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Abstract

In this thesis I am making a computational fluid dynamics(CFD) simulation of a
SWATH (Small Waterplane Area Twin Hull) wind turbine service vessel moving
in still water at different speeds by using the CFD tool STAR-CCM+. Since I did
not have any prior experience in CFD, a substantial part of the thesis is dedicated
to theory in CFD. First of all theory for fluid dynamics and CFDmethods are
described. Based on this theory, models and solvers for the simulation in STAR-
CCM+ are chosen with the required boundary conditions and initial values. A
major part of the simulation work is to obtain a good mesh before the solution is
achieved.

The paper consider the total hull resistance of the vessel atdifferent speeds due
to pressure and shear forces. The results are compared with astill water perfor-
mance test for a scaled model. Wave making resistance is alsoconsidered in the
comparison. The resistance on the four holes in the hull, where the ballast tanks
are placed, are compared with the resistance on the hull. Secondly the paper ex-
amines how the water level inside the ballast tanks, which isopen to sea at the
front and at the back, are affected at different speeds.
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Outline and motivation

Danish Yachts has launch its advanced new range of commercial vessels designed
for high-speed passenger transport. The first boat constructed in the range is the
SeaStrider SWATH, see Figure1. The purpose of the high-speed craft is to carry
initially the construction teams and then the maintenance and emergency repair
teams to and from the offshore windmill turbine farms efficiently, safely and in
total comfort.

An important element of the vessel is to keep the vessel throughout its work-
ing life to the minimum maintenance down time and maximizingits time on the
water. Therefore the vessel is the first service vessel ever to be designed and built
with an active ballast tank system. The ballast tanks are open to the sea and the
water level inside each ballast tank is regulated by changing the pressure inside
the tank.

Figure 1: The SeaStrider SWATH designed byDanish Yachts
(www.danishyachts.com/medias_news/SWATH.pdf).

In the thesis I will investigate the hull resistance of such avessel and how the
water level inside the ballast tanks will be effected at different speeds in still
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water. In the 3D-CAD drawing that will be used in the simulation process, the
vessel is constructed with closed ballast holes. Due to timelimitations new
3D-CAD drawings of the ballast tanks with open holes to sea will not be created.
Therefore I will calculate how the water level in the ballasttanks will be effected
at different speeds by assuming they are open.

In the thesis I have used the CFD tool STAR-CCM+ and an IGES CAD file of the
twin hull. In the start of the thesis I used the open source CFDtool OpenFOAM
and SALOME. As I had no experience in computational fluid dynamics except for
theory on the Navier-Stokes equations, many hours were spent in the work with
simulation examples in OpenFOAM and in the study of the documentation and
the user guide of OpenFOAM produced byOpenCFD(2011a,b).

As I progressed in learning OpenFOAM and after a long waitingtime for the
CAD file of the twin hull from Danish Yachts, the work with the twin hull could
start. A great deal of effort was put into meshing this geometry by using the third
party softwareSALOME (http://www.salome-platform.org/). Unfortunately I had
some problems with obtaining a suitable mesh and also with the CAD geometry
of the IGES file. Therefore after some discussions with Henning H. Andersen at
Uni Computing, who has experience with both OpenFOAM and STAR-CCM+,
I continued the CFD process by using STAR-CCM+ in the further work of the
thesis.

The problem with the IGES file was solved, after some waiting time, by getting
a new version of the file by Danish Yachts. The work of getting astudent license
from CD-adapco for STAR-CCM+ also took a long time as CD-adapco had to
make an agreement with the University of Bergen. Four monthsafter I started the
work with OpenFOAM, I could continue with STAR-CCM+.

The disadvantage by choosing the commercial program STAR-CCM+ is that the
simulation can only be run on one processor at a time. This haslimited me in
obtaining a good solution. The simulation domain had to be small and the mesh
resolution big enough, for reducing the simulation time, resulting in boundary ef-
fects and a diffuse free surface.

In Chapter 1 I will look at maneuvering theory and different motion control sys-
tems will be presented. Passive and active damping systems will also be described.

In Chapter 2 I will introduce the basic definitions and concepts of fluid dynamics
for providing a complete set of equations for modeling the flow.
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In Chapter 3 I will look at different discretization approaches in computational
fluid dynamics and the properties of discretization schemes. The most commonly
used schemes are described in detail.

In Chapter 4 I will develop the Reynolds-Averaged Navier-Stokes (RANS)equa-
tions by using the continuity, momentum and energy equations, after Boussinesq
approximation are applied to them, and finding their average. To provide closure
of the system, the Reynolds stress in the momentum equation is modelled by us-
ing turbulence models.

In Chapter 5 I will provide the total set-up for the simulation and the different
approaches tried for obtaining a good simulation. The process is described from
receiving the 3D-CAD file of the vessel and the modifications done, to the long
process of mesh generation, defining boundaries and selecting models and solvers.

In Chapter 6 I will present the results of the total resistance on the hulland
of the four ballast tank holes. I will also compare the simulation results with
the scale model test done by Force Technology,Rieu and Kishev(2012). Wave
making resistance will also be presented in the comparison.At the end I present
how the water level in the ballast tanks are effected at different speeds, by using
Bernoulli’s equation.

In Chapter 7 a summary is given together with discussion of the results and
remarks on further work.
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Chapter 1

Ship Motion

In this chapter I will give a short introduction in maneuvering theory, motion
control systems and damping systems of ships which are mainly based upon the
book ofFossen(2011). The expressions in the theory of ship motion will be used
throughout the thesis.

1.1 Motion of a marine craft

yaw

roll

pitch

y

x

z
heave

surge

sway

Figure 1.1: Motion in 6 degrees of freedom (DOF).

In maneuvering, a marine craft experience motion of 6 degrees of freedom (DOFs).
The DOFs are the set of independent displacements and rotations that specify
completely the displaced position an orientation of the craft. The motion in the
horizontal plane is referred to as surge (longitudinal motion, usually superimposed
on the steady propulsive motion) and sway (sideways or transverse motion). Yaw
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(rotation about the normal vertical axis) describes the heading of the craft. The re-
maining three DOFs are roll (rotation about the longitudinal axis), pitch (rotation
about the transverse axis) and heave (vertical motion), seeFigure1.1

DOF Linear and Positions and
angular velocities Euler angles

1 motions in thex direction (surge) u x
2 motions in they direction (sway) v y
3 motions in thez direction (heave) w z
4 moments about thex axis (roll, heel) p φ

5 moments about they axis (pitch, trim) q θ

6 moments about thez axis (yaw) r ψ

Table 1.1: The notation ofSNAME (1950) for marine vessels.

Roll motion is probably the most influential DOF with regardsto human per-
formance, since it produces the highest acceleration and, hence, is the principal
villain in seasickness. Similarly, pitching and heaving feel uncomfortable to peo-
ple.

1.2 Motion control systems

For marine craft the most common actuators are:

• Main propellers: The main propellers of the craft are mounted aft of the
hull, usually in conjunction with rudders. They produce thenecessary force
Fx in thex direction needed for transit.

• Tunnel thrusters: These are transverse thrusters going through the hull of
the craft. The propeller unit is mounted inside a transversetube and pro-
duces a forceFy in they direction. Tunnel thrusters are only effective at low
speeds, which limits their use to low-speed maneuvering andstationkeep-
ing.

• Azimuth thrusters: Thruster units that can be rotated an angleα about the
z axis and produce two force components (Fx, Fy) in the horizontal plane
usually referred to as azimuth thrusters. They are located usually mounted
under the hull of the craft and the most sophisticated units are retractable.
Azimuth thrusters are frequently used in dynamic positioning systems since
they can produce forces in different directions.
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• Aft rudders: Rudders are the primary steering device for conventional ma-
rine craft. They are located aft of the craft and the rudder force Fy will be
a function of the rudder deflection (the drag force in thex direction is usu-
ally neglected in the control analysis). A rudder force in they direction will
produce a yaw moment that can be used for steering control.

• Stabilizing fins: Stabilizing fins are used for the damping of vertical vibra-
tions and roll motions. They produce a forceFz in thez direction that is a
function of the fin deflection. For small angles this relationis linear. Fin
stabilizers can be retractable, allowing for selective usein bad weather. The
lift forces are small at low speed so most effective operating condition is in
transit.

• Control surfaces: Control surfaces can be mounted at different locations
to produce lift and drag forces.

• Water jets: Water jets are an alternative to main propellers aft of the ship.
They are usually used for high-speed craft.

1.3 Damping systems for ships

The roll motion of ships can be damped by using fins alone or in combination
with rudders. The main motivation for using roll stabilization systems is to pre-
vent cargo damage and to increase the effectiveness of the crew by avoiding or
reducing seasickness. This is also important from a safety point of view.

Several passive and active systems have been proposed to accomplish roll reduc-
tion. Some passive solutions are:

Bilge Keels: Bilge keels are fins in planes approximately perpendicular to the
hull or near the turn of the bilge. The longitudinal extent varies from about
25 to 50% of the length of the ship. Bilge keels are widely used, are inex-
pensive but increase the hull resistance. In addition to this, they are effective
mainly around the natural roll frequency of the ship. This effect significantly
decreases with the speed of the ship.

Hull Modifications: The shape and size of the ship hull can be optimized for
minimum rolling using hydrostatic and hydrodynamic criteria. This must,
however, be done before the ship is built.

Anti-Rolling Tanks: The most common anti rolling tanks in use are free-surface
tanks, U-tube tanks and diversified tanks. These systems provide damping
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of the roll motion even at small speeds. The disadvantages are the reduction
in metacenter height due to free water surface effects and that a large amount
of space is required.

The most widely used systems for active roll damping are:

Fin Stabilizers: Fin stabilizers are highly useful devices for roll damping.They
provide considerable damping if the speed of the ship is not too slow. The
disadvantage with additional fins is increased hull resistance and high costs
associated with the installation, since at least two new hydraulic systems
must be installed. Retractable fins are popular, since they are inside the hull
when not in use (no additional drag). It should be noted that fins are not
effective at low speed and that they cause underwater noise in addition to
drag.

Rudder-Roll Damping(RRD): Roll damping by means of the rudder is rela-
tively inexpensive compared to fin stabilizers, has approximately the same
effectiveness and causes no drag or underwater noise if the system is turned
off. However, RRD requires a relatively fast rudder to be effective. RRD
will not be effective at low ship speeds.

Gyroscopic Roll Stabilizers: Gyroscopic roll stabilizers are typically used for
boats and yachts under 100 feet. The ship gyroscopic stabilizer has a spin-
ning rotor that generates a roll stabilizing moment that counteracts the wave-
induced roll motions. Unlike stabilizing fins, the ship gyroscopic stabilizer
can only produce a limited roll stabilizing moment and effective systems
require approximately 3 to 5% of the craft displacement.

1.4 MRPC stabilization model

The SWATH wind turbine service vessel is designed and built with an active
ballast tank system developed by the companyMarine Roll & Pitch Control AS
(MRPC) (http://www.mrpc.no/?page_id=307).

Technical description

The solution is based on open ballast tanks to sea in verticaldirection, stretching
over the sea water level. Utilizing negative- and positive pressure to work counter-
phased towards waves. High volume air compressors, workingwith low pressure
and vacuum manage volume in these tanks. The Active stabilization controller
provides optimal filling in these tanks based on input from the ships movement.
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Figure 1.2: MRPC stabilization model.

Functional description

The center level and volume in the tanks is at the variation sea water level. This is
to enable the system to “catch” the waves.

“Catching” the waves enables filling the tanks with seawaterwithout any power
consumption. If more filling or load on the tanks is needed, this is applied through
the suction side of the compressors.

The compressors, working at high volume of air, but with low pressure and vac-
uum, require low power consumption.

Model verification

Through a model test at Stadt Towing Tank, using a Ramform model vessel as a
test bed for the system all simulation models is verified. Themodel was fitted with
transparent ballast tanks, valves and sensors necessary toimplement the control
system. Implementation of the control system has been done by Marine Innova-
tion. The tests conclude that the stabilization principle is able to reduce the roll
and pitch movement of a vessel significantly.
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Chapter 2

Theory from Fluid Mechanics

In this chapter I will introduce the basic definitions and concepts of fluid dynamics
for providing a complete set of equations for modelling the flow. The theory is
mainly based upon the book ofKundu and Cohen(2010).

2.1 Fluid properties

Density

The densityρ of a fluid is defined as mass per unit volume and the value of density
can vary widely between different fluids and changes in pressurep and temper-
atureT. The relation between these tree quantities is called equation of state:

ρ = ρ(p,T).

For liquids, variations in pressure and temperature generally have only a small
effect on the value ofρ.

Viscosity

A fluid, unlike a solid, deforms continuously when a shear force is applied. Vis-
cosityµ is a measure of the resistance of a fluid which is being deformed by shear
stress. A fluid with high viscosity may be thought as a "thick"fluid, for example
honey or heavy oil, while a "thin" fluid as water has low viscosity. Normally the
viscosity of a fluid depends on both pressure and temperature.

Experiments shows that the magnitude of the shear stressτ along a surface, in a
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horizontal fluid flow, is related to the velocity gradient by the linear relation

τ = µ
du
dy
,

which is called Newton’s law of friction. Here the constant of proportionalityµ is
known as the dynamic viscosity or simply the viscosity of thefluid. The kinematic
viscosityν, not involving unit mass, is given by

ν =
µ

ρ
,

whereρ is the density.

2.2 Mass conservation

All fluid dynamics is based on the conservation of extensive properties. Extensive
properties depends on the system size and the amount of material in the system.
Mass and energy are extensive variables, while pressure andtemperature is in-
tensive variables. In a closed system both mass and energy are conserved. The
conservation laws can be stated in differential form, applicable at a point, or in
integral form, applicable to an extended region. In the integral form the laws are
stated for a fixed volumeΩ in space, also called control volume and geometrical
volume. A material volumeV following the particles.

Ω
∂Ω

n

Figure 2.1: Fixed geometric volumeΩwith boundary∂Ω and outward unit normal
n.

To derive the conservation of mass consider a geometrical volumeΩ having
boundary∂Ω and outward unit normaln, see Figure2.1. Mass may leave or
enter the control volume through the boundary, or it may be accumulated or
annihilated in a source or sink. The accumulation of mass inside the volume has
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to be equal the produced mass through source minus net rate ofmass flowing out
of the volume and loss through sink. This can be written

{Accumulation} + {Net Rate Flowing Out} = {Source} − {Sink}. (2.1)

Assume that there are no sources or sinks inside the volume. The accumulation of
mass is given by the time derivative of the total mass, that is

d
dt

∫

Ω

ρdV,

whereρ is the density of the fluid. The total mass is expressed by the integral.
Now the rate of flux through the boundary is the surface integral

∫

∂Ω

ρu · ndΩ,

whereu is the velocity andn is the outward unit normal as observed in Figure2.1.
The expressions is inserted into the conservation law (2.1) and the following is
obtained

d
dt

∫

Ω

ρdV+
∫

∂Ω

ρu · ndΩ = 0.

Then apply Leibniz integral rule,

d
dt

∫

Ω

F(x, t)dV =
∫

Ω

∂F
∂t

dV, (2.2)

to the first term, and Gauss theorem
∫

dΩ
F · ndS =

∫

Ω

∇ · FdV,

to the second term. Since the geometrical volumeΩ is arbitrarily chosen and the
integrand continuous, the pointwise mass conservation equation is obtained,

∂ρ

∂t
+ ∇ · (ρu) = 0. (2.3)

Equation (2.3) is the differential form of the principle of conservation of mass
and is called the continuity equation. Rewriting the divergence term the continu-
ity equation becomes

1
ρ

Dρ
Dt
+ ∇ · u = 0, (2.4)
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whereD(·)
Dt ≔

∂(·)
∂t + u · ∇(·) is the material derivative or the total derivative.

A fluid is said to be incompressible if the density of every particle in the fluid
is constant in time, otherwise the fluid is compressible. Since the mass carried
by individual particles by definition is constant, the volume associated with each
particle has to be constant for an incompressible fluid,dV(t) = const. For an
incompressible fluid the continuity equation (2.4) reduces to

∇ · u = 0. (2.5)

2.3 Conservation of momentum

Before deriving the momentum equation we must show the symmetry property of
the stress tensor.

Consider a infinitesimal rectangular parallelepiped with faces perpendicular to the
coordinate axes, see Figure2.2. The first index of the stress tensorτi j indicates
the normal to the surfaces on which the stress is considered.The second index
indicates the direction in which the stress acts. The diagonal elementsτ11, τ22

andτ33 are the normal stresses, and the off diagonal elements are the tangential or
shear stresses.

τ32

τ33

τ31

τ33

τ12

τ13

τ11

τ23τ31

τ21

τ22

τ32

3

2

1

Figure 2.2: Stress at a point. Four of the six faces are shown.
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dx1

d
x 2 τ12 +

1
2
∂τ12
∂x1

dx1

x1

x2

τ12 − 1
2
∂τ12
∂x1

dx1

τ21 +
1
2
∂τ21
∂x2

dx2

τ21 +
1
2
∂τ21
∂x2

dx2

Figure 2.3: Torque on an element.

Consider the torqueT on an element about a centroid axis parallel tox3, see
Figure2.3. The torque is generated only by the shear stresses in thex1 x2-plane
and is

T =
[

τ12 +
1
2
∂τ12

∂x1
dx1

]

dx2dx3
dx1

2
+

[

τ12 −
1
2
∂τ12

∂x1
dx1

]

dx2dx3
dx1

2

−
[

τ21 +
1
2
∂τ21

∂x2
dx2

]

dx1dx3
dx2

2
−

[

τ21 −
1
2
∂τ21

∂x2
dx2

]

dx1dx3
dx2

2
. (2.6)

After canceling term, supposingdx3 = 1, this gives

T = (τ12 − τ21)dx1dx2.

The rotational equilibrium of the element requires thatT = Iω̇3, whereω̇3 is the
acceleration of the element andI is its moment of inertia. For the rectangular
element considered, it is easy to show thatI = dx1dx2(dx2

1 + dx2
2)ρ/12. The

rotational equilibrium then requires

(τ12 − τ21)dx1dx2 =
ρ

12
dx1dx2(dx2

1 + dx2
2)ω̇3,

that is,
τ12 − τ21 =

ρ

12
(dx2

1 + dx2
2)ω̇3.

As dx1 anddx2 go to zero, the equation can only be satisfied ifτ12 = τ21. In
general,

τi j = τ ji .
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The stress is therefore symmetric and has only six independent components.

For deriving the conservation of momentum in differential form, Newton’s sec-
ond law of motion is applied in thex1 direction to an infinitesimal fluid element,
see Figure2.4.

τ11 − ∂τ11
∂x1

dx1
2

τ31 − ∂τ31
∂x3

dx3
2

τ21 − ∂τ21
∂x2

dx2
2

τ31 +
∂τ31
∂x3

dx3
2

τ11 +
∂τ11
∂x1

dx1
2

x1

x2

x3

Figure 2.4: Surface stress on an element moving with the flow.Only five of the
six stresses in thex1 direction are labelled. The stress at the back is not shown.

The sum of the surface forces equals

(

τ11+
∂τ11

∂x1

dx1

2
− τ11 +

∂τ11

∂x1

dx1

2

)

dx2dx3

+
(

τ21 +
∂τ21

∂x2

dx2

2
− τ21 +

∂τ21

∂x2

dx2

2

)

dx1dx3

+
(

τ31 +
∂τ31

∂x3

dx3

2
− τ31 +

∂τ31

∂x3

dx3

2

)

dx1dx2,

which simplifies to

(∂τ11

∂x1
+
∂τ21

∂x2
+
∂τ31

∂x3

)

dx1dx2dx3 =
∂τ j1

∂xj
dV,

wheredV is the volume of the element. Generalizing of the surface force per unit
volume of the element is

∂τi j

∂xj
,
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where the symmetry propertyτi j = τ ji have been used. Letg be the body force
per unit mass, so thatρg is the body force per unit volume. Then Newton’s law
gives

ρ
Dui

Dt
= ρgi +

∂τi j

∂xj
, (2.7)

which is the momentum equation, sometimes called Cauchy’s equation of motion.

2.4 Constitutive equation for Newtonian fluid

The relation between the stress and deformation in a continuum is called a con-
stitutive equation. In a fluid at rest there are only normal components of stress
on a surface, and the stress does not depend on the orientation of the surface. In
other words, the stress tensor is isotropic or spherically symmetric. An isotropic
tensor is defined as one whose components do not change under arotation of the
coordinates system. The only second-order isotropic tensor is the Kronecker delta

δ =





1 0 0
0 1 0
0 0 1




.

