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Chapter 1

Introduction

1.1 History and introduction

When J. J. Thompson discovered the electron at the end of the 19th century, he started a

revolution in physics. During the following decades, quantum mechanics and the theory of

relativity were developed, collectively called “modern physics”.

Before this discovery, Newtonian physics had described the world adequately. The atom

was, eponymously, the smallest known structure and thus the heart of all matter. The

unification of the electric and magnetic forces by James Clerk Maxwell in 1865 was followed by

new insights into the nature of light, and in 1887 Heinrich Hertz discovered the photoelectric

effect: Where high-intensity light is directed towards a material, which then emits electrons.

However, none of these breakthroughs were inconceivable in the Newtonian paradigm.

So when the first hint of a novel substructure – that of the electron, with its quantized

charge – appeared in 1897, a paradigm shift was needed. In 1905 Albert Einstein added to

the enigma by explaining the photoelectric effect with the quantized photon. During the

next ten years (in which time his predictions about the photoelectric effect were proved to

be true), he developed his theories: Special and general relativity. Together, these theories

unified space, time and gravity. Today his work stands unaltered at one side of this two-faced

modern revolution.

At the other side, the European effort of constructing a quantum theory gained momentum.

Around 1911 Niels Bohr and Ernest Rutherford came up with new models of the atom.

Rutherford hypothesized a heavy nucleus surrounded by an electron cloud. Bohr later added

“sudden” or “quantum” leaps of the electron, which would then emit or absorb photons. With

this theory, it was possible to describe the by then well-known spectrum of hydrogen.

Add a few years, and a more complete picture emerged. In 1925 Erwin Schrödinger had
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formulated the quantum analogue of Newton’s laws. Still in use today, it can in principle

describe every (non-relativistic) quantum phenomenon. An extension to account for the

special relativity of Einstein was quickly developed by Paul Dirac. Every new equation

predicted new and unknown phenomena, and they were often discovered shortly after. The

abstract “spin” of the electron, as an example, could be read off directly from the Dirac

equation. It should be noted that a consistent extension of the Schrödinger Equation for

general relativity (or gravity) has not been found yet.

Enter the age of the atom smashers. At the end of the 1920s, only three elementary

particles were needed to describe the world: The electron, the proton, and the neutron (to

account for large atomic masses). During the next decades, a plethora of new particles emerged.

Some of these were suggested by theorists, like the neutrino of Enrico Fermi. However, the

vast number of new detector signatures were surprises, in forms of mesons and baryons. The

different pions, omegas, xis, rhos and lambdas were all just manifestations of different quark

configurations, although the physicists had no way of guessing at this novel substructure yet.

This chaotic situation was resolved by the quark model in 1964, which could account for

the SU(3) symmetries observed between the new states. At this point, theoretical progress

had come a long way. Gauge theories like Quantum Electrodynamics (a quantum version

of Maxwell’s electrodynamics) and the electroweak theory had been formulated, and the

existence of a “Higgs” boson had been proposed to solve the problem of electroweak symmetry

breaking. Together with the full description of the strong interactions through Quantum

Chromodynamics in 1974, the Standard Model took its current form.

1.2 The Standard Model

The Standard Model (SM) as a theory describes elementary particles, together with how they

interact. From this, it is possible to reconstruct the classical laws of physics. In later chapters

we will give the SM a more thorough treatment, but for now it is convenient to outline its

phenomenology.

There are many ways to describe the particles. A usual way to do this is to use their spin.

The spin-1
2

particles, or fermions, are divided into quarks and leptons. Both of these can be

characterized by their family, or generation, where the heavier particles belong to a higher

generation: 3 in total. There are two leptons and two quarks for each generation, and each

can be further separated by the weak isospin: Isospin “up” (or +1
2
) are the up-type quarks

u, c, t and the nearly massless neutrinos νe, νµ, ντ . Isospin “down” (or −1
2
) are the down-type

quarks d, s, b and charged leptons e, µ, τ . Each of the quarks comes in sets of three, labeled

arbitrarily with the color charge.
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Figure 1.1: Left: The particles of the SM, including some of their properties. From Wikipedia

[1], where the numbers are checked against the Review of Particle Physics by the Particle

Data Group (PDG) [2]. Right: The interactions between the SM particles, where the lines

signify possible interactions. From Wikipedia [3].

