reduced, however some local “hotspots” 

remain (OSPAR 2010). Lindane may also affect nervous and reproductive systems in 

addition to carcinogenic effects (Smith 1991).

Chlordane (Figure 7f) is a chlorinated cyclodiene and has a cis- and a trans- isomer 

that metabolize with different efficiency (Murphy & Gooch 1995). Chlordane is 

structurally similar to other cyclodienic pesticides like dieldrin and endosulfan, and its

biological effects are similar to those of other chlorinated hydrocarbon pesticides 

(Smith 1991). Chlordane-related metabolites (oxychlordane) may be more potent

toxicants than chlordane itself (Gooch et al. 1990).

Toxaphene (Figure 7g) is a complex mixture of more than 200 different 

polychlorinated camphenes that historically has been used as an insecticide and 

piscicide (control of undesired fish stocks) (de Geus et al. 1999; Smith 1991).

Toxaphene is not thermostable as it can dehydrochlorinate. As other organochloric 

pesticides toxaphene has been shown to have reproductive, behavioral and 

carcinogenic effects (Smith 1991).
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1.5.3 Polybrominated diphenyl ethers (PBDEs)

Brominated flame retardants have been and are used in products such as polyurethane 

foams and adhesives and constitute a large group of chemicals. Commercially 

available mixtures of polybrominated diphenyl ether (PBDE) include PentaBDE 

(mostly tetra-, penta-, and hexaBDE congeners), OctaBDE (mostly heptaBDE plus 

hexa- and octa-BDEs) and DecaBDE (primarily the fully brominated BDE congener) 

(de Wit et al. 2010). The penta- and octa-BDE have been considered the most 

potentially hazardous substances in this group of chemicals and have been banned by 

the Stockholm Convention on POPs.  However, the regulation of other flame 

retardants such as deca-BDE and hexabromocyclododecane (HBCD) has been less 

strict (OSPAR 2010). PBDEs are still found in the marine environment and are also 

subjects to long-range transport to the Arctic areas and tend to bioaccumulate in top 

predators (Boon et al. 2002; de Wit et al. 2010; Law et al. 2006; Voorspoels et al. 

2003). PDBE (Figure 7h) can act through the aryl hydrocarbon receptor and the 

hydroxylated metabolites of PBDE may cause endocrine disruption through the 

thyroid system (Fowles et al. 1994; McDonald 2002; Meerts et al. 2000; Zhou et al. 

2001). PBDE might also cause neurotoxic and reproductive effects (de Wit et al. 

2010). PBDE have been shown to disrupt the Ca2+ homeostasis (Coburn et al. 2008)

and to stimulate release of arachidonic acid by a mechanism dependent on 

phospholipase A2 (Kodavanti & Derr-Yellin 2002) in rat brain.

1.5.4 Perfluorooctanesulfonic acid (PFOS)

Poly- and perfluorinated compounds (PFCs), like PFOS (Figure 7i), are stable 

molecules with water- and oil-repelling properties that are used in a large 

range of commercial products and in the industry. Their stability is due to the 

strong carbon-fluor-bonds. PFOS have been found in sewage sludge from 

wastewater treatment plants (Bossi et al. 2008; Kallenborn et al. 2004) but 

also in remote Arctic areas (Bossi et al. 2005; Butt et al. 2010; Young et al. 

2007). PFOS have effects on the gene transcription in fish, notably genes 

related to energy metabolism in carp, (Hagenaars et al. 2008) and genes 
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related to stress responses, the Cytochrome P450 (CYP) family (phase I 

metabolism), phase II metabolism enzymes, lipid metabolism and ion 

regulation in salmon hepatocytes (Krovel et al. 2008).

1.5.5 Alkylphenols

Alkylphenols (APs, Figure 7k-l) are widespread xenobiotics found both in freshwater 

and coastal marine water all over the world (David et al. 2009; Servos 1999). The

main environmental concern has been on the AP degradation products from non-ionic 

surfactants; alkylphenol ethoxylates (APE), nonylphenol (NP) and octylphenol (OP) 

(Ying et al. 2002). Nonylphenols have been shown to be among the molecular species 

in this group with the most toxic effects (Kvestak & Ahel 1994; Mcleese et al. 1981; 

Meier et al. 2007; Nimrod & Benson 1996; Staples et al. 2004). NP and OP have been 

reported in high concentration in marine sediment (up to 20 mg/kg), seawater (up to 4 

μg/l) and marine biota (up to 1500 μg/kg) (David et al. 2009). APs are also found as 

natural compounds in crude oil and are discharged to the marine environment through 

produced water from of offshore oil production (Boitsov et al. 2007; Ioppolo-

Armanios et al. 1992). The APs in produced water are by far dominated by short-chain 

APs (C1-C3), and they can be found in concentrations up to 50 ng/L around oil fields in 

the North Sea, while the long-chain APs (C4-C9) which constitute approximately 2 % 

of the total APs in produced water are not detected in seawater around the oil 

platforms (Harman et al. 2009). In 2010, approximately 0.3 tons of long-chain (C6-C9)

APs were released in the produced water from the oil installations on the Norwegian 

shelf (Oljeindustriens Landsforening (OLF) 2011).

APs are identified to be xenoestrogens that can bind to the estrogen receptor (ER), and 

substantial amounts of evidence indicate that APs cause endocrine disruption in fish 

(Meier et al. 2011; Nimrod & Benson 1996; Servos 1999; Tollefsen & Nilsen 2008).

Independent of the estrogenic pathways, APs can also induce biological effects by 

interfering with cell membranes. APs are amphipathic molecules with hydrogen bond 
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donor properties and this gives them high affinity to phospholipid membranes (Kwon 

et al. 2006; Nakane & Kubo 2009; Yamamoto & Liljestrand 2004).

1.5.6 Oil hydrocarbons: PAHs

Release of oil hydrocarbons to the environment might be categorized as either chronic 

or acute. Oil can be released to the sea from produced water discharges and an average 

concentration of approximately 15 mg/L dispersed oil is reported in produced water 

released from oil installations at the Norwegian Continental Shelf. The total release of 

oil from the Norwegian petroleum industry was 1563 tons in 2010 according to 

(Oljeindustriens Landsforening (OLF) 2011).

Accidental oil spills are also sources of crude oil releases to the environment. After a 

spill, the oil is subject to a weathering process, i.e. the combination of processes such 

as spreading  of the spill, evaporation of volatile constituents in the oil, water/oil 

emulsifications, natural dispersion of oil in water, sedimentation, photo-oxidation and 

dissolution. Microbial degradation plays an important role in the degradation of spilled 

oil. Crude oils consist primarily of hydrocarbons but are complex mixtures that might 

also contain trace metals in addition to nitrogenous, sulphurous and oxygenic 

compounds (AMAP 2010). Biological effects such as oxidative stress, genotoxicity, 

lipid alteration and induction of biotransformation enzymes are observed in wild fish 

near oil installations in the North Sea (Balk, 2011) and in controlled laboratory 

experiments (Meier et al. 2007; Holth et al. 2009; Lie et al. 2009).

Polycyclic aromatic hydrocarbons (PAH, Figure 7j) found in crude oil are dominated 

by the small two- and three-ringed PAH and their alkylated derivatives, normally 

named NPD (=sum of naphthalene, phenanthrene, dibenzothiophene, and their C1-C3 

alkylated homologs). The NPDs are considered to play a very important role in the 

toxicity to fish, even though it is also recognized that they do not explain the total 

toxicity, and there are many other toxic compounds in crude oil (Barron et al., 1999;

Neff et al., 2000; Incardona et al., 2004; Melbye et al., 2009). The heavy 4- and 5-

ringed PAH that have been identified to have carcinogenic and mutagenic properties 
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(Varanasi, 1980; Varanasi, 1982) are only present in very low levels in crude oil and 

originate mainly from combustion of organic material (Lima et al., 2005). Recognized 

biomarkers of PAH contamination in fish are the presence of PAH metabolites in bile, 

induction of CYP1A (measured as 7-ethoxy-resorufin-O-deethylation (EROD)

activity) in liver and DNA adducts in liver (Aas et al. 2000; Stagg 1998). The 

elimination of PAH through metabolism is efficient in fish, and PAH do not tend to 

bioaccumulate to the same degree as e.g. organohalogenated POPs (Tuvikene 1995; 

van der Oost et al. 2003).