Any isotropic second order-tensor must be proportional toδ. Therefore, because
the stress in a static fluid is isotropic, it must be of the form

τi j = −pδi j , (2.8)

wherep is the thermodynamic pressure related toρ andT by an equation of state,
p = p(ρ,T). A negative sign is introduced in equation (2.8) because the normal
components ofτ are regarded as positive if they indicate tension rather than com-
pression.

A moving fluid develops additional components of stress due to viscosity. The
diagonal terms ofτ now become unequal, and shear stresses develop. Now for a
moving fluid the stresses is split into a part−pδi j that would exist if it were at rest
and a partσi j due to find the fluid motion alone:

τi j = −pδi j + σi j . (2.9)

Assume thatp appearing in equation (2.9) is still the thermodynamic pressure.
The nonisotropic partσ, called the daviatoric stress tensor, is related to the ve-
locity gradients∂ui/∂xj. The velocity gradient tensor can be decomposed into
symmetric and antisymmetric parts:

∂ui

∂xj
=

1
2

(

∂ui

∂xj
+
∂u j

∂xi

)

+
1
2

(

∂ui

∂xj
−
∂u j

∂xi

)

.
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The antisymmetric part represents fluid rotation without deformation, and cannot
by itself generate stress. The stresses must be generated bythe strain rate tensor

ei j ≡
1
2

(

∂ui

∂xj
+
∂u j

∂xi

)

,

alone. We shall assume a linear relation of the type

σi j = Ki jmnemn, (2.10)

whereKi jmn is a fourth-order tensor having 81 components that depend onthe
thermodynamic state of the medium. Only two of the 81 elements ofKi jmn survive
if it is assumed that the medium is isotropic and that the stress tensor is symmetric.
It is shown in books on tensor analysis, as inAris (1962), that all isotropic tensors
of even order are made up of products ofδi j and that a fourth-order isotropic tensor
must have the form

Ki jmn = λδi jδmn+ µδimδ jn + γδinδim, (2.11)

whereλ, µ andγ are scalars that depend on the local thermodynamic state. Asδi j

is a symmetric tensor, equation (2.10) requires thatKi jmn also must be symmetric
in i and j. This is consistent with equation (2.11) only if

γ = µ.

Only two constantsµ andλ, of the original 81, have therefore survived under
the restrictions of material isotropy and stress symmetry.Substitution of equation
(2.11) into the constitutive equation (2.10) gives

σi j = 2µei j + λemmδi j ,

whereemm= ∇·u is the volumetric strain rate, which is the sum of the linear strain
rates in the three mutually orthogonal directions. The complete stress tensor (2.9)
then becomes

τi j = −pδi j + 2µei j + λemmδi j . (2.12)

The two scalars constantsµ andλ can be further related as follows. Settingi = j,
summing over the repeated index, and noting thatδii = 3, the following is obtained

τii = −3p+ (2µ + 3λ)emm,

from which the pressure is found to be

p = −1
3
τii +

(

2
3
µ + λ

)

∇ · u. (2.13)
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Now the diagonal terms ofei j in a flow may be unequal. In such a case the stress
tensorτi j can have unequal diagonal terms because of the presence of the term
proportional toµ in equation (2.12). Therefore the average of the diagonal terms
of τ is taken and a mean pressure is defined as

p̄ ≡ −1
3
τi j . (2.14)

Substituting into equation (2.13) gives

p− p̄ =

(

2
3
µ + λ

)

∇ · u. (2.15)

For a completely incompressible fluid only the mechanical ormean pressure can
be defined, because there is no equation of state to determinea thermodynamic
pressure. Theλ-term in the constitutive equation (2.12) drops out becauseemm =

∇·u = 0, and no consideration of equation (2.15) is necessary. For incompressible
fluids, the constitutive equation (2.12) takes the simple form

τi j = −pδi j + 2µei j (incompressible), (2.16)

wherep can only be interpreted as the mean pressure. For a compressible fluid,
on the other hand, a thermodynamic pressure can be defined, and it seems thatp
and p̄ can be different. In fact, equation (2.15) relates this difference to the rate of
expansion through the proportionality constantκ = λ + 2µ/3, which is called the
coefficient of bulk viscosity. For many applications the Stokes assumption

λ +
2
3
µ = 0, (2.17)

is found to be sufficient accurate for determiningκ, and can also be supported
from the kinetic theory of monatomic gases.

To gain additional insight into the distinction between thermodynamic pressure
and the mean of the normal stresses, consider a system insidea cylinder in which
a piston may be moved in or out to do work. The first law of thermodynamics
may be written in general terms asde= dw+ dQ = −p̄dν + TdS, where the last
equality is written in terms of state functions. ThenTdS− dQ = (p− p)dν. The
Clausisus-Duhem inequality,S2−S1 =

∫ 2

1
dQrev

T whereS is entropy, whose change
between states 1 and 2 and the integral is taken along any reversible process be-
tween the two states, tells usTdS− dQ ≥ 0 for any process and, consequently,
(p − p̄)dν ≥ 0. Thus, for an expansion,dν > 0, sop > p, and conversely for a
compression. Equation (2.15) is:

p− p̄ =

(

2
3
µ + λ

)

∇ · u = −
(

2
3
µ + λ

)

1
ρ

Dρ
Dt
=

(

2
3
µ + λ

)

1
ν

Dν
Dt
, ν =

1
ρ
.
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Further it is required that (2/3)µ+λ > 0 to satisfy the Clausius-Duhem inequality
statement of the second law of thermodynamics.
With the assumptionκ = 0, the constitutive equation (2.12) reduces to

τi j = −
(

p+
2
3
µ∇ · u

)

δi j + 2µei j . (2.18)

2.5 Navier-Stokes equation

The momentum equation for a Newtonian fluid is obtained by substituting the
constitutive equation (2.18) into the Cauchy’s equation of motion (2.7) to obtain

ρ
Dui

Dt
= − ∂p

∂xi
+ ρgi +

∂

∂xj

[

2µei j −
2
3
µ(∇ · u)δi j

]

, (2.19)

where (∂p/∂xj)δi j = ∂p/∂xi has been used. Equation (2.19) is a general form
of the Navier-Stokes equation. Viscosityµ in this equation can be a function
of thermodynamic state, and indeedµ for most fluids displays a rather strong
dependence on temperature, decreasing with T for liquids anincreasing with T
for gases. However, if the temperature differences are small within the fluid, then
µ can be taken outside the derivative in equation (2.19), which then reduces to

ρ
Dui

Dt
= − ∂p

∂xi
+ ρgi + 2µ

∂ei j

∂xj
− 2µ

3
∂

∂xi
(∇ · u)

= − ∂p
∂xi
+ ρgi + µ

[

∇2ui +
1
3
∂

∂xi
(∇ · u)

]

,

where

∇2ui ≡
∂2ui

∂xj∂xj
=
∂2ui

∂x2
1

+
∂2ui

∂x2
2

+
∂2ui

∂x2
3

,

is the Laplacian ofui. For incompressible fluids∇ · u = 0, and using vector
notation the Navier-Stokes equation reduces to

ρ
Du
Dt
= −∇p+ ρg + µ∇2u. (incompressible) (2.20)

If viscous effects are negligible, which in general found to be true far from bound-
aries of the flow field, the Euler equation is obtained

ρ
Du
Dt
= −∇p+ ρg. (2.21)
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2.6 Energy conservation

An equation for mechanical energy of the fluid can be obtainedby finding the
scalar product of the momentum equation and the velocity vector. The equation
of motion is

ρ
Dui

Dt
= ρgi +

∂τi j

∂xj
.

Multiplying by ui we obtain

ρ
D
Dt

(
1
2

u2
i ) = ρuigi + ui

∂τi j

∂xj
, (2.22)

where the following relationships have been usedui · ∂ui

∂t =
∂
∂t (

1
2ui) andui ·(ui ·∇ui) =

ui · ∇(1
2u2

i ). The equation (2.22) says that the rate of increase of kinetic energy at
a point equals the sum of the rate work done by body forceg and the rate of work
done by the net surface force∇ · τ per unit volume.

The total work rate per unit volume at a point can be split up into two compo-
nents:

∂

∂xj
(uiτi j ) = τi j

∂ui

∂xj
+ ui

∂τi j

∂xj
,

where the second term is the rate of deformation work and the third term is the
rate of increase of kinetic energy per unit volume. The deformation work rate can
be rewritten using the symmetry of the stress tensor. A product of a symmetric
and an antisymmetric tensor is zero. The productτi j (∂ui/∂xj) is therefore equal to
τi j times the symmetric part of∂ui/∂xj, namelyei j . Thus

Deformation work rate per volume= τi j
∂ui

∂xj
= τi j ei j . (2.23)

On substituting the Newtonian constitutive equation

τi j = −pδi j + 2µei j −
2
3
µ(∇ · u)δi j ,

relation (2.23) becomes

Deformation work= p(∇ · u) + 2µei j ei j −
2
3

(∇ · u)2,

whereei jδi j = ei j = ∇ · u. Denoting the viscous term byφ, the following is
obtained

Deformation work (rate per volume)= −p(∇ · u) + φ, (2.24)
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where

φ ≡ 2µei j ei j −
2
3
µ(∇ · u)2 = 2µ

[

ei j −
1
3

(∇ · u)δi j

]2

. (2.25)

In order to write the energy equation in terms ofφ we rewrite equation (2.22) in
the form

ρ
D
Dt

(
1
2

u2
i ) = ρgiui +

∂

∂xj
(uiτi j ) − τi j

∂ui

∂xj
, (2.26)

whereτi j (∂ui/∂xj) = τi j ei j have been used. Using equation (2.24) to rewrite the
deformation work rate per volume, equation (2.26) becomes

ρ
D
Dt

(
1
2

u2
i ) = ρg · u

︸︷︷︸

rate of work
by body force

+
∂

∂xj
(uiτi j )

︸     ︷︷     ︸

total rate of
work byτ

+ p(∇ · u)
︸   ︷︷   ︸

rate of work
by volume
expansion

− φ
︸︷︷︸

rate of viscous
dissipation

. (2.27)

2.7 Thermal energy equation

In flow with temperature variations we need an independent equation. This is
provided by the first law of thermodynamics. Letq be the heat flux (per unit area)
ande the internal energy per unit mass; for a perfect gase = CVT, whereCV is
the specific heat at constant volume (assumed constant). Thesum (e+ u2

i /2) can
be called the "stored" energy per unit mass. The first law of thermodynamics is
most easily stated for a material volume. It says that the

[rate of stored energy]= [sum of rate of work done]

+ [heat addition to a material volume]

That is,

D
Dt

∫

V
ρ(e+

1
2

u2
i )dV =

∫

V
ρgiuidV+

∫

∂S
τi j uidSj −

∫

∂S
qidSi. (2.28)

The negative sign is needed on the heat transfer term becausethe direction ofdS
is along the outward normal to the area, and thereforeq · dS represents the rate of
heat outflow. To derive a differential form, all terms need to be expressed in the
form of volume integrals.

But first we must generalizing Leibniz integral rule (2.2). Consider a general
case whichV(t) is neither a fixed volume nor a material volume. We write

D
Dt

∫

V(t)
F(x, t)dV =

∫

V(t)

∂F
∂t

dV+
∫

A(t)
dA · uAF, (2.29)
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whereuA is the velocity of the boundary and A(t) is the surface ofV(t). For a
fixed volumeuA = 0. For a material volumeV the surfaces move with the fluid,
so thatuA = u, whereu is the fluid velocity. Then (2.29) becomes

D
Dt

∫

V
F(x, t)dV =

∫

V

∂F
∂t

dV+
∫

∂S
dS · uF. (2.30)

which is sometimes called the Reynolds transport theorem. Using Gauss’ theo-
rem, the transport equation (2.30) becomes

D
Dt

∫

V
FdV =

∫

V

[

∂F
∂t
+

∂

∂xj
(Fu j)

]

dV.

Now defining a new functionf such thatF ≡ ρ f , whereρ is the fluid density.
Then the preceding becomes

D
Dt

∫

V
ρ f dV =

∫

V

[

∂(ρ f )
∂t
+

∂

∂xj
(ρ f u j)

]

dV

=

∫

V

[

ρ
∂ f
∂t
+ f

∂ρ

∂t
+ f

∂

∂xj
(ρu j) + ρu j

∂ f
∂xj

]

dV.

Using the continuity equation

∂ρ

∂t
+

∂

∂xj
(ρu j) = 0,

we finally obtain
D
Dt

∫

V
ρ f dV =

∫

V
ρ

D f
Dt

dV. (2.31)

By using equation (2.31) the left hand side of the heat equation (2.28) can be
written as

D
Dt

∫

V
ρ(e+

1
2

u2
i )dV =

∫

V
ρ

D
Dt

(e+
1
2

u2
i )dV.

Converting the two surface integral terms into volume integrals, equation (2.28)
finally gives

ρ
D
Dt

(e+
1
2

u2
i ) = ρgiui +

∂

∂xj
(τi j ui) −

∂qi

∂xi
. (2.32)

This is the first law of thermodynamics in the differential form, which has both
mechanical and thermal energy terms in it. A thermal energy equation is obtained
if the mechanical energy equation (2.27) is subtracted from it. This gives the
thermal energy equation (commonly called the heat equation)

ρ
De
Dt
= −∇ · q − p(∇ · u) + φ, (2.33)
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which says that internal energy increases because of convergence of heat, volume
compression, and heating due to viscous dissipation.

2.8 Equation of state

A relationship between different thermodynamic state variables is called an equa-
tion of state. An equation of state provides a mathematical relationship between
two or more state functions, such as its temperature, pressure, volume, or internal
energy. Thermodynamics provides us with these two equations, seeDahle(2010),

p = p(ρ,T),

e= e(T, p). (2.34)

Another equation of state is the equationp = ρRT for a perfect gas. For a
caliorically perfect gas (constant specific heats), the relation for internal energy
is e= CvT, whereCv is the specific heat at constant volume.
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2.9 Complete set of equations

Continuity equation: 1
ρ

Dρ
Dt + ∇ · u = 0,

Momentum equation: ρ
Dui

Dt = −
∂p
∂xi
+ ρgi +

∂
∂xj

[

2µei j − 2
3µ(∇ · u)δi j

]

,

Energy equation: ρDe
Dt = −∇ · q − p(∇ · u) + φ,

Energy dissipation: φ = 2µ

[

ei j − 1
3(∇ · u)δi j

]2

,

Fourier’s law of heat conduction:q = −k∇T,

Equation of state: p = p(ρ,T),

e= e(ρ,T).

Table 2.1: Complete set of equations for compressible flow

The complete set of equations, see Table2.1, provides 11 equations for the 11
unknowns

ρ, p,T, e, φ, u andq. (2.35)

More equations of state are needed to determineµ, κ andk if these are not con-
stants. For the energy dissipation we have already assumedκ = 1.

It is clear from Table2.1 that there are significant commonalities between the
various equations. By introducing a general variableφ, from the book of
Versteeg and Malasekera(2007), the conservative form of all fluid flow equations,
including equations for scalar quantities such as temperature, can be written in the
following form:

∂(ρφ)
∂t
+ ∇ · (ρφu) = ∇ · (Γ∇φ) + Sφ, (2.36)

whereΓ is the diffusive term. Equation (2.36) is usually called the transport equa-
tion. By settingφ equal to 1,u, w, e and selecting appropriate values for the
diffusion coefficientΓ andSφ we obtain each of the PDEs for mass, momentum
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and energy conservation. Each of the terms in the transport equation can be ex-
pressed as following:

Rate of increase Net rate of flow Rate of increase Rate of increase
of φ of fluid + of φ out of = of φ due to + of φ due to
element fluid element diffusion sources

2.10 Bernoulli equation

The Bernoulli equation is derived from the momentum equation for inviscid flows,
where viscous effects are negligible, namely the Euler equation (2.21):

ut + (u · ∇)u =
1
ρ
∇p+ g.

Assuming that the gravityg = −∇(gz) is the only body force and using the fol-
lowing identity

(u · ∇)u = ∇(
1
2

u · u) − u × (∇ × u),

the Euler equation becomes

ut + ∇(
1
2

u · u) − u × (∇ × u) =
1
ρ
∇p− ∇(gz). (2.37)

Now assuming thatρ is a function of p only. A flow whichρ = ρ(p) is called a
barotropic flow. For such a flow we can write

1
ρ

∂p
∂xi
=

∂

∂xi

∫

dp
ρ
. (2.38)

Using equation (2.38), the Euler equation (2.37) becomes

ut + ∇(
1
2

u · u +
∫

dp
ρ
+ gz) = u × ω,

where (∇ × u) = ω andω is the vorticity. Defining the Bernoulli function

B =
1
2

u · u +
∫

dp
ρ
+ gz=

1
2

u · u + p
ρ
+ gz,

the Euler equation becomes

ut + ∇(B) = u ×ω. (2.39)

Important deductions can be made from the preceding by considering two special
cases, namely a steady flow (rotational or irrotational) andan unsteady irrotational
flow.
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Steady flow

A steady flow is independent of time and equation (2.39) reduces to

∇(B) = u ×ω. (2.40)

The left-hand side is a vector perpendicular to bothu andω. It follows that surface
of constantB must contain the streamlines and vortex lines. Thus an inviscid,
steady, barotropic flow satisfies

1
2

u · u + p
ρ
+ gz= constant along streamlines and vortex lines, (2.41)

which is called the Bernoulli equation. If, in addition the flow is irrotational,
ω = 0, then equation (2.40) shows that

1
2

u · u +
p
ρ
+ gz= constant everywhere.

Unsteady irrotational flow

An unsteady form of Bernoulli’s equation can be derived onlyif the flow is irrota-
tional. For irrotational flows the velocity vector can be written as the gradient of
a scalar potentialφ, called velocity potential:

u ≡ ∇φ. (2.42)

On inserting equation (2.42) into equation (2.39), the following is obtained

∇
[

∂φ

∂t
+

1
2

u · u +
p
ρ
+ gz

]

= 0,

that is
∂φ

∂t
+

1
2

u · u +
p
ρ
+ gz= F(t),

where the integrating functionF(t) is independent of location.

2.11 Boussinesq approximation

For flows satisfying certain conditions, Boussinesq in 1903suggested that the
density changes in the fluid can be neglected except in the gravity term where
ρ is multiplied by g. This approximation also treats the otherproperties of the
fluid (such asµ, k,CP) as constants. The Boussinesq approximation applies if the
Mach number of the flow is small, propagation of sound or shockwaves is not
considered, the vertical scale of the flow is not too large, and the temperature
differences in the fluid is small.
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Continuity equation

The Boussinesq approximation replaces the continuity equation

1
ρ

Dρ
Dt
+ ∇ · u = 0, (2.43)

by the incompressible form
∇ · u = 0. (2.44)

The density is not regarded as constant along the direction of motion, but simply
that the magnitude ofρ−1(Dρ/Dt) is small in comparison to the magnitudes of the
velocity gradients in∇ · u.

Momentum equation

Because of the incompressible continuity equation∇ · u = 0, the stress tensor is
given by equation (2.16). From equation (2.20), the equation of motion is then

ρ
Du
Dt
= −∇p+ ρg + µ∇2u. (2.45)

Consider a hypothetical static reference state in which thedensity isρ0 everywhere
and the pressure isp0(z), so that∇p0 = p0 g. Subtracting this state from equation
(2.45) and writingp = p0 + p′ andρ = ρ0 + ρ

′, we obtain

ρ
Du
Dt
= −∇p′ + ρ′g + µ∇2u. (2.46)

Dividing by ρ0, we obtain

(

1+
ρ′

ρ0

)

Du
Dt
= − 1

ρ0
∇p′ +

ρ′

ρ0
g + ν∇2u, (2.47)

whereν = µ/ρ0. The ratioρ′/ρ0 appears in both the inertia and the buoyancy
terms. For small values ofρ′/ρ0, the density variations generate only a small
correction to the inertia term and can be neglected. However, the buoyancy term
ρ′g/ρ0 is very important and cannot be neglected.

Heat equation

From equation (2.33), the thermal energy equation is

ρ
De
Dt
= −∇ · q − p(∇ · u) + φ. (2.48)
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Although the continuity equation is approximately∇ · u = 0, an important point
is that the volume expansion termp(∇ · u) is not negligible compared to other
dominant terms of equation (2.48); only for incompressible liquids isp(∇ · u)
negligible in equation (2.48). We have

−p∇ · u = p
ρ

Dρ
Dt
≃ p
ρ

(

∂ρ

∂T

)

p

DT
Dt
= −pα

DT
Dt

.

