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Abstract 

Photorealistic 3D models, representing an object’s surface geometry textured with 

conventional photography, are used for visualization, interpretation and spatial 

measurement in many disparate fields, such as cultural heritage, archaeology and 

throughout the earth sciences, including geology. Virtual models of geological 

outcrops allow for large quantities of geometric data, such as sizes of features, 

thicknesses of strata, or surface orientations to be extracted in relatively short time 

and in areas with difficult accessibility. However, standard analysis is limited to 

interpretation of the three standard spectral bands (red, green, blue; RGB) acquired in 

the visible spectrum by the conventional digital camera. Complementing the 

photorealistic 3D outcrop models with auxiliary spectral data, for example in the 

form of hyperspectral imagery, can provide domain experts with additional 

geochemical information, adding great potential to studies of mineralogy and 

lithology.  

The existing workflows for creation of photorealistic outcrop models and 

integration with terrestrial panoramic hyperspectral data are complex and require 

specific knowledge from the field of geomatics. One such processing step is selection 

of images taking part in the texture mapping process. Although automated texture 

mapping measures are available, in highly redundant image sets they do not 

necessarily provide the best results when using all available photos. Therefore 

selection of the most suitable texture candidates is required to increase the realism of 

the textured models and the processing efficiency. Especially for large models of 

rugged terrain, represented by millions of triangles, manual selection of the best 

texture candidates can be challenging, because the user must account for occlusions 

and ensure that image overlap is sufficient to cover relevant model triangles.  

The existing workflow for integration of hyperspectral and 3D data also requires 

specific skills in geomatics as homologous points between the two datasets need to be 

manually selected for registration. Finding such correspondences involves 

interpretation of data acquired with different sensors, in different parts of the 

electromagnetic spectrum, projections and resolutions. The need to complete such 



  

 

challenging data processing steps by users from outside the geomatics domain poses a 

serious obstacle to these methods becoming standardised across geological research 

and industry. 

The research presented in this thesis addressed the two aforementioned 

limitations in the data processing workflows with an aim to make the method more 

accessible for users from outside of the geomatics domain. Firstly, a new interactive 

framework was developed, that provides analytical and graphical assistance in 

selection of an image subset for geometrically optimised texturing in photorealistic 

3D models. Visualisation of spatial relationships between different components of the 

datasets was used to support the user’s decision in tasks requiring specific technical 

background. Novel texture quality measures were proposed and new automatic image 

sorting procedures, originating in computer vision and information theory, were 

implemented and tested. The image subsets provided by the automatic procedures 

were compared to manually selected sets and their suitability for 3D model texturing 

was assessed. Results indicated that the automatic sorting algorithms can be a valid 

alternative to manual methods. The resulting textured models were of comparable 

quality and completeness, and the time spent in time-consuming reprocessing was 

reduced. Anecdotal evidence indicated an increased user confidence in the final 

textured model quality and completeness. 

Secondly, a method for semi-automatic registration of terrestrial hyperspectral 

imagery with laser and image data was developed. The proposed data integration 

procedure employed the Scale Invariant Feature Transform (SIFT) to automatically 

find homologous points between digital RGB images registered in the scanner 

coordinate system and short wave infrared cylindrical hyperspectral data. The need 

for large numbers of homologous points to be matched required optimisation of the 

SIFT operator, as well as a routine for eliminating false matches. The proposed 

method automatically provides the control points that are used for registering the 

hyperspectral imagery. The results obtained on two datasets with different 

characteristics indicated that the proposed method can be used as an alternative to 

manual data integration, saving time and minimizing user input during processing.  

 



 

 

The increased automation of the workflows for creation of photorealistic outcrop 

models and integration with auxiliary image data, complemented with computer 

assistance to support users’ decision in the processing steps requiring background in 

geomatics, facilitate adoption of such techniques in wider community. 
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Chapter 1 

Introduction 

With recent hardware developments and increased software automation, the range of 

applications of photorealistic 3D models of real-world scenes has diversified rapidly. 

These models, geometrically representing the object surface and textured with 

conventional photography are used in heritage documentation (Portales at al. 2009; 

Duca et al. 2011), virtual tourism (Remondino 2011) and archaeology (Wulff 2010), 

as well as in urban planning (Bénitez and Baillard 2009), mining (González-Aguilera 

et al. 2012), and the earth sciences, such as in landslide modelling (Niethammer et al. 

2012) or geology (Buckley et al. 2008a; Sturzenegger and Stead 2009; Fabuel-Perez 

et al. 2009; Rittersbacher et al. 2012). 

3D modelling of geological outcrops, such as exposed cliff sections or quarries, 

can be used to improve understanding of subsurface geology. Photorealistic outcrop 

models (Figure 1.1) allow for interpretation and measurements of geological features, 

i.e. sizes of objects, thicknesses of strata or surface orientation, that can be used for 

populating stochastic models of subsurface reservoirs, for example in the oil and gas 

industry (Bellian 2005; Pringle et al. 2006; Enge et al. 2007; Buckley et al. 2008a; 

Jones et al. 2009; Fabuel-Perez et al. 2009; Rittersbacher et al. 2012). The geological 

interpretation can be performed on the screen, also in inaccessible areas where 

conventional fieldwork methods may be unsafe. The virtual outcrop measurement 

methods allow not only for large quantity of data to be collected in relatively short 

time, but also provide support to improve documentation of field observations 

(Bellian 2005). 



  

 

 
Figure 1.1. (A) Photorealistic 3D outcrop model covering a section of the Book 

Cliffs, Utah, USA. Model area marked in purple enlarged in (B).  

Though the 3D photorealistic models themselves are a valuable source of 

information, greater benefit can be gained by complementing them with data acquired 

by other sensors. In recent years, a number of sophisticated imaging devices, 

customised for specific needs, have been developed and subsequently adopted by the 

remote sensing community, providing new opportunities for interdisciplinary studies. 

In photorealistic outcrop models mineralogical and lithological mapping is normally 

limited to interpretation of the data recorded in three standard spectral bands (red, 

green, blue; RGB) of the visible spectrum. Many minerals exist that cannot be 

distinguished using visible light, but that exhibit specific absorption and reflectance 

properties in the infrared region of the electromagnetic spectrum, e.g. limestone and 

dolomite (van der Meer and de Jong 2001). Therefore, complementing the virtual 

outcrop models with auxiliary spectral data, i.e. short wave infrared (SWIR) 

hyperspectral imagery (Figure 1.2), can provide additional geochemical information 

and help to understand information invisible to the naked eye, adding great potential 

to studies of mineralogy and lithology (Kurz et al. 2012).  



 

 
Figure 1.2. 3D outcrop model textured with RGB images and results of 

hyperspectral classification. Limestone patches marked in blue. 

The workflow for collecting and using virtual outcrop data has been developed 

and applied in reservoir modelling in recent years (Bellian 2005; Enge et al. 2007; 

Buckley et al. 2008a; Buckley et al. 2008b). An approach to complement the 3D 

textured models with data acquired by a portable terrestrial SWIR hyperspectral 

sensor has also been established and proved (Kurz et al. 2011; Kurz et al. 2012). 

Although both methods have been successfully used, they represent a complex 

sequence of processing steps that often require time-consuming manual work and 

specific technical background, significantly impeding the prevalence of textured 3D 

models outside of the geomatics domain.  

Therefore, before such methods are standardised across geological research and 

industry, further research is required to improve and automate processing steps where 

most technical background and skills in geomatics are required.  



  

 

1.1 Research scope 

The aim of this thesis is to make the existing workflow for creation of photorealistic 

outcrop models more accessible for users from outside of the geomatics domain, 

specifically by increasing the level of automation in processing and providing 

decision support in tasks requiring most technical background or experience. Two 

areas of the workflow (Figure 1.3), identified as bottlenecks for processing and 

reflecting a very practical need on the behalf of the users, are targeted. A by-product 

of the workflow improvements is to decrease the overall data processing time. 

1.2 Structure of the thesis 

This thesis comprises two complementary parts. The first part aims to give a broad 

background to the thesis’ contribution and starts with an overview of the existing 

workflow for creation of photorealistic 3D outcrop models (Chapter 2). Research 

related to integration of 3D models with ancillary image data (Chapter 3) is assessed, 

and followed by a summary of individual contributions of the thesis (Chapter 4). 

Conclusions and potential future work are presented in Chapter 5. The second part or 

the thesis consists of five publications, provided as they were published or submitted 

to the journals, with only minor adjustments in formatting to fit the format of this 

dissertation.  

 





 

 

 

Chapter 2 

 

Creation of photorealistic 3D outcrop models: Background 

Developments in the workflow for creation of photorealistic 3D models (Debevec 

and Taylor 1996) of geological outcrops are documented by several authors (Bellian 

2005; Pringle et al. 2006; Buckley et al. 2008a; Buckley et al. 2008b). Although 

depending on the object size and accuracy requirements, different approaches to data 

acquisition and registration can be applied with similar processing results, i.e. the 3D 

terrain geometry is reconstructed and combined with digital images to provide the 

photorealistic effect.  