1.6 In vitro effects of POPs, oil and alkylphenols on 
membrane lipids

Several studies showing membrane disrupting effects of POPs in vitro are found in the 

literature, and an overview of the scientific literature on the subject is given in 

Supplementary data, Table A1.

1.6.1 PAHs

Monolayers of DOPC can be penetrated by PAHs, according to a study with 

(Nelson 1987). Korchowiek and co-workers studied monolayers of several disaturated 

model phospholipids exposed to five different PAHs (Korchowiec et al. 2008). They 

found that the monolayers were more expanded and in some cases were more liquid-

like when in presence of PAHs. It was the largest molecule in -

pyrene that had the most severe effects. Several other studies have confirmed 

increased lipid membrane fluidity (Engelke et al. 1996) and decreased phase transition 

temperatures (Jimenez et al. 2002) after exposure to PAHs. (Weinstein et al. 1997) 

showed that ultrastructure (in gill cells of fathead minnow) can be altered by PAH 

(fluoranthene) e.g. by inducing the formation of lipid droplets.
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1.6.2 APs

Membrane effects such as membrane swelling, increase in fluidity, lowering of the 

phase transition temperature, increased ion permeability and mitochondrial 

depolarization are found both for ortho-substituted APs (James & Glen 1980; Lanigan 

& Yamarik 2002; Singer 1977; Tsuchiya 2001) and para-substituted  APs (Bragadin et 

al. 1999; Gong et al. 2008; Haavisto et al. 2003; Lamche & Burkhardt-Holm 2000; 

Xiao et al. 2011; Yao et al. 2006).

Increased membrane fluidity and disorder was shown in testicular Sertoli cells from rat

(Gong et al. 2008). Morphological changes such as membrane swelling and an 

increased number of lipid particles have been shown in gill cells from the flounder 

(Paralichthys olivaceus) after exposure to NP (Xiao et al. 2011). Vesiculation of the 

Golgi apparatus has been shown in epidermis culture from rainbow trout after NP 

exposure (Lamche & Burkhardt-Holm 2000). In previous studies at IMR the Langmuir 

monolayer technique has been used to show that low concentration of different APs, 

from butylphenol to NP, increase the molecular areas of phospholipid monolayers, 

indicating that APs give a “looser packing” of the lipids and more fluid monolayer 

(Meier et al. 2007).  The strongest effects were found for 4-n-NP. The branched 

isomers of NP, which are the most environmental relevant NPs, were not tested.

There are a number of reports from several groups showing that NPs have direct 

effects on membrane physical properties. Gong and co-workers (Gong et al. 2008)

found that in rat testicular Sertoli cells the membrane fluidity increased and the 

microviscosity and molecular order decreased after exposure to 10, 20 and 30 μM NP. 

No significant effects were found at 0.1 and 1 μM NP. APs have earlier been found to 

have effects on the cell ultrastructure. NP is able to alter the cell morphology by 

swelling and increasing the number of lipid particles (Xiao et al. 2011) and induce 

vesiculation of the Golgi apparatus (Lamche & Burkhardt-Holm 2000). By enhancing 

the permeability of protons through the mitochondrial membrane, NPs are 

mitochondrial uncouplers that inhibit the ATP synthesis in mitochondria (Bragadin et 
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al. 1999). APs (C4 and C8) have also been shown to induce formation of lamellar 

bilayers in lipid droplets in rat Leydig cells and other morphological changes 

(Haavisto et al. 2003). NP ethoxylates are similarly found to change the ultrastructures 

of membrane compartment in amphibian heart induced by destabilization of the 

membrane lipids (Perrotta & Tripepi 2012). Watanabe et al. found that several genes 

in the lipid and fatty acid metabolism, e.g. acetyl-CoA-acyltransferase, were activated 

by nonylphenol but not estradiol, suggesting a mechanism independent of endocrine 

effects (Watanabe et al. 2004).

1.6.3 Halogenated POPs

Bonora and co-workers showed decreased melting temperature in DPPC(16:0/16:0-

PC) liposomes with Aroclor 1254, a technical PCB-mixture (Bonora et al. 2003).

Campbell and co-workers found that a di-saturated phospholipid bilayer that was 

added an ortho-substituted PCB (PCB-52) had two melting points whereas the non-

ortho-substituted PCB (PCB-77) only had one, and proposed a model where the 

substitution pattern of the PCB is what determines the interaction with a lipid bilayer, 

suggesting that there is a stronger lipid-PCB interaction with an ortho-substituted PCB 

than for the co-planar “dioxin-like” PCBs (Campbell et al. 2008). Lindane, a 

hexachlorocyclohexane and pesticide, increased the membrane fluidity in model 

bilayers of DMPC (14:0/14:0-PC) and DMPE (14:0/14:0-PE) and seemed to prefer the 

inner leaflet of the human erythrocyte membrane (Suwalsky et al. 1998). Another 

chlorinated pesticide, DDT, decreased the melting points of model liposomes with 

DMPC and DMPE, and seemed to prefer the external layer of the liposome bilayer 

(Bonora et al. 2008).  Endosulfan is an organochloric insectide and Differential 

Scanning Calorimetry - -isomers both decrease the phase 

transition temperature on model phospholipid bilayers (DPPC) (Videira et al. 1999).

Also fluorinated POPs can have effects on membranes. Hu and co-workers found 

increased membrane fluidity in fish leukocytes exposed to perfluorooctane sulfonic 

acid (PFOS) (Hu et al. 2003). Model phospholipid monolayers studied by means of the 

Langmuir technique also show increased fluidity when exposed to PFOS and 
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perfluorooctanoic acid (PFOA); the molecular area of the lipids are increased, and the 

phase transitions less pronounced (Matyszewska & Bilewicz 2008a; Matyszewska & 

Bilewicz 2009; Matyszewska et al. 2010). PFOS have greater effect than PFOA on the 

model monolayers (Matyszewska & Bilewicz 2008a). The poly-brominated diphenyl 

ethers (PBDEs) causes injuries related to cellular oxidative stress, mitochondrial 

damage and apoptosis (cell death) in rainbow trout gill cells (Shao et al. 2010).

In common for many of the in vitro studies mentioned here, is the relative high 

pollutant:lipid ratio in the systems studied, concentrations in the magnitude of 10 mol 

% PCB to lipid may not be environmentally relevant. 

Relevance of alterations in membrane composition
There are different scenarios when a compound with potential membrane-altering 

effects is introduced to the membrane. Changes in the physical properties of the 

membrane and undesired variations in the permeability of the membrane can occur 

(Hu et al. 2003; Nelson 1996; Videira et al. 2002). Cellular functions such as carrier-

mediated transport, membrane-bound enzymes and receptors might be altered when 

the membrane lipid composition is modified (reviewed in (Spector & Yorek 1985)).

The consequences of membrane alterations are not always given, however, membrane 

lipid synthesis is under strict regulation and each type of membrane has its own 

characteristic composition (Stubbs & Smith 1984; Nelson & Cox 2008c) indicating 

that an optimal composition of the membrane is important for living organisms

(Dowhan, 1997; Piomelli et al., 2007; Van Meer et al., 2008; Khalil et al., 2010).

