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Abstract 

Background: Recombinant human interferon-beta (IFN-β) is the most frequently 

used drug for treating relapsing-remitting multiple sclerosis (RRMS), a demyelinating 

disease of the central nervous system.  It modulates the autoimmune state of patients 

by systemically affecting immune system functions. The treatment slows disease 

progression only in a subset of patients and treatment efficacy can be negatively 

affected if the patient produces neutralizing antibodies (NAb) to IFN-β. NAb in sera 

are quantified using in vitro bioassays; however, these assays do not reveal the 

immunogenic state of the patient and are not predictive NAb outcome. 

 

Objective: Patient specific NAb assessment based on drug mechanism in primary 

cells from patients.  

 

Method: A whole cell flow cytometry-based technique was developed to quantify the 

activation of the IFN-β signaling pathway by measuring the phosphorylation of signal 

transduction and activation of transcription family (Stat) molecules in primary 

immune cells and assess NAbs effects in individual patients. Peripheral blood 

mononuclear cells (PBMCs) and whole blood from patients with NAb were re-

stimulated ex vivo with a serial dilution of IFN-β and levels of phosphorylation of Stat 

1/3/4/5/6 transcription factors were quantified. To assess in vivo implications of NAb 

in an individual patient whole blood was collected before and after IFN-β injection, 

lysed, fixed, and analyzed for Stats activation with phospho-specific flow cytometry. 

RNA extracted from whole blood at the same time points was used to measure 

pathway specific gene expression changes in immune cells and sera was used to 

quantify IFN-β and NAb levels in blood after IFN-β injection.  

 

Results: Ex vivo re-stimulation of PBMCs revealed that Stat signaling patterns were 

modulated in treated NAb-negative patients and inhibited in all treated NAb-positive 
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patients independently of NAb titers. Similar results were obtained when whole 

blood, rather than PBMCs, was re-stimulated ex vivo. In vivo results confirmed the 

inhibitory and modulatory effects of NAb on the Jak/Stat signaling pathway as 

assessed directly after INF-β administration. The Stat proteins affected by NAbs in 

PBMCs ex vivo were also responsible for much of the variation caused by NAbs in 

vivo after IFN-β administration. Levels of pStat1, of all Stat proteins, were highly 

correlated with NAb in both cases. 

 

Conclusion: Immunogenic effects altered the response in primary cells even at low 

NAb levels, suggesting that results from cell line-based immunogenicity testing are 

not correlated with the immunogenic response in many patients. Based on the IFN-β 

responsiveness of primary cells three fundamental issues are addressed: 1. the 

mechanism of action of IFN-β, 2. the immunogenic effect of NAbs in individual 

patients, 3. underlying disease mechanisms. 
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Introduction 

 

1.1. Anti-drug antibodies 

Biopharmaceuticals in use today are potentially immunogenic1-3. This means that at 

some point during therapy, the patient’s own immune system can recognize the 

therapeutic agent as foreign and produce antibodies to the agent. Recombinant human 

proteins are used extensively to treat cancer and autoimmune diseases, and the effects 

of an activated immune response to the medication on efficacy of the drug are 

unpredictable4-7. The consequences of immunogenicity range from undetectable to 

severe. Responses are complicated, disease specific, and patient specific8-10.  

 

The biological systems used to produce recombinant human proteins for therapy range 

from bacterial to mammalian cells7. Even though only mammalian cells have the 

cellular machinery necessary to produce recombinant proteins that are the same as the 

human counterparts with regard to post-translational modifications, bacterial systems 

are widely used due to simplicity and low cost. In some instances, the amino acid 

sequence is changed relative to that of the wild-type protein. For example, changes 

may extend the half-life of the protein in the human body. A human protein that is 

altered either in amino acid sequence and/or post-translational modifications may be 

recognized as foreign by the immune system and induce a classical immune response. 

But what if the amino acid sequence is the same and post-translational modifications 

are in place? Why are these proteins immunogenic? This phenomenon may be 

explained by break of tolerance5, 6, 11.  In addition to dosage, mode and frequency of 

administration are fundamental in break of tolerance. High frequency subcutaneous 

injections of recombinant proteins tend to be more immunogenic than low frequency 

and/or intramuscular injections, intravenous injections are least immunogenic. 
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Contaminants and vehicle media affect immunogenicity. Vehicle and storage 

conditions can induce aggregation, degradation, or precipitation of proteins. In such 

instances the bioavailability of the compound is reduced and the formed aggregates 

increase the likelihood of immunogenic effects in patients. Unlike these 

methodological problems that can be addressed and sometimes resolved, the genotype 

and the phenotype of a patient and the disease itself also contribute to 

immunogenicity. Currently we can only speculate why certain patients do or do not 

develop an immunogenic reaction or why, for example, cancer patients are less likely 

to mount an immune response to recombinant proteins than are patients with 

autoimmune diseases12.  

 

The possibility of severe adverse effects in patients treated with human recombinant 

protein mandates monitoring of immunogenic effects in patients. Ideally, this should 

be a functional test. Screening assays are used to detect any antibodies in sera of 

patients that bind to the drug with a certain affinity and are called binding antibodies 

(BAb). Cell line based bioassays are used to detect neutralizing antibodies (NAb) that 

interfere with the function of the drug.  

 

1.2. Anti-interferon-beta antibodies in multiple sclerosis 

In patients with relapsing-remitting multiple sclerosis (RRMS) treated with 

recombinant human interferon-beta (IFN-β), many factors have hampered 

international consensus on the NAb issue despite years of research. Identifying 

immunogenic effects of this pleiotropic immuno-modulatory drug in a disease with 

unclear pathogenesis is a challenge.  

Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system 

(CNS). As the disease progresses destruction of the myelin sheath surrounding 
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neurons and axonal loss eventually lead to various neurological symptoms. The 

hallmark of the disease is focal inflammatory lesions in the brain and spinal cord of 

affected individuals, especially in the earlier phases of the disease. Ongoing 

inflammation in the CNS of patients is visualized by magnetic resonance imaging 

(MRI) and the contrast agent gadolinium. The images show myelin (fat) brighter than 

cerebrospinal fluid (water) and highlight areas of inflammation where the disruption 

of the blood brain-barrier has allowed the contrast agent to diffuse into the brain 

parenchyma. These T1-weighted gadolinium enhanced lesions are the most sensitive 

surrogate marker for inflammation in the CNS of a patient with MS (Fig.1). T2-

weighted MRI images are used as surrogates for lesion accumulation in patients.  

 

 

Figure 1 a) T2-weighted magnetic resonance imaging shows white matter lesions. b) 

T1-weighted contrast enhancing magnetic resonance imaging shows leakage of 

contrast through a disrupted blood brain barrier in MS. 

 

Clinically, MS is variable and unpredictable. Inflammatory episodes with worsening 

of disease symptoms can be followed by complete or partial recovery and are termed 

relapses or exacerbations, or a chronic progressive course may take place with limited 

inflammation13. Based on clinical manifestations the course of MS can broadly be 

a) b) 
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divided into four main types (Fig. 2). A relapsing-remitting disease course shows 

phases of relapse that can last several weeks followed by symptom remission. These 

attacks or relapses are unpredictable. About 85% of patients start out with this form of 

the disease and in more than 50% of patients the disease eventually turns secondary 

progressive with accumulation of disability and little remission. Primary progressive 

multiple sclerosis is defined by a steady increase in disability without relapses while 

the progressive- relapsing form shows characteristic attacks and a steady increase in 

disability. 

 

 

Figure 2 Schematic representations of the four major disease subgroups in MS 

 

Therapies for RRMS focus on averting the immune-mediated damage to CNS tissue. 

The etiology of inflammatory focal lesions around blood vessels is unknown. 

Histochemistry of affected CNS tissue shows a perivascular accumulation of immune 

cells in inflammatory lesions. This phenomenon is accompanied by a disruption of the 

brain-blood barrier14. In active MS lesions, concurrent inflammation and increased 

permeability of the blood vessel wall cause edema. Immune cells are also observed in 

the brain parenchyma of MS patients. Inflammation in the brain of patients can be 



 16 

extensive, and therefore it is not surprising that almost any cell of the immune system 

can be detected at one point in time in the CNS of affected individuals (Fig 3).  

 

 

Figure 3 Image of a focal inflammatory lesion with perivascular immune cell 

infiltrates. 

 

Based on the animal model for MS, experimental autoimmune encephalomyelitis 

(EAE), the disease is mediated by encephalitogenic T cells with highly inflammatory 

subtypes, Th1 and Th17. Interestingly, EAE can be induced by both cell subtypes, but 

only animals transferred with myelin-specific Th1 cells benefit from IFN-β therapy15. 

In MS, high serum levels of IL-17A, a proinflammatory cytokine secreted by Th17 

cells, is associated with non-responsiveness to IFN-β treatment16. 

 

IFN-β therapy is the first-line treatment for RRMS. Based on clinical trials in 1990, 

IFN-β preparations reduced relapse rate by about 30% and significantly increased 

time to sustained progression17-20. Clinical findings were supported by a significant 

decrease in lesion load assessed by T2-weighted MRI and in new active lesions 

assessed by T1-weighted gadolinium-enhanced MRI. Studies have shown that up to 
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40% of MS patients can be defined as non-responders to IFN-β therapy21, 22. Clinical 

efficacy has to be determined over a minimum of one year of treatment since there are 

no available biomarkers for disease progression or for treatment efficacy. 

Complicating this issue is the fact that up to 40% of treated patients develop NAb to 

IFN-β during the treatment course23, 24.  

 

Unpredictability of the MS disease course (ranging from benign to severe), the lack of 

appropriate biomarkers for treatment efficacy, and the random development of 

immunogenicity to the medication makes this system a puzzle. Nevertheless, since 

NAbs do affect the clinical efficacy of IFN-β testing is recommended25 (Fig. 4).  

 

 

Figure 4 Clinical and biochemical parameters determine diagnosis of RRMS. Early 

treatment is recommended. IFN-β has partial effects in responders. Relapse rates 

average 0.5/year, and the gradual disease progression and accumulation of disabilities 

may require two years to identify responders and non-responders to IFN-β. Another 

factor affecting responders is NAb development that can interfere with therapy 

efficacy.   
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1.3. Type I interferon-beta 

There are three types of interferons (IFN) that each signal through distinctive cell 

surface receptor complexes26, 27. Type I IFNs include a single form of IFN-β, 13 

subtypes of IFN-α, and seven additional subtypes. Type II IFN is IFN-γ, and Type III 

IFNs include three subtypes. Type I and III IFNs are induced during a viral infection, 

and Type II INF-γ is involved in allergic response, tumor control, and response to 

intracellular pathogens. The cell type-specific and tissue-specific expression of 

cognate IFN receptors confers specificity28-30. IFNs have systemic modulatory 

properties that are not well characterized, and how cells respond to IFN can range 

from proliferation to apoptosis. Several recombinant human IFN-β preparations are 

available on the market today (Table 1).  

