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[1] Abstract. The results of 12 coupled climate models participating in the Coupled Model 

Intercomparison Project (CMIP2) are compared together with observational data in order 

to investigate: 1) How the current generation of climate models reproduce the major 

features of the winter North Atlantic Oscillation (NAO), and 2) How the NAO intensity 

and variability may change in response to increasing atmospheric CO2 concentration. 

Long-term changes in the intensity and spatial position of the NAO nodes (Icelandic Low 

and Azores High) are investigated, and different definitions of the NAO index and the 

Arctic Oscillation (AO) are considered. The observed temporal trend in the NAO in recent 

decades lies beyond the natural variability found in the model control runs. For the 

majority of the models, there is a significant increase in the NAO trend in the forced runs 

relative to the control runs, suggesting that the NAO may intensify with further increases 

in greenhouse-gas concentrations. 

 

1. Introduction 

 [2] The North Atlantic Oscillation (NAO) is a major mode of atmospheric variability in 

the Northern Hemisphere. The NAO is a measure of the atmospheric pressure difference 

between the Icelandic Low (IL) and Azores High (AH) centers of action – stronger than 

average gives a positive index value (NAO+) and v.v. The NAO is particularly important 

in winter, exerting a strong control on the Northern Hemisphere extra-tropical climate, e.g., 

modulating the westerly jet stream and temperature from eastern North America into 

Eurasia [Walker et al., 1932; Wallace and Gultzer, 1981; Lamb et al., 1987; Hurrell, 

1996]. The NAO can be considered the dominant regional feature of the broader Arctic  
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Oscillation (AO) [Thompson and Wallace, 1998] or Northern Annular Mode (NAM) 

[Thompson and Wallace, 2001] of atmospheric pressure in the Northern Hemisphere, 

rather than a dynamically separate phenomenon – at least in winter, when they are 

arguably inseparable [Deser, 2000; Wallace, 2000]. 

 [3] The NAO has exhibited a positive trend since the 1960s and it has been 

speculated that this may be linked to global warming, e.g., induced by anthropogenic 

increases in atmospheric greenhouse gases (GHGs). However, distinguishing natural 

versus anthropogenic variability in the NAO based on observed sea level pressure (SLP) 

alone is challenging. There are also uncertainties in the theoretical response of NAO/AO to 

enhanced greenhouse warming and our ability to model it realistically using numerical 

climate models [Delworth and Knutson, 2000; Shindell et al., 2001; Frauenfeld and Davis, 

2003; Gillett et al., 2003]. The goal of the paper is to assess how well the current 

generation of climate models reproduces the general features of the observed winter NAO 

and to quantify changes in NAO under external forcing. Achievement of this goal requires 

1) an assessment of the individual models, 2) an assessment of the ensemble mean of the 

models, and 3) an investigation of the future climate projections.  Here, to investigate the 

NAO change as a response to increasing GHG forcing, the results of 12 coupled 

atmosphere–ocean numerical models participating in the Coupled Model Intercomparison 

Project (CMIP2) are used together with observational data. 

 

2. Data and Methods 

 [4] We employ monthly-mean SLP fields for the entire Northern Hemisphere from 12 

CMIP2 models as specified in Table 1.  For documentation and validation of these models 
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see the CMIP Web site at http://www-pcmdi.llnl.gov/cmip/. We have chosen the models 

with full-length runs without missing values and include only one model from each 

modeling center (e.g., only HADCM3, not HadCM2, from the Hadley Centre). For each 

model, two 80-y experiments are used: 1) a “control” simulation, representing natural 

variability (CMIP control runs use different constant atmospheric CO2 concentrations, 

ranging from 290 to 353 ppm) and 2) a “forced” run perturbed by a 1% per year increase in 

atmospheric CO2 concentration starting from the present-day climate state, where CO2 

doubles at about year 80 [Covey, 1998]. The CMIP2 idealized scenario with 1% per year. 

CO2 increase is only used for model sensitivity tests and is not meant to be representative 

for present or earlier emissions. However, the radiation forcing corresponding to the 

CMIP2-protocol cannot be ruled out in the future. In addition, the observed variations in 

NAO could be caused by natural variations in the climate system. It is presently hard to 

uniquely state which of the two alternatives are most likely. The model data are available 

on a variety of grids; to facilitate intercomparison, all the model data are interpolated to a 

2.5° × 2.5° regular grid. 