1.7 In vivo effects of POPs, oil compounds and alkylphenols 
on membrane lipids

There are relatively few studies addressing the in vivo effects that xenobiotic pollutants 

have on biological membrane lipids. An overview of previously published reports on 

the subject is given in the Supplementary data, Table A2.
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Dey and co-workers report significant differences in the lipid class composition in cod 

liver after the fish had been exposed to crude oil over 24 weeks with total hydrocarbon 

concentration 100-200 ppb (Dey et al. 1983). However, the lipid class composition 

that is reported for the control group deviates largely from other (and more recent) 

published reports. Dey et al. reports the mean total phospholipid content to be more 

than 25% of the total lipids whilst the triglycerides mean are reported to be a mere 35 

% of the total lipids. In comparison Meier et al. found that neutral lipids/triglycerides 

and phospholipids constituted approximately 95 % and 1.3% respectively of the total 

lipids (Meier et al. 2007). Bell et al. also found similar lipid class distribution; with 

neutral lipids constituting more than 98 % of the total lipids in cod liver (Bell et al. 

2006). Thus the results of Dey et al. may really tell us more about the technological 

development over the last 3 decades than about actual effects of oil pollution on lipid 

class composition in cod liver. Dey et al. also show the distribution of the FAME of 

the total lipids in the male cod liver, with large differences between control and 

exposed groups, notably an increase in the SFAs 14:0, 16:0 and 18:0, the MUFAs 

16:1, 18:1 and 20:1 and the PUFA 20:5 and a decline in the MUFAs 14:1, and 17:1 

and the PUFAs 16:4, 18:4, 20:4, 22:5 and 22:6. Similar, though more subtle, effects 

were seen in cod exposed to short-chained alkylphenols (Meier et al. 2007). In a study 

from IMR, Atlantic cod were given weekly doses by oral intubation to the stomach of 

a mixture of 4-tert-butylphenol, 4-n-pentylphenol, 4-n-hexylphenol and 4-n-

heptylphenol through 5 weeks (Meier et al. 2007).  Their main findings were a high 

increase in SFA and a decrease in (n-3)-PUFA, 22:6 in particular, in the PL fraction of 

cod liver. The brain cholesterol levels were reduced.

Membrane effects of POPs have also been studied in other animals. Examples of 

effects are accumulation of TAG and cholesterol in liver (Hinton et al. 1978; 

Kawashima et al. 1995; Kimbroug et al. 1972; Kudo & Kawashima 1997; Kudo et al. 

1999), morphological alterations in the liver (Hacking et al. 1978; Hinton et al. 1978; 

Jonsson et al. 1981, Sylvie et al. 1996), alteration in the fatty acid profiles (Borlakoglu 

et al. 1990; Kakela & Hyvarinen 1999; Kudo et al. 1999; Kudo et al. 2011; Matsusue 
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et al. 1999) and changes in the activity of enzymes in lipid biosynthesis (Boll et al. 

1998; Borlakoglu et al. 1991; Kawashima et al. 1995; Kudo et al. 1999; Kudo et al. 

2011; Matsusue et al. 1999) (Supplementary data, Table A2).

Fatty acid alterations that are found in several studies are increases in SFA and/or 

MUFA (Dey et al. 1983; Kudo et al. 1999; Kudo et al. 2011) or decrease in PUFA 

(Kakela & Hyvarinen 1999; Meier et al. 2007). The studies are not always consistent 

with each other. Increased hepatic levels of AA in rats after administration of PCB are 

reported by (Borlakoglu et al. 1990) while reduced AA in total lipids are reported by 

(Matsusue et al. 1999).

Findings in wild fish
Lipid studies have been performed on wild fish from areas near oil installations with 

comparisons to fish from so-called clean areas. Balk and co-workers found a reduction 

in the ratio of (n-3)/(n-6)-PUFA in the muscle in both Atlantic cod and haddock near 

the oil installations at the Tampen field in the North Sea compared to a reference area 

at the Egersund bank (Balk et al. 2011). Also an elevation in the concentration of AA 

(20:4(n-6)) in the liver was found for both cod and haddock from near the Tampen 

field. Similar results were found by Grøsvik and co-workers where they found that the 

concentration of arachidonic acid (20:4(n-6)) was higher in haddock from the Tampen 

field than at reference areas. Also the (n-3)/(n-6)-PUFA levels were significantly lower 

in the neutral lipid, free fatty acids and PC/PE- fraction in haddock at the Tampen field 

(Grøsvik et al. 2009). Haddock from the Tampen field were in general lower condition 

than haddock from reference areas, with both relatively small livers and low hepatic 

lipid levels, and had approximately 50 % of the energy reserve compared with fish 

from the other areas (Grøsvik et al. 2009).
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1.8 Membrane lipids and oxidative stress

Reactive oxygen species (ROS)
Common reactive oxygen species (ROS) include superoxide (O2-), hydrogen peroxide 

(H2O2) and hydroxyl radicals (·OH) (Huttemann et al. 2011). Most of the oxygen 

consumed by organisms is utilized in a 4 electron pathway producing energy, and 

water, in the eukaryotic mitochondrion (illustrated in Figure 8). Less than 10% of the 

consumed oxygen is reduced to ROS in a one electron pathway (Lushchak 2011). The 

“escaped” electron instead reacts with molecular oxygen to produce O2·- (Lushchak 

2011), see Figure 8. Another place for ROS production is the endoplasmic reticulum 

(ER) where catabolism of both cellular and foreign chemicals by cytochrome P450 

happens (Lushchak 2011). ROS may also be produced by oxidases in the cytosol and 

peroxisomes, and also by autooxidation of certain cell components or xenobiotics 

(Lushchak 2011).

Figure 8: Schematic overview of oxygen metabolism. Two routes are possible: The 
upper part shows the 4-electron pathway that produce energy and water while the 
lower part shows the formation of reactive oxygen species (ROS), i.e. superoxide 
anion radical (O2·-), hydrogen peroxide (H2O2) and hydroxyl radical (·OH). (This 
representation is based on a figure in (Lushchak 2011)).

Important enzyme systems for the detoxification of ROS are superoxide dismutase 

(SOD), catalase, glutathione peroxidase (GPXs), and transferases, xanthine oxidase 

and glucose 6-phosphate dehydrogenase (G6PD) (Slaninova et al. 2009). No single 

parameter that alone functions as a biomarker of oxidative stress have been established 

to this date (Lushchak 2011; Slaninova et al. 2009). Several sensitive indicators have 

been suggested: Decreases in the ratio glutathione (GSH):glutathione disulfide 
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(GSSG) because healthy cells would contain about 100 times more of the reduced 

form GSH than the oxidized GSSG (Slaninova et al. 2009). Levels of metallothioneins 

(MT) or lipid peroxidation and also the activities of glutathione reductase (GR), 

glutathione S-transferase (GST) and GPX can indicate oxidative stress (Slaninova et 

al. 2009). Biomarkers of oxidative stress can be divided into two groups; those 

indicating damage by free radicals and those indicating the functions of the anti-

oxidant defense systems (Slaninova et al. 2009). One of the most reactive ROS made 

in vivo is ·OH, a product of ionizing radiation (Halliwell 1994). Cytochrome c (Cytc) 

is a mitochondrial protein that is essential for aerobic energy production by taking part 

in the electron transfer in the electron transport chain (Huttemann et al. 2011). Cytc is 

also important in the progression of apoptosis, and it can function as a cardiolipin 

peroxidase and have phosphorylation sites (Huttemann et al. 2011). Cytc is both a 

ROS scavenger (superoxide and peroxide) and a ROS producer (Huttemann et al. 

2011).

POPs can induce oxidative stress
Pesticides have several possible mechanisms to cause oxidative stress; entering the 

redox cycles by accepting or donating electrons, demand involvement of reductants 

such as glutathione, or inactivate antioxidants and associated enzymes and thus 

decrease the antioxidant capacity of the cell, decrease the metabolism and 

detoxification of the cell by disturbing energy-providing processes in the cell and 

finally pesticides may modify transcription and translation and indirectly increase the 

ROS level (Limon-Pacheco & Gonsebatt 2009; Lushchak 2011). Oxidative stress can 

be caused by pesticides and their biodegradation products, such as organochlorine and 

orgaonofluorine pesticides, organophosphates, carbamates, pyrethroids, bipyridyl 

herbicides, triazin and chloroacetanilide herbicides (Slaninova et al. 2009).

