Still Water Performance Simulation
of a
SWATH Wind Turbine Service Vessel

Master of Science Thesis in Applied and Computational
Mathematics

Rune Angeltveit

Department of Mathematics
University of Bergen

November 20, 2012






Acknowledgements

First of all | would like to thank my supervisors Guttorm Atd and Gunnar
Furnes for all their help and good discussions through thewath my thesis.
Their guidance and enthusiasm towards the project haveratedi me in the work
with the thesis.

Secondly | would like to thank Ove Sporsheim at MRPC(Marirdl Bnd Pitch
Control) in Molde for letting me work with a newly develope@d/8TH(Small Wa-
terplane Area Twin Hull) wind turbine service vessel for 8tep owner Fredrik
Odfjell, designed by Danish Yachty®

I would also like to thank Vegard Larssen&tadt Towing Tank AS
(httpy//www.stadttowingtank.n®for taking time for a visit to their hydrodynamic
test facility located in Deknepollen, close to the city of Il and to Gunnar
Furnes for bringing me to Malay, Norway's second largestirfigtport, and for
good guiding and fresh local food.

I would also like to thank Henning Heiberg Andersen and Héigkesen at Uni
Computing for helping me with all their experience with STAREM+ and CFD
(computational fluid dynamics), in the work with STAR-CGMimulation set-up
and for giving me a workspace at their location. | am veryeftdtto CD-adapco
for making the simulation possible by providning me with ad&nt license for
their CFD program STAR-CCM.

To the end | would like to thank my fellow students for makiig days at the
Math department happier and more interesting. Finallypkita my family mak-

ing my education possible and to my wife Solbjgrg who has sttpd me through
the work with the thesis.

Rune,
November 2012.






Abstract

In this thesis | am making a computational fluid dynamics(CEimulation of a
SWATH (Small Waterplane Area Twin Hull) wind turbine sergigessel moving
in still water at diferent speeds by using the CFD tool STAR-CEMsince | did
not have any prior experience in CFD, a substantial partefhlbsis is dedicated
to theory in CFD. First of all theory for fluid dynamics and CHethods are
described. Based on this theory, models and solvers foritm@ation in STAR-
CCM+ are chosen with the required boundary conditions and initlues. A
major part of the simulation work is to obtain a good mesh teetbe solution is
achieved.

The paper consider the total hull resistance of the vessiitfatent speeds due
to pressure and shear forces. The results are compared siithvaater perfor-
mance test for a scaled model. Wave making resistance icaisidered in the
comparison. The resistance on the four holes in the hullyevtiee ballast tanks
are placed, are compared with the resistance on the hulon8cthe paper ex-
amines how the water level inside the ballast tanks, whiabpen to sea at the
front and at the back, ardfacted at dierent speeds.
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Outline and motivation

Danish Yachts has launch its advanced new range of comrheesisels designed
for high-speed passenger transport. The first boat construic the range is the
SeaStrider SWATH, see Figufie The purpose of the high-speed craft is to carry
initially the construction teams and then the maintenamckeanergency repair
teams to and from thefishore windmill turbine farmsf&ciently, safely and in
total comfort.

An important element of the vessel is to keep the vessel ¢irout its work-
ing life to the minimum maintenance down time and maximizisgime on the
water. Therefore the vessel is the first service vessel evss tlesigned and built
with an active ballast tank system. The ballast tanks are tp¢he sea and the
water level inside each ballast tank is regulated by chantfie pressure inside
the tank.

Figure 1. The SeaStrider SWATH designed bypanish Yachts
(www.danishyachts.commedias_newSWATH.pdf).

In the thesis | will investigate the hull resistance of sustessel and how the
water level inside the ballast tanks will bfected at dierent speeds in still
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water. In the 3D-CAD drawing that will be used in the simuwatprocess, the
vessel is constructed with closed ballast holes. Due to lirmé&ations new
3D-CAD drawings of the ballast tanks with open holes to sdébnet be created.
Therefore | will calculate how the water level in the ball&stks will be éfected
at different speeds by assuming they are open.

In the thesis | have used the CFD tool STAR-CEMInd an IGES CAD file of the
twin hull. In the start of the thesis | used the open source @iDOpenFOAM
and SALOME. As | had no experience in computational fluid dyita except for
theory on the Navier-Stokes equations, many hours weret apéme work with
simulation examples in OpenFOAM and in the study of the dcentation and
the user guide of OpenFOAM produced OpenCFD(20114ab).

As | progressed in learning OpenFOAM and after a long waitinge for the
CAD file of the twin hull from Danish Yachts, the work with theih hull could
start. A great deal offéort was put into meshing this geometry by using the third
party softwareSALOME (http;y//www.salome-platform.ory. Unfortunately | had
some problems with obtaining a suitable mesh and also walC#D geometry

of the IGES file. Therefore after some discussions with Hegiid. Andersen at
Uni Computing, who has experience with both OpenFOAM and -TZCM+,

| continued the CFD process by using STAR-CENh the further work of the
thesis.

The problem with the IGES file was solved, after some waitintgef by getting

a new version of the file by Danish Yachts. The work of gettirgguadent license
from CD-adapco for STAR-CCM also took a long time as CD-adapco had to
make an agreement with the University of Bergen. Four moalfties | started the
work with OpenFOAM, | could continue with STAR-CCM

The disadvantage by choosing the commercial program STERKEs that the
simulation can only be run on one processor at a time. Thidilmiged me in

obtaining a good solution. The simulation domain had to bellsamd the mesh
resolution big enough, for reducing the simulation timsuitgng in boundary ef-
fects and a dfuse free surface.

In Chapter 1 | will look at maneuvering theory and firent motion control sys-
tems will be presented. Passive and active damping systéhaése be described.

In Chapter 2 1 will introduce the basic definitions and concepts of fluichdynics
for providing a complete set of equations for modeling thev/flo
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In Chapter 3 | will look at different discretization approaches in computational
fluid dynamics and the properties of discretization schembe most commonly
used schemes are described in detail.

In Chapter 4 1 will develop the Reynolds-Averaged Navier-Stokes (RAN§)a-
tions by using the continuity, momentum and energy equsfiafier Boussinesq
approximation are applied to them, and finding their averdgeprovide closure
of the system, the Reynolds stress in the momentum equatimodelled by us-
ing turbulence models.

In Chapter 5 | will provide the total set-up for the simulation and thétdrent
approaches tried for obtaining a good simulation. The m®de described from
receiving the 3D-CAD file of the vessel and the modificationsel to the long
process of mesh generation, defining boundaries and sejentidels and solvers.

In Chapter 6 | will present the results of the total resistance on the hall
of the four ballast tank holes. | will also compare the sirtiolaresults with
the scale model test done by Force Technol®&jgu and Kishey2012. Wave
making resistance will also be presented in the compari8bthe end | present
how the water level in the ballast tanks aféeeted at dferent speeds, by using
Bernoulli's equation.

In Chapter 7 a summary is given together with discussion of the results an
remarks on further work.
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Chapter 1
Ship Motion

In this chapter | will give a short introduction in maneuveyitheory, motion
control systems and damping systems of ships which are ynbaaded upon the
book of Fossen(201]). The expressions in the theory of ship motion will be used

throughout the thesis.

1.1 Motion of a marine craft

Y sway

yaw

heave

Figure 1.1: Motion in 6 degrees of freedom (DOF).

In maneuvering, a marine craft experience motion of 6 degréfreedom (DOFS).
The DOFs are the set of independent displacements andorwatiat specify
completely the displaced position an orientation of thétcrahe motion in the
horizontal plane is referred to as surge (longitudinal orgtusually superimposed
on the steady propulsive motion) and sway (sideways orv¥eaee motion). Yaw
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(rotation about the normal vertical axis) describes thellmepof the craft. The re-
maining three DOFs are roll (rotation about the longitutiaas), pitch (rotation
about the transverse axis) and heave (vertical motion}-ggpgel.1

DOF Linear and Positions and
angular velocities  Euler angles

1 motions in thex direction (surge) u X

2 motions in they direction (sway) v y

3 motions in thez direction (heave) w z

4 moments about theaxis (roll, heel) p )

5 moments about thgaxis (pitch, trim) q 0

6 moments about theaxis (yaw) r W

Table 1.1: The notation oSNAME (1950 for marine vessels.

Roll motion is probably the most influential DOF with regatdshuman per-
formance, since it produces the highest acceleration amtd) is the principal
villain in seasickness. Similarly, pitching and heavinglfencomfortable to peo-

ple.

1.2 Motion control systems

For marine craft the most common actuators are:

e Main propellers: The main propellers of the craft are mounted aft of the
hull, usually in conjunction with rudders. They produce tieeessary force
F, in the x direction needed for transit.

e Tunnel thrusters: These are transverse thrusters going through the hull of

the craft. The propeller unit is mounted inside a transvasbe and pro-
duces a forcé in they direction. Tunnel thrusters are onlffective at low
speeds, which limits their use to low-speed maneuveringssatibnkeep-
ing.

e Azimuth thrusters: Thruster units that can be rotated an angbbout the
z axis and produce two force componenfs,F,) in the horizontal plane
usually referred to as azimuth thrusters. They are locasedlly mounted
under the hull of the craft and the most sophisticated umésetractable.
Azimuth thrusters are frequently used in dynamic positigriystems since
they can produce forces infterent directions.
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e Aftrudders: Rudders are the primary steering device for conventional ma
rine craft. They are located aft of the craft and the ruddecdé, will be
a function of the rudder deflection (the drag force in Xgirection is usu-
ally neglected in the control analysis). A rudder force ieyidirection will
produce a yaw moment that can be used for steering control.

e Stabilizing fins: Stabilizing fins are used for the damping of vertical vibra-
tions and roll motions. They produce a for€gin the z direction that is a
function of the fin deflection. For small angles this relatisrinear. Fin
stabilizers can be retractable, allowing for selectiveing®d weather. The
lift forces are small at low speed so moffieetive operating condition is in
transit.

e Control surfaces: Control surfaces can be mounted aftalient locations
to produce lift and drag forces.

e Water jets: Water jets are an alternative to main propellers aft of thp.sh
They are usually used for high-speed cratft.

1.3 Damping systems for ships

The roll motion of ships can be damped by using fins alone oomhination
with rudders. The main motivation for using roll stabilimat systems is to pre-
vent cargo damage and to increase tfeativeness of the crew by avoiding or
reducing seasickness. This is also important from a safatyt pf view.

Several passive and active systems have been proposedto@sh roll reduc-
tion. Some passive solutions are:

Bilge Keels: Bilge keels are fins in planes approximately perpendicudathe
hull or near the turn of the bilge. The longitudinal extentiea from about
25 to 50% of the length of the ship. Bilge keels are widely ysed inex-
pensive but increase the hull resistance. In addition & they are fective
mainly around the natural roll frequency of the ship. Thigset significantly
decreases with the speed of the ship.

Hull Modifications: The shape and size of the ship hull can be optimized for
minimum rolling using hydrostatic and hydrodynamic ciiderThis must,
however, be done before the ship is built.

Anti-Rolling Tanks: The most common anti rolling tanks in use are free-surface
tanks, U-tube tanks and diversified tanks. These systemiderdamping
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of the roll motion even at small speeds. The disadvantagathareduction
in metacenter height due to free water surfateats and that a large amount
of space is required.

The most widely used systems for active roll damping are:

Fin Stabilizers: Fin stabilizers are highly useful devices for roll dampifidgpey
provide considerable damping if the speed of the ship isomstow. The
disadvantage with additional fins is increased hull rest#aand high costs
associated with the installation, since at least two newdnlt systems
must be installed. Retractable fins are popular, since treeihaide the hull
when not in use (no additional drag). It should be noted timat dire not
effective at low speed and that they cause underwater noisediticadto
drag.

Rudder-Roll Damping(RRD): Roll damping by means of the rudder is rela-
tively inexpensive compared to fin stabilizers, has appnaxely the same
effectiveness and causes no drag or underwater noise if thesysturned
off. However, RRD requires a relatively fast rudder to fffecive. RRD
will not be dfective at low ship speeds.

Gyroscopic Roll Stabilizers: Gyroscopic roll stabilizers are typically used for
boats and yachts under 100 feet. The ship gyroscopic #tablias a spin-
ning rotor that generates a roll stabilizing moment thanteracts the wave-
induced roll motions. Unlike stabilizing fins, the ship ggcopic stabilizer
can only produce a limited roll stabilizing moment arfteetive systems
require approximately 3 to 5% of the craft displacement.

1.4 MRPC stabilization model

The SWATH wind turbine service vessel is designed and builh \&n active
ballast tank system developed by the compitarine Roll & Pitch Control AS
(MRPC) (http7/www.mrpc.ng?page_ie:307).

Technical description

The solution is based on open ballast tanks to sea in vediation, stretching
over the sea water level. Utilizing negative- and positinesgure to work counter-
phased towards waves. High volume air compressors, wovkithglow pressure
and vacuum manage volume in these tanks. The Active statiiz controller
provides optimal filling in these tanks based on input fromghips movement.
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Figure 1.2: MRPC stabilization model.

Functional description

The center level and volume in the tanks is at the variatiansger level. This is
to enable the system to “catch” the waves.

“Catching” the waves enables filling the tanks with seawaténout any power
consumption. If more filling or load on the tanks is needeis, ithapplied through
the suction side of the compressors.

The compressors, working at high volume of air, but with lawgsure and vac-
uum, require low power consumption.

Model verification

Through a model test at Stadt Towing Tank, using a Ramformeieessel as a
test bed for the system all simulation models is verified. Mioelel was fitted with
transparent ballast tanks, valves and sensors necessanpleanent the control
system. Implementation of the control system has been dgphédoine Innova-

tion. The tests conclude that the stabilization princiglalble to reduce the roll
and pitch movement of a vessel significantly.
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Chapter 2

Theory from Fluid Mechanics

In this chapter | will introduce the basic definitions and cgypts of fluid dynamics
for providing a complete set of equations for modelling tlosvfl The theory is
mainly based upon the book Klindu and Cohe2010.

2.1 Fluid properties

Density

The density of a fluid is defined as mass per unit volume and the value ofityens
can vary widely between fierent fluids and changes in pressprand temper-
atureT. The relation between these tree quantities is called equaf state:

p=p(pT).

For liquids, variations in pressure and temperature gdgdrave only a small
effect on the value gb.

Viscosity

A fluid, unlike a solid, deforms continuously when a sheacéois applied. Vis-
cosityu is a measure of the resistance of a fluid which is being defdimyeshear
stress. A fluid with high viscosity may be thought as a "thiftkid, for example
honey or heavy oil, while a "thin" fluid as water has low visepsNormally the
viscosity of a fluid depends on both pressure and temperature

Experiments shows that the magnitude of the shear straksg a surface, in a
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horizontal fluid flow, is related to the velocity gradient ietlinear relation

du
T = ﬂa/,

which is called Newton'’s law of friction. Here the constahpooportionalityu is
known as the dynamic viscosity or simply the viscosity offib&l. The kinematic
viscosityv, not involving unit mass, is given by

V==,
p

wherep is the density.

2.2 Mass conservation

All fluid dynamics is based on the conservation of extensreperties. Extensive
properties depends on the system size and the amount ofiahateihe system.
Mass and energy are extensive variables, while pressurdéeamgkerature is in-
tensive variables. In a closed system both mass and eneegyoaserved. The
conservation laws can be stated ifiteiential form, applicable at a point, or in
integral form, applicable to an extended region. In thegraeform the laws are
stated for a fixed volume& in space, also called control volume and geometrical
volume. A material volum& following the particles.

0Q

Figure 2.1: Fixed geometric volunéewith boundarypQ and outward unit normal
n.

To derive the conservation of mass consider a geometri¢amnex) having
boundaryyQ and outward unit normai, see Figur@.1 Mass may leave or
enter the control volume through the boundary, or it may leiewlated or
annihilated in a source or sink. The accumulation of masdenfe volume has
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to be equal the produced mass through source minus net natassfflowing out
of the volume and loss through sink. This can be written
{Accumulation + {Net Rate Flowing Oyt= {Source — {Sink}. (2.1)

Assume that there are no sources or sinks inside the voluheadcumulation of
mass is given by the time derivative of the total mass, that is

d
afgpd\/,

wherep is the density of the fluid. The total mass is expressed byrtegyial.
Now the rate of flux through the boundary is the surface iratiegr

f pu - ndQ,
00

whereu is the velocity anadh is the outward unit normal as observed in Figare
The expressions is inserted into the conservation &) @nd the following is

obtained d
—fpdV+fpu-ndQ:O.
dt Q oQ

Then apply Leibniz integral rule,

d OF
anF(x,t)dV_fQEdV, (2.2)

to the first term, and Gauss theorem

fF-ndS:fV~FdV,
do Q

to the second term. Since the geometrical voldinis arbitrarily chosen and the
integrand continuous, the pointwise mass conservatioateguis obtained,

dp B
a5t + V- (ou) =0. (2.3)

Equation R.3) is the diferential form of the principle of conservation of mass
and is called the continuity equation. Rewriting the diesrge term the continu-

ity equation becomes

1D
——p+V-u:O, (2.4)
p Dt
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where2 = 4 1. V() is the material derivative or the total derivative.

A fluid is said to be incompressible if the density of everyti# in the fluid
is constant in time, otherwise the fluid is compressible.c&ithe mass carried
by individual particles by definition is constant, the voleassociated with each
particle has to be constant for an incompressible fldM(t) = const. For an
incompressible fluid the continuity equatidh4) reduces to

V-u=0. (2.5)

2.3 Conservation of momentum

Before deriving the momentum equation we must show the sytmgmeoperty of
the stress tensor.

Consider a infinitesimal rectangular parallelepiped waitefs perpendicular to the
coordinate axes, see Figu2e2 The first index of the stress tensgy indicates
the normal to the surfaces on which the stress is considdried.second index
indicates the direction in which the stress acts. The diagelementsry, 72,
andrsz are the normal stresses, and tliediagonal elements are the tangential or
shear stresses.

34

|
\ 733
|
|
1 732
|
|
| 31 123
1
|
}T T23
| 13 T
5 R P 21
/ T12
/
4 <
ST T
¢ T3r T
|
/ ' 733
2
1

Figure 2.2: Stress at a point. Four of the six faces are shown.
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Xo A

107101

To1+ 2 0% dXz

—
d X1

_ 10t ol 10t
T127 5%% dx l + X|| T2+ 35 dx

1ot
T21+ 556 A%

\J

X1
Figure 2.3: Torque on an element.
Consider the torqu& on an element about a centroid axis paralletdosee

Figure2.3. The torque is generated only by the shear stresses i theplane
and is

lor dx lor dx
T= [le + Ea—xllzdxl]ddeXQ,Tl + [le - Ea—xllzdxl]ddeXQ,Tl
10715, dX2 10715, dX2

_[721 + Ea—XZdX2]dX1dX37 — [7'21 — Ea—XZdX2]dX1dX37. (26)

After canceling term, supposirtys = 1, this gives

T= (T12 - T21)dX1dX2.

The rotational equilibrium of the element requires that | w3, wherews; is the
acceleration of the element amhds its moment of inertia. For the rectangular
element considered, it is easy to show that dxdx(dX¢ + dX3)p/12. The
rotational equilibrium then requires

(T12 — T21)dXdX% = 1£2dxld X2(d>€ + d><§)c'03,

that is,
Ti2—To1 = 1ﬁ2(dx§ + dX3)ws.

As dx, anddx, go to zero, the equation can only be satisfied if = 75;. In
general,
Tij = Tji-
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The stress is therefore symmetric and has only six indepedenponents.

For deriving the conservation of momentum irffeiential form, Newton’s sec-
ond law of motion is applied in thg, direction to an infinitesimal fluid element,
see Figure.4.

0r31 d_)(g

X3
A 6X3 2

v 113 dy
Tt 5, 2

_ 9adx
Xy 2

X2

Figure 2.4: Surface stress on an element moving with the flomly five of the
six stresses in the, direction are labelled. The stress at the back is not shown.