 

 

Table 1 Various IFN-β preparations available for the treatment of MS. 

The efficacy of the drugs in clinical trials is similar, but their immunogenicity varies 

greatly, ranging from 2 – 47 %23, 24. Intramuscular IFN-β-1a produced in mammalian 

cells and injected once a week is least immunogenic. This is not unexpected as the 

recombinant IFN-β-1a protein has an amino acid sequence identical to that of the 

human protein and is glycosylated. IFN-β-1b, which is produced in bacteria that do 

not have the glycosylation machinery and has a changed amino acid sequence, is more 



 19 

immunogenic than IFN-β-1a. IFN-β-1a (Avonex®) is injected intramuscularly and 

given at lower doses and at longer intervals compared to the other drugs. The 

intramuscular low frequency mode of administration is less immunogenic compared 

to either subcutaneous and/or high frequency IFN-β-1a (Rebif®) injections. IFN-β-1b 

(Betaferon® / Extavia®) preparations are the most immunogenic preparations. This is 

not surprising, because they are produced in bacteria, have changed amino acid 

sequences relative to the human protein, and are injected subcutaneously; in addition, 

very high dose at a concentration that forms aggregates is necessary to reach 

biological activity similar to IFN-β-1a.  

 

The rational for trying IFN-β in MS came from the hypothesis that the disease is 

caused by a viral infection. IFN-β is a potent agent that can prevent virus induced cell 

death and exhibits systemic pleiotropic effects. The mechanisms are poorly 

understood. In the case of MS, beneficial effects are added to the list as research 

progresses31. Serum of IFN-β treated patients has been shown to stabilize the brain-

blood barrier in vitro32, 33. Positive effects of INF-β on the blood-brain barrier 

integrity and neutrophil infiltration have been shown in rats34. Interestingly, IFN-β 

blocks the pro-inflammatory disruption of endothelial tight junctions induced by IFN-

γ35. In RRMS patients matrix metalloproteinase-9 (MMP) levels are increased in sera 

and cerebrospinal fluid relative to levels in healthy volunteers36. The MMP family of 

enzymes is involved in remodeling of the extra cellular matrix and the migration of 

immune cells37, 38. IFN-β treatment decreases MMP levels, and this decrease is 

associated with reduced clinical disease activity as shown by MRI39. INF-β has 

further been shown to affect the cytokine milieu in sera and CSF of patients31, 40. 

Beneficial effects have been attributed to a shift from pro-inflammatory cytokines to 

generally anti-inflammatory cytokines such as IL10 and IL4. IFN-β may even 

promote repair by stimulating production of factors that increase neuronal survival40, 

41. 
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1.4. IFN-β signaling  

Many of the mechanisms of action of IFN-β proposed above counteract brain 

inflammation31, 42. This anti-inflammatory effect is supported by the findings of 

reduced edema in gadolinium-enhanced MRI images of treated RRMS patients that 

respond to IFN-β therapy. The systemic and specific cellular response to IFN-β is 

transduced and amplified by IFN-β binding to its cognate cell surface receptor. 

Depending on the phenotype (i.e. the responsive state of the cell) the signal at the cell 

surface is transduced into outcomes ranging from apoptosis to differentiation and 

proliferation. In humans, the heterodimeric receptor complex consists of two subunits 

named IFN-α/β receptor 1 and 2 or IFNAR1 and IFNAR228 (Fig. 5). Both Type I 

IFNs, IFN-β and IFN-α, signal through the same receptor complex, but may differ in 

affinity. IFNAR1 is a transmembrane receptor associated with kinase Tyk2 of the 

Janus family. IFNAR2c is a transmembrane receptor associated with Jak1 of the Janus 

family. Isoforms of IFNAR2 exist. A truncated isoform, IFNAR2b, lacks intracellular 

domains for kinase association and may act as a negative regulator. Isoform IFNAR2a 

is a soluble receptor29.  

 

The formation of the IFN-β receptor complex leads to conformational changes and 

auto-phosphorylation of the kinases43, 44. In this fully activated state, the kinases 

phosphorylate docking sites for signal transduction and activation of transcription 

(Stat) proteins, adaptor molecules, and signaling modifying molecules in the 

intracellular domains of IFNAR1 and IFNAR2. The Stats are phosphorylated and 

dimerize as hetero- and /or homo-dimers. Determination of signaling specificity 

depends on cell type and is probably achieved through organized signaling domains. 

Down-stream, this initial signal is integrated into many signaling pathways in so-

called signaling nodes.  
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Figure 5 The Jak/Stat signaling pathway is activated by IFN-β binding to the subunit 

IFNAR-2 to form a signaling receptor complex with IFNAR-1. The fully activated 

IFN-β receptor complex phosphorylates Stats transcription factors.  

 

 

Other molecules can form complexes with activated Stat dimers. The IFN-stimulated 

gene factor 3 complex (ISGF3), for example, is formed by Stat1 and Stat2 and IRF9. 

This activated complex translocates to the nucleus and binds to IFN-stimulated 

response elements (ISRE) in promoter regions of IFN-inducible genes. Interestingly, 
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Type I interferon- activated signaling complexes can also bind to promoter sites of 

genes with γ activated sites (GAS) and regulate the expression of genes that are 

activated by Type II IFN-γ. Several other signaling pathways may be activated by 

IFN-β in a Stat-independent manner. These pathways include those involving the 

mitogen-activated protein kinases (MAPKs) and the PI3K pathway.  

 

IFNAR1 and IFNAR2 are expressed in hematopoietic cells of both myeloid and 

lymphoid origin, in neurons, microglia, astrocytes, and oligodendrocytes, and in all 

known nucleated cells of the human body. IFN-α/β is induced by viral and bacterial 

products through activation of conserved pattern recognition receptors such as 

members of the Toll-like receptor family. Significant amounts of IFN-α/β are 

produced upon activation of plasmacytoid dendritic cells45.  

 

An interesting experiment by Prinz et al. showed that IFNAR activation in myeloid 

cells within the CNS of EAE mice in response to endogenous locally produced IFN-β 

reduces inflammation46. In MOG-induced EAE with adjuvant mycobacterium, an 

increase of local endogenous IFN-β production in the brain was measured in sick 

animals compared to animals before disease onset. There was no such difference in 

the blood. Mice deficient in IFNAR had a more severe disease course. By selectively 

deleting IFNAR the study showed that mice with deficient IFNAR in myeloid cells, 

macrophages, monocytes, microglia, and neutrophils had more severe disease. IFNAR 

activation reduced MHC class II expression and microglia activation and modulated 

the cytokine milieu. This study showed the importance of the brain innate immune 

response in CNS inflammation. Nevertheless, this finding may not be applicable to 

human disease. In a similar study where much less adjuvant mycobacterium was used, 

the results were markedly different and the innate immune response was not 

involved47, 48. This phenomenon where slightly different EAE induction protocols 
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lead to variable immune responses inducing disease shows how incredibly fine-tuned 

and distinct the immune system is.  

 

The Stat family consists of seven members, Stat1, Stat2, Stat3, Stat4, Stat5a, Stat5b, 

and Stat6. Many cytokines and other signaling pathways lead to the activation of Stats 

in various cell types by phosphorylating tyrosine and/or serine, threonine and histidine 

residues49, 50. The functions of various Stats, alone or in combination and 

phosphorylated or un-phosphorylated, in different cell types under various stimulating 

conditions are poorly understood50. The mechanism by which Stats regulate 

transcription is unclear. A puzzling observation is that the same Stat complexes can 

both activate and repress gene transcription51. These opposed responses may be 

induced by negative regulators like suppressor of cytokine signaling (SOCS) and Src-

homology 2 domain containing phosphatases (SHPs). Depending on the responsive 

state of a cell, chromatin remodeling and the presence of different adaptor molecules 

may further explain some of the variability observed in Stat signaling. 

 

The intricacy of cell type differentiation state (i.e. cell phenotypic signaling and the 

downstream integration of many signals from the cell environment) is appreciated but 

not very well studied. There are gaps in our knowledge about how a cell integrates 

many signals from its environment to guide the cell machinery. The evolution in flow 

cytometry in the last decade has made this technique an important platform for the 

study of signaling pathways in single cells. It is one of the few available techniques 

that allow the study of signaling pathways in specifically identified cells within 

heterogeneous cell populations by measuring many parameters simultaneously52. To 

elucidate differences in Stat phosphorylation in response to stimuli phospho-specific 

flow cytometry is the perfect tool for multiplexed analysis in single cells. 
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2. Immunogenicity evaluation in IFN-β therapy 

 

2.1. In vitro identification and quantification of BAbs and NAbs  

2.1.1. Binding antibody ELISA 

The European Medicine Agency (WC500003946) and several American agencies, 

including the FDA (UCM192750), have separately issued guidelines for the 

assessment of immunogenic reactions to biotechnology-derived therapeutic proteins. 

The agencies recommend high throughput screening assays for first line evaluation of 

BAb. These assays should be relative low cost and have high sensitivity in order to 

detect relevant levels of BAb with affinity to IFN-β. Immunoassays, such as enzyme 

linked immunosorbent assay (ELISA), are widely used for this purpose.  These tests 

are based on antigen antibody interactions53. Assays are optimized for high specificity 

that maximizes detection of true positive samples.  

 

2.1.2. Neutralizing antibodies - CPE assay 

About 80-90% of RRMS patients treated with IFN-β develop BAbs and, depending 

on preparation, 2-48% develop NAbs23, 24, 54, 55. Thus, the next step is to test the 

positive samples from screening assays for neutralizing capacities. Such cell line 

based tests are more elaborate, but provide crucial information regarding whether the 

antibodies from a treated patient interfere with the functionality of IFN-β. The World 

Health Organization has recommended the cytopathic effect assay (CPE) for NAb 

testing to IFN-β56 (Fig. 6). This assay is based on the 1957 observation by Isaac and 

Lindmann that a substance secreted by cells can protect cells from virus-induced 

death57-59. This secreted substance turned out to be IFN-β/α. In the CPE assay, the 

human lung carcinoma A549 cell line is challenged by a virus, encepholomyocarditis 
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virus, in the presence of IFN-β and sera containing various amounts of antibodies to 

IFN-β. A stain like crystal violet is used to detect intact live cells, and these cells are 

quantified by either counting the cells or eluting the stain and quantifying the 

absorbance. The titers are calculated according to the Kawade formula60-62 . By 

definition calculation of titers are based on the patient sera dilution that will neutralize 

the activity of the IFN-β used in the assay from 10 to 1.  