Halogenated aromatic hydrocarbons and PAHs act on the aryl hydrocarbon receptor 

(AhR)/aryl hydrocarbon nuclear translocator (ARNT)-signaling pathway which 

involves genes such as cytochrome P4501A1, UDP-glucorunosyltransferase and 

NADPH quinine oxidoreductase (Limon-Pacheco & Gonsebatt 2009).
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Lipid peroxidation
When a lipid is attacked by a free oxygen radical or another ROS a free radical chain 

reaction creating lipid peroxides is initiated. This chain reaction only stops when two 

(lipid) radicals react to create non-radical products (Crockett 2008).

The lipid peroxidation reaction chain may be described as

-CH + R· -C· + RH

-C· + O2 -CO2·

-CO2· + - -CO2H + C·

where –CH is a fatty acyl side chain, R· is a ROS capable of oxidizing PUFA. R·

include ROS such as ·OH and (lipid) peroxyl radicals (-CO2·) (Halliwell 1994).

The products of lipid peroxidation are widely used as biomarkers of damages from

free radical reactions caused by e.g. pesticides (Slaninova et al. 2009). Such products 

include malondialdehyde, a secondary oxidation product of PUFAs, and other 

aldehydes and ketones (Slaninova et al. 2009). In wild fish it has been difficult to 

establish biomarkers for oxidative stress because of the variation in factors such as sex, 

reproductive condition, temperature, salinity, physiological or genetic adaptation to 

pollution, diet, (dissolved) oxygen and seasonal variation (Slaninova et al. 2009).

Lipid oxidation products, such as resolvins, lipxins and isoprostanes, are also 

important as regulators in disease processes controlled by toxins (Berliner & Zimman 

2007). PUFA are more prone to oxidation than MUFA and SFA, and if containing the 

same fatty acids PE is more likely than PC to undergo oxidative reactions (Crockett 

2008). -tocopherol) is an effective 

anti-oxidant when it comes to lipid peroxidation when there is balance between ROS 

and antioxidants in an organism. It works as a scavenger by removing the part of the 

-tocopherol 

radical that is much less reactive than peroxyl radicals (Pamplona et al. 2002; Lushchak 

2011).
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1.9 Brief overview of membrane lipids in Atlantic cod 
(Gadus Morhua)

1.9.1 Cod liver
Cod liver membrane lipids are for the most part glycerophospholipids (phospholipids 

(PL) from here on) but the membranes also contain other lipids like sphingolipids and 

cholesterol. The molecular structure of a typical phospholipid with a glycerol 

backbone is shown in Figure 2, and the main head groups, choline, ethanolamine, 

serine, inositol and glycerol are shown in Figure 3. Phospholipids constitute 1-2 % of 

the total lipids in the liver of farmed cod (Meier et al. 2007). As the liver is the energy 

store of the cod, the liver lipids are dominated by triacylglycerols (TAG) constituting 

up to about 70 % of the liver wet weight. Clear correlations between the fatty acid 

composition of the TAG with the diet’s FA profile have been shown (Lie et al. 1986),

but there are no such clear correlations between diet and phospholipids (Lie & 

Lambertsen 1991). The main phospholipids found in cod liver are, in decreasing order 

of quantity in the membrane, phosphatidylcholine (PC), phosphatidylethanolamine 

(PE), phosphatidylinositol (PI) and phosphatidylserine (PS) (Lie & Lambertsen 1991).

Each phospholipid also has a characteristic fatty acid profile (Bell & Dick 1990; Bell 

& Dick 1991; Lie & Lambertsen 1991); in common for all of them are a relatively 

high amount of PUFA such as DHA (22:6(n-3)) and EPA (20:5(n-3)). Briefly the PC 

is also characterized by a high proportion of the SFA 16:0, and the PI by high levels of 

arachidonic acid, 20:4(n-6) (Lie & Lambertsen 1991). The membrane lipid 

composition in cod as in other marine poikilothermic species has been shown to be 

flexible when exposed to thermal changes in the environment. Through homeostatic 

adaptation the membrane fluidity remains the same by altering the lipid composition in 

the membrane (see section 1.4).

1.9.2 Cod brain 

Contrary to what is seen for the liver, the majority of the lipids found in brain tissue 

from cod are membrane lipids, and the relative PE amount is slightly higher than the 
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PC amount (47% and 41 % of the total polar lipids respectively) (Tocher & Harvie 

1988). Total lipid content of cod brain is reported to range from 4.8% (Stoknes et al. 

2004) to 7.7% (Tocher & Harvie 1988) to 9.30 % (Meier et al. 2007). The polar lipids 

constitute approx. 96-97 % of the total brain lipids (Meier et al. 2007) (an early report 

from 1988 found 75.7 % polar lipids (Tocher & Harvie 1988)). Characteristic for the 

brain is the presence of a relative large amount of cholesterol, and ether lipids 

(plasmalogens) in the PE-fraction (Bell & Dick 1993). Cholesterol and plasmalogens 

have important structural effects. Cholesterol has a rigidising effect on the lipid 

membrane. Plasmalogen-deficient cells have been shown to have more fluid 

membranes than those that contain plasmalogens (Hermetter et al. 1989), but 

plasmalogens also have a propensity to form inversed hexagonal phases (Lohner 

1996). Plasmalogens may serve as a PUFA store, and some phospholipases (A2 

family) can break the plasmalogen to yield e.g. arachidonic acid. Plasmalogens might 

also be protective against oxidative stress (Brites et al. 2004). The brain lipids also 

include sphingolipids, which include sphingomyelin, and glycosphingolipids 

(cerebrosides) (Olsen & Henderson 1989). Sphingolipids are often found in membrane 

microdomains (lipid rafts, caveolae) (Christie 2012; Sonnino & Prinetti 2009). It has 

been shown that lean fish (like Atlantic cod) have more accumulated POPs in brain 

than fattier fish, and POPs may also redistribute from liver to brain during periods of 

starvation (Elskus et al. 2005).

1.10 Analytical methods: In vitro study
This section covers the methodological background for an in vitro study that is part of 

the thesis. The results of the study are collected in Appendix 2 and discussed in the 

general discussion (Section 4.2).

1.10.1 The Langmuir technique
The Langmuir monolayer technique models one part of a biological membrane, the

lipid monolayer (of which the cell membrane has two in its lipid bilayer structure). 

Phospholipids are spread on an aqueous surface, and form a monolayer with their polar 
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head-groups in the water and hydrophobic acyl chains in the air. The area of the 

monolayer is controlled by barriers that can compress or expand the monolayer while 

the surface pressure is measured. This technique can be used to study the effects of 

various compounds on the biophysical properties of the lipid monolayer.

Experimental procedure
The Langmuir trough used in the study was similar to that in Figure 9 (except that it 

did not have a dipper). In brief, the experimental procedure (similar to that described 

in (Broniec et al. 2007)) was to fill the trough with an aqueous solution (HEPES 

buffer) when the barriers were totally expanded (at each end of the trough). 

Temperature in the trough might be regulated by water that circulated underneath it. 

Dust particles were removed with a Pasteur pipette. Lipid solution (in chloroform) was 

slowly added with a syringe on top of the aqueous subphase and as the chloroform 

evaporated, a lipid monolayer would form. The barriers were coated with a 

hydrophobic material (Delran) so that the monolayer could not slide under the barriers. 

The barriers were driven towards each other by a motor controlled by the computer. 

Surface pressure was measured with a platinum plate (the Wilhelmy plate) connected 

to an electrobalance, and the computer calculated the Langmuir isotherms as functions 

of the mean molecular area (MMA) with applied mass and molar mass of the 

monolayer lipid as inputs. 