The sum of the surface forces equals

(9‘['11 d X1 aTll d X1

(Tll 6—17 - T11+ 6—)(17)dX2dX3
0711 dX 07121 dX

+ (T21+ 8722172 —To1 + 6—22172)dX1dX3
0731 dX 0131 dX%

+(7'31 8_33173_T31 8331 23)d X 0%,

which simplifies to

87’11 8T21 8T31 87,-1
= —dV,
(HX]_ 0% 0%X3 )d deXZdXS an av

wheredV is the volume of the element. Generalizing of the surfacegf@er unit

volume of the element is 3
Tij

an ’
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where the symmetry property; = 7 have been used. Letbe the body force
per unit mass, so thag is the body force per unit volume. Then Newton’s law
gives
Du _ . 0%
pﬁ =p0 + ox.’

which is the momentum equation, sometimes called Cauchyyateon of motion.

(2.7)

2.4 Constitutive equation for Newtonian fluid

The relation between the stress and deformation in a canting called a con-
stitutive equation. In a fluid at rest there are only normahponents of stress
on a surface, and the stress does not depend on the orientétioe surface. In
other words, the stress tensor is isotropic or sphericghyrsetric. An isotropic
tensor is defined as one whose components do not change urtdatien of the
coordinates system. The only second-order isotropic teasioe Kronecker delta

100
6=|0 1 0.
0 01

Any isotropic second order-tensor must be proportional tdherefore, because
the stress in a static fluid is isotropic, it must be of the form

Tij = —Pdij, (2.8)

wherep is the thermodynamic pressure relate@ endT by an equation of state,
p = p(o, T). A negative sign is introduced in equatich® because the normal
components of are regarded as positive if they indicate tension rather tioa-
pression.

A moving fluid develops additional components of stress dueigcosity. The
diagonal terms ot now become unequal, and shear stresses develop. Now for a
moving fluid the stresses is split into a pagts;; that would exist if it were at rest

and a partrj; due to find the fluid motion alone:

Tij =—p6ij + Ojj. (29)

Assume thafp appearing in equatior2(9) is still the thermodynamic pressure.
The nonisotropic pardr, called the daviatoric stress tensor, is related to the ve-
locity gradientsou;/dx;. The velocity gradient tensor can be decomposed into
symmetric and antisymmetric parts:

%_ 1 %4_% 1/ 0y 8Uj
oxj 0% )

2

oxj 0%

an 2
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The antisymmetric part represents fluid rotation withodbdweation, and cannot

by itself generate stress. The stresses must be generatied slyain rate tensor
1( (9Ui (9Uj )

_ n ’

an R

€ >
alone. We shall assume a linear relation of the type
oij = Kijmn€mn, (2.10)

whereKijmn is a fourth-order tensor having 81 components that depenthen
thermodynamic state of the medium. Only two of the 81 elesef;jm, survive

if itis assumed that the medium is isotropic and that thesstrensor is symmetric.
It is shown in books on tensor analysis, a&ns (1962, that all isotropic tensors
of even order are made up of productggptind that a fourth-order isotropic tensor
must have the form

Kijmn = /ldijémn + ,Uéimdjn + Y0inOim, (2.11)

whereq, u andy are scalars that depend on the local thermodynamic stai&; As
is a symmetric tensor, equatio®. {0 requires thaKjj,, also must be symmetric
ini andj. This is consistent with equatio.@1) only if

Y = H

Only two constantg: and A, of the original 81, have therefore survived under
the restrictions of material isotropy and stress symmé&mastitution of equation
(2.1)) into the constitutive equatior2 (10 gives

Tij = 2u&j + A€mnpij,

wheree,n, = V-uis the volumetric strain rate, which is the sum of the linéein
rates in the three mutually orthogonal directions. The detestress tenso (9)
then becomes

Tij = —PSij + 2u8; + A€nnfij. (2.12)

The two scalars constanisandA can be further related as follows. Setting j,
summing over the repeated index, and notingéhat 3, the following is obtained

Ti = =3P+ (2u + 3)emm

from which the pressure is found to be

p= _%Tii +(§,u+/l)Vu (213)



2.4 Constitutive equation for Newtonian fluid 19

Now the diagonal terms d; in a flow may be unequal. In such a case the stress
tensorr;; can have unequal diagonal terms because of the presence tefrth
proportional tau in equation 2.12. Therefore the average of the diagonal terms
of T is taken and a mean pressure is defined as

_ 1
p = —:—)’Tij . (214)
Substituting into equatior2(13 gives
p—-p= (%,u+/l)V-u. (2.15)

For a completely incompressible fluid only the mechanicahean pressure can
be defined, because there is no equation of state to deteenthmrmodynamic
pressure. Tha-term in the constitutive equatio2.(l2) drops out becausg,,, =
V-u = 0, and no consideration of equati¢hl5 is necessary. For incompressible
fluids, the constitutive equatio.(L2) takes the simple form

Tij = —p&i; + 2ue; (incompressible), (2.16)

wherep can only be interpreted as the mean pressure. For a contgeefisid,
on the other hand, a thermodynamic pressure can be defingd, seems thap
andp can be diferent. In fact, equatior2(15 relates this dference to the rate of
expansion through the proportionality constant A + 2u/3, which is called the
codticient of bulk viscosity. For many applications the Stokesuagption

2
A+ é,u = O, (217)

is found to be sfiicient accurate for determining and can also be supported
from the kinetic theory of monatomic gases.

To gain additional insight into the distinction betweenrthedynamic pressure
and the mean of the normal stresses, consider a system ansydi@der in which

a piston may be moved in or out to do work. The first law of thedgm@amics
may be written in general terms de = dw+ dQ = —pdv + TdS, where the last
equality is written in terms of state functions. ThedS—-dQ = (p— p)dv. The
Clausisus-Duhem inequalitg, - S; = flz @ whereS is entropy, whose change
between states 1 and 2 and the integral is taken along anssitgeeprocess be-
tween the two states, tells 1S - dQ > 0 for any process and, consequently,
(p — p)dv > 0. Thus, for an expansiody > 0, sop > p, and conversely for a
compression. Equatio2(15 is:

_—§+/1V u= g+/l}%—g+/l}z 1
P=P=13H B A P T ey I T
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Further itis required that (3)u + 1 > 0 to satisfy the Clausius-Duhem inequality
statement of the second law of thermodynamics.
With the assumptior = 0, the constitutive equatio2 (12 reduces to

2
Tij :—(p+ §ﬂV'U)5ij +2/Jaj. (218)

2.5 Navier-Stokes equation

The momentum equation for a Newtonian fluid is obtained byssuliing the
constitutive equation; 18 into the Cauchy’s equation of motioB.{) to obtain

P% = —3—2 +pgi + 6%] 2uej — gﬂ(V - U)dij |, (2.19)
where @p/dx;)dij = dp/0x has been used. EquatioR.19 is a general form
of the Navier-Stokes equation. Viscosjtyin this equation can be a function
of thermodynamic state, and indegdfor most fluids displays a rather strong
dependence on temperature, decreasing with T for liquide@easing with T
for gases. However, if the temperatur@eiiences are small within the fluid, then
u can be taken outside the derivative in equat@®i9, which then reduces to

DUi_ @

Du _ oe; 2u d
Pbt = A%

. il R i e v A
+p0 + Zﬂaxj 3 ox u)

0 10
:_6_)2 + 00 + u Vzui+§6—Xi(V-u),

where
azui _ azui + azui + (92Ui
axox; e e a2’
is the Laplacian oly;. For incompressible fluid¥ - u = 0, and using vector
notation the Navier-Stokes equation reduces to

Vzui =

D . .
pFl: = -Vp+pg+uV2u. (incompressible (2.20)

If viscous dfects are negligible, which in general found to be true famflmound-
aries of the flow field, the Euler equation is obtained

Du
pﬁ =-Vp+pgQ. (2.21)
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2.6 Energy conservation

An equation for mechanical energy of the fluid can be obtaimedinding the
scalar product of the momentum equation and the velocityovedhe equation
of motion is

DU, a’[‘ij

Dt =p0 + a_XJ
Multiplying by u; we obtain

07

_( UZ) puUg + U——

2.22
Dt 2 (9Xj ’ ( )

where the following relationships have been us,-egi—i = %(%ui) andu;-(ui-Vuy) =

U - V(%uiz). The equationZ.22) says that the rate of increase of kinetic energy at
a point equals the sum of the rate work done by body fgreed the rate of work
done by the net surface fore- T per unit volume.

The total work rate per unit volume at a point can be split up imwo compo-

nents: p
Ui Tij
(U, Tjj) = T”B X Ua—xj,

where the second term is the rate of deformation work andhiné term is the
rate of increase of kinetic energy per unit volume. The defdion work rate can
be rewritten using the symmetry of the stress tensor. A mrbdiia symmetric
and an antisymmetric tensor is zero. The prody¢su;/9x;) is therefore equal to
7j; times the symmetric part @fu;/dx;, namelye;. Thus

. oy
Deformation work rate per volume: ;; 6_xl = Ti|§j. (2.23)
j
On substituting the Newtonian constitutive equation
2
Tij = —Pdij + 2u8j — Zu(V - u)éij,
relation .23 becomes
: 2
Deformation work= p(V - u) + 2ue;&; — §(V -u)?,

whereg;joj = &; = V- u. Denoting the viscous term by, the following is
obtained

Deformation work (rate per volumef —p(V - u) + ¢, (2.24)
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where X
2 1
¢ = 2ueje;) - §#(V -u)? = 2#[&1 - §(V : U)5ij] : (2.25)

In order to write the energy equation in termsgoive rewrite equation.22 in
the form 3 3
u.
E(ZUZ) PO + I —(uTyj) _Tija_X;,
wherer;;(0u;/0X;) = 7i;&; have been used. Using equati@24) to rewrite the
deformation work rate per volume, equati@d6 becomes

(2.26)

D Lo
Dt 2 u) = pg-u + (Ule) + p(V-u) - ¢ . (2.27)
—— —_——— ——
rate of work \-—x/——-/ rate of work  rate of viscous
by body force  total rate of by volume dissipation
work by expansion

2.7 Thermal energy equation

In flow with temperature variations we need an independenaton. This is
provided by the first law of thermodynamics. Leebe the heat flux (per unit area)
ande the internal energy per unit mass; for a perfect gasC, T, whereC,, is
the specific heat at constant volume (assumed constant)sufheg + u?/2) can
be called the "stored" energy per unit mass. The first law @ftlodynamics is
most easily stated for a material volume. It says that the

[rate of stored energy} [sum of rate of work done]
+ [heat addition to a material volume]

That is,

D p(e+ UZ)dV fpgiuidV+ f TijUide - f gdsS. (2.28)
Dt v a5 P

The negative sign is needed on the heat transfer term bettaid@ection ofdS

is along the outward normal to the area, and theredpm@S represents the rate of
heat outflow. To derive a fierential form, all terms need to be expressed in the
form of volume integrals.

But first we must generalizing Leibniz integral rul2.2). Consider a general
case whichV/(t) is neither a fixed volume nor a material volume. We write
oF

D
—f F(x,t)dV = —dV + dA - u,F, (2.29)
Dt Jve vy Ot Al
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whereu, is the velocity of the boundary and A(t) is the surfacevgf). For a
fixed volumeu, = 0. For a material volum¥ the surfaces move with the fluid,
so thatu, = u, whereu is the fluid velocity. ThenZ.29 becomes

D oF
J— = _— ° F 2
= fv F(x, t)dV fv AV + B dsS-u (2.30)

which is sometimes called the Reynolds transport theoresingJGauss’ theo-
rem, the transport equatio.80 becomes

OF 9
= VFdV_fV[E+a—Xj(Fuj)]d\/.

Now defining a new functiorf such thatF = pf, wherep is the fluid density.
Then the preceding becomes

pfdV = f[a(pf) —(pfu,)]

of . op of
_fv[pﬁ+ 12 fa—xj(puj)+puja—xj]d\[

Using the continuity equation

9
at " (p”)
we finally obtain
D Df
— 2.31
thpfdv f Dth ( )

By using equationZ.31) the left hand side of the heat equatich28 can be

written as
D

ot p(e+ uz)dV prDRt(e+ %u?)d\/.
Converting the two surface integral terms into volume iraégy equationZ.29
finally gives
]
%’
This is the first law of thermodynamics in theﬁérentlal form, which has both
mechanical and thermal energy terms in it. A thermal eneggyon is obtained
if the mechanical energy equatio.27) is subtracted from it. This gives the
thermal energy equation (commonly called the heat equation

De

Por =V APV U+, (2.33)

D 1
Pﬁ(eJr Euiz) = pgiu; + (TuU) (2.32)
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which says that internal energy increases because of gewves of heat, volume
compression, and heating due to viscous dissipation.

2.8 Equation of state

A relationship between ffierent thermodynamic state variables is called an equa-
tion of state. An equation of state provides a mathematedationship between
two or more state functions, such as its temperature, presgalume, or internal
energy. Thermodynamics provides us with these two equatsaedahle(2010),

p=p(.T),
e=¢T,p). (2.34)
Another equation of state is the equatipn= pRT for a perfect gas. For a

caliorically perfect gas (constant specific heats), thati@h for internal energy
ise= C,T, whereC, is the specific heat at constant volume.
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2.9 Complete set of equations

Continuity equation: %D—f +V-u=0,
: . Dy _ dp 0 2
Momentum equation: Por = ~a TPY T 50 2ue;j — 5u(V - u)g |,
Energy equation: pBE=-V-q-p(V-u)+¢,
2
Energy dissipation: ¢ = Zy[aj - %(V . u)(Sij] ,

Fourier’s law of heat conduction:q = —kVT,
Equation of state: p=p,T),

e=¢€,T).

Table 2.1: Complete set of equations for compressible flow

The complete set of equations, see Tdblke provides 11 equations for the 11
unknowns

0,p,T,e¢,uandq. (2.35)

More equations of state are needed to determineandk if these are not con-
stants. For the energy dissipation we have already assxmed

It is clear from Table2.1 that there are significant commonalities between the
various equations. By introducing a general variai@léom the book of
Versteeg and Malasekef2007), the conservative form of all fluid flow equations,
including equations for scalar quantities such as tempexatan be written in the
following form:

(o)

ot
wherel is the difusive term. Equatior2(36) is usually called the transport equa-
tion. By setting¢ equal to 1,u, w, e and selecting appropriate values for the
diffusion codficientI" andS, we obtain each of the PDEs for mass, momentum

+V.-(opu) =V -(I'Ve) + Sy, (2.36)
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and energy conservation. Each of the terms in the transgasgt®n can be ex-
pressed as following:

Rate of increase Net rate of flow Rate of increase Rate of aisere
of ¢ of fluid + of ¢ out of = of ¢ dueto + of ¢ dueto
element fluid element tdusion sources

2.10 Bernoulli equation

The Bernoulli equation is derived from the momentum equeiio inviscid flows,
where viscousféects are negligible, namely the Euler equati®r2):

ut+(u-V)u:}Vp+ g.
P

Assuming that the gravitg = —V(g2) is the only body force and using the fol-
lowing identity
(u-Vyu :V(%u-u)—ux(qu),

the Euler equation becomes
1 1
Us + V(Eu ‘u)—ux(Vxu)=-Vp-V(g2. (2.37)
P

Now assuming that is a function of p only. A flow whictp = p(p) is called a
barotropic flow. For such a flow we can write

10p 0 fdp
e 2.38
pox.  0xJ p (2.38)

Using equationZ.38, the Euler equatior?(37) becomes

ut+V(%u-u+f%+gz):uxw,
P

where ¥V x U) = w andw is the vorticity. Defining the Bernoulli function
1 d 1
B:—u-u+f—p+gz:—u~u+E+gz,
2 o, 2 ol
the Euler equation becomes

U+ V(B) = u X w. (2.39)

Important deductions can be made from the preceding by @ensg two special
cases, hamely a steady flow (rotational or irrotational)amdnsteady irrotational
flow.
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Steady flow
A steady flow is independent of time and equati2r89 reduces to
V(B) = U X w. (2.40)

The left-hand side is a vector perpendicular to ho#imdw. It follows that surface
of constantB must contain the streamlines and vortex lines. Thus andiajis
steady, barotropic flow satisfies

1 . .
Eu U+ P + gz= constant along streamlines and vortex lines (2.41)
Je,

which is called the Bernoulli equation. If, in addition thewl is irrotational,
w = 0, then equation.40 shows that

1
=u-u+ E + gz= constant everywhere
o

2

Unsteady irrotational flow

An unsteady form of Bernoulli’s equation can be derived ofilge flow is irrota-
tional. For irrotational flows the velocity vector can be tten as the gradient of
a scalar potentiap, called velocity potential:

u= V. (2.42)
On inserting equatior2(42 into equation 2.39), the following is obtained
dp 1 p _
\Y Bt +2u-u+p+gz =0,
that is 0 1
P _
50 + 2u u+p +gz= F(t),

where the integrating functiof(t) is independent of location.

2.11 Boussinesq approximation

For flows satisfying certain conditions, Boussinesq in 1808gested that the
density changes in the fluid can be neglected except in thatgtarm where

p is multiplied by g. This approximation also treats the otpesperties of the
fluid (such ags, k, Cp) as constants. The Boussinesq approximation applies if the
Mach number of the flow is small, propagation of sound or sheakes is not
considered, the vertical scale of the flow is not too largel dre temperature
differences in the fluid is small.
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Continuity equation

The Boussinesq approximation replaces the continuitytemua

1Dp

~Fiv.u= 2.4

oDt +V-u=0, (2.43)
by the incompressible form

The density is not regarded as constant along the directiorotion, but simply
that the magnitude qf *(Dp/Dt) is small in comparison to the magnitudes of the
velocity gradients irV - u.

Momentum equation
Because of the incompressible continuity equalioru = 0, the stress tensor is

given by equationZ.16). From equationZ.20, the equation of motion is then

D
pFl: — _Vp+pg+uvlu. (2.45)
Consider a hypothetical static reference state in whickhémsity iso, everywhere
and the pressure |%(2), so thatVpy = pog. Subtracting this state from equation
(2.45 and writingp = po + p’ andp = po + p’, Wwe obtain

Du
Pop = -Vp +p' g+ uVau. (2.46)
Dividing by po, we obtain
’ D l 4
(1 + p_)_u = ——vp + L g+, (2.47)
po) Dt po Po

wherev = u/po. The ratiop’/po appears in both the inertia and the buoyancy
terms. For small values gf /po, the density variations generate only a small
correction to the inertia term and can be neglected. Howéverbuoyancy term
0'9/po is very important and cannot be neglected.

Heat equation

From equationZ.33, the thermal energy equation is

D
pae —_V.q-p(V-U)+¢. (2.48)
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Although the continuity equation is approximatdly u = 0, an important point
is that the volume expansion terptV - u) is not negligible compared to other
dominant terms of equatior248; only for incompressible liquids ip(V - u)
negligible in equation.48. We have

pDp p(dp\ DT DT
= ~——=| — = —pa—.
p Dt pl\oT 0 Dt P Dt
Assuming a perfect gas, for whigh = pRT, Cp — Cy, = Randa = 1/T, the
foregoing estimate becomes
DT DT
—pV-u=—-—pRTa— = —p(Cp - Cy)—.
p pRia— p(Cp - Cy) Dt
Equation 2.48 then becomes
DT
pCp—=-V-q+4¢, (2.49)
Dt
where we have usegl= C T for a perfect gas.

Now we show that the heating due to viscous dissipation ofggnis negligi-
ble under the restrictions underlying the Boussinesq aqmation. Comparing
the magnitudes of viscous heating with the left-hand sideqofation 2.49, we
obtain
¢ o ueje;  pUL2 v U

pCp(DT/Dt)  pCpu;(dT/0%;)  poCpUST/L  CpdTL’
In typical situations this is extremely small (0" 7). Neglectingp, and assuming
Fourier’s law of conduction

q = —kVT,
the heat equatior2(49 finally reduces to (ik = const.)
DT 5
E = kV T,

wherex = k/pCp is the thermal dtusivity.

Summary
The set of equations corresponding to the Boussinesq aippaiign is
V-u=0,
D 1
M eps 29 vy,
Dt po Po
DT
— = VT
Dt

p = po[l — (T = To)],
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where the z-axis is taken upward. The consjanis a reference density cor-
responding to a reference temperatiige which can be taken to be the mean
temperature in the flow or the temperature at a boundary.

2.12 Dynamic similarity

Two flows having diferent values of length scales, flow speeds, or fluid progertie
can apparently be fierent but still "dynamic similar". The concept of similgrit
for designing models in which tests can be conducted forigtied flow proper-
ties of full-scale vessel is used a lot. The method of dynamilarity is used in
the still water performance test done Rieu and Kishey2012 for the company
Force Technology.

