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ABSTRACT 

Nuclear magnetic resonance (NMR) spectroscopy is one of the major tools for 

studying the structure and dynamics of proteins in solution. The still ongoing 

development of new and improved pulse-sequences for multi-dimensional, hetero-

nuclear NMR experiments has made the field applicable for continuously larger 

biomolecules. 

 

In this study, a variety of NMR experiments was conducted on two rather different 

proteins: chicken brain -spectrin repeat 17 (R17) and human N -acetyltransferase 50 

protein (hNaa50p). The aims were to investigate the thermodynamical and 

conformational stabilities of the former and the enzyme mechanism of the latter 

protein, respectively.      

 

R17 is a 13 kDa domain of the ubiquitous structural protein spectrin, which is a key 

component in the cytoskeleton. Its structure consists of a triple-helix bundle, where 

two loops connect the long helices. Spectrin repeats have shown large diversities in 

their thermodynamical and conformational stabilities, which probably is associated 

with function. R17 and its neighbouring repeat, R16, are two thoroughly studied 

domains. R16 was one of only two spectrin repeats that had been investigated by NMR 

spectroscopy prior to this study. Because R17 is four times less stable than R16 in 

terms of G, the latter domain was used for stability comparison. 

NMR studies, including dynamic measurements and hydrogen-deuterium exchange, in 

combination with NMR, circular dichroism and fluorescence measurements at 

stepwise increasing temperatures revealed that the repeat is rigid at room temperature 

but that both the thermodynamical and conformational stabilities are gradually reduced 

when the temperature exceeds 40 °C. The destabilization of the domain seems to 

initiate in the centre of helix C and the amino acids that are close in space to one 

particular residue, V99, in the triple-helix bundle. A multiple sequence alignment of 

35 chicken brain spectrin repeats revealed that this valine is a rare substituent of a 

moderately conserved tryptophan at that position. Previous studies had shown that the 
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small valine side chain introduces a cavity in the centre of the triple-helix bundle and 

diminishes the amount of hydrophobic interactions in the core of the repeat. Thus, the 

substitution of this tryptophan appears to be the most probable reason for the reduced 

stability of R17 compared to R16.    

 

hNaa50p is an almost 20 kDa enzyme that exhibits both N - and Nε-acetyltransferase 

activity. In these reactions, the acetyl group of acetyl-Coenzyme A (acetyl-CoA) is 

transferred to the backbone of the N-terminal amino acid and the side chain of specific 

lysine residues, respectively. The substrate specificity of hNaa50p’s N -acetyl-

transferase function is preferably directed towards peptides starting with the amino 

acid sequence MLGP, whereas K34, K37 and K140 are Nε-auto acetylated. hNaa50p 

appears both freely in the cell and associated to two other proteins, hNaa10p and 

hNaa15p, which together make up the NatE complex. hNaa50p is essential for proper 

sister chromatid cohesion and chromosome resolution, and has increasingly been 

linked to cancer development. An inhibitor of its enzyme activity could destabilize 

chromosome formation and prevent nuclear division, and thus function as anti-cancer 

drug.  

In order to get insight into the N -acetyltransferase reaction mechanism, the affinities 

of hNaa50p towards its substrates and products, and the enzyme mechanism itself 

were studied by enzymatic assays and NMR spectroscopy. According to our results, 

acetyl-CoA is the first substrate to enter and bind the active site, whereas CoA 

functions as product inhibitor. The peptide is not able to bind to hNaa50p in the 

absence of acetyl-CoA and its product, acetylated peptide, showed no affinity for the 

enzyme. Altogether, this indicates that hNaa50p follows an ordered sequential 

mechanism, possibly of the Theorell-Chance type. Thus, an inhibitor whose binding 

leads to the formation of a ternary complex might be a promising anti-cancer drug.       



 List of publications 
 

 

 XII 

LIST OF PUBLICATIONS 
 
Paper I: 

 

Brenner A.K., Kieffer B., Travé G., Frøystein N.Å., Raae A.J. ”Thermal stability of 

chicken brain -spectrin repeat 17: a spectroscopic study.” Journal of Biomolecular 

NMR 53 (2), 2012, 71-83. 

 

Paper II: 

 

Evjenth R.H., Brenner A.K., Thompson P.R., Arnesen T., Frøystein N.Å., Lillehaug 

J.R. ”Human protein N-terminal acetyltransferase hNaa50p (hNat5/hSan) follows 

ordered sequential catalytic mechanism. Combined kinetic and NMR study.” Journal 

of Biological Chemistry 287 (13), 2012, 10081-10088.   

 
Paper III: 

 

Brenner A.K., Frøystein N.Å. “Extending the range of backbone assignment of 

medium-sized proteins using MUSIC and CC(CO)NH.” Manuscript submitted to 

Journal of Magnetic Resonance. 

 
 



 Abbreviations 
 

 

 XIII 

ABBREVIATIONS 
 
acetyl-CoA  acetyl-Coenzyme A 

CD   Circular Dichroism 

CoA   Coenzyme A 

CSI   Chemical Shift Index  

HMBC  Heteronuclear Multiple Bond Correlation 

HMQC  Heteronuclear Multiple Quantum Coherence 

hNaa10p  human N -acetyltransferase 10 protein 

hNaa15p  human N -acetyltransferase 15 protein 

hNaa50p  human N -acetyltransferase 50 protein 

HSQC   Heteronuclear Single Quantum Coherence  

MUSIC  MUltiplicity Selective In-phase Coherence transfer 

NAT   N-terminal AcetylTransferase 

NMR   Nuclear Magnetic Resonance 

NOE   Nuclear Overhauser Effect 

NOESY  Nuclear Overhauser Enhancement SpectroscopY 

PDB   Protein Data Bank 

R16   spectrin Repeat 16 

R17   spectrin Repeat 17 

TOCSY  TOtal Correlation SpectroscopY 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



  

 XIV 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Introduction: spectrins 
 

 1 

1. INTRODUCTION 

1.1 Spectrins 

1.1.1 Origin and function  

Spectrins are a family of ubiquitous structural proteins that occur in most vertebrates, 

some metazoans and, possibly, in higher plants [1]. The spectrin superfamily consists 

of spectrin, dystrophin, -actinin, utrophin [2] and plakin [3]. Spectrin-like domains 

have also been found in a variety of other proteins [4]. Throughout the thesis, the term 

spectrin refers to the spectrin family rather than the superfamily. 

Spectrins, with few exceptions [5], are situated in the cytoskeleton and function as a 

key component in the regulation of cell shape, membrane flexibility and membrane 

elasticity [2]. The flexibility of the protein depends on the tissue that it occupies. For 

instance, erythroid spectrins that have to adjust to the elasticity of red blood cells are 

more flexible than brain spectrins [6]. Many spectrins are exposed to mechanical stress 

[7], and mutations in highly conserved residues that adapt the structure to sheer forces 

are pathologic [8]. For example, mutations in erythroid spectrins are associated with 

haemolytic anaemia due to abnormally shaped erythrocytes, so-called elliptocytosis [9, 

10], whereas mutations in muscular spectrins may lead to muscular dystrophies, i.e. 

progressive skeletal muscle weakness [11].    

 1.1.2 Structure 

Spectrins in vertebrates are built up of two subunits, the  (approximate mass of 280 

kDa [12]) and  (approximately 246 kDa [13]) homologous chains, which form 

antiparallel heterodimers by side-to-side association [14] and tetramers by head-to-

head association of two heterodimers [15]. The main building blocks of the chains are 

the spectrin repeats which comprise about 90 % of the protein sequence [16]. Usually, 

the -chain is built up of 20 and the -chain of 17 repeating domains [1].  

In addition, spectrins typically contain several other domains that are involved in 

different cellular processes. Two consecutive calponin homology domains on the -

chain at both ends of spectrin cross-link actin, thus forming an actin-spectrin network 
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which is central in the regulation of smooth muscle contraction and cell shape [17] 

(figure 1.1). 

 

Figure 1.1: Structural model of the erythroid cell membrane. Spectrin is coupled to the lipid bilayer 
through the association to actin and ankyrin, which in turn are bound to protein 4.1 and the anion 
transporter band 3, respectively [18].  
 
Two calmodulin-like domains [19], consisting of four EF-hands (helix-loop-helix 

motifs), reside at both ends of the -chains and are thought to regulate the affinity of 

spectrin for actin [20], whereas the src-homology 3 [21] and the pleckstrin homology 

domains [22] are involved in protein-protein interaction and cell signalling. 

1.1.3 Spectrin repeats 

The structure of the spectrin repeated units provides an explanation for the rod-like 

shape of the spectrin tetramer. The tandem repeat of chicken brain -spectrin repeats 

15, 16 and 17 is shown in figure 1.2. 

 

Figure 1.2: The tertiary structure of chicken brain -spectrin repeats 15, 16 and 17, PDB-entry 1U4Q 
[23]. The characteristic secondary structural elements of the spectrin repeats are indicated. The long 
helices, especially the linking of helix C in one repeat with helix A of the next repeat, can explain the 
elongated structure of the spectrin molecule. The structure was visualized in the program MOLMOL 
[24].  

4.1 
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Each repeat consists of approximately 106 amino acids [2] and adopts a left-handed 

coiled coil of three right-handed antiparallel -helices [10, 25]. The helices, denoted 

A, B and C, are connected with two short loops, the AB- and the BC-loop. Adjacent 

spectrin repeats are connected with each other through short linkers [2] which 

according to results from X-ray crystallography are helical [26, 27]. The amino acid 

sequences of spectrins are made up of a repeating heptad pattern, a structural motif 

typically of coiled coils. The positions in the heptad are commonly denoted by the 

letters a through g. Residues at the a and d positions are typically non-polar and 

located in the hydrophobic core between the three helices, where they involve in 

interhelical, hydrophobic interactions. The partially solvent-exposed e and g positions 

are often occupied by charged residues which form interhelical salt-bridges with 

oppositely charged residues [28]. 

Even though the sequence identity between different spectrin repeats is quite low (20-

30 %), their structures are very similar when they are superimposed [2]. The 

hydrophobic amino acids in the helices are the most conserved residues.  

1.1.4 Aims of the study 

The thermal and conformational stabilities of spectrins do not only depend on the 

environment of the cell, and thus various functions [6], but there are also major 

differences between the thermal stabilities of the spectrin repeats within mature 

spectrin. For instance, the melting points of mammalian brain - and -spectrin repeats 

vary between 25 °C and 79 °C [29].  

It was observed that the G of thermal unfolding of single repeats of the chicken brain 

-spectrin repeat 16 (R16) is about four times larger than that of the neighbouring 

repeat 17 (R17) [23]. Furthermore, double repeats are in general more thermo-

dynamically stable than single repeats [16], and the R16 domain in the tandem repeat 

R1617 is more stable than the single repeat, even after the unfolding of R17 [30]. 

The incentive of the study was to find out, why the single repeat 17 of chicken brain -

spectrin is four times less thermodynamically stable than the neighbouring R16. The 

bioinformatical approach was to look for differences in the amino acid sequences of 

the domains that could have effect on the tertiary structures, and thus the thermal and
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conformational stabilities of the repeats. For example, it has recently been shown that 

two point mutations surrounding a d position in human dystrophin repeat 23 are the 

main cause of muscular dystrophy as they lead to destabilization of helix C [31]. Thus, 

even small differences in the primary structure can have effect on the stability of a 

repeat. The main approach, however, was to perform a variety of biomolecular nuclear 

magnetic resonance (NMR) techniques under different conditions in order to identify 

labile parts of R17.   

1.2 Acetyltransferases 

1.2.1 Protein acetylation 

Post-translational protein modifications are important for the regulation of activity, 

function, stability and localization of proteins [32]. The most common modifications 

include phosphorylation, glycosylation, methylation, ubiquitilation and acetylation 

[33]. The latter is carried out by acetyltransferases which donate the acetyl group of 

acetyl-coenzyme A (acetyl-CoA) to the substrate [34]. Protein acetylation is important 

for the regulation of the cell cycle, but is also associated with apoptosis (programmed 

cell death) and cancer development [35]. On the other hand, inhibitors of protein 

deacetylases have been discovered as potential cancer drugs [36]. Acetylation can 

target both amino acid side chains, so-called N -acetylation, and the N-termini of 

proteins, so-called N -acetylation. 

1.2.2 N -acetylation 

In N -acetylation, lysine acetyltransferases transfer the acetyl group of acetyl-CoA to 

the side chain-N H3
+ of specific lysine residues (figure 1.3). Histones are the most 

thoroughly studied proteins that are modified by N -acetylation [37]. Since the positive 

charge of the lysine side chain is removed by acetylation, the affinity of the histones 

for the negatively charged DNA is reduced [37], and thus gene expression is up-

regulated [38]. N -acetylation is reversible [38] and the reverse mechanism is 

catalyzed by histone deacetylases [37]. 
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Figure 1.3: N -acetylation. Lysine acetyltransferases (KATs) transfer the acetyl group of acetyl-CoA 
to the side chain of lysine, and thus remove the positive charge of the amino acid. Deacetylases 
(HDACs) catalyze the reverse reaction. 
 

1.2.3 N -acetylation 

In N -acetylation, the acetyl group of acetyl-CoA is transferred to the backbone of the 

N-terminal amino acid of the target protein (figure 1.4). 

 
Figure 1.4: N -acetylation. The acetyl group of acetyl-CoA is irreversibly transferred to the N-
terminal amino acid of the target protein by an N-terminal acetyltransferase (NAT). 
 

The reaction takes place post-initial rather than post-translational [34] as the nascent 

protein is acetylated when 20-50 amino acids protrude from the ribosome [39]. N -

acetylation neutralizes the positive charge of the protein N-terminal, which may affect 

the protein’s function, its stability, its interaction with other molecules and its 

susceptibility to further modifications [37]. Unlike N -acetylation, N-terminal 

acetylation appears to be irreversible [37]. N -acetylation occurs in all kingdoms of 

life, but the fraction of acetylated proteins varies widely. In mammals, supposedly 80-

90 % of all proteins are acetylated; more simple eukaryotes like yeast only show about 

50 % of acetylated proteins, while proteins in prokaryotes and archaea are rarely 

acetylated [40]. The methionine that resides at the N-terminal of most proteins is 
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usually cleaved prior to N -acetylation [39]. The second residue (or first, if the 

methionine is not cleaved) of the protein sequence is of special importance for the 

specificity of the N-terminal acetyltransferase (NAT) [39]: 95 % of all proteins that are 

acetylated have serine, alanine, glycine, threonine or methionine at the N-terminal 

position [41]. But the occurrence of these amino acids does not guarantee the 

acetylation of a protein. So far, there are no methods to deduce from the primary 

structure whether or not a protein will be modified by acetylation, but it is known that 

for the specificity of the NATs also the amino acid at the third, and in some cases even 

fourth and fifth, position is of importance [37].      

1.2.4 The protein human Naa50p 

In eukaryotes, a total of six N -acetyltransferase complexes have been identified so 

far: NatA-NatF [42, 43]. At first Naa50p, formerly called Nat5p in yeast, San in fruit 

fly and Nat5 in human [42], was shown to be a part of the NatA complex together with 

Naa10p (previously Ard1p, Ard1 and hArd1) and Naa15p (previously Nat1p, Nat1 and 

NATH) [44, 45]. Interestingly, it was discovered that Naa50p in baking yeast is not 

associated to the ribosome in the absence of Naa10p and Naa15p [44], and that 80 % 

of Naa50p in Drosophila melanogaster occurs freely in the cell [45]. Furthermore, 

Naa50p is neither required for the activity of the NatA complex in yeast [41] nor in 

human cells [46]. Therefore, human Naa50p in association with NatA was defined as a 

putative, novel complex annotated NatE [46].  

hNaa50p is located in the cytoplasm, consists of 169 amino acids and has a molecular 

mass of 19.4 kDa. Its sequence identity to Naa50p in yeast and fruit fly is 

approximately 25 % and 70 %, respectively [35]. It showed to be important for sister 

chromatid adhesion during mitosis in fruit fly and human [45, 46]. hNaa50p is the first 

characterized acetyltransferase which exhibits both N - and N -acetylation activity. 