The integer spin particles are called bosons. There are four spin-1 bosons, which are also

the force carriers. They are: The massless photon, which propagates the electric force, the

massive gauge bosons W± and Z0 for the weak force, and for the strong force, the massless

gluon which only interacts in the quark sector. The gluon carries one color and one anti-color,

and comes in eight different configurations.

In addition, there is the spin 0 scalar particle called the Higgs boson. Still hypothetical,

the finalization of this thesis may well coincide with its official discovery at the Large Hadron

Collider at CERN. All these particles, as well as how they interact, are listed in Fig. 1.1.

1.3 Motivation

Since 1974, there has been little theoretical progress. Put another way, many extensions of

the Standard Model have been proposed, but in lieu of striking experimental anomalies the

SM still stands firmly.

With the discovery of the Higgs boson, the last parameter of the SM is fixed. Precision

measurements may then tell us whether we have found “our” Higgs boson, or if we have

found one from another theory. Many theories predict a Higgs boson with slightly different
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properties than the familiar Standard Model Higgs boson. A theory based on supersymmetry

is one such possibility.

In this thesis, we will assume that the emerging results from the LHC are real, so that we

have indeed found a Higgs boson. We will use the preliminary measurements of its mass and

cross section to see how this can be accommodated in a supersymmetric theory. We will also

use a less constrained supersymmetric theory than many analyses often do, and it will be

interesting to see how such a theory fares against Nature: After every physical constraint has

been imposed, is there still any possibility for models based on supersymmetry?

We will begin by reconstructing the Standard Model in Chapter 2. After explaining how

and why we need the different components of the SM, we move on to Chapter 3 where we

extend the discussion to properties of the SM Higgs boson. In Chapter 4 we explain why and

where the SM is inadequate, and propose some of its extensions. Focus will be placed on

supersymmetry and the Minimal Supersymmetric Standard Model (MSSM). In Chapter 5

we repeat the exercise of describing the properties of the Higgs boson, but this time in the

MSSM sector. Here we use its SM counterpart as a benchmark. In Chapter 6 we look at how

to practically study properties of the MSSM Higgs bosons through scans of the parameter

space. We will also look at which constraints we need to impose to have a physical (and

undetected) theory. At the end, we will put it all together in Chapter 7, where we compare

the Standard Model and the MSSM, and enter the preliminary results from the LHC and

other collaborations. A conclusion follows in Chapter 8.



Chapter 2

The Standard Model of particle

physics

We begin this thesis by outlining the Standard Model. In Section 2.1, the different kinematical

equations by Schrödinger, Dirac and Klein-Gordon will be shown. In the following sections,

the different gauge groups and symmetries are added: First U(1) QED and SU(2) Yang-Mills,

then their combination SU(2) × U(1). We explain the Higgs mechanism in Section 2.6, and

use it to find the Weinberg-Salam broken SU(2) × U(1) model. After discussing SU(3) QCD

in Section 2.9, we look at some of the tools and concepts we will need later: Feynman diagrams

in Section 2.10 and higher-order loop diagrams in Section 2.11.

2.1 The Dirac and Klein-Gordon equations

The foundations upon which the Standard Model are built are special relativity and quantum

mechanics. Classically, the Hamiltonian for a free particle can be written as

H =
p2

2m
. (2.1)

The quantization of this Hamiltonian can be done by taking both energy (H) and momentum

(p) as operators. With natural units (~ = c = 1), this transcription is

H → i
∂

∂t
, p→ −i∇. (2.2)

Combining Eqs. (2.1) and (2.2), we find the Schrödinger Equation for a free particle,

i
∂

∂t
ψ(x, t) =

−∇2

2m
ψ(x, t). (2.3)
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It was formulated in the 1920s by Erwin Schrödinger [4, 5]. It is non-relativistic and follows

all the requirements for a quantum theory: About how the state function ψ should behave,

how only eigenstates are observed and about probability distributions. For the latter, the

probability of a particle being in the box d3x around x at time t0 is d3x|ψ(x, t0)|2.

A relativistic extension of Eq. (2.3) is needed for us to have a Lorentz covariant framework

on which to build the Standard Model. This can be done by rewriting the Hamiltonian to its

relativistic version. Still using natural units, the relativistic energy is

H =
√

p2 +m2. (2.4)

We square it, and get H2 = p2 + m2. Now, the possibility of a negative energy state is

introduced, given by H = −√p2 +m2. By inserting the squared relation into the Schrödinger

Equation (2.3), we find the Klein-Gordon second order equation

∂2

∂t2
φ(x)−∇2φ(x) +m2φ(x) = 0, (2.5)

which describes a scalar wavefunction φ(x) ≡ φ(xµ) ≡ φ(x, t) for a spin 1 particle.