To illustrate the method of determining nondimensionahpaeters from the gov-
erning equations, consider a flow in which both viscosity gravity are impor-
tant. An example of such a flow is the motion of a vessel, wheeedtag expe-
rienced is caused by generation of surface waves and byofrion the surface

of the hull. All other dfects such as surface tension and compressibility are ne-
glected. The governing fierential equation is the Navier-Stokes equation

ow ow  ow dw  1ldp u(o®w  o0*w 6w

ot Yax TVay TVWaz T p 0z g+; 6x2+6y2+(9w2’

(2.50)

and two other fou andv. The equation can be nondimensionalized by defining a
characteristic length scaleand a characteristic velocity scdle Dynamic simi-
larity requires that the flows have geometric similarity k¢ tboundaries, so that
all characteristic lengths are proportional; for exampi&igure2.5we must have
d/I = dy/l;. Dynamic similarity also requires that the flows should beeknat-
ically similarly, that is, they should have geometricalingar streamlines. The
velocities at the same relative location are therefore gutogmal; if the velocity

at pointP in Figure2.5a isU/2, then the velocity at the corresponding pdmt

in Figure2.5 must beJ,/2. All length and velocity scales are then proportional
in a class of dynamically similar flows. Accordingly, we indiuce the following
nondimensional variables, denoted by primes:

X,:)l_(’ _IY, Z,ZI_Z, tl:%’

u V W p_poo
L _ v w=> = 251
=T U U P=—u2 (2.51)
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\ /IL
dl/[,r\\_ . Pl _/I
U= .~~~
1
(a) (b)

Figure 2.5: Two geometrically similar ships.

The conventional practice is to render p., dimensionless. Depending on
nature of the flow, this could be in terms of viscous styddgl, a hydrostatic
pressuregl, or as in the preceding, a dynamic pressalsé. Substitution of
equation 2.51]) into equation 2.50 gives

ow oW ow ow op g v [(Pw Fw  Pw
av Vax Vv TWazr T oz T uztun\axz T ayz T azz) 02
It is apparent that two flows will obey the same nondimendidiféerential equa-
tion if the values of nondimensional grougigU? andv/Ul are identical. Because
the nondimensional boundary condition are also identicéhe two flows, it fol-
lows that they will have the same nondimensional solutidiie nondimensional
parameterd)|/v andU/ \/a have been given the names:

ul
Re= — = Reynolds number
24

Fr= % = Froude number (2.53)
g

Both Re and Fr have to be equal for dynamic similarity of twavdn which
both viscous and gravitationaffects are important, sd@ysthe(1992. In the
Still Water Performance Test p andg must be equal for the scaled model and
the twin hull. For dynamic similarity, where both Re and Fegual for the two
flows, we have that

Ul =Uql; and U2, = U3,

which have the solutiobl = Uy, | = |;. It is therefore not possible to keep both
the Reynolds and the Froude number equal for the two flowdingaaodels are
still used because the viscous friction and the gravitafieffiects in form of wave
making resistance can approximately be added together Waking resistance
does only depend on the Froude number and not the Reynoldsetum
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It is usual to estimate the viscous friction per area from alehdest by drag-
ging plates through the water. The total viscous frictiorthef ship is estimated
by multiplying with the area of the wetted surface. The wawkimg resistance
can be found by subtracting the viscous friction from thaltog¢sistance of the
ship from model experiment with same Froude number.

2.13 Gravity Waves
Many wave motions of small amplitude obey the wave equation

— =V, (2.54)
which is a linear partial dierential equation of the hyperbolic typgis any type

of disturbance, for example the displacement of the frefaseiin a liquid. Waves
travelling only in thex direction are described by

6277 6277
— =C— 2.55
ot? ox?’ (2.55)
which has a general solution of the form
n = f(x—--ct) + g(x + ct), (2.56)

wheref andg are arbitrary functions. Equatio8.66), called d’Alemberts’s solu-
tion, signifies that any arbitrary function of the combinatix + ct) is a solution
of the wave equation.

Wave parameters

According to Fourier’s principle, any disturbance can beaeposed into sinu-
soidal wave components offterent wavelengths and amplitudes. We will study
sinusoidal waves of the form

n =asin

%(x - ct)]. (2.57)

The argument2(x — ct)/ 1 is called the phase of the wave, and points of constant
phases are those where the waveform has the same value ;Siaces between
+a, a is the amplitude of the wave. The parameieis called the wavelength
because the value gfin equation 2.57) does not change i is changed by:A.

The wavenumber is defined as follows

2

k== (2.58)



2.13 Gravity Waves 33

which is the number of complete waves in a length Zhe waveform equation
(2.57) can then be written as

n = asinkx - ct). (2.59)

The periodT of a wave is the time required for the condition at a point oes
itself, and must be equal the time required for the wave t@etrane wavelength:

T==2 (2.60)
The number of oscillations at a point per unit time is the @iexagy, given by

y==. (2.61)
Clearlyc = Av. The quantity

w = 2y = K¢, (2.62)

is called the circular frequency and is the rate of changéhagp (in radians) per
unit time. The speed of propagation of the waveform is reléb andw by

= — 2.63

C= 1 (2.63)

which is called the phase speed. In termaa@indk, the waveform equatior2(57)
is written as

n = asinkx— wt). (2.64)

By considering three-dimensional waves of sinusoidal shaguation Z.64) is
generalized to
n=asinK - x - wt), (2.65)

whereK = (k, I, m) is a vector called the wavenumber vector. The wavelength of

(2.6H is
A= 2% (2.66)

The phase velocity is = w/K, and the direction of propagation is thatkf We
can therefore write the phase velocity as the vector

w K
= —— 2.67
C= i (2.67)

whereK/K represents the unit vector in the directionkaf
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Surface gravity waves

In this section we shall discuss gravity waves at the frefasarof a sea of liquid
of uniform depthH, which may be large or small compared to the wavelength

Formulation of the problem

Consider a case where the waves propagate i ieection only, and that the
motion is two dimensional in thez— plane see Figure.6.

z

<—I—>

z=-H

Figure 2.6: Wave nomenclature.

Let the vertical coordinatebe measured upward from the undisturbed free
surface. The free surface displacemeny(ist). Because the motion is
irrotational, a velocity potentiat can be defined such that

L0

= oy W= 5" (2.68)
Substitution into the continuity equation
ou ow
a_X + E = O, (269)
gives the Laplace equation
¢ ¢
A 2.7
02 97 (2.70)

Boundary conditions are to be satisfied at the free surfadeathe bottom. The
condition at the bottom is zero normal velocity, that is
9¢

=L = =—H. 2.71
w 2 0O at z ( )
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At the free surface, a kinematic boundary condition is thatftuid particle never
leaves the surface, that is

Dn
Dt

whereD/Dt = d/0ot + u(9/0x), andw,, is the vertical component of fluid velocity
at the free surface. The forementioned condition can beemrds

on, on\ _ 9
ot ox|,_ 0z

=w, at z=p, (2.72)

(2.73)

z=n
For small-amplitude waves bothandorn/ox are small, so that the quadratic term
u(on/o0x) is one order smaller than other terms in equati®r’d, which then
simplifies to
on _ 0
ot oz|

We can simplify this condition still further by arguing thiée right-hand side can
be evaluated a = O rather than at the free surface. To justify this, expégmz
in a Taylor series arourzl= 0:

op| _ 99
oz|_ =~ 0z

(2.74)

¢
072

. 99
"~ 0z

z=0 z=0 z=0

Therefore, to the first order of accuracy desired hép¢dzin equation 2.74) can
be evaluated a = 0. We then have

on _ ¢

—=— at z=0. 2.75

ot oz z ( )
In addition to the kinematic condition at the surface, ther@dynamic condition
that the pressure just below the free surface is always ¢qubhe ambient pres-
sure, with surface tension neglected. Taking the ambiergsurre to be zero, the
condition is

p=0 at z=n. (2.76)
Since the motion is irrotational, Bernoulli’s equatidhX0)
9¢
i (u + W) + P, gz= F(t), (2.77)

is applicable. Here, the functidh(t) can be absorbed ifx/ot by redefinings.
Neglecting the nonlinear ternud{ + w?) for small-amplitude waves the linearized
form of the unsteady Bernoulli equation is

9o p

e + —+9z=0. (2.78)
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Substitution into the surface boundary conditi@n7@ gives

0
a—‘f+gn:0 at z=n. (2.79)

As before, for small-amplitude waves, the tefigyot can be evaluated at= 0
rather than at = n to give

9¢

— == t z=0. 2.80
-9 at z (2.80)
Solution of the problem
Recapitulating, we have to solve
¢ ¢
—— +—=0, 2.81
e 97 (2.81)
subject to the conditions
9¢
2 =0 t z=-H 2.82
= at z : (2.82)
0y On
- t z=0 2.83
az ot &Y (2.83)
Yy at 20 (2.84)

In order to apply the boundary conditions, we need to assufaenafor n(x, t).
The simplest case is that of a sinusoidal component with mawbderk and fre-
quencyw, for which

n = acos(kx— wt). (2.85)
For a cosine dependencerpbn (kx— wt), conditions 2.83 and .84 show that
¢ must be a sine function ok — wt). Consequently, we assume a separable
solution of the Laplace equation in the form

¢ = 1(2) sin(kx— wt), (2.86)

wheref(z) andw(k) are to be determined. After some calculations, see
Kundu and Cohef2010, the velocity potential becomes

_aw coshKz+ H)

= T sin(kx — wt), (2.87)
from which the velocity components are found as
coshKz+ H)
WCOikX— (,()t), (288)
SINNKZH H) Gex— ). (2.89)

sinh kH
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Substitution of equatior2(85 and @.87) into (2.84) gives the relation betwedn

andw
w = +/gktanh kH (2.90)

The phase spear= w/k is related to the wave size by

_ [ _ JHanZH
C= ktanth_ 2ﬂtanh I (2.91)

This shows that the speed of propagation of a wave comporegands on its
wavenumber. Waves for whiahis a function ofk are called "dispersive" because
waves of diferent lengths, propagating atigirent speeds, "disperse " or separate.

For deep-water approximatioii(1 >> 1) the phase speed, see equat®®]),

is approximated by
gl
= 4[=. 2.92
C= 5, (2.92)

For shallow-water approximatiorH{1 << 1) the phase speed, see equation
(2.9)), is approximated by

c= +/gH. (2.93)
Energy considerations

In a dispersive system, the energy of a wave component ddgsopagate at the
phase speed velocity = w/k, but at the group velocity defined ag = dw/dk.
For surface gravity waves having the dispersion relation

w = /gktanh kH (2.94)

the group velocity is found to be

C 2kH
“= E[l " Sinh kH]' (2.95)

For deep and shallow water approximation the group veloeityices to

Cy = %c (deep water) (2.96)

Cg=C (shallow water) (2.97)
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In the book ofKundu and Coher§2010 it is shown that the wave energ¥),
where kinetic Ey) and potential [£,;) energy is considered, in a water column per
unit horizontal area is

— 1
E =Ep+Ex=pgn? = épgaz, (2.98)
where the last form in terms of amplitudes valid if  is assumed sinusoidal.

Next we consider the rate of transmission of energy due toglesisinusoidal
component of wavenumbér Per unit length of crest, the time average energy

flux is "
C 2kH
5(1 " sinh2kH)]' (2.99)

The first factor is the wave energy given 198. The second factor is the speed
of propagation of wave energy of compon&ntalled the group speed.

1 2
F:E-cg:[épga]




Chapter 3

Computational fluid dynamics

The following is based on the book &erziger and Peti(2002 which gives a
good introduction to computational fluid dynamics. Flowsl aelated phenom-
ena can be described by partiattdrential equations, which cannot be solved
analytically except in special cases. To obtain an appatgisolution numeri-
cally, we have to use a discretization method which appratsthe dierential
equations by a system of algebraic equations, which canltedson a computer.
The approximations are applied to small domains in spacmatohe so the nu-
merical solution provides results at discrete locationspace and time. Such as
the accuracy of experimental data depends on the qualibedbols used, the ac-
curacy of numerical solutions are dependent on the qudliysoretizations used.

In the following sections the discretization approached tre details for the
finite volume method will be presented by using the theorynfrimne book of
Versteeg and Malasekef2007). Numerical method for pure fiusion and
convection-diftusion in steady state will be developed for the finite volune¢hod.
Afterwards the properties of the main discretization scegmsed in CDF, will be
discussed. The centralftBrencing scheme and the upwindfdiencing scheme
will be explained in detail.

3.1 Discretization approaches

In the book ofFerziger and Peti(2002 we can read about the three main dis-
cretization methods for solving partialftérential equations, respectively the fi-
nite difference method, the finite volume method and the finite elemettiod.
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Finite difference method

The finite diference (FD) method is the oldest method for numerical soiudf
PDE'’s believed to have been introduced by Euler in the 18tkucg. The starting
point is the conservation equation infférential form. The solution domain is
covered by a grid. At each grid point, thefférential equation is approximated
by replacing the partial derivatives by approximationsantis of the nodal val-
ues of the functions. The result is one algebraic equatiogpe node, in which
the variable value at that and a certain number of neighbodes appear as un-
knowns. In principle, the FD method can be applied to any tyjeé. However,
in most applications it has been applied to structured grldylor series expan-
sion or polynomial fitting is used to obtain approximationste first and second
derivatives of the variables with respect to the coordimafiehe disadvantage of
FD methods is that the conservation is not enforced unlessalpcare is taken.
Also, the restriction to simple geometries is a significasadvantage in complex
flows.

Finite volume method

The finite volume (FV) method uses the integral form of thesawmation equa-
tions as it starting point. The solution domain is subdidid&o a finite number
of contiguous control volumes (CVs), and the conservateragons are applied
to each CV. At the centroid of each CV lies a computationalenatiwhich the
variable values are to be calculated. Interpolation is usexkpress variable val-
ues at the CV surface in terms of the nodal (CV-center) valtiée FV method
can accommodate any type of grid, so it is suitable for comgéometries. The
grid defines only the control volume boundaries and needeotllated to a coor-
dinate system. The method is conservative by construclibe.disadvantage of
FV methods compared to FD schemes is that methods of ordegitigan second
are more dficult in 3D. This is due to the fact that the FV approach requineee
levels of approximation: interpolation,figrentiation and integration.

Finite element method

The finite element (FE) method is similar to the FV method imynaays. The

domain is broken into a set of discrete volumes or finite el@mthat are gener-
ally unstructured. The distinguishing feature of FE methisdhat the equations
are multiplied by a weight function before they are integdabver the entire do-
main. In the simplest FE methods, the solution is approxchaly a linear shape
function within each element in a way that guarantees caittirof the solution

across element boundaries. Such a function can be corestriroim its values
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at the corners of the elements. The weight function is uguwdlthe same form.
An important advantage of finite element methods is thetsiith deal with ar-
bitrary geometries. The principle drawback, which is stdre any method that
uses unstructured grids, is that the matrices of the liredrequations are not as
well structured as those for regular grids making it mof&dilt to find dficient
solution methods.

It has generally been found that the finite element methadires|grater computa-
tional resources and computer processing power than theadeypt finite volume
method, se@u et al.(2007).

3.2 Finite volume method

Based on the book dfersteeg and Malasekefa007) we will first develop the
numerical method the finite volume method, by considerirgdimplest trans-
port process of all: pure fiusion in the steady state. The governing equation of
diffusion can easily be derived from the general transport exu¢t.36),

d(pd)

T+V@¢U):V(FV¢)+S¢,

for property ofg by deleting the transient and convective terms. This gives
V-(I'V¢)+S, =0. (3.1)

The control volume integration, which forms the key stephd finite volume
method that distinguishes it from all other CFD technigygéslds the following
form,

f V-(FV¢)+f S¢:O:fn-(FV¢)dA+f s, dv=0,  (3.2)
cv cv A CcvVv

where Gauss’s divergence theorem has been applied to thediusne integral.
By working with one-dimensional steady statéasion equation, the approxima-
tion techniques that are needed to obtain the discretizedltiens are introduced.

By considering the steady statetdision of a property in one-dimensional do-
main defined in Figur8.1 The process is governed by
d (. d¢

wherel is the difusion codicient and S is the source term. Boundary values at
points A and B are prescribed.



42 Computational fluid dynamics

Control volume boundaries

2 P E S
S AL~ =<2 ~ AN Bo
I N~ Uz N~ Y Il
< W S

Control volume Nodal points

Figure 3.1: One dimensional domain.

Step 1: Grid generation

The first step in the finite volume method is to divide the domato discrete
control volumes. A number of nodal points is placed in thecepletween A

and B. The boundaries, or faces, of the control volumes aséipoed mid-way
between adjacent nodes.

| OXwp I OXpg !
| | |
: OXwp | OXpe i
| . . X .
Y K A pary
N D7 Y ~
W P le E

Figure 3.2: One dimensional grid.

A general nodal point is identified By and its neighbours in a one-dimensional
geometry, the nodes to the west and east, are identifi&l BgdE respectively.
The west side face of the control volume is referred tavignd the east side
control volume face be. The distances between the nofféandP, and

between nodeR andE, are identified byyxwp andéxpe respectively. Similarly
the distances between faseand pointP and betweer? and facee are denoted

by 6X.p @anddxpe respectively. Figur8.2 shows that the control volume width is
AX = 0 Xye.
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Step 2: Discretization

The key step of the finite volume method is the integratiomefgoverning equa-
tion over a control volume to yield a discretized equatiois atodal pointP. For
the control volume defined above this gives

d(_d¢ B dg\ (.,d¢ N
ﬁv&(r&)varfAdev_ (FAdx)e (FAdX)W+SAV_O. (3.4)

HereA is the cross-sectional area of the control volume fadé s the volume
andS is the average value of sour&eover the control volume. Equatio3.4)

states that the fusive flux of¢ leaving the east face minus thetdsive flux of
¢ entering the west face is equal to the generatiop. of

In order to derive useful forms of the discretized equatighs interface dfu-
sion codficientI” and the gradierd¢/dx at east and west are required. Following
well established practice, the values of the propegriynd the difusion codicient
are defined and evaluated at nodal points. To calculate egreedand fluxes at
the control volume faces an approximate distribution operties between nodal
points is used. Linear approximations seem to be the obdadssimplest way
of calculating interface values and the gradients. Theteds called central
differencing. In a uniform grid, linearly interpolated valué$'g andI’e are given

by

r, = v ; Ie (3.5)
I I
[,=-P  E (3.6)
2
And the difusive flux terms are evaluated as

d¢ ¢E — ¢P)
TrA—| =T 3.7
( dX)e eAe( OXpE ’ ( )

dg\ dp — ¢w)
(rA dx)w - rWAN( ) (3.8)

In practical situations the source te@mmay be a function of the dependent vari-
able. In such cases the finite volume method approximatesateee term by
means of a linear form: _

SAV = Su + Sp¢p. (39)

Substitution of the equation8.(7), (3.8) and @.9) into equation 8.4) gives

FeAe(¢E - ¢P) B FWAW(¢P - ¢w) +(Sy + Spdp) = 0. (3.10)

OXpE OXwp
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This can be rearranged as

Le Ly Ty e
Ae + —SP)¢P=(X Aw)¢w+(

OXpE OXwp OXwp OXpE

Ae)¢E + S.. (3.11)

Identifying the coéicients ofg,y and¢g in equation 8.11) asay andag, and the
codficient of ¢p asap, the above equation can be written as

apdp = awdw + AP + S., (312)

where

= , = , ap=awy+ag—Sp.
Ay 6XWPAW Qe 5XPEAe P w + ag P
Equation 8.12) represents the discretized form for the steady stdiesion prob-
lem.

Step 3: Solution of the equations

Discretized equations of the forr8.02 must be set up at each of the nodal points
in order to solve a problem. For control volumes that are Gafjaito the do-
main boundaries the general discretized equaBal?| is modified to incorporate
boundary conditions. The resulting system of linear algebequations is then
solved to obtain the distribution of the proped#tyat nodal points.

Steady state convection-dfusion equation

In the absence of sources, steady convection afidsibn of a property in a
given one-dimensional flow fieldis governed by

¢
€ (ous) = ( dx) (3.13)
The flow must satisfy the continuity equation, so
dou) _
el (3.14)

We consider the one dimensional control volume shown infeigLs.
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Figure 3.3: A control volume around noée One dimensional grid.