 [5] Monthly-mean gridded dataset based on observations is also used: NCEP/NCAR  re-

analysis  data from 1948 [Kalnay et al., 1996, with updates]. In addition we use time series 

of station SLP comprising the Jones et al. [1997] NAO index. These are Gibraltar (36°N, 

5.5°W) and a southwest Iceland time series, based mainly on Reykjavik (64.1°N, 22°W) 

both extending from 1823 to 2000.  The locations are indicated in Figure 1A.  

 [6] Winter is defined here as November–April (NDJFMA). For the model integrations, 

SLP anomaly fields were obtained on the basis of the control run's long-term winter mean. 

The spatial SLP distribution was investigated by applying Principal Component Analysis 
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(PCA) for both the North Atlantic region (20°N-80°N, 100°W-20°E) and for the area north 

of 20oN. The latitude–longitude position of the IL center (ϕN, λN) was first approximated 

as the location of the minimum Pmin of the pressure field Pi,j  on the latitude-longitude grid 

(ϕi, λj) of the pressure field for latitudes poleward of 550N. Its exact position was then 

found as the center of gravity of the pressure field using weighted anomalies. For instance, 

ϕN =∑ϕi Pi,j / ∑ Pi,j, where summation is spread over grid nodes where Pi,j  < Pmin + ∆P, and 

∆P is estimated as 5hPa. The AH center (ϕS,λS ) is defined in a similar way for latitudes 

south of 450N.  

 [7] Four different definitions of the NAO index are considered: 1) Absolute SLP 

difference between Gibraltar and Iceland (NAO1); 2) Absolute SLP difference between the 

centers of the IL and AH (NAO2); 3) Difference of SLP averaged over a northern (80°W-

30°E, 55°N-80°N) and southern (80°W-30°E, 20°N-55°N) Atlantic region (NAO3); and 4) 

First principal component (PC1) time series corresponding to a pressure-field  PC pattern 

(NAO4) for the North Atlantic region (20°N-80°N, 100°W-20°E). Absolute SLP 

differences were used for the calculation of NAO index, because standardization could 

hide errors in the model simulations. For the model data, the NAO1 index was defined 

through interpolation from the model grid cells nearest to Gibraltar and Iceland. We also 

calculated the AO index as PC1 for the area north of 20oN. For each of the four NAO 

definitions and the AO, temporal trends were then calculated for the observations and 

models. Clearly, pattern-based indexes provide more information about the main features 

of SLP distribution than a two-point pressure difference. The statistical significance of the 

difference between trends for the control and forced run was found for each model, 

considering maximum difference between trends standardized by the sum of their standard 
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deviations. Confidence level of the difference between trends was found as an error 

function of normalized maximum difference between trends.  

 

3. Results 

 [8] It is found that the models realistically reproduce the IL and AH; e.g., broadly 

similar patterns in mean winter SLP in both observations and the models (Figure 1A). We 

find that the NAO pressure patterns are captured as realistically as the NAO-like 

temperature pattern that Stephenson and Pavan [2003] used as an NAO surrogate in their 

CMIP1 model study. The 12-model control-run mean SLP difference between Gibraltar 

and Iceland (i.e., Jones et al. [1997] NAO index) lies close to observations, with an 

ensemble-mean difference from the observations ~3hPa and the mean inter-model standard 

deviation~7hPa (Fig. 1B). The model ensemble-mean locations of the pressure centers are 

nearly identical to the observations, though with some between-model scatter (Figure 2). 

The observations indicate that the IL and AH comprise a unified system varying 

synchronously – their centers simultaneously shift position along a southwest–northeast 

axis, with a northeastward shift occurring during maximum SLP gradient (i.e., strong 

NAO+). Most of the model runs also exhibit this tendency to shift position. 

 [9] Spatial and temporal differences between the control and forced runs are evident. 

Spatially, a northeastward shift (Figure 2) in the centers of the IL and AH is found in the 

forced run compared with the control run for most of the models. This shift is statistically 

significant at 95% confidence level for the models except CERF, CSIR, MRI and PCM. 

For most of the forced runs, low pressure at high latitudes spreads over a vaster area with 

even slight changes of SLP in the IL and AH centers of action. 
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 [10] Temporally, the most interesting result is a difference between trends in the forced 

and control runs. Figure 3 shows modeled (control and forced) linear trends for the NAO 

indices (NAO1-4) and the AO index, for each model as well as the ensemble mean of the 

models. The result shows that for the majority of the models and more or less independent 

of the index being used, there is a relative increase in the trend between the control and 

forced integrations [cf. Scheneider et al., 2003]. It is noted that the control integrations 

characteristically have small negative trends for each index, though these are not 

statistically significant at the 95% confidence level, except BMR, CCSR and PCM. This is 

an indication of model deficiency and possibly the limited length of the runs. Nevertheless, 

it should be recalled that the climate experiment in CMIP2 is essentially a “perturbation 

integration” and therefore the main interest is the change in the trend between the control 

and the forced experiment. 