Figure 9: The Langmuir trough from KSV Nima (picture downloaded from company website 

(KSV Nima 2012)). The numbers in the figure show 1, Trough top; 2, Frame; 3, Surface 

pressure sensor; 4, Barriers and barrier drive; 5, Dipper (option); 6, Subphase 

cooling/heating mechanism.
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Langmuir isotherms
The compression isotherms resulted from when the area of a lipid monolayer was 

being reduced as the barriers on the instrument were pressed toward each other. The 

lipids formed a monolayer with polar head-groups in the aqueous subphase and fatty 

acyl chains in the air. When the monolayer was expanded the lipids were in a gaseous 

phase (Broniec et al. 2007). With compression the lipids were pressed closer to 

conform a liquid phase. The transition between gas and liquid increased the surface 

pressure, a “lift-off”. Further compression forced the lipid molecules into a solid phase 

and a steep rise in the surface pressure. The lipid molecules could not be pressed 

further toward each other and still remain a monolayer; which means that a further 

compression made the monolayer collapse as observed by decreased surface pressure

(Blois et al. 2006; Broniec et al. 2007). An illustration of the compression isotherm is 

shown in Figure 10.

Figure 10: The Langmuir compression isotherm (from (Meier et al. 2007)). Before 
compression the lipid monolayer is in the gaseous phase, with the acyl chains far 
apart in the air. The compression barriers are pressed together (from right to left in 
the diagram) ordering the monolayer in a liquid phase. Further compression forces 
the monolayer to the solid phase, until the monolayer collapses when the barriers 
are so close to each other that the lipid molecules cannot be forced further together.
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Effects of PCB congeners on lipid monolayers
To assess the impact of PCB on biological membranes, Langmuir studies of model 

lipids and native lipids from cod were performed. No attempts on dissolving the 

pollutants in the aqueous subphase were done as PCBs are very hydrophobic with high 

octanol-water and lipid-water partitioning constants (Jabusch & Swackhamer 2005).

Instead the PCBs were dissolved in chloroform stock solutions. PCB stock solutions 

were mixed with lipid stock solutions to yield PCB-lipid solutions with controlled 

molecular ratios. The PCB-lipid solution was applied to the subphase in an identical 

manner to when only pure lipid solutions were applied. Three different PCB congeners 

were tested, PCB-52 (2,2’,5,5’-substituted), PCB-77 (3,3’,4,4’-substituted) and PCB 

180 (2,2’,3,4,4’,5,5’-substituted). The most used model lipid was POPC (16:0/18:1-

PC), and POPS and a POPE:POPC-mixture were also tested. Native PC extracted from 

cod brain with cholesterol, and PC from cod liver, were also tested. Molecular ratios 

PCB:lipid ranged from 1:2 to 1:1000 (Appendix 2). This concentration range covered 

(and went beyond) the theoretical concentrations of PCB:membrane lipid in the in vivo

exposure study on Atlantic cod. Representative isotherms of the tests are shown in 

Appendix 2.

Effect of a synthetic PAH metabolite (9-OH-phenanthrene) on lipid
monolayer
PAHs are metabolized more rapidly than PCB, and result in hydroxylated metabolites

(Tuvikene 1995; van der Oost et al. 2003). To assess the potential effect of PAH 

metabolites on biological membranes, a pilot study was performed with 9-OH-

phenanthrene (9-OH-P) and POPC. The molecular ratio 9-OH-P:POPC was 1:25 or 

1:125. The Langmuir isotherms were similar with and without the 9-OH-P (Appendix 

2). The purpose of the study was to look at environmentally relevant ratios of 

pollutants to lipid (similar to the expected ratios in our in vivo exposure experiment on 

Atlantic cod) so higher ratios were not tested. Higher ratios of 9-OH-P might have 

given important and interesting insights into the biophysical interference of 9-OH-P
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with a lipid monolayer. However, this was regarded as to be beyond the environmental 

focus of this project.
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2. Aims of the thesis
The work presented in this thesis is a part of a project financed by the Research 

Council of Norway. This is a follow-up study of an earlier IMR project that studied 

endocrine effects of alkylphenols in Atlantic cod and discovered that the membrane 

lipid composition in brain and liver was altered, by mechanisms apparently 

independent of the endocrine disruption. The biological material in this study comes 

from an exposure study performed in 2008 where Atlantic cod were orally exposed to

1. Branched or straight-chained nonylphenols

or

2. A mixture of POPs (PCBs, chlorinated pesticides, PBDE and PFOS) and/or 

weathered crude oil from the Troll installation. The exposure doses 

corresponded either to realistic background levels or 50 times higher 

concentrations (equivalent to large acute spills).

A detailed study of lipid classes in liver and fatty acid profiles of lipid classes from 

liver and from total lipids from brain from the exposed fish has been in focus.

The major aims of the thesis are

Validate a method for separation of lipid classes from liver tissue from Atlantic 

cod (Paper 1).

Study the effects of branched and straight-chained nonylphenols on the 

membrane lipid composition in liver and brain of male Atlantic cod. 

Transcription of genes involved in lipid biosynthesis, xenobiotic metabolism 

and the defense against oxidative stress is also studied in liver mRNA, as is the 

metabolism of the various NPs (Paper 2).

Effects of persistent organic pollutants (POPs) and oil hydrocarbons on the 

membrane lipid composition in lipid classes in liver and total lipids in brain of 

male Atlantic cod. The bioaccumulation of POPs in liver and PAH metabolites 



51

in bile have also been studied. Microarray analysis of mRNA from liver has 

been performed and data analysis has focused on important genes from the PL 

biosynthesis, phase 1 and II metabolism and oxidative stress (Paper 3).

Biophysical studies of the effects of PCBs on monolayers made of model 

phospholipids and native membrane lipids from cod have been performed by 

the use of the Langmuir monolayer technique (Appendix B).
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3. Summary of papers

Paper 1: Pitfalls in the use of polyethylene aminopropyl-coated columns 
for solid phase extraction separation of lipids
The background contaminations from three different solid phase extraction (SPE) 

columns were tested. Two of the columns were made of polyethylene and the third 

was made of glass. All columns released contaminations of fatty acids, notably 16:0 

and 18:0, although the contamination released from the glass column was considerably 

lower than that from the polyethylene columns. The effectiveness of separation of the 

lipid classes neutral lipids, free fatty acids, PC, PE, PS and PI was tested. On the glass 

column two of the phospholipids, PC and PE, co-eluted.

Paper  2: Effects of branched and normal isomers of para-substituted 
nonylphenols on the glycerophospholipids in the liver and brain of male 
Atlantic cod (Gadus morhua) 
Atlantic cod (Gadus morhua) were exposed in vivo to para-substituted nonylphenols 

(NP). The fish were fed with a weekly dose of either the normal isomer (4-n-NP) or a 

technical mixture of branched isomers (4-T-NP) of para-substituted NP, 

corresponding to a body burden of 1000 μg/kg for four weeks. Lipid class composition

(TAG, FFA, PC, PE, PS and PI) and fatty acid distribution of the lipid classes in the

cod livers were determined by High Performance Thin Layer Chromatography 

(HPTLC) followed by GC-FID. The fatty acid composition in the total lipids from 

brain was studied. NP-treatment did not induce significant changes in lipid 

composition in cod liver. Only a few minor changes were observed in the fatty acid 

profile of the brain and the lipid classes in the liver. Real-time PCR was used to assess 

the expression levels of selected genes from the CYP-family, the phospholipid 

biosynthesis pathway and the endocrine system in NP-exposed fish compared to 

unexposed control fish. Differential expression of CYP2N, AGPAT9, ELOVL1, 

PLA1A, PEMT and ZP3 after exposure to NP was reported. NP was detected in cod 

liver and bile. The NP concentration in the bile was 50 times higher than in the liver 
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for 4-T-NP and 80 times higher for 4-n-NP, indicating that the metabolism rate of 4-n-

NP is likely to be higher for the straight chain NPs than for the branched isomers.