Integration of the transport equatiad® 13 over the control volume of Figur@3
gives

_ (ra%) _ (pad¢
(pUAP)e — (PUAP),, = (FA dx)e (FA dx)w . (3.15)
And integration of continuity equatior3(14) yields
(ouA)e — (ouA),, = 0. (3.16)

To obtain discretized equations for the convectioffitdion problem we must ap-
proximate the terms in equatioB.15. It is convenient to define two variabl&s
andD to represent the convective mass flux per unit area affidsthn conduc-

tance at cell faces: -

F=pu and D= o (3.17)

The cell face values of the variablEsandD can be written as
Fuw = (oU)w, Fe = (oU)e, (3.18)
Dy = Dw De = Le (3.19)

SXwp SXpE

We develop our techniques assuming tAgt= A, = A, so we can divide the left
and right hand side of equatioB.(L5 by areaA. As before, we employ the central
differencing approach to represent the contribution of tif@slon terms on the
right hand side. The integrated convectioffulion 8.15 can now be written as

I:e(lﬁe - I:w(ﬁw = De(¢E - ¢P) - Dw(¢P - ¢W), (3-20)
and the integrated continuity equatidh16 as
Fe—Fw=0. (3.21)

We also assume that the velocity field is known which takes oathe values of
Fe andF,,. In order to solve equatior8(20 we need to calculate the transported
property¢ at thee andw faces. There are several schemes for this purpose.



46 Computational fluid dynamics

3.3 Properties of discretization schemes

In theory numerical results may be obtained that are indjsishable from the
‘'exact’ solution of the transport equation when the numbi@oonputational cells
is infinitely large. However, in practical calculations wanconly use a finite,
sometimes quite small, number of cells, and our numericallte will be physi-
cally realistic when the discretization schemes has ceftadamental properties.
The most important ones are:

e Conservativeness
e Boundedness

e Transportiveness

Conservativeness

Integration of the convectionliusion equation over a finite number of control
volumes yields a set of discretized conservation equatiuving fluxes of the
transported property through control volume faces. To ensure conservation of
¢ for the whole solution domain the flux gfleaving a control volume across a
certain face must be equal to the fluxgtntering the adjacent control volume
through the same face. To achieve this the flux through a canfaee must be
represented in a consistent manner, by one and the samessixpran adjacent
control volumes.

Boundedness

The discretized equations at each nodal point represeritat ségebraic equa-
tions that needs to be solved. Normally iterative numeteahniques are used to
solve large equation sets. These methods start the soprboess from a guessed
distribution of the variable and perform successive updates until a converged so-
lution is obtained Scarborougt{1958 has shown that a flicient condition for a
convergent iterative method can be expressed in terms ofiles of the co@é-
cients of the discretized equations:

> lanp| _ {s 1 at all nodes (3.22)

|| < 1 at least at one node.

Herea is the net cogiicient of the central node anday, is all the neighbouring
nodes. If the dierencing scheme produces ffments that satisfy the above
criterion the resulting matrix of céicients is diagonally dominant. Diagonal



3.3 Properties of discretization schemes a7

dominance is a desirable feature for satisfying the 'bodndes’ criterion. This
states that in the absence of sources the internal valueopépy ¢ should be
bounded by its boundary values. Hence in a steady state ctodproblem
without sources and with boundary temperatures oP6Qihd 200C, all interior
values ofT should be less than 500 and greater than 200. Another essential
requirement for boundedness is that all ff@eents of the discretized equations
should have same sign. Physically this implies that an aszen the variable

at one node should result in an increase et neighbouring nodes.

Transportiveness

The transportiveness property of a fluid floRpache(1976, can be illustrated
by considering theféect at a poinP due to two constant sources ¢fat nearby
pointsW andE on either side, see FiguB3. We define the non-dimensional cell
Peclet number as a measure of the relative strengths of ciiowend difusion:

ou
pe_ £ _ _PU 3.23
=D " T/ox’ (3:23)

wheredx is the characteristic length (cell width) ahds the dtfusion codicient.
Lets consider 2 cases.

e Nno convection and purefiiusion Pe — 0)
¢ no diffusion and pure convectioR¢ — o)

If we consider only pure dliusion the fluid is stagnanPg — 0) and the contours
of constantp will be concentric circles centered aroulandE. The result is
that the pointP is influenced equally of the two sourcesVdtandE. However as
Peincreases the contours change shape from circular toiefli@nd are shifted
in the direction of the flow. In the case of pure convectiBe & o) the elliptical
contours are completely stretched out in the flow directidhproperties ofp em-
anating from sources &/ andE is immediately transported downstream. Thus,
conditions aP are now unffected by the downstream sourcdeaaind completely
dictated by the upstream sourcéeVdt Since there is no éusion,¢p is equal to
éw. Itis very important that the relationship between the cimnality of influ-
encing and the flow direction and magnitude of the Peclet runpkmown as the
transportiveness, is born out in the discretization scheme
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3.4 Central differencing scheme

The central dierencing approximation was used for the convection affdsion
problem. For a uniform grid we can write the cell face valuegroperty¢ as

po=2" ;¢E, (3.24)
pu= DL (3.25)

Substitution of the above expressions into the convecdong of equation3.20
yields

Fe Fw

?(¢P + ¢g) - ?(¢w + ¢p) = De(¢e — ¢p) — Du(gp — dw). (3.26)
This can be rearranged to give

Fw Fe
o= 5[ 3)

Identifying the coéicients of¢yw and ¢g asay and ag, the central dierence
expressions for the discretized convectiofiftdiion equation are

Fw Fe
¢p = (Dw + 7)¢W + (De - ?)(ZSE- (3.27)

ap(bp = aw¢w + aE(bE, (328)
where
Fw Fe
Ay = DW + 7, ag = De — ?, dp = dy + ag + (Fe — FW) (329)

The properties of the scheme will be discussed next.

Central differencing scheme properties
Conservativeness

The central dterencing scheme uses consistent expressions to evalusteceo
tion and ditfusive fluxes at the control volume faces. The scheme is detedn
by only one function and is therefore conservative.

Boundedness

When we apply the discretized continuity equati@®(Q) for a steady one di-
mensional flow field to the cdigcients of equation3.28, the expression foap
becomes equal ta- = ay + ag. The codficients of the central dierence scheme
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satisfy the Scarborough criterio8.22).

With ag = De — F¢/2 the convective contribution to the east fimgent is neg-

ative; if the convection dominates it is possible &rto be negative. Given that
Fw > 0 andFe > O for ag to be positiveD, and F, must satisfy the following

condition:

F
2 =Pe<2 (3.30)
De

For aPelarger than 2 the east cihieient will be negative. This violates one of the
requirements for boundedness and may lead to physicallgssible solutions.

Transportiveness

The central dferencing scheme introduce influencing at node P from the-dire
tions of all its neighbours to calculate the convective aittlidive flux. Thus the
scheme does not recognize the direction of the flow or thagtineof convection
relative to ditusion. It does not possess the transportiveness propdrighalPe.

Accuracy

By using Taylor series we get a truncation error of seconémpske
Versteeg and Malasekef2007).

3.5 Upwind differencing scheme

One of the major inadequacies with the centrélledlencing scheme is its inability
to identify flow direction. The value of proper#yat a west cell face is always in-
fluenced by botlpp andg,y in central diferencing. In a strongly convective flow
from west to east, the above treatment is unsuitable bedhaeseest cell face
should receive much stronger influencing from nddehan from nodeP. The
upwind diferencing scheme takes into account the flow direction whesrméen-
ing the value at a cell face: the convected value at a cell face is taken to be
equal to the value at the upstream node. If the flow goes indk#iype direction
from west to eastH,, > 0, Fe > 0), the upwind scheme sets

Su = dw, (3.31)
¢e = ¢P, (332)

and the discretized equatiod.20) becomes

Fetp — Fwpw = De(¢e — #p) — Dw(ép — dw), (3.33)
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which can be rearranged as
(Dw + De + Fe)pp = (Dy + Fu)dw + Ded, (3.34)
to give
[(Dw + Fw) + De + (Fe — Fy)]¢p = (Dw + Fu)dw + Dede. (3.35)

Identifying the coéicients of¢y and¢e asay andag, equation 8.35 can be
written in the usual general form

apdp = awdw + aede, (3.36)
with central cofficient
adp = aw +ag + (Fe— FW)’

and neighbour cd&cients

ay = Dy + Fu, (3.37)
ag = De. (3.38)
When the flow is in the negative directioR{ < 0, Fe < 0), the scheme takes
be = Pk, (3.40)
and the neighbour cdiécients
aw = Dy, (3.412)
ag = De - Fe- (3.42)

Upwind differencing scheme properties
Conservativeness

The upwind diferencing scheme utilizes consistent expressions to eadcillixes
through cell faces; therefore it can be easily shown thatdtraulation is conser-
vative.

Boundedness

The codficients of the discretized equation are always positive atidfg the
requirements for boundedness. When the flow satisfy tharaotyt term (Fe —
Fw) in ap is zero and givesp = ayw + ag, which is desirable for stable iterative
solutions. All the cofficients are positive and the d&ieient matrix is diagonally
dominant, hence no 'wiggles’ occur in the solution.
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Transportiveness

The scheme accounts for the direction of the flow so transjeoss is built into
the formulation.

Accuracy

The scheme is based on the backwaftedencing formula so the accuracy is only
of first order on the basis of the Taylor series truncationregee
Versteeg and Malasekef2007).

3.6 The hybrid differencing scheme

The hybrid diferencing scheme dbpalding(1976 is based on a combination

of central and upwind dierencing scheme. The hybridfidirence scheme ex-
ploits the favourable properties of the upwind and centrfiecencing schemes.

It switches to upwind dierencing when central flierencing produce inaccurate
results at highPe numbers. The scheme is fully conservative and since the co-
efficients are always positive it is unconditionally boundddsattisfies the trans-
portiveness requirement by using an upwind formulationidaye values of Peclet
number. The scheme produces physically realistic solsteom is highly stable
when compared with higher order schemes such as QUICK.

3.7 Quadratic upwind differencing scheme

The quadratic upstream interpolation for convective kase{QUICK) scheme
of Leonard(1979 uses a tree-point upstream-weighted quadratic intetipala
for cell face values. The face value ¢fis obtained from a quadratic function
passing through two bracketing nodes, on each side of tlee faw a node on
the upstream side and is therefore conservative. Sincectiere is based on a
quadratic function its accuracy in term of Taylor serietation error is third
order on a uniform mesh. The transportiveness propertyilsibto the scheme
as the quadratic function is based on two upstream and onesiieam nodal
values. The downside is that the QUICK scheme is only camutiiy stable.

3.8 Total variation diminishing scheme

From the book olersteeg and Malasekefa007) we know that the upwind dif-
ferencing scheme (UD) is the most stable scheme and doesveary wiggles,
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whereas the central filerence (CD) and quadratic upwindifeérencing schemes
(QUICK) have higher order accuracy and give rise to wiggledan certain condi-
tions. The goal is to find a scheme with higher order of acgunathout wiggles.
This lead to the development of TVD schemes with the desrplbperty for a
stable, non-oscillatory and higher order scheme calledatomricity preserving.
For a scheme to preserve monotonicity, (i) it must not créatal extrema and
(i) the value of an existing local minimum must be non-desiaeg and that of a
local maximum must be non-increasing.

TVD schemes are generalizations of existing discretimatiohemes, like CD,
UP and QUICK schemes under the necessary afittsunt condition for TVD
schemes oBwedby(1984), so they inherently satisfy all the requirements of trans-
portiveness, conservativeness and boundedness.

3.9 Pressure-Velocity Coupling

The convection of a scalar variabpedepends on the magnitude and direction of
the local velocity field. In the previous sections we haveiasd that the velocity
field was known. In general the velocity field is not known anteeges as part
of the overall solution process along with all other flow ahies. In this section
we will look at two of the most popular strategies of compgtthe entire flow
field. The first is the SIMPLE algorithm, Semi-Implicit Metthdor Pressure-
Linked Equations, originally put forward by Patankar éyllding(1972 and
Is essentially a guess and correct procedure for the céilmulaf pressure. The
second is the PISO algorithm, Pressure Implicit with Spbttof Operators, of
Issa(1986. The PISO algorithm is a pressure-velocity calculatiomcpdure de-
veloped originally for non-iterative computation of urestly compressible flows.
The algorithms will be outlined considering steady statetlfie SIMPLE algo-
rithm and unsteady for the PISO algorithm. Further detdithe algorithms can
be found in the books dfersteeg and Malasekef2007); Tu et al.(2007).

3.9.1 SIMPLE algorithm

The SIMPLE algorithm will be illustrated by considering aotdimensional lam-
inar steady flow. To initiate the SIMPLE calculation procagsressure fielg®,
where the star (*) denotes the guessed variable, is guedsel is used to solve
discretized momentum equations

RN Z 8nblnp + (Pi_15 = Pi))AL + big, (3.43)
V= ) Vi + (P — PL)AL + by . (3.44)
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After the momentum equations is considered, the contiregfyation is solved
from which an equation for pressure correctigns obtained.

Q3P =A1.3P 1 T A-13P 1
+8y 3410 gp1 + A3-1P; 31 + 07 (3.45)

Now correct pressure and velocities can be found
Pia = Piy+ P
Ug = U5+ dis(P_1;— PP (3.46)
Vij = Vit d(praon — PL)-
From the correct pressure and velocities all other diswdttransport equations
can be solved. The algorithm will run until the solution haswerged. The

sequence of operations in a CFD procedure which employdihelSE algorithm
is given in Figure3.4.

3.9.2 PISO algorithm

The PISO algorithm involves one predictor step and two cboresteps and may
be seen as an extension of SIMPLE, with a further correcep & enhance it.
The second pressure correction equation is

/7 // /7
A 9Py =410 T A-13P 1

From equation3.47) the pressure and velocity is corrected for the second time.

Py =Pig+ Pyt P (3.48)
sk k % / / Z anb(u** - Uy )
Uiy =iy +dig(Pi_yy — Plg) + hb -
a
+dia(P13 = PPy (3.49)
sk / / Z anb(\/** -V, )
Vil =Vt dij(Pfy1— Py + a:]b_ i
N
+di (P51 = Py)- (3.50)

The sequence of operations for an iterative steady state Pa&ulation is given
in Figure3.5.
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Figure 3.4: The SIMPLE algorithm.
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Initial guessp*, u*, v*, ¢*

Perform first three steps of
SIMPLE algorithm

p*’ U*, V*, ¢/

\

Solve pressure correction
equation 8.47)

\

Correct pressure and velocities
equations3.48-(3.50

Set
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Solve all other discretized
transport equations

¢
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Figure 3.5: The PISO algorithm.
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Chapter 4

Turbulence Modelling

4.1 Turbulent flow

In fluid dynamics, turbulence or turbulent flow do not allowtiacs analytic study,
and one depends heavily on physical intuition on dimensiamgaments.

Before proceeding to the discussion of numerical methodsuidulent flows,

it is useful to introduce a classification scheme for the apgphes to predicting
turbulent flows. According t®ardina et al(1980 there are six categories, most
of which can be divided in sub-categories. We will introdtioe three most used
categories.

e The first is based on equations obtained by averaging theiegaaf mo-
tion over time, over a coordinate in which the mean flow doesvapy, or
over an ensemble of realizations. This approach is calledpmint clo-
sure and leads to a set of partiaffdrential equations called the Reynolds-
averaged Navier-Stokes (RANS) equations. These equatmnst form a
closed set so the method requires the introduction of appetions, tur-
bulence models.

e The second is the large eddy simulation (LES) and solveshieddrgest
scale motions of the flow while approximating or modellingyatthe small
scale motions. It can be regarded as a kind of compromisecegstwne
point closure methods (RANS) and direct numerical simata{DNS)

e The third is the direct numerical simulation (DNS) in whidtetNavier-
Stokes equations are solved for all of the motions in a teriLilow.

As one progresses down this list, more and more of the tunbui®tions are
computed and fewer are approximated by models. This makelash methods
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more exact, but the computation time is increased conditieraVe are most
interested in the quantitative properties, like pressacefarces on the hull, of the
flow. Therefore we will use the RANS equations for the simuolatn this thesis.

4.1.1 Reynolds-Averaged Navier-Stokes (RANS) Equations

In Reynolds-Averaged approaches to turbulence all theeadstess is averaged
out, in other word all unsteadiness is regarded as part dfuttibellence. On av-
eraging, the non linearity of the Navier-stokes equatiamegyrise to terms that
must be modelled. The complexity of turbulence makes itatithat any single
Reynolds-averaged model will be able to represent all terfiiflows, so turbu-
lence models should be regarded as engineering approgimsatither than scien-
tific laws, sed~erziger and Peti(2002. In the following sections the continuity,
momentum and heat equation will be averaged by using theadeththe book
of Kundu and Cohe(2010.

Averages

Let u(t) be any measured variable in a turbulent flow. Consider a wasa the
"average characteristics" oft) do not vary with time. In such a case we can
define the average variable as the time mean

U= lim tl fo ) u(t)dt. (4.1)

A collection of experiments, performed under identicalefetxperimental condi-

tions, is called ensemble, and an average over the colfeisticalled an ensemble
average, or expected value. The ensemble averagatdfmet can be defined to

be

ut) = % Z ui(t), (4.2)

where N is a large number and titd record is denoted by (t). From this it
follows that the average derivative at a certain time is

du 1 [8u1(t) ) AUA(t) ) AU3(t) . ]

ot N[ ot ot ot
0|1, 2 _ou
_at[Nu(t)+u(t)+ =5

This shows that the operation offi#irentiation commutes with the operation of
ensemble averaging, so that their orders can be intercahga similar manner
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we can therefore have the rules

ot

ot’

b b
fudt:f udt (4.4)

a a

Similar rules also hold when the variable is a function ofcgpa

(4.3)

@
[

A%

b b
fudx:f udx. (4.6)

a a

Averaged Equations of Motion

_au

(4.5)

A turbulent flow instantaneously satisfies the Navier-S¢akguations. However,
it is virtually impossible to predict the flow in detail. Inifsection we shall derive
the equations of motion for the mean state in a turbulent flodvexamine what
effect the turbulent fluctuation may have on the mean flow. Wenasdhat the
density variations are caused by temperature fluctuationg aUnder the Boussi-
nesq approximation, the equations of motion for the insta@bus variables are

ou . o 10p ~ 020
— i— = ——— —0[1 — (T = Tp)]o; 4.7
ot + ulaxj 00 8X| g[ a’( 0)]5I3 + Vaxjaxj s ( )
ol
— =0 4.8
O (4.8)
aT ot T
—+ 00— = . 4.9
ot * uJan Kanan ( )

Instantaneous quantities are denoted by a tilde (*). Levahn@bles be decom-
posed into their mean part and a deviation from the mean:

lji = Ui + U,
ﬁ: P+ p, (410)
T=T+T.

(The corresponding density is= p + p’.) This is called the Reynolds decompo-
sition. The mean velocity and the mean pressure are denyptgoldercase letters,
and their turbulent fluctuations are denoted by lowercaserte This convention
is impossible to use for temperature and density, for whiehuge an overbar for



60 Turbulence Modelling

the mean state and a prime for the turbulent part. The meantitjes U, P, 'IT)
are to be regarded as ensemble averages; for stationarytiewsan also be re-
garded as time averages. Taking the average of both sidegiatien ¢.10, we
obtain

G=p=T'=0

showing that the fluctuations have zero mean.

The equations satisfied by the mean flow are obtained by swiirsgithe Reynolds
decomposition4.10 into the instantaneous Navier-Stokes equati@ng){(4.9)
and taking the average of the equations. The three equdtansform as follows.

Mean Continuity Equation

Averaging the continuity equatiod @), we obtain

0 aU, odu  aU;, ou
- U i) — —— _— = — —_— = O
axi( ) OX; * % 0% * ox

where we have used the commutation rdl&), Usingu; = 0, we obtain
0, _
o
which is the continuity equation for the mean flow. Subtragtthis from the
continuity equation4.8) for the total flow, we obtain

(9Ui

which is the continuity equation for the turbulent fluctoatifield. It is therefore

seen that the instantaneous, the mean , and the turbulésppéne velocity field
are all nondivergent.