 [11] The three pattern-based indices – NAO3, NAO4 and the AO – show more consistent 

model-to-model trends than NAO1 and NAO2 and are positive for all forced runs, except 

for CCSR (NAO3 and AO), CSIR (NAO4) and GFDL (NAO4). Regarding statistical 

significance, the difference between linear trends in the control and forced runs is more 

meaningful than the significance of individual trends, as mentioned above. Table 1 

indicates that control versus forced trend differences from 8 of the 12 models (BCM, 

BMR, CCC, CCSR, ECHAM, IAP, MRI and PCM) are statistically significant at s < 0.05 

(i.e., > 95% confidence level) for at least one index. Three models (CERF, GFDL and 

UKMO3) have s < 0.20, while s > 0.20 for the CSIR model. 

 [12] Further, we calculated successive 30-yr linear trends for NAO1 from control and 

perturbed runs, as well as for the NAO1 calculated from observational data (Figure 4). The 
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observed NAO1 trends in recent decades are outside the 95% confidence range of 

variability simulated during control runs, and this could be interpreted partly as internal 

variability. The observed NAO1 index has its largest positive trends during the period 

1961-1999 (>6 hPa/30yr) with a maximum (9.8 hPa/30yr) from 1966-1996, in contrast to 

the control experiments, where no trends were larger than 6.6 hPa/30yr. For the forced 

runs, maximum trends exceed the observations in three models (13 hPa/30yr (CCSR), 9.4 

hPa/30yr (MRI), 8.2 hPa/30yr (GFDL)), while six models range from 4-6 hPa/30yr and 

three models exhibit trends of ~3 hPa/30yr. These results suggest that some response to 

GHG forcing could be present in the observed NAO index record, indicating a possible 

increase of the NAO positive phase.  

 

4. Conclusion 

 [13] We find that the current generation of climate models reproduces, on average, the 

main SLP features of the observed winter NAO. The recent trend observed in the NAO lies 

beyond the natural variability found in the control runs. Furthermore, the forced runs have 

greater NAO intensity than the control runs, indicating that the NAO may intensify with 

further increases in atmospheric GHG concentrations. The underlying causes of forced 

variability in the North Atlantic region are unclear. There are at least two candidate 

mechanisms to explain the recent trend of the NAO: An extra-tropical response to changes 

in tropical sea-surface temperature (SST) [Hoerling et al., 2001; Lin et al., 2002] and 

another involving stratospheric changes [Baldwin and Dunkerton, 2001]. In either case, the 

processes linking the NAO to GHG forcing need further elucidation. 
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NAO MODEL ∗ 

Index  BCM BMR CCC CCSR CERF CSIR ECHAM GFDL IAP MRI PCM UKMO3 

NAO1 <0.01 0.18 0.13 0.04 0.38 0.25 <0.01 0.56 0.03 0.25 <0.01 0.43 

NAO2 0.04 0.01 <0.01 0.73 0.16 0.29 0.01 0.13 0.43 <0.01 0.02 0.65 

NAO2 0.04 0.01 <0.01 0.73 0.16 0.29 0.01 0.13 0.43 <0.01 0.02 0.65 

NAO3 0.08 0.28 0.01 0.32 0.43 0.64 0.18 0.49 0.05 0.19 0.37 0.32 

NAO4 <0.01 0.05 <0.01 0.15 0.58 0.92 <0.01 0.65 0.02 0.22 <0.01 0.17 

AO 0.06 0.63 <0.01 0.20 0.13 0.52 0.03 0.23 <0.01 0.29 <0.36 0.24 

∗Model Codes and Countries: BCM-Bergen Climate Model (Norway); BMR-Bureau of Meteorology Research Center 

(Australia); CCC-Canadian Center for Climate Modelling and Analysis (Canada); CCSR-Center for Climate System 

Research (Japan); CERF-Centre European de Recherch et de Formation Avanceen en Calcul Scientifique (France) ; 

CSIR-Commonwealth Scientific and Industrial Research Organization (Australia); ECHAM - DKRZ/MPI (Germany); 

GFDL-Geophysical Fluid Dynamics Laboratory (USA); IAP-LASG / Institute for Atmospheric Physics (China); MRI-

Meteorological Research Institute  (Japan); PCM-DOE Parallel Climate Model (USA); UKMO3-United Kingdom Met. 

Office HadCM3 model (UK) 
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