Since the Klein-Gordon equation is second order in both time and space derivatives, some

problems arise. It is impossible to have a physical interpretation of the negative energy and

to keep the probability density positive at the same time, see Chapter 2 of Bjorken and

Drell [5]. This problem is solved through a linearization of Eq. (2.5), and we will see that the

interpretation of such negative-energy solutions is the anti -particles, like the positron for the

regular electron.

We want to have a linear version of the Klein-Gordon equation, so we take the square

root of Eq. (2.5) and introduce the gamma matrices γµ, where µ = 0, 1, 2, 3. When two

identical indices arise, they are summed over: γµ∂µ = γ0∂0 − γ · ∇. From P. A. M. Dirac’s

groundbreaking 1928 paper [6], we have

iγµ
∂

∂xµ
ψ(x)−mψ(x) = 0. (2.6)

This is the Dirac equation, which describes a spin 1
2

particle with the wavefunction ψ(x). ψ(x)

is called a spinor due to its mathematical construct: It needs to be rotated 720◦ to regain

itself (instead of the regular 360◦, which would flip its sign). This is to incorporate the spin 1
2

structure. γµ are four matrices that follow the relation

{γµ, γν} ≡ γµγν + γνγµ = 2gµν , (2.7)

where gµν is the Minkowski metric with signature ( + − − − ).
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2.1.1 Lorentz covariance of the Dirac equation

If the Dirac equation (2.6) is Lorentz covariant, it should be the same for observer O′ with

wavefunction ψ′(x′) as for observer O with ψ(x). Defining

(xν)′ =
∂x′ν

∂xµ
xµ = aνµx

µ = ax, ψ′(x′) = ψ′(ax) = S(a)ψ(x), (2.8)

we start with left-multiplying Eq. (2.6) with S(a) and insert S−1(a)S(a) = 1:(
iS(a)γµS−1(a)S(a)

∂

∂xµ
−mS(a)

)
ψ(x) = 0 (2.9)(

iS(a)γµS−1(a)
∂

∂xµ
−m

)
S(a)ψ(x) = 0. (2.10)

With
∂

∂xµ
=
∂x′ν

∂xµ
∂

∂x′ν
= aνµ

∂

∂x′ν
, (2.11)

we can write Eq. (2.10) as(
iS(a)γµS−1(a)aνµ

∂

∂x′ν
−m

)
ψ′(x′) = 0. (2.12)

The Lorentz covariance of Eq. (2.6) is then secured if we require the following identity to hold:

aνµγ
µ = S−1(a)γνS(a). (2.13)

With this, Eq. (2.12) can written as a primed version of the Dirac equation (2.6),(
iγν

∂

∂x′ν
−m

)
ψ′(x′) = 0. (2.14)

The transformations can be more explicitly defined as

aνµ = gνµ + ∆ωνµ

S = 1− i

4
σµν∆ω

µν ,
(2.15)

with ∆ω as the “angle of rotation” (a 4×4 matrix), and with σµν related to the Pauli matrices

σµν =
i

2
[γµ, γν ]. (2.16)
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2.2 U(1) QED

Quantum Electrodynamics (QED) was the first and is the simplest gauge theory. It couples

the massless spin 1 electromagnetic field Aµ with the spin 1
2

fermion field ψ. The field ψ has

mass m and charge eQ. The QED Lagrangian is

L = −1

4
FµνF

µν + ψ̄(x) [iγµDµ −m]ψ(x), (2.17)

where Fµν is the electromagnetic field tensor:

Fµν = ∂νAµ − ∂µAν , (2.18)

and Dµ is the covariant derivative which couples Aµ and ψ(x):

Dµ = ∂µ + ieQAµ. (2.19)

The fields Aµ and ψ can be expanded as

Aµ(x) = A+
µ (x) + A−µ (x) =

∑
r,k

1√
2V ωk

εrµ(k)
[
ar(k) e−ik·x + a†r(k) eik·x

]
,

ψ(x) = ψ+(x) + ψ−(x) =
∑
r,p

√
m

V Ep

[
cr(p)ur(p) e−ip·x + d†r(x)vr(p) eip·x

]
, (2.20)

ψ̄(x) = ψ̄+(x) + ψ̄−(x) =
∑
r,p

√
m

V Ep

[
dr(p)v̄r(p) e−ip·x + c†r(p)ūr(p) eip·x

]
,

where V is the quantization volume (taken to be large but finite) and εrµ is the photon

polarization. ar, cr and dr are the annihilation operators for the different fields, while a†r, c
†
r

and d†r are the creation operators. ur (vr) are the spinors that arise as positive (negative)

energy solutions to the Dirac equation. The sums are over spin (r) and quantized momentum:

p for fermions, k for bosons.