 

 

 

 

Figure 6 Schematic representation of the CPE assay. This assay is based on the 

protective properties of IFN-β against virus-induced cell death. In the presence of 

IFN-β cells only die if NAbs disrupt its protective effect.  
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2.1.3. Neutralizing antibodies - Mx1 and MxA assasys 

The myxovirus resistant Mx1 gene and the MxA protein are induced specifically by 

Type I interferons and are used as biomarkers for IFN-β activity (Fig. 7). The MxA 

bioassay for NAb detection measures MxA induction in a Type I IFN responsive cell 

line, human lung carcinoma A549. In a sandwich ELISA two MxA protein specific 

antibodies are used for binding, one for coating the plate that captures MxA in sera 

and one biotinylated antibody for detection63. To detect the bound protein-antibody 

complexes, streptavidin-HRP is used; the solution changes color when an appropriate 

substrate is added.  The change in optical density is measured with a 

spectrophotometer and is proportional to the amount of MxA protein in sera. To 

determine the NAb titer the Kawade formula is used.  
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Figure 7 The Mx1 and MxA induction assay.  An IFN-β responsive cell line is 

stimulated with IFN-β. Cells respond by increasing Mx1 and MxA levels. If NAb are 

present in patient sera, the signal transduction is inhibited and less or no transcription 

and/or translation will take place. MxA protein is usually quantified with an ELISA 

and Mx1 mRNA by RTqPCR. 

 

 

The same bioassay is used to measure Mx1 gene expression changes after IFN-β 

stimulation of cells64, 65. For this purpose total RNA is extracted, reverse transcribed, 

and Mx1 gene expression measured by real-time quantitative PCR (RT-qPCR). The 

properties of real-time PCR allow the use of relative quantification by the ∆∆Ct 

method (Applied Biosytems Bulletin 2).  

 

2.1.4. Neutralizing antibodies - luciferase assay 

Many countries in Europe are implementing a luciferase assay for measuring NAb 

titers; this is a standardized assay that will make it possible to compare NAb results 

between laboratories66. The luciferase assay uses a human fibro-sarcoma cell line 

(HT1080) transfected with a plasmid containing the cDNA for luciferase under the 

control of the early Type I IFN inducible 6-16 promoter. When IFN-β binds to its 

receptor the signal is transduced and the activated transcription factor complex binds 

to the promoter region of the plasmid and initiates transcription and translation of 

luciferase. If appropriate substrate is added the enzyme luciferase catalyzes a reaction 

that emits light. The response to INF-β stimulation can be quantified with a 

photometer and is proportional to the IFN-β concentration used for stimulation of 

cells (Fig. 8). In the presence of NAbs, less luciferase is produced and therefore less 
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light is emitted. Results are reported in Tenfold Reduction Units (TRU)/mL as per 

World Health Organization recommendations.  

 

 

Figure 8 Graphic representation of the luciferase assay.  

 

 

2.2. Evaluation of tests  

No matter which cell line based assay is used, inter-laboratory variations are of great 

concern67-69. The assays include many steps that are susceptible to the introduction of 

variation. Efforts to standardize assays have not been productive for many reasons, 

and approaches and techniques are still debated. This is not only a concern for IFN-β 

therapy in MS. More and more recombinant human biomolecules are reaching clinical 

trials, and entities responsible for patient health and care are working on issuing not 
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just recommendations for monitoring adverse effects and immunogenic reactions to a 

drug but also on issuing solid procedures for companies and healthcare institutions. 

  

An important obstacle in clinical settings is the fact that NAb measurements based on 

cell line systems are not correlated with clinical outcomes in some cases. The immune 

system of every individual is different, depending not only on the genetic material 

inherited but also on previous encounters with pathogens and on symbiotic organisms. 

Therefore a drug may act similarly in individuals regarding therapy but the 

biochemistry/metabolism may be affected quite differently. I believe it is this 

difference in phenotype that explains why some people may develop severe 

complications due to drug-induced immunogenicity whereas others ease through 

therapy showing no adverse involvement of the immune system. 

 

A further concern is the BAb versus NAb issue. Is it possible that the immune system, 

with its array of possible combinations to make antibodies that recognize different 

epitopes on IFN-β, will only produce antibodies with low affinities and directed 

towards epitopes that do not interfere with the signaling of IFN-β? IgGs are about 

eight times the molecular weight of IFN-β, 160kDa and 20kDa, respectively, and 

signaling is expected to be affected by this size disparity. Many researchers argue that 

the difference between NAb and BAb is methodological. BAb assays are designed for 

sensitivity whereas NAb assays are designed for specificity and sensitivity. In 

addition, antibody binding, like receptor binding, is affected by temperature and pH, 

and these two variables are highly correlated. Differences measured in in vitro BAb 

and NAb assays may be explained by such variables as temperature and pH since 

most assays are done at room temperature. One must determine the effect of NAbs in 

a treated patient in vivo when possible or in ex vivo assays that reflect the conditions 

in a human body as closely as possible (Fig. 9). 
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Figure 9 Cell line-based research is hardly ever directly transferable to the complex 

processes in whole organisms. Nevertheless, these assays are valuable indicators of 

therapy-associated problems like NAb development. In vivo assays are the most 

informative, but can only truly predict therapy success if the biomarkers identified 

have mechanistic values both for the disease and the therapy. The ex vivo approach 

could provide a simpler assay compared to in vivo analysis but may still provide 

crucial mechanistic information needed to make therapy decisions in individual 

patients. 
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2.3. In vivo identification and quantification of NAbs 

  

2.3.1. Mx1 induction assay 

In vivo biomarkers for the bioactivity of IFN-β have been evaluated. Hundreds of 

genes are induced in a cell-type specific manner after IFN-β injection. Studies have 

shown that gene expression changes induced by IFN-β are highly variable and patient 

specific and that there is no perfect gene for the in vivo evaluation of IFN-β efficacy70-

72.  

 

Type I IFN specific gene expression of Mx1 has been validated as an in vivo 

biomarker73, 74. Mx1 mRNA levels reach the highest values between 4-12 h post 

injection. However, expression levels of Mx1 vary in patients before IFN-β injection, 

and the actual induction levels vary as well. Nevertheless, an assay for NAb 

evaluation has been proposed where RNA is extract from whole blood of patients 

before injection and again 12 h after IFN-β injection. Mx1 gene expression is 

evaluated by RT-qPCR75. In the presence of NAb, expression may be completely 

blocked or substantially decreased, but not in all cases76-79. van der Voort et al. argue 

that one sample taken 12 h post injection may suffice for NAb evaluation80. Hesse et 

al. showed that NAb-positive patients, with NAb titers that blocked the expression of 

Mx1completely had no significant induction of any other genes assessed by 

microarray in vivo81. This study strengthens the value of Mx1 expression as a 

biomarker for NAb evaluation in INF-β therapy.  

 

As of today, no assay exists that satisfies the needs of the medical and pharmaceutical 

community. The latest article where international experts have convened and 
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extensively discussed the NAb issue was published in Lancet Neurology 201077. They 

clearly state that NAb is an issue in therapy.  

  

2.3.2. Stats phosphorylation 

This thesis shows that it is possible to measure NAb effects in single immune cells 

from treated patients with phospho-specific flow cytometry (Paper III82 and VI). 

NAbs disrupted the IFN-β/Stats signal transduction at the cell surface. Based on these 

proof of concept studies a personalized NAb assay may be available. 
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3. Phospho-specific flow cytometry  

 

Phospho-specific flow cytometry (phospho-flow) is fast becoming the central 

platform for signaling pathway and signaling network analysis52, 83-85. Quantification 

of many parameters simultaneously is possible with the recently developed flow 

cytometers. Most parameters measured are based on emitted light from fluorescent 

molecules attached to a detection entity such as an antibody. The technique 

exquisitely combines the powerful identification of specific cells inherent to flow 

cytometry with analysis of intracellular activated signal transduction pathways86-88. 

Immune cell subtypes are identified by the cluster of differentiation (CD) markers, but 

any other cell type may be identified if markers are available. A central post-

translational modification for the activation of signaling molecules is 

phosphorylation; phosphorylation allows transduction of chemical energy into signal 

propagation in cells (Paper I)52. Highly specific monoclonal antibodies are available 

that will only recognize and bind to the phosphorylated forms of signaling molecules. 

Many such phospho-specific antibodies, tested for specificity and selected and 

optimized for phospho-specific flow cytometry are commercially available. This 

technique offers incredible opportunities to study primary cells of patients. Signaling 

molecules in specific cell subtypes within heterogeneous populations can be analyzed 

and quantified. In a relative short amount of time, measurements on multiple proteins 

are collected simultaneously in thousands of cells at the single cell level (Fig.10).  

 

In terms of clinical translation, phospho-specific flow cytometry in primary cells may 

link cellular processes to physiological processes in the disease state (i.e. link drug 

mechanisms at the single cell level to clinical outcomes). In immunology, phospho-

specific flow cytometry may be the direct link to biochemistry. Not only is it possible 

to study specific cell subtypes and, for example, their activation states, but one can 

collect information on intracellular process. Analysis of many signaling pathways 
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simultaneously may reveal the drift of the immune state from the homeostatic state 

seen in healthy people to that of the pathological state.  

 

 

 

 

Figure 10 Schematic representation of the IFN-β/Stat signaling pathway. In phospho-

specific flow cytometry, antibodies that only bind to phosphorylated forms of Stats 

are used to quantify pathway activation.  
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Signals from outside the cell are relayed via receptors to machineries within cells that 

will direct how a cell responds to that specific input. Since a cell in any tissue is in 

constant communication with its environment, many signals have to be integrated to 

assure an appropriate response at the cellular level, and pathways that are distinct at 

the cell surface may be relayed in signaling nodes. This downstream processing of 

information in signaling nodes allows a cell to adjust to its environment. In immune 

cells, stimuli at the cell surface can produce opposite effects in cells depending on cell 

type and activation state. In patients with immune-mediated diseases, it appears 

unlikely that a single biomarker will be able to relate clinical symptoms to 

mechanisms of the disease. Nevertheless, identifying relevant mechanistic biomarkers 

that also reflect the drug action are imperative to truly monitor therapy efficacy in the 

clinic. Many articles have been published on this topic showing that many researchers 

acknowledge the potential of this method83-85, 89-92. 
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4. Objective 

 

The purpose of this thesis was to establish phospho-specific flow cytometry analysis 

of primary immune cells and adapt this technique to the study of immunogenicity in 

MS patients treated with IFN-β and to explore the possibility of a personalized test. 