Assuming a perfect gas, for whichp = ρRT, CP − CV = R andα = 1/T, the
foregoing estimate becomes

−p∇ · u = −ρRTα
DT
Dt
= −ρ(CP −CV)

DT
Dt

.

Equation (2.48) then becomes

ρCP
DT
Dt
= −∇ · q + φ, (2.49)

where we have usede= CVT for a perfect gas.

Now we show that the heating due to viscous dissipation of energy is negligi-
ble under the restrictions underlying the Boussinesq approximation. Comparing
the magnitudes of viscous heating with the left-hand side ofequation (2.49), we
obtain

φ

ρCP(DT/Dt)
∼

2µei j ei j

ρCPu j(∂T/∂xj)
∼

µU2/L2

ρ0CPUδT/L
=

ν

CP

U
δTL

.

In typical situations this is extremely small (∼ 10−7). Neglectingφ, and assuming
Fourier’s law of conduction

q = −k∇T,

the heat equation (2.49) finally reduces to (ifk = const.)

DT
Dt
= κ∇2T,

whereκ ≡ k/ρCP is the thermal diffusivity.

Summary
The set of equations corresponding to the Boussinesq approximation is

∇ · u = 0,
Du
Dt
= − 1

ρ0
∇P+

ρg
ρ0
+ ν∇2u,

DT
Dt
= κ∇2T,

ρ = ρ0[1 − α(T − T0)],
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where the z-axis is taken upward. The constantρ0 is a reference density cor-
responding to a reference temperatureT0, which can be taken to be the mean
temperature in the flow or the temperature at a boundary.

2.12 Dynamic similarity

Two flows having different values of length scales, flow speeds, or fluid properties
can apparently be different but still "dynamic similar". The concept of similarity
for designing models in which tests can be conducted for predicting flow proper-
ties of full-scale vessel is used a lot. The method of dynamicsimilarity is used in
the still water performance test done byRieu and Kishev(2012) for the company
Force Technology.

To illustrate the method of determining nondimensional parameters from the gov-
erning equations, consider a flow in which both viscosity andgravity are impor-
tant. An example of such a flow is the motion of a vessel, where the drag expe-
rienced is caused by generation of surface waves and by friction on the surface
of the hull. All other effects such as surface tension and compressibility are ne-
glected. The governing differential equation is the Navier-Stokes equation

∂w
∂t
+ u

∂w
∂x
+ v

∂w
∂v
+ w

∂w
∂z
= −1

ρ

∂p
∂z
− g+

µ

ρ

(

∂2w
∂x2
+
∂2w
∂y2
+
∂2w
∂w2

)

, (2.50)

and two other foru andv. The equation can be nondimensionalized by defining a
characteristic length scalel and a characteristic velocity scaleU. Dynamic simi-
larity requires that the flows have geometric similarity of the boundaries, so that
all characteristic lengths are proportional; for example,in Figure2.5we must have
d/l = d1/l1. Dynamic similarity also requires that the flows should be kinemat-
ically similarly, that is, they should have geometrically similar streamlines. The
velocities at the same relative location are therefore proportional; if the velocity
at pointP in Figure2.5a isU/2, then the velocity at the corresponding pointP1

in Figure2.5b must beU1/2. All length and velocity scales are then proportional
in a class of dynamically similar flows. Accordingly, we introduce the following
nondimensional variables, denoted by primes:

x′ =
x
l
, y′ =

y
l
, z′ =

z
l
, t′ =

tU
l
,

u′ =
u
U
, v′ =

v
U
, w′ =

w
U
, p′ =

p− p∞
ρU2

. (2.51)
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(a) (b)

d ·P ·P1
d1

l
U

U1

l1

Figure 2.5: Two geometrically similar ships.

The conventional practice is to renderp− p∞ dimensionless. Depending on
nature of the flow, this could be in terms of viscous stressµU/l, a hydrostatic
pressureρgl, or as in the preceding, a dynamic pressureρU2. Substitution of
equation (2.51) into equation (2.50) gives

∂w′

∂t′
+ u′

∂w′

∂x′
+ v′

∂w′

∂v′
+w′

∂w′

∂z′
= −

∂p′

∂z′
−

gl
U2
+
ν

Ul

(

∂2w′

∂x′2
+
∂2w′

∂y′2
+
∂2w′

∂z′2

)

. (2.52)

It is apparent that two flows will obey the same nondimensional differential equa-
tion if the values of nondimensional groupsgl/U2 andν/Ul are identical. Because
the nondimensional boundary condition are also identical in the two flows, it fol-
lows that they will have the same nondimensional solutions.The nondimensional
parametersUl/ν andU/

√

gl have been given the names:

Re≡
Ul
ν
= Reynolds number,

Fr ≡ U
√

gl
= Froude number. (2.53)

Both Re and Fr have to be equal for dynamic similarity of two flows in which
both viscous and gravitational effects are important, seeDysthe(1992). In the
Still Water Performance Testν, ρ andg must be equal for the scaled model and
the twin hull. For dynamic similarity, where both Re and Fr isequal for the two
flows, we have that

Ul = U1l1 and U2l1 = U2
1l,

which have the solutionU = U1, l = l1. It is therefore not possible to keep both
the Reynolds and the Froude number equal for the two flows. Scaling models are
still used because the viscous friction and the gravitational effects in form of wave
making resistance can approximately be added together. Wave making resistance
does only depend on the Froude number and not the Reynolds number.



32 Theory from Fluid Mechanics

It is usual to estimate the viscous friction per area from a model test by drag-
ging plates through the water. The total viscous friction ofthe ship is estimated
by multiplying with the area of the wetted surface. The wave making resistance
can be found by subtracting the viscous friction from the total resistance of the
ship from model experiment with same Froude number.

2.13 Gravity Waves

Many wave motions of small amplitude obey the wave equation

∂2η

∂t2
= c2∇2η, (2.54)

which is a linear partial differential equation of the hyperbolic type.η is any type
of disturbance, for example the displacement of the free surface in a liquid. Waves
travelling only in thex direction are described by

∂2η

∂t2
= c2∂

2η

∂x2
, (2.55)

which has a general solution of the form

η = f (x− ct) + g(x+ ct), (2.56)

where f andg are arbitrary functions. Equation (2.56), called d’Alemberts’s solu-
tion, signifies that any arbitrary function of the combination (x± ct) is a solution
of the wave equation.

Wave parameters

According to Fourier’s principle, any disturbance can be decomposed into sinu-
soidal wave components of different wavelengths and amplitudes. We will study
sinusoidal waves of the form

η = a sin

[

2π
λ

(x− ct)

]

. (2.57)

The argument 2π(x− ct)/λ is called the phase of the wave, and points of constant
phases are those where the waveform has the same value. Sinceη varies between
±a, a is the amplitude of the wave. The parameterλ is called the wavelength
because the value ofη in equation (2.57) does not change ifx is changed by±λ.
The wavenumber is defined as follows

k ≡
2π
λ
, (2.58)
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which is the number of complete waves in a length 2π. The waveform equation
(2.57) can then be written as

η = a sin k(x− ct). (2.59)

The periodT of a wave is the time required for the condition at a point to repeat
itself, and must be equal the time required for the wave to travel one wavelength:

T =
λ

c
. (2.60)

The number of oscillations at a point per unit time is the frequency, given by

ν =
1
T
. (2.61)

Clearlyc = λν. The quantity

ω = 2πν = kc, (2.62)

is called the circular frequency and is the rate of change of phase (in radians) per
unit time. The speed of propagation of the waveform is related tok andω by

c =
ω

k
, (2.63)

which is called the phase speed. In terms ofω andk, the waveform equation (2.57)
is written as

η = a sin(kx− ωt). (2.64)

By considering three-dimensional waves of sinusoidal shape, equation (2.64) is
generalized to

η = a sin(K · x − ωt), (2.65)

whereK = (k, l,m) is a vector called the wavenumber vector. The wavelength of
(2.65) is

λ =
2π
K
. (2.66)

The phase velocity isc = ω/K, and the direction of propagation is that ofK. We
can therefore write the phase velocity as the vector

c =
ω

K
K
K
, (2.67)

whereK/K represents the unit vector in the direction ofK.
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Surface gravity waves

In this section we shall discuss gravity waves at the free surface of a sea of liquid
of uniform depthH, which may be large or small compared to the wavelengthλ.

Formulation of the problem

Consider a case where the waves propagate in thex direction only, and that the
motion is two dimensional in thexz− plane, see Figure2.6.

H

a η

0

z= −H

x

z

Figure 2.6: Wave nomenclature.

Let the vertical coordinatezbe measured upward from the undisturbed free
surface. The free surface displacement isη(x, t). Because the motion is
irrotational, a velocity potentialφ can be defined such that

u =
∂φ

∂x
, w =

∂φ

∂z
. (2.68)

Substitution into the continuity equation

∂u
∂x
+
∂w
∂z
= 0, (2.69)

gives the Laplace equation
∂2φ

∂x2
+
∂2φ

∂z2
= 0. (2.70)

Boundary conditions are to be satisfied at the free surface and at the bottom. The
condition at the bottom is zero normal velocity, that is

w =
∂φ

∂z
= 0 at z= −H. (2.71)
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At the free surface, a kinematic boundary condition is that the fluid particle never
leaves the surface, that is

Dη
Dt
= wη at z= η, (2.72)

whereD/Dt = ∂/∂t + u(∂/∂x), andwη is the vertical component of fluid velocity
at the free surface. The forementioned condition can be written as

∂η

∂t
+ u

∂η

∂x

∣
∣
∣
∣
∣
∣
z=η

=
∂φ

∂z

∣
∣
∣
∣
∣
∣
z=η

. (2.73)

For small-amplitude waves bothu and∂η/∂x are small, so that the quadratic term
u(∂η/∂x) is one order smaller than other terms in equation (2.73), which then
simplifies to

∂η

∂t
=
∂φ

∂z

∣
∣
∣
∣
∣
∣
z=η

. (2.74)

We can simplify this condition still further by arguing thatthe right-hand side can
be evaluated atz= 0 rather than at the free surface. To justify this, expand∂φ/∂z
in a Taylor series aroundz= 0:

∂φ

∂z

∣
∣
∣
∣
∣
∣
z=η

=
∂φ

∂z

∣
∣
∣
∣
∣
∣
z=0

+ η
∂2φ

∂z2
+

∣
∣
∣
∣
∣
∣
z=0

· · · ≃ ∂φ
∂z

∣
∣
∣
∣
∣
∣
z=0

.

Therefore, to the first order of accuracy desired here,∂φ/∂z in equation (2.74) can
be evaluated atz= 0. We then have

∂η

∂t
=
∂φ

∂z
at z= 0. (2.75)

In addition to the kinematic condition at the surface, thereis a dynamic condition
that the pressure just below the free surface is always equalto the ambient pres-
sure, with surface tension neglected. Taking the ambient pressure to be zero, the
condition is

p = 0 at z= η. (2.76)

Since the motion is irrotational, Bernoulli’s equation (2.10)

∂φ

∂t
+

1
2

(u2 + w2) +
p
ρ
+ gz= F(t), (2.77)

is applicable. Here, the functionF(t) can be absorbed in∂φ/∂t by redefiningφ.
Neglecting the nonlinear term (u2 + w2) for small-amplitude waves the linearized
form of the unsteady Bernoulli equation is

∂φ

∂t
+

p
ρ
+ gz= 0. (2.78)
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Substitution into the surface boundary condition (2.76) gives

∂φ

∂t
+ gη = 0 at z= η. (2.79)

As before, for small-amplitude waves, the term∂φ/∂t can be evaluated atz = 0
rather than atz= η to give

∂φ

∂t
= −gη at z= 0. (2.80)

Solution of the problem

Recapitulating, we have to solve

∂2φ

∂x2
+
∂2φ

∂z2
= 0, (2.81)

subject to the conditions

∂φ

∂z
= 0 at z= −H, (2.82)

∂φ

∂z
=
∂η

∂t
at z= 0, (2.83)

∂φ

∂t
= −gη at z= 0. (2.84)

In order to apply the boundary conditions, we need to assume aform for η(x, t).
The simplest case is that of a sinusoidal component with wavenumberk and fre-
quencyω, for which

η = a cos(kx− ωt). (2.85)

For a cosine dependence ofη on (kx−ωt), conditions (2.83) and (2.84) show that
φ must be a sine function of (kx − ωt). Consequently, we assume a separable
solution of the Laplace equation in the form

φ = f (z) sin(kx− ωt), (2.86)

where f (z) andω(k) are to be determined. After some calculations, see
Kundu and Cohen(2010), the velocity potential becomes

φ =
aω
k

cosh k(z+ H)
sinh kH

sin(kx− ωt), (2.87)

from which the velocity components are found as

u = aω
cosh k(z+ H)

sinh kH
cos(kx− ωt), (2.88)

w = aω
sinh k(z+ H)

sinh kH
sin(kx− ωt). (2.89)
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Substitution of equation (2.85) and (2.87) into (2.84) gives the relation betweenk
andω

ω =
√

gk tanh kH. (2.90)

The phase speedc = ω/k is related to the wave size by

c =

√

g
k

tanh kH=

√

gλ
2π

tanh
2πH
λ

. (2.91)

This shows that the speed of propagation of a wave component depends on its
wavenumber. Waves for whichc is a function ofk are called "dispersive" because
waves of different lengths, propagating at different speeds, "disperse " or separate.

For deep-water approximation (H/λ >> 1) the phase speed, see equation (2.91),
is approximated by

c =

√

gλ
2π
. (2.92)

For shallow-water approximation (H/λ << 1) the phase speed, see equation
(2.91), is approximated by

c =
√

gH. (2.93)

Energy considerations

In a dispersive system, the energy of a wave component does not propagate at the
phase speed velocityc = ω/k, but at the group velocity defined ascg = dω/dk.
For surface gravity waves having the dispersion relation

ω =
√

gk tanh kH, (2.94)

the group velocity is found to be

cg =
c
2

[

1+
2kH

sinh kH

]

. (2.95)

For deep and shallow water approximation the group velocityreduces to

cg =
1
2

c (deep water), (2.96)

cg = c (shallow water). (2.97)
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In the book ofKundu and Cohen(2010) it is shown that the wave energy (E),
where kinetic (Ek) and potential (Ep) energy is considered, in a water column per
unit horizontal area is

E = Ep + Ek = ρgη2 =
1
2
ρga2, (2.98)

where the last form in terms of amplitudea is valid if η is assumed sinusoidal.

Next we consider the rate of transmission of energy due to a single sinusoidal
component of wavenumberk. Per unit length of crest, the time average energy
flux is

F = E · cg =

[1
2
ρga2

][c
2

(

1+
2kH

sinh2kH

)]

. (2.99)

The first factor is the wave energy given in (2.98). The second factor is the speed
of propagation of wave energy of componentk, called the group speed.



Chapter 3

Computational fluid dynamics

The following is based on the book ofFerziger and Perić (2002) which gives a
good introduction to computational fluid dynamics. Flows and related phenom-
ena can be described by partial differential equations, which cannot be solved
analytically except in special cases. To obtain an appropriate solution numeri-
cally, we have to use a discretization method which approximates the differential
equations by a system of algebraic equations, which can be solved on a computer.
The approximations are applied to small domains in space and/or time so the nu-
merical solution provides results at discrete locations inspace and time. Such as
the accuracy of experimental data depends on the quality of the tools used, the ac-
curacy of numerical solutions are dependent on the quality of discretizations used.

In the following sections the discretization approaches and the details for the
finite volume method will be presented by using the theory from the book of
Versteeg and Malasekera(2007). Numerical method for pure diffusion and
convection-diffusion in steady state will be developed for the finite volume method.
Afterwards the properties of the main discretization schemes, used in CDF, will be
discussed. The central differencing scheme and the upwind differencing scheme
will be explained in detail.

3.1 Discretization approaches

In the book ofFerziger and Perić (2002) we can read about the three main dis-
cretization methods for solving partial differential equations, respectively the fi-
nite difference method, the finite volume method and the finite elementmethod.
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Finite difference method

The finite difference (FD) method is the oldest method for numerical solution of
PDE’s believed to have been introduced by Euler in the 18th century. The starting
point is the conservation equation in differential form. The solution domain is
covered by a grid. At each grid point, the differential equation is approximated
by replacing the partial derivatives by approximations in terms of the nodal val-
ues of the functions. The result is one algebraic equation per grid node, in which
the variable value at that and a certain number of neighbour nodes appear as un-
knowns. In principle, the FD method can be applied to any gridtype. However,
in most applications it has been applied to structured grids. Taylor series expan-
sion or polynomial fitting is used to obtain approximations to the first and second
derivatives of the variables with respect to the coordinates. The disadvantage of
FD methods is that the conservation is not enforced unless special care is taken.
Also, the restriction to simple geometries is a significant disadvantage in complex
flows.

Finite volume method

The finite volume (FV) method uses the integral form of the conservation equa-
tions as it starting point. The solution domain is subdivided into a finite number
of contiguous control volumes (CVs), and the conservation equations are applied
to each CV. At the centroid of each CV lies a computational node at which the
variable values are to be calculated. Interpolation is usedto express variable val-
ues at the CV surface in terms of the nodal (CV-center) values. The FV method
can accommodate any type of grid, so it is suitable for complex geometries. The
grid defines only the control volume boundaries and need not be related to a coor-
dinate system. The method is conservative by construction.The disadvantage of
FV methods compared to FD schemes is that methods of order higher than second
are more difficult in 3D. This is due to the fact that the FV approach requires three
levels of approximation: interpolation, differentiation and integration.

Finite element method

The finite element (FE) method is similar to the FV method in many ways. The
domain is broken into a set of discrete volumes or finite elements that are gener-
ally unstructured. The distinguishing feature of FE methods is that the equations
are multiplied by a weight function before they are integrated over the entire do-
main. In the simplest FE methods, the solution is approximated by a linear shape
function within each element in a way that guarantees continuity of the solution
across element boundaries. Such a function can be constructed from its values
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at the corners of the elements. The weight function is usually of the same form.
An important advantage of finite element methods is the ability to deal with ar-
bitrary geometries. The principle drawback, which is shared by any method that
uses unstructured grids, is that the matrices of the linearized equations are not as
well structured as those for regular grids making it more difficult to find efficient
solution methods.

It has generally been found that the finite element method requires grater computa-
tional resources and computer processing power than the equivalent finite volume
method, seeTu et al.(2007).

3.2 Finite volume method

Based on the book ofVersteeg and Malasekera(2007) we will first develop the
numerical method the finite volume method, by considering the simplest trans-
port process of all: pure diffusion in the steady state. The governing equation of
diffusion can easily be derived from the general transport equation (2.36),

∂(ρφ)
∂t
+ ∇ · (ρφu) = ∇ · (Γ∇φ) + Sφ,

for property ofφ by deleting the transient and convective terms. This gives

∇ · (Γ∇φ) + Sφ = 0. (3.1)

The control volume integration, which forms the key step of the finite volume
method that distinguishes it from all other CFD techniques,yields the following
form,

∫

CV
∇ · (Γ∇φ) +

∫

CV
Sφ = 0 =

∫

A
n · (Γ∇φ)dA+

∫

CV
SφdV = 0, (3.2)

where Gauss’s divergence theorem has been applied to the first volume integral.
By working with one-dimensional steady state diffusion equation, the approxima-
tion techniques that are needed to obtain the discretized equations are introduced.

By considering the steady state diffusion of a propertyφ in one-dimensional do-
main defined in Figure3.1. The process is governed by

d
dx

(

Γ
dφ
dx

)

+ S = 0, (3.3)

whereΓ is the diffusion coefficient and S is the source term. Boundary values at
points A and B are prescribed.
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Figure 3.1: One dimensional domain.

Step 1: Grid generation

The first step in the finite volume method is to divide the domain into discrete
control volumes. A number of nodal points is placed in the space between A
and B. The boundaries, or faces, of the control volumes are positioned mid-way
between adjacent nodes.

W Eew P

δxWP δxPE

δxwP δxPe

∆x = δxwe

Figure 3.2: One dimensional grid.

A general nodal point is identified byP and its neighbours in a one-dimensional
geometry, the nodes to the west and east, are identified byW andE respectively.
The west side face of the control volume is referred to byw and the east side
control volume face bye. The distances between the nodesW andP, and
between nodesP andE, are identified byδxWP andδxPE respectively. Similarly
the distances between facew and pointP and betweenP and faceeare denoted
by δxwP andδxPe respectively. Figure3.2shows that the control volume width is
∆x = δxwe.
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Step 2: Discretization

The key step of the finite volume method is the integration of the governing equa-
tion over a control volume to yield a discretized equation atis nodal pointP. For
the control volume defined above this gives

∫

∆V

d
dx

(

Γ
dφ
dx

)

dV+
∫

∆V
S dV=

(

ΓA
dφ
dx

)

e

−
(

ΓA
dφ
dx

)

w

+ S̄∆V = 0. (3.4)

HereA is the cross-sectional area of the control volume face,∆V is the volume
andS̄ is the average value of sourceS over the control volume. Equation (3.4)
states that the diffusive flux ofφ leaving the east face minus the diffusive flux of
φ entering the west face is equal to the generation ofφ.