These fields are also solutions to the Dirac and Klein-Gordon equations, but it should be

noted that they are not wavefunctions like the ψ(x) and φ(x) of Section 2.1. For example, the

wavefunction ψ(x) could be compared to the Fourier transformed spinors
∑

p ur(p) e−ip·x of

the field ψ(x). A squared wavefunction yields the probability distribution, while observables

for fields are less trivial to find.
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2.3 The symmetries of QED

2.3.1 Noether’s theorem

Noether’s theorem, originally formulated by Emily Noether in 1918 [7], states that when L is

invariant under global transformations†, we get a conserved quantity. If we adopt the notation

φ(x) = ψ(x) and φ†(x) = ψ̄(x)γ0, we can write any transformation as

φr(x)→ φ′r(x) = φr(x) + δφr(x). (2.21)

The index r points to the different independent fields, and is summed over. In QED, φr = ψ, ψ†.

Demanding the invariance of L = L(φr(x), ∂µφr(x)), we can set δL = 0:

δL =
∂L

∂φr(x)
δφr(x) +

∂L
∂(∂µφr(x))

∂µδφr(x) = 0. (2.22)

We look for a constant fµ, such that ∂µf
µ = 0. With the Euler-Lagrange equation

∂L
∂φr(x)

− ∂α
(

∂L
∂(∂αφr(x))

)
= 0, (2.23)

Eq. (2.22) becomes

δL = ∂µ

(
∂L

∂(∂µφr(x))

)
δφr(x) +

∂L
∂(∂µφr(x))

∂µδφr(x)

= ∂µ

(
∂L

∂(∂µφr(x))
δφr(x)

)
≡ ∂µf

µ

= 0.

(2.24)

The last line follows from the requirement δL = 0. To find the conserved quantity, F 0, we

integrate the zeroth component of fµ over the volume:

F 0 =

∫
d3x f 0 =

∫
d3x

∂L
∂(∂0φr(x))

δφr(x). (2.25)

In the case of the global phase transformations

φr(x)→ φ′r(x) = eiεφr(x) ' (1 + iε)φr(x)

φ†r(x)→ φ†r
′
(x) = e−iεφ†r(x) ' (1− iε)φ†r(x),

(2.26)

†A global transformation is the same everywhere, like eiδ, while a local one will depend on x, like eiα(x).
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we set δφr(x) = iεφr(x) and δφ†r(x) = −iεφ†r(x). In QED, we find fµ by inspecting L from

Eq. (2.17):

fµ =
∂L

∂(∂µψ(x))
δψ(x) +

∂L
∂(∂µψ†(x))

δψ†(x)

=
(
iψ†(x)γ0γµ

)
iεψ(x)

= −εψ†(x)γ0γµψ(x).

(2.27)

Note that L does not contain any term ∂µψ
†(x). Since we now have ∂µf

µ = 0, we can also

set (−eQ/ε)∂µfµ = 0. We find the conserved quantity with Eq. (2.25):

Q = F 0 = eQ

∫
d3x ψ†(x)γ0γ0ψ(x) = eQ

∫
d3x ψ†(x)ψ(x). (2.28)

From Eq. (2.7), γ0γ0 = g00 = 1. It is possible to show that Eq. (2.28) can be written as

Q = −e
∑
r,p

[
c†r(p)cr(p)− d†r(p)dr(p)

] ≡ −e∑
r,p

[
Nr(p)− N̄r(p)

]
, (2.29)

where Nr (N̄r) is the number of electrons (positrons) with momentum p and spin r.