The major questions we asked were: 

1. Can phospho-specific flow cytometry be adapted to the study of signaling in 

primary immune cells of patients with immune-mediated diseases undergoing 

therapy?  

2. Can we adapt the method to the study of the IFN-β Jak/Stat signaling pathway in 

PBMC subtypes? 

3. Can we identify and quantify the effects of NAbs on the Jak/Stat signaling 

pathways in PBMCs? 

4. Can we adapt the method to whole blood? 

5. Can we measure Stat activation in vivo? 

6. Will the same Stat protein correlate with NAb levels ex vivo and in vivo? 

 

 

4.1. Multiplexed phospho-specific flow cytometry in immune cells 

 Review literature and scientific approach 

 Optimize and test a protocol for serum-free cryopreservation 

 Optimize and evaluate signaling pathway quantification of the Jak/Stats 

pathway in primary immune cell subtypes with phospho-specific flow 

cytometry   

 Test technique and Jak/Stat pathway quantification with a panel of pro-

inflammatory Th1 and anti-inflammatory Th2 cytokines 
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4.2. Ex vivo IFN-β pathway activation and NAb effects in PBMCs and 

whole blood 

We wanted to test the hypothesis that NAbs affect signaling networks and cause a 

specific phenotypic signaling dysfunction in immune cells. We further hypothesized 

that the inappropriate response to IFN-β stimulation could be detected and quantified 

by single-cell flow cytometry, both in PBMCs and whole blood, and that specific 

phosphorylated Stat protein levels correlated with NAb effects.  

 Evaluate and optimize technique for NAb effect quantification 

 Design and run experiment and analyse 

 

 

4.3. Analysis of IFN-β and NAbs in whole blood in vivo 

We wanted to test the hypothesis that Stat phosphorylation could be quantified in vivo 

with phospho-specific flow cytometry and that a NAb effect could be detected in vivo. 

Furthermore we wanted to test whether phospho-specific flow cytometry data 

correlated with gene expression changes and levels of IFN-β measured in blood and 

whether the same Stat proteins identified in PBMCs ex vivo correlated with NAb 

effects in vivo. 

 Test in vivo technique 

 Optimize time of sample collection and sample processing 

 Recruit patients and define logistics for in vivo sampling 

 Run experiments and analyse 
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5. Material and methods 

 

5.1. Background 

Ethical approval and patient consent was obtained for experiments carried out in this 

thesis. Until 2006, sera from patients treated with IFN-β were routinely analyzed by a 

BAb screening ELISA and a cell-line based NAb bioassay using an MxA ELISA for 

detection of protein induction after stimulation with INF-β. In 2007, the MxA protein 

specific antibody was no longer available, and our laboratory turned to RT-qPCR to 

measure not protein induction of MxA but Mx1mRNA in the same bioassay system65. 

 

Over the years the meaning of the term “NAb positive” has changed. Until 2009, 

patients were categorized into 4 groups according to serum NAb titers: NAb negative 

(≤ 20 neutralizing units (NU)), NAb low (20-180 NU), NAb medium (180-300 NU), 

and NAb high (  300 NU). It was not unusual to measure very high NAb titers (> 

1000 NU) in sera of patient. After 2009, based on the Mx1 RTqPCR assay, patients 

were categorized in 3 groups according to NAb titers: NAb negative if the titer value 

was ≤ 20, NAb low-medium if the titer value was between 20-300, and NAb high if 

the titer was ≥ 300. For NAb-positive patients no systematic or national 

recommendations for testing or treatment options were available. Fortunately, in 

September 2011, the National Norwegian Health Directorate in collaboration with 

The Norwegian Multiple Sclerosis Competence Center released recommendations for 

NAb testing and for how to proceed with treatment if patients are persistently NAb 

positive (http://helsedirektoratet.no). Testing for NAb in Norway is centralized and 

done at the Neuro-immunology Laboratory, Department of Neurology, Haukeland 

University Hospital, Bergen. 
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5.2. Phospho-specific flow cytometry 

The methods used in this study are described in detail in the publications (Paper II-

IV52, 82, 88). Briefly, the main steps are described below with some additional 

information.  

The actual steps in phospho-specific flow cytometry are simple, but the idea and 

concept are beautifully complex. With the advent of monoclonal antibodies that could 

recognize specific post-translational modifications on signaling molecule, such as 

phosphorylation on specific residues, and the single-cell analysis capability of flow 

cytometers, a tool for signaling pathway analysis was available that could identify cell 

subtypes and analyze biochemical processes within single cells simultaneously. In 

Paper I52 and Paper II88 of this thesis we published the scientific bases to pursue this 

method and worked out a detailed protocol for the analysis of the Jak/Stat signaling 

pathway in primary immune cells by phospho-specific flow cytometry including IFN-

β52, 88. Figure11 schematically represents every step of the procedure that I will 

discuss in more detail below. The vast amounts of data regarding biochemical 

processes occurring within cells that can be produced with this technique are a 

challenge for analysis and data representation.    
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Figure 11 Schematic representation of the steps from stimulation to single-cell 

analysis of fluorescence. A pathway is activated, the signal frozen by fixation and 

intracellular antigens made available by permeabilization. A suitable antibody 

cocktail with specific fluorescent markers allows quantification of signals and 

identification of cell types at the single-cell level.  
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The technique starts with the care of the primary cells of interest88. The issue of 

cryopreservation and thawing of cells is of great concern not only for stem cell 

therapy techniques, but also for research. Many slightly different protocols are 

available for cryopreservation. The freezing rate between 0 and -20° C has been 

shown to be central for cell viability. In part of this study, the plan was to use 

cryopreserved cells from IFN-β-treated patients with NAb and their autologous sera82. 

Fetal calf serum varies from batch to batch and may contain uncharacterized 

molecules that can affect signaling. In order to standardize the cryopreservation step 

as much as possible, we used serum-free freezing media.  

 

Patients were asked to take the last IFN-β injection at least 12 hours before the 

scheduled PBMC and sera sample collection. This time frame follows 

recommendations and assures little interference of the medication with NAb tests77. 

Sterile conditions were essential to hinder bacterial growth during the resting period 

for cells prior to stimulation. Contamination with bacteria and other compounds can 

activate the Type I IFN systems and other pathways in cells and had to be avoided. 

 

Avonex (IFN-β-1a) (Biogen Idec) was used for stimulation in all experiments. The 

potency of different preparations was similar, but the main concern for this study was 

the rationale that Avonex is the preparation used in our laboratory for the bioassay to 

determine NAb. Of technical concern is that in addition to differences in potency, the 

amount of NAb that binds to different preparations varies93. Avonex and Rebif have a 

ratio of 1:1, and Betaferon has a ratio of 1:3, which may be explained by aggregate 

formation in Betaferon preparations. This issue remains to be assessed for NAb tests 

based on ex vivo re-stimulation of PBMCs or whole blood. 
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Primary cells are inherently sensitive to temperature, pH, and osmolarity fluctuations. 

Therefore the cells are perfused with warm paraformaldehyde directly added to the 

stimulation matrix. The concentration of paraformaldehyde affects epitope detection 

by antibodies. For immune cells, low concentrations of paraformaldehyde between 1-

2% are recommended.  

 

Many protocols are available for permeabilizing cells. In flow cytometry and 

histochemistry conditions usually include either ethanol or methanol88. Both of these 

substances dehydrate the cells and cause protein denaturation and can destroy 

epitopes recognized by antibodies. Methanol makes nuclear proteins accessible, 

which is perfect for detection of nuclear Stats. The denaturing properties of methanol 

are an advantage when using antibodies that are directed against linear epitopes, 

which is often the case for monoclonal antibodies. Methanol is very effective in 

denaturing proteins and is used ice cold to reduce the damage to the epitopes of 

interest.  

 

Antibody specificity and titration is a must in phospho-specific flow cytometry.  

 

Collection and cryopreservation of PBMCs from patients takes time and resources. 

We therefore determined if NAb effects could be quantified in whole blood (Paper 

IV).  

 

Ethical approval and consent from patients were obtained for in vivo experiments. 

Preliminary experiments showed that phosphorylation of Stats after IFN-β injection in 

patients was generally low compared to the phosphorylation potential seen in re-

stimulation of whole blood and peaked around 4 hours after IFN-β injection. Storage 
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of sample in methanol for such weak signals is not recommended and we had better 

results with storage in PBS at -80 °C. What exactly happens in the body after 

subcutaneous or intramuscular injection of IFN-β is unclear and bizarrely patient 

specific. In fact, the time to peak levels of IFN-β in serum varied considerably, from 1 

to 16 hours94, 95, and was dependent on drug preparation and patient.  In preliminary 

experiments we therefore determined the best time to collect samples for phospho-

flow analysis of Stats. The following time points were evaluated for detection of 

signaling in vivo before and after IFN-β injection: 0, 15 min, 30 min, 45 min, 1 h, 2 h, 

4 h, and 24 h. A signal with phospho-flow could be detected around 2 h – 8 h post-

injection.  

 

5.3. INF-β ELISA of human sera  

In order to evaluate the injection of INF-β itself we measured the concentration in 

sera. In some cases it has been observed that the injection of IFN-β can be 

biologically ineffective, especially in patients with frequent dosing schedules96. To 

compare results between patients we run all samples on one plate and calculated the 

concentrations from the same standard curve. Sample 112 had to be diluted to be 

within the range of the standard curve. 