In order to derive useful forms of the discretized equations, the interface diffu-
sion coefficientΓ and the gradientdφ/dxat east and west are required. Following
well established practice, the values of the propertyφ and the diffusion coefficient
are defined and evaluated at nodal points. To calculate gradients and fluxes at
the control volume faces an approximate distribution of properties between nodal
points is used. Linear approximations seem to be the obviousand simplest way
of calculating interface values and the gradients. The practice is called central
differencing. In a uniform grid, linearly interpolated values of Γw andΓe are given
by

Γw =
ΓW + ΓP

2
, (3.5)

Γe =
ΓP + ΓE

2
. (3.6)

And the diffusive flux terms are evaluated as
(

ΓA
dφ
dx

)

e
= ΓeAe

(
φE − φP

δxPE

)

, (3.7)
(

ΓA
dφ
dx

)

w
= ΓwAw

(
φP − φW

δxWP

)

. (3.8)

In practical situations the source termS may be a function of the dependent vari-
able. In such cases the finite volume method approximates thesource term by
means of a linear form:

S̄∆V = Su + SPφP. (3.9)

Substitution of the equations (3.7), (3.8) and (3.9) into equation (3.4) gives

ΓeAe

(

φE − φP

δxPE

)

− ΓwAw

(

φP − φW

δxWP

)

+ (Su + SPφP) = 0. (3.10)
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This can be rearranged as

(

Γe

δxPE
Ae +

Γw

δxWP
− SP

)

φP =

(

Γw

δxWP
Aw

)

φW +

(

Γe

δxPE
Ae

)

φE + Su. (3.11)

Identifying the coefficients ofφW andφE in equation (3.11) asaW andaE, and the
coefficient ofφP asaP, the above equation can be written as

aPφP = aWφW + aEφE + Su, (3.12)

where

aw =
Γw

δxWP
Aw , ae =

Γe

δxPE
Ae , aP = aW + aE − SP .

Equation (3.12) represents the discretized form for the steady state diffusion prob-
lem.

Step 3: Solution of the equations

Discretized equations of the form (3.12) must be set up at each of the nodal points
in order to solve a problem. For control volumes that are adjacent to the do-
main boundaries the general discretized equation (3.12) is modified to incorporate
boundary conditions. The resulting system of linear algebraic equations is then
solved to obtain the distribution of the propertyφ at nodal points.

Steady state convection-diffusion equation

In the absence of sources, steady convection and diffusion of a propertyφ in a
given one-dimensional flow fieldu is governed by

d
dt

(ρuφ) =
d
dx

(

Γ
dφ
dx

)

. (3.13)

The flow must satisfy the continuity equation, so

d(ρu)
dx
= 0. (3.14)

We consider the one dimensional control volume shown in Figure3.3.
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Figure 3.3: A control volume around nodeP. One dimensional grid.

Integration of the transport equation (3.13) over the control volume of Figure3.3
gives

(ρuAφ)e − (ρuAφ)w =

(

ΓA
dφ
dx

)

e

−
(

ΓA
dφ
dx

)

w

. (3.15)

And integration of continuity equation (3.14) yields

(ρuA)e − (ρuA)w = 0. (3.16)

To obtain discretized equations for the convection-diffusion problem we must ap-
proximate the terms in equation (3.15). It is convenient to define two variablesF
andD to represent the convective mass flux per unit area and diffusion conduc-
tance at cell faces:

F = ρu and D =
Γ

δx
. (3.17)

The cell face values of the variablesF andD can be written as

Fw = (ρu)w, Fe = (ρu)e, (3.18)

Dw =
Γw

δxWP
, De =

Γe

δxPE
. (3.19)

We develop our techniques assuming thatAw = Ae = A, so we can divide the left
and right hand side of equation (3.15) by areaA. As before, we employ the central
differencing approach to represent the contribution of the diffusion terms on the
right hand side. The integrated convection-diffusion (3.15) can now be written as

Feφe − Fwφw = De(φE − φP) − Dw(φP − φW), (3.20)

and the integrated continuity equation (3.16) as

Fe − Fw = 0. (3.21)

We also assume that the velocity field is known which takes care of the values of
Fe andFw. In order to solve equation (3.20) we need to calculate the transported
propertyφ at theeandw faces. There are several schemes for this purpose.
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3.3 Properties of discretization schemes

In theory numerical results may be obtained that are indistinguishable from the
’exact’ solution of the transport equation when the number of computational cells
is infinitely large. However, in practical calculations we can only use a finite,
sometimes quite small, number of cells, and our numerical results will be physi-
cally realistic when the discretization schemes has certain fundamental properties.
The most important ones are:

• Conservativeness

• Boundedness

• Transportiveness

Conservativeness

Integration of the convection-diffusion equation over a finite number of control
volumes yields a set of discretized conservation equationsinvolving fluxes of the
transported propertyφ through control volume faces. To ensure conservation of
φ for the whole solution domain the flux ofφ leaving a control volume across a
certain face must be equal to the flux ofφ entering the adjacent control volume
through the same face. To achieve this the flux through a common face must be
represented in a consistent manner, by one and the same expression, in adjacent
control volumes.

Boundedness

The discretized equations at each nodal point represent a set of algebraic equa-
tions that needs to be solved. Normally iterative numericaltechniques are used to
solve large equation sets. These methods start the solutionprocess from a guessed
distribution of the variableφ and perform successive updates until a converged so-
lution is obtained.Scarborough(1958) has shown that a sufficient condition for a
convergent iterative method can be expressed in terms of thevalues of the coeffi-
cients of the discretized equations:

∑

|anb|
|a′p|

=






≤ 1 at all nodes

< 1 at least at one node.
(3.22)

Herea′p is the net coefficient of the central nodeP andanb is all the neighbouring
nodes. If the differencing scheme produces coefficients that satisfy the above
criterion the resulting matrix of coefficients is diagonally dominant. Diagonal
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dominance is a desirable feature for satisfying the ’boundedness’ criterion. This
states that in the absence of sources the internal values of propertyφ should be
bounded by its boundary values. Hence in a steady state conduction problem
without sources and with boundary temperatures of 500oC and 200oC, all interior
values ofT should be less than 500oC and greater than 200oC. Another essential
requirement for boundedness is that all coefficients of the discretized equations
should have same sign. Physically this implies that an increase in the variableφ
at one node should result in an increase inφ at neighbouring nodes.

Transportiveness

The transportiveness property of a fluid flow,Roache(1976), can be illustrated
by considering the effect at a pointP due to two constant sources ofφ at nearby
pointsW andE on either side, see Figure3.3. We define the non-dimensional cell
Peclet number as a measure of the relative strengths of convection and diffusion:

Pe=
F
D
=

ρu
Γ/δx

, (3.23)

whereδx is the characteristic length (cell width) andΓ is the diffusion coefficient.
Lets consider 2 cases.

• no convection and pure diffusion (Pe→ 0)

• no diffusion and pure convection (Pe→ ∞)

If we consider only pure diffusion the fluid is stagnant (Pe→ 0) and the contours
of constantφ will be concentric circles centered aroundW andE. The result is
that the pointP is influenced equally of the two sources atW andE. However as
Pe increases the contours change shape from circular to elliptical and are shifted
in the direction of the flow. In the case of pure convection (Pe→ ∞) the elliptical
contours are completely stretched out in the flow direction.All properties ofφ em-
anating from sources atW andE is immediately transported downstream. Thus,
conditions atP are now unaffected by the downstream source atE and completely
dictated by the upstream source atW. Since there is no diffusion,φP is equal to
φW. It is very important that the relationship between the directionality of influ-
encing and the flow direction and magnitude of the Peclet number, known as the
transportiveness, is born out in the discretization scheme.
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3.4 Central differencing scheme

The central differencing approximation was used for the convection and diffusion
problem. For a uniform grid we can write the cell face values of propertyφ as

φe =
φP + φE

2
, (3.24)

φw =
φW + φP

2
. (3.25)

Substitution of the above expressions into the convection terms of equation (3.20)
yields

Fe

2
(φP + φE) − Fw

2
(φW + φP) = De(φE − φP) − Dw(φP − φW). (3.26)

This can be rearranged to give
[(

Dw −
Fw

2

)

+

(

De +
Fe

2

)]

φP =

(

Dw +
Fw

2

)

φW +

(

De −
Fe

2

)

φE. (3.27)

Identifying the coefficients ofφW and φE as aW and aE, the central difference
expressions for the discretized convection-diffusion equation are

apφP = aWφW + aEφE, (3.28)

where

aW = Dw +
Fw

2
, aE = De −

Fe

2
, aP = aW + aE + (Fe− Fw). (3.29)

The properties of the scheme will be discussed next.

Central differencing scheme properties

Conservativeness

The central differencing scheme uses consistent expressions to evaluate convec-
tion and diffusive fluxes at the control volume faces. The scheme is determined
by only one function and is therefore conservative.

Boundedness

When we apply the discretized continuity equation (3.21) for a steady one di-
mensional flow field to the coefficients of equation (3.28), the expression foraP

becomes equal toaP = aW + aE. The coefficients of the central difference scheme
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satisfy the Scarborough criterion (3.22).

With aE = De − Fe/2 the convective contribution to the east coefficient is neg-
ative; if the convection dominates it is possible foraE to be negative. Given that
Fw > 0 andFe > 0 for aE to be positiveDe andFe must satisfy the following
condition:

Fe

De
= Pee < 2. (3.30)

For aPelarger than 2 the east coefficient will be negative. This violates one of the
requirements for boundedness and may lead to physically impossible solutions.

Transportiveness

The central differencing scheme introduce influencing at node P from the direc-
tions of all its neighbours to calculate the convective and diffusive flux. Thus the
scheme does not recognize the direction of the flow or the strength of convection
relative to diffusion. It does not possess the transportiveness property athigh Pe.

Accuracy

By using Taylor series we get a truncation error of second order, see
Versteeg and Malasekera(2007).

3.5 Upwind differencing scheme

One of the major inadequacies with the central differencing scheme is its inability
to identify flow direction. The value of propertyφ at a west cell face is always in-
fluenced by bothφP andφW in central differencing. In a strongly convective flow
from west to east, the above treatment is unsuitable becausethe west cell face
should receive much stronger influencing from nodeW than from nodeP. The
upwind differencing scheme takes into account the flow direction when determin-
ing the value at a cell face: the convected value ofφ at a cell face is taken to be
equal to the value at the upstream node. If the flow goes in the positive direction
from west to east (Fw > 0, Fe > 0), the upwind scheme sets

φw = φW, (3.31)

φe = φP, (3.32)

and the discretized equation (3.20) becomes

FeφP − FwφW = De(φE − φP) − Dw(φP − φW), (3.33)
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which can be rearranged as

(Dw + De + Fe)φP = (Dw + Fw)φW + DeφE, (3.34)

to give

[(Dw + Fw) + De + (Fe − Fw)]φP = (Dw + Fw)φW + DeφE. (3.35)

Identifying the coefficients ofφW andφE asaW andaE, equation (3.35) can be
written in the usual general form

aPφP = aWφW + aEφE, (3.36)

with central coefficient

aP = aW + aE + (Fe − Fw),

and neighbour coefficients

aw = Dw + Fw, (3.37)

aE = De. (3.38)

When the flow is in the negative direction (Fw < 0, Fe < 0), the scheme takes

φw = φP, (3.39)

φe = φE, (3.40)

and the neighbour coefficients

aW = Dw, (3.41)

aE = De − Fe. (3.42)

Upwind differencing scheme properties

Conservativeness

The upwind differencing scheme utilizes consistent expressions to calculate fluxes
through cell faces; therefore it can be easily shown that theformulation is conser-
vative.

Boundedness

The coefficients of the discretized equation are always positive and satisfy the
requirements for boundedness. When the flow satisfy the continuity term (Fe −
Fw) in aP is zero and givesaP = aW + aE, which is desirable for stable iterative
solutions. All the coefficients are positive and the coefficient matrix is diagonally
dominant, hence no ’wiggles’ occur in the solution.
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Transportiveness

The scheme accounts for the direction of the flow so transportiveness is built into
the formulation.

Accuracy

The scheme is based on the backward differencing formula so the accuracy is only
of first order on the basis of the Taylor series truncation error, see
Versteeg and Malasekera(2007).

3.6 The hybrid differencing scheme

The hybrid differencing scheme ofSpalding(1976) is based on a combination
of central and upwind differencing scheme. The hybrid difference scheme ex-
ploits the favourable properties of the upwind and central differencing schemes.
It switches to upwind differencing when central differencing produce inaccurate
results at highPe numbers. The scheme is fully conservative and since the co-
efficients are always positive it is unconditionally bounded. It satisfies the trans-
portiveness requirement by using an upwind formulation forlarge values of Peclet
number. The scheme produces physically realistic solutions and is highly stable
when compared with higher order schemes such as QUICK.

3.7 Quadratic upwind differencing scheme

The quadratic upstream interpolation for convective kinetics (QUICK) scheme
of Leonard(1979) uses a tree-point upstream-weighted quadratic interpolation
for cell face values. The face value ofφ is obtained from a quadratic function
passing through two bracketing nodes, on each side of the face, and a node on
the upstream side and is therefore conservative. Since the scheme is based on a
quadratic function its accuracy in term of Taylor series truncation error is third
order on a uniform mesh. The transportiveness property is built into the scheme
as the quadratic function is based on two upstream and one downstream nodal
values. The downside is that the QUICK scheme is only conditionally stable.

3.8 Total variation diminishing scheme

From the book ofVersteeg and Malasekera(2007) we know that the upwind dif-
ferencing scheme (UD) is the most stable scheme and does not give any wiggles,
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whereas the central difference (CD) and quadratic upwind differencing schemes
(QUICK) have higher order accuracy and give rise to wiggles under certain condi-
tions. The goal is to find a scheme with higher order of accuracy without wiggles.
This lead to the development of TVD schemes with the desirable property for a
stable, non-oscillatory and higher order scheme called monotonicity preserving.
For a scheme to preserve monotonicity, (i) it must not createlocal extrema and
(ii) the value of an existing local minimum must be non-decreasing and that of a
local maximum must be non-increasing.

TVD schemes are generalizations of existing discretization schemes, like CD,
UP and QUICK schemes under the necessary and sufficient condition for TVD
schemes ofSwedby(1984), so they inherently satisfy all the requirements of trans-
portiveness, conservativeness and boundedness.

3.9 Pressure-Velocity Coupling

The convection of a scalar variableφ depends on the magnitude and direction of
the local velocity field. In the previous sections we have assumed that the velocity
field was known. In general the velocity field is not known and emerges as part
of the overall solution process along with all other flow variables. In this section
we will look at two of the most popular strategies of computing the entire flow
field. The first is the SIMPLE algorithm, Semi-Implicit Method for Pressure-
Linked Equations, originally put forward by Patankar andSpalding(1972) and
is essentially a guess and correct procedure for the calculation of pressure. The
second is the PISO algorithm, Pressure Implicit with Splitting of Operators, of
Issa(1986). The PISO algorithm is a pressure-velocity calculation procedure de-
veloped originally for non-iterative computation of unsteady compressible flows.
The algorithms will be outlined considering steady state for the SIMPLE algo-
rithm and unsteady for the PISO algorithm. Further details of the algorithms can
be found in the books ofVersteeg and Malasekera(2007); Tu et al.(2007).

3.9.1 SIMPLE algorithm

The SIMPLE algorithm will be illustrated by considering a two dimensional lam-
inar steady flow. To initiate the SIMPLE calculation processa pressure fieldp∗,
where the star (*) denotes the guessed variable, is guessed which is used to solve
discretized momentum equations

ai,Ju
∗
i,J =

∑

anbu
∗
nb+ (p∗I−1,J − p∗I ,J)Ai,J + bi,J, (3.43)

aI , jv
∗
I , j =

∑

anbv
∗
nb + (p∗I ,J−1 − p∗I ,J)AI , j + bI , j. (3.44)
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After the momentum equations is considered, the continuityequation is solved
from which an equation for pressure correctionp′ is obtained.

aI ,Jp′I ,J =aI+1,Jp′I+1,J + aI−1,Jp′I−1,J

+ aI ,J+1p′I ,J+1 + aI ,J−1p′I ,J−1 + b′I ,J. (3.45)

Now correct pressure and velocities can be found

pi,J = p∗i,J + p′i,J,

ui,J = u∗i,J + di,J(p
′
I−1,J − p′I ,J), (3.46)

vI , j = v∗I , j + dI , j(p
′
I ,J−1 − p′I ,J).

From the correct pressure and velocities all other discretized transport equations
can be solved. The algorithm will run until the solution has converged. The
sequence of operations in a CFD procedure which employs the SIMPLE algorithm
is given in Figure3.4.

3.9.2 PISO algorithm

The PISO algorithm involves one predictor step and two corrector steps and may
be seen as an extension of SIMPLE, with a further corrector step to enhance it.
The second pressure correction equation is

aI ,Jp′′I ,J =aI+1,Jp′′I+1,J + aI−1,Jp′′I−1,J

+ aI ,J+1p′′I ,J+1 + aI ,J−1p′′I ,J−1 + b′′I ,J. (3.47)

From equation (3.47) the pressure and velocity is corrected for the second time.

p∗∗∗I ,J =p∗I ,J + p′I ,J + p′′I ,J, (3.48)

u∗∗∗i,J =u∗i,J + di,J(p
′
I−1,J − p′I ,J) +

∑

anb(u∗∗nb − u∗nb)

ai,J

+ di,J(p
′′
I−1,J − p′′I ,J), (3.49)

v∗∗∗I , j =v∗I , j + dI , j(p
′
I ,J−1 − p′I ,J) +

∑

anb(v∗∗nb − v∗nb)

aI , j

+ dI , j(p
′′
I ,J−1 − p′′I ,J). (3.50)

The sequence of operations for an iterative steady state PISO calculation is given
in Figure3.5.
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Start

Solve the discretized momentum
equations (3.43) and (3.44)

equation (3.45)
Solve pressure correction

Initial guessp∗, u∗, v∗, φ∗

u∗, v∗

Correct pressure and velocities (3.46)

p′

p, u, v, φ∗

Stop

Convergence?

Yes

p∗ = p, u∗ = 0

v∗ = v, φ∗ = φ

Set

No

φ

Solve all other discretized

transport equations

Figure 3.4: The SIMPLE algorithm.
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Start

equation (3.47)
Solve pressure correction

Initial guessp∗, u∗, v∗, φ∗

p∗, u∗, v∗, φ′

p∗ = p, u∗ = 0

v∗ = v, φ∗ = φ

Set

Stop

Yes

Convergence?

φ

No

Solve all other discretized
transport equations

p, u, v, φ∗

Correct pressure and velocities

Perform first three steps of
SIMPLE algorithm

p = p∗∗∗
Set

u = u∗∗∗

v = v∗∗∗

equations (3.48)-(3.50)

Figure 3.5: The PISO algorithm.
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Chapter 4

Turbulence Modelling

4.1 Turbulent flow

In fluid dynamics, turbulence or turbulent flow do not allow a strict analytic study,
and one depends heavily on physical intuition on dimensional arguments.

Before proceeding to the discussion of numerical methods for turbulent flows,
it is useful to introduce a classification scheme for the approaches to predicting
turbulent flows. According toBardina et al.(1980) there are six categories, most
of which can be divided in sub-categories. We will introducethe three most used
categories.

• The first is based on equations obtained by averaging the equations of mo-
tion over time, over a coordinate in which the mean flow does not vary, or
over an ensemble of realizations. This approach is called one-point clo-
sure and leads to a set of partial differential equations called the Reynolds-
averaged Navier-Stokes (RANS) equations. These equationsdo not form a
closed set so the method requires the introduction of approximations, tur-
bulence models.

• The second is the large eddy simulation (LES) and solves for the largest
scale motions of the flow while approximating or modelling only the small
scale motions. It can be regarded as a kind of compromise between one
point closure methods (RANS) and direct numerical simulation (DNS)

• The third is the direct numerical simulation (DNS) in which the Navier-
Stokes equations are solved for all of the motions in a turbulent flow.