Paper 3: Effects of oil pollution and persistent organic pollutants (POPs) 
on glycerophospholipids in liver and brain of male Atlantic cod (Gadus 
morhua)
Eight groups of Atlantic cod were exposed in vivo to weathered crude oil and/or a 

mixture of halogenated POPs (PCB, chlorinated pesticides, PBDE and PFOS) for 4 

weeks. The body burdens of exposure corresponded to environmentally realistic levels 

(low/high). One control group and one negative control (no force-feeding) group were 

also included in the study. The lipid class compositions in the livers (TAG, FFA and 

membrane lipids) were reported. Fatty acid distribution in the lipid classes from the 

liver, and from the total lipids in the brain, was determined by GC-FID of fatty acid 

methyl esters. Treatment with POPs and/or crude oil did not induce significant 

changes in lipid composition in cod liver, and only minor changes were observed in 

the fatty acid profile of the brain and the lipid classes in the liver. Isolated mRNA from 

cod liver was studied with microarray and RT-qPCR. When looking at the microarray 

dataset as a whole few differences were observed in fish between the groups exposed 

to POPs and/or Troll oil and there was large individual variation in gene expression, 

also within the same treatment groups.  Central genes in the PL biosynthesis

(phospholipases (A1, A2, C, D), elongases, desaturases, AGPATs, LPCATs, 

choline/ethanolamine phosphotransferases, PISD, PEMT and transacylases), related to 

defence against oxidative stress (superoxide dismutases, glutathione peroxidase and 

reductase, catalase, peroxiredoxin-1, peroxisome proliferator-activated receptors 

(PPARs) and heat shock proteins (HSP)) and phase I and II metabolism of xenobiotics

(CYP-genes, glutathione s-transferases (GST), UDP-glucuronosyltransferases (UDP-

GT) and sulfotransferases (SULT), were selected from the microarray dataset for 

closer examination. However, in line with the lipid composition data, the current 

exposure experiment mediated only modest transcriptional responses in liver of the 

fish. The contents of PCBs, PBDE, pesticides (DDTs, HCH and CHL) and PFOS in 

the cod livers, and hydroxylated PAH in bile, were reported. A combination of oil and 
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POPs induced the CYP1a detoxification system. There were differences in the 

accumulation factor between the different treatments suggesting that the combination 

of oil and POPs increased the metabolism of the different POPs. 
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4. General discussion

4.1 Analytical methods
4.1.1 Lipid class separation

Solid phase extraction (SPE) vs. High Performance Thin Layer 
Chromatography (HPTLC)
Solid Phase Extraction (SPE) with aminopropyl-linked silica as a stationary phase and 

various solutions that elute compounds according to degree of polarity is a well 

established method for separation of lipid classes (Christie 1992). This method has 

also been the preferred method for lipid analysis in our laboratory at the IMR for more 

than a decade. An elution regime as described by (Perez-Palacios et al. 2007) has been 

modified to be optimal for the separation of marine lipids (by increasing the solvent 

volume that elutes the PC fraction, description is given in Paper 1). This SPE regime 

was also intended to be used as the main method for lipid class separation in this 

project. However, the detection of severe contamination by short-chained saturated 

fatty acids in the SPE-columns that we documented in Paper 1 and that to some extent 

have been documented by others (Russell & Werne 2007; Vonk et al. 2008; Vonk et 

al. 2010; Karlsson et al. 2011) made it necessary to apply other analytical methods. 

HPLC-MS is a good method for separation of lipid molecular species (Hermansson et 

al. 2005), however we had no validated methods for this in our laboratory, and the 

initiation of such a method validation was regarded as too complex for this project. 

High performance thin layer chromatography (HPTLC, further abbreviated to TLC) 

was considered a proper alternative, with an established method for separation of 

lipids from marine tissues (Olsen & Henderson 1989).

Advantages with this technique are that it is relatively time- and cost-effective and 

quite simple to perform. Only small amounts of solvents are necessary, which makes 

the TLC method a good “green” candidate. Disadvantages with the TLC method are 

that TLC is sensitive to the ambient temperature and humidity. This can be controlled 



56

to a certain degree by keeping the plate in the oven (120°C) before analysis, in a 

desiccator between first and second elution and by reducing the time the plate is 

exposed to the ambient air in the lab to a minimum, but variations will still be present. 

The problems these variations cause with identifying different compounds can be 

minimized by adding (external) lipid standards on each plate. More severe are the 

consequences these variations have on the quality of the elution. Humidity can lead to 

poorer resolution. In the samples of lipids from cod liver this made the separation of 

especially phosphatidylethanolamine (PE) from the dominating triglycerides fraction 

difficult. The triglyceride-rich liver lipid is a challenging tissue to analyze for the 

much lower levels of phospholipids present in the cell membrane. Triglycerides make 

up about 95-99 % (Meier et al. 2007) of the total lipids, and the phospholipids only 

about 1 %. When adding enough lipid extract in order to obtain detectable amounts of 

phospholipids, one may overload the chromatographic system resulting in an improper 

separation of the lipid classes. In order to get good chromatographic bands of all lipid 

classes, so that GC-FID analysis of the fatty acid methyl esters could be performed, 

each liver lipid extract was analyzed on three different plates; one each to collect for 

neutral lipid (triglycerides), phospholipids (PC, PE and PS/PI) and free fatty acids. 

(Cholesterol content was detected and calculated as a pooled average from the two 

total lipid fractions.) When demanding plural TLC analyses for each sample this 

method was not efficient compared to the previously described SPE method, and the 

analytical variation is also larger for the HPTLC procedure than the SPE method. 

However, as one of the main aims of the thesis was to separate between the different 

membrane lipids, the HPTLC worked well for the purpose. As described in Paper 1,

experiments with SPE columns made of glass did not yield satisfactory separation 

between the major membrane lipids PC and PE (even if the contamination of fatty 

acids were minor in the glass columns compared to the polyethylene columns). 

High Performance Thin Layer Chromatography
TLC is a simple method for rapid separation of analytes, with many applications in the 

separation of lipid classes (Touchstone 1995; Fried 2003; Fuchs et al. 2011). The 
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method was first described and published in 1938 and has been a “mainstream” 

method since the 1960’s (Shostenkot et al. 2000). The development of High 

Performance Thin Layer Chromatography (HPTLC) with commercial and 

standardized adsorbent plates has renewed the interest for the technique and HPTLC is 

in extensive use in e.g. drug research (Fuchs et al. 2011). In brief, the TLC method is 

based on the movement of a mobile phase by capillary forces on a thin layer of a 

stationary phase (Kowalska et al. 2003). The laboratory environment, including 

parameters such as ambient temperature and humidity, might affect the (HP)TLC 

separation. E.g. did (de Zeeuw et al. 1992) show that the retention factor (Rf) values 

and the reproducibility was drastically changed in the tropics relative to a moderate 

climate. High relative humidities increased most Rf values and changes in the 

humidity had more consequences for the Rf values than temperature change (de Zeeuw 

et al. 1992).