 

5.4. Type I IFN pathway-specific real-time quantitative PCR  

As mentioned above, some of the IFN-β injections can be biologically ineffective for 

other reasons than NAb97. Besides IFN-β concentrations we therefore also measured 

down-stream gene expression in order to evaluate the whole signaling pathway from 

sera to gene induction. The plates included Mx1 gene which is a promising biomarker 

for NAb evaluation in vivo and allowed us to compare Stats activation and gene 

expression based on the experience with the expression of this gene and NAbs.  
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5.5. Analysis, visualization and interpretation 

Measurements of fluorescence emission in phospho-flow are commonly given as 

changes in average fluorescence emission between unstimulated samples that 

represent the basal phosphorylation levels of particular signaling molecules and 

stimulated samples that represent the increase in phosphorylation after activation of 

the pathway by the stimulus. Medians or means from such phospho-flow data are 

based on single-cell measurements of thousands of cells and are solid numbers for 

further statistical analysis. Multivariate data is difficult to visualize for interpretation 

purposes. The ex vivo PBMCs study, for example, produced over 200 dose response 

curves, but all data points – over 3000 of them – could be visualized and important 

variables identified with principal component analysis (PCA). PCA is a powerful tool 

to visualize and analyze multivariate datasets. PCA is a representation of the 

variability in a dataset based on a reduced set of variables termed principal 

components (PC). The largest variability is attributed to the first PC and each 

successive PCs accounts for less of the variability than the previous one. The 

visualization of samples in PCA in score plots lets one identify patterns within the 

data; for example, patients that respond similar to a treatment cluster and are easily 

recognizable. The variables in PCA are visualized in the loading plots and have to be 

interpreted together with the corresponding score plots. Variables represent vectors 

and are interpreted as such. Variables on opposite sides are inversely correlated and 

variables close to the origin contribute very little to the clustering seen in the scores 

plots. The Hoteling T2 test and the fifty-fifty MANOVA can be used to test for 

significant differences between the clusters identified in the PCA. In Partial Least 

Square regression models (PLSR), the predictability of a variable or several variables 

in a matrix Y is tested based on an X matrix of variables. The covariance between X 

and Y is maximized in PLSR. Prediction models may be a useful tool for treatment 

evaluation in biomedicine. ANOVA and fifty-fifty MANOVA were scripted in R 

software. PCA and PLSR were run partly in software R (http://www.r-project.org/) 



 45 

and partly in Unscrambler (CAMO). FACS data were analysed in Cytobank 

(www.cytobank.org). 

 

5.6. Controls for phospho-specific flow cytometry 

The standard controls for flow cytometers today are bead based. The BD Cytometer 

Setup and Tracking Beads (CS&T) were used to monitor performance of BD digital 

flow cytometers. The CS&T kits contain beads of different size and fluorescent 

intensities and are instrument set up specific. These controls identify optimal signal to 

noise ratios for every photomultiplier tube and reports generated visualize laser 

problems.  

 

For analogue instruments, like the BD FACS Calibur, Spherotech Rainbow 

Calibration particles were used that monitor instrument performance in a manner 

analogous to the CS&T beads, but the operator has to manually generate plots. The 

beads in this kit are of similar size with different fluorescent intensities and are 

instrument set up specific. 

 

BD Calibrite beads were used for fluorescent spillover compensation. For both the 

analogue and the digital instruments, the compensation matrix was calculated with 

either the instrument software for automatic compensation set up or the software 

provided by FlowJo or Cytobank. In the setup phase of the experiments, spill over 

matrices based on the beads were verified with PBMCs stained with fluorescent 

conjugated antibodies. Instument settings were adjusted to allow for optimal 

separation of positive and negative cells. In any experimental run, single-stained cells 

were run as well as beads. 
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The unstimulated sample in phospho-specific flow cytometry is the negative control 

for phosphorylation induction in the pathway of interest. In each experiment, an 

unstimulated sample is always run for every stimulus used. Experiment-specific 

internal controls can be assessed for each experiment separately. For example, in 

PBMC stimulation with IFN-β, B cells never responded to stimulation by 

phosphorylating Stat4 on tyrosine. In certain of our experiments, we used 

cryopreserved PBMC aliquots of one healthy person in each run to evaluate variation. 

In the ex vivo PBMC experiments, cells were re-stimulated in autologous sera and 

serum-free media at the same time. This approach provided the essential positive 

control for the stimulation in sera where NAbs were suspected to influence signaling.  

 

In in vivo experiments, whole blood of the patient was re-stimulated ex vivo with IFN-

β, and unstimulated and stimulated whole blood served as a positive control to 

evaluate the procedure. The negative control was the sample taken before injection of 

IFN-β. The controls mentioned above suit phospho-flow analysis in primary cells 

quite well.  
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6. Results 

 

6.1. Paper I - Multiplexed phosphoprotein analysis in immune cells. 

The scientific bases and hypothesis to pursue the work in this thesis is published 
here52.  

 

6.2. Paper II - Flow cytometry and cell activation.  

In preliminary phospho-specific flow cytometry experiments we tested the method, 

and optimized the procedure. The standardized protocol was published here and we 

adhered to it minutely to minimize operator variation 88. 

 

6.3. Unpublished data - Pathway specificity and Stats phosphorylation 

profiles in PBMCs 

In set-up experiments we tested many intracellular phospho-specific monoclonal 

antibodies to various signaling molecules to assess the pathway specific activation of 

stimuli, especially IFN-β.  A typical pro-inflammatory Th1 and anti-inflammatory 

Th2 panel of cytokines known to signal through phosphorylation of Stats was tested. 

Antibodies to proteins in other signaling pathways were included in the study to 

assess specificity of Stats activation by the stimuli. 

We proceeded to test a subset of this panel in untreated relapsing-remitting MS 

patients and healthy individuals. Assays were carried out using serum-free support 

media to evaluate Stat signaling in MS patients. The results showed that untreated 

RRMS patients had immune cell responses similar to healthy controls, but some 

variation was present that encourages further studies. This approach ensured that we 

were not measuring pathway defects inherent to the disease when signaling was tested 

in the presence of NAb (Fig. 12, unpublished data). 
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Figure 12  The heat maps show the phosphorylation and thereby activation of 

indicated signaling molecules in columns and the stimulation agent in rows. The value 

of the unstimulated sample (unstim) is set to 0 (black) and fold changes are shown 

according to the colors on the log2 bar. Abbreviations: p, phosphorylated; zap, protein 

tyrosine kinase Zap-70 of the Syk family is involved in mediating T cell activation; 

btk, Bruton's tyrosine kinase belongs to Btk/Tec family of cytoplasmic tyrosine 

kinases and plays a role in B cell development; ERK, extracellular signal-regulated 

kinases 1 and 2 (ERK1 and ERK2) are mitogen activated protein (MAP) kinases with 

over 160 known substrates; cbl, the c-Cbl proto-oncogene encodes a E3 ubiquitin-

protein ligase; PLCg, phosphoinositide-specific phospholipase C gamma; p38, p38 

mitogen-activated protein; GM-CSF, granulocyte macrophage colony-stimulating 

factor; B, CD20+ B cells; M, scatter gated monocytes; T, CD3+ T cells. 

 

 

6.4. Unpublished data - IFN-β potency and pre-incubation effect 

Recombinant IFN-β-1a and IFN-β-1b are the Type I IFNs used in MS therapy. To 

evaluate whether these two molecules activate primary cell subtypes similarly we 

stimulated PBMCs with a serial dilution of the same concentrations (in IU/ml) 

prepared from the two medications. Figure 13 (unpublished data) shows the activation 

of several Stats in response to stimulation with IFN-β-1a (Avonex) or IFN-β-1b 

(Betaferon).  
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Figure 13 Ex vivo re-stimulation of PBMCs with IFN-β-1a (Avonex) or IFN-β-1b 

(Betaferon) with indicated concentrations in IU/ml for 15 minutes. The overlaid 

histograms show the activation of several Stats in CD3+ T cells. Basal/unstimulated 

samples are shown in green. 

 

 

In some procedures for NAb evaluation sera is incubated with IFN-β prior to testing 

in bioassays. We tested whether pre-incubation of IFN-β with sera affected activation 

of Stats in PCMCs of patients (Fig. 14, unpublished data). Incubation marginally 

affected phosphorylation of Stat proteins. The dynamics of signaling in such complex 

matrices as sera is not understood, and it is important to keep the procedures rigorous 

regarding time. In order to streamline the protocol we decided that 1h incubation 

allowed cells to reach a representative equilibrium in sera. This time period should 

also minimize IFN-β adsorption to surfaces and aggregate formation 98. 
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Figure 14  PBMCs of an MS patient with high NAb titers were either directly re-

stimulated ex vivo in serum-free support media (X-vivo) or autologous sera (dir sera). 

In the same assay autologous sera was incubated for 1 h with either 125 or 1000 U/ml 

IFN-β and then added to the cells for re-stimulation for 15 min. Data from monocytes, 

which strongly respond to IFN-β stimulation, are shown. 

 

  

6.5. Paper III - Immunogenic effects of recombinant interferon-beta 

therapy disrupt the JAK/STAT pathway in primary immune cells from 

patients with multiple sclerosis.  

 

In this experiment we wanted to assess the impact NAbs have on the responsiveness 

of the IFN-β Jak/Stats pathway in PBMCs of MS patients with various NAb titers82. 



 52 

Data from 14 subjects were included for analyses and PBMCs of every individual 

were re-stimulated with a serial dilution of IFN-β both in serum free support media 

and in autologous sera. For detailed experiment overview refer to Figure 1 in Paper 

III82. We measured levels of phosphorylation of six Stats transcription factors in three 

immune cell subtypes.  

 

The most interesting result of this experiment was that in all treated MS patients that 

were NAb positive the signal of IFN-β at the cell surface was basically turned off 

compared to the controls in the same cells of the same patients (i.e. the re-stimulation 

in serum free media). This finding let us to propose an assay that would not be based 

on arbitrary cut-offs but on a simple yes or no outcome.  In addition, Stat1 

phosphorylation showed the highest degree of activation compared to the 

phosphorylation of other Stats proteins. We argue that it may be possible to determine 

the IFN-β concentration where a Stat1 signal should be present in all NAb negative 

patients and turned off in NAb positive patients. Phosphorylation of Stat1 appears 

optimal because our data indicates that if Stat1 is turned off in NAb positive patients 

all other Stats proteins are shut down as well. 

We further hint at a possible treatment response since we found that the treated 

patients that were NAb negative had a unique signaling signature.  

 

 

The PCA of all data shows some interesting aspects of the NAb system (not shown in 

paper). Re-stimulation of PBMCs of NAb positive patients in serum-free support 

media showed that the cells of treated RRMS patients responded to IFN-β stimulation 

in absence of sera containing NAbs (yellow circle; Fig. 15). In these same patients the 

response to IFN-β stimulation in autologous sera depended on the presence or absence 

of NAb but not NAb titer (red circle). Treated NAb-negative patients formed a cluster 
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for both re-stimulation in sera and media, but were more similar to the cluster of 

patients and controls where cells were re-stimulated in serum-free media (squares). 