0,

Mean Momentum Equation

The momentum equatiod (7) gives

0 0
a(Ui +U)+ (U + Uj)a_xj(ui + U;)
10 _ Pz
=———P+p) -9gl—a(T+T =Tploizs + v— (Ui + u)). (4.11)
£o 0% 0

2
X]
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We shall take the average of each term of this equation. Taeage of the time
derivative term is

B V_ U 9w _9U o _ 0y,
ot ot

ER

where we have used the commutation rdle8), andu; = 0. The average of the
advective term is

0 (9Ui GLT. _an (9Ui
(Uj+uj)(9_)(j(Ui+Ui):Uj(9_Xj+Uj(9_Xj+uja_Xj+uja_Xj
T ey a0

where we have used the commutation rdlé) andu; = O; the continuity equa-
tion du;/0x; = 0 has also been used in obtaining the last term.

The average of the pressure gradient term is

_ 0P 6_5_6P

0
—(P = — = —.
8>q( P 6xi+6xi 0%

The average of the gravity term is

gl — (T + T = To)] = g1 — (T - Ty)],

where we have usell = 0. The average of the viscous term is

Collecting terms, the mean of the momentum equatbhlj takes the form

oy, U oy,

Y] 1P 82U,
ot Jan

a _
Z([GU) = ———— — g1 - (T - To)]6i .
+ (9Xj (U|Uj) 00 (9X| g[ Cl’( 0)]5|3 + Vaxjaxj

(4.12)

The correlatioruy; in equation 4.12) is generally nonzero, although= 0. This
is discussed forward in what follows.
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Reynolds Stress

Writing the termuu; on the right-side, the mean momentum equat#i?) be-
comes

DU; 10P — o oU, ___
= =~ =gl - a(T = To)ldis + - | v~ — T |,
S =~ oL = o7~ Toloa + 5oy uu,]
which can be written as
DU, 1 dtj; —
== _g[l-a(T - Ty)]dis, 4.13
Bt = oo, ~ IL (T~ Tollé (4.13)
where
_ oU;  0U; _
Tij = —Péij +,u(a—le + a_X:) — PoUiU;. (414)

Then we compare equation$.1{3 and @.14) with the corresponding equations
for the instantaneous flow, given by

DU 167, _
20 200 g1 - off - To)l6s
T = =D& + a_al+a_aj

Itis seen from equatiord(13 that there is an additional stresgyU;u; acting in a

mean turbulent flow. In fact, these extra stresses on the freddrof a turbulent
flow are much larger than the viscous contributidU; /0x; + 0U;/X;), except

very close to a solid surface where the fluctuations are ssmallmean flow gra-
dients are large.

The tensor-poUiy; is called the Reynolds stress tensor and has the nine Carte-
sian components

—poU?  —polV  —poUW

Tt =| —poUV  —poV2  —poVW|. (4.15)

—poUW  —poVW  —poW?
This is a symmetric tensor; its diagonal components are abstness, and the
off-diagonal components are shear stresses. If the turbuletadition are com-
pletely isotropic, that is, if they do not have any direcéibpreference, then the
off-diagonal components oft; vanish, and? = v = w2,
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Mean Heat equation

The heat equatior}(9) is

_(T+T)+(U +u) (T+T)—K6622(T+T)
i

The average of the time derivative term is

oT 6T’ T
—T T)=— .
i A S

The average of the advective term is

U; T+T)= U
( +u) (+ ) = 8x,~+
) R Rp—
=Uj— +—(UuT").
Jan+-5X}uJ )
The average of the flusion term is

@ T T oT
6—(T +T7) = 0 + 0 = 0 )
BXJ2 axj? asz asz

Collecting terms, the mean heat equation takes the form

T T 8 — 0T
E-l—ujﬁ—xj-l-a—xj(uj-r)—l(—]

which can be written as
DT @ aT_ S
Dt 6xJ '

Multiplying by poC,, we obtain

where the heat flux is given by

.
Q; :—kg— + poCp uT
Xi

J(9Xj Jan ‘6m

(4.16)

(4.17)

(4.18)
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andk = poCyk is the thermal conductivity. Equatiod.l§ shows that the fluc-
tuations cause an additional mean turbulent heat flyxGhuT’, in addition to

the molecular heat flux ofkvT. For example, the surface of the earth becomes
hot during the day, resulting in a decrease of the mean teatyrerwith height,
and an associated turbulent convective motion. An upwaodufding motion is
then mostly associated with a positive temperature fluoagiving rise to an
upward heat fluyoCpowT” > 0.

4.2 Turbulence Models

To obtain the Reynolds-Averaged Navier-Stokes (RANS) #gns, we have used
the Navier-Stokes equations for the instantaneous veglaoid pressure fields are
decomposed into a mean value and a fluctuating component.eshking equa-
tions for the mean quantities are essentially identicah® driginal equations,
except that an additional Reynolds stress tensor, seeieqtly, now appears
in the momentum transport equation.

The challenge is thus to model the Reynolds stress tepgoterms of the mean
flow gquantities, and hence provide closure of the governougagons. A basic
approach that is used is the

e eddy viscosity models.

It is widely acknowledged that turbulence models are inergresentations of
the physical phenomena being modelled, and no single embalmodel is the
best for every flow simulation. Consequently, it is necessaprovide a suite of
models that reflect the current state of the art.

By using the notation of the book &erziger and Peti(2002 the averaged conti-
nuity and momentum equation can, for incompressible flowlsaut body forces,
be written in tensor notation and Cartesian coordinates as:

d(pu)
-0, 4.19
v (419)
B(pu_) ap HT,J
_ 4.20
" ox (p””’+p” ) Tox T ax (4.20)
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where overbar is the time averaged value and fluctuationtddnwith (') and
where ther;; are the mean viscous stress tensor components:

_ ou;  0u;
= “(ax, M) (4.21)

Finally the equation for the mean of a scalar quantity can tigem:

5‘(p¢)

7 i)

4.22
ax,( 0X; ( )

i+ 9)-

4.2.1 The k-epsilon turbulence model

To close the set of equations we have to introduce a turbelerclel. To see what
a reasonable model might be, we note, that in laminar flowesrggndissipation
and transport of mass, momentum and energy normal to trendirees are medi-
ated by the viscosity, so it is natural to assume that ffeeeof turbulence can be
represented as an increased viscosity. This leads to thewsttbsity model for
the Reynolds stress:

ou  oup\ 2
— = =pdii kK, 4.23
pU ,Ut(axj ox ) 3p i ( )
and the eddy-diusion model for a scalar:
_ o
—pU ¢ =T—. 4.24
puo Bx (4.24)

In equation 4.23, kis the turbulent kinetic energy:

kK==-uu = —(u'u' + ULy + UpUy). (4.25)

The transport equation féris derived in the book diVilcox (2006 and continue
as follows:

oK) dpuik) 9 ( oKy 9 (p O, 6ui’ o
— '’ |- . (4.2
o ax,( ax,) ax,(zulu'“'+p“1) U o o (420)
and the transport equation feis
d(pe) O(puje) € € 0 ([ Oe€
— CuPyt — pCs —(——). 4.27
ot - 8Xj ! kk Ploe2 k - 8Xj O¢ an ( )
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In this model, the eddy viscosity is expressed as:

k2
Uy = pCﬂ:. (4.28)

This k-epsilon model is based on equati@gn2@ and @.27) and contains five
parameters; the most commonly used values for them are:

C,=009 C, =144 C,=192 o0(=10, o.=13 (4.29)

4.2.2 The k-omega turbulence model

The second most used commonly used model is the k-omega navdghally
introduced by Siman but popularized by Wilcox. The k-omega model uses the
turbulent kinetic energy equatiod.g6 but it has to be modified a bit:

d(pk) . d(pujk) 0 iy \ Ow
— P - pB'k —[( —)—]. 4.30
VeI e v | G s (4.30)

Thew equation as given bwilcox (2006 is:

d(pw) O(pujw) w , 0 Ut \ 0w
= a—Py - — — 4.31
T e +axj[(“+ ;,)ax,-]’ (4.31)
where the eddy viscosity is epressed as:
k
[ = p—. (4.32)
w
The codficients that go into this model are:
5
a=—, B=0075 B'=009 or=0,=2 €=pwk (4.33)

9

The numerical behavior of this model is similar to that thegsilon model.



Chapter 5
Simulation set-up in STAR-CCM+

In this chapter we develop the simulation set-up. In the f&atman we will use the
computational fluid dynamic(CFD) simulation tool STAR-CE&M The simula-
tion is done on a SWATH wind turbine service vessel desigryeddnish Yachts.
We would like to find the resistance of the vessel as it movestilinvater at the
speed 8-24 knots.

In the following sections theory of thefiierent tools and concepts used in STAR-
CCM-+, will be presented in addition to the set-up for the still @gterformance
simulation.

5.1 Introduction

STAR-CCM+ is based on object-oriented programming technology. Ipeci-
cally designed to handle large models quickly affitently using a client—server
architecture that meshes and solves and post-processesbjdct-oriented na-
ture of the code can be seen in a user interface. An objecignemvided for
the simulation, containing object representations offadl data associated with
the simulation. STAR-CCM also provides us with a user guide, €&l@-adapco
(201D.

5.2 3D-CAD Modeller

We start with the 3D-CAD modeller which is a feature-basechpeetric solid
modeller within STAR-CCM- that allows geometry to be built from scratch. The
geometry created with 3D-CAD is stored as 3D-CAD modelscdbodies, which
can subsequently be converting to geometry parts for iateyrwith the meshing
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and simulation process. The bodies represent the indivghlal objects that
make up the 3D-CAD model. In our case we already have a 3D-Cédngtry
of the vessel, see Figukel The 3D-CAD geometry can be imported to STAR-
CCM+ and modified afterwards.

Figure 5.1: The SWATH(Small Waterplane Area Twin Hull) Wittbine Service
Vessel.

The dimensions of the twin hull are given in TaBld below. The twin hull is
24.000 meter long, 10.600 meter wide and the height is 5.38@m

Coordinate Corner 1 (meter) Corner 2 (meter)

X 0 24
y -5.29997406 5.29997406
Z 0 5.37993214

Table 5.1: Dimensions of the twin hull.

As we are restricted to only use one processor for the simuolate would like

to simulate the twin hull by using one of the hulls and a synmnefane. The
symmetry plane will maintain some of the physicfieets the hulls have on each
other and reduce the simulation domain and the simulatioe,tdue to smaller
mesh.

The coordinate system is fixed in the middle of the twin hulevdz = 0 is the
bottom of the twin hull and the direction of heaves= 0 is located at the end of
the stern and is the direction of surge and 0 is in the middle of the hull and is
the direction of sway.
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First one of the hulls is extruded away by using the z plane aty = 0, which
is the symmetry plane of the twin hull. Secondly the top of tiven hull from
z = 3.4 is extruded away by using the- y plane atz = 3.4, see Figur®.2

The dimensions of the hull are given in Tal2 The width of one hull is 2.694
meter and the height is 3.400 meter.

Z

ko

Figure 5.2: One hull of the SWATH wind turbine service vessel

Coordinate Corner 1 (meter) Corner 2 (meter)

X 0 24
y 2.60611722 5.29997406
z 0 34

Table 5.2: Dimensions of the hull.

As we did the first 3D-CAD geometry importation of the 3D-CAGHS file,
some of the bodies were missing. The bodies were manualigwedand used in
the simulation work. After some discussion with CD-adaghe,producer of
STAR-CCM+, we found that there were some problems with the 3D-CAD
IGES-importer for the STAR-CCM version 7. The problems were resolved by
using an earlier version of Star-CGMVersion 6 was suitable for solving the
problems with the 3D-CAD importation. After a successfult@BD

importation, the work could continue.
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5.3 Geometry part

After the 3D-CAD model bodies are created from the CAD imatoh and the
two extrudes, the next step is to convert the 3D-CAD bodiggetometry parts. A
geometry part represents an object or collection of obgbetiscan be used as the
input geometry for the meshing tools. Each geometry partigasface. The sur-
face can be split by patch into several surfaces. This is flmmthe hull because
we want diferent meshing set-ups for thef@rent surfaces. The surfaces will be
presented later, after the surfaces have been converteditalaries, in Tabl&.4
and Figures.7.

In this section we also specify the simulation domain. We usk the same sea
level as in the still water performance test 2.525, done by Force Technology,
called SWATH mode. We specify one domain for the water andfonair by
creating 2 blocks surrounding the hull and that coincideseatlevel.

The block for the air coincides with the top of the hulkat 3.4 providing closure

of the hull geometry. The second block with water coincidéh whe sea level

z = 2.525 and continue in the negative directibre 2.525. After several simu-
lations, by looking at boundanyfects in the solutions and increasing the blocks
sizes until the we get small contribution from the boundanee end up with the
dimensions given in Tabl®.3 The blocks are 54 meter long and 15 meter wide.
The total height of the blocks is 16.4 meter.

Coordinate Corner 1 (meter) Corner 2 (meter)

Water

X -20 34

y 0 15

Z -13 2.525
AIr

X -20 34

y 0 15

Z 2.525 3.4

Table 5.3: Dimensions of water and air blocks.

The dimensions of the simulation domain, seen from the sidalze front, are
shown in the Figure§.3and5.4.
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AIRPHASE
, 54.000 |
s T 0.875
20.000 — 10.000
15.525
WATERPHASE 13.000
E.‘(

Figure 5.3: Dimensions of the simulation domain seen froenside.

AIRPHASE
15.000

2.606 4‘ 9.700

WATERPHASE

[‘i_.."

Figure 5.4: Dimensions of the simulation domain seen froafitbnt.

Before we can convert the geometry parts to regions and fgpbe boundary
conditions, the blocks must be split by patch from one serflac each block
to six surfaces. We are only able to make one boundary conditer surface.
The two surfaces that coincide at sea level are deletede sirecfree surface is
specified in the physics models. To the end the hull and thebiexcks with 5
surfaces each are assigned to one region.

5.4 Region and boundaries

The regions are volume domains in space that are completetpunded by
boundaries. They are not necessarily contiguous, and sceetized by a con-
formal mesh consisting of connected faces, cells and esttiss the hull and the
2 blocks have been assigned to one region for all parts anbaunedary per part
surface, the next step is to define the boundaries, see Faghir&STAR-CCM+
provides us with the following boundaries for our problem:
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e Flow-Split Outlet
e Mass flow Outlet
e Overset Mesh

e Pressure Outlet
e Stagnation Inlet
e Symmetry Plane
e \elocity Inlet

e Wall

The boundaries of the hull are defined as wall with no slip dood

The next step is to define the boundaries of two blocks. Waketr.and Air.Inlet
are defined as velocity inlet. Water.Outlet and Air.Outlet defined as pressure
outlet. Water.Symmetry and Air.Symmetry are defined as sgtnnplane. Wa-
ter.Side and Water.Bottom are defined as wall with no sliglten. Air.Side and
Air.Top are defined as wall with slip condition.

-\\\‘ x ///
¥ s —
e —

\\\\\L-j//

Figure 5.5: Boundaries of the two blocks.
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5.5 Surface mesh

After the boundaries are specified, the next step is to cieataface mesh. A
surface mesh is a discrete representation of the geomettng aidividual regions
that will be used for the volume mesh generation. It is madaa#s and vertices.

The majority of the time spent in industry on a CFD projectissally devoted to
successfully generating a mesh for the domain geometrysande of the most
important steps during pre-process stage after the definiti the domain geom-
etry, se€lu et al.(2007).

Ideally, the surface mesh should have the following proggrt
e Closed - Contains no free edges or mismatches.
e Manifold - Edges are shared between no more than two triangle
e Non-intersecting - The surface does not self-intersect.
The quality of triangle faces is also important. The surfstoeuld ideally contain:
e Equilateral sized triangles.
e Gradual variation in triangle size from one to the next.
e No sharp anglégsurface folds etc. within the triangle proximity sphere.
STAR-CCM+ provides us with two dferent surface meshing types:

Surface remesher The surface remesher is used to re-triangulate an exisiing s
face in order to improve the overall quality of the surfacd aptimize it
for the volume mesh models.

Surface wrapper The surface wrapper can be used to provide a closed, manifold
non-intersecting surface when starting from poor quali§DCdata. It is
typically used when the imported surface includes problsnch as:

Multiple intersecting parts

Missing data in the form of holes and gaps

Surface mismatches

Double and internal surfaces

Overly complex geometry with too much detail
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In the start of the surface mesh process, we give all the lagsishown in Fig-
ure 5.7 a mesh set-up as shown in Taldgl. Afterwards the surface mesher is
chosen.

To obtain the best surface mesh for our analysis, we use tifi@ceuremesher,
chosen in the mesh continua set-up, with a base size of 0.@5.nMdter the mesh
is created, we must check the quality of the surface. Fortdisis we use the sur-
face repair tool to run a diagnostic of the mesh. The meshdskad for pierced
faces, poor quality faces, close proximity faces, free s@ge non-manifold ver-
tices.

The mesh set-up gives several thousands of poor qualitg fatese proximity
faces and free edges. By using the auto-repair tool, we dectalvepair face
quality, face proximity and self-intersections, but not tinee edges. The free
edges must be fixed manually. This is a job too large to handle.

It seems like STAR-CCM is not able to read the 3D-CAD geometry for the
imported 3D-CAD twin hull file. A solution to the problem is tonsider the defi-
nition of the geometry parts. Each part should have a gearaktolume, not just

a surface. When converting the 3D-CAD geometry bodies tangtiacal parts,
this problem might occur. Therefore we will try to combinétake parts to one
part by using imprint, to ensure that the interfaces betwbherparts are created
correctly with the result of no free edges. This procedurs atseempted with the
base size of 0.1, 0.05, 0.02 and 0,01 meter. Unfortunatelstivgot a lot of free
edges.

Therefore we will do a new attempt by using the surface wrappel, and a
base size of 0.05 meter. With this meshing set-up we did rnorge edges, but
only poor quality faces and close proximity faces that camdpaired with the
auto-repair tool. Unfortunately the mesh was far from eqaahe 3D-CAD ge-
ometry. This is the problem with the surface wrapper.

We had to do the same process with a lower base size. Afteradenereases
of the mesh resolution we get a suitable mesh with a base gird 6.01 meter
and over 500 000 faces. This resulted in over 20 millionssca$l we make the
volume mesh. A cell number under one million is desirablee $hlution is to
define an appropriate surface mesh size for each boundaheatgion by ad-
justing the relative minimum size and relative target sitee sizes are defined as
percentage of base size.
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For obtaining a desirable surface mesh we must try seversthimg set-up. We
start with low resolution for each boundary and create thhéasa mesh and the
volume mesh. After several attempts we get a useful surfaashmwith a good
resolution at the critical places, see Figbté. The base size is set to 0.6 meter
and the meshing set-up for each boundary is given below ite . Some of
the boundaries are shown in Figuser. There are still some faces that do not
match the 3D-CAD geometry, but the surface mesh with 12284é< is consid-
ered good enough for modelling the physics of our problem.

Figure 5.6: The surface mesh of the hull.
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Boundary Relative minimum size Relative target size
Percentage of Base Percentage of Base
Base size 0.6 meter
Fin.Shell 5 10
Hull.Bau 2.5 5
Hull.HoleBacklInside 5 10
Hull.HoleBackOutside 5 10
Hull.HoleFrontinside 2.5 5
Hull.HoleFrontOutside 2.5 5
Hull.HullSideBottom 7.5 30
Hull.HoleSide 5 20
Hull.HullTop 10 30
Hull. Tunnel 12.5 50
Air.Inlet 10 20
Air.Outlet 10 20
Air.Side 100 200
Air.Symmetry 10 20
Air.Top 30 50
TopBracketBack.TopBracketBack 10 30
TopBracketBack.TopBracketBackAngle 5 10
TopBracketFront. TopBracketFront 10 30
TopBracketFront. TopBracketFrontAngle 2.5 10
Water.Bottom 100 200
Water.Inlet 10 20
Water.Outlet 10 20
Water.Side 100 200
Water.Symmetry 10 20

Table 5.4: Boundary mesh set-up.
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Hull.HullTop
TopBracketBack. TopBracketBackAngle
TopBracketBack.TopBracketBack

TopBracketFront. TopBracketFrontAngle
TopBracketFront. TopBracketFront

Fin.shell Hull.Bau
3 Hull.HoleBacklnside Hull. Tunnel

lr s Hull. HoleSide Hull.HoleFrontinside
Hull.HullsideBottom

Figure 5.7: Boundaries of the hull. Not all boundaries am@sh

(a) Hull.HoleBackInside. (b) Hull.HoleFrontinside.