As one progresses down this list, more and more of the turbulent motions are
computed and fewer are approximated by models. This makes the last methods
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more exact, but the computation time is increased considerably. We are most
interested in the quantitative properties, like pressure and forces on the hull, of the
flow. Therefore we will use the RANS equations for the simulation in this thesis.

4.1.1 Reynolds-Averaged Navier-Stokes (RANS) Equations

In Reynolds-Averaged approaches to turbulence all the unsteadiness is averaged
out, in other word all unsteadiness is regarded as part of theturbulence. On av-
eraging, the non linearity of the Navier-stokes equations gives rise to terms that
must be modelled. The complexity of turbulence makes it unlikely that any single
Reynolds-averaged model will be able to represent all turbulent flows, so turbu-
lence models should be regarded as engineering approximations rather than scien-
tific laws, seeFerziger and Perić (2002). In the following sections the continuity,
momentum and heat equation will be averaged by using the method in the book
of Kundu and Cohen(2010).

Averages

Let u(t) be any measured variable in a turbulent flow. Consider a casewhen the
"average characteristics" ofu(t) do not vary with time. In such a case we can
define the average variable as the time mean

ū ≡ lim
t0→∞

1
t0

∫ t0

0
u(t)dt. (4.1)

A collection of experiments, performed under identical setof experimental condi-
tions, is called ensemble, and an average over the collection is called an ensemble
average, or expected value. The ensemble average ofu at timet can be defined to
be

ū(t) ≡
1
N

N∑

i=1

ui(t), (4.2)

where N is a large number and theith record is denoted byui(t). From this it
follows that the average derivative at a certain time is

∂u
∂t
=

1
N

[

∂u1(t)
∂t
+
∂u2(t)
∂t
+
∂u3(t)
∂t
+ · · ·

]

=
∂

∂t

[

1
N

u1(t) + u2(t) + · · ·
]

=
∂ū
∂t
.

This shows that the operation of differentiation commutes with the operation of
ensemble averaging, so that their orders can be interchanged. In a similar manner
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we can therefore have the rules

∂u
∂t
=
∂ū
∂t
, (4.3)

∫ b

a
udt=

∫ b

a
ūdt. (4.4)

Similar rules also hold when the variable is a function of space:

∂u
∂xi
=
∂ū
∂xi

, (4.5)

∫ b

a
udx =

∫ b

a
ūdx. (4.6)

Averaged Equations of Motion

A turbulent flow instantaneously satisfies the Navier-Stokes equations. However,
it is virtually impossible to predict the flow in detail. In this section we shall derive
the equations of motion for the mean state in a turbulent flow and examine what
effect the turbulent fluctuation may have on the mean flow. We assume that the
density variations are caused by temperature fluctuations alone. Under the Boussi-
nesq approximation, the equations of motion for the instantaneous variables are

∂ũi

∂t
+ ũ j

∂ũi

∂xj
= − 1

ρ0

∂p̃
∂xi
− g[1 − α(T̃ − T0)]δi3 + ν

∂2ũi

∂xj∂xj
, (4.7)

∂ũi

∂xi
= 0, (4.8)

∂T̃
∂t
+ ũ j

∂T̃
∂xj
= κ

∂2T̃
∂xj∂xj

. (4.9)

Instantaneous quantities are denoted by a tilde ( ˜ ). Let thevariables be decom-
posed into their mean part and a deviation from the mean:

ũi = Ui + ui,

p̃ = P+ p, (4.10)

T̃ = T̄ + T′.

(The corresponding density is ˜ρ = ρ̄ + ρ′.) This is called the Reynolds decompo-
sition. The mean velocity and the mean pressure are denoted by uppercase letters,
and their turbulent fluctuations are denoted by lowercase letters. This convention
is impossible to use for temperature and density, for which we use an overbar for
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the mean state and a prime for the turbulent part. The mean quantities (U, P, T̄)
are to be regarded as ensemble averages; for stationary flowsthey can also be re-
garded as time averages. Taking the average of both sides of equation (4.10), we
obtain

ūi = p̄ = T′ = 0

showing that the fluctuations have zero mean.

The equations satisfied by the mean flow are obtained by substituting the Reynolds
decomposition (4.10) into the instantaneous Navier-Stokes equations (4.7)-(4.9)
and taking the average of the equations. The three equationstransform as follows.

Mean Continuity Equation

Averaging the continuity equation (4.8), we obtain

∂

∂xi
(Ui + ui) =

∂Ui

∂xi
+
∂ui

∂xi
=
∂Ui

∂xi
+
∂ūi

∂xi
= 0,

where we have used the commutation rule (4.5). Usingūi = 0, we obtain

∂Ui

∂xi
= 0,

which is the continuity equation for the mean flow. Subtracting this from the
continuity equation (4.8) for the total flow, we obtain

∂ui

∂xi
= 0,

which is the continuity equation for the turbulent fluctuation field. It is therefore
seen that the instantaneous, the mean , and the turbulent parts of the velocity field
are all nondivergent.

Mean Momentum Equation

The momentum equation (4.7) gives

∂

∂t
(Ui + ui) + (U j + u j)

∂

∂xj
(Ui + ui)

= −
1
ρ0

∂

∂xi
(P+ p) − g[1 − α(T̄ + T′ − T0)]δi3 + ν

∂2

∂x2
j

(Ui + ui). (4.11)
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We shall take the average of each term of this equation. The average of the time
derivative term is

∂

∂t
(Ui + ui) =

∂Ui

∂t
+
∂ui

∂t
=
∂Ui

∂t
+
∂ūi

∂t
=
∂Ui

∂t
,

where we have used the commutation rule (4.3), andūi = 0. The average of the
advective term is

(U j + u j)
∂

∂xj
(Ui + ui) = U j

∂Ui

∂xj
+ U j

∂ūi

∂xj
+ ū j

∂Ui

∂xj
+ u j

∂ui

∂xj

= U j
∂Ui

∂xj
+

∂

∂xj
(uiu j),

where we have used the commutation rule (4.5) andūi = 0; the continuity equa-
tion ∂u j/∂xj = 0 has also been used in obtaining the last term.

The average of the pressure gradient term is

∂

∂xi
(P+ p) =

∂P
∂xi
+
∂p̄
∂xi
=
∂P
∂xi

.

The average of the gravity term is

g[1 − α(T̄ + T′ − T0)] = g[1 − α(T̄ − T0)],

where we have used̄T′ = 0. The average of the viscous term is

ν
∂2

∂x2
j

(Ui + ui) = ν
∂2Ui

∂xj∂xj
.

Collecting terms, the mean of the momentum equation (4.11) takes the form

∂Ui

∂t
+ U j

∂Ui

∂xj
+

∂

∂xj
(uiu j) = −

1
ρ0

∂P
∂xi
− g[1 − α(T̄ − T0)]δi3 + ν

∂2Ui

∂xj∂xj
. (4.12)

The correlationuiu j in equation (4.12) is generally nonzero, although ¯ui = 0. This
is discussed forward in what follows.
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Reynolds Stress

Writing the termuiu j on the right-side, the mean momentum equation (4.12) be-
comes

DUi

Dt
= −

1
ρ0

∂P
∂xi
− g[1 − α(T̄ − T0)]δi3 +

∂

∂xj

[

ν
∂Ui

∂xj
− uiu j

]

,

which can be written as

DUi

Dt
=

1
ρ0

∂τ̄i j

∂xj
− g[1 − α(T̄ − T0)]δi3, (4.13)

where

τ̄i j = −Pδi j + µ

(

∂Ui

∂xj
+
∂U j

∂xi

)

− ρ0uiu j. (4.14)

Then we compare equations (4.13) and (4.14) with the corresponding equations
for the instantaneous flow, given by

Dũi

Dt
=

1
ρ0

∂τ̃i j

∂xj
− g[1 − α(T̃ − T0)]δi3,

τ̃i j = −p̃δi j + µ

(

∂ũi

∂xj
+
∂ũ j

∂xi

)

.

It is seen from equation (4.13) that there is an additional stress−ρ0uiu j acting in a
mean turbulent flow. In fact, these extra stresses on the meanfield of a turbulent
flow are much larger than the viscous contributionµ(∂Ui/∂xj + ∂Ui/xj), except
very close to a solid surface where the fluctuations are smalland mean flow gra-
dients are large.

The tensor−ρ0uiu j is called the Reynolds stress tensor and has the nine Carte-
sian components

τt =





−ρ0u2 −ρ0uv −ρ0uw

−ρ0uv −ρ0v2 −ρ0vw

−ρ0uw −ρ0vw −ρ0w2





. (4.15)

This is a symmetric tensor; its diagonal components are normal stress, and the
off-diagonal components are shear stresses. If the turbulent fluctuation are com-
pletely isotropic, that is, if they do not have any directional preference, then the
off-diagonal components ofuiu j vanish, andu2 = v2 = w2.
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Mean Heat equation

The heat equation (4.9) is

∂

∂t
(T̄ + T′) + (U j + u j)

∂

∂xj
(T̄ + T′) = κ

∂2

∂x2
j

(T̄ + T′).

The average of the time derivative term is
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The average of the advective term is
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The average of the diffusion term is
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Collecting terms, the mean heat equation takes the form
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which can be written as
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Multiplying by ρ0Cp, we obtain

ρ0Cp
DT̄
Dt
= −

∂Q j

∂xj
, (4.17)

where the heat flux is given by

Q j = −k
∂T̄
∂xj
+ ρ0Cpu jT′, (4.18)
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andk = ρ0Cpκ is the thermal conductivity. Equation (4.18) shows that the fluc-
tuations cause an additional mean turbulent heat flux ofρ0CpuT′, in addition to
the molecular heat flux of−k∇T̄. For example, the surface of the earth becomes
hot during the day, resulting in a decrease of the mean temperature with height,
and an associated turbulent convective motion. An upward fluctuating motion is
then mostly associated with a positive temperature fluctuation, giving rise to an
upward heat fluxρ0CpwT′ > 0.

4.2 Turbulence Models

To obtain the Reynolds-Averaged Navier-Stokes (RANS) equations, we have used
the Navier-Stokes equations for the instantaneous velocity and pressure fields are
decomposed into a mean value and a fluctuating component. Theresulting equa-
tions for the mean quantities are essentially identical to the original equations,
except that an additional Reynolds stress tensor, see equation (4.15), now appears
in the momentum transport equation.

The challenge is thus to model the Reynolds stress tensorτt in terms of the mean
flow quantities, and hence provide closure of the governing equations. A basic
approach that is used is the

• eddy viscosity models.

It is widely acknowledged that turbulence models are inexact representations of
the physical phenomena being modelled, and no single turbulence model is the
best for every flow simulation. Consequently, it is necessary to provide a suite of
models that reflect the current state of the art.

By using the notation of the book ofFerziger and Perić (2002) the averaged conti-
nuity and momentum equation can, for incompressible flows without body forces,
be written in tensor notation and Cartesian coordinates as:

∂(ρūi)
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= 0, (4.19)
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where overbar is the time averaged value and fluctuation denoted with (’) and
where the ¯τi j are the mean viscous stress tensor components:

τ̄i j = µ

(

∂ūi

∂xj
+
∂ū j

∂xi

)

. (4.21)

Finally the equation for the mean of a scalar quantity can be written:
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4.2.1 The k-epsilon turbulence model

To close the set of equations we have to introduce a turbulence model. To see what
a reasonable model might be, we note, that in laminar flows, energy dissipation
and transport of mass, momentum and energy normal to the streamlines are medi-
ated by the viscosity, so it is natural to assume that the effect of turbulence can be
represented as an increased viscosity. This leads to the eddy-viscosity model for
the Reynolds stress:
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−
2
3
ρδi j k, (4.23)

and the eddy-diffusion model for a scalar:

− ρu′jφ
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. (4.24)

In equation (4.23), k is the turbulent kinetic energy:
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1
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′
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2

(u′xu′x + u′yu′y + u′zu′z). (4.25)

The transport equation fork is derived in the book ofWilcox (2006) and continue
as follows:
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and the transport equation forǫ is
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In this model, the eddy viscosity is expressed as:

µt = ρCµ

k2

ǫ
. (4.28)

This k-epsilon model is based on equation (4.26) and (4.27) and contains five
parameters; the most commonly used values for them are:

Cµ = 0.09, Cǫ1 = 1.44, Cǫ2 = 1.92, σk = 1.0, σǫ = 1.3. (4.29)

4.2.2 The k-omega turbulence model

The second most used commonly used model is the k-omega model, originally
introduced by Saffman but popularized by Wilcox. The k-omega model uses the
turbulent kinetic energy equation (4.26) but it has to be modified a bit:
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∂(ρū jk)

∂xj
= Pk − ρβ∗kω +

∂

∂xj

[(

µ +
µt

σ∗k

)
∂ω

∂xj

]

. (4.30)

Theω equation as given byWilcox (2006) is:
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where the eddy viscosity is epressed as:

µt = ρ
k
ω
. (4.32)

The coefficients that go into this model are:

α =
5
9
, β = 0.075, β∗ = 0.09, σ∗k = σ

∗
ω = 2, ǫ = β∗ωk. (4.33)

The numerical behavior of this model is similar to that the k-epsilon model.



Chapter 5

Simulation set-up in STAR-CCM+

In this chapter we develop the simulation set-up. In the simulation we will use the
computational fluid dynamic(CFD) simulation tool STAR-CCM+. The simula-
tion is done on a SWATH wind turbine service vessel designed by Danish Yachts.
We would like to find the resistance of the vessel as it moves instill water at the
speed 8-24 knots.

In the following sections theory of the different tools and concepts used in STAR-
CCM+, will be presented in addition to the set-up for the still water performance
simulation.

5.1 Introduction

STAR-CCM+ is based on object-oriented programming technology. It is specifi-
cally designed to handle large models quickly and efficiently using a client–server
architecture that meshes and solves and post-processes. The object-oriented na-
ture of the code can be seen in a user interface. An object treeis provided for
the simulation, containing object representations of all the data associated with
the simulation. STAR-CCM+ also provides us with a user guide, seeCD-adapco
(2011).

5.2 3D-CAD Modeller

We start with the 3D-CAD modeller which is a feature-based parametric solid
modeller within STAR-CCM+ that allows geometry to be built from scratch. The
geometry created with 3D-CAD is stored as 3D-CAD models called bodies, which
can subsequently be converting to geometry parts for integration with the meshing
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and simulation process. The bodies represent the individual solid objects that
make up the 3D-CAD model. In our case we already have a 3D-CAD geometry
of the vessel, see Figure5.1. The 3D-CAD geometry can be imported to STAR-
CCM+ and modified afterwards.

Figure 5.1: The SWATH(Small Waterplane Area Twin Hull) Windturbine Service
Vessel.

The dimensions of the twin hull are given in Table5.1below. The twin hull is
24.000 meter long, 10.600 meter wide and the height is 5.380 meter.

Coordinate Corner 1 (meter) Corner 2 (meter)
x 0 24
y -5.29997406 5.29997406
z 0 5.37993214

Table 5.1: Dimensions of the twin hull.

As we are restricted to only use one processor for the simulation we would like
to simulate the twin hull by using one of the hulls and a symmetry plane. The
symmetry plane will maintain some of the physical effects the hulls have on each
other and reduce the simulation domain and the simulation time, due to smaller
mesh.

The coordinate system is fixed in the middle of the twin hull wherez = 0 is the
bottom of the twin hull and the direction of heave,x = 0 is located at the end of
the stern and is the direction of surge andy = 0 is in the middle of the hull and is
the direction of sway.
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First one of the hulls is extruded away by using thex − z plane aty = 0, which
is the symmetry plane of the twin hull. Secondly the top of thetwin hull from
z= 3.4 is extruded away by using thex− y plane atz= 3.4, see Figure5.2.

The dimensions of the hull are given in Table5.2. The width of one hull is 2.694
meter and the height is 3.400 meter.

Figure 5.2: One hull of the SWATH wind turbine service vessel.

Coordinate Corner 1 (meter) Corner 2 (meter)
x 0 24
y 2.60611722 5.29997406
z 0 3.4

Table 5.2: Dimensions of the hull.

As we did the first 3D-CAD geometry importation of the 3D-CAD IGES file,
some of the bodies were missing. The bodies were manually redrawn and used in
the simulation work. After some discussion with CD-adapco,the producer of
STAR-CCM+, we found that there were some problems with the 3D-CAD
IGES-importer for the STAR-CCM+ version 7. The problems were resolved by
using an earlier version of Star-CCM+. Version 6 was suitable for solving the
problems with the 3D-CAD importation. After a successful 3D-CAD
importation, the work could continue.
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5.3 Geometry part

After the 3D-CAD model bodies are created from the CAD importation and the
two extrudes, the next step is to convert the 3D-CAD bodies togeometry parts. A
geometry part represents an object or collection of objectsthat can be used as the
input geometry for the meshing tools. Each geometry part hasa surface. The sur-
face can be split by patch into several surfaces. This is donefor the hull because
we want different meshing set-ups for the different surfaces. The surfaces will be
presented later, after the surfaces have been converted to boundaries, in Table5.4
and Figure5.7.

In this section we also specify the simulation domain. We will use the same sea
level as in the still water performance test,z= 2.525, done by Force Technology,
called SWATH mode. We specify one domain for the water and onefor air by
creating 2 blocks surrounding the hull and that coincides atsea level.

The block for the air coincides with the top of the hull atz= 3.4 providing closure
of the hull geometry. The second block with water coincides with the sea level
z = 2.525 and continue in the negative directionz < 2.525. After several simu-
lations, by looking at boundary effects in the solutions and increasing the blocks
sizes until the we get small contribution from the boundaries, we end up with the
dimensions given in Table5.3. The blocks are 54 meter long and 15 meter wide.
The total height of the blocks is 16.4 meter.

Coordinate Corner 1 (meter) Corner 2 (meter)
Water
x -20 34
y 0 15
z -13 2.525

Air
x -20 34
y 0 15
z 2.525 3.4

Table 5.3: Dimensions of water and air blocks.

The dimensions of the simulation domain, seen from the side and the front, are
shown in the Figures5.3and5.4.
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Figure 5.3: Dimensions of the simulation domain seen from the side.

Figure 5.4: Dimensions of the simulation domain seen from the front.

Before we can convert the geometry parts to regions and specify the boundary
conditions, the blocks must be split by patch from one surface for each block
to six surfaces. We are only able to make one boundary condition per surface.
The two surfaces that coincide at sea level are deleted, since the free surface is
specified in the physics models. To the end the hull and the twoblocks with 5
surfaces each are assigned to one region.

5.4 Region and boundaries

The regions are volume domains in space that are completely surrounded by
boundaries. They are not necessarily contiguous, and are discretized by a con-
formal mesh consisting of connected faces, cells and vertices. As the hull and the
2 blocks have been assigned to one region for all parts and oneboundary per part
surface, the next step is to define the boundaries, see Figure5.5. STAR-CCM+
provides us with the following boundaries for our problem:
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• Flow-Split Outlet

• Mass flow Outlet

• Overset Mesh

• Pressure Outlet

• Stagnation Inlet

• Symmetry Plane

• Velocity Inlet

• Wall

The boundaries of the hull are defined as wall with no slip condition.

The next step is to define the boundaries of two blocks. Water.Inlet and Air.Inlet
are defined as velocity inlet. Water.Outlet and Air.Outlet are defined as pressure
outlet. Water.Symmetry and Air.Symmetry are defined as symmetry plane. Wa-
ter.Side and Water.Bottom are defined as wall with no slip condition. Air.Side and
Air.Top are defined as wall with slip condition.

Figure 5.5: Boundaries of the two blocks.
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5.5 Surface mesh

After the boundaries are specified, the next step is to createa surface mesh. A
surface mesh is a discrete representation of the geometry ofthe individual regions
that will be used for the volume mesh generation. It is made offaces and vertices.

The majority of the time spent in industry on a CFD project, isusually devoted to
successfully generating a mesh for the domain geometry and is one of the most
important steps during pre-process stage after the definition of the domain geom-
etry, seeTu et al.(2007).

Ideally, the surface mesh should have the following properties:

• Closed - Contains no free edges or mismatches.

• Manifold - Edges are shared between no more than two triangles.

• Non-intersecting - The surface does not self-intersect.

The quality of triangle faces is also important. The surfaceshould ideally contain:

• Equilateral sized triangles.

• Gradual variation in triangle size from one to the next.

• No sharp angles/surface folds etc. within the triangle proximity sphere.

STAR-CCM+ provides us with two different surface meshing types:

Surface remesherThe surface remesher is used to re-triangulate an existing sur-
face in order to improve the overall quality of the surface and optimize it
for the volume mesh models.