PBMCs from untreated MS patients and controls are very similar for the both the re-

stimulation in serum-free media and autologous sera (green roundels and squares). 

Evidently sera containing NAbs has a significant effect on the responsiveness of the 

Jak/Stat pathway at any measurable in vitro titer. 

 

 

Figure 15 PCA of data for re-stimulation in serum-free media and autologous sera. 

Notice RRMS patients that are NAb positive form a tight cluster independently of 

NAb titers (pink and red roundels). This PCA also shows that re-stimulation of 

PBMCs in media, in which no patient sera containing NAbs or other inhibiting factors 

are present, results in clustering for all patients and controls (green, pink, and red 

squares). Treated NAb-negative patients clustered somewhat separately indicating a 

possible treatment effect compared to untreated patients (blue squares and roundels).  

In set-up experiments we determined that Stat activation/phosphorylation by IFN-β 

stimulation in PBMCs followed a typical dose-response curve. Ex vivo re-stimulation 

Sera/Media S
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of PBMCs both in support media and autologous sera showed dose response curves 

for the stimulation with a serial dilution of IFN-β; signaling could be measured 

starting at 15-30 IU/ml and the plateau was reached at 1000-2000 IU/ml. The effects 

of sera containing NAbs on the responsiveness of the Jak/Stat signaling was readily 

detectable with phospho-specific flow cytometry. An example for phosphorylation of 

Stat1 (pStat1) is shown in Figure 16. Interestingly, the inhibition of pStat1 

phosphorylation in PBMCs due to the presence of patient sera containing NAbs could 

be overcome with high doses of IFN-β in samples from most patients. Extremely high 

amounts of IFN-β, at levels that probably would be toxic in a human body, were 

needed in some cases to overcome the inhibition. 

 

 

 

Figure 16 Dose response curves of PBMCs of RRMS patients with various NAb 

titers and NAb-negative patients. The re-stimulation with IFN-β was done in 

autologous sera. Notice the IFN-β concentrations range from 10 to 1,000,000 U/ml! 
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One patient with a very high NAb titer barely responded to IFN-β stimulation even at 

1,000,000 IU/ml. 

 

6.6. Paper IV - Deficient phosphorylation of Stat1 in leukocytes identifies 

neutralizing antibodies in multiple sclerosis patients treated with 

interferon-beta 

In this experiment we used phospho-specific flow cytometry to assess the activation 

of the IFN-β Jak/Stats pathway directly after IFN-β administration in patients. Six 

IFN-β treated patients were included in this study. For detailed experimental overview 

refer to Figure 1 in Paper IV. We measured phosphorylation levels of six Stats 

transcription factors in seven immune cell subtypes in whole blood drawn from 

patients before and at several time points after IFN-β injection. In order to assess the 

entire pathway after IFN-β administration in patients from appearance of IFN-β in 

sera to phosphorylation of Stat transcription factors to gene induction we measured 

levels of IFN-β in sera and gene expression changes in whole blood mRNA. 

 

The most interesting result of this work is that one can actually measure the 

phosphorylation of Stats transcription factors directly after IFN-β administration in 

patients. To our knowledge only very few studies have attempted this in vivo 

approach. In addition a NAb effect could be measured in NAb positive patients and 

similarly to the results in Paper III82 the effect was seen in the turn off of Stat1 

phosphorylation. We identified a NAb positive patient with peculiarly high IFN-β 

levels in sera. Interestingly, the phospho-data could identify this patient as different 

and we speculate that the in vivo responsiveness of the Jak/Stat pathway may identify 

patients with abnormal responses to IFN-β other than NAbs. Many IFN-β specific 

genes were induced by drug injection and significantly affected by NAb titers. 
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However, phosphorylation of Stats proteins was more predictive of NAb titers than 

gene expression changes. 

Interestingly, ex vivo re-stimulation of whole blood from patients with different NAb 

titers clearly revealed the inhibition of the IFN-β Jak/Stats pathway similarly to the 

effects seen in Paper III82. This results indicates that phospho-flow in whole blood 

could be used for NAb assessment instead of PBMCs (Fig 17).  

 

 

Figure 17 Heat maps of IFN-β re-stimulation dose-response curves in patient immune 

cells. a) for re-stimulation of PBMCs in media and sera and b) for re-stimulation in 

whole blood. – treated NAb negative; + NAb low/medium; ++ NAb high. 

 

The Stats phosphorylation experiment in vivo was compared with gene induction 

profiles in whole blood. These measurements were also used as a pathway activation 

control for the phospho-flow analysis. Genes measured in this assay are established 

IFN-β response genes. Studies have already shown that gene expression is influenced 

by NAb in vivo in patients. However, variability between patients is very high even 

before IFN-β stimulation. In RT-qPCR there are several steps that cannot be 

a) b) 
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controlled sufficiently. RNA integrity and quantitation can be a problem. Reverse 

transcription efficiency can vary considerably as well. In comparison to phospho-flow 

in single cells within heterogeneous immune cell populations in blood, RT-qPCR is 

technically more challenging and time consuming and is also more expensive. Time 

of sample collection is crucial for gene expression measurements and may differ for 

every gene. The levels of the Mx1 mRNA, for example, should be analyzed 4-12 

hours after IFN-β injection for maximal response. In the PCA of gene expression data 

it is therefore not surprising that some time points are not clustered in the correct NAb 

class (Paper IV, Figure 2b). Notice, time was significant for gene expression in the 

fifty-fifty MANOVA.  

 

We used partial least-square regression (PLSR) to find a model that fit our data and 

current knowledge and that can predict the behavior of Stat signaling patterns in 

future samples. Modeling is an iterative process and adjustments and choices are 

made during optimization for the task at hand. Since antibodies are costly, we were 

interested in reducing the set of variables that could be used to predict NAb titers. The 

analysis began with identification of variables that are highly correlated with NAb 

titers. From there sub-models with fewer variables were explored. We did not have a 

large dataset to work with but the models fitted the phospho-flow data well. Ideally 

we should have new data to validate this model, but as this was not the case, our 

model was validated by taking out all the measurements for one patient one at a time. 

The best fitting model for NAb prediction based on PLSR included pStat1 in 

monocytes and T cells or lymphocytes and pStat3 in monocytes (r= 0.97).  

In the appendix supplement Figure 1 shows the 2D plots of the 3D plot presented in 

Figure 2a in Paper IV. Some additional PLSR models are shown in supplement Figure 

2-4.  
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7. Discussion 

 

The approach in this thesis is based on the paradigm that states that molecular 

response to treatment correlates with therapy efficacy. Based on this statement we 

studied the mechanism of signal transduction activation of IFN-β to assess IFN-β 

response in primary cells of treated RRMS patients and to evaluate NAb effects. In 

addition, a mechanistic approach to drug evaluation may offer insight into the 

pathogenesis of the disease and discover biological markers to guide therapy and 

estimate prognosis 52. 

There are currently no validated biomarkers for disease progression in RRMS and no 

biomarkers to identify responders and non-responders to IFN-β therapy. However, 

based on the data presented in this thesis it may be possible to tackle the 

immunogenic aspect of this complex therapy system based on the responsiveness of 

the IFN-β signaling pathway in primary cells from treated patients.  

The production of antibodies that neutralize IFN-β can be a substantial part of 

treatment failure in MS patients. Sometimes significant adverse consequences are 

readily visible in clinical management. However, in many cases adverse effects of 

NAb production go undetected for a long time. In the pivotal studies in 1990 of IFN-β 

therapy in RRMS patients, investigators measured NAb titers in sera of patients. Over 

the next twenty years of clinical IFN-β experience, the issue of NAbs has been 

debated, and the latest consensus on how to deal with NAbs in clinical settings was 

published in Lancet Neurology in 2010. The recommendations are based on a 

complete approach to the NAb issue including clinical status, in vitro NAb titer 

measurements and in vivo gene expression analysis. However, these are only 

recommendations and every treating physician is left to deal with the issue in his or 

her current settings including accessibility to assays. The intricacy of NAb evaluation 

in clinical settings is based at least partially on the fact that the natural course of the 
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disease cannot be distinguished from NAb effects and generalized rules are therefore 

difficult to apply in individual patients.  

MS is described as an immune-mediated disease of the central nervous system caused 

by a combination of genetic and environmental factors in susceptible individuals. 

IFN-β is an immune-modulatory drug with poorly understood function and NAbs may 

mimic some aspects of the natural disease progression. The homeostasis of the 

immune system in treated RRMS patients is affected by exogenous factors, by 

modulations caused by IFN-β therapy and by the possible immunogenic reaction 

resulting in NAbs. In some patients it is impossible to separate the natural disease 

progression from treatment efficacy and immunogenicity with currently available 

tests.  

Biomarkers for NAb evaluation are being sought, and with advances in flow 

cytometry and signal transduction analysis in single cells a promising tool to study the 

effect of NAbs in primary cells of patients is available. The signal transduction 

pathway of IFN-β is well characterized from the signal initiation at the cell surface to 

signal propagating proteins and gene expression.  

The basic premise of this thesis was to use activation of the INF-β/Stat pathway at the 

cell surface to evaluate NAb effects. IFN-β regulates hundreds of genes in a cell-type 

specific manner and may induce opposite outcomes from proliferation to apoptosis. 

The complexity of the pathway increases with signal propagation and so does our 

current knowledge of the processes. The early induced gene expression changes after 

IFN-β stimulation are rapid, but other changes take hours or days to appear99, 100. 

Some genes are expressed transiently whereas others are expressed over days, and 

how a cell ultimately responds is not well understood. In addition, the continuous 

systemic administration of IFN-β in RRMS patients leads to an immune state that may 

be patient specific. The results in this thesis show that it is possible to measure NAb 

effects on the responsiveness of the IFN-β/Stat pathway after receptor activation at 

the cell surface in single cells within heterogeneous immune populations of patients 

without separating the cells (Paper II)52. 
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NAb consistently inhibited and/or modulated the IFN-β signal transduction from the 

cell surface, both ex vivo in PBMCs and in vivo after IFNβ administration in patients 

(Paper III82 and Paper IV). NAb evaluation focused on an individual approach where 

a patient’s phenotype and disease characteristics were integrated into the analysis with 

the use of primary cells of the treated patient. Even though genetic and disease 

parameters are largely unknown they are reflected in the responsiveness of the 

patient’s cells to IFN-β 52.  