Figure 5.8: The boundaries of the holes on the inside of tile hu

The faces that do not match the 3D-CAD model migffieet the solution. We

have some small bad faces in the four holes and also at thehElhboundary,

see Figuré.9. We have tried to reduce the bad faces by using a higher tesolu
for the mesh at these areas, but we get even more bad facegher hesolutions.

The bad faces can be fixed manually, but there is too many of.théerefore we

will continue the simulation with these faces.

Figure 5.9: Bad surface mesh of Hull. HoleBackInside.
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5.6 Volume mesh

After the surface mesh is created, the volume mesh can btedréa the simu-
lation domain. The volume mesh is the mathematical desongif the space or
geometry of the problem being solved. It is in turn consedadf the following

mesh entities: vertices, faces and cells.

In order to generate the volume mesh, the following stepfotimved:
1. Prepare the surface mesh according the requirement3AR-ECM-+.

2. Select the desired volume mesh model and the optionah paiger model,
extruder model andr generalized cylinder model.

3. Input the appropriate meshing values for the selectecetaod
4. Launch the volume mesh generator.

5. Visualize the volume mesh representation and check tisb oqueality statis-
tics.

6. Remove any invalid cells if they exist.
7. Continue with the simulation set-up.

The surface mesh is already made according to the requitsriogiS TAR-CCM.
Therefore the next step is to select a volume mesh model. ARSTCM+ we
have four diferent types:

e tetrahedral mesher;
e polyhedral mesher;
e trimmer;

e thin mesher

The polyhedral mesher and the trimmer are the most suitalilene meshers for
our problem. In the simulation we will use the polyhedral hrexs The polyhedral
cells created typically have an average of 14 cell faces.pbhghedral core mesh
density can be increased or decreased by using the voluntedwrasity factors.
Volumetric controls can also be included to locally inceeas decrease the mesh
density based on a range of prescribed shapes. For the fiusb@anesh the val-
ues are set to default.
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The prism layer mesh model is also used in conjunction witbra golume mesh
to generate orthogonal prismatic cells next to wall bourdarThis layer of cells
is necessary to improve the accuracy of the flow solution.ignptayer is defined
in terms of its thickness, the number of cell layers withirthie size distribution
of the layers, and the function used to generate the disimitbuThe prism layer
mesh model is set to default with two prism layer.

The volume mesh could now be generated. The first time we geish mvith very
large resolution, small cells near the surface of the hudlglightly larger further
out. The high resolution will result in long computationehé for the simula-
tion. After having adjusted the meshing set-up of the serfaesh several times,
mainly decreasing the mesh resolution at the boundarieSide, Water.side and
Water.Bottom and increasing the resolution for the Air.bopindary, we obtain a
mesh with a good resolution near the hull and increasingscadinear the bound-
aries of the blocks with water and air.

The volume mesh is still not suitable for our problem. Wd sgkd a good resolu-
tion of the mesh at the free surface. This is hardly done witlfiecting the rest
of the mesh. Prism layers will give a better mesh at sea |léeel the polyhedral
cells where some of the cells stretches over the sea levebttued below. This

can create mixing of the two phases. The problem is solvedefinidg several

prism layers from the Air.Top boundary stretching underlseal.

The prism layers should travel at the same height from thet toloutlet starting
and ending at the same height. In STAR-CENhe prism layers are generated
with respect to other nearby boundaries. Therefore thendagers start from the
intersection of the Air.Top plane and Air.Inlet and congmiownwards crossing
the water level, see Figug210and5.11 Different prism layer set-up have been
attempted, but without removing thistect. The prism layer set-up is given in
Table5.5.

The meshing process is a major part of the CFD simulationsn@ to the skills
of the CFD user to design a mesh that is a suitable comproreiseebn the de-
sired accuracy and solution cost, Seeet al.(2007). For our simulation the final
mesh quality is satisfying and no invalid cells have beeméburhe simulation is
ready for analysis and the models and solvers for the probkendefined in the
next sections.
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Figure 5.10: Volume mesh at cross section in the middle ohthie

Figure 5.11: Volume mesh at cross section outside the hull.

Boundary Number of  Prism layer Prism layer

prism layers stretching (ratio) thickness
Air.Top 50 1 Absolute size: 10 meter
All other  Default:2 Default:1.5 Default: 33% of base

Table 5.5: Prism layer mesh set-up.

5.7 Physics models

In this section the physics set-up for our problem is defifidte physics contin-
uum contains a selection of physics models, such as a chasesdlver, mate-
rial models, steady or transient time model, a turbulencdehand so on. Each
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physics continuum represents a single substance thateyiiésent in all regions
to which the physics continuum applies.

A physics model in STAR-CCM defines how a physical phenomenon in a con-
tinuum is represented. Essentially, physics models ddimetimary variables of
the simulation such as pressure, temperature and veloaityvhat mathematical
formulation will be used to generate the solution.

In situations where transport equations are required, taetrwill provide these
equations to the solvers. This means that model properilesften include co-
efficients relevant to the transport equations, as well as paerelevant to the
discretization approach.

Physics models used in the simulation

In this section the dierent physics models for the problem is chosen and de-
scribed. A summary of the physics models for our problemvsigin Table5.6.

In the start of the model selection we choose a Space modeltollowing mod-
els are provided: Axisymmetric, Shell three dimensionak€eE dimensional and
two dimensional. The Three dimensional model is suitabteofo problem. In
addition the Gradients model is chosen automatically.

Next we are asked to choose a Time model. The following maatelprovided:
Explicit unsteady, Harmonic balance, Implicit unsteadg &eady. The Implicit
unsteady model is most suitable for our problem. The Steaogeftwas tried
first, but with the result of divergence.

Further we choose a Material model. The following modelsprmided: Gas,

Liquid, Solid, Multi-component gas, Multi-component liguand Multiphase mix-

ture. The Multiphase mixture model is chosen for simulatimg water and air
phases. In addition the Multiphase interaction and Eutemaltiphase model are
chosen automatically.

Next we must specify our viscous regime model. The followimgdels are pro-
vided: Inviscid, Laminar and Turbulent. We have a turbulsow, therefore the
Turbulent model is chosen for the viscous regime.

Next we choose the Turbulence model. The following modets @ovided:
The Detached Eddy Simulation (DNS), Large Eddy SimulatioBS) and the
Reynolds-Averaged Navier-Stokes (RANS). The Reynoldsraged Navier-Stokes
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model is chosen.

After having specified a turbulent flow we must choose whichrieéls-Averaged
turbulence model we would like to use. The following modetks provided: K-
epsilon turbulence, K-omega turbulence, Reynolds strebsifence and Spalart-
Allmaras turbulence. After recommendation of Wilcox, $&#cox (2009, we
choose the K-omega turbulence model in addition to the $&{er) K-omega
model, which apply the K-epsilon turbulence model far fiehdl ahe K-omega
model near the wall. The Ally Wall Treatment is chosen automatically.

In the end we choose the energy model Segregated fluid isatihesince we
have small temperaturefteérences in the flow. The VOF waves model is also
chosen for capturing the physics of the waves that will beeggtied when the hull

IS moving.

Physics models

Ally + Wall Treatment
Eulerian Multiphase
Gradients

Implicit unsteady

K-Omega Turbulence
Multiphase Equation of State
Multiphase Interaction
Multiphase Mixture
Reynolds-Averaged Navier-Stokes
Segregated Flow
Segregated Fluid Isothermal
Three Dimensional

SST (Menter) K-Omega
Turbulent

VOF Waves

Volume of Fluid (VOF)

Table 5.6: The physics models used for our problem.

In the proceedings some of the physics models are explafdtitional physics
set-up is given to some of the models.
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ALL y + wall treatment

All y* wall treatment is automatically selected when we seledti®enega turbu-

lence model. The wall treatment in STAR-CGNk the set of near-wall modelling
assumptions for each turbulence model. This term avoidiis@mn with the term

wall functions, which typically refers to only one type of Waeatment. Three

types of wall treatment are provided, depending on the tartme model:

e The high-y* wall treatment implies the wall-function-type approach in
which it is assumed that the near-wall cell lies within thgdathmic re-
gion of the boundary layer.

e The low-y* wall treatment is suitable only for low-Reynolds number tur
bulence models in which it is assumed that the viscous sablayroperly
resolved.

e The all-y* wall treatment is a hybrid treatment that attempts to emsulat
the high- y wall treatment for coarse meshes and the low- ytwedtment
for fine meshes. It is also formulated with the desirable atiaristic of
producing reasonable answers for meshes of intermedisdéutmn (that
is, when the wall-cell centroid falls within the fiar region of the boundary
layer).

Both the high-y* and all-y* wall treatments share a common need to specify
profiles of the mean flow quantities in the near-wall regiotuolbulent boundary
layers, and these profiles are termed wall laws.

A wall law is a mathematical description of mean flow quaesfisuch as ve-
locity, temperature and species concentration, in turtildeundary layers. Two
types of wall laws are used in STAR-CGM

e Standard wall laws, which are slope-discontinuous betwleetaminar and
turbulent profiles;

¢ Blended wall laws, which include a fer region that smoothly blends the
laminar and turbulent profiles together.

The wall laws are not user-selectable, but have been chesedlon the behavior
of the turbulence model.
Eulerian multiphase

The eulerian multiphase model is a placeholder for the ghasmultiphase flow
modelling. An eulerian phase in STAR-CGMs a phase modelled in an eulerian



84 Simulation set-up in STAR-CGM

framework. The definition of each eulerian phase includes#t of models appli-
cable to its material; two étierent materials will constitute twoftierent Eulerian
phases. One for water and one for air.

The following list outlines the procedure for creating ardiing eulerian phases:
e Creating a new eulerian phase
e Selecting phase models
¢ Replacing the phase material
e Customizing material properties

For the water phase called phase 1 we choose phase modéls dignstant den-
sity, and turbulent. For the Air phase called phase 2 we ahphase models gas,
iIdeal gas and turbulent. Phase material and propertiegtte default.

Gradients

The gradients method select the gradient and limiter math®tie gradient and
limiter methods are set to default Hybrid Gauss-LSQ and s&akishnan.

Multiphase equation of state

A eulerian multiphase requires its own equation of stateehtmldefine how the
density of the material will be computed. The water is defimeth constant
density and the air is defined as an ideal gas.

Multiphase interaction

After the eulerian multiphases have been specified the negtis to define the
phase interactions. The interactions are set to default.

Multiphase mixture

The multiphase mixture material model is for simulating wvanore immiscible
phases, where each phase is composed of a pure gas or litpsteusce, such as
air and water in our problem. Default mixture is used.
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Segregated flow

We can choose between segregated or coupled flow models eglregated flow
model uses less memory than the coupled. The coupled flowInsdsed for
compressible flow, natural convection problems and flows Vaitge body force
or energy sources. The segregated flow model is for incorsitesor mildly
compressible flows. The segregated flow model is suitabledonputing the
physics of our problem and for keeping the computationadusses as low as
possible and is therefore used. If computational resow@esot an issue, we can
choose the coupled flow model for incompressible/angothermal flows.

Segregated fluid isothermal

The segregated fluid isothermal uses a constant settingrigqudrature. For this
problem where the temperature variations are small andgieigl.

SST (Menter) K-Omega

The SST (Menter) k-omega turbulence model is automaticalgcted when we
select the k-omega turbulence model. Menter’s turbulenodei seeMenter
(1994, is similar to the standard k-omega model, but adds aniadditnon con-
servative cross-gliusion term containing the dot produék - Vw for reducing the
problem of sensitivity to free-stredimlet conditions. Inclusion of this term in
the w transport equation will potentially make the k-omega mayie¢ identical
results to k-epsilon model. Menter suggested using a bbgnfdinction (which
includes functions of wall distance) that would include tness-difusion term
far from walls, but not near the wall. This approadfeetively blends a k-epsilon
model in the far-field with a k-omega model near the wall.

VOF waves

VOF waves are used to simulate surface gravity waves on &fligt-heavy fluid

interface, where air is the light fluid, and need to be usedmunction with the

volume of fluid (VOF) multiphase model in STAR-CGM When created, VOF
Waves provide field functions that can be used to initialime YOF calculation
and to provide suitable profiles at boundaries. We do not raakanitial wave.

The waves will be crated as the water and air flows past the hull

Volume of Fluid (VOF)

After the eulerian multiphase model is used to define phasekthe multiphase
interaction model is used to define phase interactions, welvaose the approach
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for modelling the multiphase flow: The volume of fluid (VOF)rhogenous mul-
tiphase model, which assumes a common velocity, pressdreearperature field
for all phases. The models variables are set to default. fiteeface between two
immiscible fluids is called a free surface. The VOF multighasodel allows us
to resolve the position of the free surface.

The VOF model makes use of multiple eulerian phases and &dsssary to set
the initial volume fraction of each phase. This is done byldpg a field function

to the initial condition called volume fraction for each gbaThe field function is
located under the tool node i STAR-CGMPhase 1 is the water phase and phase
2 the air phase. The field functions for water and air is defasefbllows:

Waterfraction: Definition= ($$Position[1k=2.525)?1:0
Airfraction: Definition= ($$Position[1}2.525)?1:0

5.8 Solvers

The solvers used for the problem is selected automaticaliyi the physics mod-
els that are already chosen. The solvers used for the prabiem

e Implicit unsteady

e Wall distance

e Damping boundary distance
e Segregated flow

e Segregated VOF

e Segregated energy

e K-Omega turbulence

o K-Omega turbulent viscosity

Implicit unsteady solver

The implicit unsteady solver is activated by the implicisteady model. In the
implicit unsteady approach each physical time-step ire®@Bome number of inner
iterations to converge the solution for that given instaintime. These inner
iterations may be accomplished using the same implicignatgon or explicit

integration schemes used for steady analysis. The physicalstep size used
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in the outer loop is specified by us, whereas the inner itmmatare marched by
the integration scheme using optimal local steps as deteanby the Courant
number.

Wall distance solver

Wall distance is a parameter that represents the distaopedrcell centroid to
the nearest wall face. It is required by all turbulence med&he wall distance
computation is controlled by the wall distance solver.

The wall distance solver controls the wall distance sotufio all the continua
for which wall distance is calculated. It becomes availatthen turbulence mod-
els are activated. The wall distance calculation takesgacing the initialization
step of the simulation.

Damping boundary distance solver

Damping boundary distance solver is activated by the VOFewavodel. The
damping boundary distance solver controls the damping denyrdistance solu-
tion in all the continua for which damping boundary distaiscealculated.

Segregated flow solver

The segregated flow model solves the flow equations, one &r@mponent of
velocity, and one for pressure, in a segregated or uncoupéther. The linkage
between the momentum and continuity equations is achievédanpredictor-
corrector approach. The complete formulation can be desdras using a collo-
cated variable arrangement and a Rhie-and-Chow-typeypeegslocity coupling
combined with a SIMPLE-type algorithm.

The segregated flow solver controls the solution updatehersegregated flow
model according to the SIMPLE algorithm. It controls two &idehal solvers:

e Velocity solver

e Pressure solver

Velocity solver

Controlled by the segregated flow solver, the velocity sobantrols the under-
relaxation factor and algebraic multigrid parameterslierrhomentum equations.
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More specifically, it solves the discretized momentum eiguab obtain the in-
termediate velocity field.

Pressure solver

Controlled by the segregated flow solver, the pressure sotv&rols the under-
relaxation factor and algebraic multigrid parameters Far pressure correction
equation. More specifically, it solves the discrete equiibo pressure correction,
and updates the pressure field.

Segregated VOF solver

The segregated VOF solver controls the solution updatehferphase volume
fractions. It solves the discretized volume-fraction aymation equation for each
phase present in the flow.

Segregated energy solver

The segregated energy solver controls the solution updatbd segregated fluid
energy model. It is used to set the under-relaxation factdradgebraic multigrid
parameters for the energy equation. Default parametenssai

K-Omega turbulence solver

The k-omega turbulence solver controls the solution of toenlega model in all
the continua for which the model is activated. For each parted variablek and
w , the basic steps involved in the solution update are asaslio

1. Update boundary conditions.

2. Compute the reconstruction gradients and cell gradients.

3. Create the linear system using the discretization methedsribed in the K-
Omega model formulation.

4. Compute the residual sum for the purpose of monitoring cagaree.
5. Solve the linear system.

6. Update the transported variable field.
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K-Omega turbulent viscosity solver

The k-omega turbulent viscosity solver controls the upddtihe turbulent vis-
cosity.

5.9 Analyzing

In the simulation process we run 9 simulations for respebti, 10, 12, 14, 16,
18, 20, 22 and 24 knots by adjusting the inlet velocity of Wikt and Air.Inlet.
By using monitor plots, reports, scalar and vector scené¢iseo$olutions, we are
able to control that velocities, forces, pressures, etee halievable values. We
can also control whether fluid variables such as velocitymedsure are smoothly
distributed over the body and vary rapidly only where expéct

By using residual monitor we are able to follow the convergeaof the solutions.
The residuat in each cell represents the degree to which the discretieati®on

is not completely satisfied. In a perfect converged solytioa residual for each
cell would be equal to machine rountf.oTo gauge convergence and the progress
off the solution, it is useful to monitor a global quantity givan

ncells
n

Residual monitors keep a record of this global quantity sxheof the transport
equations solved in the continua within the simulation.

The results will be compared with the results from the Foreehhology’s still

water performance tests, where a scale model has been us¢dtalresistance
measured. The set-up for the still water performance tegiven in the next
section.

5.10 Force Technology still water performance test

Model description and set-up

The vessel is a model of a fast twin screw SWATH wind turbinerise vessel
with one open shaft propeller and 2 brackets on the shaftftineach hull. To
keep the weight of the model down, the hull was made of foamfaeed by
wood stringers, and protected by yellow paint. A wooden dea& mounted also
to give additional strength of the model. Rudders were madduminium. Shaft
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brackets were produced in brass. The set-up for the testslevaating from the
standard set-up they have for still-water tests, due topgheial kind of vessel they
were testing. Two poles were mounted in each hull, allowimgpitch motion.
The lower point of the poles was positioned at the level ofghaft lines. The
poles were connected to each other with & §tame. A force gauge (measuring
forces on X and Y direction) was mounted on the frame. The eholangement
was then mounted on the carriage in such a way as to allow forehmotion of
the vessel. The model was built in scale 1: 7.376523.



Chapter 6

Simulation results

In this section the results from the nine simulations, fapesctively 8, 10, 12,

14, 16, 18, 20, 22 and 24 knots, will be presented. The restiltse resistance
of the twin hull, the four holes and each of the four holes Wwédlpresented. The
results of resistance on the twin hull will be compared witl tesults from the

still water performance tests Rieu and Kishe{2012. Wave making resistance
will also be discussed. The resistance of the four holesbegiltompared with the
resistance of the hull. We will also analyze how the wateell@side the ballast
tanks will be #ected as the twin hull is moving.
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6.1 Resistance on the twin hull

The simulations have been run 100 time steps and respgci@ehner iterations
per time step, which gives a total of 2000 iterations. We @ntbat the solutions
have converged by looking at the residuals for each sinarafi he residuals for
the 8 knots simulation are given in Figusel
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Figure 6.1: Residuals for simulation at 8 knots. The simaiehas been run 100
seconds, 20 iterations per time step.

In the start of the simulation the phases are spinned up.dives transients and
may be uninteresting. After 800 iterations almost all tla@sients have
disappeared and there are small changes in the residuatise Asnulation
continues to about iteration 1400, the residuals for the Braom equations start
to oscillate. The small oscillations may come from boundsigcts. By running
the simulation further, these small oscillations contiand do not increase. By
controlling the velocities, forces and pressures, we cartls# they have
believable values. We can also see that the velocity andpresire smoothly
distributed over the domain and that there are larger clsaagie bow and the
stern, see Figuré.2for the velocity scene.



6.1 Resistance on the twin hull 93

Velocity: Magnitude (m/s)
1.7686 2.6528 3.5371

Figure 6.2: Velocity scene at 8 knots. Section in the middkae hull.

The results of the resistance of the SWATH wind turbine serviessel are given
in Figure6.3below. Pressure and shear forces are included in the taiataace
for our simulation graph (ForceSTARkomega). The simufai®ddone for one
hull, therefore the forces have to be multiplied by 2 to getfttrces of the twin
hull. We can see that the pressure forces are more domiranthbk shear forces.
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Figure 6.3: Resistance of the twin hull due to pressure aedrsiorces at 8-24
knots. (ForceSTARkomega) is the total resistance.
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The (ForceCONDA4) graph, see Fig@d, is the total resistance results from a

still water performance test, done Ryeu and Kishey2012 for Force

Technology, of the SWATH wind turbine service vessel praliby Danish

Yacht A'S, by using a scaled hull model. The results from the scaletehiwave
been transformed to full scale. We are using the same vésgeh full scale.