The workflow for creation of virtual outcrop models presented in this section is a 

summary of methods presented in Buckley et al. 2008a and Buckley et al. 2008b, 

complemented with alternative solutions reported in literature, as well as an outline of 

image-based modelling techniques to provide a broader overview of different data 

acquisition and processing approaches. However, because the datasets used in this 

research were acquired using laser scanning, laser-based techniques are presented in 

greater detail.  

The workflow presented in Figure 2.1 is an extended version of the sketch shown 

in Figure 1.3 (left), complemented with indicators of the level of automation and 

approximate amount of time required to accomplish each processing stage. The 

processes that require most knowledge or skills in geomatics are also marked.  



Creation of photorealistic 3D models of real word scenes requires two types of 

information being available: 3D geometry of the object surface and imagery covering 

the scene allowing for realistic texture generation. The surface of complex scenes can 

be reconstructed using laser scanning, photogrammetric methods or a combination of 

the two (Remondino 2006). The choice of the surface modelling technique depends 

on the size, accessibility and characteristics of the object. Therefore prior to data 

acquisition the purpose of the study and the arising requirements for the virtual 

models need to be analysed.  

2.1 Data acquisition 

For models of large, complex and irregular surfaces, where high resolution and high 

accuracy are essential, 3D data is commonly acquired (El-Hakim et al. 2008) using 

laser scanners (LIght Detection and Ranging - LIDAR) that are active sensors directly 



 

 

capturing the 3D object geometry based on range measurements. Although the laser 

scanning measurements can be based on: time-of-flight, phase shift or triangulation, 

the first technology dominates the topographic survey market (Buckley et al. 2008a; 

Remondino 2011). In the time-of-flight based scanners the range is determined based 

on the measured return time of an emitted laser pulse (Vosselman and Maas 2010). 

The coverage of the pre-selected scanner field of view is realised by deflection of the 

laser beam over a calibrated angular grid with point spacing defined by the operator. 

The 3D object coordinates are computed using horizontal and vertical laser pulse 

deflection angles combined with the range. Modern laser scanners are capable of 

measuring hundreds thousands of points per second and recording additional 

information, i.e. intensity of the reflected laser signal.  

Terrestrial laser scanners can acquire data from a distance of a few centimetres to 

a few kilometres (Remondino 2011). Depending on the size and scale of the study, an 

instrument with suitable characteristics should be chosen. The trade-off is between 

the range, accuracy, beam diameter, optical wavelength and the cost of the scanner 

(Luhmann et al. 2007). In the case of terrestrial laser scanning (TLS) for geological 

applications, where the objects can be several hundred meters in extent, a common 

solution is to use a medium- or long-range (respectively 25m - 250m and > 250m 

(Lemmens 2007)) scanners rigidly coupled with a calibrated digital single lens reflex 

(SLR) camera (Buckley et al. 2008a, Heritage and Large 2009).  

2.1.1 Terrestrial laser scanning and image acquisition 

Although laser scanners are capable of rapid measurements covering large areas with 

high point density, data acquisition from multiple locations is normally required, not 

only because of the outcrop size, but due to data shadows or occlusions from 

vegetation and other unwanted objects. In such cases the adjacent scans should be 

acquired with overlap greater than 10% of the area (Bellian 2005) in order to ensure 

sufficient prerequisites for the relative scan registration. To provide the most accurate 

and realistic virtual outcrop model, the data should be captured perpendicular to the 

outcrop wall (Bellian 2005; Buckley et al. 2008b; Soudarissanane et al. 2011). 



 

 

Depending on the characteristics and accessibility of the scanned outcrop section, 

appropriate lenses should be mounted on the SLR camera attached to the scanner. 

The camera lenses should be periodically calibrated and the focal lengths fixed for 

the duration of the data collection. In order to ensure optimal texture mapping 

conditions, and therefore high realism of the photorealistic look, the photos should be 

collected so that the image rays are as close to normal to the outcrop face as possible 

(Debevec and Taylor 1996). Because the scanner position might not be optimal for 

such image acquisition, e.g. far away from the outcrop face or too oblique, or the 

lighting conditions might be unfavourable, additional freehand photos can be also 

acquired from different locations or at different time than when the laser data is 

collected (El-Hakim et al. 2008). After registration (Section 2.2) they can be used in 

the texture mapping process (Section 2.5) to create integrated products (El-Hakim et 

al. 2004). 

In order to register the acquired dataset into a geodetic coordinate system the 

scanner positions are recorded, e.g. using Global Navigation Satellite System (GNSS) 

observations post-processed relative to a nearby base station (Bellian 2005; Buckley 

et al. 2008a).  

Although using ground-based data collection has many advantages, it becomes 

time-inefficient for larger areas and may be unsuitable for modelling of high and 

extensive cliff sections. Increased scanner tilt angles result in larger 3D model 

discontinuities caused by scanning shadows (Soudarissanane et al. 2011) and very 

oblique imagery, both leading to poor quality of the textured model (Buckley et al. 

2008b). These limitations can be overcome when acquiring data from a helicopter 

platform.  

2.1.2 Helicopter-based laser scanning and image acquisition 

Acquisition of oblique aerial images fills the gap between data provided by nadir 

looking aerial and terrestrial sensors (Smith et al. 2009). The capability of the 

helicopter to fly along the outcrop slope provides an opportunity to provide 

geometrically optimized datasets, captured perpendicularly to the outcrop (Bellian 

2005; Buckley et al. 2008b; Soudarissanane et al. 2011). An example of a helicopter-



 

 

based hand-held laser scanning and image acquisition for geological applications is 

reported in Buckley et al. (2008b). The employed Helimap system (Vallet and 

Skaloud 2004), consisted (the system has been upgraded in the meantime) of a Riegl 

LMS Q240i-60 airborne laser scanner and a Hasselblad H1 camera, and collected the 

data with a rate computed as a function of desired point density and flight parameters, 

up to 10,000 points per second, with a quoted accuracy of 0.02m (one sigma) at 50m 

range (Riegl 2010). The 22 megapixel Hasselblad H1 camera equipped with a 

calibrated 35mm lens provided visible-spectrum (RGB) images (Skaloud et al. 2002). 

For outcrop modelling purposes images are usually collected with 60%-70% forward 

overlap to allow for complementary stereo-plotting and, if multiple image strips are 

required, with a degree of sidelap between the strips. The camera and the scanner are 

rigidly coupled and their position is constantly logged by the GNSS receiver and the 

inertial navigation system (INS) recording the velocity and orientation of the 

platform. These observations are supplied to recreate the point cloud and camera 

orientation parameters. The mapping accuracy of the data delivered by the Helimap 

system with H1 camera was determined as <0.15m (Vallet 2007). 

Despite all the advantages of laser scanning, i.e. high data resolution and 

accuracy plus the high speed of data acquisition (Golparvar-fard et al. 2011), the 

technique is relatively expensive. Photogrammetric reconstruction of topography 

from multiple images taken from convergent views (Remondino and El-Hakim 

2006), also referred to as image-based modelling, is regarded as an attractive low-cost 

approach in 3D model creation (Aguilera and Lahoz 2006; Nex and Rinaudo 2008; 

Golparvar-fard et al. 2011). 

2.1.3 Image-based modelling 

Photogrammetry is a part of geomatics that allows for reconstruction of position, 

orientation, shape and size of objects from images (Kraus 2004). In photogrammetric 

modelling, the perspective camera model or projective geometry (Pollefeys et al. 

2004) is applied to 2D measurements of corresponding features on two or more 

images to recover 3D object position (Remondino 2006). Other techniques of shape 

reconstruction are available, e.g. shape from shading (Horn and Brooks 1989) or 



 

 

shape from 2D edge gradients (Winkelbach and Wahl 2001), but these are not 

applicable for reconstruction of complex real world scenes. 

In the image-based large sets of images are collected using consumer grade or 

SLR cameras (Remondino et al. 2011). Careful image network design and camera 

choice is required because both factors, together with the quality of the established 

camera model, influence the accuracy of the reconstructed surface model 

(Remondino and El-Hakim 2006). If dataset georeferencing is required, the position 

of several ground control points, clearly distinguishable in images should also be 

measured in a geodetic coordinate system, for example using GNSS with data post-

processing.  

A photogrammetric surface reconstruction requires two fundamental inputs: 

camera calibration and image orientation. For applications requiring high accuracy 

results they can be derived separately (Remondino and Fraser 2006). Otherwise they 

are computed at the same time by solving a self-calibrating bundle adjustment 

(Remondino et al. 2011), based on coordinates of the corresponding points between 

the images in a block (tie points). Tie points can be extracted using manual 

measurements or automated approaches (Remondino and Ressl 2006).  