The latter was detectable in both in vivo [45] and in vitro experiments [47], and auto 

acetylation of the lysine residues K34, K37 and K140 in hNaa50p showed to increase 

the N -substrate specificity [47]. hNaa50p has a substrate preference towards peptides 

starting with the sequence ML followed by an amino acid with a small side chain at 

the third position. The optimal substrate identified so far starts with the sequence 

MLGP, and thus varies widely from the substrate specificity of the NatA complex 
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towards peptides starting with the amino acids SESS [47]. The structure of hNaa50p is 

shown in figure 1.5. 

 

Figure 1.5: The crystal structure of hNaa50p obtained in complex with acetyl-CoA (PDB-entry 
2OB0). The substrate is not included in the figure. The active site of the protein is situated in the cleft 
between the two -sheets. The structure was visualized in MOLMOL [24]. 
 

1.2.5 Enzyme mechanism 

So far, four different types of catalytic mechanism have been proposed for N - and N - 

acetyltransferases: ordered sequential mechanism [48], random sequential mechanism 

[49], Theorell-Chance mechanism [50] and ping-pong mechanism [51, 52]. However, 

since it was recently revealed that both Esa1 and p300 follow an enzyme mechanism 

which includes the formation of a ternary complex [48, 50], it could not be confirmed 

yet that any acetyltransferase actually exhibits the ping-pong mechanism. All four 

mechanisms are of the Bi-Bi type, i.e. they involve the sequential binding of two 

substrates and the release of two products [53].  

In the ordered sequential mechanism (figure 1.6A), the binding order of the two 

substrates is obligatory and the second substrate will usually not bind until the enzyme 

undergoes conformational changes upon binding of substrate one [53]. Thus, the 

nascent protein and acetyl-CoA are simultaneously bound to the acetyltransferase and 

form a ternary complex. After transfer of the acetyl group, the two products, the 

acetylated protein and CoA, are released. 

In contrast, the binding and disassociation order of substrates and products is arbitrary 

in the random sequential mechanism (figure 1.6B) [53]. Like in the ordered sequential 

mechanism, a ternary complex involving enzyme and substrates is formed. 

The Theorell-Chance mechanism (figure 1.6C) [54], also called hit-and-run, is a 

special case of the ordered sequential mechanism as the ternary complex is unstable 
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and only exists for a short period of time. Again, acetyl-CoA has to bind first and 

induce changes on the enzyme structure in order to promote binding of the substrate 

protein. The protein is then immediately acetylated and released from the 

acetyltransferase.  

  

  

Figure 1.6: Cleland representations of the acetyltransferase reaction mechanisms. A) Ordered 
sequential mechanism: acetyl-CoA (ac-CoA) has to bind to the enzyme (E) prior to the binding of the 
nascent protein (P). The acetyl group is transferred to the protein and the products, acetylated protein 
(ac-P) and CoA, are released. B) Random sequential mechanism: the binding order of nascent protein 
and acetyl-CoA and the disassociation order of the products are random. C) Theorell-Chance 
mechanism: the nascent protein is immediately acetylated upon binding to the enzyme. D) Ping-pong 
mechanism: the acetyl group stays bound after the release of CoA. This induces a structural change 
on the enzyme (F) required for the binding and acetylation of the nascent protein. 
 

Finally, the enzyme reaction in the ping-pong mechanism (figure 1.6D), also called 

double-displacement, is divided into two separate steps: the reaction of the 

acetyltransferase with the first substrate results in the formation of the first product and 

induces a new conformation of the enzyme required for binding of the second 

substrate [53]. Thus, the acetyl group remains bound to the enzyme after CoA is 

released and is then transferred to the protein substrate after binding of the latter to the 

acetyltransferase.  

1.2.6 Aims of the study 

The incentive of the study was to find out if also hNaa50p uses one of the four 

presented catalytic mechanisms and, in that case, which one. This was of special 
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interest because no eukaryotic NAT has previously been described with respect to its 

reaction mechanism. Furthermore, in several species Naa50p has shown to be essential 

for sister chromatid cohesion and chromosome resolution [45, 55, 56]. Thus, like 

histone deacetylase inhibitors [36], also inhibitors of NATs could be used as potential 

cancer drugs by destabilizing chromosome formation and nuclear division. In order to 

design optimal inhibitors, it is crucial to have detailed insight into the enzyme 

mechanism. 

The approach was to investigate the reaction mechanism using enzymatic assays 

which could determine the kinetic constants of the substrates, acetyl-CoA and peptide 

(resembling the nascent protein), and the nature of inhibition exhibited by the 

products, CoA and acetylated peptide. In addition, the enzyme mechanism was studied 

by NMR spectroscopy. It was expected that binding of the first substrate would lead to 

a conformational change of the enzyme resulting in chemical shift changes of single 

peaks in the spectra. These results could be used to determine the amino acids 

involved in substrate binding. Furthermore, the NMR results could in combination 

with the enzymatic assays reveal if the substrate binding follows an ordered or a 

random pathway and if the mechanism involves the formation of a ternary complex 

(sequential mechanism or Theorell-Chance) or not (ping-pong).  
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2. BIOMOLECULAR NMR SPECTROSCOPY 

2.1 Basic properties of NMR spectroscopy 

In 1946, the research groups of Bloch [57, 58] and Purcell [59] were simultaneously 

the first to detect NMR signals. Since then, NMR spectroscopy has grown to be one of 

the most important tools for both natural and medical scientists. 

All nuclei which possess a nuclear spin, I, different from zero are NMR active, but 

biomolecular NMR spectroscopy focuses almost exclusively on isotopes with I = ½, 

such as 1H, 13C, 15N and 31P. Placed into a magnetic field, the magnetic momentum of 

these nuclei will either align parallel (corresponding to the magnetic quantum number 

ml = ½) or antiparallel to the field (ml = -½). The spin populations of the two energy 

levels depend on the energy difference between the two states. This difference is based 

upon the magnitude of the external magnetic field, usually expressed by the 1H 

resonance frequency of the NMR instrument, and the sensitivity of the nucleus. The 

latter is determined by the gyromagnetic ratio, , which is constant for each isotope. 

The ratio of the particles in the high energy state, N , compared to the low energy 

state, N , can be calculated from the Boltzmann distribution:  

kTEe
N

N /Δ−= ,                  (2.1) 

where k is the Boltzmann constant and T the absolute temperature. Hence, at 298 K 

and a resonance frequency of 600 MHz, the excess of protons in the low energy state 

is approximately 0.001 % of the total amount of protons. Since only this little fraction 

contributes to the resulting signal, it explains why NMR spectroscopy is very 

insensitive compared to other spectroscopic techniques. 

Nevertheless, NMR spectroscopy is a powerful tool because the resonance frequency 

for a single nucleus is not only dependent on the isotope, but also on the chemical 

environment of this nucleus, i.e. atoms and electrons in the vicinity will weaken the 

applied magnetic field. This effect is called shielding and the resulting frequency can 

be expressed as follows: 

π
σγν

2

)1( 0B−
= ,          (2.2) 
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where  is the shielding constant and B0 the magnetic field. 

Instead of the absolute frequency, one refers to the chemical shift, , of the nucleus 

which is independent of the magnetic field strength of the spectrometer: 

ppm106

ref

refsample ×
−

=
ν

νν
δ          (2.3) 

It is also possible to transfer magnetizations between different nuclei, and in that way 

multi-dimensional spectra can be acquired. There are two main principles for how 

spins can be correlated with each other: through chemical bonds, so-called scalar or J-

coupling, and through space, so-called dipolar coupling. 

2.2 General protein NMR spectroscopy 

2.2.1 Drawbacks and advantages of protein NMR spectroscopy  

The main disadvantage of biomolecular NMR spectroscopy is its low inherent 

sensitivity. Additionally, the yield from protein purification is usually less than 5 mg 

and many proteins precipitate or aggregate at high concentrations. Thus, protein NMR 

spectroscopy requires long acquisition times; it is not unusual to spend one week on 

recording the spectra that are necessary for the backbone assignment. 

Another drawback is that the natural abundant 12C and 14N isotopes are not suitable for 

NMR analysis. Hence, it is often necessary to label larger proteins with 15N and/or 13C, 

which makes the protein expression more time-intensive and remarkably more 

expensive.   

Protein NMR spectra tend to be difficult to interpret due to the large amount of signals. 

This drawback has been diminished in the last two decades, as many new experiments 

especially suited for proteins have been developed. Until the early 1990s, protein 

NMR spectroscopy was almost entirely based on basic homonuclear 2D experiments, 

like TOtal Correlation SpectroscopY (TOCSY) and Nuclear Overhauser Enhancement 

SpectroscopY (NOESY). Due to the small chemical shift dispersion of 1H 

(approximately 12 ppm) and shift overlap caused by increasing protein size, these 

techniques fail on most proteins larger than approximately 10 kDa. Since then, a 

cascade of heteronuclear 3D experiments has been developed. These methods have 

two major advantages compared to the homonuclear 2D techniques. First, as one 
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enters the third dimension the problem of chemical shift overlap is drastically reduced. 

And second, the intrinsic chemical shift dispersions of 15N and especially 13C are much 

larger than that of 1H. In proteins, the 15N frequency domain is restricted to the amide 

region, which encompasses the range of 100-135 ppm. Whereas the 13C frequency 

domain is divided into the aliphatic region, approximately 10-70 ppm, the aromatic 

region, about 110-140 ppm, and the carbonyl region, approximately 165-185 ppm. 

These advantages outdo the disadvantages of heteronuclear 3D experiments: the costs 

of isotope-labelling the protein, and the increased time amount needed for the 

acquisition of 3D experiments. 

The main advantage of studying proteins by NMR spectroscopy is its diversity of 

applications. The chemical shift values give insight into the secondary structural 

elements, whereas long-range Nuclear Overhauser Effect (NOE) interactions provide 

information about the tertiary structure of a protein. The assigned 2D 1H-15N 

Heteronuclear Single-Quantum Coherence (HSQC) spectrum can be used for several 

purposes, such as relaxation studies, denaturation studies, diffusion studies, measuring 

the rate of HN-exchange and monitoring chemical shift changes of specific peaks in the 

spectrum upon e.g. addition of ligands. These studies may contribute to insight into the 

structure, the dynamics and the function of a protein at physiological conditions. Other 

methods might be better suited for one task, for instance X-ray crystallography for 

structure determination, but they cannot be used for the same variety of applications. 

Furthermore, since NMR spectroscopy of proteins usually is carried out in solution, 

preferable at conditions resembling physiology, the results obtained from NMR 

spectroscopy may be more biologically relevant than those from other methods. 

2.2.2 Atom nomenclature 

The nomenclature of the amino acids follows the numbering scheme of carboxylic 

acids; thus, the carbon following the carbonyl group, C´ or just C in NMR terms, is 

called C  or CA. The numbering continues throughout the side chain and includes also 

heavy atoms different from carbon. In case of stereoisomery, protons are labelled with 

a numeral as well, e.g. H 2 and H 3. Figure 2.1 shows the atom names in the spin 

system of asparagine. 
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Figure 2.1: The nomenclature of the atoms in an amino acid, exemplified on asparagine. 

 

2.2.3 Experimental terminology 

Unlike classic NMR techniques which are entitled by more or less funny acronyms, 

e.g. TOCSY, the names of protein NMR experiments illustrate the magnetization 

transfer pathway in the pulse sequence. The most simple triple-resonance 3D method 

is the HNCO experiment. The name implies that the magnetization is initially 

transferred from the HN to the NH and further on to the C´ of the preceding residue. 

When the name includes brackets, like the related HN(CA)CO experiment, it means 

that the magnetization is passed on to the C´ via the C , without spin evolution of the 

latter. Thus, the C  shifts are not observable in the resulting spectrum. 

Pulse sequences starting with “HN” imply that they belong to the so-called “out-and-

back” experiments [60], i.e. in the case of the HNCO experiment the magnetization is 

finally transferred back from the C´ to the HN via the NH for data acquisition at the 

most sensitive nucleus. The CBCA(CO)NH experiment, on the other hand, is an 

example of a transfer experiment [60]: here the magnetization transfer starts in the side 

chain, the H , and the magnetization is finally transferred to the HN for data 

acquisition. Again, “(CO)” implies that the carbonyl shifts are not visible in the 

spectrum.   

2.2.4 Sensitivity of protein NMR experiments 

Two main factors influence the quality of the NMR data: the inherent sensitivity of the 

experiment and the resolution of the spectrum. In contrast to the former, the latter 
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cannot be improved by increasing the number of scans, and thus obtaining a better 

signal-to-noise ratio. The resolution of a spectrum depends on the field strength of the 

NMR spectrometer, the number of acquired data points and the line-widths of the 

signals. The latter is indirectly proportional to the transverse relaxation time, T2 [61]. 

The T2 values decrease as a function of increasing molecular mass, leading to signal 

broadening which has two negative side effects. First, as a result of increased line-

widths, the peak heights decrease, i.e. for large proteins more scans have to be 

collected than for small ones of equal sample concentration. Second, signal broadening 

leads to peak overlap, which complicates the assignment work. 

Short transverse relaxation times have another drawback for undeuterated proteins: 

they diminish the sensitivity of NMR methods that use isotropic mixing times, which 

is the case for all TOCSY based experiments [62]. Also, the more magnetization 

transfer steps that are included in a pulse sequence, the more signal strength is lost due 

to transverse magnetization decay in each step.  

The sensitivity of an experiment is also dependent on the size of the coupling constants 

(figure A.1) between the involved spins in a magnetization transfer. These coupling 

constants are independent of protein size and practically universal. Small coupling 

constants reduce the sensitivity of an experiment. This is not an issue for most 13C 

based methods as only the two-bond couplings between NH and C , 2J (NH-C ), and 

between NH and C´, 2J (NH-C´), are less than 10 Hz. But it is a problem for protons, 

especially in -helices, where the 3J (NH-H ) typically is between 2-5 Hz [63]. Thus, 
1H-1H TOCSY methods performed on proteins larger than 10-12 kDa suffer from both 

reduction in sensitivity due to short T2 values and due to small coupling constants.  

2.3 Assignment strategy 

The previous two paragraphs have focused on the theory and the background for 

protein NMR spectroscopy in general. The remainder of this chapter will illustrate the 

practical aspects of protein NMR spectroscopy, exemplified on the small 

(approximately 8.5 kDa) human ubiquitin which was used as a case study in this work. 
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2.3.1 Spin system numbering 

Spin systems (figure 2.1 shows an example of a spin system) in NMR experiments are 

given a specific numbering (figure 2.2). The system of reference is called residue I. Its 

predecessor (N-terminal neighbour) gets the numbering I-1, whereas the successor (C-

terminal neighbour) is denoted I+1. In HNCO, for example, the C´ (I-1) directly bound 

to the NH (I) is observed.   