NAb-positive patients clustered in the PCA of the ex vivo dose-response data 

collected in autologous sera, and the clustering was independent of NAb titers per se 

(Paper III82). The results show that any titer measured in sera of patients inhibited the 

responsiveness of immune cells to IFN-β re-stimulation compared to the re-

stimulation control in media (no patient sera) and also to untreated patients and 

healthy individuals. The differences in signal induction between NAb-positive 

patients and untreated or healthy individuals were highly significant, and upon re-

stimulation with 250 IU/ml the IFN-β/Stat pathway was basically turned off in all 

NAb-positive patients (titer ranged from 17-6930 NU/ml).  

The cutoffs used in in vitro assays mandated that a patient with a NAb concentration 

of 17 NU/ml be in the NAb-negative group. However, the inhibition of the IFN-

β/Stats pathway in primary cells from this patient at 250 IU/ml of IFN-β shows that 

the signaling pathway is affected by very low levels of NAbs, and at this re-

stimulation concentration the data of this patient clusters with all the other NAb-

positive patients. At a re-stimulation concentration of 1000-2000 IU/ml of IFN-β the 

inhibition of such low NAb titers is overcome, and this patient clusters with the 

treated NAb-negative patients. The inhibitory effect of various NAb titers can be 

compensated by high re-stimulation doses of IFN-β as was shown for other patients. 

At a re-stimulation concentration of 1000 IU/ml of IFN-β, treated NAb-negative and 

NAb-high patients can clearly be separated whereas some of the patients with NAb 

titers in the lower ranges show some activation of the pathway. However, the signal 
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induction in these patients is about 50% of what is measured in treated NAb-negative 

patients.  

For the stimulation in autologous sera the final sera dilution was 1:1. This was due to 

practical reason, but we speculate that the results of Paper III82 would be even 

stronger in terms of total inhibition of the Jak/Stats pathway by NAbs at IFN-β 

concentrations that would normally induce maximal signal if sera were not diluted. 

The results showed that pStat1 was a significant variable for clustering of patients 

according to NAb class and that measuring pStat1 in all cell subtypes may be 

redundant. Ideally a biomarker for NAb effects would require one measurement in 

one cell subtype at one re-stimulation concentration such as pStat1 in monocytes at 

1000 IU/ml. To have a robust test, however, it may be necessary to measure 

phosphorylation of pStat1 at two re-stimulation concentrations, 250 IU/ml and 1000 

IU/ml, in one cell subtype.  

Only 15 patients were included in this study, but despite, the results of this proof of 

concept study regarding NAbs are highly significant. Our data indicate that a patient-

specific NAb test in primary cells may be developed that is not dependent on arbitrary 

cut-offs but rather is based on whether or not the cells of the patient respond to IFN-β 

re-stimulation at certain concentrations.  

No clusters were identified in the PCA of the data collected in serum-free media. This 

showed that sera containing NAbs is a major factor contributing to the inhibition of 

the IFN-β/Stat pathway. In addition the re-stimulation in artificial serum-free media 

allowed us to detect whether the IFN-β/Jak pathway is functional in that particular 

patient when sera containing NAbs was removed from the stimulation condition.  

Before doing a larger study it was important to determine whether the pStat proteins 

measured ex vivo could also be identified and have similar meaning in vivo. Even 

though it was not possible to include many patients with various NAb titers in this 

study, the effects of NAb on the responsiveness of the IFN-β Jak/Stat pathway were 

measurable and evident (Paper IV). The variable pStat1 in several immune cell 



 62 

subtypes was highly correlated with NAb class. The PCA was able to distinguish a 

patient with a low NAb titer as well. However, this patient did not cluster with the 

other NAb-positive patients. The peculiarity of this patient goes beyond NAb 

antibodies. The IFN-β levels in this patient were about four times as high before the 

IFN-β injection as those of other patients and were in the range of what can be 

measured in HIV infection (personal communication from the ELISA vendor). The in 

vitro NAb assay measured a titer of 1:40 before injection, and this went down to 

negative post-injection and was barely detectable after 8 hours. A reliable NAb status 

was probably difficult to determine in this specific patient at time of sample 

collection. The high amount of IFN-β in the system sequesters some of the NAbs and 

thus makes measurement unreliable. The PCA of the in vivo assay identifies this 

patients as different, and in the PLS analysis this patient was marked as a possible 

outlier for some measurements. The in vivo assay could therefore also be valuable in 

detecting patients with an abnormal response to IFN-β for other reasons than NAb.  

The degree of Stat1 phosphorylation in blood cell subtypes after IFN-β administration 

in vivo was relatively high compared to other Stats as well. In NAb-negative patients, 

consistent and stable increases were measured over several hours in many blood cell 

subtypes. Compared to ex vivo re-stimulation with high doses of IFN-β the changes 

were small (in the range of two fold); the fold changes in PBMCs were 10 to 12 in T 

cells and monocytes, respectively. Notably, Stat1 phosphorylation was significantly 

reduced or shut down in many cell subtypes in patients with high NAb titers in vivo. 

Monocytes were more affected by NAb than T cells and showed marked inhibition of 

Stat6, Stat5, and Stat3 phosphorylation when Stat1 was inhibited. Individual patient 

variation certainly explains some of the differences seen in Stat activation in vivo. 

Stats are activated and regulated by many signaling molecules and a Stat signaling 

map in healthy individuals has not yet been determined. After IFN-β injections in 

healthy individuals, serum concentrations and gene expression inductions have been 

measured, but Stat activation has not. At this stage we can only compare Stat 

signaling within patients and evaluated NAb effects relative to treated patients 

without NAbs. 



 63 

One of the major concerns in testing the signaling pathway of a biopharmaceutical in 

patients’ cells is the time of sample collection. This is not only the case for in vivo 

studies where the effects of a medicine in a single patient are the desired measurement 

variables, but also for sample collection that is taken from patients for later analysis. 

In vitro assays and ex vivo assays are influenced by time of sample collection. For in 

vitro NAb evaluation, the consensus is that sera should be collected a minimum of 12 

hours after the last injection to avoid binding of the injected IFN-β to NAb, which 

confounds NAb titer measurements. Some studies even suggest a wash out period to 

insure that IFN-β is completely metabolized. This issue needs careful consideration in 

any assay. 

The time of sampling issue has clearly been shown in gene expression studies in vivo. 

First of all, timing is crucial for signal detection. The optimal time for detecting Mx1 

induction in vivo is between 4-12 hours post-injection of IFN-β. For detection of Stat 

phosphorylation by phospho-flow we observed a consistent signal between 2 and 6 

hours after IFN-β injection. To measure both gene expression and Stat 

phosphorylation we took samples between 4 and 8 hours. A study published in 2011 

by Zula et al. also looked at Stat phosphorylation after IFN-β injection in RRMS 

patients101. Samples of the eight patients included in this study were taken between 30 

minutes and 150 minutes post injection. They used a different protocol for whole 

blood phospho-flow published by Chen et al. that is based on a two-step staining 

procedure102. After fixation, red cells were lysed and stained with cell surface 

markers. Only then were the cells permeabilized with methanol and stored over night 

at -20° C. The next day the cells were stained for intracellular phosphorylated Stat 

proteins. The readout of their analyses was percentage positive cells. Their results 

were extremely variable between patients. For pStat1 in monocytes, for example, the 

percentage of positive cells ranged from 0% to 22% for samples taken at the same 

time points. They explain this phenomenon by variation between patient responses. 

Another explanation is that their multi-step procedure and the methanol incubation 

interfered with consistent phospho-epitope analysis. In the one step assay used in this 

thesis, a consistent and similar change in median fluorescent intensities was observed 
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for all NAb-negative patients 2-4 hours post-injection. However, since components of 

the pathway itself are up-regulated by IFN-β it cannot be excluded that some of the 

Stat proteins levels are increased four to eight hours after administration. Nonetheless, 

a diagnostic test must be robust, and a stable measurement is desirable as measured 

for Stat1 phosphorylation levels in cells of NAb-negative patients. The intricacies of 

the in vivo response in individual patients remain to be elucidated and confirmed.  

The importance of distinct homeostatic compartmentalized body fluids (matrices) 

surrounding cells is shown by the active maintenance of barriers such as the blood-

brain barrier and distinct circulatory systems in the body such as cerebrospinal fluid, 

blood, and the lymphatic system. The blood circulation is the medium for transport of 

many proteins via carrier molecules, of signaling molecules that may be in their pre-

active forms, and for systemic signaling flow. The matrix of immune cells can be very 

different from person to person and will influence immune cell function. Soluble 

receptors present in blood and a myriad of other compounds that are patient-specific 

influence signaling. For example, evidence is accumulating that the interferon 

signaling system plays a role in the disease and in response to therapy29, 103-106. Down-

regulation of the fully functional receptor isoform (IFNAR-2c) and up regulation of 

the soluble isoform (IFNAR-2a) has been shown in RRMS patients treated with INF-

β104. Interestingly, levels of endogenous IFN-β are elevated in sera of RRMS patients 

that are not responding to IFN-β therapy compared to responders107. Since phospho-

flow has the potential to incorporate environmental aspects found in sera of patients 

with preconditioned response capabilities of cells, it may be possible to delineate an 

optimal treatment response signaling pattern pinpointing suitable patients for INF-β 

treatment and identifying non-responders.  

Since the matrix surrounding cells directs signaling in cells, the conditions of 

stimulation are pertinent to analysis of signaling pathways. Serum contains all the 

compounds found in blood except blood cells and coagulation factors. This matrix 

reflects patient blood composition characteristics individually and is perfect for the 

analysis of NAbs. In in vitro assays this matrix is sequentially diluted with support 
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media to determine NAb titers. However, dilution of a patient’s sera may not 

accurately reflect the patient’s physiological state. By changing the matrix 

composition, artifacts may be introduced that will affect signaling outcomes in cells. 

Phospho-specific flow cytometry is a suitable technique to analyze the impact of 

NAbs in primary cells in their own matrix - sera or whole blood. 

Cell-type specific Stat activation is of interest not only for NAb evaluation but also 

for evaluation of IFN-β response in patients to determine treatment efficacy. We may 

or may not have been looking at the most informative cell subtypes in our study. IFN-

β receptors are widely expressed in human cells of all types. Optimally a cell type 

involved in the disease process would be the best choice since that cell type would be 

chosen because of its biomarker properties of disease progression. Unfortunately 

there are no such biomarkers for the disease progression in RRMS. Based on the 

immune-mediated component of MS and the immune-modulatory effects of IFN-β, 

we assumed that immune cells were the best option. For a diagnostic test, non-

invasiveness is important, and blood cells are easily accessible, can be cryopreserved, 

and can be shipped for analysis to specialized centers. 