Once the image exterior orientation and camera calibration parameters are 

known, the surface model can be reconstructed using automatic dense image 

matching techniques (e.g. Remondino et al. 2008) or interactive feature extraction 

methods (Remondino and El-Hakim 2006). The resulting point cloud can be 

complemented with automatically extracted linear features (e.g.: Schmid and 

Zisserman 2000; Remondino and Zhang 2006) preventing smoothing of edges and 

therefore crucial for such applications as city modelling.  

The most recent multi-image matching approaches are reported in Remondino 

and Zhang (2006), Hiep et al. (2009), Zhu (2010), (Furukawa and Ponce 2010) and 

(Pierrot-Deseilligny and Clery 2011). A better insight into general image-based 

modelling of real world scenes can be found in (Remondino and El-Hakim 2006; 

Remondino et al. 2008; Barazzetti et al. 2010; Remondino 2011). 

Because photogrammetric modelling is mostly suitable for smaller sites (El-

Hakim et al. 2008), so far it has been rarely applied in geological applications 



 

 

(Schober and Exner 2011). With the rapid developments of unmanned aerial vehicles 

(UAVs) allowing for image acquisition from the air and therefore modelling of larger 

objects (Remondino et al. 2011), image-based modelling methods become prevalent 

in an increasing number of applications, including close-range mapping in difficult 

conditions (Lucieere et al. 2011), heritage documentation (Püschelet al. 2008), 

archaeology (Eisenbeiss and Sauerbier 2011), mining (González-Aguilera et al. 2012) 

and agriculture (Dandois and Ellis 2010; Turner et al. 2011; Remondino et al. 2011). 

A review of image-based modelling solutions for data acquired using UAVs can be 

found in (Remondino et al. 2011). 

Many applications can benefit from combination of laser scanning with 

photogrammetric modelling. One such example is modelling of large architectural 

objects (e.g. buildings), that require laser scanning from multiple positions and result 

in huge number of points representing flat surfaces, but can be relatively quickly 

modelled using photogrammetric techniques (El-Hakim et al. 2004b). Laser based 

techniques are preferred for modelling of irregular surfaces, such as sculptures and 

building ornaments (El-Hakim et al. 2004b).  

2.2 Data registration 

 

 

Data acquired with different sensors and/or from multiple positions need to be 

transformed so that the entire object is represented by a single point cloud and the 

orientation parameters of collected images are established. Due to the fact that in the 

image-based modelling the relative image orientation is a part of the 3D surface 

geometry reconstruction (Section 2.1.3) this processing step is especially valid for the 

laser-based methods of terrain reconstruction.  

2.2.1 Terrestrial laser scanning 

In the ground-based datasets all the scans need to be registered into a single 

coordinate system. This is realised by retrieving a spatial rotation, translation and 



 

 

scaling of each scan with respect to the reference scan, e.g. a single scan held fixed in 

the centre of each cliff section (Buckley et al. 2010a). Commonly (El-Hakim et al. 

2004a; Bellian 2005; Buckley et al. 2010a) a preliminary manual rough scan 

alignment is followed by an automatic orientation adjustment using surface matching 

techniques, i.e. the iterative closest point algorithm (Besl and McKay 1992) or its 

modifications (e.g. Zhang 1994). Resulting transformation matrices enable the 

creation of a single point cloud of all the scans. The first, manual step of scan 

aligning can be performed already during the data acquisition to ensure sufficient 

scan coverage before moving to the next scanning location (El-Hakim et al. 2008b).  

Artificial targets are also used to align multiple scans. Position of the targets can 

be automatically found in the point cloud directly, on the basis of their geometric 

(Artese et al. 2004) or geometric and radiometric (Akca 2003) characteristic, or 

indirectly i.e. using images acquired by a calibrated digital camera rigidly attached to 

the laser scanner (Al-Manasir and Fraser 2006). For large outcrops the use of control 

points can be impractical and expensive in field time (Buckley et al. 2010b).  

Other techniques, mostly applied for scientific testing only (Alba et al. 2011), 

allow for pair-wise registration of multiple scans based on homologous points 

automatically found between intensity data (e.g.: Böhm and Becker 2006; Z. Wang 

and Brenner 2008) recorded by the scanner or digital images acquired by the camera 

coupled with the scanner (Al-Manasir and Fraser 2006; Barnea and Filin 2007; 

González-Aguilera et al. 2009; Alba et al. 2011; Weinmann and Jutzi 2011). The 

resulting set of matches is used to derive the roto-translation matrices used for the 

pair-wise scan registration. 

Once all the scans are registered into one coordinate system, the project (local) 

coordinates can easily be transformed to a geodetic coordinate system using the 

scanner positions derived from the post-processed GNSS observations.  

Because the orientation of the camera mounted on the laser scanner is calibrated 

relative to the scanner centre, the imagery can be registered in the project coordinate 

system and further used as a texture source in the photorealistic virtual model. 

If additional freehand photos were collected, their orientation with respect to the 

point cloud needs to be established, i.e. they need to be registered in the project 



 

 

coordinate system. In the processing workflow used in this research, this is realised 

using manually selected natural points common to the digital images and the point 

cloud.  

Other approaches to registration of freehand photos use colour coded targets 

placed on the object (Al-Manasir and Fraser 2006), edge extraction algorithms for 

image and 3D data (Alshawabkeh et al. 2006) or intensity data recorded by the laser 

scanner (e.g.: Haala 2004; Böhm and Becker 2006; González-Aguilera et al. 2009; 

Meierhold et al. 2010), though these methods have not been widely implemented in 

proprietary software.  

2.2.2 Helicopter-based laser scanning 

In the first step of the helicopter-based data registration the trajectory of the 

helicopter is reconstructed using the GNSS/INS data and corrected relative to a base 

station (Vallet 2007). The time stamps of GNSS recordings and inertial data are 

combined together to obtain the positions and orientations of the laser scanner during 

the flight. Based on this the laser data can be processed to obtain coordinates of the 

points in the point cloud. Similarly, time stamp of the image and GNSS/INS data are 

used to retrieve the positions and orientations of the camera centres (Buckley et al. 

2008b). 

2.2.3 Image-based modelling 

As previously mentioned the relative orientation of the images is performed prior to 

the 3D data reconstruction from images so at this stage the point cloud and the image 

data are already registered into a single coordinate system. If required, the local 

project coordinates can be transformed to a geodetic coordinate system based on 

position of the ground control points captured in images and surveyed in a geodetic 

coordinate system.  

 

 

 

 



 

 

 

 

2.3 3D modelling 

 

 

The result of the described above image- and laser-based surface reconstruction 

approaches is most commonly a point cloud and a set of images. The size of the 

dataset depends on the size of the outcrop and the density of the point cloud, but may 

be millions of 3D points and hundreds of digital images, covering hundreds of 

meters, or in the case of helicopter-based datasets, tens of kilometres of outcrop.  

Known orientation of the images with respect to point cloud allows for 

determination of an RGB value from covering images for each point in the point 

cloud. Although a dense point cloud coloured with the spectral (RGB) data may be 

used for geological interpretation (Buckley et al. 2008a), the discrete nature of such a 

surface representation may not be suitable for interpretations and measurements at 

fine scale. Textured 3D models provide high resolution continuous data and therefore 

are more suitable for interpretations and accurate identification of the fine-scale 

features (Bellian 2005; Buckley et al. 2008a). Creation of textured 3D models 

accurately representing complex topography that can be handled by the software and 

hardware resources requires specific point cloud preparation, i.e. decimation, filtering 

and representation of the surface geometry by a Triangulated Irregular Network 

(TIN). 

2.3.1 Point cloud cleaning and decimation 

In order to ensure realistic texturing, reduce the processing time and guarantee 

comfort of data handling the point cloud needs to be cleaned and thinned to 

manageable sizes (Buckley et al. 2010a). This size changes rapidly with hardware and 

software capabilities.  

Points representing vegetation and other unwanted features in the point cloud 

need to be filtered as they decrease the quality of the surface reconstruction (Section 



 

 

2.3.2) and cause surface artefacts. Manual point cloud editing is possible, but for 

outcrops covered with sparse vegetation may be very time-consuming. Rough 

vegetation filtering can be realised automatically using the spectral (RGB) 

information in the digital images to classify points in the cloud (Buckley et al. 

2010a). The points that have strong intensity in the green channel are likely to 

represent the vegetation and can be removed from the point cloud based on 

empirically selected threshold. Other methods for filtration of vegetation employing 

spatial filters or near-infrared camera are reported in (Alba et al. 2011a). 

Because dense point clouds usually contain more points than required for 

accurate surface triangulation process their thinning is required (Buckley et al. 