 

Figure 2.2: Three adjacent spin systems in the protein primary structure. The residue of observation 
is denoted I, the successive residue I+1 and the preceding amino acid I-1. The correlation that is 
observed for residue I in the 3D HNCO spectrum is highlighted. 
 

2.3.2 2D HSQC 

The starting point of the resonance assignment is the 2D 1H-15N HSQC [64, 65] 

spectrum. This experiment yields, in principle, the correlations of all backbone amides 

based on 1J (NH-HN). In addition, the side chain amides of asparagine and glutamine, 

and the N H  of tryptophan and of most of the arginines appear in the spectrum. On the 

other hand, there are no NH-signals from proline in the HSQC spectrum as this 

particular amino acid lacks an HN. Other backbone correlations might also be missing 

due to solvent or conformational exchange. This typically affects the N-terminal amino 

acid and residues in highly flexible regions. 

There also exists a carbon version of this experiment, the 2D 1H-13C HSQC. Every 

proton that is directly bound to a 13C nucleus will appear in the spectrum. This 

includes correlations in the backbone as well as in aliphatic and aromatic side chains. 

Thus, there will be far more peaks in the 1H-13C HSQC spectrum compared to the 

nitrogen version. 

The 1H-15N HSQC pulse sequence, which is basically identical to that of the carbon 

variant, is shown in figure 2.3. The observable correlations of all discussed 

experiments are listed in table A.1.  
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Figure 2.3: The basic 1H-15N HSQC pulse sequence. Thin and thick vertical bars represent 90ºx- and 
180ºx-pulses, respectively. The 90ºy- pulse and the delays,  and t1/2, are indicated. The -delays are 
chosen to be 1/4 

1J (NH-HN). The 15N nuclei are decoupled during data acquisition (FID) in order to 
prevent signal splitting due to 1J (NH-HN) in the resulting spectrum. If the protein is 13C-labelled, the 
sequence also includes a carbon channel that is used to remove signal splitting due to 13C coupling 
during spin evolution. In addition, gradients are usually used to suppress the dominating solvent H2O-
signal and to select for the desired magnetization transfer pathway. 

2.3.3 Backbone experiments 

In order to assign the peaks in the 1H-15N HSQC spectrum to their corresponding 

residues, it is necessary to obtain more information from triple-resonance 3D spectra. 

The transition from a 2D to a 3D spectrum is shown in figure 2.4.   
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Figure 2.4: The 2D 1H-15N HSQC spectrum of 1 mM human ubiquitin at 600 MHz is shown on the 
left and the 3D HNCA spectrum on the right. The peaks in the HNCA spectrum have the same 1H and 
15N shift values as in the HSQC spectrum, but each backbone-NH signal is now split in two, 
corresponding to the 13C chemical shifts of the intra-residual and the preceding C . The correlations 
of residue G47 are highlighted as an example in both spectra.  
 

The four basic backbone methods can be divided into two pairs: the HNCO and 

HN(CA)CO experiments and the HNCA and HN(CO)CA experiments. 

The HNCO method [66-68] is the most sensitive of all triple-resonance 3D NMR 

techniques (the relative sensitivities of the six most important experiments for the 
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resonance assignment are shown in figure A.2). The resulting spectrum contains the 

peaks from the 2D 1H-15N HSQC spectrum separated by the C´ chemical shifts of the 

preceding residue in the third dimension. Thus, there is only one peak per residue in 

the spectrum, generating minimal signal overlap. Since HNCO is the most simple of 

the 3D experiments, its basic pulse sequence [69] is shown as an example of 

heteronuclear 3D NMR experiments in figure 2.5. 

 

Figure 2.5: The simplified 3D HNCO pulse sequence. Thin and thick vertical bars represent 90ºx- and 
180ºx-pulses, respectively. Different delay times, , t, t´, t1/2 and t2/2, are indicated. Recent HNCO 
sequences use shaped band-selective pulses in the 13C-channel instead of hard 90º- and 180º-pulses in 
order to efficiently suppress signal splitting resulting from NH-C -couplings and select C´ signals with 
high specificity. Gradients are used to suppress the dominating H2O-signal and to select for the desired 
magnetization transfer pathway. Note that the building blocks of the 2D 1H-15N HSQC experiment are 
included in the beginning and the end of the 3D HNCO pulse sequence. 
 

 HNCO is combined with the HN(CA)CO experiment [70], which detects both the 

preceding and the intra-residual C´ shifts, where the latter in general yield the stronger 

peaks. Still, HNCO is usually used for discrimination between the intra-residual and 

the preceding C´ signals. Figure 2.6 shows which spins are detected by these two 

methods. 

 

Figure 2.6: The HNCO and the HN(CA)CO experiments. HNCO (solid line) connects the backbone 
amide with the preceding backbone carbonyl. HN(CA)CO (dashed line) detects both the preceding as 
well as the intra-residual backbone carbonyl. The brackets indicate that the C  shifts are not 
observable in the spectrum.  
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Unfortunately, HN(CA)CO is the least sensitive of the four basic 3D experiments. 

Preceding C´ signals are often missing, and without them it is not possible to link spin 

systems to each other. The reason for the low sensitivity is the fast relaxation of the 

transverse C  magnetization which is further increased by increasing protein size [60]; 

as a result, amplifying the number of scans has little effect on the signal strengths. 

Another drawback of the HNCO/HN(CA)CO pair of experiments is that the carbonyl 

chemical shifts are much less amino acid type specific than the aliphatic shifts, i.e. 

assigning correlations to specific amino acids in the sequence is very difficult.  

The HNCA and HN(CO)CA experiments [67] are less sensitive than HNCO but 

efficiently more sensitive than HN(CA)CO. Furthermore, the sensitivity difference 

between the two methods is smaller than in the other experiment pair. The HN(CO)CA 

spectrum contains the 2D 1H-15N HSQC peaks separated by the preceding C  chemical 

shifts in the third dimension. Hence, like in HNCO there is only one signal per residue. 

HNCA is used to link the intra-residual with the preceding C . Figure 2.7 shows which 

spins are detected with these two methods.    

 

Figure 2.7: The HNCA and HN(CO)CA experiments. HN(CO)CA (solid line) connects the backbone 
amide with the preceding C . HNCA (dashed line) detects both the preceding and the intra-residual C  
shifts. 
 

The C  shifts can be used to identify glycine correlations, as chemical shifts below 47 

ppm in general belong to this amino acid. Shifts around 50 ppm strongly indicate 

alanine; thus, the HNCA/HN(CO)CA pair of experiments can be used to assign 

specific segments of the protein sequence. 

The linkage of spin systems is performed by the so-called “sequential walk” (figure 

2.8). Concentrating only on the 13C shifts in “strips”, one looks for matching C  pairs. 

This can be accomplished because HNCA detects both the intra-residual and the 

preceding C  shifts. Thus, neighbouring amino acids must share a C  with identical 

chemical shifts, the intra-residual C  of residue I and the preceding C  of residue I+1.  
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Figure 2.8: Sequential walk. The figure shows strips of the HNCA spectrum of human ubiquitin 
collected at 600 MHz. The sequential walk can be carried out either way. Note that intra-residual C  
shifts are in general stronger than the preceding ones, but that the identification of the intra-residual 
and preceding C  shifts is usually established from the HN(CO)CA experiment. 
 

2.3.4 Side chain experiments 

Unfortunately, the backbone experiments are rarely sufficient for the entire sequential 

assignment of proteins larger than 10 kDa. This is due to missing signals because of 

low sensitivity, signal overlap, solvent or conformational exchanged amides and the 

presence of prolines. Strip matching in larger proteins is also complicated by the 

common presence of more than one matching C  and C´ chemical shift pair for several 

residues. Therefore, it is useful to conduct another experiment pair, such as HNCACB 

and CBCA(CO)NH,  which involves the C  chemical shifts. 

CBCA(CO)NH [71] is a reasonably sensitive experiment that results in a spectrum 

containing the C  and C  chemical shifts of the preceding residue, while the HNCACB 

spectrum [72, 73] additionally shows the intra-residual C  and C  chemical shifts. 

Unfortunately, the sensitivity of the latter experiment is even less than that of 

HN(CA)CO. However, the intra-residual shifts, which yield the stronger peaks, may 

provide an indication about the amino acid type. Furthermore, the preceding C  shift is 

likely to be known from the HN(CO)CA spectrum, and thus matching of neighbouring 

residues may still be feasible. Another drawback of the HNCACB experiment is that it 

results in four signals per residue leading to massive overlap in regions with high 

backbone amide shift redundancy.  
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Still, the CBCA(CO)NH and HNCACB experiment pair has two major advantages. 

First, if two residues possess matching C , C  and C´ chemical shifts, it is very likely 

that they are neighbours in the protein sequence. Second, C  shifts are very helpful in 

the assignment work. They identify glycine, lacking C , and a C  shift value below 20 

ppm in general belongs to alanine. Furthermore, the side chains of serine and threonine 

are recognized by a C  shift that is situated at a higher chemical shift value than the C . 

The remaining 16 amino acids cannot be identified at that point, but they can usually 

be placed into several subgroups. 

Figure 2.9 shows the spins that are observed with these two methods. 

 

Figure 2.9: The CBCA(CO)NH and HNCACB experiments. CBCA(CO)NH (solid line) connects the 
backbone amide with the preceding C  and C . HNCACB (dashed line) detects both the intra-residual 
and the preceding C  and C  chemical shifts.   
 

The corresponding H  and H  chemical shifts can be determined by a similar approach 

using the related  HBHA(CO)NH experiment [71]. 

2.3.5 Amino acid type specific experiments 

Determining the amino acid identity of a spin system is very helpful in proteins larger 

than 10 kDa. It can be used to assign a segment to a specific part of the protein 

sequence or to confirm already assigned stretches of the primary structure. Further-

more, it allows for the extension of known segments in regions with shift overlap if 

only one of the matches corresponds to the correct amino acid type. 

The 3D method for assigning all scalar (through-bond) coupled aliphatic carbon shifts 

in the amino acid side chains is the CC(CO)NH experiment [74, 75]. At best, this 

method can separate serine from threonine, and identify the following amino acids: 

valine, leucine, isoleucine, proline, arginine and lysine. The remaining ten amino acids 

can be divided into three groups: 1) glutamine, glutamic acid and methionine; 2) 

asparagine, aspartic acid, phenylalanine, tyrosine and reduced cysteine; 3) histidine, 
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tryptophan and oxidized cysteine (figure 2.10). Thus, CC(CO)NH can be extremely 

helpful in the assignment work.  

 

Figure 2.10: The average aliphatic 13C chemical shift values from the biomagnetic resonance bank 
(BMRB) [76]. C  shifts are indicated with solid circles (•), C  shifts with hollow circles ( ), C  shifts 
with solid squares ( ), C  shifts with triangles ( ) and the C  shifts with hollow squares ( ). The two 
C  groups of valine and the two C  groups of leucine have almost identical chemical shifts and are 
represented by only one symbol, whereas the C  groups of isoleucine are both shown because they are 
in different shift ranges. The two different C  shifts of cysteine (grey circles) indicate the oxidized 
(approximately 40 ppm) and the reduced (approximately 30 ppm) form of the amino acid. Note that 
the C  shift of methionine (dashed) cannot be detected by experiments based on scalar couplings. The 
amino acids are grouped according to their chemical shift ranges as described in the text. 
 

Unfortunately, the method has some restrictions. CC(CO)NH is TOCSY-based; hence, 

the signal strengths in proteins larger than 10 kDa are reduced due to short T2 times 

and cannot be sufficiently improved by an increase in the number of scans. 

Furthermore, the time needed for a complete magnetization transfer increases with 

increasing side chain length [77, 78]. In small proteins, one can compromise and use a 

mixing time that suits C  best (figure 2.11). Since the experiment is reasonably 

sensitive for small proteins, most side chain carbons can be detected this way. 

However, this approach fails with proteins larger than 10 kDa, because the weakest 

signals are not stronger than the noise of the spectrum. One option is to run the same 

experiment with several different isotropic mixing times, which is very time-

consuming because each experiment can easily take 48 hours. The opportunistic 
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approach, thus, is to use a long mixing time which has proven to give sufficient signal 

strengths for remote side chain shifts. Since the C  and C  shifts were already obtained 

from the HNCA, HN(CO)CA, HNCACB and CBCA(CO)NH experiments, one can 

identify several amino acids following this approach. 
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Figure 2.11: Effect of different isotropic mixing times on the signal strengths of the 13C aliphatic side 
chain signals in the 3D CC(CO)NH spectrum collected at 600 MHz. The figure shows the spin 
system of K11 in human ubiquitin in all strips. Using a mixing time of 22 ms (left), all five side chain 
signals are observable. Increasing the mixing time to 27 ms (middle) has little effect on the C  and the 
C  peaks, but the signal strength of C  decreases while the C  peak intensity increases. The C  peak is 
no longer observable. At 30 ms (right), the C  signal is further reduced, whereas the C  and, to a lesser 
degree, the C  peak heights increase. Thus, the ideal mixing time for a lysine residue in human 
ubiquitin is approximately 22 ms. But in larger proteins with less sample concentration and reduced 
signal strengths due to short T2 values, a mixing time in the range of 30 ms is more useful because it 
increases the probability of observing the C  in the spectrum. This is helpful, because a remote side 
chain signal at approximately 41 ppm is a strong lysine indicator. 
 

The aliphatic proton shifts can be detected by the CC(CO)NH-related H(CC)(CO)NH 

method [74, 75]. Due to the small 1H-1H coupling constants, this experiment is even 

less sensitive than CC(CO)NH for proteins larger than 10 kDa. 

An alternate way to assign the aliphatic side chain correlations in proteins is the use of 

the 3D HCCH-TOCSY experiment [79] which has its starting point in the 2D 1H-13C 

HSQC method. The advantage is that both proton and carbon side chain shifts can be 

obtained simultaneously. The disadvantages are poor sensitivity in larger proteins, the 

requirement of a good resolution in the 1H-13C HSQC spectrum and that it is more 

tedious to assign spectra which contain signals not originating from the backbone 

amide peaks. 
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A different approach of identifying specific amino acid types is the ensemble of 

MUltiplicity Selective In-phase Coherence transfer (MUSIC) experiments [80-84]. 

These methods yield amino acid edited 2D 1H-15N HSQC spectra. The pulse sequences 

are all based on 3D experiments and are highly selective: in the 13C-channel, several 

pulses, often at amino acid type specific shifts, are used to select only one amino acid 

type, or a group of similar amino acids. The other residues are efficiently suppressed. 

Thus, by comparing the MUSIC-derived spectra with the original 1H-15N HSQC 

spectrum, amino acid types can be directly assigned, without detour over 3D 

experiments. An example is shown in figure 2.12. 
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Figure 2.12: Overlay of a part of the 2D 1H-15N HSQC spectrum of human ubiquitin and three 
MUSIC experiments that all were collected at 600 MHz. Since the blue peaks indicate successors of 
asparagine and glutamine, while the red peaks represent successors of glutamine, glutamic acid and 
glycine, residues that follow after glutamine (L50, R42 and K63) can be directly identified, because 
their peaks are present in both MUSIC spectra. The green peaks indicating successors of arginine 
demonstrate how MUSIC can be valuable in overlap regions: the R_i+1 experiment can in this case 
be used to determine which one of the two leucines, L69 and L73, is the successor of R72.   
 

Again, the sensitivity of these methods is highly dependent on the protein size. 