Below in Figure6.4we can see a comparison of the total resistance forces in the
simulation (ForceSTARkomega) and the scaled model testé@ond4) where

the values are taken from the force reports, see Tallle

From Figures.4we can see that the resistance of the simulation (ForceSamiega)
at 8 and 10 knots is almost similar to the resistance in thiedecaodel (Force-
Cond4). The simulation only consider pressure and sheaegorin the scaled
model we will have wave making resistance in addition due @negation of
waves as the hull displace water. This will explains soméneflarge resistance
differences when the twin hull is moving at 12-24 knots. By cosréid) wave
making resistance, we can also see that the resistancesfeinttulation (ForceS-
TARkomega) at 8 and 10 knots should be lower as the wave maksigtance
must be added to the results.
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Figure 6.4: Resistance of the twin hull at 8-24 knots
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Speed (knots) ForceCOND4 (kN) ForceSTARkomega (kN)

8 15.8 16.5
10 25.7 25.2
12 61.2 36.0
14 100.6 48.7
16 128.2 63.4
18 142.2 80.1
20 146.3 98.7
22 148.3 119.3
24 162.8 142.3

Table 6.1: Resistance of the twin hull at 8-24 knots

For a general hull at low speeds the viscous resistance @besinand at high
speeds the total resistance curve turns upward dramgtasaivave making
resistance begins to dominate, see Figufe Wave making resistance will be
discussed later.

Total Resistance

Air Resistance

Wave Making Resistance

Total Resistance (Ib)

—

_/ Viscous Resistance

Ship Speed (kts)

Figure 6.5: A typical curve for the components of the totall lmasistance,
Surjo and Adji(2007).

An important element is that the hull in the simulation wak/@ble to move in
the direction of surge, while the scaled model had two mogeeks of freedom,
namely pitch and heave motion. The pitch and the heave muafiibohange the
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wetted area of the hull and may lead to increasing resistanee¢o pressure and
shear forces. As the hull moves at higher speeds we may exgerthat the hull
digs down, due to pressure drop under the hull. The wave rgaksistance may
also increase as the twin hull must displace more water. diitiad the scaled
model has rudders and a main propeller for each hull, thatveitease the
resistance of hull.

Another element that we have to consider, is that the regolts the still water
performance test (ForceCond4), will not be equal to a fldlestest. According
to Dysthe(1992), it is not possible to keep both the Reynolds and the Froude
number equal for the two flows. The viscous friction and theevaaking
resistance can approximately be added together when ¢mg/scaled results to
full scale.

By considering the simulation set-up, there are sever&ifathat will gfect the
solution. Some factors are the meshing set-up, bounddfest® models and
the solvers chosen. There are several ways of meshing amaetsiging set-up in
the simulation may not be the most optimal. Maybe the tettedienesher or the
trimmed mesher, should have been used. Due to time limitsibther mesh was
not tried.

Another consideration is that the simulation domain mdstyi should have
been larger so that the boundaries would make sméfliecteon the solution. In
the simulation we used one of the hulls. By using both hulsnely the twin
hull, we would have got a better physical solution than bygshe symmetry
plane. At the same time this would have lead to longer sinardime for each
simulation.

Regarding the physics models, we could have chosen anatibeténce model,
like the Detached Eddy Simulation (DES) which uses both RAN&LES or
the Large eddy simulation(LES) which solves the largesestetions of the
flow while approximating or modelling only the small scaletrons. The
volume of fluid (VOF) model should be considered. The VOF nhodeates at
thick mixing phase, 2 meter, of air and water outside the, lsek Figuré.6and
even larger after the stern, see Figaré
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Figure 6.6: Volume fraction of the water phase. The secsautside the hull.
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Figure 6.7: Volume fraction of the water phase. The sectoin the middle of
the hull.

The large mixing phase can be reduced by using the sharpfatay in the
Volume of Fluid model (VOF). This was done with the sharpgrfarctors 0.5,

1.0 and 2.0 for the 8 knots simulation with the result of dijerce. Most
probable the mesh is not suited for the sharpentfere For obtaining a sharper
surface we should consider using a new mesh with the shagpéator applied
to the VOF physics model. After discussions with CD-adape®found that the
best mesh setup is to use a trimmed volume mesh. The meshisisolbe
refined by using more cells at the free surface. Due to timgdions, this was
not considered.
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Wave making resistance

Generally most of the energy given by a ship for making waiesansferred

to water through the bow and stern parts. The two wave sysaéthe bow and

stern waves interact with each other, and the resulting svave responsible for
the resistance. For small displacement hulls, such asosaédlor rowboats, wave-
making resistance is the major source of the marine vesagl dr

A simple way of considering wave-making resistance, is tasater the hull in

relation to bow and stern waves. If the length of a ship is tle@fwaves gener-
ated, the resulting wave will be very small due to cancalfgtand if the length is
the same as the wavelength, the wave will be large due to eahaant.

By considering a deep water approximation, the phase spe¢dhe waves is
given by equationZ.92):
g4
= 4 [=, 6.1
c= /5. 6.1)
wherea is the length of the wave argithe gravitational acceleration. Substituting
in the appropriate value faryields the equation:

c~1.34- V4, (6.2)

where the values foc and A are in knots and feet. When the vessel exceeds a
"speed-length ratio”, see equati@3), of 0.94, it starts to outrun most of its bow
wave, the hull actually settles slightly in the water as nasv only supported by

two wave peaks.
cin knots

Jlengthin ft.

As the vessel exceeds the speed-length ratio of 1.34, thelevayth is now longer
than the hull, and the stern is no longer supported by the waesing the stern
to squat, and the bow rise. The hull is now starting to clinsboivn bow wave,
and resistance begins to increase at a very high rat&§aatsky(2003.

Speed-length ratiox (6.3)

By comparing the resistance of the scaled model (ForceCQNDd the simu-
lation (ForceStarkomega), see Fig@d, when the hull moves at 12-24 knots,
we can see that the wave making resistance is an increasingocent of the
total resistance. For a speed at 11.89 knots, the speethlestgp is 1.34 and
the wave making resistance begins to increase at a very htgh mhis is also
confirmed by comparing the scaled model (ForceCOND4) andsittnelation
(ForceStarkomega) at 12 knots. It is clearly that our sitmadoes not cap-
ture this wave making resistance. This fact explains thgelditerences between



6.1 Resistance on the twin hull 99

the scaled model and the simulation for the total resisténoce 12-24 knots.

We can do some roughly calculations of the wave making easigtby finding the
amplitude and the wavelength of the waves generated by theUnfortunately

the free surfaces for all the simulations are verfjusie. By looking at the water
surface at 90% water phase at 8 knots, see Figh®6.10 we can see that hull
generates waves at the side and at the stern. In addition & lveaween the two
hulls is generated, to the right of the hull in Figg8. At the same time we can
see that we have boundarffects from the inlet, side and the outlet. From the
volume fraction of the water phase, see Figaré we can also see that we will
have boundaryféects as the mixingphase of air and water reaches the boundary
at the top. The simulation domain should be larger in eachexd directions.
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Figure 6.8: Water surface at 90% water phase at 8 knots.
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Figure 6.9: Water surface at 90% water phase at 8 knots. hgakti the bow of
the hull.

Figure 6.10: Water surface at 90% water phase at 8 knots.ihga@it the stern of
the hull.

Further we will try to calculate the wave making resistangeising a plane
wave instead of the transverse and divergent waves. The mwaking resistance
can be approximately calculated by finding the amplitudethedvavelength of
the wave. By looking at the water surfaces at 90% water plsasgeAppendiC,
we can find the amplitudes of the waves created between the ftie height of
the water surface at 90% water phaseis1.7 meter for all the simulations. The
values for the depth of the waveszis 0.8 — 1.1 meter. The amplitudais the
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depth of the waves subtracted from the height of the watéaceir The
amplitudes are presented in TaBl2 It is reasonable to think that the amplitude
should increase for increasing speeds. This is not the casled simulations.

The reasons for this, may come from bounddfgas and the fact that the free
surface is very diuse.

Speed (knots) Amplitude (Meter)

8 11
10 1.0
12 0.9
14 0.9
16 0.9
18 0.8
20 0.8
22 0.8
24 0.8

Table 6.2: Amplitude of the waves generated between the htiB-24 knots

Unfortunately we cannot find the wavelength of the waves ftirewater
surfaces at 90% water phase in Appen@ixXTherefore we will consider the case
where the speed length ratio is 1.34, and the resistancasggincrease at a
very high rate, at approximately 12 knots. The waveleng#gisal the ship
length in this case. The wave making resistance is assunieittee diference
between the results, see Tabl4, for the scaled model (ForceCOND4) and the
simulation (ForceSTARkomega) and is approximately 25 kbhis case.

We start with the equatior2(99, which is the time average energy flux, per unit
length of crest due to a single sinusoidal component of wavdrerk.

c 2kH

E(l i sinh2kH)]’ (6-4)
wherek = =, g is the gravityc is the phase speeH, is the uniform depth and
Is the wavelength. The phase speasd given by equation.91),

H
c= w/gﬁtanhZﬂT. (6.5)

Multiplying equation 6.4) with the length of the crest, denotedand dividing by
the hull speed) we obtain the wave making resistarieg,

F-L
RW:T.

F=E Cy= [:—ZLpgaz]

(6.6)
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By using the amplitude = 0.9, given in Table&.2, the wavelengtil = 24 meter,

the uniform depth i¢d = 155 meter and assuming that the length of the crest is
equal the length between the two hulls at the steen8 meter, the approximated
wave making resistand®y at 12 knots can be found. The calculated wave making
resistance for a plane wave at 12 knots is found to be 16 kN¢iwisi almost

10 kN smaller than the assumed wave making resistance. Eanoty a larger
approximated value for the wave making resistance, theiaudplmust be larger.
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6.2 Force comparison

In this section the forces on the four holes, consisting e§pure and shear forces,
for each speed in the interval 8-24 knots will be presentée distribution of the
forces on the four holes will be compared with the force onhihké In the com-
parison of the forces, the force on the hull, the force on the holes and the
force on each of the four holes, are presented in a range oN3060the last 500
iterations, iteration 1500-2000, for each monitor plot ipp&ndixA. The force
reports are written for iteration 2000, see Apper8lig.

First we consider the forces on the four holes, with respethé resistance on
the hull. In Figure6.11we can see at the fierent speeds where the values are
taken from the force reports, see AppenBi{, that the forces on the four holes
are 6.7% to 7.2% of the force on the hull. The area of the foledis 2% of the
area of the hull and 2.5% of the wetted surface, where theedsstirface is 164
and the total area 196insee Tabld3.10. We can state that the forces on the four
holes make a large contribution of the total resistance waipect to the area of
the holes and the hull.
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Figure 6.11: The forces on the four holes with respect togkistance on the hull.
The ratio of the forces on the four holes divided by the fonee¢he hull is shown.

Secondly we consider theftkrence between the forces on each of the four holes
taken from the force reports, see AppenBii. We get the largest contribution
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from the forces on the two holes at the back, see Figut2 Since the area of
the holes at the back is almost twice as big as the area of ths imthe front,
see TableB.10, this is quite natural.
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Figure 6.12: Forces on the four holes at iteration 2000.

By considering the force monitor plots, we can examine hafdinces vary in
time for the last 500 iterations, see AppendixThe variations of forces on the
hull, at low speeds, are mainly caused by the hole Hull. Hatdhside. As we
reach 12 knots, we also get a small contribution from the kol BackOutside
as the force starts to oscillate. The forces on the two halésa front do not
vary in time for the last 500 iterations. In Tal8e83we can see how much the
forces vary in time. The reasons of these variations are likebf because of
turbulence and the bad mesh arefisating the solution, see Figus9. However
these &ects only make a smalttect, 0.3%-0.4%, of the force on the hull.
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Speed (Knots) 8 10 12 14 16 18 20 22 24
Part
Hull.HoleBackinside <25 25 50 75 100 150 150 200 250
Hull.HoleBackOutside 0O 0<25 <25 25 25 50 75 100

Hull.HoleFrontinside 0O O 0 0 0 0 0 0 0
Hull.HoleFrontOutside 0O O 0 0 0 0 0 0 0
Four holes <25 25 50 75 100 150 200 250 300
Hull <25 25 50 75 125 150 200 250 350

Table 6.3: Maximum force dlierences (N) for the 500 last iterations,1500-2000,
at 8-24 knots. The values are taken from the force monitaspioAppendixA
and are presented in a 25 Newton interval.
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6.3 Water level change in the ballast tanks

The ballast tanks in the hull are constructed with open himesea. In this sec-
tion, we will therefore discuss how the water level inside iallast tanks will be
effected due to displacement of water as the hull is moving. énctdculations,
the dimensions of the simulation domain is used, see FigiBand Figure5.4.
We will assume that the sea level does not change féerént speeds. The flow
is assumed to be inviscid, steady and barotropic. Then weisarthe Bernoulli
equation 2.41) to calculate the water level change. First we will use theiowolity
equation to calculate the velocity of the water at the halabe front at position
2 and the back at position 3, see Fig6r&3 By continuity we have that

AU = Aouy = Agus, (67)

whereu is the velocity of the water andl is the cross section of the water at the
actual position. The initial velocity; is given and the velocity at position 2 and
3 is found by equationg(7),

Aiug

Ay
U = =
Ay

and uz = A
3

(6.8)

Sealevel

____________ yara
— )

©) @ @

Figure 6.13: The hull with ballast tanks

As the cross section at position 2 and 3 is smaller with regdpdbe cross
section at position 1, we will have an increase in the vejdmjtthe continuity,
see equationg8). This will lead to a pressure drop at position 2 and 3, which
will decrease the water level inside the ballast tanks. Teegure drop is
calculated by using Bernoulli’'s equatio?.41),
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1 :
Eu U+ P + gz = constant along streamlines (6.9)
P

By assuming that the particles at position 2 and 3 lies on dngesstreamline as
particles at position 1, we have that

1 1
—ul-u1+&+gzlz —U2'U2+&+922. (6.10)
2 0 2 ol

Position 1 will be the reference position. The referencesuees and the reference
height at position 1 is set to zerp; = 0 andz; = 0. As position 2 and position

1 are at the same heiglz, = 0. Rewriting equationg.10), the pressure drop can
be calculated

1
P2 = 5p(Us - Uy — Uz - Up). (6.11)

The pressure drop will reduce the water level inside theabathnks. The water
level change, denoted by is given by

_P

hy = =. 6.12
2= (6.12)

The water level change at position 3, is calculated in theesaay. The cross
section at position 2, is larger than the cross section atipps3. Therefore we
will have a larger water level change in the ballast tankbatbiack at position 3,
see Figureé.14

The cross section used at the inlefis= 233n7. The cross sections at the ballast
tanks in the front and the back are respectiviy= 230n? andA; = 229nf,
where the cross section at the inlet has been subtracteddbe sections of the
hull that displace water at position 2 and 3. The locationthefcross sections of
the hull are shown in Figuré.15and the cross section at position 2 is shown in
Figure6.16 The area of the hull at position 2 is calculated with the seellat
2.5 meter. The same is done at position 3.
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Figure 6.14: Water level change in the ballast tanks.

If we consider the hull to be moving in shallow water, the sresction®\,; and
Az are smaller and the velocities at position 2 and 3 will inseed his will result
in a larger pressure drop and an additional reduction of gitemevel in the
ballast tanks. At the same time the viscous force of the filljncrease due to
the increased velocity of water.
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c -

Figure 6.15: Locations of the cross sections of the twin.hull

Figure 6.16: Section C-C of Figu&15



Chapter 7

Summary and Discussion

In this thesis | have investigated the hull resistance on A8¥Wwvind turbine
service vessel moving in still water at 8-24 knots by using @D tool STAR-
CCM+. The model equations needed for the simulation were prede@mChapter
2 and transformed to Reynolds-Averaged Navier-Stokestemsin Chapter 4.
From these equations we were able to calculate the flow arthendessel. As |
had no prior experience with computational fluid dynamicacmof the theory
behind the CFD code was developed in Chapter 3.

In Chapter 5, we developed the simulation set-up. A major gfathe work with
the simulations set-up was used to obtain a good mesh. Aftehrwork with
the surface mesh by using the surface remesher, we only geddaoor quality
mesh that could not be used in the simulation. After sever@difications of
the surface wrapper, we eventually managed to produce alumseface mesh.
The selection of the boundaries and the physics models STERH userguide,
CD-adapcq2011), provided us with the required boundaries and models get-u
As the set-up was well defined, we could start to run the sitimuls. This process
was done many times as we experienced problems with the nmelshcaindary
effects. After several mesh modifications and changes of thelaiion domain
size, we were able to achieve better solutions.

“The majority of time spent in industry on a CFD project is usua
devoted to successfully generating a mesh for the domamejeg’

—Tu et al.(2007)
As | received the student license for STAR-CMMour months after | started

the work with the thesis, time limitations were hindering mebtaining a good
solution without the boundaries$fects and the diuse free surface.
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Due to the difuse free surface and the size of the simulation domain, | dtd n
obtain the wave pattern as the hull moved through the wategrefore the wave
making resistance was not calculated in my simulation. Ihdisvever a calcula-
tion of the wave making resistance by using a plane wave ahtgsk

The resistance on the four holes of the hull, where the lalaxks are placed,
compared with the resistance on the hull was found to be appeately 7% of
the total resistance.

Further | have examined how the water level inside the hatéagks of the hull

is affected as the vessel moves dfelient speeds in the simulation domain. For
the ballast tanks in the front, the water level reduction waso 0.20 meter and
respectively up to 0.27 meter for the ballast tanks at th&.bac

Since | did not manage to calculate the wave making resistanour simulation,
we were not able to achieve a fully comparison of our simatatind the scaled
test. In the comparison we should also keep in mind the soafregror when
converting the scaled model results to full scale. In addithe scaled model test
allowed pitch and heave motions.

In the further work with the simulation, the simulation damshould be increased
and the free surface sharpened. The mesh needs to be refithedfiee surface
area. After discussions with CD-adapco, the trimmed mesiheuld be used for
the mesh in addition to mesh refinement.

The disadvantage by choosing the commercial program STERFEIn this the-

sis, is the fact that the simulation only can be run on onegs®sar at a time.
This has limited me in obtaining a good solution without bdary efects and
achieving a sharp free surface.
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Force monitor plots

Force monitor plot at 8 knots
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Figure A.1: Total force in thex direction on the hull at 8 knots.
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Force monitor plots
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Figure A.2: Total force in thex direction on the hull A.28) and the four holes
(A.2b) at 8 knots.
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A.3D),

Hull.HoleFrontOutsideA.3d) at 8 knots.

Hull.HoleFrontInside

A.30)

Force in thex direction on Hull.HoleBackinside A.3a),

Hull.HoleBackOutside and



115

Force monitor plot at 10 knots
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Figure A.4: Total force in thex direction on the hull A.48) and the four holes
(A.4b) at 10 knots.
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Figure A.5: Force in thex direction on Hull.HoleBackinside A.53d),
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Force monitor plot at 12 knots
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Figure A.6: Total force in thex direction on the hull A.6@) and the four holes
(A.6b) at 12 knots.
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Figure A.7: Force in thex direction on Hull.HoleBackinside A.73),
Hull. HoleBackOutside  A.7b), Hull.HoleFrontinside  A.7¢) and
Hull.HoleFrontOutsideA.7d) at 12 knots.
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Force monitor plot at 14 knots
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Figure A.8: Total force in thex direction on the hull A.89) and the four holes
(A.8b) at 14 knots.
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Figure A.9: Force in thex direction on Hull.HoleBackinside A(9a),
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Force monitor plot at 16 knots
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Figure A.10: Total force in the direction on the hullA.108 and the four holes

(A.10b) at 16 knots.
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Figure A.11: Force in thex direction on Hull.HoleBackinside A.113),
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Force monitor plot at 18 knots
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Figure A.12: Total force in the direction on the hullA.128 and the four holes
(A.12b) at 18 knots.
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Figure A.13: Force in thex direction on Hull. HoleBackinside A(13a),
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Force monitor plots

Force monitor plot at 20 knots
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Figure A.14: Total force in the& direction on the hullA.148 and the four holes

(A.14b) at 20 knots.
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Figure A.15: Force in thex direction on Hull.HoleBackinside A.159),

Hull.HoleBackOutside

A.15b),

Hull.HoleFrontinside

Hull.HoleFrontOutsideA.15d) at 20 knots.