Surface wrapper The surface wrapper can be used to provide a closed, manifold,
non-intersecting surface when starting from poor quality CAD data. It is
typically used when the imported surface includes problemssuch as:

• Multiple intersecting parts

• Missing data in the form of holes and gaps

• Surface mismatches

• Double and internal surfaces

• Overly complex geometry with too much detail
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In the start of the surface mesh process, we give all the boundaries shown in Fig-
ure 5.7 a mesh set-up as shown in Table5.4. Afterwards the surface mesher is
chosen.

To obtain the best surface mesh for our analysis, we use the surface remesher,
chosen in the mesh continua set-up, with a base size of 0.05 meter. After the mesh
is created, we must check the quality of the surface. For thistask we use the sur-
face repair tool to run a diagnostic of the mesh. The mesh is checked for pierced
faces, poor quality faces, close proximity faces, free edges and non-manifold ver-
tices.

The mesh set-up gives several thousands of poor quality faces, close proximity
faces and free edges. By using the auto-repair tool, we are able to repair face
quality, face proximity and self-intersections, but not the free edges. The free
edges must be fixed manually. This is a job too large to handle.

It seems like STAR-CCM+ is not able to read the 3D-CAD geometry for the
imported 3D-CAD twin hull file. A solution to the problem is toconsider the defi-
nition of the geometry parts. Each part should have a geometrical volume, not just
a surface. When converting the 3D-CAD geometry bodies to geometrical parts,
this problem might occur. Therefore we will try to combine all the parts to one
part by using imprint, to ensure that the interfaces betweenthe parts are created
correctly with the result of no free edges. This procedure was attempted with the
base size of 0.1, 0.05, 0.02 and 0,01 meter. Unfortunately westill got a lot of free
edges.

Therefore we will do a new attempt by using the surface wrapper tool, and a
base size of 0.05 meter. With this meshing set-up we did not get free edges, but
only poor quality faces and close proximity faces that can berepaired with the
auto-repair tool. Unfortunately the mesh was far from equalto the 3D-CAD ge-
ometry. This is the problem with the surface wrapper.

We had to do the same process with a lower base size. After several increases
of the mesh resolution we get a suitable mesh with a base size equal 0.01 meter
and over 500 000 faces. This resulted in over 20 millions cells as we make the
volume mesh. A cell number under one million is desirable. The solution is to
define an appropriate surface mesh size for each boundary of the region by ad-
justing the relative minimum size and relative target size.The sizes are defined as
percentage of base size.
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For obtaining a desirable surface mesh we must try several meshing set-up. We
start with low resolution for each boundary and create the surface mesh and the
volume mesh. After several attempts we get a useful surface mesh with a good
resolution at the critical places, see Figure5.6. The base size is set to 0.6 meter
and the meshing set-up for each boundary is given below in Table 5.4. Some of
the boundaries are shown in Figure5.7. There are still some faces that do not
match the 3D-CAD geometry, but the surface mesh with 122846 faces is consid-
ered good enough for modelling the physics of our problem.

Figure 5.6: The surface mesh of the hull.
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Boundary Relative minimum size Relative target size
Percentage of Base Percentage of Base

Base size 0.6 meter
Fin.Shell 5 10
Hull.Bau 2.5 5
Hull.HoleBackInside 5 10
Hull.HoleBackOutside 5 10
Hull.HoleFrontInside 2.5 5
Hull.HoleFrontOutside 2.5 5
Hull.HullSideBottom 7.5 30
Hull.HoleSide 5 20
Hull.HullTop 10 30
Hull.Tunnel 12.5 50
Air.Inlet 10 20
Air.Outlet 10 20
Air.Side 100 200
Air.Symmetry 10 20
Air.Top 30 50
TopBracketBack.TopBracketBack 10 30
TopBracketBack.TopBracketBackAngle 5 10
TopBracketFront.TopBracketFront 10 30
TopBracketFront.TopBracketFrontAngle 2.5 10
Water.Bottom 100 200
Water.Inlet 10 20
Water.Outlet 10 20
Water.Side 100 200
Water.Symmetry 10 20

Table 5.4: Boundary mesh set-up.
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Figure 5.7: Boundaries of the hull. Not all boundaries are shown.

(a) Hull.HoleBackInside. (b) Hull.HoleFrontInside.

Figure 5.8: The boundaries of the holes on the inside of the hull.

The faces that do not match the 3D-CAD model might affect the solution. We
have some small bad faces in the four holes and also at the Fin.shell boundary,
see Figure5.9. We have tried to reduce the bad faces by using a higher resolution
for the mesh at these areas, but we get even more bad faces for higher resolutions.
The bad faces can be fixed manually, but there is too many of them. Therefore we
will continue the simulation with these faces.

Figure 5.9: Bad surface mesh of Hull.HoleBackInside.
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5.6 Volume mesh

After the surface mesh is created, the volume mesh can be created for the simu-
lation domain. The volume mesh is the mathematical description of the space or
geometry of the problem being solved. It is in turn constructed of the following
mesh entities: vertices, faces and cells.

In order to generate the volume mesh, the following steps arefollowed:

1. Prepare the surface mesh according the requirements for STAR-CCM+.

2. Select the desired volume mesh model and the optional prism layer model,
extruder model and/or generalized cylinder model.

3. Input the appropriate meshing values for the selected models.

4. Launch the volume mesh generator.

5. Visualize the volume mesh representation and check the mesh quality statis-
tics.

6. Remove any invalid cells if they exist.

7. Continue with the simulation set-up.

The surface mesh is already made according to the requirements for STAR-CCM+.
Therefore the next step is to select a volume mesh model. In STAR-CCM+ we
have four different types:

• tetrahedral mesher;

• polyhedral mesher;

• trimmer;

• thin mesher

The polyhedral mesher and the trimmer are the most suitable volume meshers for
our problem. In the simulation we will use the polyhedral mesher. The polyhedral
cells created typically have an average of 14 cell faces. Thepolyhedral core mesh
density can be increased or decreased by using the volume mesh density factors.
Volumetric controls can also be included to locally increase or decrease the mesh
density based on a range of prescribed shapes. For the first volume mesh the val-
ues are set to default.
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The prism layer mesh model is also used in conjunction with a core volume mesh
to generate orthogonal prismatic cells next to wall boundaries. This layer of cells
is necessary to improve the accuracy of the flow solution. A prism layer is defined
in terms of its thickness, the number of cell layers within it, the size distribution
of the layers, and the function used to generate the distribution. The prism layer
mesh model is set to default with two prism layer.

The volume mesh could now be generated. The first time we got a mesh with very
large resolution, small cells near the surface of the hull and slightly larger further
out. The high resolution will result in long computational time for the simula-
tion. After having adjusted the meshing set-up of the surface mesh several times,
mainly decreasing the mesh resolution at the boundaries Air.Side, Water.side and
Water.Bottom and increasing the resolution for the Air.Topboundary, we obtain a
mesh with a good resolution near the hull and increasing cellsize near the bound-
aries of the blocks with water and air.

The volume mesh is still not suitable for our problem. We still need a good resolu-
tion of the mesh at the free surface. This is hardly done without affecting the rest
of the mesh. Prism layers will give a better mesh at sea level than the polyhedral
cells where some of the cells stretches over the sea level andother below. This
can create mixing of the two phases. The problem is solved by defining several
prism layers from the Air.Top boundary stretching under sealevel.

The prism layers should travel at the same height from the inlet to outlet starting
and ending at the same height. In STAR-CCM+ the prism layers are generated
with respect to other nearby boundaries. Therefore the prism layers start from the
intersection of the Air.Top plane and Air.Inlet and continue downwards crossing
the water level, see Figure5.10and5.11. Different prism layer set-up have been
attempted, but without removing this effect. The prism layer set-up is given in
Table5.5.

The meshing process is a major part of the CFD simulation and is up to the skills
of the CFD user to design a mesh that is a suitable compromise between the de-
sired accuracy and solution cost, seeTu et al.(2007). For our simulation the final
mesh quality is satisfying and no invalid cells have been found. The simulation is
ready for analysis and the models and solvers for the problemare defined in the
next sections.
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Figure 5.10: Volume mesh at cross section in the middle of thehull.

Figure 5.11: Volume mesh at cross section outside the hull.

Boundary Number of Prism layer Prism layer
prism layers stretching (ratio) thickness

Air.Top 50 1 Absolute size: 10 meter
All other Default:2 Default:1.5 Default: 33% of base

Table 5.5: Prism layer mesh set-up.

5.7 Physics models

In this section the physics set-up for our problem is defined.The physics contin-
uum contains a selection of physics models, such as a chosen flow solver, mate-
rial models, steady or transient time model, a turbulence model and so on. Each
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physics continuum represents a single substance that will be present in all regions
to which the physics continuum applies.

A physics model in STAR-CCM+ defines how a physical phenomenon in a con-
tinuum is represented. Essentially, physics models define the primary variables of
the simulation such as pressure, temperature and velocity and what mathematical
formulation will be used to generate the solution.

In situations where transport equations are required, the model will provide these
equations to the solvers. This means that model properties will often include co-
efficients relevant to the transport equations, as well as parameters relevant to the
discretization approach.

Physics models used in the simulation

In this section the different physics models for the problem is chosen and de-
scribed. A summary of the physics models for our problem is given in Table5.6.

In the start of the model selection we choose a Space model. The following mod-
els are provided: Axisymmetric, Shell three dimensional, Three dimensional and
two dimensional. The Three dimensional model is suitable for our problem. In
addition the Gradients model is chosen automatically.

Next we are asked to choose a Time model. The following modelsare provided:
Explicit unsteady, Harmonic balance, Implicit unsteady and Steady. The Implicit
unsteady model is most suitable for our problem. The Steady model was tried
first, but with the result of divergence.

Further we choose a Material model. The following models areprovided: Gas,
Liquid, Solid, Multi-component gas, Multi-component liquid and Multiphase mix-
ture. The Multiphase mixture model is chosen for simulatingthe water and air
phases. In addition the Multiphase interaction and Eulerian multiphase model are
chosen automatically.

Next we must specify our viscous regime model. The followingmodels are pro-
vided: Inviscid, Laminar and Turbulent. We have a turbulentflow, therefore the
Turbulent model is chosen for the viscous regime.

Next we choose the Turbulence model. The following models are provided:
The Detached Eddy Simulation (DNS), Large Eddy Simulation (LES) and the
Reynolds-Averaged Navier-Stokes (RANS). The Reynolds-Averaged Navier-Stokes
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model is chosen.

After having specified a turbulent flow we must choose which Reynolds-Averaged
turbulence model we would like to use. The following models are provided: K-
epsilon turbulence, K-omega turbulence, Reynolds stress turbulence and Spalart-
Allmaras turbulence. After recommendation of Wilcox, seeWilcox (2006), we
choose the K-omega turbulence model in addition to the SST-(Menter) K-omega
model, which apply the K-epsilon turbulence model far field and the K-omega
model near the wall. The All y+Wall Treatment is chosen automatically.

In the end we choose the energy model Segregated fluid isothermal, since we
have small temperature differences in the flow. The VOF waves model is also
chosen for capturing the physics of the waves that will be generated when the hull
is moving.

Physics models
All y+Wall Treatment
Eulerian Multiphase
Gradients
Implicit unsteady
K-Omega Turbulence
Multiphase Equation of State
Multiphase Interaction
Multiphase Mixture
Reynolds-Averaged Navier-Stokes
Segregated Flow
Segregated Fluid Isothermal
Three Dimensional
SST (Menter) K-Omega
Turbulent
VOF Waves
Volume of Fluid (VOF)

Table 5.6: The physics models used for our problem.

In the proceedings some of the physics models are explained.Additional physics
set-up is given to some of the models.
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ALL y + wall treatment

All y+ wall treatment is automatically selected when we select thek-Omega turbu-
lence model. The wall treatment in STAR-CCM+ is the set of near-wall modelling
assumptions for each turbulence model. This term avoids confusion with the term
wall functions, which typically refers to only one type of wall treatment. Three
types of wall treatment are provided, depending on the turbulence model:

• The high- y+ wall treatment implies the wall-function-type approach in
which it is assumed that the near-wall cell lies within the logarithmic re-
gion of the boundary layer.

• The low- y+ wall treatment is suitable only for low-Reynolds number tur-
bulence models in which it is assumed that the viscous sublayer is properly
resolved.

• The all- y+ wall treatment is a hybrid treatment that attempts to emulate
the high- y wall treatment for coarse meshes and the low- y wall treatment
for fine meshes. It is also formulated with the desirable characteristic of
producing reasonable answers for meshes of intermediate resolution (that
is, when the wall-cell centroid falls within the buffer region of the boundary
layer).

Both the high-y+ and all-y+ wall treatments share a common need to specify
profiles of the mean flow quantities in the near-wall region ofturbulent boundary
layers, and these profiles are termed wall laws.

A wall law is a mathematical description of mean flow quantities, such as ve-
locity, temperature and species concentration, in turbulent boundary layers. Two
types of wall laws are used in STAR-CCM+:

• Standard wall laws, which are slope-discontinuous betweenthe laminar and
turbulent profiles;

• Blended wall laws, which include a buffer region that smoothly blends the
laminar and turbulent profiles together.

The wall laws are not user-selectable, but have been chosen based on the behavior
of the turbulence model.

Eulerian multiphase

The eulerian multiphase model is a placeholder for the phases of multiphase flow
modelling. An eulerian phase in STAR-CCM+ is a phase modelled in an eulerian
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framework. The definition of each eulerian phase includes the set of models appli-
cable to its material; two different materials will constitute two different Eulerian
phases. One for water and one for air.

The following list outlines the procedure for creating and defining eulerian phases:

• Creating a new eulerian phase

• Selecting phase models

• Replacing the phase material

• Customizing material properties

For the water phase called phase 1 we choose phase models liquid, constant den-
sity, and turbulent. For the Air phase called phase 2 we choose phase models gas,
ideal gas and turbulent. Phase material and properties are set to default.

Gradients

The gradients method select the gradient and limiter methods. The gradient and
limiter methods are set to default Hybrid Gauss-LSQ and Venkatakrishnan.

Multiphase equation of state

A eulerian multiphase requires its own equation of state model to define how the
density of the material will be computed. The water is definedwith constant
density and the air is defined as an ideal gas.

Multiphase interaction

After the eulerian multiphases have been specified the next step is to define the
phase interactions. The interactions are set to default.

Multiphase mixture

The multiphase mixture material model is for simulating twoor more immiscible
phases, where each phase is composed of a pure gas or liquid substance, such as
air and water in our problem. Default mixture is used.
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Segregated flow

We can choose between segregated or coupled flow models. The segregated flow
model uses less memory than the coupled. The coupled flow model is used for
compressible flow, natural convection problems and flows with large body force
or energy sources. The segregated flow model is for incompressible or mildly
compressible flows. The segregated flow model is suitable forcomputing the
physics of our problem and for keeping the computational resources as low as
possible and is therefore used. If computational resourcesare not an issue, we can
choose the coupled flow model for incompressible and/or isothermal flows.

Segregated fluid isothermal

The segregated fluid isothermal uses a constant setting for temperature. For this
problem where the temperature variations are small and negligible.

SST (Menter) K-Omega

The SST (Menter) k-omega turbulence model is automaticallyselected when we
select the k-omega turbulence model. Menter’s turbulence model, seeMenter
(1994), is similar to the standard k-omega model, but adds an additional non con-
servative cross-diffusion term containing the dot product∇k · ∇ω for reducing the
problem of sensitivity to free-stream/inlet conditions. Inclusion of this term in
theω transport equation will potentially make the k-omega modelgive identical
results to k-epsilon model. Menter suggested using a blending function (which
includes functions of wall distance) that would include thecross-diffusion term
far from walls, but not near the wall. This approach effectively blends a k-epsilon
model in the far-field with a k-omega model near the wall.

VOF waves

VOF waves are used to simulate surface gravity waves on a light fluid-heavy fluid
interface, where air is the light fluid, and need to be used in conjunction with the
volume of fluid (VOF) multiphase model in STAR-CCM+. When created, VOF
Waves provide field functions that can be used to initialize the VOF calculation
and to provide suitable profiles at boundaries. We do not makeany initial wave.
The waves will be crated as the water and air flows past the hull.

Volume of Fluid (VOF)

After the eulerian multiphase model is used to define phases,and the multiphase
interaction model is used to define phase interactions, we can choose the approach
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for modelling the multiphase flow: The volume of fluid (VOF) homogenous mul-
tiphase model, which assumes a common velocity, pressure and temperature field
for all phases. The models variables are set to default. The interface between two
immiscible fluids is called a free surface. The VOF multiphase model allows us
to resolve the position of the free surface.

The VOF model makes use of multiple eulerian phases and it is necessary to set
the initial volume fraction of each phase. This is done by applying a field function
to the initial condition called volume fraction for each phase. The field function is
located under the tool node i STAR-CCM+ Phase 1 is the water phase and phase
2 the air phase. The field functions for water and air is definedas follows:

Waterfraction: Definition= ($$Position[1]<=2.525)?1:0

Airfraction: Definition= ($$Position[1]>2.525)?1:0

5.8 Solvers

The solvers used for the problem is selected automatically from the physics mod-
els that are already chosen. The solvers used for the problemare:

• Implicit unsteady

• Wall distance

• Damping boundary distance

• Segregated flow

• Segregated VOF

• Segregated energy

• K-Omega turbulence

• K-Omega turbulent viscosity

Implicit unsteady solver

The implicit unsteady solver is activated by the implicit unsteady model. In the
implicit unsteady approach each physical time-step involves some number of inner
iterations to converge the solution for that given instant of time. These inner
iterations may be accomplished using the same implicit integration or explicit
integration schemes used for steady analysis. The physicaltime-step size used
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in the outer loop is specified by us, whereas the inner iterations are marched by
the integration scheme using optimal local steps as determined by the Courant
number.

Wall distance solver

Wall distance is a parameter that represents the distance from a cell centroid to
the nearest wall face. It is required by all turbulence models. The wall distance
computation is controlled by the wall distance solver.

The wall distance solver controls the wall distance solution in all the continua
for which wall distance is calculated. It becomes availablewhen turbulence mod-
els are activated. The wall distance calculation takes place during the initialization
step of the simulation.

Damping boundary distance solver

Damping boundary distance solver is activated by the VOF waves model. The
damping boundary distance solver controls the damping boundary distance solu-
tion in all the continua for which damping boundary distanceis calculated.

Segregated flow solver

The segregated flow model solves the flow equations, one for each component of
velocity, and one for pressure, in a segregated or uncoupledmanner. The linkage
between the momentum and continuity equations is achieved with a predictor-
corrector approach. The complete formulation can be described as using a collo-
cated variable arrangement and a Rhie-and-Chow-type pressure-velocity coupling
combined with a SIMPLE-type algorithm.

The segregated flow solver controls the solution update for the segregated flow
model according to the SIMPLE algorithm. It controls two additional solvers:

• Velocity solver

• Pressure solver

Velocity solver

Controlled by the segregated flow solver, the velocity solver controls the under-
relaxation factor and algebraic multigrid parameters for the momentum equations.



88 Simulation set-up in STAR-CCM+

More specifically, it solves the discretized momentum equation to obtain the in-
termediate velocity field.

Pressure solver

Controlled by the segregated flow solver, the pressure solver controls the under-
relaxation factor and algebraic multigrid parameters for the pressure correction
equation. More specifically, it solves the discrete equation for pressure correction,
and updates the pressure field.

Segregated VOF solver

The segregated VOF solver controls the solution update for the phase volume
fractions. It solves the discretized volume-fraction conservation equation for each
phase present in the flow.

Segregated energy solver

The segregated energy solver controls the solution update for the segregated fluid
energy model. It is used to set the under-relaxation factor and algebraic multigrid
parameters for the energy equation. Default parameters areused.

K-Omega turbulence solver

The k-omega turbulence solver controls the solution of the k-omega model in all
the continua for which the model is activated. For each transported variable,k and
ω , the basic steps involved in the solution update are as follows:

1. Update boundary conditions.

2. Compute the reconstruction gradients and cell gradients.

3. Create the linear system using the discretization methods described in the K-
Omega model formulation.

4. Compute the residual sum for the purpose of monitoring convergence.

5. Solve the linear system.

6. Update the transported variable field.
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K-Omega turbulent viscosity solver

The k-omega turbulent viscosity solver controls the updateof the turbulent vis-
cosity.

5.9 Analyzing

In the simulation process we run 9 simulations for respectively 8, 10, 12, 14, 16,
18, 20, 22 and 24 knots by adjusting the inlet velocity of Water.Inlet and Air.Inlet.
By using monitor plots, reports, scalar and vector scenes ofthe solutions, we are
able to control that velocities, forces, pressures, etc. have believable values. We
can also control whether fluid variables such as velocity andpressure are smoothly
distributed over the body and vary rapidly only where expected.