Additionally, the more transfer steps are included in the pulse sequences, the less 

sensitive are the experiments. Unfortunately, methods that yield good signal strengths 

even with proteins larger than 15 kDa involve the amino acids glycine, alanine and 

serine, i.e. amino acids types which are easily identified by standard 3D experiments. 
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The amino acids that can readily be detected in proteins of 10-15 kDa, and also to 

some extent in proteins of 15-20 kDa (own results), are those with acids, amides and 

aromatic rings in their side chains plus the two aliphatic amino acids valine and 

isoleucine. Thus, MUSIC experiments are good supplements to 3D CC(CO)NH since 

most of the above mentioned amino acids belong to the group that cannot be 

specifically assigned using CC(CO)NH.       

2.4 Structure and assignment information from NOE-based spectra 

In contrast to all previously discussed techniques, NOESY experiments do not depend 

on scalar but on dipolar couplings. Thus, in NOESY experiments correlations between 

two spins can be observed if they are within a limiting distance of approximately 5 Å. 

This allows for the detection of spins that are far apart from each other in the amino 

acid sequence if they are spatially close in the tertiary structure of the protein. 

Therefore, NOESY experiments play an important role in structure determination. 

Importantly, an increase in protein mass does not reduce the signal strengths. Still, 

large proteins will show significant signal overlap leading to shift ambiguities.  

The peak intensities depend on the distance, indirectly proportional to r6, between two 

coupled spins, and are thus of importance for structure calculations [63]. The signal 

strengths are also influenced by the NOESY mixing times; typically a series of spectra 

with differing mixing times is collected. 

Due to the increased number of spin correlations compared to TOCSY based methods, 

2D 1H-1H NOESY is usually limited to a protein size of approximately 8-12 kDa. 

Most heteronuclear 3D NOESY experiments combine the regular homonuclear 

NOESY with either the 1H-15N HSQC or the 1H-13C HSQC experiment. An example 

of the former is the 15N NOESY-HSQC method [65]: all protons within a range of 

approximately 5 Å to the backbone amides will appear in the third frequency domain. 

As the distances within a spin system depend on the amino acid conformation, 15N  

NOESY-HSQC might show fewer intra-residual peaks for amino acids with large side 

chains than the 3D H(CC)(CO)NH experiment.  

Another useful technique is the 3D 13C-HSQC-NOESY-15N-HSQC or CN-NOESY 

experiment [85]: still, it is the protons that have to be within the limiting distance, but 

the proton magnetization is transferred to the directly coupled 13C which then is 
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detected in the third frequency domain (figure 2.13). Since carbon signals show a 

larger chemical shift dispersion than their correlated protons, this method reduces the 

ambiguity of long-range NOE-signals. The drawbacks are the reduced sensitivity 

compared to the 15N NOESY-HSQC and the lack of NOE-correlated amide signals 

which are of great importance for the secondary structure determination. Hence, 13C-

HSQC-NOESY-15N-HSQC is a supplement and cannot replace the 15N NOESY-

HSQC experiment. 

 
Figure 2.13: 3D 13C-HSQC-NOESY-15N-HSQC. The experiment detects 13C-signals whose 
correlated protons are within a distance of 5 Å to a backbone amide proton. 
 

2.5 Protein dynamic experiments 

The combination of three parameters can give insight into the dynamic properties of a 

protein: the 15N relaxation times T1 and T2 (in some cases T1ρ is detected instead of the 

latter), and the heteronuclear NOE (an overview of all dynamic motions in proteins is 

shown in figure A.3). These three parameters can be determined for each resonance in 

the 2D 1H-15N HSQC spectrum, provided that there is little or no overlap with other 

peaks. The protein dynamic experiments are all based on 1H-15N HSQC [86]. 

The spin-lattice, or longitudinal, relaxation time, T1, increases with increasing 

molecular mass and is typically close to 1 s (figure 2.14) [86]. Hence, series of HSQC 

spectra are recorded with delays that are in the range of the expected relaxation time, 

e.g. 0.1 – 2 s. Residues with T1 values above average experience less mobility than 

those with smaller T1 values. 

The spin-spin, or transverse, relaxation time, T2, decreases, as discussed earlier, with 

increasing molecular mass [61]. T2 values for proteins are typically within 50-150 ms 
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(figure 2.14), and HSQC spectra are recorded with relaxation delays of 0 to 200 ms. 

Residues with T2 values above average are more mobile than those with short T2 times. 

Heteronuclear 15N-{1H} NOE-connectivities (hetNOE) are measured as the intensity 

ratios of the peaks belonging to two HSQC spectra, one with and the other without 

proton pre-saturation. The recycling delay in these experiments is chosen to be longer 

than usual, i.e. larger than 3 s, to avoid signal loss due to T1-saturation. Mobile 

residues have hetNOE-values below approximately 0.65 [86]. 

Also, the magnetic field strength influences the dynamic parameters: T1 and hetNOE 

increase with increasing field strength, whereas T2 is to a lesser degree affected by the 

magnetic field. The relationship between T1, T2 and hetNOE and the correlation time 

(time scale of motion), c, at 100 and 600 MHz, respectively, is shown in figure 2.14.  
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Figure 2.14: 15N T1, 
15N T2 and hetNOE dependences on the correlation time ( c) and the magnetic 

field strength. c can be estimated to be approximately MW/2400 (ns) from Stoke’s law [87]1; hence, 
log ( c) for spherical proteins larger than 10 kDa is less than ca. -8.4. Solid and dashed lines represent 
magnetic field strengths of 100 and 600 MHz, respectively. The plots were calculated from the 
equations A.1-3 using SigmaPlot 11.0 [88]. 
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πητ = , where η is the viscosity of the solvent and r the effective hydrodynamic radius of the protein. 
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2.6 Coupling constants 

The dihedral HN-H  coupling constant around the -backbone angle is of specific 

interest as its size gives information about the value of , and thus the backbone 

conformation. 

The HN-H  coupling constant can, for instance, be obtained using the 3D J HNCA 

E.COSY experiment [89], where the signals are split by 3J (HN-H ) in the 1H 

dimension and by 1J (C -H ) in the 13C dimension (figure 2.15). 3J (HN-H ) couplings 

are in general small, less than 10 Hz, thus the much larger 1J (C -H ) is used for better 

signal separation. 

 

Figure 2.15: Detected signals in J HNCA E.COSY are split. The position of the original, decoupled, 
correlation is indicated. 
 

Since each HNCA-signal is split in two, the signal strengths are reduced by 50 %. Due 

to the small coupling constants it is also necessary to record enough data-points in the 
13C and 15N time domains in order to resolve the signals properly. 

2.7 Secondary structure determination 

The main secondary structural elements in proteins, -helices and -strands, can be 

predicted without structure calculations, just by interpretation of the results from the 

previously discussed experiments (sections 2.3-2.6). There are four different 

approaches for secondary structure prediction. The more the results from these 

approaches agree with each other, the more likely is the predicted structure. 

1. Results from protein dynamics 

The T1, T2 and hetNOE values obtained for the individual residues cannot separate 

between different types of secondary structures, but they can be used to locate the 
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most likely positions for helices and strands. Residues that are ordered, and hence less 

mobile, are usually situated in an -helix or a -strand. These residues are identified by 

a T1-value above average, a T2-value below average and a hetNOE value larger than 

0.70. 

2. Chemical shift index 

It has been proven that the chemical shift values of amino acids vary with the type of 

secondary structure. For some chemical shifts, like HN, the differences are too small to 

be significant. But the values for the H , C , C  and C´ shifts (listed in table A.2) are 

powerful in allocating secondary structural elements, especially when combined with 

each other. The shifts are compared to the average random coil chemical shifts of a 

specific amino acid [90, 91]. -helices are detected by H  shifted more than 0.2 ppm 

upfield (i.e. lower shift value), C  shifted more than 0.7 ppm downfield, C  shifted 

more than 0.7 ppm upfield and C´ shifted more than 0.5 ppm downfield. To verify an 

-helix, there must be at least four succeeding residues showing the same pattern. 

The same is true for -strands, but here all resonances are shifted by the same amount 

in the opposite direction. Residues that do not fit into these two patterns are most 

likely situated in coils or loops. 

Not all of the chemical shifts are affected to the same extent by the secondary structure 

conformations. In general, the most reliable chemical shifts for identifying an -helix 

are the C  and the C´ shifts, while the H  and C  resonances are best suited for 

predicting -strands [92]. 

3. NOE restraints 

Even if the results from the 3D 15N NOESY-HSQC experiment are not used for full 

structural calculations, the signal strengths of specific correlations yield information 

about the secondary structures. 

Typical of -helices is the strong peak between neighbouring amides, and that the 

correlation between HN and the preceding H  yields a stronger peak than to the H . 

Weak connectivities between HN and H  that are three or four residues apart are also a 

characteristic of helices. In -strands the adjacent amide signals are weak, but in 

parallel or antiparallel strands long-range amide connectivities are typically strong. 

Also, the HN correlation to the preceding H  yields a much stronger signal than to the 
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H  [93]. An overview of common NOE connectivities and their signal strengths for 

different types of secondary structural elements are shown in figure A.4 and table A.3. 

4. Coupling constants 

An -backbone angle of approximately -57º is typical of an -helix. This is true for 3J 

(HN-H ) values below 6 Hz. The angle for parallel and antiparallel -strands is 

approximately -139º and -119º, respectively, corresponding to a 3J (HN-H ) value 

larger than 8 Hz [94]. 

2.8 NMR spectroscopy on uncommon nuclei 

Some proteins contain amino acids different from the 20 common ones. An example is 

selenomethionine (SeMet/SeM) (figure 2.16), in which selenium substitutes sulphur.  

 
Figure 2.16: The structure of selenomethionine. The sulphur (δ-position) is substituted by selenium. 
 

Selenium has six naturally occurring isotopes and only one of them, 77Se, possesses a 

nuclear spin of ½. Unfortunately, isotopically enriched selenium compounds for 

sample preparation are not yet accessible; hence, one has to cope with a natural 

abundance of only 7.6 % and a sensitivity comparable to that of 13C [95]. The 

advantages of 77Se NMR spectroscopy lie in the wide chemical shift range of the 

nucleus and its pronounced sensitivity towards changes in the chemical environment 

[95]. For instance, the nine selenomethionines in calcium-saturated calmodulin 

showed a 77Se chemical shift dispersion of approximately 60 ppm, whereas the 

differences in their 1H and 13C resonances were less than 1 ppm [96]. The best way of 

studying selenomethionines in proteins is by the 1H-77Se heteronuclear multiple bond 

correlation (HMBC) experiment [97], where the Hβ and Hγ signals usually are not 

observable [96]. In the experiment, the magnetization is transferred to the protons of 

the terminal methyl group; thus, the slow relaxation of the 77Se nucleus of 

approximately 12 s [95] is not an issue. Furthermore, the three protons contribute to 

one common signal, thus improving the signal intensity.   
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3. SUMMARY OF RESULTS  

3.1 Spectrin repeat 17 

3.1.1 Resonance assignment  

Approximately 92 % of all 1H, 13C and 15N chemical shifts of R17 could be assigned 

using standard 3D heteronuclear NMR experiments, specific techniques for the 

assignment of the aliphatic side chains and a variety of amino acid edited 2D 

experiments (MUSIC). Unassigned spins are primarily backbone NH-correlations that 

are missing due to solvent or conformational exchange, and resonances of the non-

aliphatic side chains. 

3.1.2 Domain structure 

The presence of the three long helices which are typical of spectrin repeats were 

confirmed by different approaches: (1) the chemical shift indices (CSI) of four nuclei 

(C´, C , C  and H ), (2) the sizes of the 3J (HN-H ) coupling constants and (3) the 

pattern of sequential and medium-range NOEs. Additionally to the three helices, also 

the linker between R16 and R17 appears to be helical at the experimental conditions. 

The interactions of the helices with each other in the triple-helix bundle were detected 

using well-separated peaks in the 3D 13C NOESY-HSQC spectrum. Furthermore, the 

exchange pattern of the backbone-NH chemical shifts in a sample containing 85 % 

D2O demonstrated that the residues which are protected from instant solvent exchange 

are all part of the triple-helix bundle. Solvent-exposed amide protons in the helices, on 

the other hand, are exchanged in the same time-range as the unstructured parts of R17. 

Overall, the determined secondary structures and the obtained information about the 

tertiary structure of R17 are in very good agreement with the crystal structure of the 

tandem repeat R1617 (PDB-entry 1CUN). 

3.1.3 Domain dynamics 

The profile of the 15N T1 and T2 relaxation times and the 15N-{1H} hetNOE values 

match with the position of the helices. The most flexible parts of R17 are, as expected, 

the N- and C-termini, and the AB- and BC-loops. In addition, the conformation of the 
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stretch of consecutive glutamic acids, 21EEE23, and of two residues in the vicinity of 

the BC-loop, E75 and K93, appears to be less rigid than that of the other helical 

residues. 

The calculation of the diffusion tensor showed the highly anisotropic nature of the 

triple-helix bundle structure, which is observable as an oscillation of the T1 and T2 

values in the two helices, A and B, that are not completely parallel with the main 

rotational axis of the molecule. This oscillation coincides with the turns of the helices. 

The efficient, global correlation time, c,eff, was calculated to be approximately 9.4 ns 

and is within the expected range of a 13 kDa domain. The order parameter values, S2, 

clearly show the flexible N- and C-termini, while the loops appear to be more rigid 

than determined by other experiments. 

3.1.4 Domain stability 

The thermal stability of R17 was investigated by circular dichroism (CD) and 

fluorescence and NMR spectroscopy. The CD analysis was carried out at 222 nm (the 

wavelength that shows a characteristic polarization angle minimum for -helices) and 

the optical rotation of the sample was measured for each 0.1 ºC increment of 

temperature. The melting temperature, i.e. the transition from helical to random coil 

conformation observed as a distinctive decrease in the absolute value of the 

polarization angle, read from the plot was approximately 40 ºC (figure 3.1). The 

unpacking of the single tryptophan residue (W26) by fluorescence spectroscopy was 

studied by irradiating the sample at a wavelength of 295 nm and measuring the 

intensity of the emission peak at increasing temperatures. A buried indole ring will 

emit light with a lower relative intensity than an exposed ring. Thus, the intensity of 

the emission peak can be used as an indicator of the state of the side chain. W26 

appeared to unpack at approximately 40 ºC (figure 3.1). The thermal stability of R17 

by NMR spectroscopy was examined by a series of 2D 1H-15N SOFAST- 

heteronuclear multiple quantum coherence (HMQC) experiments [98] at increasing 

temperatures. First signs of global unfolding appeared at approximately 46 ºC in the 

NMR measurements. According to the NMR results, the melting seems either to be an 

effect of unfolding starting from the BC-loop or a local unfolding of helix C. The 

protein denaturation appeared to be reversible as observed by NMR spectroscopy.  
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Figure 3.1: Thermal unfolding of R17. CD measurement at 222 nm (grey curve, the data were 
smoothed) and maximum peak intensity of the fluorescence emission of the indole ring of W26 (black 
curve). The dashed line at 40 °C indicates the approximate temperature at which the helices unfold and 
the tryptophan side chain unpacks, respectively. 
 

Finally, in a bioinformatical study, the amino acid sequence of R17 was compared to 

34 other chicken brain spectrin repeats in order to identify single amino acids or 

sequence stretches that could explain the relatively low stability of R17 compared to 

other spectrin repeats. Three diverging features in the sequence were detected: (1) four 

subsequent glutamic acids, 21EEEE24, where the negative side chains of E21 and E24 

are spatially close. (2) An unusual amount of charged residues in both the linker and 

the BC-loop. (3) The lack of the moderately conserved tryptophan in helix C. Most 

spectrin repeats have two tryptophan residues which have shown to be important for 

the structural stability of a repeat. In R17, the second tryptophan is substituted by the 

relatively small valine.  