2010b). In case of the laser-based modelling much redundancy may be present in the 

areas covered by multiple scans or flight strips. In addition to uniform point 

decimation, thinning based on surface curvature analysis can be automatically applied 

so that more points are kept to describe rugged surfaces, and redundant points on 

smooth surfaces are deleted.  

In order to create a textured model the topographic surface needs to be 

reconstructed and represented by a TIN model. Therefore the cleaned and decimated 

point needs to be transformed into a triangular mesh. 

2.3.2 Triangulation and mesh optimisation 

Surface reconstruction from point clouds has been addressed in research for over 

twenty years starting with the work of Hoppe et al. (1992). An overview and 

comparison of the most commonly applied meshing techniques can be found in 

(Berger et al. 2011). Although fully automatic, correct surface reconstruction from 

unorganised point clouds is a non-trivial task due to range shadows, sharp topography 

changes, potential vegetation and random errors (Remondino and El-Hakim 2006). 

Therefore manual mesh editing is required to solve topology problems, improve 

equiangularity, reorient inverted triangle normals and smooth the surface (El-Hakim 

et al. 2008; Buckley et al. 2010a). Automatic curvature-based hole filling (e.g. Wang 

and Oliveira 2003) and simplification of over-sampled areas can be applied to deliver 

a continuous surface model.  



 

 

In order to facilitate the texture mapping (Section 2.5) and data handing, larger 

outcrop models need to be divided at this stage into smaller sections. As in the 

previous data processing step, this size depends on the hardware and software 

capabilities. 

Another way to facilitate visualisation and handling of very large datasets (e.g. 

helicopter-based, but not only) is creation of a hierarchical set of Level of Detail 

(LOD) (e.g. Hoppe 1996) and a spatial segmentation of the entire triangular mesh 

(Buckley et al. 2008b). Such data handling method allows the viewing software 

(specifically designed) to load the data in required resolution according to object-to-

screen distance (zoom-in level). More details about the solution implemented in the 

workflow can be found in (Buckley et al. 2008b) and more method background in 

(Erikson 2000). 

The result of this processing step is a continuous surface model represented by a 

TIN and therefore suitable for texture mapping. 

 

 

2.4 Texture preparation  

 

 

 

Texture mapping (Heckbert 1986) is a critical step for enhancing visual appearance of 

the 3D model and requires the relationship between all the mesh vertices and the 

corresponding image points to be defined. In this process, available registered images 

are mapped to the 3D model geometry, using the collinearity condition (Wolf and 

Dewitt 2000) and the image interior and exterior orientation parameters. However, 

because image sets are collected from multiple locations, with large overlap, and 

sometimes with different camera or lens configurations, each triangle in the surface 

model may be visible in several images. An example of redundancy in image data in 

a helicopter-based dataset is visualised in Figure 2.2, where the mesh triangles are 

seen in up to 16 images. 



 

 

 
Figure 2.2. 3D terrain model and footprints (navy blue polyhedrons) of acquired 

images, a section of the Book Cliffs, Utah, USA. Mesh triangles coloured 
depending on the number of covering images. Output from method presented in 

this thesis (Paper A). 

One way to combine data from multiple images is to blend (e.g. average) all 

available colours for each pixel of triangle texture (Poulin et al. 1998). Such approach 

results in a very smooth visual impression, where colour and brightness differences 

are eliminated, but also in blurring of the data (high frequency information is 

eliminated), emphasised by erroneous image orientations (El-Hakim et al. 2003; Petsa 

et al. 2007). In the case of outcrop models, geologists interpret and digitise geological 

features that can sometimes only be subtly differentiated from their local 

neighbourhood. Thus it is of high importance to avoid local rendering methods using 

colour blending between images. Therefore in this workflow only one single image is 

used as texture source for each mesh triangle (Buckley et al. 2010a). 

The currently available automatic texture mapping procedures (Section 2.5) do 

not necessarily provide the best textured model when using all available photos 

(Bénitez and Baillard 2009; Buckley et al. 2010a). This is due to distracting texture 

discontinuity artefacts, which may be caused by small registration errors and 

incorrect modelling of lens distortion. An example of such artefacts is shown in 

Figure 2.3. The darker texture patches come from a different image than the rest of 

the texture in the figure. The positional shift (marked with arrows) between texture 

samples coming from different images causes artefacts that may disturb 

measurements and geological interpretations.  



 

 

 
Figure 2.3. Texture artefacts (darker patches) caused by registration errors and 
imperfect implementation of additional camera calibration parameters in areas 

covered by multiple images. Texture displacement marked in purple. 

Therefore the number of images used in the texture mapping should be 

minimised where possible. 

2.4.1 Image selection  

Few studies directly relevant for image sorting are reported in the literature (Haala 

2004; Bénitez and Baillard 2009) but developments in research on optimal viewpoint 

selection in 3D scenes (Vázquez et al. 2001; Snavely et al. 2008; Shirani-Mehr et al. 

2009), representing the inverse of the given viewpoints in the texture mapping 

problem, are also relevant.  

In the existing workflow image selection is realised manually, in two stages. 

Firstly, because in the previous processing step larger models were divided into 

smaller sections, all images relevant for each model section need to be identified from 

all the photos collected in the dataset. Secondly, the images most suitable for 

texturing are manually selected based on the visual (subjective) assessment of 

geometrical relations between the 3D model and image footprints. The latter step is 

non-trivial and, especially for models with complex topography, requires the operator 

to have a good ability in spatial orientation and awareness.  



 

 

Once a subset of images and future texture candidates is selected, colour 

adjustment can be carried out to avoid rapid radiometric changes in the photorealistic 

model. 

2.4.2 Image colour adjustment 

All images are acquired over a period of time, e.g. during one or several days, and 

therefore with different lightning conditions. Non-uniform colours of corresponding 

features in images affect the seams between images in the texture and decrease the 

level of realism of the photorealistic model.  

Three types of radiometric differences can be distinguished: interior image 

illumination variation (vignetting), global radiometric slope between images, and 

local illumination differences, e.g. caused by shadows. Vignetting is mainly caused 

by the optical system and lens characteristics (Sidney 2002). An overview of the 

available vignetting correction methods can be found in (Goldman and Chen 2005) 

and (Lelong 2008). Work related to local and global illumination correction for 

creation of panoramic images is also relevant and reported in (Xiong et al. 2009). 

Methods addressing all three sources of the radiometric differences during the 

texture mapping procedure are presented in (El-Hakim et al. 1998) and (Hanusch 

2008). The first work uses an iterative image brightness balancing method analogous 

to least-squares geodetic height network adjustment. Hanusch (2008) uses a 

biharmonic spline function in the brightness interpolation for local corrections. The 

vignetting and global brightness differences are corrected by modification of the L 

(lightness) component of the images transformed to CIELAB colour space (Bern 

2000).  

Methods originating in computer graphics, e.g. the tone (Mantiuk et al. 2009) and 

texture transfer (Efros and Freeman 2001) are relevant as well.  

The global and local illumination differences may be also minimized by 

collecting the images over a very short period of time (El-Hakim et al. 2008), though 

this is not always practicable.  

In the data processing workflow used in this research the colour adjustment is 

restricted to approximate global balancing, realised manually on the pre-selected 



 

 

images. Once this task is completed the triangulated surface model can be combined 

with imagery to create the photorealistic 3D model.  

 

 

 

2.5 Automatic texture mapping 

 

 

Automatic texturing of surface models from multiple camera images using texture 

mapping has been addressed for many years (Busch 1991; Niem and Broszio 1995; 

El-Hakim et al. 1998; Frueh et al. 2004; Abdelhafiz 2009; Iwaszczuk and Stilla 

2010). Most of the contemporary algorithms use similar geometric principles for 

image application to triangles: minimizing the camera - triangle viewing angle and 

maximizing the effective texture resolution, but additional conditions may be applied, 

such as triangle reassignment to different images to improve coherence with 

neighbouring triangles (Frueh et al. 2004). Viewing angle is the angle between the 

ray passing from camera centre to the triangle centroid, and the normal vector of the 

triangle (Figure 2.4A). The smaller the viewing angle, the more suitable the image is 

for texturing. Effective texture resolution is the resolution of the triangle in the image 

(compare Figure 2.4B and Figure 2.4C), taking into account image resolution, camera 

lens and the distance to the object. 

The optimal texture mapping is realised when a triangle is textured using an 

image containing the highest number of pixels (highest effective triangle resolution) 

and taken from a position guaranteeing the smallest camera – triangle viewing angle 

(Frueh et al. 2004; Buckley et al. 2010a).  

 



 

 

 
Figure 2.4. Camera – triangle viewing angle (A). Low (B) and high (C) effective 

triangle resolution within the image. 