Similarly, one can use the invariance of L through translations and rotations to find the

conservation of, respectively, momentum and angular momentum. This arises as a property of

the spinor solutions of the Dirac (for fermions) and Klein-Gordon equation (for bosons), and

will thus hold for every gauge theory which is based upon them. The field ψ(x) is covariant

(see Section 2.1.1), so we can write

ψ̄′(x′)ψ′(x′) = (ψ̄(x)S−1(a))(S(a)ψ(x)) = ψ̄(x)ψ(x). (2.30)

S(a) is unitary, and we can use S−1(a)S(a) = 1. Since the Lagrangian of Eq. (2.17) only

contains bilinear spinor terms ∝ ψ̄(x)ψ(x), it is invariant under Lorentz transformations.

2.3.2 Gauge invariance

The gauge invariance of QED is the invariance of L under the local phase transformations

ψ(x)→ ψ′(x) = ψ(x) e−ieQα(x)

ψ̄(x)→ ψ̄′(x) = ψ̄(x) eieQα(x)

Aµ(x)→ A′µ(x) = Aµ(x) + ∂µα(x),

(2.31)

where α(x) is an arbitrary function. Inserting Eq. (2.31) into the QED Lagrangian, Eq. (2.17),

we find

ψ̄′
(
iγµD′µ −m

)
ψ′ = ψ̄ eieQα(x)

(
iγµ
[
∂µ + ieQA′µ

]−m) e−ieQα(x)ψ

= ψ̄
(
iγµ eieQα(x) [∂µ + ieQAµ + ieQ (∂µα(x))] e−ieQα(x) −m)ψ (2.32)
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We use

∂µ e−ieQα(x) = e−ieQα(x) (∂µ − ieQ (∂µα(x))) , (2.33)

inserting it into Eq. (2.32) (the rest of the factors will be unaffected by the transformation):

ψ̄′
(
iγµD′µ −m

)
ψ′ = ψ̄ (iγµ [∂µ − ieQ (∂µα(x)) + ieQAµ + ieQ (∂µα(x))]−m)ψ

= ψ̄ (iγµ [∂µ + ieQAµ]−m)ψ

= ψ̄ (iγµDµ −m)ψ.

(2.34)

For the field tensor Fµν ,

F ′µν = ∂νA
′
µ − ∂µA′ν

= ∂νAµ + ∂ν(∂µα(x))− ∂µAν − ∂µ(∂να(x))

= Fµν + ∂µ(∂να(x))− ∂µ(∂να(x))

= Fµν .

(2.35)

Thus L is invariant under the transformations of Eqs. (2.31). Gauge transformations are local

phase transformations which generate the interactions between the gauge and fermion fields.

Without the term ieQAµ in the covariant derivative Dµ, L would not be invariant under such

transformations.

2.4 SU(2) Yang-Mills theory

The step from QED to weak theory is an important one. We introduce a new triplet Wµ,

with generators T which correspond to the Pauli matrices. They do not commute, creating a

non-Abelian theory with many interesting properties. Following V. Barger and R. Philips in

their Collider Physics [8], we find

L = ψ̄(x) [iγµDµ −m]ψ(x)− 1

4
Wµν ·Wµν . (2.36)

In QED, the field tensor Fµν is linear in the fields Aµ. In non-Abelian theories like SU(2), an

additional bilinear term is needed, where the two fields Wµ and Wν are multiplied according

to the properties of the theory. Here,

Wµν = ∂νWµ − ∂µWµ − gWµ ×Wν . (2.37)

The interactions between the fields are described by

Dµ = ∂µ + igWµ ·T. (2.38)
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Since the theory is non-Abelian, the generators T follow certain commutation rules. For

SU(2) Yang-Mills theory, this is

[Ti, Tj] = iεijkTk. (2.39)

The generators are traceless, and satisfy the identity Tr(TiTj) = 1
2
δij. The structure constant

εijk is the Levi-Civita symbol. Using this, one may rewrite the field tensor as

Wiµν = ∂νWiµ − ∂µWiν − gεijkWjµWkν . (2.40)

The Yang-Mills theory is invariant under the SU(2) transformations

ψ(x)→ ψ′(x) = e−igα(x)·Tψ(x)

ψ̄(x)→ ψ̄′(x) = ψ̄(x) eigα(x)·T (2.41)

Wµ(x)→W′
µ(x) = Wµ + ∂µα(x) + gα(x)×Wµ(x).

In order for the theory to be gauge invariant, gauge boson mass terms like M2Wµ ·Wµ are

excluded. In other terms, this is a theory for the interactions between three massless gauge

bosons and the fermion field. In order for it to be a physical theory for the SU(2)-interactions,

it needs to describe the three massive vector bosons W± and Z0, interacting only with

left-handed fermion fields.