3.2 Human Naa50p 

3.2.1 Resonance assignment 

Approximately 85 % of the backbone-NH-signals were assigned to the primary 

structure of hNaa50p. The 13C aliphatic side chains were partially assigned. 3D 

CC(CO)NH and a series of 2D MUSIC experiments were used to simplify the 

assignment work. Missing amide assignments are mainly caused by peak overlap and 

signal broadening due to conformational exchange. 
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3.2.2 Secondary structures and protein dynamics 

The secondary structural elements of hNaa50p were determined by the CSI of three 

nuclei (C´, C  and C ). The proposed positions of the helices and strands are in good 

agreement with the secondary structures detected by X-ray crystallography (PDB-

entry 2OB0). The only differences are that the second helix (residue position 32-42) 

appears to be shorter than in the crystal, and that the region around I142 resembles a 

strand rather than a loop.  

T1 and T2 relaxation times and 15N-{1H} hetNOE values were determined and used to 

calculate the order parameter, S2, using a fully anisotropic model. The rigid parts of the 

protein coincide with the position of the secondary structures, with exception of the 

region encompassing the first two helices (residues 17-38) and the helical stretches 
73YIMTLG78 and 87GIGTKML93. 

3.2.3 Enzyme mechanism 

Both kinetic assays and NMR spectroscopy were used to explore the enzymatic 

mechanism of hNaa50p. Initial velocity kinetic experiments where the concentration 

of the first substrate, acetyl-CoA, was increased while the concentration of the second 

substrate, peptide, was held constant resulted in an intersecting line pattern consistent 

with the formation of a ternary complex (figure 3.2A). Thus, the ping-pong 

mechanism could be ruled out (figure 3.2B). Product inhibition studies were carried 

out using one of the products, CoA, as inhibitor while the concentration of acetyl-CoA 

was increased. The result showed that CoA acts as a competitive inhibitor (figure 

3.2C). When CoA was used as a product inhibitor, the concentration of acetyl-CoA 

was kept constant and simultaneously the concentration of peptide was increased, a 

non-competitive inhibition pattern was observed (figure 3.2C). All these results point 

towards that hNaa50p follows an ordered sequential mechanism of the rare Theorell-

Chance type. However, when acetylated peptide was used as a product inhibitor 

against both increasing levels of peptide and acetyl-CoA no inhibition was detected, 

indicating that the affinity between acetylated peptide and the enzyme is very low.  
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Figure 3.2: Lineweaver-Burk (or double-reciprocal) plots of the enzyme kinetics. Note that this figure 
is not based upon the actual enzymatic data, but illustrates how the results were interpreted. A) 
Intersecting line pattern in the ternary complex formation mechanism. [S1] and [S2] refer to the 
concentrations of the two substrates, whereas  is the reaction rate. B) Parallel line pattern in the Ping-
Pong reaction mechanism. C) Different types of product inhibition. Vmax is the maximum reaction rate, 
whereas Km = ½ Vmax is the Michaelis constant. In competitive inhibition Km is reduced, whereas Vmax 
remains constant. Non-competitive inhibitors reduce Vmax while Km stays the same. Finally, un-
competitive inhibitors reduce both Vmax and Km.  
 

NMR spectroscopy cannot only confirm a kinetic mechanism, but it can also point out 

the amino acids that most likely are involved in the enzyme reaction. The 2D 1H-15N 

HMQC spectrum of hNaa50p was altered in a similar way when either acetyl-CoA or 

CoA was added to the protein, indicating that both substrate and product bind to the 

same site. This was expected because CoA acted as a competitive inhibitor of acetyl-

CoA in the kinetic assay. When the other substrate, peptide, was added to the enzyme 

no obvious change in the spectrum was observed. This strongly indicates that hNaa50p 

follows an ordered and not a random enzymatic pathway. Small alterations in the 

HMQC spectrum of hNaa50p in complex with CoA were observed when unacetylated 

peptide was added to the sample, whereas the addition of acetylated peptide had no 

such effect. The latter observation matches the kinetic assay where the acetylated 

peptide did not act as product inhibitor. Furthermore, binding of both substrates 
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simultaneously resulted in more spectral changes than binding of peptide to the 

hNaa50p-CoA complex, indicating that acetyl-CoA is the better mediator for peptide 

binding. The effect of simultaneous binding of both substrates was studied using the 

enzymatically inactive but natively folded hNaa50p H112A mutant [99]. Taken 

together, the NMR data suggest that hNaa50p follows a type of sequential ordered 

mechanism.  
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4. DISCUSSION 

4.1 Spectrin repeat 17 

4.1.1 Assignment challenges 

The collection and interpretation of NMR data are usually not as straightforward as 

demonstrated on the template protein human ubiquitin in chapter 2. In the following 

paragraph, the challenges experienced in the assignment work of R17 are discussed.  

The studied R17 construct with its 118 residues is a little larger than the average 106 

amino acids of a spectrin repeat. That is because the construct includes the C-terminal 

of R16 and the linkers to both R16 and R18. The linker to R16 is in particular 

important for the stability of R17, because the linkers interact with the BC-loop of the 

following repeat [100]. 

In spite of a molecular mass of about 13 kDa which classifies the domain as medium-

sized in NMR terms, R17 in some respects behaved more like a protein of 

approximately 18-20 kDa. The reason for that are the long -helices which dominate 

the structure of the repeat. Even though the line-widths of the peaks corresponded to a 

medium-sized protein and led to a good peak resolution, the proton side chain 

assignment work was complicated by the small helical 3J (HN-H ) coupling constants 

which inhibit the magnetization transfer throughout the chain [63]. For example, the 

3D 15N TOCSY-HSQC spectrum contained only side chain signals for amino acids 

positioned at the N- and C-termini and in the AB-loop, i.e. all residues that are not part 

of the -helices.  

In addition, residues positioned in -helices in general show less signal distribution in 

the HN chemical shift range than residues situated in -strands. That means that all-

helical proteins are prone to major shift overlap in the 2D 1H-15N HSQC spectrum 

(figure 4.1). This shift overlap complicates both the backbone assignment work 

because it usually also leads to shift overlap and ambiguity in the third dimension, and 

structure calculations based upon the 3D 15N and 3D 13C NOESY-HSQC spectra 

which already suffer from a vast amount of, partially overlapping, peaks. Thus, in 

order to assign the NH-correlations correctly, it was necessary to combine the standard 

3D experiments (HNCA, HN(CO)CA, HNCO, HN(CA)CO, HNCACB and 
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CBCA(CO)NH) with side chain detecting experiments, like 3D CC(CO)NH, and 

amino acid specific experiments, 2D MUSIC. By these means, an assignment of all the 

peaks in the 2D 1H-15N HSQC spectrum, except for the unique identification of some 

of the arginine N H  side chain signals, could be obtained. 
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Figure 4.1 A) 1H-15N HSQC spectrum of R17 at 600 MHz. B) Enlargement of the overlap region 
(marked red in the original spectrum). 65 out of the assigned 109 backbone-NH signals are found 
within this region. 
 

4.1.2 Domain structure 

The most severe overlap appeared in the 3D 15N NOESY-HSQC spectrum. Even 

though R17 is relatively small, it might have been necessary to conduct the NOESY 

experiments at a higher magnetic field strength in order to resolve the regions with a 

high degree of shift overlap and/or to partially deuterate the sample. Thus at 600 MHz, 

the majority of the weak medium-range NOEs were undetectable, because the signals 

were buried by stronger short-distance peaks in the same chemical shift range. 

Furthermore, some of the weakest short-distance intra- and inter-residual NOEs were 

not observable.  

Since all resonance assignment experiments were conducted on a sample containing 

90 % H2O, it was not possible to use the 3D 13C NOESY-HSQC experiment for 

structure determination, because the residual water peak hid the H  and H  signals 
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resonating close to the water peak and because of several water noise bands in the 

spectrum. Furthermore, the aromatic side chains could neither be assigned from the 
13C NOESY-HSQC nor the 3D HCCH-TOCSY spectrum, as the aromatic CH-groups 

suffer from fast transverse 13C relaxation in water-containing samples [101]. However, 

it was feasible to assign most of the H  and H  resonances of phenylalanine and 

tyrosine from the 2D (HB)CB(CGCD)HD and 2D (HB)CB(CGCDCE)HE experiments 

[102]. 

Both due to severe peak overlap in the 15N and 13C NOESY-HSQC spectra and only 

partial assignment of the aromatic side chains, the initial structure calculation, which 

was carried out in the program CYANA 2.1 [103], did not yield a sensible result. But 

since there exist crystal structures of both the double repeat R1617 (PDB-entry 1CUN) 

and the triple repeat R15-17 (PDB-entry 1U4Q), a redefining of the R17 structure by 

NMR spectroscopy would have had little scientific significance. Nevertheless, the 

chemical shift values, the pattern of inter-residual NOEs and the sizes of the 3J (HN-

H ) coupling constants were all in agreement with the positions of the -helices that 

were determined from X-ray crystallography. In addition, several long-range NOEs 

within the triple-helix bundle were detected using 13C NOESY-HSQC. Finally, the 

lack of NOEs between the side chains of W26 and V99 indicates that the small cavity 

between the three helices in the crystal structure is not an artefact but might be the 

result of the tryptophan to valine substitution at sequence position 99. 

4.1.3 Thermodynamical and conformational stability 

The CD analysis showed that the helices of the R17 construct melted at approximately 

40 ºC and, according to fluorescence spectroscopy, W26 is unpacked in the same 

temperature range, whereas the NMR-sample appeared to be melting at roughly 46 ºC. 

Both temperatures are significantly higher than the previously reported melting 

temperature of approximately 31 ºC [23]. The difference between the two studied R17 

constructs is that we included the linker between the repeats 16 and 17. Thus, the 

linker apparently increases the thermodynamical stability of R17. The crystal structure 

(PDB-entry 1CUN) indicates interaction between the linker and the BC-loop through 

aromatic ring stacking and salt-bridges. In addition, three positive charges in the BC-

loop are efficiently neutralized by three negative charges in the linker. We suggest that 
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the BC-loop in the absence of the linker reduces the thermodynamical stability of the 

repeat, because of an increased structural flexibility and because of the repulsion of the 

positive charges. The presence of a negatively charged linker and a positively charged 

BC-loop is not a general feature of spectrin repeats (see section 4.1.4) and there is, for 

instance, less interaction observed between the linker and the BC-loop of R16 (PDB-

entry 1U4Q). Thus, it seems like R17 is more dependent on the linker in order to be 

stabilized than most spectrin repeats. Interestingly, the majority of the backbone amide 

peaks of the linker and the BC-loop were absent from the 1H-15N HSQC spectrum, 

both at pH 6.0 and at pH 6.8, and in the temperature range of 10 to 48 ºC. Furthermore, 

the observable amino acid peaks in these regions were broadened, suggesting that the 

linker and the BC-loop do not adopt one stable conformation, but fluctuate between 

two or more states at a rate which makes their peaks undetectable for NMR 

spectroscopy. One can only speculate, if the linker and the loop have a more rigid 

structure in the mature spectrin molecule, since it has proven to be difficult to study 

more than one spectrin repeat by NMR spectroscopy at a time. The 1H-15N HSQC 

spectrum of the double repeat R1617, for instance, only showed well-resolved peaks in 

the region of the side chain amides, whereas the backbone NH-correlations were weak 

and showed little chemical shift dispersion in both dimensions [104].  

The drawback of CD analysis (figure 3.1) is that it can only measure when 

denaturation occurs, but not where the unfolding initiates in the molecule. Since R17 

only contains one tryptophan residue, fluorescence emission could be used to pinpoint 

the temperature at which W26 – maybe the most central residue in the hydrophobic 

core of the domain – gets solvent exposed. First signs of unpacking appeared at 

approximately 40 °C and the solvent exposal increased rapidly from about 44 °C 

(figure 3.1). The sudden decline in intensity as the temperature exceeded 55 °C could 

indicate that R17 precipitated. However, the unfolding of the repeat was mainly 

studied by NMR spectroscopy where all residues could be investigated at a time. The 

basic idea was that the residues which are affected by a temperature increment would 

undergo slow exchange between two or more conformations belonging to the folded 

and one or several unfolded states. This exchange would be observable as a splitting of 

the NH-peaks in the 1H-15N HMQC spectrum. Unfortunately, a temperature change 

affects all chemical shifts, especially the proton resonances, but to a different extent. 
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Thus, it was difficult to track the chemical shift changes of individual peaks, even 

though the temperature was raised in small intervals. Furthermore, an overall 

fluctuation of the domain structure was observed as peak-broadening of all resonances 

close to the melting point. Thus, resonance splittings in the peak clusters in the overlap 

region of the spectrum (figure 4.1) were impossible to determine. In addition to 2D 

HMQC, also 3D HNCO and HN(CO)CA spectra were recorded at 44 °C. These 

experiments were chosen, because they are the two most sensitive 3D methods and 

because their spectra only contain one peak per residue, generating minimal peak 

overlap. At 44 °C most of the observed NH-peak splittings of helical residues have 

initiated, but the temperature was kept below 46 °C where global unfolding was 

observed which eventually might result in irreversible protein denaturation. It was 

expected that helical residues in the regions where unfolding occurs would show 

changes in their C´ and C  chemical shifts concordant with the transition from helical 

to random coil values (i.e. move upfield). However, it was observed that seven 

residues experienced peak-splittings of their C´ and/or C  correlations, indicating a 

slow conformational exchange between folded (original peak) and unfolded (new 

peak) state at this particular temperature. Hence, the determination of the unstable 

parts of the repeat was based upon the approximately 70 well-resolved NH-peaks in 

the HMQC spectrum and the peak splittings of the backbone carbons. Not 

unexpectedly, the least stable parts of R17 are the unstructured N- and C-termini. Also, 

the transitions between helix A and the AB-loop and between the latter and helix B 

showed changes in conformation at temperatures below 40 ºC. It appears as if the 

melting within the first helix starts in the central part of helix C, which includes V99, a 

rare substituent of the partially conserved tryptophan at that position. The importance 

of the two tryptophan residues in spectrin repeats has been thoroughly discussed [8, 

105]. Three aromatic residues involve in interhelical interaction in the hydrophobic 

core of many spectrin repeats: two tryptophans and one histidine. The pyrrole ring of 

the almost 100 % conserved tryptophan in helix A stacks onto the imidazole ring of 

the histidine in helix B, and the large side chain of the partially conserved tryptophan 

in helix C undergoes hydrophobic interaction with the other two aromatics according 

to the crystal structure [106] (figure 4.2). Typical substituents of the second tryptophan 

are other aromatic residues or arginine. Small aliphatic residues, like valine, are rarely 
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observed. The presence of a valine instead of a tryptophan renders a cavity within the 

triple-helix bundle, resulting in fewer hydrophobic interactions in the core of R17 than 

in R15 and R16 [23]. In the central part of helix C a total of five residues experienced 

signal splittings of their backbone correlations in the temperature range of 40 to 46 °C: 

G94, L95, G97, V99 and S100. The NH-peak of W26, spatially close to V99, was not 

split but showed peak broadening at 44 °C, and its predecessor, A25, experienced 

splitting of both backbone carbon signals. The third amino acid in the aromatic triad in 

the hydrophobic core of the domain, H63, was not affected by temperature increase. 