4.1.2 Lipid extraction
The details of the lipid extraction method are given in Paper 2 and Paper 3. In order to 

remove some of the dominating triglycerides before the lipid class separation, the cod 

livers were centrifuged before the lipid extraction. The centrifugation made the 

triglycerides separate as oil on top of the liver tissue. This top layer consisted of 

triglycerides, and some cholesterol, and the fatty acid profile and quantity of 

cholesterol was determined by GC-FID. The remaining tissue was further extracted 

using a modified Folch method (Bligh & Dyer 1959; Folch et al. 1957). The total lipid 

percent (as weight of total sample) of the liver was determined gravimetrically, as the 

sum of the oil that separated on top after the centrifugation, and the lipid extract from 

the remaining tissue after the centrifugation . By this method approximately 50 % of 

the TAG were removed. However there were still much TAG left to impede the 

separation of the minor membrane lipids. For future work, more effort should be done 

in order to separate off more of the TAG before further analysis. Recently a method 

where triglycerides are extracted with hexane in this step have been developed in our 

lab at the Institute of Marine Research (Meier et al. 2012, unpublished data).
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4.1.3 Statistical methods

One-factor Analysis of Variance (ANOVA) is a common method used to compare the 

means of populations that e.g. have received different treatments. Assumptions of 

ANOVA are that the populations are independent and normally distributed with 

common variance (Walpole et al. 2002). To test the normality assumption one can 

perform numerical hypothesis tests or plots of the empirical data (Jarque & Bera 1987; 

Lilliefors 1967).  The hypothesis tested in an ANOVA is that the populations come 

from the same distribution. However, ANOVA does not point to which population(s) 

that are different, if any. After ANOVA have declined the null hypothesis of equally 

distributed populations, several so-called post-hoc tests may be used to point out 

which groups are different. Examples are Dunnett’s test, that compares each 

population to a control population (Dunnett 1980a) and Tukey’s test that makes paired 

comparisons between populations (Dunnett 1980b; Walpole et al. 2002). Pre-

processing of data before performing ANOVA might be necessary in order to meet the 

assumptions of the ANOVA (Bland & Altman 1996). Examples of pre-processing are 

data transformations such as logarithmic (log) transformation (van den Berg et al. 

2006; Zahurak et al. 2007) and arcsine root transformation of proportion data (Osborne 

2002; Pires & Amado 2008). In this thesis the first (log) transformation was used on 

microarray data, and the latter (arcsine) transformation on the fatty acid distribution 

profiles.

4.2 Langmuir monolayer isotherms

Effects of PCB congeners

The effects of various PCB congeners were tested on Langmuir monolayers of 

synthetic phospholipids and native membrane lipids from cod liver and brain. 

Representative Langmuir compression isotherms are shown in Appendix B (Figures 

B1-B5). In common for all the Langmuir monolayer experiments was that the 

compression isotherms were similar with and without PCBs. No large effects of the 



59

PCB could be observed even with molecular ratios that were beyond what is 

environmentally relevant. Most of all, this observation is a proof that the Langmuir 

monolayer is not an optimal means to study effects of PCB on biological membranes, 

and to our knowledge there are no published peer-reviewed studies of use of Langmuir 

monolayer technique for this purpose. A usual procedure when the effect of a given 

chemical on a lipid monolayer is tested with the Langmuir technique, is that the 

chemical is dissolved in the aqueous subphase before the lipid film is applied 

(Steinkopf et al. 2008) or it might be injected in the subphase when the monolayer has 

reached a desired surface pressure (Glomm et al. 2009). However given the low 

aqueous solubility of PCB (Huang & Hong 2002), the methods to introduce PCB to 

the lipid monolayer were restricted. One possible explanation to the lack of observable 

effect of PCB on Langmuir monolayers might be that the PCB molecules are too 

hydrophobic to interact with the hydrophilic head groups of the phospholipids and 

prefer the hydrophobic fatty acyl chains where they might be too small to have an 

impact on the MMA of the lipid monolayer.  It should also be noted that Langmuir 

monolayers are only a very simplified model of only half of a biological membrane, so 

there cannot be drawn clear conclusions on grounds of these observations regarding 

whether PCB might disrupt a lipid membrane or not.

Results were reproduced on another instrument
Part of the study was repeated at the Department of Chemical Engineering at NTNU 

(Trondheim, Norway) on a similar instrument (except this instrument had a dipper 

(Figure 9) and the Wilhelmy plate was made of paper). The results were reproduced on 

this instrument, thus eliminating the probability of a systematic instrumental error.

Effects of 9-OH-PAH
A pilot study was performed with the PAH metabolite 9-OH-phenanthrene and POPC 

as a model membrane lipid. Representative Langmuir compression isotherms are 

presented in Appendix 2 (Figure B6). However as no significant effects were observed 

at the molecular ratios tested, we did not proceed to test the PAH-metabolites further. 



60

As noted earlier, studies with higher molecular (PCB:lipid)  ratios might yield 

interesting biophysical insights, however was considered to be outside the focus of the 

thesis.

4.3 Effects of NPs in liver and brain of male Atlantic cod

The study concerning the exposure to branched or straight-chained NPs is reported and 

discussed in Paper 2. The article emphasized three aspects of the effects on Atlantic 

cod after the exposure; the uptake and metabolism of NPs, the effect on lipid 

composition in brain and liver, and gene transcription. 

4.3.1 Uptake and metabolism of NPs in Atlantic cod

The uptake of NP in the fish was confirmed by GC-MS (NCI) analysis and NPs were 

found in clearly detectable levels in the liver. The concentrations of NPs in bile were 

50 (4-T-NP) and 80 (4-n-NP) times higher than what was found in the liver. This result 

agrees well with earlier reports showing that APs are readily taken up by fish and also 

very rapidly metabolised. The results also suggest that the metabolism depend on the 

structure of the NPs as the isomer distribution in the bile is not identical to the isomer 

distribution the liver of the fish administered the technical mixture of NPs.

4.3.2 Effects on membrane lipids

The effects of branched and straight-chained 4-NP exposure on the membrane lipid 

composition in Atlantic cod are presented in Paper 2. One important aim of the study 

was to determine quantitatively the distribution of the lipid classes, notably the PL 

constituting the membrane lipids, to see if a change analogous to homeoviscous 

adaptation (HA) could be found. However, no alterations in the lipid composition in 

the cod liver were observed after the NP exposure in this study. This was in contrast to 

the previous study from our group where female cod exposed to short-chained APs 

had significantly decreased levels of PLs. Some minor alterations in the fatty acid 

profiles in the different lipid classes were shown in this study, such as relative 

proportions of 20:1(n-11) was decreased  and 20:5(n-3) was increased in the NL, and 



61

22:5(n-3) and 22:6(n-3) was increased in the PE fraction of the fish exposed to 4-n-

NP. No significant differences were shown in the PC fractions of the animals exposed 

to NPs, nor were any fatty acid profile alterations observed for any of the lipid classes 

in the liver of cod exposed to the technical mixture of NPs (4-T-NP). The few 

alterations seen in the PE fatty acid profile of 4-n-NP exposed fish (the increase in two 

PUFAs) may not be explained by the HA theory if the expected increased membrane 

fluidity is assumed. Rather would the opposite be expected; a decrease in PUFAs is 

observed in fish when going from a cold to a warmer environment (Farkas & Csengeri 

1976).

4.3.3 Effects of NPs on gene transcription in liver of male Atlantic 
cod

Transcriptional effects of NP on liver mRNA were assayed with RT-qPCR (presented 

in Paper 2). Several genes from the CYP family and genes involved in PL 

biosynthesis and xenoestrogenic biomarkers were studied. CYP enzymes are important 

in phase 1 metabolism catalyzing the oxidation of xenobiotic compounds (Ghanayem 

et al. 2000; Guengerich 2008). As NP already has a hydroxyl group it might be 

metabolized directly by phase II enzymes, by conjugation of the phenol group to 

glucuronic acid (Cravedi & Zalko 2005). In Paper 2 no up-regulation of the 

transcription of the studied CYP genes were shown, indicating that phase 1 

metabolism was not the main biotransformation pathway of neither the straight-

chained or branched NPs. A further indication of the phase II metabolism pathway was 

the preferred accumulation of NP metabolites in bile over liver; there were 50 times 

more NPs in bile than in liver in fish exposed to 4-T-NP, and likewise 80 times more 

in bile than liver for fish exposed to 4-n-NP. 

Estrogenic effects of NPs and other APs are well-studied, but are not the main focus of 

this thesis. However 3 genes considered being biomarkers of xenoestrogenic exposure 

were assayed and are presented in Paper 2.  The transcription of the zona radiata gene, 
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ZP3, was significantly down-regulated in the fish exposed to 4-n-NP but there was not 

observed differential gene expression of VtgA nor ESR1.