2.5 Unbroken SU(2) × U(1) theory

The unification of QED and Yang-Mills into the electroweak theory is the construction

of a gauge theory which describes interactions between fermions, photons and the three

massive gauge bosons. The theory should be gauge invariant under both SU(2) and U(1)

transformations. Introducing the field Bµ (as a mix between Z0 and Aµ, as we will see in

Eq. (2.49)), we define the Lagrangian:

L = ψ̄(x) [iγµDµ]ψ(x)− 1

4
Wµν ·Wµν − 1

4
BµνB

µν . (2.42)

The U(1)Y field Bµ is defined as an Abelian field:

Bµν = ∂νBµ − ∂µBν . (2.43)

We need to redefine ψ(x), since SU(2)L interactions only affect left-handed fermion fields

ψL(x) =
1

2
(1 + γ5)ψ(x), ψR(x) =

1

2
(1− γ5)ψ(x). (2.44)
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T T3
1
2
Y Q

νeL 1/2 1/2 -1/2 0

eL 1/2 -1/2 -1/2 -1

uL 1/2 1/2 1/6 2/3

dL 1/2 -1/2 1/6 -1/3

eR 0 0 -1 -1

uR 0 0 2/3 2/3

dR 0 0 -1/3 -1/3

Table 2.1: The quantum numbers isospin, hypercharge and charge for the different fields.

With this definition, a mass term mψ̄ψ would be split into terms like mψ̄RψL, which violates

the gauge invariance. Therefore, fermions are considered massless until further notice. The

covariant derivative must reflect this “heliciticism”. A way of describing that is

Dµ = ∂µ + igWµ ·T + ig′
1

2
Y Bµ, (2.45)

using different SU(2)L quantum numbers for ψR and ψL. The Gell-Mann-Nishijima formula,

Q = T3 +
1

2
Y, (2.46)

specifies the relationship between the third component of the weak isospin T3, the hypercharge

Y and the electric charge Q. The different quantum numbers for the fields νeL, eL, uL, dL

and eR, uR, dR are listed in Table 2.1, and their transformations under SU(2)L and U(1)Y in

Table 2.2. In order to unify this theory with the electromagnetic theory, we first define the

SU(2)L U(1)Y

ψL(x) → [1− igT ·α(x)]ψL(x) ψL(x) → [1− ig′ 1
2
Y β(x)]ψL(x)

ψR(x) → ψR(x) ψR(x) → [1− ig′ 1
2
Y β(x)]ψR(x)

Wµ → Wµ + ∂α(x) + gα(x)×Wµ Wµ → Wµ

Bµ → Bµ Bµ → Bµ + ∂µβ(x)

Table 2.2: SU(2)L and U(1)Y gauge transformations.

generators as raising and lowering operators. We do the same for the field Wµ,

T± =
1√
2

(T1 ± iT2),

W±
µ =

1√
2

(W1µ ∓ iW2µ).
(2.47)
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Their dot product becomes

Wµ ·T = W+
µ T

+ +W−
µ T

− +W3µT3, (2.48)

and we have separated Wµ into two of its (still massless) physical fields plus W3µ. With help

from the Gell-Mann-Nishijima formula, Eq. (2.46), the electromagnetic term ieQAµ must be

contained in the neutral term of Dµ, i.e. i(gW3µT3 + g′ 1
2
Y Bµ). This is done by rotating a

vector with W3µ and Bµ by an angle θW , defining two new fields Aµ and Zµ:(
W3µ

Bµ

)
=

(
cos θW sin θW

− sin θW cos θW

)(
Zµ

Aµ

)
. (2.49)

With these physical fields and some redefinitions in the couplings, we can write down the

Lagrangian, Eq. (2.42), in terms of the currents:

−L = eJ µ
e.m.Aµ +

g√
2

(J +µ
L W+

µ + J −µL W−
µ

)
+ gZJ µ

Z Zµ +
1

4
Wµν ·Wµν +

1

4
BµνB

µν ,

(2.50)

where

J ±µL =
√

2ψ̄(x)γµT±L ψ(x),

J µ
Z = ψ̄(x)γµ

[
T3 −Q sin2 θW

]
ψ(x), (2.51)

J µ
e.m. = ψ̄(x)γµQψ(x),

and

gZ =
e

sin θW cos θW
, g =

e

sin θW
. (2.52)

And in accordance with Table 2.1, TL = 1
2
τ on ψL, while TL = 0 on ψR.