However, another aromatic residue in helix B, F60, is close in space to both W26 and 

V99 and three residues in that region – E57, T58 and F60 itself – showed backbone 

peak splittings. All these results lead to the suggestion that the substitution of the 

tryptophan in helix C triggers the destabilization of the hydrophobic core and that the 

protein denaturation starts as a break-up of helix C from the triple-helix bundle. 

 
Figure 4.2 A) The three aromatic residues in the core of the triple-helix bundle of R16 (PDB-entry 
1CUN). The pyrrole ring of W26 stacks onto the imidizole ring of H63, whereas the indole ring of 
W99 undergoes hydrophobic interaction with the other two aromatic residues. B) Substituting the 
second tryptophan of R16 by valine renders a cavity in the core of the triple-helix bundle. The in 
silico tryptophan to valine mutagenesis was carried out in the PyMOL Molecular Graphics System, 
Version 1.3, Schrödinger, LLC.   
 

The conformational stability of R17 at room temperature was studied by relaxation 

measurements – T1 and T2 relaxation times and hetNOEs – and by proton-deuterium 

exchange. The obtained results from the 15N-{1H} relaxation study were in overall 

agreement with the positioning of the secondary structures in the crystal and those 

determined by NMR measurements. The diffusion tensor was calculated from the 

relaxation values and the crystal structure (PDB-entry 1CUN) in the program 

HydroNMR [107]. A factor of approximately 3 between the rotational diffusion rates 
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of the axes that lie perpendicular and parallel to the principal domain axis indicated 

that R17 is highly anisotropic. Thus, the fully anisotropic model was used in the 

analyses of the relaxation data in the program TENSOR2 [108]. The results suggest 

that R17 is axial symmetric, i.e. has the shape of a prolate spheroid, and that the 

diffusion tensors of its main and perpendicular axes are approximately 2.9 × 107 and 

1.2 × 107 s-1, respectively, resulting in an efficient global correlation time, c,eff, of 

approximately 9.4 ns. The order parameter values, S2, were calculated by the simple 

Lipari-Szabo approach [109, 110]. S2 is difficult to determine for a triple-helix bundle, 

where the helices are co-linear with each other and the main rotational axis. Thus, the 

angle between the majority of the N-H vectors, which are crucial for the calculation of 

S2, and the main axis are close to 0º or 180º. Only the bend in helix B deviates from 

the average angles in the helices, which explains the larger dispersion of the relaxation 

times in this helix. As a result of the small angles, the S2 values of structured parts of 

the repeat differ less from the loops and termini than expected from the T1, T2 and 

hetNOE values. Overall, R17 appears to be very rigid in solution at room temperature. 

There are two interesting regions in the secondary structures which are not in 

agreement with the rest of the helices. The first is the stretch 21EEE23 in helix A, where 

both the T1, T2 and hetNOE values indicated that these amino acids are more flexible 

than helix A on average. This may be a result of the repulsion of the consecutive 

negative charges. Furthermore, the NH-peaks of E21, E22 and E23 were broadened, 

which – together with the increased T2
 values – suggests conformational exchange. 

The second stretch is the vicinity of the BC-loop, where the relaxation values indicated 

increased structural flexibility. Also, the NH-peaks of K79 and N81 in the BC-loop 

were broadened, suggesting conformational exchange. Thus, the thermal denaturation 

of R17 could alternatively be a consequence of the melting of the helices from the BC-

loop as a result of an increased structural fluctuation at higher temperatures.  

In the sample containing 85 % D2O, approximately 50 % of all NH-signals were 

immediately deuterium-exchanged. Besides residues at the N- and C-termini and in the 

loops, also solvent-exposed parts of the helices, for instance L43-F56 in helix B, were 

instantaneously deuterated. Each helix appeared to contain a region where most of the 

amino acids were protected against immediate HN-exchange: A18-A25 in helix A, 

V67-I78 in helix B and K91-A111 in helix C. These stretches are in overall agreement 
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with the regions that make up the triple-helix bundle in the crystal structure. Still, only 

eight amino acids were not solvent-exchanged within the first 24 hours: V20, E24, 

A25, V70, L77, K91, Q108 and A111. The HN-exchange data did not indicate any 

conformational instability of the repeat at 23 °C. 

4.1.4 Bioinformatics 

The thermal and conformational stabilities of spectrins vary with the environment they 

occupy. For instance, the average melting point of the flexible erythroid spectrins 

[111] is 10 degrees lower than that of brain spectrins [29]. Hence, in order to 

determine potentially unstable parts of R17, the amino acid sequence of the repeat was 

solely compared to other chicken brain spectrin repeats and in particular to the other 

19 -spectrin repeats. The domains 10, 19 and 20 whose sequences are equally related 

to R17 as random protein sequences (expect-value > 10) were excluded from the 

multiple sequence alignment. A total of three already mentioned features were 

discovered in R17 that could explain the relatively low stability of the repeat: the four 

consecutive negatively charged amino acids in helix A, the unusual amount of positive 

charges in the BC-loop combined with the same amount of negative charges in the 

linker, and the tryptophan to valine substitution in helix C.  

The R17 primary structure was also compared to 18 chicken brain -spectrin repeats 

(data not shown). R17 is the only domain out of 35 chicken brain spectrin repeats in 

the multiple sequence alignment that has three negative charges in the linker and three 

positive charges in the BC-loop. Furthermore, only two other repeats ( R8 and R16) 

also possess four consecutive negative charges in helix A. The highly conserved 

tryptophan in helix A is substituted by other residues in two repeats ( R9 and R15), 

whereas the moderately conserved tryptophan residue in helix C is substituted by 

another aromatic amino acid eight times and by the large amino acid arginine in four 

repeats. Thus, R17 is the only chicken brain spectrin repeat where the second 

tryptophan is substituted by the relatively small valine residue. 

Nevertheless, the characteristics of R17 seem to be of biological importance as the 

domain appears to be conserved in spectrins in general. Related sequences were 

searched for using the tool blastp 2.2.25 [112] with an expect-value limit of 1 × 10-15. 

In comparison, the chicken brain -spectrin repeats that are most closely related to 
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R17 (R15 and R16) score approximately 1 × 10-13. The multiple sequence alignment 

was carried out using the tool Clustal W [113] and the phylogenetic tree was 

calculated in the program Jalview 2.6.1 [114]. Only proteins that, so far, have been 

identified as spectrins were included in the alignment. A total of 32 species or families 

showed to contain an R17-like spectrin repeat: seven vertebrates (mammals, birds, fish 

and amphibian), 20 insects (beetles, flies and ants), three nematodes and two protists. 

The multiple sequence alignment is shown in figure 4.3; sequences with more than 90 

% sequence redundancy to a related species were removed from the alignment. Table 

4.1 lists information about the spectrin repeats that were identified in the Blast search. 

Figure 4.3: Multiple sequence alignment of 21 spectrin repeats that are closely related to chicken 
brain -spectrin repeat 17 (G. gallus). The sequences are listed according to decreasing sequence 
similarity. Coloured residues are at least 50 % conserved. The consensus sequence is shown below the 
alignment. An explanation to the sequences is presented in table 4.1. The alignment was displayed in 
Jalview 2.6.1 [114]. The positions of the helices are indicated. 
 

The main differences between the sequences are found in the BC-loop and in helix C. 

Still, the hydrophobic pattern and most of the charged residues are conserved in helix 

C. The negative charges in the linker and in helix A seem to be typical features of 

R17-like proteins. The four consecutive negative charges in helix A are 100 % 

conserved, and in a vast majority of repeats all four residues are glutamic acids. In 

addition, 35 out of 36 repeats have at least two negative charges in the linker.  

However, the pattern of three positive charges in the BC-loop is only found in the 

vertebrate brain spectrins, except for the zebrafish (D. rerio). In a total of 23 cases, the 

BC-loop has only one positive charge, is neutral or even negatively charged. The 

greatest sequence divergences in the BC-loop show the mammalian erythroid 
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spectrins, which probably is correlated to a difference in function between brain and 

erythroid spectrins. 

 

Table 4.1: Accession numbers and sequence information of R17-like spectrin repeats in 32 species. 
Organisms that are written in bold are included in the multiple sequence alignment and the 
phylogenetic tree. Sequences of species which share the same table cell are at least 90 % identical to 
each other. Thus, some of the species in bold letters represent a variety of (almost) identical 
sequences.      

Species Accession Protein description Residues Sequence- 
similarity 

Gallus gallus CAA32663 Spectrin alpha-chain, brain 1843-1948  
Homo sapiens 
Mus musculus 
Rattus norvegicus 
Bos taurus 

CAH71404 
CAM46235 
ACV87913 
DAA24188 

Spectrin alpha-chain, non-erythroid 
Spectrin alpha-chain, brain 
Spectrin alpha-chain, non-erythroid 
Spectrin alpha-chain, brain 

1871-1976 
1851-1956 
1871-1976 
1866-1971 

97 % 
97 % 
97 % 
97 % 

Xenopus tropicalis AAI27323 Spectrin alpha-chain, non-erythroid 1865-1970 100 % 
Danio rerio ABN47004 Spectrin alpha-chain, brain 1874-1979 94 % 
Laccophilus pictus 
Copelatus distinctus 

ACE82622 
ACE82621 

Spectrin alpha-chain 
Spectrin alpha-chain 

33-138 
72-177 

77 % 
75 % 

Asaphidion yukonense 
Bembidion rufotinctum 
B. integrum 
B. chalceum 
B. inaequale 
B. transversale 
B. rapidum 
B. concolor 
B. mandibulare 
B. umbratum 
B. plagiatum 
Pterostichus melanarius 
Sirdenus grayii 
Metrius contractus 

ACE82615 
ACE82609 
ACE82604 
ACE82606 
ACE82607 
ACE82612 
ACE82601 
ACE82611 
ACE82614 
ACE82602 
ACE82613 
ACE82617 
ACE82616 
ACE82618 

Spectrin alpha-chain 
Spectrin alpha-chain  
Spectrin alpha-chain  
Spectrin alpha-chain  
Spectrin alpha-chain  
Spectrin alpha-chain  
Spectrin alpha-chain  
Spectrin alpha-chain  
Spectrin alpha-chain  
Spectrin alpha-chain  
Spectrin alpha-chain 
Spectrin alpha-chain 
Spectrin alpha-chain 
Spectrin alpha-chain 

33-138 
29-134 
28-133 
33-138 
33-138 
72-177 
37-142 
25-130 
31-136 
44-149 
37-142 
44-149 
27-132 
38-143 

76 % 
77 % 
77 % 
77 % 
77 % 
77 % 
77 % 
77 % 
76 % 
76 % 
76 % 
77 % 
75 % 
75 % 

Macrogyrus oblongus 
Dineutes sublineatus 

ACE82620 
ACE82619 

Spectrin alpha-chain 
Spectrin alpha-chain 

33-138 
33-138 

73 % 
73 % 

Tribolium castaneum 
Priacma serrata 
Chauliagnathus opacus 
Dynastes granti 

EEZ99233 
ACE82598 
ACE82599 
ACE82600 

Spectrin alpha-chain 
Spectrin alpha-chain 
Spectrin alpha-chain 
Spectrin alpha-chain 

1814-1919 
44-149 
44-149 
72-177 

75 % 
74 % 
75 % 
73 % 

Sialis sp. ACE82597 Spectrin alpha-chain 33-138 75 % 
Acromyrmex echinatior 
Camponotus floridanus 
Harpegnathos saltator 

EGI62932 
EFN61994 
EFN85586 

Spectrin alpha-chain 
Spectrin alpha-chain 
Spectrin alpha-chain 

1832-1937 
1817-1922 
1832-1937 

72 % 
71 % 
71 % 

Drosophila melanogaster AAF47569 Spectrin alpha-chain 1814-1919 75 % 
Aedes aegypti EAT32709 Spectrin  1813-1918 75 % 
Culex quinquefasciatus EDS41171 Spectrin alpha-chain 1813-1916 71 % 
Caenorhabditis elegans AAB53876 Spectrin 1826-1931 66 % 
Ascaris suum ADY39864 Spectrin alpha-chain 1821-1926 69 % 
Brugia malayi EDP34100 Spectrin alpha-chain 1823-1928 66 % 
Mus musculus AAC61874 Spectrin alpha-chain, erythroid 1813-1919 70 % 
Rattus norvegicus 
Homo sapiens 

AAQ02378 
AAA60577 

Spectrin alpha-chain, erythroid 
Spectrin alpha-chain, erythroid 

1814-1920 
1814-1922 

70 % 
67 % 

Bos taurus DAA31904 Spectrin alpha-chain, erythroid 1075-1184 66 % 
Salpingoeca sp. EGD77905 Spectrin  1860-1965 61 % 
Capsaspora owczarzaki EFW39917 Spectrin alpha-chain 1562-1667 65 %  
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The tryptophan (position 20) in helix A is 100 % conserved in all 32 species, as is the 

histidine (position 57) in helix B. The moderately conserved tryptophan (position 93) 

in helix C appears to be substituted by aliphatic residues in most R17-like spectrin 

repeats. Only the mammalian erythroid spectrin repeats contain the hydrophilic 

threonine instead of an all-aliphatic residue. The dominating substituent in vertebrate 

brain spectrins is valine, while leucine is pre-dominantly found in insects.  

Sequences that are most closely related to chicken brain repeat 17 are vertebrate brain 

spectrins, especially mammalian (figure 4.4). More distantly related are spectrin 

repeats of insects and nematodes. R17-like repeats seem to be present in both brain 

and erythroid spectrins, but the latter show clear sequence differences in the BC-loop 

and helix C. The most diverging sequences belong to eukaryotic single-cell organisms.  

Interestingly, a majority of repeats, except for those where the accession number starts 

with “ACE”, is situated at approximately the same position in the spectrin chain as 

R17 (table 4.1). In addition, when the Blast search was performed on a sequence that 

also included R16 and R18 (data not shown), the same score pattern was observed as 

with R17 alone. This indicates that not only the features of R17 are conserved in other 

species but also the positioning between two repeats resembling R16 and R18.   

 

 
 

Figure 4.4: Phylogenetic tree that shows the relationship between chicken brain -spectrin repeat 17 
(highlighted) and 20 closely related spectrin repeats.  
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4.2 Human hNaa50p 

4.2.1 Assignment challenges 

The hNaa50p construct with its 173 amino acids and a molecular weight of more than 

19 kDa is a protein that is classified as medium-sized to large in NMR terms. -helices 

and -strands are evenly distributed in hNaa50p as each type of structure makes up 

approximately one third of the protein. The 2D 1H-15N HSQC spectrum of hNaa50p 

(figure 4.5A) shows a greater diversity in HN chemical shifts than the spectrum of R17 

(figure 4.1A). This is because backbone proton resonances above 9 ppm and below 7 

ppm almost exclusively are found in -strands. 