By using residual monitor we are able to follow the convergence of the solutions.
The residualr in each cell represents the degree to which the discretized equation
is not completely satisfied. In a perfect converged solution, the residual for each
cell would be equal to machine round off. To gauge convergence and the progress
off the solution, it is useful to monitor a global quantity givenby

√∑

n cells
n

r2

Residual monitors keep a record of this global quantity for each of the transport
equations solved in the continua within the simulation.

The results will be compared with the results from the Force Technology’s still
water performance tests, where a scale model has been used and total resistance
measured. The set-up for the still water performance test isgiven in the next
section.

5.10 Force Technology still water performance test

Model description and set-up

The vessel is a model of a fast twin screw SWATH wind turbine service vessel
with one open shaft propeller and 2 brackets on the shaft linefor each hull. To
keep the weight of the model down, the hull was made of foam, reinforced by
wood stringers, and protected by yellow paint. A wooden deckwas mounted also
to give additional strength of the model. Rudders were made in aluminium. Shaft
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brackets were produced in brass. The set-up for the tests wasdeviating from the
standard set-up they have for still-water tests, due to the special kind of vessel they
were testing. Two poles were mounted in each hull, allowing for pitch motion.
The lower point of the poles was positioned at the level of theshaft lines. The
poles were connected to each other with a stiff frame. A force gauge (measuring
forces on X and Y direction) was mounted on the frame. The whole arrangement
was then mounted on the carriage in such a way as to allow for heave motion of
the vessel. The model was built in scale 1: 7.376523.



Chapter 6

Simulation results

In this section the results from the nine simulations, for respectively 8, 10, 12,
14, 16, 18, 20, 22 and 24 knots, will be presented. The resultsof the resistance
of the twin hull, the four holes and each of the four holes willbe presented. The
results of resistance on the twin hull will be compared with the results from the
still water performance tests byRieu and Kishev(2012). Wave making resistance
will also be discussed. The resistance of the four holes willbe compared with the
resistance of the hull. We will also analyze how the water level inside the ballast
tanks will be affected as the twin hull is moving.
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6.1 Resistance on the twin hull

The simulations have been run 100 time steps and respectively 20 inner iterations
per time step, which gives a total of 2000 iterations. We can see that the solutions
have converged by looking at the residuals for each simulation. The residuals for
the 8 knots simulation are given in Figure6.1
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Figure 6.1: Residuals for simulation at 8 knots. The simulation has been run 100
seconds, 20 iterations per time step.

In the start of the simulation the phases are spinned up. Thisgives transients and
may be uninteresting. After 800 iterations almost all the transients have
disappeared and there are small changes in the residuals. Asthe simulation
continues to about iteration 1400, the residuals for the momentum equations start
to oscillate. The small oscillations may come from boundaryeffects. By running
the simulation further, these small oscillations continueand do not increase. By
controlling the velocities, forces and pressures, we can see that they have
believable values. We can also see that the velocity and pressure are smoothly
distributed over the domain and that there are larger changes at the bow and the
stern, see Figure6.2for the velocity scene.
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Figure 6.2: Velocity scene at 8 knots. Section in the middle of the hull.

The results of the resistance of the SWATH wind turbine service vessel are given
in Figure6.3below. Pressure and shear forces are included in the total resistance
for our simulation graph (ForceSTARkomega). The simulation is done for one
hull, therefore the forces have to be multiplied by 2 to get the forces of the twin
hull. We can see that the pressure forces are more dominant than the shear forces.
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Figure 6.3: Resistance of the twin hull due to pressure and shear forces at 8-24
knots. (ForceSTARkomega) is the total resistance.
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The (ForceCOND4) graph, see Figure6.4, is the total resistance results from a
still water performance test, done byRieu and Kishev(2012) for Force
Technology, of the SWATH wind turbine service vessel produced by Danish
Yacht A/S, by using a scaled hull model. The results from the scaled model have
been transformed to full scale. We are using the same vessel,but in full scale.
Below in Figure6.4we can see a comparison of the total resistance forces in the
simulation (ForceSTARkomega) and the scaled model test (ForceCond4) where
the values are taken from the force reports, see Table6.1.

From Figure6.4we can see that the resistance of the simulation (ForceSTARkomega)
at 8 and 10 knots is almost similar to the resistance in the scaled model (Force-
Cond4). The simulation only consider pressure and shear forces. In the scaled
model we will have wave making resistance in addition due to generation of
waves as the hull displace water. This will explains some of the large resistance
differences when the twin hull is moving at 12-24 knots. By considering wave
making resistance, we can also see that the resistance for the simulation (ForceS-
TARkomega) at 8 and 10 knots should be lower as the wave makingresistance
must be added to the results.
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Figure 6.4: Resistance of the twin hull at 8-24 knots
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Speed (knots) ForceCOND4 (kN) ForceSTARkomega (kN)
8 15.8 16.5

10 25.7 25.2
12 61.2 36.0
14 100.6 48.7
16 128.2 63.4
18 142.2 80.1
20 146.3 98.7
22 148.3 119.3
24 162.8 142.3

Table 6.1: Resistance of the twin hull at 8-24 knots

For a general hull at low speeds the viscous resistance dominates, and at high
speeds the total resistance curve turns upward dramatically as wave making
resistance begins to dominate, see Figure6.5. Wave making resistance will be
discussed later.

Figure 6.5: A typical curve for the components of the total hull resistance,
Surjo and Adji(2007).

An important element is that the hull in the simulation was only able to move in
the direction of surge, while the scaled model had two more degrees of freedom,
namely pitch and heave motion. The pitch and the heave motionwill change the
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wetted area of the hull and may lead to increasing resistancedue to pressure and
shear forces. As the hull moves at higher speeds we may experience that the hull
digs down, due to pressure drop under the hull. The wave making resistance may
also increase as the twin hull must displace more water. In addition the scaled
model has rudders and a main propeller for each hull, that will increase the
resistance of hull.

Another element that we have to consider, is that the resultsfrom the still water
performance test (ForceCond4), will not be equal to a full scale test. According
to Dysthe(1992), it is not possible to keep both the Reynolds and the Froude
number equal for the two flows. The viscous friction and the wave making
resistance can approximately be added together when converting scaled results to
full scale.

By considering the simulation set-up, there are several factors that will affect the
solution. Some factors are the meshing set-up, boundaries effects, models and
the solvers chosen. There are several ways of meshing and themeshing set-up in
the simulation may not be the most optimal. Maybe the tetrahedral mesher or the
trimmed mesher, should have been used. Due to time limitations other mesh was
not tried.

Another consideration is that the simulation domain most likely should have
been larger so that the boundaries would make smaller effect on the solution. In
the simulation we used one of the hulls. By using both hulls, namely the twin
hull, we would have got a better physical solution than by using the symmetry
plane. At the same time this would have lead to longer simulation time for each
simulation.

Regarding the physics models, we could have chosen another turbulence model,
like the Detached Eddy Simulation (DES) which uses both RANSand LES or
the Large eddy simulation(LES) which solves the largest scale motions of the
flow while approximating or modelling only the small scale motions. The
volume of fluid (VOF) model should be considered. The VOF model creates at
thick mixing phase, 2 meter, of air and water outside the hull, see Figure6.6and
even larger after the stern, see Figure6.7.
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Figure 6.6: Volume fraction of the water phase. The section is outside the hull.

Figure 6.7: Volume fraction of the water phase. The section is in the middle of
the hull.

The large mixing phase can be reduced by using the sharpeningfactor in the
Volume of Fluid model (VOF). This was done with the sharpening factors 0.5,
1.0 and 2.0 for the 8 knots simulation with the result of divergence. Most
probable the mesh is not suited for the sharpening effect. For obtaining a sharper
surface we should consider using a new mesh with the sharpening factor applied
to the VOF physics model. After discussions with CD-adapco,we found that the
best mesh setup is to use a trimmed volume mesh. The mesh should also be
refined by using more cells at the free surface. Due to time limitations, this was
not considered.
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Wave making resistance

Generally most of the energy given by a ship for making waves,is transferred
to water through the bow and stern parts. The two wave systemsat the bow and
stern waves interact with each other, and the resulting waves are responsible for
the resistance. For small displacement hulls, such as sailboats or rowboats, wave-
making resistance is the major source of the marine vessel drag.

A simple way of considering wave-making resistance, is to consider the hull in
relation to bow and stern waves. If the length of a ship is halfthe waves gener-
ated, the resulting wave will be very small due to cancellation, and if the length is
the same as the wavelength, the wave will be large due to enhancement.

By considering a deep water approximation, the phase speedc of the waves is
given by equation (2.92):

c =

√

gλ
2π
, (6.1)

whereλ is the length of the wave andg the gravitational acceleration. Substituting
in the appropriate value forg yields the equation:

c ≈ 1.34 ·
√
λ, (6.2)

where the values forc andλ are in knots and feet. When the vessel exceeds a
"speed–length ratio", see equation (6.3), of 0.94, it starts to outrun most of its bow
wave, the hull actually settles slightly in the water as it isnow only supported by
two wave peaks.

Speed-length ratio≈
c in knots

√

length in ft.
. (6.3)

As the vessel exceeds the speed-length ratio of 1.34, the wavelength is now longer
than the hull, and the stern is no longer supported by the wake, causing the stern
to squat, and the bow rise. The hull is now starting to climb its own bow wave,
and resistance begins to increase at a very high rate, seeSavitsky(2003).

By comparing the resistance of the scaled model (ForceCOND4) and the simu-
lation (ForceStarkomega), see Figure6.4, when the hull moves at 12-24 knots,
we can see that the wave making resistance is an increasing component of the
total resistance. For a speed at 11.89 knots, the speed-length ratio is 1.34 and
the wave making resistance begins to increase at a very high rate. This is also
confirmed by comparing the scaled model (ForceCOND4) and thesimulation
(ForceStarkomega) at 12 knots. It is clearly that our simulation does not cap-
ture this wave making resistance. This fact explains the large differences between
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the scaled model and the simulation for the total resistancefrom 12-24 knots.

We can do some roughly calculations of the wave making resistance by finding the
amplitude and the wavelength of the waves generated by the hull. Unfortunately
the free surfaces for all the simulations are very diffuse. By looking at the water
surface at 90% water phase at 8 knots, see Figures6.8-6.10, we can see that hull
generates waves at the side and at the stern. In addition a wave between the two
hulls is generated, to the right of the hull in Figure6.8. At the same time we can
see that we have boundary effects from the inlet, side and the outlet. From the
volume fraction of the water phase, see Figure6.7, we can also see that we will
have boundary effects as the mixingphase of air and water reaches the boundary
at the top. The simulation domain should be larger in each of these directions.
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Figure 6.8: Water surface at 90% water phase at 8 knots.
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Figure 6.9: Water surface at 90% water phase at 8 knots. Looking at the bow of
the hull.

Figure 6.10: Water surface at 90% water phase at 8 knots. Looking at the stern of
the hull.

Further we will try to calculate the wave making resistance by using a plane
wave instead of the transverse and divergent waves. The wavemaking resistance
can be approximately calculated by finding the amplitude andthe wavelength of
the wave. By looking at the water surfaces at 90% water phase,see AppendixC,
we can find the amplitudes of the waves created between the hulls. The height of
the water surface at 90% water phase isz= 1.7 meter for all the simulations. The
values for the depth of the waves isz= 0.8− 1.1 meter. The amplitudea is the
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depth of the waves subtracted from the height of the water surface. The
amplitudes are presented in Table6.2. It is reasonable to think that the amplitude
should increase for increasing speeds. This is not the case for the simulations.
The reasons for this, may come from boundary effects and the fact that the free
surface is very diffuse.

Speed (knots) Amplitude (Meter)
8 1.1

10 1.0
12 0.9
14 0.9
16 0.9
18 0.8
20 0.8
22 0.8
24 0.8

Table 6.2: Amplitude of the waves generated between the hulls at 8-24 knots

Unfortunately we cannot find the wavelength of the waves formthe water
surfaces at 90% water phase in AppendixC. Therefore we will consider the case
where the speed length ratio is 1.34, and the resistance begins to increase at a
very high rate, at approximately 12 knots. The wavelength isequal the ship
length in this case. The wave making resistance is assumed tobe the difference
between the results, see Table6.1, for the scaled model (ForceCOND4) and the
simulation (ForceSTARkomega) and is approximately 25 kN inthis case.

We start with the equation (2.99), which is the time average energy flux, per unit
length of crest due to a single sinusoidal component of wavenumberk.

F = E ·Cg =

[1
2
ρga2

][c
2

(

1+
2kH

sinh2kH

)]

, (6.4)

wherek ≡ 2π
λ

, g is the gravity,c is the phase speed,H is the uniform depth andλ
is the wavelength. The phase speedc is given by equation (2.91),

c =

√

gλ
2π

tanh
2πH
λ

. (6.5)

Multiplying equation (6.4) with the length of the crest, denotedL, and dividing by
the hull speedU we obtain the wave making resistanceRW,

RW =
F · L

U
. (6.6)
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By using the amplitudea = 0.9, given in Table6.2, the wavelengthλ = 24 meter,
the uniform depth isH = 15.5 meter and assuming that the length of the crest is
equal the length between the two hulls at the sternL = 8 meter, the approximated
wave making resistanceRW at 12 knots can be found. The calculated wave making
resistance for a plane wave at 12 knots is found to be 16 kN, which is almost
10 kN smaller than the assumed wave making resistance. For obtaining a larger
approximated value for the wave making resistance, the amplitude must be larger.
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6.2 Force comparison

In this section the forces on the four holes, consisting of pressure and shear forces,
for each speed in the interval 8-24 knots will be presented. The distribution of the
forces on the four holes will be compared with the force on thehull. In the com-
parison of the forces, the force on the hull, the force on the four holes and the
force on each of the four holes, are presented in a range of 500N for the last 500
iterations, iteration 1500-2000, for each monitor plot in AppendixA. The force
reports are written for iteration 2000, see AppendixB.1.

First we consider the forces on the four holes, with respect to the resistance on
the hull. In Figure6.11we can see at the different speeds where the values are
taken from the force reports, see AppendixB.1, that the forces on the four holes
are 6.7% to 7.2% of the force on the hull. The area of the four holes is 2% of the
area of the hull and 2.5% of the wetted surface, where the wetted surface is 164m2

and the total area 196m2, see TableB.10. We can state that the forces on the four
holes make a large contribution of the total resistance withrespect to the area of
the holes and the hull.
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Figure 6.11: The forces on the four holes with respect to the resistance on the hull.
The ratio of the forces on the four holes divided by the force on the hull is shown.

Secondly we consider the difference between the forces on each of the four holes
taken from the force reports, see AppendixB.1. We get the largest contribution
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from the forces on the two holes at the back, see Figure6.12. Since the area of
the holes at the back is almost twice as big as the area of the holes in the front,
see TableB.10, this is quite natural.
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Figure 6.12: Forces on the four holes at iteration 2000.

By considering the force monitor plots, we can examine how the forces vary in
time for the last 500 iterations, see AppendixA. The variations of forces on the
hull, at low speeds, are mainly caused by the hole Hull.HoleBackInside. As we
reach 12 knots, we also get a small contribution from the holeHull.BackOutside
as the force starts to oscillate. The forces on the two holes in the front do not
vary in time for the last 500 iterations. In Table6.3we can see how much the
forces vary in time. The reasons of these variations are mostlikely because of
turbulence and the bad mesh areas effecting the solution, see Figure5.9. However
these effects only make a small effect, 0.3%-0.4%, of the force on the hull.
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Speed (Knots) 8 10 12 14 16 18 20 22 24
Part
Hull.HoleBackInside <25 25 50 75 100 150 150 200 250
Hull.HoleBackOutside 0 0 <25 <25 25 25 50 75 100
Hull.HoleFrontInside 0 0 0 0 0 0 0 0 0
Hull.HoleFrontOutside 0 0 0 0 0 0 0 0 0
Four holes <25 25 50 75 100 150 200 250 300
Hull <25 25 50 75 125 150 200 250 350

Table 6.3: Maximum force differences (N) for the 500 last iterations,1500-2000,
at 8-24 knots. The values are taken from the force monitor plots in AppendixA
and are presented in a 25 Newton interval.
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6.3 Water level change in the ballast tanks

The ballast tanks in the hull are constructed with open holesto sea. In this sec-
tion, we will therefore discuss how the water level inside the ballast tanks will be
effected due to displacement of water as the hull is moving. In the calculations,
the dimensions of the simulation domain is used, see Figure5.3 and Figure5.4.
We will assume that the sea level does not change for different speeds. The flow
is assumed to be inviscid, steady and barotropic. Then we canuse the Bernoulli
equation (2.41) to calculate the water level change. First we will use the continuity
equation to calculate the velocity of the water at the holes in the front at position
2 and the back at position 3, see Figure6.13. By continuity we have that

A1u1 = A2u2 = A3u3, (6.7)

whereu is the velocity of the water andA is the cross section of the water at the
actual position. The initial velocityu1 is given and the velocity at position 2 and
3 is found by equation (6.7),

u2 =
A1u1

A2
and u3 =

A1u1

A3
. (6.8)

Ballast tanks

Sealevel

2 13

Figure 6.13: The hull with ballast tanks

As the cross section at position 2 and 3 is smaller with respect to the cross
section at position 1, we will have an increase in the velocity by the continuity,
see equation (6.8). This will lead to a pressure drop at position 2 and 3, which
will decrease the water level inside the ballast tanks. The pressure drop is
calculated by using Bernoulli’s equation (2.41),
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1
2

u · u + p
ρ
+ gz= constant along streamlines. (6.9)

By assuming that the particles at position 2 and 3 lies on the same streamline as
particles at position 1, we have that

1
2

u1 · u1 +
p1

ρ
+ gz1 =

1
2

u2 · u2 +
p2

ρ
+ gz2. (6.10)

Position 1 will be the reference position. The reference pressure and the reference
height at position 1 is set to zero,p1 = 0 andz1 = 0. As position 2 and position
1 are at the same height,z2 = 0. Rewriting equation (6.10), the pressure drop can
be calculated

p2 =
1
2
ρ(u1 · u1 − u2 · u2). (6.11)

The pressure drop will reduce the water level inside the ballast tanks. The water
level change, denoted byh, is given by

h2 =
p2

ρg
. (6.12)

The water level change at position 3, is calculated in the same way. The cross
section at position 2, is larger than the cross section at position 3. Therefore we
will have a larger water level change in the ballast tanks at the back at position 3,
see Figure6.14.

The cross section used at the inlet isA1 = 233m2. The cross sections at the ballast
tanks in the front and the back are respectivelyA2 = 230m2 andA3 = 229m2,
where the cross section at the inlet has been subtracted the cross sections of the
hull that displace water at position 2 and 3. The locations ofthe cross sections of
the hull are shown in Figure6.15and the cross section at position 2 is shown in
Figure6.16. The area of the hull at position 2 is calculated with the sea level at
2.5 meter. The same is done at position 3.
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Figure 6.14: Water level change in the ballast tanks.

If we consider the hull to be moving in shallow water, the cross sectionsA2 and
A3 are smaller and the velocities at position 2 and 3 will increase. This will result
in a larger pressure drop and an additional reduction of the water level in the
ballast tanks. At the same time the viscous force of the hull,will increase due to
the increased velocity of water.
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Figure 6.15: Locations of the cross sections of the twin hull.

Figure 6.16: Section C-C of Figure6.15.



Chapter 7

Summary and Discussion

In this thesis I have investigated the hull resistance on a SWATH wind turbine
service vessel moving in still water at 8-24 knots by using the CFD tool STAR-
CCM+. The model equations needed for the simulation were presented in Chapter
2 and transformed to Reynolds-Averaged Navier-Stokes equations in Chapter 4.
From these equations we were able to calculate the flow aroundthe vessel. As I
had no prior experience with computational fluid dynamics, much of the theory
behind the CFD code was developed in Chapter 3.

In Chapter 5, we developed the simulation set-up. A major part of the work with
the simulations set-up was used to obtain a good mesh. After much work with
the surface mesh by using the surface remesher, we only produced poor quality
mesh that could not be used in the simulation. After several modifications of
the surface wrapper, we eventually managed to produce a useful surface mesh.
The selection of the boundaries and the physics models STAR-CCM+ userguide,
CD-adapco(2011), provided us with the required boundaries and models set-up.
As the set-up was well defined, we could start to run the simulations. This process
was done many times as we experienced problems with the mesh and boundary
effects. After several mesh modifications and changes of the simulation domain
size, we were able to achieve better solutions.