The analysis PCA and PLSA used in the in vivo study are powerful methods to 

discern signal from noise. Many of the variables varied little or not at all in a cell 

type-specific manner. The measurement for some of these Stat variables may be noise 

and be in the lowest range of what is possible with phospho-flow in this setup. I 

believe that models to predict clinical outcomes based on the biochemistry of a drug 

at the single cell level will have great potential in biomedicine.  
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8. Conclusion 

 

Immunogenicity of recombinant human proteins in biomedicine is a known 

complication of this type of therapy, but effects on efficacy are unpredictable. In MS, 

an inflammatory disease of the central nervous system, the immunogenic effect in 

IFN-β therapy is observed in in vitro assays and titers of anti-IFN-β neutralizing 

antibodies in patient sera have been reported. These assays do not reveal the 

biological effect of an immunogenic response to treatment in single patients, 

however. Here, the immunogenic effects of IFN-β therapy in primary immune cells 

from IFN-β-treated MS patients were evaluated using a multiplexed flow cytometry-

based technique. In the presence of IFN-β neutralizing antibodies, the biological 

signaling response in primary cells was severely disrupted or modulated. Our data 

challenge the current rationale of basing therapy decisions on in vitro titer data. 

The idea and concept to use the phospho-flow technique to interrogate immune cells 

of immune-mediated diseases such as MS and to monitor immune-modulating drugs 

in a personalized approach was published in Paper I52.  

In Paper II88 we published a detailed protocol for the analysis of signaling pathways 

in PBMS based on phsopho-specific flow cytometry (and unpublished data is shown 

in the results section). We showed that pathways can be activated and signaling 

molecules quantified specifically for the IFN-β/Stats pathway. We established a 

routine protocol for serum free cryopreservation of PBMCs that was used for patient 

sample collection. 

In Paper III82 we showed a highly significant NAb effect on the responsiveness of the 

Jak/Stats pathway in PBMCs that can be quantified based on the method published in 

Paper II88. The protocol was specifically optimized and tested for NAb evaluation. 

We proposed a test that could be patient specific and independent of NAb titer cut 

offs.  
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Paper IV (manuscript) showed that it is possible to quantify the activation of the 

Jak/Stat pathway in vivo in patients treated with IFN-β and that NAb effects can be 

quantified with phospho-specific flow cytometry. We further show that the same Stats 

proteins have biomarker potential both in vivo and ex vivo. We postulate that Stats 

phosphorylation may be a more reliable marker for NAb effects than gene expression 

changes.  
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9.  Future Perspectives 

 

During the last decade the scientific and medical community has published data based 

on large clinical MS trials to find commonalities between patients in disease 

mechanisms and drug responses. These trials have produced considerable insight and 

generated exciting hypotheses. However, the etiology and pathogenesis of MS is 

largely unknown. What triggers an exacerbation or why the disease ranges from 

benign to progressive remains elusive.  

A range of immune-modulatory properties are attributed to the beneficial effects of 

IFN-β in RRMS patients, especially the anti-inflammatory effects. New drugs attempt 

to take advantage of the beneficial effects of IFN-β in MS treatment. For example, 

Natalizumab is a recombinant humanized IgG4κ monoclonal antibody produced in 

murine myeloma cells with a human IgG framework and murine complementarity 

determining region that binds to specific integrins expressed on all leukocytes except 

neutrophils. The block of binding of these ligands to their receptors of the vascular 

cell adhesion molecule family (VCAM-1) expressed on vascular endothelial cells, 

prevents the transmigration of leukocytes across the endothelium (e.g. brain-blood 

barrier) into inflamed parenchymal tissue (e.g. the brain). In this case leukocytes 

accumulate in the blood. Intravenously administered Natalizimab is immunogenic and 

in about 10% of patients NAb appear108. Another new medication, Fingolimod, acts 

by sequestering leukocytes in the lymph nodes so that these cells cannot reach the 

brain.  Fingolimod is a sphingosine analogue that when phosphorylated prevents 

leukocyte adhesion to endothelial cells in the lymph nodes. No data are available for 

Fingolimod given in tablet form. Oral drugs may be less immunogenic than 

subcutaneous injections, but the possible immunogenicity of drug metabolites is not 

well studied. Antibodies to drug metabolites may contribute to tissue-specific damage, 

and tests for this type of adverse immune reaction do not exist109, 110.  
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Many new drugs are in the pipeline for approval in MS treatment, and the monitoring 

of anti-drug antibodies is recommended. The introduction of a mechanistic anti-drug 

test already in pre-clinical and clinical trials would increase the likelihood to detect 

such antibodies. In the early phase of clinical drug assessment results from such test 

could be used to adjust treatment but also to discover biological markers for treatment 

efficacy.  

The issue of immunogenicity will not disappear from biomedicine based on our 

current understanding of the immune system. In vitro tools to predict immunogenicity 

of drugs are being developed, but the formation of anti-drug antibodies in any given 

patient will be difficult to predict. It is important to develop tools that will identify the 

formation of anti-drug antibodies early or even before treatment start with techniques 

that are patient specific. In RRMS it is virtually impossible to evaluate immunogenic 

reactions without actually measuring anti-IFN-β antibodies of the binding and 

neutralizing nature since biomarkers for disease progression are not available. In 

addition, the RRMS disease spectrum ranges from benign to severe, which indicates 

that disease subtypes exist that may or may not benefit from specific therapies. A 

predictive biomarker for disease progression could solve many problems regarding 

immunogenicity and therapy in RRMS.  

IFN-β treatment failure in RRMS may mirror the variable pathological patterns of the 

disease. It has been suggested that RRMS is not a single disease but a collection of 

syndromes that cause demyelination. This heterogeneity may also relate to the 

response variability seen during IFN-β treatment. Several studies implicate the Type I 

IFN signaling pathway in treatment failure and possibly disease subtypes of MS. In 

RRMS, a subset of non-responders to IFN-β therapy expresses high concentrations of 

both the endogenous IFN-β and IL-17F before treatment starts 15. Patients may differ 

in T cell profiles, and the authors hypothesized that IFN-β may be beneficial in 

patients with a Th1-mediated disease and may even be harmful in patients with a 

Th17-mediated inflammatory disease. IFN-β does not act independently in the human 

body. The yin and yang of cytokine signaling culminates in opposing effects in 
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different contexts and has been shown not only in divergent diseases such as cancer 

and autoimmunity, but also in closely related diseases such as MS and neuromyelitis 

optica12, 111-113. IFN-β is beneficial in MS, but exacerbates neuromyelitis optica 114, 115. 

The tool developed in this thesis could be used to study disease-specific cell subsets 

and signaling pathways involved in disease mechanisms and potentially identify 

signaling patterns that are associated with response to therapy.  

A study based on microarray technology showed that non-responders and responders 

to IFN-β could be differentiated by their Type I interferon-induced gene expression 

signature before treatment start105. Non-responders had increased levels of 

endogenous IFN-β activity in sera and lower induction of Type I IFN inducible genes 

in treatment-naïve PBMCs compared to responders. Upon treatment basal 

phosphorylation (activation) of Stat1 and the cell surface expression of IFNAR1 were 

elevated in monocytes of non-responders compared to responders. Another study 

measured the mRNA expression of the different IFN-β receptor isoforms before and 

during therapy and found that the isoform IFNAR-2c which is the full length 

transmembrane-receptor, was predictive of NAb development104. Mx1 is a type I IFN 

inducible gene and is frequently used as a biomarker of IFN-β bioactivity in blood of 

patients. The lack of expression of this gene is associated with the occurrence of 

relapses even in the absence of NAb that inhibit Mx1 expression in patients. Further, 

SNPs in genes encoding components of the Jak/Stat signaling pathway have been 

found significantly associated with MS116. For example, the SNPs in the kinase Tyk2 

and in Stat3 may affect the signal transduction117-119. Of therapeutic importance is the 

fact that the Type I IFN signaling pathway is not only implicated in disease 

modulation in IFN-β-treated MS patients, but that the endogenous pathway may also 

define subtypes of MS disease and possibly explain the variable response seen in 

patients. In terms of clinical applicability the tool developed in this thesis may link 

cellular processes to physiological processes in disease state and therapy in MS83. 

Identifying Type I IFN signaling signatures in health, disease, and treatment based on 

the tool developed in this thesis may potentially be used in treatment evaluation based 

on predictive IFN signaling models that incorporate genetic factors like SNPs and 
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phenotypic variability between patients.  Biomarkers could then be selected that 

represent pathogenesis as well as immunogenicity.  

The tool developed in this thesis may be used in other medical fields where 

biopharmaceuticals are used. For example, in therapeutic antibody treatment in 

rheumatoid arthritis (RA) the injected drug is immunogenic. Several antibody 

preparations against TNF-α are used in the clinic to inhibit the activation of the TNF-

α signaling and thereby down-regulate the inflammatory reaction. The immunogenic 

reaction to these TNF-α preparations is known, but as in MS, clinical practice is not 

based on mechanistic assays for treatment response120-124.  Anti-TNF-α-antibodies are 

measured with ELISA and radio-immunoassays in sera of patients. However, the 

assays are not standardized. It appears that history repeats itself also in the anti-drug- 

antibody issue in this treatment regime. The current assays have little value regarding 

the inhibition of the activation of the TNF-α pathway in vivo in a specific patient. The 

disease is variable and biomarkers for RA progression are not available. The 

inhibitory effect of TNF-α treatment can be assessed with phospho-flow in immune 

cells. Immune cells express the TNF-α receptor and are involved in the pathogenesis 

of RA. The signal from the cell surface can activate various pathways, NF-κB, the 

MAPK, and the apoptotic pathway. Signal transduction molecules are modified in the 

propagation of the signal, and several monoclonal antibodies to these modified 

molecules are available for phospho-flow. In MS, and probably also in RA, in vitro 

assays are not informative enough to make therapeutic decisions possible in single 

patients. Based on the vast experience with IFN-β in MS treatment, a mechanistic 

approach to TNF-α evaluation in single patients may save the medical community 

time and money and above all benefit patient health. 

The characterization of many disease-associated signaling signatures simultaneously 

at the single cell level is now possible with the latest technology.  CyTOF technology, 

based on a combination of flow cytometry and mass spectrometry, allows 

simultaneous quantification of e proteins and phosphorylation sites in single cells125. 
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The technology will improve our understanding of biochemical process within cells 

and could potentially be used in diagnostic and therapy. 
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