Although fully automatic, texture mapping can be a very time-consuming task. In 

cases when for easier data handling and visualization LODs are created for a 

triangulated model, each level is textured using a different image resolution. For 

larger model sections this processing step may take several hours of CPU time. Once 

texture mapping is finished the quality and completeness of resulting photorealistic 

3D model needs to be verified.  

 

 

2.6 Quality control 

 

 

Quality and suitability of the textured model for interpretation and measurements is 

checked visually. Larger areas of model without texture indicate that an image was 

missed at the image selection stage (Section 2.4.1). Decreased texture quality (Figure 

2.5) might result from the poor image orientation with respect to the model. In cases 

when low quality or incomplete texture appears in areas of geological interest, 

realism is disturbed, influencing the interpretation and measurements. The user must 

be aware of the presence of such artefacts. Where poor quality texture is present, a 

new image sorting (Section 2.4.1), colour adjustment and texture mapping are 



 

 

required to be carried out. For large and complex models the cost in processing time 

of repeating texture mapping may be high. 

 
Figure 2.5. An example of a low quality (smeared) texture (marked in purple) 

resulting from poor image orientation with respect to the terrain model, 
indicating an image has been missed from those selected for texturing. Black areas 

denote mesh triangles without texture. 

The result of the processing workflow described above is a photorealistic outcrop 

model ready for visualisation, interpretation and measurement. Due to multiple height 

(Z) values for each X, Y position, not handled by most of geographical information 

software, visualisation of large textured 3D models is still problematic. Handling high 

resolution multi-image textures and LODs requires specific software design. In this 

research in-house software reported in (Buckley et al. 2008b) was used for 

visualisation and measurements.  



 

 

 

Chapter 3 

 

Integration of 3D models with auxilliary data: Background 

In addition to geometry of the object, photorealistic 3D models provide also spectral 

information contained in the RGB images. Many applications can also benefit from 

integration of the 3D model with other data. One such example in geosciences is 

using intensity of the reflected laser signal recorded by the TLS to distinguish 

different stratigraphic units (Pesci et al. 2008), lithology (Burton et al. 2011), gravel 

from sandy facies (Klise et al. 2009), surface moisture characteristics (Nield et al. 

2011) as well as salt marshes (Guarnieri et al. 2009) and levels of clay content in 

carbonate rocks (Franceschi et al. 2009). Intensity data can be successfully used to 

detect and map damages in historical buildings (Armesto-González et al. 2010) and 

civil engineering structures (González-Jorge et al. 2012). 

Integration of the geological outcrop models with data acquired by airborne 

sensors is also beneficial. Using terrestrial laser scanning to complement a digital 

surface model derived from aerial imagery, followed by texturing with both: aerial 

and terrestrial imagery, allowed for tracking of geological, also vertically oriented, 

strata over large areas (Buckley et al. 2010b). Combination of terrestrial and aerial 

laser scanning was also successfully used to measure displacements in analysis of 

landslides mechanisms (Oppikofer et al. 2009).  

Complementing virtual outcrop models with elevation data provided by the 

spaceborne Shuttle Radar Topography Mission (SRTM) and airborne SWIR 

hyperspectral data allowed exposed dolomitisation patterns to be mapped (Bellian 

and Kerans 2007). Enhancing satellite Synthetic Aperture Radar (SAR) data covering 



 

 

large areas in high temporal resolution with high accuracy TLS data was beneficial 

for studying forest defoliation (Kaasalainen et al. 2010). 

Combining data acquired by different close range sensors is also advantageous, 

e.g. new possibilities for energy inspections of buildings have been provided with the 

integration of thermal infrared imagery and TLS, giving new ways of qualitative and 

quantitative characterisation of thermal bridges (Lagüela et al. 2012; Weinmann et al. 

2012). The combination of low radar spatial resolution in ground-based radar 

interferometry, yet high frequency deformation measurement, with TLS geometry 

gave new possibilities for dam deformation measurements (Alba et al. 2008). 

Assessment and mapping of structural damage of engineering objects was possible 

when laser-based models were merged with processed products of ground penetrating 

radar (Lubowiecka et al. 2011). 

A further example of close range data fusion is the use of terrestrial hyperspectral 

imagery to complement 3D lidar models for geological applications (Kurz et al. 2008; 

Nieto and Monteiro 2010; Kruse et al. 2012; Kurz et al. 2012). It is this last example 

that forms the basis for the next section. 

3.1 Integration of 3D outcrop models and hyperspectral imagery 
acquired with HySpex SWIR-320m camera 

Hyperspectral imaging is an established method that allows for mapping and 

quantification of materials indistinguishable by the human eye (Goetz et al. 1985). 

Hyperspectral sensors capture hundreds of narrow (3–15 nm) spectral bands covering 

a wide portion of the electromagnetic spectrum. A near-continuous spectral curve that 

can be created for each image pixel permits detection of subtle geochemical 

differences, or quantitative analysis of pixel composition (van der Meer and de Jong 

2001). Many minerals exist that cannot be distinguished using visible light, but 

exhibit specific absorption and reflectance properties in the infrared region of the 

electromagnetic spectrum (e.g. limestone and dolomite) (van der Meer and de Jong 

2001). Recent technological advances have introduced portable terrestrial 

hyperspectral sensors, for example the HySpex SWIR-320m (Norsk Elektro Optikk 

A/S) camera, adding new possibilities to studies of mineralogy and lithology (Kurz et 



  

 

al. 2012). Integration of such sensors with terrestrial laser scanning data allows for 

complementing 3D models with results of hyperspectral data classification and 

therefore facilitates geological interpretations as well as communication of outputs to 

users (Slocum et al. 2008).  

3.1.1 HySpex SWIR-320m camera 

The HySpex SWIR-320m is a portable terrestrial hyperspectral line scanner, with a 

14° field of view across track, covered by 320 pixels. The sensor covers the spectral 

range from 1.3 m to 2.5 m over 241 bands, with a sampling interval of 5 nm. As a 

pushbroom linear-array sensor, the system uses a rotation stage to construct the image 

in the along-track direction, resulting in a cylindrical imaging geometry. Previous 

work (Kurz et al. 2011) showed that the sensor can be successfully represented by a 

geometric model for panoramic cameras (Schneider and Maas 2006). Establishment 

of the correct sensor model is critical for tasks requiring precise data coupling, such 

as image orientation or texture mapping.  

3.1.2 Integration of hyperspectral and lidar data 

In order to integrate hyperspectral imagery with photorealistic 3D models the relation 

between the 3D model coordinates and the hyperspectral panoramic images needs to 

be determined. For central perspective RGB imagery similar tasks can be 

automatically solved by matching digital photos with TLS intensity images (Böhm 

and Becker 2006; González-Aguilera et al. 2009; Meierhold et al. 2010). However, 

such an approach relies on the laser scanner intensity recorded with high enough 

dynamic range to allow an interest operator to be successfully applied. 

Nieto and Monteiro (2010) registered the hyperspectral data automatically, based 

on tie points between a 2D image formed from the coloured (RGB) point cloud and 

the true colour image composition created from the hyperspectral data. However, the 

HySpex SWIR-320m does not cover the visible part of the electromagnetic spectrum, 

so the significantly different spectral appearance of objects in conventional 

photographs and hyperspectral scans needs to be handled by the image matching 

algorithm. 



 

 

A successful method for integration of the data acquired with the HySpex SWIR-

320m hyperspectral scanner with lidar and image data was presented in Kurz et al. 

(2011) and is sketched in Figure 3.1.  

In this data integration workflow the relation between the 3D lidar data and the 

2D hyperspectral scans is established based on corresponding (homologous) points 

measured with three different approaches. First, retro-reflective targets (Figure 3.2D) 

are automatically extracted from the point cloud and identified in hyperspectral 

imagery using spectral classification and pixel unmixing (Ichokua and Karnielia 

1996). 

 
Figure 3.1. Workflow for integration of hyperspectral and lidar data, as described 

in (Kurz et al. 2011). 

Next, natural corresponding points between the point cloud and hyperspectral 

image are manually selected in order to ensure a uniform point distribution. However, 

in problematic areas, where identification of such points in the lidar point cloud is 



  

 

difficult (Figure 3.2A), homologous points are sought between the hyperspectral 

imagery (Figure 3.2C) and the photorealistic 3D models (D).  

 
Figure 3.2. Laser point cloud coloured with intensity of the reflected laser signal 

(A), and the corresponding part of: the 2D image created from intensity values (B), 
the hyperspectral scan, band 1.336 m (C), and the 3D model textured with RGB 
images (D). Purple crosses mark homologous points in datasets. Reflective targets 

marked with yellow arrows. 