A.150

and
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Force monitor plot at 22 knots

,‘ | ~ S 0 1 1 P P T

eoneo I T oo DO O T T T

a1 o = 1 AL W NN A AR

800 LI LI P T ITT 8 oo [A T VUL FTUL KB
(&) Hull. (b) Four holes.

Figure A.16: Total force in the direction on the hullA.168 and the four holes
(A.16b) at 22 knots.
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Figure A.17: Force in thex direction on Hull.HoleBackinside A.173),
Hull.HoleBackOutside  A.17b), Hull.HoleFrontinside A.17¢9 and
Hull.HoleFrontOutsideA.17d) at 22 knots.
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Force monitor plots

Force monitor plot at 24 knots
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Figure A.18: Total force in the direction on the hullA.1838 and the four holes

(A.18Db) at 24 knots.
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Figure A.19: Force in thex direction on Hull.HoleBackinside A.19a),

Hull. HoleBackOutside
Hull.HoleFrontOutsideA.19d) at 24 knots.
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Force report at 8 knots
Part Pressure(N) Shear(N) Net(N)
Fin
.Shell 8.276973e01 3.778908€01 1.205588e02
Hull
.Bau 3.857838e02 7.516461e00 3.933002€02
.HoleBacklnside 1.919304€2 7.792050€00 1.997225€02
.HoleBackOutside 1.87338962 7.847084€00 1.951859e02
.HoleFrontinside 6.939101@1 1.134841e01 8.073942e01
.HoleFrontOutside 7.10953161 1.151516€01 8.261047e01
HullSideBottom 2.37783003 1.683732€03 4.061562€03
.HoleSide 6.7583531 1.344935€01 8.103288e01
HullTop 3.061969€02 5.951210€02 9.013179e02
.Tunnel 490238902 4.978975€00 4.952179€02
TopBracketBack
.TopBracketBack 1.47479702 2.996147€02 4.470944e02
.TopBracketBackAngle 8.12803961 2.247733e00 8.352812e¢01
TopBracketFront
.TopBracketFront 8.41426062 2.833803e02 1.124806€03
.TopBracketFrontAngle -2.925808@81 8.953545e-01 -2.836278@l
Total: 5.271086€03 2.967228€03 8.238314€03

Table B.1: Force report of one hull from STAR-CGMn direction: [-1, 0, 0] at 8

knots at iteration 2000.
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Force report at 10 knots

Part Pressure(N) Shear(N) Net(N)
Fin

.Shell 1.304129e02 5.703369e01 1.874466e02
Hull

.Bau 6.009520e02 1.098790€01 6.119399€02
.HoleBacklnside 2.83348362 1.112972e¢01 2.944780€02
.HoleBackOutside 3.048311462 1.227002¢01 3.171011e02
.HoleFrontinside 1.07180#€2 1.692467€01 1.241054€02
.HoleFrontOutside 1.12057%62 1.745182€01 1.295093e02
.HullSideBottom 3.745875603 2.562239€¢03 6.308115€03
.HoleSide 9.11628601 1.814836€01 1.093112€02
.HullTop 4.830156€02 8.990012e02 1.382017€03
.Tunnel 6.164253e02 7.432342€00 6.238577€02
TopBracketBack

.TopBracketBack 2.26745462 4.532109€02 6.799563e02
.TopBracketBackAngle 1.28764662 3.429504€00 1.321941e02
TopBracketFront

.TopBracketFront 1.32177463 4.264752e02 1.748249e03
.TopBracketFrontAngle -4.63709681 1.366434e00 -4.500453e01
Total: 8.106175e03 4.497101e03 1.260328€04

Table B.2: Force report of one hull from STAR-CGMn direction: [-1, 0, O] at

10 knots at iteration 2000.
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Force report at 12 knots
Part Pressure(N) Shear(N) Net(N)
Fin
.Shell 1.892811e02 7.987756e01 2.691587€02
Hull
.Bau 8.644252€02 1.500735€01 8.794326€02
.HoleBackinside 3.98908602 1.553532e01 4.144439e02
.HoleBackOutside 4.40288162 1.722615e01 4.575143€02
.HoleFrontinside 1.542933€62 2.368545€01 1.779787€02
.HoleFrontOutside 1.614381682 2.442247¢01 1.858606e02
HullSideBottom 5.40953963 3.584166€03 8.993705e03
.HoleSide 1.31547302 2.539344€01 1.569408e02
HullTop 6.999909€02 1.259011€03 1.959002€03
.Tunnel 8.889339e02 1.027674€01 8.992106€02
TopBracketBack
.TopBracketBack 3.20677262 6.352313e02 9.559086€02
.TopBracketBackAngle 1.86791882 4.843504€00 1.916348e02
TopBracketFront
.TopBracketFront 1.91920603 5.954617€02 2.514668€03
.TopBracketFrontAngle -6.76747881 1.931799e00 -6.574298e01
Total: 1.169764€04 6.292070€03 1.798971€04

Table B.3: Force report of one hull from STAR-CGMn direction: [-1, 0, O] at

12 knots at iteration 2000.
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Force report at 14 knots

Part Pressure(N) Shear(N) Net(N)
Fin

.Shell 2.596847e02 1.062288€02 3.659135e02
Hull

.Bau 1.176710e03 1.954943e01 1.196260€03
.HoleBacklnside 547811302 2.067233e01 5.684836e02
.HoleBackOutside 6.11324062 2.307490€01 6.343989e02
.HoleFrontinside 2.100628€02 3.147455e01 2.415374e02
.HoleFrontOutside 2.19946062 3.245635€01 2.524024e02
.HullSideBottom 7.39263503 4.762839€03 1.215547€04
.HoleSide 1.794960e02 3.373374€01 2.132297€02
.HullTop 9.603319€02 1.674125€03 2.634457€03
.Tunnel 1.211928e03 1.351495€01 1.225443e03
TopBracketBack

.TopBracketBack 4.30902562 8.443434e02 1.275246€03
.TopBracketBackAngle 2.56223¥82 6.485228€00 2.627089¢02
TopBracketFront

.TopBracketFront 2.63629%63 7.890101e02 3.425305€03
.TopBracketFrontAngle -9.35376881 2.592479e00 -9.094520€01

Total:

1.599981e04

8.360101e03

2.435991e04

Table B.4: Force report of one hull from STAR-CGMn direction: [-1, 0, O] at

14 knots at iteration 2000.
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Force report at 16 knots
Part Pressure(N) Shear(N) Net(N)
Fin
.Shell 3.415864€02 1.360386€02 4.776250€02
Hull
.Bau 1.538274e03 2.459626€01 1.562871e03
.HoleBacklnside 7.19063502 2.646872€01 7.455322€02
.HoleBackOutside 7.91124362 2.972759€¢01 8.208519€02
.HoleFrontinside 2.74482502 4.027265e01 3.147552e02
.HoleFrontOutside 2.87621162 4.153103e01 3.291522e02
HullSideBottom 9.69801903 6.094347€03 1.579237€04
.HoleSide 2.35188%02 4.313973e01 2.783284€02
HullTop 1.265370e03 2.142773€03 3.408143e03
.Tunnel 1.586156e03 1.712562€01 1.603282€03
TopBracketBack
.TopBracketBack 5.56008%62 1.079486e€03 1.635494€03
.TopBracketBackAngle 3.37816962 8.351807€00 3.461688€02
TopBracketFront
.TopBracketFront 3.47866#63 1.005961e03 4.484627€03
.TopBracketFrontAngle -1.24360662 3.343508e00 -1.210171e02
Total: 2.098501e04 1.069316e€04 3.167818e04

Table B.5: Force report of one hull from STAR-CGMn direction: [-1, 0, O] at

16 knots at iteration 2000.
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Force report at 18 knots
Part Pressure(N) Shear(N) Net(N)
Fin
.Shell 4.354662€02 1.691640€02 6.046301e02
Hull
.Bau 1.950024e03 3.013161e01 1.980156€03

.HoleBacklInside

9.77916302

3.503773e01

1.012954€03

.HoleBackOutside 1.01886¥63 3.723394€01 1.056101e03
.HoleFrontinside 3.475884€02 5.006047€01 3.976488e02
.HoleFrontOutside 3.64541262 5.162445e01 4.161657€02
.HullSideBottom 1.23115k04 7.577137€03 1.988864€04
.HoleSide 298749102 5.357869€01 3.523278e02
.HullTop 1.617005e03 2.663393e03 4.280398e03
.Tunnel 2.01265703 2.108287€01 2.033739€03
TopBracketBack

.TopBracketBack 6.94212562 1.339442€03 2.033655€03
.TopBracketBackAngle  4.32202662 1.044031e01 4.426429¢02
TopBracketFront

.TopBracketFront 4.453941683 1.244957€03 5.698897e03

.TopBracketFrontAngle -1.60696¥82 4.200983e00 -1.564957€02
Total: 2.675398€04 1.328749e04 4.004147€04

Table B.6: Force report of one hull from STAR-CGMn direction: [-1, 0, O] at
18 knots at iteration 2000.
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Force report at 20 knots
Part Pressure(N) Shear(N) Net(N)
Fin
.Shell 5.424094€02 2.057608€02 7.481702€02
Hull
.Bau 2.412701e03 3.614110€01 2.448842¢03
.HoleBacklnside 1.13371963 3.989454€01 1.173613e03
.HoleBackOutside 1.28262863 4.493037€01 1.327558e03
.HoleFrontinside 429481602 6.081012e01 4.902911e02
.HoleFrontOutside 4.50835862 6.271303e01 5.135488e02
HullSideBottom 1.532826604 9.202528e03 2.453079€04
.HoleSide 3.70746602 6.502305€01 4.357696€02
HullTop 2.018611e03 3.235008€03 5.253619€03
.Tunnel 2.492978e03 2.535453e01 2.518333e03
TopBracketBack
.TopBracketBack 8.47184862 1.623156e03 2.470341e03
.TopBracketBackAngle 5.40563662 1.275104€01 5.533146€02
TopBracketFront
.TopBracketFront 5.57178263 1.505663e03 7.077445e03
.TopBracketFrontAngle -2.03174¥82 5.149165e00 -1.980256e02
Total: 3.321872€04 1.612488e€04 4.934361e04

Table B.7: Force report of one hull from STAR-CGMn direction: [-1, 0, O] at

20 knots at iteration 2000.
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Force report at 22 knots

Part Pressure(N) Shear(N) Net(N)
Fin

.Shell 6.615268e02 2.456586€02 9.071854e02
Hull

.Bau 2.927407e03 4.261288€01 2.970020€03
.HoleBacklnside 1.352559€3 4.763290€01 1.400192€03
.HoleBackOutside 1.52504863 5.384350€01 1.578892€03
.HoleFrontinside 5.202383€02 7.250365e01 5.927420€02
.HoleFrontOutside 5.46652¥62 7.477359€01 6.214263e02
.HullSideBottom 1.86692104 1.097311€04 2.964232€04
.HoleSide 451710802 7.745227€01 5.291623€02
.HullTop 2.472537€03 3.855680€03 6.328217€03
.Tunnel 3.030116£03 2.990698e01 3.060023e03
TopBracketBack

.TopBracketBack 1.00950963 1.929447e03 2.938956e03
.TopBracketBackAngle 6.63943162 1.528430€01 6.792274€02
TopBracketFront

.TopBracketFront 6.84308663 1.786761e03 8.629846€03
.TopBracketFrontAngle -2.52350962 6.096397€00 -2.462545€02

Total:

4.042119€04

1.921076e04

5.963196€04

Table B.8: Force report of one hull from STAR-CGMn direction: [-1, 0, O] at

22 knots at iteration 2000.
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Force report at 24 knots
Part Pressure(N) Shear(N) Net(N)
Fin
.Shell 7.944466€02 2.886543€02 1.083101€03
Hull
.Bau 3.495122e03 4.953687€01 3.544659€03
.HoleBacklnside 1.76471563 6.041081e01 1.825126€03
.HoleBackOutside 1.86034563 6.354739e01 1.923893e03
.HoleFrontinside 6.200448€02 8.511361e01 7.051584e02
.HoleFrontOutside 6.52278362 8.777713e01 7.400555e02
HullSideBottom 2.23322004 1.288769€04 3.521990€04
.HoleSide 5.42810362 9.083305€01 6.336433e02
HullTop 2.982074€03 4.524256€03 7.506330€03
.Tunnel 3.626318e03 3.469823e01 3.661017€03
TopBracketBack
.TopBracketBack 1.17713283 2.256975e03 3.434108e03
.TopBracketBackAngle 8.03674962 1.803945e01 8.217143€02
TopBracketFront
.TopBracketFront 8.28196063 2.087190€03 1.036915e04
.TopBracketFrontAngle -3.093325682 7.185497€00 -3.021470€02
Total: 4.862379€04 2.254191€04 7.116570€04

Table B.9: Force report of one hull from STAR-CGMn direction: [-1, 0, O] at

24 knots at iteration 2000.
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B.2 Area of hull report

Part Area (nt)
Fin.Shell 1.913001&00
Hull.Bau 1.602044€00
Hull.HoleBacklInside 1.34767%6€0
Hull.HoleBackOutside 1.34861660

Hull.HoleFrontinside
Hull.HoleFrontOutside
Hull.HullSideBottom
Hull.HoleSide
Hull.HullTop

Hull. Tunnel

TopBracketBack.TopBracketBack
TopBracketBack.TopBracketBackAngle
TopBracketFront. TopBracketFront

7.066795e-01

7.050649e-01
1.033655€02

9.530661e-01
3.786161e01
1.568206€00
2.0802604

1.304931e-01

2.3309164

TopBracketFront. TopBracketFrontAngle 3.731476e-02

Total:

1.956504€02

Wetted surface

1.64133862

Table B.10: Area of the hull.
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Water surface



136 Water surface

26000

24000

:

2.0000

En i

1.8000

Posifion(Z) (m)
1.4000 1.6000

:

0.60000  0.80000 1.0060

. 40000
X

-

Y o
Z

Figure C.1: Water surface at 90% water phase at 8 knots.
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Figure C.2: Water surface at 90% water phase at 10 knots.
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Figure C.3: Water surface at 90% water phase at 12 knots.
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Figure C.4: Water surface at 90% water phase at 14 knots.
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Figure C.5: Water surface at 90% water phase at 16 knots.
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Figure C.6: Water surface at 90% water phase at 18 knots.
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Figure C.7: Water surface at 90% water phase at 20 knots.
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Figure C.9: Water surface at 90% water phase at 24 knots.



Bibliography

R. Aris. Vector, tensor, and the basic equations of fluid mechardover Pubns,
1962.

J. Bardina, J. H. Ferziger, and W. C. Reynoliisproved subgrid models for large
eddy simulationAlAA paper 80-1357, 1980.

CD-adapco STAR-CCM User Guide Version 6.04.012011.

H. K. Dahle. Lecture notes in continuum mechanidgniversity of Bergen De-
partment of Mathematics, 2010.

Danish Yachts. SeaStrider (SWATH): Trailblazing ModerneWrTransport
Vessels for @shore Wind Farms, [Accessed 23 March 2012] . URL
www.danishyachts.com/medias_news/SWATH.pdf.

K. B. Dysthe. DimensjonsanalyseUniversity of Tromsg Department of Mathe-
matics, 1992.

J. H. Ferziger and M. Pdri Computational Methods for Fluid Dynamics
Springer-Verlag, 2002.

T. I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control
John Wiley & Sons Ltd., 2011.

R. I. Issa. Solution of the implicitly discretised fluid flowge@ations by operator-
splitting,J. Comput. Physvol 62, pp. 40-65, 1986.

P. K. Kundu and |. M. CohenrFluid Mechanics Academic Press Inc, 2010.

B. P. Leonard. A stable and accurate convective modelliogguure based on
guadratic upstream interpolatior€omputer Methods in Applied Mechanics
and Engineeringvol 19, pp. 59-98, 1979.

Marine Roll & Pitch Control AS. Stabilization, [Accessed #arch 2012] . URL
http://www.mrpc.no/?page_id=307.


www.danishyachts.com/medias_news/SWATH.pdf
http://www.mrpc.no/?page_id=307

146 BIBLIOGRAPHY

F. R. Menter. Two-equation eddy-viscosity turbulence modeling for eeejing
application 32(8) pp. 1598-1605, 1994.

OpenCFD. OpenFOAM - The Open Source CFD Toolbox - Documentation. 2.0
edition OpenCFD Ltd., 2011a.

OpenCFD. OpenFOAM - The Open Source CFD Toolbox - User’s Guide. 2.0
edition. OpenCFD Ltd., 2011b.

V. Rieu and Z. KishevsStill water performance tests, SWATH wind turbine service
vessel Force Technology, 2012.

P. J. RoacheComputational fluid dynamic$dermosa, Albuquerque, NM, 1976.

SALOME. Salome is an open-source software that providesargeplatform
for pre- and post-processing for numerical simulation,déssed 23 January
2012] . URLhttp://www.salome-platform.org/.

D. Savitsky. On the subject of high-speed monohulls, Rresentation to the
Greek Section Of the Society Of Naval Architects and Maringiteers,
Athens, Greecg2003.

J. B. ScarboroughNumerical mathematical analysighe Johns Hopkins Press,
1958.

SNAME. The Society of Naval Architects and Marine Engine&tsmenclature
for treating the motion of a submerged body through a fluidTechnical and
Reasearch bulletin No. 1;3950.

D. B. Spalding. A novel finite-dierence formulation for dierential expressions
involving both first and second derivativest. J. Numer. Methods Engvol 4,
pp. 551, 1972.

D. B. Spalding. Computational fluid dynamicsHermosa, Albuquerque, NM,
1976.

Stadt Towing Tank AS. Hydrodynamic test facility located deknepollen,
close to the city of malgy, [Accessed 21 March 2012] . URL
http://www.stadttowingtank.no/.

I. Surjo and W. Adji.Lecture notes: Chapter 7. Resistance and powering of ships
Institut Teknologi Sepuluh Nopember(ITS), 2007.

P. K. Swedby. High resolution schemes using flux limitershigoerbolic conser-
vation laws,SIAM J. Numer. Analvol 21, no. 5, pp. 995-1011, 1984.


http://www.salome-platform.org/
http://www.stadttowingtank.no/

BIBLIOGRAPHY 147

J. Tu, G.H. Yeoh, and Liu CComputational Fluid Dynamics: A Practical Ap-
proach. Butterworth Heinemann, 2007.

H. K. Versteeg and W. Malasekeran introduction to computational fluid dy-
namics: The finite volume methddearson Education Limited, 2007.

D. C. Wilcox. Turbulence Modeling for CFDDCW Industries, 2006.



	Outline and motivation
	Ship Motion
	Motion of a marine craft
	Motion control systems
	Damping systems for ships
	MRPC stabilization model

	Theory from Fluid Mechanics
	Fluid properties
	Mass conservation
	Conservation of momentum
	Constitutive equation for Newtonian fluid
	Navier-Stokes equation
	Energy conservation
	Thermal energy equation
	Equation of state
	Complete set of equations
	Bernoulli equation
	Boussinesq approximation
	Dynamic similarity
	Gravity Waves

	Computational fluid dynamics
	Discretization approaches
	Finite volume method
	Properties of discretization schemes
	Central differencing scheme
	Upwind differencing scheme
	The hybrid differencing scheme
	Quadratic upwind differencing scheme
	Total variation diminishing scheme
	Pressure-Velocity Coupling
	SIMPLE algorithm
	PISO algorithm


	Turbulence Modelling
	Turbulent flow
	Reynolds-Averaged Navier-Stokes (RANS) Equations

	Turbulence Models
	The k-epsilon turbulence model
	The k-omega turbulence model


	Simulation set-up in STAR-CCM+
	Introduction
	3D-CAD Modeller
	Geometry part
	Region and boundaries
	Surface mesh
	Volume mesh
	Physics models
	Solvers
	Analyzing
	Force Technology still water performance test

	Simulation results
	Resistance on the twin hull
	Force comparison
	Water level change in the ballast tanks

	Summary and Discussion
	Force monitor plots
	Reports
	Force reports
	Area of hull report

	Water surface
	Bibliography