Even though the HSQC spectrum of hNaa50p shows good signal dispersion, the line-

widths are broadened due to the protein size and lead to signal overlap. This peak 

broadening also reduces the sensitivity of the experiment by decreasing the peak 

heights. Panels B and C of figure 4.5 show how the resolution of the spectrum can be 

improved by an increment of the acquired points, and how this could resolve a cluster 

in the middle of the spectrum into four distinct peaks. 
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Figure 4.5 A) 1H-15N HSQC spectrum of hNaa50p at 600 MHz. B) Extraction of some overlapping 
peaks (marked red in the original spectrum). C) Enlargement of the same region in an HSQC 
spectrum, where 1024 data points instead of 128 were sampled in the vertical dimension. The broad 
peak on the left is resolved into two distinct peaks, whereas the cluster in the middle is resolved into 
four distinct peaks. Assignments of known resonances are included.  
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This approach is possible in a 2D spectrum, but increasing the amount of data points in 

a similar way in 3D experiments would be far too time-consuming. The attempt to 

resolve the HSQC spectrum better and achieve an improved signal-to-noise ratio at the 

same time by dividing hNaa50p into two domains of approximately 12 and 7.5 kDa, 

and then use the two parts as a starting point for the assignment of the full-length 

protein, failed. The reason for that was that the domains showed very low solubility 

and could no longer bind acetyl-CoA which is important for the stability of highly 

purified hNaa50p in vitro. Thus, high-resolution NMR spectroscopy on full-length 

protein, where the basic 3D experiments were repeated, was used in order to obtain a 

better signal separation. Figure 4.6 shows how the resolution improves as a result of 

increasing the field strength from 600 MHz to 800 MHz for the residues S66, M92 and 

I109 (figure 4.5C) in the CBCA(CO)NH spectrum. At 600 MHz, there are between six 

and eight peaks that all fit to the amide frequencies of these amino acids. At 800 MHz, 

there are still six peaks but they can now be distinguished into three spin pairs. Thus, 

by increasing the field strength it was possible to distinguish M92 from S66 and I109.  
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Figure 4.6: CBCA(CO)NH strips at the NH-frequencies of M92. At 600 MHz (left strip), there are 
eight peaks that could correspond to CA-1 and CB-1 of S66, M92 and I109. At 800 MHz (right strip), 
there are six signals which can be distinguished into three spin pairs. 
 

Nevertheless, the backbone assignment was mostly based on 3D CC(CO)NH and 2D 

MUSIC experiments at 600 MHz. CC(CO)NH is sub-optimal for a protein with a 
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molecular mass of almost 20 kDa. However, the use of a long isotropic mixing time 

made it possible to detect most of the C  of arginines and C  of lysines. In addition, 

some of the aliphatic side chains, especially those of leucine, could be identified. The 

MUSIC experiments which detect asparagine, aspartic acid, glutamine, glutamic acid, 

valine, isoleucine, phenylalanine, tyrosine and histidine proved to work quite well also 

on hNaa50p. The advantage of MUSIC experiments in overlapping regions is that they 

reduce the number of possible chemical shift combinations. For instance, if the 

successor of N108, which in hNaa50p is I109, in the strips of figure 4.6 is to be 

assigned, the peaks at approximately 30, 33 and 60 ppm are very unlikely for a 

asparagine residue according to chemical shift statistics. Thus, MUSIC spectra which 

show a peak in an overlap region simplify the assignment of this particular peak and, 

in addition, narrow down the possible identities of the remaining unassigned peaks 

positioned in the same amide region. 

4.2.2 Protein stability   

Another challenge when studying hNaa50p was its lack of stability in the absence of 

the first substrate, acetyl-CoA. hNaa50p alone or in association with CoA appeared to 

lose its structural integrity within few days which was observed as a drastic decrease in 

the peak intensities of the HN signals in a basic 1D 1H experiment. Moreover, hNaa50p 

without acetyl-CoA precipitated rapidly in concentrations above 100-150 μM. 

Therefore, most of the NMR experiments were conducted on hNaa50p in the presence 

of excessive concentrations of acetyl-CoA. The HSQC spectra of free hNaa50p and in 

complex with CoA were assigned using the HNCO experiment, since this technique is 

the most sensitive 3D method, and thus also suitable for low sample concentrations. 

Furthermore, chemical shift changes of up to 0.3 ppm due to changes in the chemical 

environment are less prominent for the backbone carbons than for HN. This is because 

the chemical shift range of C´ is rather large and the resolution of 3D spectra is 

reduced due to few sampled points, resulting in an uncertainty in the backbone carbon 

chemical shifts which often is in the same range as the chemical shift changes due to 

ligand binding. Hence, most of the peaks in the HSQC spectrum could be assigned in 

samples without acetyl-CoA, even in cases where the NH-shift changes were 

significant. 
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Even though hNaa50p in complex with acetyl-CoA precipitated slowly and showed 

little decrease in the HN signal strengths over time, spectral changes occurred within 

the first couple of weeks after protein purification which complicated the assignment 

work. A first approach of restraining these changes was to lower the acquisition 

temperature from 25 °C to 15 °C in order to slow down the rate of spectral 

repositioning. As expected, the lowered temperature kept hNaa50p stable in its initial 

state for a prolonged time. However, due to increased correlation times at 15 °C 

compared to 25 °C the line-widths in the resulting spectra increased, making an 

assignment impossible. 

We observed that hNaa50p reached a new state after approximately two weeks, in 

which the protein was structurally stable for up to six months. The initial backbone 

assignment was thus carried out on a protein that had been stored for three months. 

The sample temperature was kept at 37 °C in order to decrease the line-widths as much 

as possible. The C´, C  and C  chemical shifts – which are less influenced by 

temperature changes than the HN shifts [115] – of the spectra recorded on recently 

purified hNaa50p at 25 °C were then used to identify the amino acids that changed 

spectral positions upon temperature increment and storage. Figure 4.7 shows parts of 

two 1H-15N HSQC spectra that contain the residues G87 and G89 whose NH-

correlations are among those that change the most over time. 
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Figure 4.7: Extraction of the 2D 1H-15N HSQC spectrum of hNaa50p at 600 MHz. G87 and G89 are 
among the residues that show the greatest chemical shift differences upon storage. The spectrum in 
black is acquired at 25 °C on a freshly purified sample, whereas the spectrum in blue is acquired at 37 
°C after three months of storage at 4 °C. 
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The structural nature of these spectral changes is not known. But since they include 

amino acids that are part of the substrate binding pocket, for instance L77 (not shown), 

G87 and G89, it is likely that they are correlated with an altered conformation 

equivalent with some kind of breakdown of the protein structure which might result in 

loss, or reduction, of enzyme activity. 

4.2.3 Enzyme mechanism 

Acetyl-CoA (figure 4.8) and a peptide of 24 residues which starts with the amino acids 

MLGP, the sequence preference of hNaa50p, were used as substrates in the study of 

the enzymatic pathway. Whereas CoA, desulfo-CoA – a structural dead-end analogue 

of CoA – and acetylated peptide served as inhibitors. The intersecting line pattern of 

the Lineweaver-Burk plot obtained from the initial velocity kinetic experiment ruled 

out Ping-Pong as likely mechanism. CoA and desulfo-CoA both showed to be 

competitive inhibitors of acetyl-CoA, whereas CoA expressed a non-competitive 

inhibition pattern in set-ups in which increasing amounts of peptide were used as the 

variable substrate. These results are in agreement with a ternary-complex formation 

mechanism, most likely of the Theorell-Chance type, a rare form of the ordered 

sequential mechanism. However, the acetylated peptide did not act as inhibitor 

towards any of the substrates, even at high concentrations, which indicates that the 

affinity between the enzyme and the second product is very low. 

 
Figure 4.8: The structure of acetyl-CoA including the names of its four building blocks. CoA lacks 
the terminal acetyl group, whereas desulfo-CoA additionally lacks the sulph-hydryl group.  
 

The results from the substrate binding order and product inhibition study by NMR 

spectroscopy on freshly purified hNaa50p could not with absolute certainty confirm 

that the enzyme mechanism is of the Theorell-Chance type. However, the NMR results 
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indicate that the enzyme has to bind acetyl-CoA prior to the peptide, and thus follows 

an ordered mechanism. CoA binds to the same site as acetyl-CoA, whereas the 

addition of acetylated peptide did not alter the spectrum. This is in agreement with the 

observations that CoA acts as competitive inhibitor while the acetylated peptide has no 

effect on the enzyme reaction. Hence, the results from NMR spectroscopy lead to the 

conclusion that the enzyme mechanism of hNaa50p follows an ordered sequential 

pathway. In combination with the results from the kinetic assays, the Theorell-Chance 

mechanism is most likely. 

The NMR study did not only yield information about the type of enzyme mechanism, 

but also revealed which amino acids are most likely involved in the binding of the 

substrates and inhibitors to the enzyme. Most of the residues in the HMQC spectrum 

were not affected at all or showed only small changes in their amide shifts upon 

binding of acetyl-CoA. This indicates that acetyl-CoA binds specifically to the protein, 

affecting only residues at the binding site. The following residues showed the most 

prominent changes in their chemical shifts: V29, T76, L77, S116, Y124 and I142. L77 

presented the largest difference with a 2 ppm upfield shift in NH and a 0.8 ppm upfield 

shift in HN. Together with T76, this amino acid is positioned in a -strand close in 

space to the pantothenic acid moiety in acetyl-CoA. V29 and I142 belong to two 

opposing loops which form part of the substrate binding pocket. The fact that these 

amino acids change their amide shifts might be the result of an “induced fit” response 

upon substrate binding. S116 is part of a loop close to the acetyl group and might 

undergo a change in conformation between the states of bound and unbound peptide. 

Finally, the distance between Y124 to acetyl-CoA is too large to facilitate the 

establishment of a direct interaction to the substrate. However, we believe that a water 

molecule could mediate between Y124 and acetyl-CoA, and between the former and 

L77. Also, Y124 has shown to be important for both the N - and N -acetylation 

activity of hNaa50p [47]. 

The binding of CoA as a product inhibitor led to a similar change in the amide shifts, 

but there were some differences, e.g. the chemical shift changes of L77 and I142 were 

not identical in the two spectra. Furthermore, V29 could not be assigned at all in 

spectra without acetyl-CoA. We assume that this is a result of a less tight binding 

between enzyme and CoA compared to acetyl-CoA, and that CoA as inhibitor 
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facilitates the binding of the second substrate to a lesser degree than acetyl-CoA does. 

The latter assumption is strengthened by the results from the simultaneous binding of 

both substrates to the enzymatically inactive H112A mutant, where the spectrum 

showed significantly more changes compared to when peptide was added to the wild-

type enzyme in complex with CoA. 

Recent results suggest that the amino acid most likely involved in the enzyme 

catalysis, besides H112, is Y73 [99]. Interestingly, the NH-resonances of the latter 

residue were altered upon addition of CoA rather than acetyl-CoA. Furthermore, this 

resonance shifted both upon addition of peptide to the hNaa50p-CoA complex and the 

mutant-acetyl-CoA complex. The fact that Y110 in the vicinity of H112 – which could 

not be assigned in any spectrum – showed similar effects upon addition of substrates 

and inhibitors as Y73 strengthens the hypothesis that Y73 and H112 plus its 

surroundings are important for the enzymatic activity.    

4.2.4 Protein structure and dynamics   

The CSI of three different nuclei (C´, C  and C ) showed that the positions of the 

secondary structural elements of hNaa50p in presence of acetyl-CoA are in overall 

agreement with the reported structural parts in the crystal (PDB-entry 2OB0). 

However, the second helix (residues 32-42) appears to be shorter in the protein in 

solution, as it seems to comprise only residues 32-38. This could be a coincidence, for 

instance caused by aromatic ring current effects from two aromatic residues (F35, 

Y36) in the vicinity of V39 and L40, which do not have chemical shifts corresponding 

to an -helix. But it might also indicate functional importance which is supported by 

the observation that the order parameters, S2, implied that the protein part that contains 

the first two helices (residues 20-40) is less rigid than expected for a structured region. 

Even though the helices are not directly involved in the substrate binding, they could 

be flexible since they establish little contact to other secondary structural elements. 

Thus, this part of the protein might function as a lever that facilitates optimal catalytic 

activity and specificity. 

Furthermore, single residues in this second -helix of NATs might be essential for 

their function. A recent study showed that in a rare, X-linked recessive inherited 

disease, a conserved serine in the second -helix of hNaa10p, a protein distantly 
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related to hNaa50p (expect-value: 1 × 10-6) and part of both the NatA and NatE 

complex, is mutated to proline, leading to premature helix termination [116]. Boys 

who inherit the mutated protein die from cardiac arrhythmias in infancy. The results 

from the enzymatic assays, where wild-type hNaa10p and the hNaa10p S37P mutant 

were investigated, showed that the latter exhibits up to 80 % reduced acetyltransferase 

activity towards typical peptide substrates. The lethality of the mutant is most likely 

caused by its incapability of acetylating proteins that depend on this modification for 

ultimate function. Another, or additional, reason for the lethality could be that the 

mutant loses its putative N -acetylation function [116]. Analogous to hNaa50p, where 

the enzyme activity and substrate specificity towards the peptide is increased by auto 

acetylation of three lysine side chains, whereas conservative mutations of K34 and 

K37 into arginines resulted in decreased N -acetyltransferase activity and altered 

specificity of both N - and N -acetylation [47], the loss of hNaa10p’s N -acetylation 

function could contribute to its reduced N -acetyltransferase activity. Thus, the 

features of the second -helix in NATs might be as crucial for the activity and 

specificity of the enzymes as the residues at the active site.  

Two other interesting stretches of the protein are 73YIMTLG78 and 87GIGTKML93. The 

former is a -strand, whereas the latter is part of an -helix according to the crystal 

structure and the chemical shift indices. However, the dynamic data indicated that 

these stretches are flexible, which is especially unexpected for the helical part which 

belongs to a long -helix comprising almost 20 residues (position 87-104). Both 

segments are part of the binding pocket of hNaa50p and the structural flexibility might 

be a requirement for the conformational change upon binding of the second substrate. 

The region surrounding I142, on the other hand, appears to be more rigid from the 

dynamic data and the CSI than may be inferred from the crystal structure. I142 seems 

to be involved in an induced fit response upon acetyl-CoA binding, which might 

explain why this region adopts a more stable conformation than expected.  

However, there is one source of error that could have had an effect on the results of the 

dynamic study. Since the determination of both T1 and T2 relaxation times demands a 

series of approximately ten spectra with different relaxation delays, and it also is 

common to run several parallels, it is essential that the sample is stable for at least 3-4 

days. All spectra within a series are acquired and processed in exactly the same way 
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and the peaks are only picked from one of the spectra. Thus, if some of the peaks alter 

their amide chemical shifts during the data sampling, the resulting relaxation data 

would be wrong or meaningless, depending on when the changes occurred. Because 

freshly purified samples of hNaa50p cannot guarantee stability over several days, the 

dynamic data were determined from a sample that had been stored for about three 

weeks. We do not know which consequences the chemical shift changes that appear 

upon storage have for the structure and function of hNaa50p, but one possibility is that 

some of the residues that change the most over time might appear to be more flexible 

than they really are as a result of protein degradation. This might be the case for L77, 

G87 and G89, which could be the explanation for why the two stretches, 73YIMTLG78 

and 87GIGTKML93, seem to be less rigid than expected for secondary structural 

elements. However, 84RRLGIG89 is identified as the conserved motif A in hNaa50p, 

which is responsible for the binding of acetyl-CoA [117, 118], and 84RRL86 proved to 

be difficult to assign also in freshly purified samples, probably because of 

conformational exchange. In addition, NMR spectroscopy of recently purified enzyme 

indicated that T76 and L77 which are part of the segment 73YIMTLG78 are involved in 

the substrate binding, whereas Y73 is expected to be directly involved in the enzyme 

catalysis. Thus, it would be reasonable for these two parts of the sequence to be more 

flexible than other secondary structural elements. 

Unfortunately, we can only speculate whether the flexibility of the stretches 
73YIMTLG78 and 87GIGTKML93 and the chemical shift changes in the loop 
112HVQISN117 upon addition of acetyl-CoA are a result of a change in the 

conformation between two states: the one of bound and the one of unbound peptide. A 

possibility of confirming the assumption would be to investigate if free enzyme or 

hNaa50p in complex with CoA shows the same flexibility. However, the protein in 

absence of acetyl-CoA is not stable long enough to perform dynamic measurements. 