The 2D image and 3D object coordinates of identified points are transformed to a 

format suitable for the software Bundle (Schneider and Maas 2007) designed to 

handle several sensor models, including the geometric model for panoramic cameras 



 

 

(Schneider and Maas 2006). Exterior orientations of the hyperspectral scans, as well 

as the intrinsic camera parameters are simultaneously determined in a bundle block 

adjustment (Luhmann et al. 2007).  

Despite the fact that the hyperspectral data acquisition was optimised for 

geological purposes rather than for photogrammetric processing, and adjacent scans 

had very little overlap, the hyperspectral data were registered in the TLS coordinate 

system with a precision of around one pixel. Such data integration quality is more 

than sufficient for most geological applications.  

The established sensor intrinsic and exterior orientation parameters supplied to 

the collinearity condition with additional parameters (Schneider and Maas 2006) 

allowed for texturing of the triangulated 3D lidar model with products of spectral data 

processing, e.g. classification results.  

Despite the success of the established data integration workflow the procedure for 

tie point selection was reported as time-consuming and inefficient for multiple 

hyperspectral scans (Kurz et al. 2011). The obstacles impeding the manual tie point 

selection process were mostly related to characteristics of the lidar data such as the 

discrete nature of the point cloud (Figure 3.2A) and low dynamic range of the 

intensity values recorded by the specific laser scanner used (Riegl LMS-Z420i). The 

latter can be observed in A and B, where all materials represented by the point cloud 

have very similar intensity. Identification of homologous points between the 

hyperspectral data and the textured 3D model was much easier, but the relatively low 

spatial resolution of hyperspectral data and the different visible appearance of data 

captured at different wavelengths (Figure 3.3) affected the accuracy of point 

localisation. 



  

 

 
Figure 3.3. (A) Sample of a hyperspectral scan, band 1.336 m and (B) the 

corresponding area of the photorealistic model.



 

 

 

Chapter 4 

An improved workflow for image- and laser-based virtual 
geological outcrop modelling 

 

The main goal of the work presented in the thesis was to make the data processing 

workflow more accessible for users from outside of the geomatics domain. In order to 

achieve that, two steps of photorealistic models creation process requiring manual 

work and a degree of technical background in geomatics were addressed (Figure 1.3). 

New procedures and frameworks were developed in order to increase the automation 

level and facilitate the required user input in the process of image selection prior to 

texture mapping (Section 2.4.1) and the process of tie point selection between the 3D 

data and hyperspectral imagery in the data integration workflow (Section 3.1.2).  

Developments related to image selection for optimised texturing of 3D models 

are presented in Paper A and Paper B. The first publication reported preliminary 

study results and presented the general problem with a focus on the visual assistance 

in image subset selection and increase of users’ confidence in the quality of the 

selected image set. The proposed new quality measures and evaluation of the 

automatic image sorting algorithms extend the work and are described in Paper B. 

The work on semi-automatic method for integration of terrestrial hyperspectral 

imagery with lidar and image data is reported in Paper C, Paper D and Paper E. Paper 

C presents a skeleton of the final, mature data integration workflow described in 

Paper D. Paper E documents optimisation of the automatic tie point matching 

routines. 

Because the included Papers are by nature disjointed, the following sections 

summarise the performed research, highlighting the contributions made in this thesis. 



  

 

4.1 Image selection for optimised texturing 

Selection of an optimal subset from a global image set requires complex spatial 

analysis of multiple variables. Manual image selection, based on examining of the 

image footprints towards the 3D model can be challenging and time consuming, 

especially for large models covering rugged terrain, where the user must account for 

occlusions and ensure that image overlap is sufficient to cover relevant model 

triangles. This makes the following data processing steps iterative (Figure 2.1), as a 

missed image, or poor orientation with respect to the model, will require a new 

sorting and texture mapping to be carried out.  

To address this, a framework was developed for computer-assisted image 

geometry analysis and subset selection for geometrical optimisation of texture quality 

in photorealistic models. The visual assessment of the image–3D model visibility 

check used in the manual image selection method was substituted by a plane–line 

intersection test based on geometrical dependencies between the images and model 

triangles. Several objective quality measures were adopted and new indicators were 

proposed (Paper B) to guide the user decision in the image selection process. Because 

in the spatial domain analytical quality indicators, expressed purely numerically, may 

be insufficient to convey the necessary decision making information to users 

(MacEachren and Ganter 1990), they were supplemented with visualisations of 

quality measures, such as colour-coded quality maps, tables and plots, facilitating 

understanding of complex spatial problems (Slocum et al. 2008). Automatic image 

sorting algorithms originating in computer science and information theory were 

proposed and implemented to quickly provide the user with candidate image subsets.  

4.1.1 Numerical quality measures  

Assessment of the texture quality in photorealistic models is complicated by their 

heterogeneous nature, because different parts of the model may have widely varying 

qualities. Therefore such assessment needs to be performed at the model triangle 

level. In order to realise that two primary quality measures, considered by most of the 

contemporary texture mapping algorithms (El-Hakim et al. 1998; Frueh et al. 2004; 

Abdelhafiz 2009; Iwaszczuk and Stilla 2010), and described in Section 2.2.5, were 



 

 

adopted in this work: camera–triangle viewing angle, and effective resolution of the 

triangle in the image, expressed by scale.  

As previously mentioned, computations of effective resolution of the triangle in 

the image take into account image resolution, camera lens and the distance to the 

object. The result can be understood as a number of pixels representing a triangle in 

the image. Images providing the highest number of pixels for a triangle are preferred, 

if their viewing angle is not too oblique. In order to ease comparison and handle 

significant differences in effective resolution of a triangle visible in covering images, 

the values are mapped into the range [1, ) so that the image with the highest 

effective resolution (best) gets a value equal to one. To highlight this operation and 

avoid confusions, name of this quality measure was changed to scale. A lower 

effective triangle resolution results in an increase in scale. For example, a scale equal 

to two denotes a twice worse effective triangle resolution than in the best available 

image. An analogous procedure is applied to the (sine of the) viewing angle, resulting 

in normalised viewing angle used to compute image and texture quality indicators.  

Image suitability for texture mapping 

The primary texture measures are used to numerically express image suitability for 

texture mapping with average values of viewing angle and scale for all triangles 

contained within the image. A supplementary measure, image quality, is introduced 

in order to provide a single quality value per image. Image quality is computed as the 

average product of the normalised viewing angle and scale parameters and, 

analogously to viewing angle and scale, smaller image quality values denote higher 

image suitability for texturing.  

Texture quality indicators 

As mentioned in Section 2.4, in areas covered by multiple images, texture quality 

may be affected by small registration errors causing disturbing texture artefacts 

(Figure 2.3). In the existing processing workflow this problem is addressed by 

minimizing the number of input images, which in turn can be seen as data or 

information loss. To support the user decision upon the final trade-off, the 



  

 

geometrical data/quality loss is estimated and provided in a form of three indicators: 

angle loss, resolution loss and information loss. 

The angle loss (viewing angle) and resolution loss (scale) are computed for a set 

of images as the root mean square of discrepancies with respect to the hypothetically 

best achievable geometrical texture quality, realised when a 3D model is textured 

with all available images. In such case, triangles are textured using the most suitable 

parts of all available images. In other words, all the information contained in the 

images is utilised and therefore angle loss and resolution loss would equal zero.  

The information loss was defined as an average ratio between the product of the 

normalised viewing angle and scale parameters resulting from the current image 

subset, and the analogous value computed using all the available images. An 

information loss value equal to two denotes twice worse average texture quality 

indicators compared to the model textured with the full image set.  

Additionally, the geometric texture quality resulting from a selected image subset 

was described by numerical indicators such as average and median values of viewing 

angle and scale.  

4.1.2. Visual guidance to support decision 

In order to facilitate the understanding of geometrical relationships between the 

triangular model (Figure 4.1A) and the covering image set (Figure 4.1B), static and 

interactive information visualisation methods (Ware 1999), in the form of 2D and 3D 

quality maps, tables and plots in linked views were employed. The application was 

implemented in C++ and used the OpenSceneGraph library (Wang and Qian 2010) 

for 3D scene handling, and Qt4 (2012) for graphical user interface control.  



 

 

 

Figure 4.1. Framework for visualisation and analysis of texture parameters. The 
3D scene is composed of a 3D model (A) and footprints of the overlapping images 
(B). Numerical image quality indicators are reported in a table (C) and as a colour-
coded map (here: the viewing angle) overlaid on the original image thumbnail 
(D). Numerical texture quality indicators are reported in a log window (E). 

Image suitability for texture mapping 

To supplement the average image quality indicators, a colour coded map of the 

viewing angle and scale computed for all triangles seen by the image can be 

displayed. Alternatively, this colour map can be overlaid on the original image 

thumbnail (Figure 4.1D). This visualisation provides indicators of local data quality 

and enables the user to quickly understand which parts of the image are most suitable 

for model texturing.  