“The majority of time spent in industry on a CFD project is usually
devoted to successfully generating a mesh for the domain geometry.”

—Tu et al.(2007)

As I received the student license for STAR-CMM+ four months after I started
the work with the thesis, time limitations were hindering mein obtaining a good
solution without the boundaries effects and the diffuse free surface.
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Due to the diffuse free surface and the size of the simulation domain, I did not
obtain the wave pattern as the hull moved through the water. Therefore the wave
making resistance was not calculated in my simulation. I didhowever a calcula-
tion of the wave making resistance by using a plane wave at 12 knots.

The resistance on the four holes of the hull, where the ballast tanks are placed,
compared with the resistance on the hull was found to be approximately 7% of
the total resistance.

Further I have examined how the water level inside the ballast tanks of the hull
is affected as the vessel moves at different speeds in the simulation domain. For
the ballast tanks in the front, the water level reduction wasup to 0.20 meter and
respectively up to 0.27 meter for the ballast tanks at the back.

Since I did not manage to calculate the wave making resistance in our simulation,
we were not able to achieve a fully comparison of our simulation and the scaled
test. In the comparison we should also keep in mind the sourceof error when
converting the scaled model results to full scale. In addition the scaled model test
allowed pitch and heave motions.

In the further work with the simulation, the simulation domain should be increased
and the free surface sharpened. The mesh needs to be refined inthe free surface
area. After discussions with CD-adapco, the trimmed meshershould be used for
the mesh in addition to mesh refinement.

The disadvantage by choosing the commercial program STAR-CCM+ in this the-
sis, is the fact that the simulation only can be run on one processor at a time.
This has limited me in obtaining a good solution without boundary effects and
achieving a sharp free surface.
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Force monitor plots

Force monitor plot at 8 knots
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Figure A.1: Total force in thex direction on the hull at 8 knots.
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(b) Four holes.

Figure A.2: Total force in thex direction on the hull (A.2a) and the four holes
(A.2b) at 8 knots.
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(a) Hull.HoleBackInside.
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(b) Hull.HoleBackOutside.
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Figure A.3: Force in thex direction on Hull.HoleBackInside (A.3a),
Hull.HoleBackOutside (A.3b), Hull.HoleFrontInside (A.3c) and
Hull.HoleFrontOutside (A.3d) at 8 knots.
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Force monitor plot at 10 knots
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(b) Four holes.

Figure A.4: Total force in thex direction on the hull (A.4a) and the four holes
(A.4b) at 10 knots.
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(b) Hull.HoleBackOutside.
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(c) Hull.HoleFrontInside.
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Figure A.5: Force in thex direction on Hull.HoleBackInside (A.5a),
Hull.HoleBackOutside (A.5b), Hull.HoleFrontInside (A.5c) and
Hull.HoleFrontOutside (A.5d) at 10 knots.
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Force monitor plot at 12 knots
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Figure A.6: Total force in thex direction on the hull (A.6a) and the four holes
(A.6b) at 12 knots.
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(a) Hull.HoleBackInside.
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(b) Hull.HoleBackOutside.
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Figure A.7: Force in thex direction on Hull.HoleBackInside (A.7a),
Hull.HoleBackOutside (A.7b), Hull.HoleFrontInside (A.7c) and
Hull.HoleFrontOutside (A.7d) at 12 knots.
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Force monitor plot at 14 knots
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(b) Four holes.

Figure A.8: Total force in thex direction on the hull (A.8a) and the four holes
(A.8b) at 14 knots.
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(b) Hull.HoleBackOutside.

1500 1600 1700 1800 1900 2000
Iteration

200

300

400

500

600

700

F
or

ce
 (

N
)

1500 1600 1700 1800 1900 2000
Iteration

200

300

400

500

600

700

F
or

ce
 (

N
)

(c) Hull.HoleFrontInside.
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Figure A.9: Force in thex direction on Hull.HoleBackInside (A.9a),
Hull.HoleBackOutside (A.9b), Hull.HoleFrontInside (A.9c) and
Hull.HoleFrontOutside (A.9d) at 14 knots.
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Force monitor plot at 16 knots
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Figure A.10: Total force in thex direction on the hull (A.10a) and the four holes
(A.10b) at 16 knots.
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Figure A.11: Force in thex direction on Hull.HoleBackInside (A.11a),
Hull.HoleBackOutside (A.11b), Hull.HoleFrontInside (A.11c) and
Hull.HoleFrontOutside (A.11d) at 16 knots.
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Force monitor plot at 18 knots
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Figure A.12: Total force in thex direction on the hull (A.12a) and the four holes
(A.12b) at 18 knots.
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Figure A.13: Force in thex direction on Hull.HoleBackInside (A.13a),
Hull.HoleBackOutside (A.13b), Hull.HoleFrontInside (A.13c) and
Hull.HoleFrontOutside (A.13d) at 18 knots.
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Force monitor plot at 20 knots
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Figure A.14: Total force in thex direction on the hull (A.14a) and the four holes
(A.14b) at 20 knots.
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Figure A.15: Force in thex direction on Hull.HoleBackInside (A.15a),
Hull.HoleBackOutside (A.15b), Hull.HoleFrontInside (A.15c) and
Hull.HoleFrontOutside (A.15d) at 20 knots.
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Force monitor plot at 22 knots
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Figure A.16: Total force in thex direction on the hull (A.16a) and the four holes
(A.16b) at 22 knots.
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Figure A.17: Force in thex direction on Hull.HoleBackInside (A.17a),
Hull.HoleBackOutside (A.17b), Hull.HoleFrontInside (A.17c) and
Hull.HoleFrontOutside (A.17d) at 22 knots.
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Force monitor plot at 24 knots
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Figure A.18: Total force in thex direction on the hull (A.18a) and the four holes
(A.18b) at 24 knots.
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(d) Hull.HoleFrontOutside.

Figure A.19: Force in thex direction on Hull.HoleBackInside (A.19a),
Hull.HoleBackOutside (A.19b), Hull.HoleFrontInside (A.19c) and
Hull.HoleFrontOutside (A.19d) at 24 knots.
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Force report at 8 knots

Part Pressure(N) Shear(N) Net(N)
Fin
.Shell 8.276973e+01 3.778908e+01 1.205588e+02
Hull
.Bau 3.857838e+02 7.516461e+00 3.933002e+02
.HoleBackInside 1.919304e+02 7.792050e+00 1.997225e+02
.HoleBackOutside 1.873389e+02 7.847084e+00 1.951859e+02
.HoleFrontInside 6.939101e+01 1.134841e+01 8.073942e+01
.HoleFrontOutside 7.109531e+01 1.151516e+01 8.261047e+01
.HullSideBottom 2.377830e+03 1.683732e+03 4.061562e+03
.HoleSide 6.758353e+01 1.344935e+01 8.103288e+01
.HullTop 3.061969e+02 5.951210e+02 9.013179e+02
.Tunnel 4.902389e+02 4.978975e+00 4.952179e+02
TopBracketBack
.TopBracketBack 1.474797e+02 2.996147e+02 4.470944e+02
.TopBracketBackAngle 8.128039e+01 2.247733e+00 8.352812e+01
TopBracketFront
.TopBracketFront 8.414260e+02 2.833803e+02 1.124806e+03
.TopBracketFrontAngle -2.925809e+01 8.953545e-01 -2.836273e+01
Total: 5.271086e+03 2.967228e+03 8.238314e+03

Table B.1: Force report of one hull from STAR-CCM+ in direction: [-1, 0, 0] at 8
knots at iteration 2000.
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Force report at 10 knots

Part Pressure(N) Shear(N) Net(N)
Fin
.Shell 1.304129e+02 5.703369e+01 1.874466e+02
Hull
.Bau 6.009520e+02 1.098790e+01 6.119399e+02
.HoleBackInside 2.833483e+02 1.112972e+01 2.944780e+02
.HoleBackOutside 3.048311e+02 1.227002e+01 3.171011e+02
.HoleFrontInside 1.071807e+02 1.692467e+01 1.241054e+02
.HoleFrontOutside 1.120575e+02 1.745182e+01 1.295093e+02
.HullSideBottom 3.745875e+03 2.562239e+03 6.308115e+03
.HoleSide 9.116286e+01 1.814836e+01 1.093112e+02
.HullTop 4.830156e+02 8.990012e+02 1.382017e+03
.Tunnel 6.164253e+02 7.432342e+00 6.238577e+02
TopBracketBack
.TopBracketBack 2.267454e+02 4.532109e+02 6.799563e+02
.TopBracketBackAngle 1.287646e+02 3.429504e+00 1.321941e+02
TopBracketFront
.TopBracketFront 1.321774e+03 4.264752e+02 1.748249e+03
.TopBracketFrontAngle -4.637096e+01 1.366434e+00 -4.500453e+01
Total: 8.106175e+03 4.497101e+03 1.260328e+04

Table B.2: Force report of one hull from STAR-CCM+ in direction: [-1, 0, 0] at
10 knots at iteration 2000.
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Force report at 12 knots

Part Pressure(N) Shear(N) Net(N)
Fin
.Shell 1.892811e+02 7.987756e+01 2.691587e+02
Hull
.Bau 8.644252e+02 1.500735e+01 8.794326e+02
.HoleBackInside 3.989086e+02 1.553532e+01 4.144439e+02
.HoleBackOutside 4.402881e+02 1.722615e+01 4.575143e+02
.HoleFrontInside 1.542933e+02 2.368545e+01 1.779787e+02
.HoleFrontOutside 1.614381e+02 2.442247e+01 1.858606e+02
.HullSideBottom 5.409539e+03 3.584166e+03 8.993705e+03
.HoleSide 1.315473e+02 2.539344e+01 1.569408e+02
.HullTop 6.999909e+02 1.259011e+03 1.959002e+03
.Tunnel 8.889339e+02 1.027674e+01 8.992106e+02
TopBracketBack
.TopBracketBack 3.206772e+02 6.352313e+02 9.559086e+02
.TopBracketBackAngle 1.867913e+02 4.843504e+00 1.916348e+02
TopBracketFront
.TopBracketFront 1.919206e+03 5.954617e+02 2.514668e+03
.TopBracketFrontAngle -6.767478e+01 1.931799e+00 -6.574298e+01
Total: 1.169764e+04 6.292070e+03 1.798971e+04

Table B.3: Force report of one hull from STAR-CCM+ in direction: [-1, 0, 0] at
12 knots at iteration 2000.
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Force report at 14 knots

Part Pressure(N) Shear(N) Net(N)
Fin
.Shell 2.596847e+02 1.062288e+02 3.659135e+02
Hull
.Bau 1.176710e+03 1.954943e+01 1.196260e+03
.HoleBackInside 5.478113e+02 2.067233e+01 5.684836e+02
.HoleBackOutside 6.113240e+02 2.307490e+01 6.343989e+02
.HoleFrontInside 2.100628e+02 3.147455e+01 2.415374e+02
.HoleFrontOutside 2.199460e+02 3.245635e+01 2.524024e+02
.HullSideBottom 7.392635e+03 4.762839e+03 1.215547e+04
.HoleSide 1.794960e+02 3.373374e+01 2.132297e+02
.HullTop 9.603319e+02 1.674125e+03 2.634457e+03
.Tunnel 1.211928e+03 1.351495e+01 1.225443e+03
TopBracketBack
.TopBracketBack 4.309025e+02 8.443434e+02 1.275246e+03
.TopBracketBackAngle 2.562237e+02 6.485228e+00 2.627089e+02
TopBracketFront
.TopBracketFront 2.636295e+03 7.890101e+02 3.425305e+03
.TopBracketFrontAngle -9.353768e+01 2.592479e+00 -9.094520e+01
Total: 1.599981e+04 8.360101e+03 2.435991e+04

Table B.4: Force report of one hull from STAR-CCM+ in direction: [-1, 0, 0] at
14 knots at iteration 2000.
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Force report at 16 knots

Part Pressure(N) Shear(N) Net(N)
Fin
.Shell 3.415864e+02 1.360386e+02 4.776250e+02
Hull
.Bau 1.538274e+03 2.459626e+01 1.562871e+03
.HoleBackInside 7.190635e+02 2.646872e+01 7.455322e+02
.HoleBackOutside 7.911243e+02 2.972759e+01 8.208519e+02
.HoleFrontInside 2.744825e+02 4.027265e+01 3.147552e+02
.HoleFrontOutside 2.876211e+02 4.153103e+01 3.291522e+02
.HullSideBottom 9.698019e+03 6.094347e+03 1.579237e+04
.HoleSide 2.351887e+02 4.313973e+01 2.783284e+02
.HullTop 1.265370e+03 2.142773e+03 3.408143e+03
.Tunnel 1.586156e+03 1.712562e+01 1.603282e+03
TopBracketBack
.TopBracketBack 5.560085e+02 1.079486e+03 1.635494e+03
.TopBracketBackAngle 3.378169e+02 8.351807e+00 3.461688e+02
TopBracketFront
.TopBracketFront 3.478667e+03 1.005961e+03 4.484627e+03
.TopBracketFrontAngle -1.243606e+02 3.343508e+00 -1.210171e+02
Total: 2.098501e+04 1.069316e+04 3.167818e+04

Table B.5: Force report of one hull from STAR-CCM+ in direction: [-1, 0, 0] at
16 knots at iteration 2000.
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Force report at 18 knots

Part Pressure(N) Shear(N) Net(N)
Fin
.Shell 4.354662e+02 1.691640e+02 6.046301e+02
Hull
.Bau 1.950024e+03 3.013161e+01 1.980156e+03
.HoleBackInside 9.779163e+02 3.503773e+01 1.012954e+03
.HoleBackOutside 1.018867e+03 3.723394e+01 1.056101e+03
.HoleFrontInside 3.475884e+02 5.006047e+01 3.976488e+02
.HoleFrontOutside 3.645412e+02 5.162445e+01 4.161657e+02
.HullSideBottom 1.231151e+04 7.577137e+03 1.988864e+04
.HoleSide 2.987491e+02 5.357869e+01 3.523278e+02
.HullTop 1.617005e+03 2.663393e+03 4.280398e+03
.Tunnel 2.012657e+03 2.108287e+01 2.033739e+03
TopBracketBack
.TopBracketBack 6.942125e+02 1.339442e+03 2.033655e+03
.TopBracketBackAngle 4.322026e+02 1.044031e+01 4.426429e+02
TopBracketFront
.TopBracketFront 4.453941e+03 1.244957e+03 5.698897e+03
.TopBracketFrontAngle -1.606967e+02 4.200983e+00 -1.564957e+02
Total: 2.675398e+04 1.328749e+04 4.004147e+04

Table B.6: Force report of one hull from STAR-CCM+ in direction: [-1, 0, 0] at
18 knots at iteration 2000.
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Force report at 20 knots

Part Pressure(N) Shear(N) Net(N)
Fin
.Shell 5.424094e+02 2.057608e+02 7.481702e+02
Hull
.Bau 2.412701e+03 3.614110e+01 2.448842e+03
.HoleBackInside 1.133719e+03 3.989454e+01 1.173613e+03
.HoleBackOutside 1.282628e+03 4.493037e+01 1.327558e+03
.HoleFrontInside 4.294810e+02 6.081012e+01 4.902911e+02
.HoleFrontOutside 4.508358e+02 6.271303e+01 5.135488e+02
.HullSideBottom 1.532826e+04 9.202528e+03 2.453079e+04
.HoleSide 3.707466e+02 6.502305e+01 4.357696e+02
.HullTop 2.018611e+03 3.235008e+03 5.253619e+03
.Tunnel 2.492978e+03 2.535453e+01 2.518333e+03
TopBracketBack
.TopBracketBack 8.471848e+02 1.623156e+03 2.470341e+03
.TopBracketBackAngle 5.405635e+02 1.275104e+01 5.533146e+02
TopBracketFront
.TopBracketFront 5.571782e+03 1.505663e+03 7.077445e+03
.TopBracketFrontAngle -2.031747e+02 5.149165e+00 -1.980256e+02
Total: 3.321872e+04 1.612488e+04 4.934361e+04

Table B.7: Force report of one hull from STAR-CCM+ in direction: [-1, 0, 0] at
20 knots at iteration 2000.
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Force report at 22 knots

Part Pressure(N) Shear(N) Net(N)
Fin
.Shell 6.615268e+02 2.456586e+02 9.071854e+02
Hull
.Bau 2.927407e+03 4.261288e+01 2.970020e+03
.HoleBackInside 1.352559e+03 4.763290e+01 1.400192e+03
.HoleBackOutside 1.525048e+03 5.384350e+01 1.578892e+03
.HoleFrontInside 5.202383e+02 7.250365e+01 5.927420e+02
.HoleFrontOutside 5.466527e+02 7.477359e+01 6.214263e+02
.HullSideBottom 1.866921e+04 1.097311e+04 2.964232e+04
.HoleSide 4.517101e+02 7.745227e+01 5.291623e+02
.HullTop 2.472537e+03 3.855680e+03 6.328217e+03
.Tunnel 3.030116e+03 2.990698e+01 3.060023e+03
TopBracketBack
.TopBracketBack 1.009509e+03 1.929447e+03 2.938956e+03
.TopBracketBackAngle 6.639431e+02 1.528430e+01 6.792274e+02
TopBracketFront
.TopBracketFront 6.843086e+03 1.786761e+03 8.629846e+03
.TopBracketFrontAngle -2.523509e+02 6.096397e+00 -2.462545e+02
Total: 4.042119e+04 1.921076e+04 5.963196e+04

Table B.8: Force report of one hull from STAR-CCM+ in direction: [-1, 0, 0] at
22 knots at iteration 2000.
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Force report at 24 knots

Part Pressure(N) Shear(N) Net(N)
Fin
.Shell 7.944466e+02 2.886543e+02 1.083101e+03
Hull
.Bau 3.495122e+03 4.953687e+01 3.544659e+03
.HoleBackInside 1.764715e+03 6.041081e+01 1.825126e+03
.HoleBackOutside 1.860345e+03 6.354739e+01 1.923893e+03
.HoleFrontInside 6.200448e+02 8.511361e+01 7.051584e+02
.HoleFrontOutside 6.522783e+02 8.777713e+01 7.400555e+02
.HullSideBottom 2.233220e+04 1.288769e+04 3.521990e+04
.HoleSide 5.428103e+02 9.083305e+01 6.336433e+02
.HullTop 2.982074e+03 4.524256e+03 7.506330e+03
.Tunnel 3.626318e+03 3.469823e+01 3.661017e+03
TopBracketBack
.TopBracketBack 1.177132e+03 2.256975e+03 3.434108e+03
.TopBracketBackAngle 8.036749e+02 1.803945e+01 8.217143e+02
TopBracketFront
.TopBracketFront 8.281960e+03 2.087190e+03 1.036915e+04
.TopBracketFrontAngle -3.093325e+02 7.185497e+00 -3.021470e+02
Total: 4.862379e+04 2.254191e+04 7.116570e+04

Table B.9: Force report of one hull from STAR-CCM+ in direction: [-1, 0, 0] at
24 knots at iteration 2000.
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B.2 Area of hull report

Part Area (m2)
Fin.Shell 1.913001e+00
Hull.Bau 1.602044e+00
Hull.HoleBackInside 1.347671e+00
Hull.HoleBackOutside 1.348610e+00
Hull.HoleFrontInside 7.066795e-01
Hull.HoleFrontOutside 7.050649e-01
Hull.HullSideBottom 1.033655e+02
Hull.HoleSide 9.530661e-01
Hull.HullTop 3.786161e+01
Hull.Tunnel 1.568206e+00
TopBracketBack.TopBracketBack 2.080200e+01
TopBracketBack.TopBracketBackAngle 1.304931e-01
TopBracketFront.TopBracketFront 2.330916e+01
TopBracketFront.TopBracketFrontAngle 3.731476e-02
Total: 1.956504e+02
Wetted surface 1.641335e+02

Table B.10: Area of the hull.
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Water surface
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Figure C.1: Water surface at 90% water phase at 8 knots.
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Figure C.2: Water surface at 90% water phase at 10 knots.
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Figure C.3: Water surface at 90% water phase at 12 knots.
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Figure C.4: Water surface at 90% water phase at 14 knots.
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Figure C.5: Water surface at 90% water phase at 16 knots.



141

Figure C.6: Water surface at 90% water phase at 18 knots.
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Figure C.7: Water surface at 90% water phase at 20 knots.
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Figure C.8: Water surface at 90% water phase at 22 knots.
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Figure C.9: Water surface at 90% water phase at 24 knots.
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