Another possibility would be to examine the effects of adding both substrates to the 

wild-type enzyme, but the rate of the enzyme reaction is too fast for the time-scale of 

NMR analyses. Still, the spectral changes upon addition of both substrates to the 

hNaa50p H112A mutant indicate that the flexibility might be essential for the binding 

of the second substrate. 
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4.2.5 Selenium NMR spectroscopy 

hNaa50p contains two selenomethionines (section 2.8), SeM75 and SeM92 (PDB-

entry 2OB0). Interestingly, both of these residues are positioned in segments that seem 

to be involved in substrate binding: SeM75 is the sequential neighbour of T76 and L77 

which showed significant chemical shift changes upon binding of acetyl-CoA (section 

4.2.3), whereas SeM92 is part of the flexible stretch 87GIGTKML93 (section 4.2.4). 

Since the 77Se nucleus is very sensitive towards changes in its chemical environment, 

one might expect huge shift changes in the selenium frequency domain upon binding 

of the substrates to hNaa50p, which in turn could be used to further elucidate the 

enzyme mechanism. 

In a preliminary study, all three methionines in hNaa50p were substituted by 

selenomethionine during protein expression. This was done by using a growth medium 

that was methionine-depleted but that contained selenomethionine in addition to the 

other 19 amino acids [119]. Even though the protein concentration was below 200 μM 

and no cryogenic probe-head could be used in the experiment, the resulting HMBC-

spectrum contained several peaks whose 1H chemical shift values were consistent with 

the methionine Hε shifts (figure 4.9). Thus, further studies of the selenomethionines in 

hNaa50p in the presence of substrates and products should be undertaken in order to 

investigate the involvement of SeM75 and SeM92 and their surroundings in the 

enzyme mechanism.   
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Figure 4.9 A) 1H-77Se HMBC spectrum of the fusion protein glutathione S-transferase-hNaa50p. The 
fusion protein contains seven methionine residues, of which at least four are visible in the spectrum. 
The peak at approximately 140 ppm might be an artefact. B) Enlargement of the peaks in the region of 
60-70 ppm. The strong peak seems to comprise three overlapping signals, but might according to its 
signal-to-noise ratio contain four, or even five, signals. 
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5. CONCLUDING REMARKS 

This last chapter sums up the main conclusions that may be drawn from the two 

studies and provides starting points for further investigations. 

 

The main findings in paper I were that the linker to R16 seems to contribute to an 

increased thermal stability of R17, whereas the most likely reason for the domain’s 

reduced stability compared to R16 is the tryptophan to valine substitution in the centre 

of helix C which weakens the interhelical interactions in the core of the triple-helix 

bundle. Furthermore, the NMR data could not provide any indications that point 

towards a difference between the crystal and the solution structure. 

So far, only few spectrin repeats have been studied by NMR spectroscopy and only the 

repeats 16 and 17 of chicken brain -spectrin have been investigated with respect to 

their protein dynamics. The importance of the two tryptophan residues in the domain 

could be further examined by studying the thermal stability of different subunits of 

spectrin by NMR spectroscopy, e.g. one repeat with both tryptophanes conserved, one 

where the first tryptophan is substituted and one where the second tryptophan is 

substituted by an amino acid different from valine. This kind of investigation could 

strengthen or weaken the hypothesis proposed in paper I that it is the tryptophan to 

valine substitution which leads to the break-up of the triple-helix bundle in R17. If 

these studies were performed on repeats belonging to the same spectrin chain (e.g. the 

β-chain of chicken brain spectrin provides all of the mentioned combinations), it might 

contribute to a deeper understanding of the differing melting points of the repeats 

which make up one spectrin molecule.  

It would also be of interest to examine the biological significance of the varying 

thermodynamical stabilities of the repeats. So far, the reduced stability of the linker 

compared to the triple-helix bundle was suggested to be the main reason for the 

flexibility of the repeats [106] as it was proposed that the linker can trigger cooperative 

helix-to-coil unfolding [27]. The finding that it is difficult to study multiple spectrin 

repeats at a time by NMR spectroscopy [104] strengthens this hypothesis. However, 

also the unfolding of the triple-helix bundle in single domains could be of importance 

for the flexibility of mature spectrins because it results in an approximately four-fold 
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local protein extension [120]. But since the repeats seem to be stabilized by their 

neighbours and unfolding in tandem repeats occur cooperatively in vitro [30], it is 

uncertain how local unfolding of repeats will affect the overall stability of mature 

spectrin. Still, there are at least two reasons which support the assumption that reduced 

thermodynamical stability of single repeats is correlated with increased flexibility of 

spectrins in vivo. First, it was observed that the unfolding of the triple-helix bundle 

was reversible for approximately 90 % of the studied repeats [111]. And second, 

cooperativity in unfolding of tandem repeats is reduced by 50 % as the temperature is 

raised from 10 °C to 42 °C [121]; thus, local unfolding of single repeats instead of 

cooperative unfolding of tandem repeats seems to be more likely at physiological 

conditions. 

Finally, it would be of a general interest to resolve the NMR structure of R17 as only 

two structures belonging to repeats of the spectrin family [10, 122] have been 

determined by NMR spectroscopy so far. A structural determination of R17 might 

require partial deuteration of the domain for the acquisition of the 3D 15N NOESY- 

HSQC spectrum and a sample dissolved in 100 % D2O for the acquisition of the 3D 
13C NOESY- HSQC spectrum. Furthermore, it might be necessary to use high-field 

(800-900 MHz) NMR instruments.  

 

The combination of the results obtained from enzymatic assays and chemical shift 

changes in the NMR spectra led to the conclusion that hNaa50p follows an ordered 

sequential enzymatic pathway, most likely of the rare Theorell-Chance type. The 

results from the NMR dynamic study also suggest that the amino acids which are 

involved in the enzyme mechanism are more flexible than expected from the crystal 

structure and the NMR analysis of the secondary structures (paper II). Furthermore, 

the combination of the 3D CC(CO)NH spectrum with various MUSIC experiments 

could be used to extend the range of backbone assignment of hNaa50p at a moderate 

field strength (paper III).  

A previous study showed that the hNaa10p and hNaa15p subunits of the human NatA 

complex are over-expressed in various types of cancer, and that they are important for 

survival and growth of cancer cell lines [123]. hNaa50p itself, which associates to 

hNatA [124], has not been directly linked to cancer yet, but the protein has shown to 
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be important for sister chromatid adhesion and chromosome resolution in several 

species [45, 55, 56]; thus, an inhibitor of hNaa50p might be a potential anti-cancer 

drug because it could prevent chromosome formation and, ultimately, cell division. 

After the elucidation of the enzyme mechanism of hNaa50p (paper II), the next task 

would be to design an anti-cancer drug which binds irreversibly to the enzyme, 

mimicking the ternary complex formation. According to our results, the inhibitor 

would have to bind to the same site as the first substrate, acetyl-CoA.    

The interactions between hNaa50p and its substrates could be further investigated by 

NMR spectroscopy with respect to the ligands. One possibility is to determine the 

parts of the ligand which involve in protein binding by the use of saturation transfer 

difference spectroscopy. Signals belonging to ligand nuclei that interact with the 

protein will show a higher intensity in the spectrum which contains protein than in that 

without [125]. The only requirement is that the disassociation constant has to be within 

the range of 10-3 and 10-8 M [126]. This method could, for instance, determine if the 

binding of CoA and acetyl-CoA to the enzyme involves the same part of the molecules 

and confirm the results from the enzymatic assays where CoA expressed a lower 

affinity to the enzyme. It is also possible to detect NOEs between two molecules with 

2D or 3D intermolecular NOESY [127-129], where one of the two molecules – usually 

the protein – has to be labelled with 13C and/or 15N. In the resulting spectrum only 

through-space correlations between those protons will build up, where one is directly 

bound to the labelled (e.g. 13C) and the other to the unlabelled (12C) isotope. These 

experiments could strengthen the results from the enzyme mechanism study, if, for 

instance, binding of the peptide is observed to the hNaa50p-CoA complex but not to 

the free enzyme. 
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APPENDIX 

A1. Coupling constants 

The approximate sizes of the one-bond and the two most important two-bond coupling 

constants in proteins [60] are shown in figure A.1.  

A2. Overview of important experiments 

The nuclei that are observed in the experiments which are described in chapter 2 are 

listed in table A.1 [60]. The first nucleus corresponds to the one that is directly 

detected during data acquisition. 

 
Table A.1: Observed correlations of important 2D and 3D experiments. “H” defines all protons that 
are directly coupled to 13C, whereas “Hall” also includes protons that are bound to 15N. “C” comprises 
all non-quaternary carbons.  
 

Experiment Observed nuclei 
1H-15N HSQC 
1H-13C HSQC 
HNCO 
HN(CA)CO 
HNCA 
HN(CO)CA 
CBCA(CO)NH 
HBHA(CO)NH 
CBCANH 
CC(CO)NH 
H(CC)(CO)NH 
HCCH-TOCSY 
15N NOESY-HSQC 
13C NOESY-HSQC 
CN-NOESY 

HN, NH 

H, C 

HN, NH, C´-1  
HN, NH, C´, C´-1 
HN, NH, Cα, Cα-1  
HN, NH, Cα-1 
HN, NH, Cα-1, Cβ-1  
HN, NH, Hα-1, Hβ-1 
HN, NH, Cα, Cβ, Cα-1, Cβ-1 

HN, NH, Cali-1 
HN, NH, Hali-1 
H, C, H 

HN, NH, Hall 

H, C, Hall 

HN, NH, C 
 

 

Figure A.1: Average sizes of the 1J and 2J coupling constants which are used in the magnetization 
transfer experiments. Since the 2J (NH-C´) coupling constant is close to zero, all experiments which 
include a magnetization transfer from NH to C´, e.g HNCO and H(CC)(CO)NH, can only detect the 
preceding but not the intra-residual chemical shifts. 
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The relative sensitivities of the most basic backbone and side chain experiments – 

HNCO, HN(CA)CO, HNCA, HN(CO)CA, CBCA(CO)NH and HNCACB – are shown 

in figure A.2 [60]. The peak intensities are compared to the C´-1 signal of the HNCO 

experiment, which is the most sensitive triple-resonance 3D technique. 

 

Figure A.2: Relative peak intensity of the six most basic protein triple-resonance 3D experiments. The 
experiments are listed according to decreasing sensitivity. The peak intensities are relative to the peak 
intensity of the HNCO experiment. Other effects, like relaxation, that can diminish the sensitivity are 
not taken into account. Note that the intra-residual peaks in general are stronger than the sequential 
peaks in spectra that include resonances of both residues I and I-1, and that the C  peaks in general 
have a higher signal intensity than the Cβ peaks.  

A3. Relaxation and protein dynamics  

The equations used for the calculation of T1 (A.1), T2 (A.2) and hetNOE (A.3) vs. c in 

figure 2.14.  
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227
0 Akgms104 −−−= πμ  is the vacuum permeability, H and N are the gyromagnetic 

ratios of 1H and 15N, respectively,  is the Planck’s constant divided by 2 , rNH = 1.02 

Å is the average 15N-1H inter-nuclear distance, H and N are the 1H and 15N resonance 

frequencies (in rad/s), respectively, and  = -172 ppm is the 15N chemical shift 

anisotropy. 
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The time-scales of both important molecular motions and NMR parameters [130-132] 

are shown in figure A.3. 

 
Figure A.3: The time-scales of protein dynamics and those probed by NMR experiments are shown 
above and below the arrow, respectively. The transition between fast and slow times is approximately 
at 1 μs. Note that the relaxation rates (R1, R2 and R1ρ) correspond to the inverse of the relaxation 
times. 

A4. Chemical shift indices 

The 13C chemical shifts for the secondary structure determination [133] and the 

average H  chemical shifts [91] are listed in table A.2. 

  
Table A.2: Average random coil chemical shifts of the four most relevant resonances for the 
determination of the secondary structural elements in proteins.  
 

Residue C  [ppm] Cββββ [ppm] C´ [ppm] H  [ppm] 
Alanine 
Arginine 
Asparagine 
Aspartate 
Cysteine (ox.) 
Cysteine (red.) 
Glutamate 
Glutamine 
Glycine 
Histidine 
Isoleucine 
Leucine 
Lysine 
Methionine 
Phenylalanine 
Proline 
Serine 
Threonine 
Tryptophan 
Tyrosine 
Valine 

52.5  19.0  177.1  4.20 
56.3  30.3  176.5  4.24 
53.6  39.0  175.1  4.68 
54.1  40.8  177.2  4.62 
58.0  41.8  175.1  4.74 
58.3  28.6  174.8  4.74 
56.7  29.7  176.1  4.22 
56.2  30.1  176.3  4.31 
45.0     173.6        4.14 / 3.64 
55.8  32.0  175.1  4.57 
62.6  37.5  176.9  4.14 
55.7  41.9  177.1  4.29 
56.7  32.3  176.5  4.23 
56.6  32.8  175.8  4.32 
57.9  39.3  175.8  4.58 
62.9  31.7  176.0  4.41 
58.3  62.7  173.7  4.52 
63.1  68.1  175.2  4.50 
57.8  28.3  175.8  4.63 
58.6  38.7  175.7  4.62 
63.0  31.7  177.1  4.13 
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A5. NOE restraints 

Figure A.4 shows typical backbone-backbone NOE-connectivities that are observed in 

different types of secondary structure [93]. Sequential and medium-range NOEs to 

residues in the former turn (I-3, I-4) dominate in -helices (panel A), whereas long-

range NOEs are pre-dominantly found between sets of strands (panels B and C). 

 

 
Figure A.4: NOE-connectivities in the three most common types of secondary structure. A) -helix, 
B) antiparallel β-sheet and C) parallel β-sheet. Sequential NOEs are indicated by solid arrows, 
medium-range NOEs (helix) and long-range NOEs (sheet) by dashed arrows, and hydrogen bonds by 
wavy lines. Note that backbone-side chain and side chain-side chain NOE-connectivities which are 
present in all types of secondary structures are not shown.  
 
The typical signal intensities of short- (I, I-1), medium- (I, I-2; I, I-3; I, I-4) and long-

range (I, J) backbone-backbone NOE connectivities which are observed in different 

types of secondary structural elements are shown in table A.3 [93]. The HN-HN I, I-1 

distance is smaller, and thus the signal is stronger, in helices than in sheets (figure 

A.4). The shortest connectivities in sheets and helices are the H -HN I, I-1 and H -HN I, 

I-1 distances, respectively. The figure also shows that medium-range NOEs are only 

found in helices, whereas long-range backbone connectivities are typical of sheets. 
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Table A.3: NOE signal intensities observed in the most common types of secondary structure. “S” 
denotes a very strong signal, “s” a strong signal, “m” a medium strong signal and “w” a weak signal. 
 

NOE- 
correlation -helix 

Antiparallel 
ββββ-sheet 

Parallel 
ββββ-sheet 

HN-HN I, I-1 m-s w w 
HN-HN I, I-2 w   
H -HN I, I-1 w-m S S 
H -HN I, I-3 w-m  
H -HN I, I-4 w  

 

H -HN I, I-1 m-s w w 
H -H  I, I-3 w-m   
HN-HN I, J w s 
H -HN I, J w w-m 
H -H  I, J 

 
w-m w-m 

 