Texture quality indicators 

Visualisation of the predicted model texture quality enables the user to identify spots 

on the 3D model where quality may be reduced. Therefore the 3D model can be 



  

 

coloured with a map of classified predicted viewing angle, scale and information loss 

(Figure 4.2). Additionally, the area of the 3D model with information loss 

corresponding to high, medium and low quality texture is quantified and presented to 

the user as a percentage of the total textured model area. These areas can then be 

refined by adding images to the image subset prior to texture mapping, thus avoiding 

having to repeat the time-consuming processing. 

 

Figure 4.2. 3D model coloured with a map of classified predicted information loss. 
High, medium and low quality texture marked with green, yellow, red colour 

coding. 

Texture completeness 

The developed application allows for control of texture completeness in two ways. 

Firstly, image ground coverage may be displayed for one or several images, 

highlighting the relevant triangles of the 3D model (Figure 4.3A). Secondly, when 

assessing the quality of the currently selected image subset, areas that will not be 

textured are highlighted (Figure 4.3B). This enables the user to verify if the size and 

location of the areas without texture are significant and acceptable prior to running 

the texture mapping algorithm. 



 

 

 
Figure 4.3. Two ways to control texture completeness: by highlighting image 

ground coverage (A), and by highlighting triangles not covered (without texture) 
by an image subset (B). 

In order to provide the user with an alternative insight into the quality of the 

selected image subset, the proposed quality measures are also presented in a form of 

histograms and plots (Paper B).  

4.1.3. Automatic image sorting procedures 

The visual and numerical quality indicators guide the user in selecting image subsets 

covering the entire model. However, a more efficient solution is to use the numerical 

indicators in automatic image selection procedures, to quickly ascertain suitable 

subsets that can be manually refined before texturing. Therefore three algorithms 

originating from the field of computer vision (Optimizing Texture Quality) and 

information theory (Maximizing Information and Maximizing Correlation) were 

proposed and implemented in the presented framework. The image subsets provided 

by the automatic procedures were compared to manually selected sets and their 

suitability for 3D model texturing was assessed. The algorithms and results of the 

comparison are presented in details in Paper B. 

Irrespective of the chosen algorithm, the coverage of the automatically selected 

images is controlled by defining the maximum allowable percentage of the model 

without texture. The user can force inclusion (or exclusion) of specific images in the 

image subset during processing.  



  

 

4.1.4. Results and discussion 

To evaluate the usefulness of the presented framework to domain specialists in 

geology, three users experienced with the manual image selection workflow, were 

asked to use the newly developed framework for image selection and provide their 

feedback. Anecdotal evidence obtained from the user’s feedback (Paper A) indicated 

increased confidence in the final textured model quality and completeness, and 

shorter time spent on image selection. This suggests that supplementing analytical 

predicted texture quality parameters with spatial quality maps displayed in an 

interactive environment facilitates understanding of local texture quality changes.  

Results obtained by the automatic image selection algorithms, presented in detail 

in Paper B, indicate that the automatic image sorting is a valid alternative to manual 

methods. The Optimizing Texture Quality algorithm delivered image sets closest to 

the quality and size of the manually-selected sets. The automatic image selection 

methods originating from information theory also provided promising results. 

However, because the implemented algorithms are purely analytical, they do not 

control the spatial distribution of the texture quality or untextured areas. Therefore 

the image subset resulting from the automatic selection procedures should always be 

verified using the described visual aids and, if necessary, refined manually. 

The improved workflow for creation of virtual outcrop models resulting from this 

contribution is presented in Figure 4.4. Enabling the user to identify regions with low 

predicted quality or missing texture allows the image set to be refined prior to starting 

time-consuming texture mapping procedures, and reduces the need for data re-

processing and the overall processing time. Nonetheless the quality of the 

photorealistic models needs to be verified because influences such as varying lighting 

conditions and data registration errors are not considered in the image selection 

framework and should be addressed in future work. 



 

 

 
Figure 4.4. Improved workflow for creation of virtual outcrop models. 

More work is required to automate the classification of predicted texture quality 

measures. At the moment the thresholds for the three classes: high (green), medium 

(orange) and low (red) quality are set up empirically and can be adjusted by the user. 

Automation of this process would be of great benefit and facilitate processing of 

datasets with different geometrical characteristics. 

Obtaining more user feedback is desirable in order to assess and improve the 

visualisation effectiveness. Code optimisation is also required in order to handle large 

terrain models at full resolution. 

Finally, several practical issues need to be discussed. In texture mapping the 

texture can be considered as a mosaic of all relevant parts of the input images. As 

previously mentioned, most of the texture mapping algorithms use similar principles, 

minimizing the viewing angle and maximizing the effective texture resolution. 

However in most of the cases the two criteria are not fulfilled simultaneously, for 

example an image providing the best effective triangle resolution (scale equal to 1) 

does not necessarily represent the best (smallest) viewing angle. Different 

prioritisation criteria for the two measures are implemented in different software. In 

order to reliably predict the texture quality, criteria identical to those applied by the 



  

 

final texture mapping algorithm must be used when computing quality indicators. 

Therefore whenever a new texturing approach is used (e.g. new software incorporated 

into the data processing workflow) the exact texture mapping algorithm should be 

added to the framework presented in this chapter. Precise texture mapping description 

with sufficient level of details to reproduce the algorithm is critical in such cases, but 

unfortunately rarely found in the literature.  

It is worth stressing that although the framework was so far used in creation of 

geological outcrop models, it is equally applicable to other disciplines benefiting 

from photorealistic 3D outcrop models, such as cultural heritage conservation, digital 

archaeological inventory or city modelling. 

4.2 Semi-automatic integration of laser and image data with 
auxiliary imagery 

The second data processing step addressed in this research was the manual selection 

of homologous points between the laser data and the hyperspectral scans in the 

workflow for data integration described in detail in Section 3.1.2. As outlined (after 

Kurz et al. 2011), this process can be very time-consuming and requires skills in data 

and image interpretation, especially in natural rock exposures. In addition, further 

challenges are brought about due to differences in sensor geometry, spectral range 

and spatial resolution. Experiences show that the lack of time to learn about new 

methods is an important barrier to new techniques being widely adopted by other 

domains (Butler and Sellbom 2002). Therefore increased automation of the workflow 

for integration of the hyperspectral and laser data is required to facilitate adoption of 

the terrestrial hyperspectral techniques in geology. 

4.2.1 Semi-automated data integration workflow 

Due the very low dynamic range of the point cloud intensity values recorded by the 

LMS-Z420i scanner used in this work, and relatively homogenous reflectivity of the 

weathered rock surfaces, it was not possible to create a synthetic intensity image (as 

e.g. in (Meierhold et al. 2010)) with quality high enough for interest point extraction. 

Instead, the Nikon images acquired together with the lidar data and registered in the 



 

 

TLS coordinate system were used as the reference dataset, and hyperspectral 

panoramas were matched with these. Automatic matching between hyperspectral 

scans and the digital images allowed establishing the image to image correspondence 

(2D-2D). Because the digital images were registered in the 3D model coordinate 

system, the geometric relationship between the 2D image and 3D object (model) 

coordinates could be derived using the central perspective camera model and the 

collinearity condition (Luhmann et al. 2007). Once the 3D object coordinates of the 

points matched between hyperspectral data and Nikon images are established, they 

can be used as control points in a bundle adjustment.  

The procedure summarised above, and presented in details in Paper D, substitutes 

the manual control point selection. The subsequent processing steps were 

implemented in C++ and make use of the OpenCV library (Bradski and Kaehler 

2008) thus the input files for the Bundle software are created automatically. The 

exterior orientation parameters of the hyperspectral data and, optionally, depending 

on the number of images and their configuration, the intrinsic parameters of the 

panoramic camera can be derived and the following processing steps, i.e. spectral 

data processing and texture mapping can be completed as described in (Kurz et al. 

2011). The resulting new data integration workflow is presented in Figure 4.5.  

 



  

 

In the preliminary approach to the automatic control point extraction, presented 

in Paper C, a single hyperspectral band was used in the automatic image matching 

process. This method provided relatively few control points and no points that were 

common to multiple hyperspectral scans. Therefore the exterior orientation 

parameters were established using space resection. In the space resection the fixed 

control points are used to determine the orientation of a single scan (Luhmann et al. 

2007). Although results of this data integration were satisfactory for geological 

applications, the hyperspectral data can be registered much more precisely if the 

exterior orientations are determined simultaneously for all the scans in a bundle 

solution (Luhmann et al. 2007). Another benefit of the bundle block adjustment is the 

possibility to establish/check the intrinsic sensor orientation parameters.  