Genes involved in PL biosynthesis were assayed in Paper 2, and four of the genes we 

selected (AGPAT9, ELOVL1, PEMT and PLA1A) showed differential expression

after the in vivo NP exposure. This indicates that the biosynthesis of PLs was affected 

by the NP treatment at the transcriptional level although we could not find correlating 

results from our lipid studies. This might suggest that there were effects on the PL 

composition in the liver of cod exposed to NPs that we were not able to detect with the 

methods used. 

4.4 Effects of oil and halogenated POPs in liver and brain of 

male Atlantic cod

The effects of weathered crude oil and/or halogenated POPs on the membrane lipids in 

liver and brain of cod are presented in Paper 3.

4.4.1 Uptake of POPs in liver and metabolism of PAH from Troll oil

Chemical analyses confirmed uptake of POPs in liver. It was also shown apparent

differences in metabolic rates for the different components. The bioaccumulation data 

suggest that metabolism of PBDEs and HCHs are dose-dependent, with increasing 

metabolic rate with high doses. The metabolism of DDT appeared to be faster when a 

high dose of Troll oil was given in addition.

4.4.2 Effects on membrane lipids

As for APs, many POPs have been shown to have membrane altering effects, both in 

vivo and in vitro (reviewed in Appendix A). In the study reported in Paper 3, the total 

lipid and cholesterol content in liver of cod were not affected by exposure to POPs 

and/or Troll oil. The relative lipid class composition was significantly different only 

between the control and the negative control. The relative PL distribution was similar 



63

in all groups exposed to POPs/crude oil and the controls (however the relative PE 

levels were higher in the fish exposed to a high level of crude oil and low levels of 

POPs). Supposing an increase in membrane fluidity as a result of POPs exposure one 

would expect a rise in the PC/PE ratio, and similar membrane ordering alterations, due 

to the homeoviscous adaptation (HA) theory (section 1.4), however such effects are 

not observed. The FA profile of the NL fraction from the cod livers were similar for all 

the fish, both exposed and un-exposed. Some small differences in minor FAs were 

seen in the FA profile of the PC fraction for some of the exposed groups relative to the 

control. In the PE fraction from the livers of the cod exposed to high levels of the 

POPs mixture, the FA profile was significantly different from the control, notably was 

there an increase in the total SFA levels and a decrease in the PUFA 20:5(n-3), a 

discovery that might be consistent with the HA theory. However there were no 

observed differences in the other exposed groups compared to the control. 

The FA profiles of the total lipids from the brain were similar for all groups, exposed 

and un-exposed. However some small differences in minor FAs were significant. The 

fish exposed to high levels of both oil and POPs had significantly increased levels of 

total SFA compared to the control. 

There were no large differences in the membrane lipid composition in the fish that had 

been exposed to POPs and/or oil, compared to the fish in the control group.

4.4.3 Effects of oil and halogenated persistent organic pollutants 
on gene transcription in liver of male Atlantic cod

Differential expression of genes in the fish exposed to high doses of POPs and/or oil 

were studied with a microarray assay, in addition to the same real-time RT-qPCR

assay that was used on the fish exposed to NPs. When looking at a subset of selected 

data with genes in PL biosynthesis, phase I and II metabolism of xenobiotic 

compounds, and in the antioxidant response system, some differences from control 

were observed. 



64

The transcription of CYP1A was increased in the fish in all groups that had been 

treated with the Troll oil. No significant increase was seen in the group only given the 

POPs-mixture. However, treatment with POPs in addition to Troll oil increased the 

effect in CYP1A expression. This is partly in agreement with the relative accumulation 

pattern of the POPs (reported in Paper 3). These data indicate lower relative 

accumulation (and possibly higher metabolism rate) of lindane and PBDE when given 

high doses of the POPs mixture (as opposed to low doses of the mixture). The relative 

accumulation of DDT is lower in fish given high doses of the Troll oil in addition to 

the POPs mixture. It is also possible that a part of the dose-dependent differences in 

relative accumulation can be explained by not all of the POPs being taken up in the 

fish. To find this out analyses of feces from the fish could have been analysed, 

however this could cause practical challenges and have not been performed in this 

study.

All in all, not many treatment-dependent differences were seen in the microarray 

study. The data rather show large individual differences independent of treatments. 

There are only small differences in the transcription of genes in the PL biosynthesis 

which is consistent with the results in the composition of the membrane lipid classes 

and fatty acid distribution.

4.5 Conclusions

The chemical analyses confirmed uptake of POPs by the Atlantic cod, thus making the 

study a successful exposure experiment. However, the prior reported effects on 

membrane composition (Meier et al. 2007) were not confirmed in this study. The main 

results of the thesis are summed up below:

Methodological:

o SPE with columns of a HDPE material cannot be used for the separation 

of lipid classes from cod liver due to a significant contamination of fatty 

acids.
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o Aminopropyl-coated SPE columns made of glass cannot be used for the 

separation of glycerophospholipids, because PC and PE are not separated 

properly.

o Cod liver lipids may be separated with HPTLC, and the fatty acid 

distribution may be determined by scraping each lipid class sample off 

the plate.

Biological effects of in vivo exposure:

o Chemical analyses of the NP-exposed fish showed NPs in liver and bile, 

and indicated faster metabolism of the straight-chained isomer (4-n-NP) 

than of the branched isomers.

o Chemical analyses confirmed uptake of PCBs, PBDE, PFOS, lindane, 

DDTs and chlordane in the fish that had been exposed to a mixture of 

these POPs.

o Analysis of hydroxylated PAH metabolites in bile documented the 

exposure to Troll oil.

o Induction of CYP1A in the liver of exposed fish showed a dose-

dependent effect on the metabolism of oil and the POPs.

o No effects on lipid class composition in cod liver after in vivo exposure 

to NPs or POPs and/or Troll oil.

o No effects on membrane lipid class composition in cod liver after in vivo

exposure to NPs or POPs and/or Troll oil.

o No large effects on fatty acid distribution in neutral lipids or membrane 

lipids from cod liver after the in vivo exposure

o No effects on fatty acid distribution in the brain after the in vivo exposure

In vitro technique

o The Langmuir monolayer technique was not an ideal method to study the 

effects of PCB congeners upon a monolayer of membrane lipids.
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o Apparently PCB had no significant interactions with monolayers of 

commercial phospholipids or native membrane lipids from cod brain and 

liver. 
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Appendix B: Representative Langmuir isotherms 
from the in vitro study. 

The figures show monolayers of synthetic phospholipids, or native membrane lipids 

from cod, with or without PCB congeners.
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Figure B1: Langmuir isotherms of native PC from cod brain with cholesterol 
and PCB-77 (A) or PCB-52 (B). Surface pressure versus apparent surface 
area (MMA) at room temperature (T=20 °C). Molecular ratio 
PCB:cholesterol:PC (1:2:3). 
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Figure B2: Langmuir isotherms of native PC from cod liver with PCB-52 (A)
or PCB-77 (B). Surface pressure versus apparent surface area (MMA) for 
pure PC (solid line) and PC with PCB (dashed line) at room temperature 
(T=20 °C).  Molecular ratio PCB:PC (1:2).
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Figure B3: Langmuir compression isotherms for a commercial 
phosphatidylcholine (POPC) without (solid line) or with PCB-52 (dashed line) 
at 4 different molecular ratios. Molecular ratios PCB:POPC are A, (1:4) at 
room temperature (T=20 °C); B, (1:40) at  T=11°C; C, (1:200) at T=11 °C; 
and D, (1:1000) at T=11 °C.
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Figure B4: POPC without or with PCB-180 or PCB-77. Surface pressure (
versus apparent surface area (MMA) of POPC without (solid line) or with 
(dashed line) PCB at T=11 °C. Molecular ratios are A, PCB-180:POPC 
(1:40); B, PCB-180:POPC (1:200); and, C, PCB-77:POPC (1:200).
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Figure B6: Langmuir compressions isotherms of POPC monolayer without 
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