However, reliable data integration using bundle adjustment requires a high 

number of control points common to multiple scans and a uniform distribution of 

points within each scan (Luhmann et al. 2007). In order to increase the chances of 

finding points common to two or more scans, maximisation of the number of points 

automatically found in each panoramic scan was required. In the work presented in 

Paper D this problem was addressed in two ways: by optimisation of the matching 

algorithm performance and by using multiple hyperspectral bands in the matching 

process.  

Finding corresponding points between images acquired in significantly different 

spectral ranges, i.e. in visible light (Nikon D200 photos) and the short wave infrared 

spectrum (HySpex SWIR-320m imagery), acquired from slightly different position, 

in different resolutions and projections can be challenging even for the human eye 

(see Figure 3.3). Therefore a suitable image matching algorithm was required. Such 

an algorithm should not only overcome the abovementioned challenges but also 

provide a sufficient number of points required to precisely register the cylindrical 

hyperspectral scans (Luhmann et al. 2007). Therefore the Scale Invariant Feature 

Transform (SIFT; Lowe 1999), reported as robust to difficult geometric and 



 

 

radiometric conditions (Wessel et al. 2007; Khan et al. 2011; Lingua et al. 2009), was 

employed.  

Because relatively few points were matched when using the SIFT parameters 

suggested by Lowe (2004), the values of several SIFT parameters were optimised to 

yield the high number of homologous points required for data integration using 

bundle adjustment. Although the SIFT is one of the most frequently employed 

operators (Lingua et al. 2009), and it is natural that in every process the choice of 

parameter values affects the achieved results, the influence of the SIFT parameters is 

not reported in the literature in sufficient detail. Therefore the optimisation process, 

together with a discussion of the influence of different SIFT parameters on the results 

of matching SWIR and VIS imagery was documented in Paper E. 

Hyperspectral images consist of hundreds of spectral bands and the SIFT detector 

operates on a single image band. However, due to the varying appearance of an object 

at different wavelengths, different sets of interest points are matched in different 

bands (Figure 4.6).  

 



  

 

This suggested that using multiple bands in the matching process will increase 

the number of resulting control points. Although matching more than two hundred 

hyperspectral bands with each covering photo is feasible, it is also inefficient and 

time-consuming. Therefore an evaluation of the suitability of three different band 

prioritisation methods was performed and is presented in detail in Paper D. The 

proposed method for band selection, based on entropy and systematic sampling, 

enabled the input imagery to be minimised prior to point extraction and matching. 

4.2.2 Results and disscussion 

Results obtained for two case studies indicated that the proposed method is capable of 

registering panoramic scans and determining the camera model with accuracy 

comparable to the manual data integration approach, and sufficient for geological 

applications.  

Success of the data integration method relies on a high number of control points 

being extracted. In the two examined datasets, using the SIFT operator with 

optimised parameters and additional outlier elimination allowed between 4 and 22 

times more control points to be found than when using the default parameter values. 

Using multiple bands of the hyperspectral scan allowed a further increase in the 

number of extracted control points. In result more points common to multiple scans 

were found and the bundle adjustment could be applied.  

A key advantage of the workflow is the reduced user interaction, making it more 

accessible for non-photogrammetrists as well as shortened overall processing time.  

Further developments are required to increase the number of control points in 

low-textured areas and therefore improve the point distribution within the 

hyperspectral scan for improved registration quality.  

Because the proposed workflow relies on correct integration between the SLR 

camera and the laser scanner, another way to further increase the data integration 

quality is to automatically extract points common to all the data acquired by different 

sensors in the dataset, i.e. the hyperspectral scanner, SLR camera and laser scanner, 

and use them as control points in a bundle adjustment. Such an approach would allow 

for simultaneous computation/readjustment of interior and exterior orientation 



 

 

parameters of the sensors and therefore for more precise data integration. However in 

order to automatically match points between the laser scanner data and imagery, the 

reflected laser intensity should be recorded with a dynamic range sufficient to create 

an image suitable for automatic matching purposes.  

Currently, hyperspectral data are collected for the purposes of the end 

application, and the method should be tested further for datasets optimised for 

photogrammetric data processing, and optimally with surveyed ground control points 

available for quality assessment. 

Although the semi-automated data registration workflow was initially developed 

to register cylindrical panoramic scans into the TLS coordinate system, the method is 

equally applicable to imagery acquired with other sensors, as long as the correct 

geometric model is supported, and corresponding points can be matched between 

these imagery and overlapping digital photos. For example the additional free-hand 

photos (see Section 2.2.2), acquired from a position other than the laser scanner 

position, can potentially be registered using the proposed workflow. However more 

work is required to estimate if the registration accuracy is sufficient for high 

resolution imagery.



 

 

Little by little, one travels far. 
J. R. R. Tolkien 

 

Chapter 5 

 

Conclusions and future work 

 

The aim of this thesis was to make the existing workflow for creation of 

photorealistic 3D models and integration with terrestrial hyperspectral data more 

accessible for users from outside of the geomatics domain. This goal has been 

reached by addressing limitations in two previously manual processing steps, where 

most background in geomatics and experience was required: image selection prior to 

texture mapping and control point selection in hyperspectral and lidar/digital image 

integration. Techniques originating in such fields of science as geomatics, 

photogrammetry, computer vision, visualisation and information theory were 

employed to provide the following individual contributions to the two addressed 

workflow limitations: 

 

1. Computer assisted image selection prior to texture mapping: 

 

a) description of texture quality with several new measures, allowing for 

comparison of the suitability of different image sets for texture mapping 

purposes; 

b) a new interactive framework providing analytical and graphical assistance in 

selection of an image subset for geometrically optimised texturing in 

photorealistic 3D models; 



 

 

c) increased user confidence in the quality of the resulting photorealistic models, 

achieved using interactive visualisations and spatial quality maps, and 

confirmed by anecdotal evidence; 

d) automated image sorting algorithms capable of providing image sets for 

texture mapping, either for direct input, or refinable by the user; 

e) reduced photorealistic 3D outcrop creation time obtained by prediction of the 

texture quality and completeness prior to texture mapping and therefore 

eliminating the potentially iterative process of image set adjustment 

encountered in the case of the existing manual image selection approach. 

 

2. Semi-automated registration of terrestrial panoramic hyperspectral imagery with 

the laser and image data: 

 

a) reduced user interaction obtained by automation of the control point extraction 

procedure; 

b) shortened data integration time realised by automation of the control point 

extraction process; 

c) band selection method dedicated to maximise the number of matched points 

while minimizing the processing time; 

d) confirmation that the SIFT operator can be successfully used in matching 

images acquired in SWIR and VIS parts of the electromagnetic spectrum;  

e) documentation of the influence and importance of several SIFT parameters on 

the matching results. 

Despite these results, more work is required to further facilitate creation of the 

photorealistic outcrop models and integration with other data and overcome the 

remaining workflow limitations. In the workflow used in this research, automation of 

the image colour adjustment is not carried out, but should be addressed to improve 

the visual appearance of models. Several techniques for global and local colour 

balancing were recently proposed (listed in 2.4.2), but their suitability should be 

carefully evaluated keeping in mind that geological features are often identified based 

on very subtle colour changes; thus the colour adjustments should be applied 



  

 

moderately. The methods for filtering of vegetation in the point cloud (Section 2.3.1) 

require more work to improve their efficiency. Further improvements are desired to 

minimise the co-registration errors between the laser and image data, and therefore 

improve the coherence between the texture and the 3D model. Registration of 

freehand photos remains cumbersome and it should be tested if the proposed and 

implemented routines for semi-automated integration of panoramic hyperspectral 

imagery with laser and image data provide sufficient accuracy for registration of high 

resolution digital imagery. Although in this research geological applications have 

been targeted, it is also applicable to other fields. 

With the rapid developments in laser scanning, sensors continuously improve 

with respect to rates of data capture, data acquisition range or number of recorded 

pulses. Fully automated methods allowing for terrain reconstruction from images are 

also progressing and several solutions are already available, also as open source 

packages (e.g.: Wu (2012) or Astre (2012)). The slowly decreasing cost and increased 

data processing automation make these technologies more accessible in many 

applications. One of the impeding factors in fast adoption of photorealistic 3D model 

creation pipelines, especially for users from outside of geomatics, is a lack of 

standard terminologies, specifications and methods for performance benchmarking, 

resulting in difficulties to select a solution fit for purpose. The ability to interact with, 

interpret and measure huge 3D textured models is a continuing problem. Model sizes 

and texture resolutions are increasing but both hardware and software still limit 

possibilities for the interactive visualization of detailed photorealistic 3D models of 

large areas (Remondino 2011).   

Irrespective of the abovementioned obstacles photorealistic 3D models are a great 

source of geospatial data and it is hoped that facilitated access to the tools and 

methods for creation of the virtual models, will ease their adoption not only in other 

science disciplines, but also in daily life, e.g. for educational purposes in geosciences, 

climbing safety trainings or multimedia museum exhibitions.  
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