2.6 The Higgs mechanism

Any term like M2AµA
µ in a gauge theory violates the gauge invariance. Since the physical

gauge bosons W± and Z0 are not massless, a method for implementing mass terms must be

found. The Higgs mechanism (see the Gunion et al. Higgs Hunter’s Guide [9] for a good

introduction) starts with an invariant Lagrangian and massless gauge bosons, and through

transformations on L we get massive gauge bosons, breaking the gauge symmetry. Such a

theory for the Abelian case would be

L = (Dµφ)∗(Dµφ)− µ2φ∗φ− λ(φ∗φ)2 − 1

4
FµνF

µν , (2.53)
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Figure 2.1: The Higgs potential V (φ). At the minimum of V (φ), we have a non-zero minimal

value of φ.

where φ is the field for a complex scalar boson. Fµν = ∂νAµ − ∂µAν for a massless gauge

boson Aµ, and we require

Dµ = ∂µ + igAµ, (2.54)

if L is to be invariant under the transformations

φ→ φ′ = eigχ(x)φ,

Aµ → A′µ = Aµ − ∂µχ(x).
(2.55)

The potential

V (φ) = µ2φ∗φ+ λ(φ∗φ)2 (2.56)

is shown in Fig. 2.1, for a set of values µ2 < 0 and λ > 0. Solving V ′(φ) = 0, we find the

minimum value at φ =
√−µ2/2λ ≡ v/

√
2. We expand φ(x) near this point, and use a U(1)

gauge transformation to remove the complex phase. We arrive at the unitary gauge, where φ

is split into a real field h(x) plus a constant term v to describe the vacuum expectation value,

φ(x) = [v + h(x)]/
√

2, (2.57)

Writing Eq. (2.53) in terms of the unitary gauge:

L′ = 1

2
[(∂µ − igAµ)(v + h)(∂µ + igAµ)(v + h)]

+
1

2
µ2(v + h)2 − 1

4
λ(v + h)4 − 1

4
FµνF

µν ,
(2.58)
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we find the terms

L ⊇ g2v2

2
AµA

µ − µ2h2. (2.59)

They are the mass terms for Aµ and h, respectively. The act of choosing a direction with the

gauge transformation of Eq. (2.57) will ruin the gauge invariance of L. This is caused by the

non-zero minimum value of the field φ(x).

The complex scalar φ(x) has two degrees of freedom (DoF), while the real h(x) has only

one. The last DoF is transferred to the gauge boson, where it will become the longitudinal

polarization – the mass. This act of transferring the DoF to give mass to the gauge bosons

is called the Higgs mechanism, named after P. Higgs [10]. Other people also contributed

when this mechanism was developed in the early sixties, like Englert and Brout in [11], and

Guralnik, Hagen and Kibble in [12].

The parameter v can be found from the mass of the gauge bosons, and is given by the

Particle Data Group (PDG) in their Review of Particle Physics [2] as

v ' 246 GeV. (2.60)

Furthermore, µ (or λ) is a free parameter, and cannot be decided a priori. Thus the mass

of the Higgs boson is completely free, with very few theoretical bounds. Gunion et al. [9]

discuss mass ranges from 1 MeV to about 1 TeV, while new experimental results hint at

mh ∼ 125 GeV [13, 14]. In the next session, we will discuss the Higgs boson in the context of

SU(2) × U(1) – the points we’ve mentioned apply there as well, if we set mH =
√−2µ2.

2.7 The Weinberg-Salam broken SU(2) × U(1) model

The generalization of the Higgs mechanism from U(1) to SU(2)×U(1) is trivial, and can be

found in a number of texts – the method from Barger and Philips [8] is used here. Instead of

a complex scalar φ, we use an isodoublet of two complex scalars

Φ =

(
φ+

φ0

)
=

(
η1 + iη2

η3 + iη4

)
, (2.61)

with the quantum numbers as listed in Table 2.3. The Lagrangian is

LΦ = |DµΦ|2 − V (|Φ|2) = |DµΦ|2 − µ2|Φ|2 − λ|Φ|4, (2.62)

and the neutral part of Φ, i.e. φ0, can be expanded from its minimal value |Φ|2 = −µ2/2λ.

An SU(2) gauge transformation with α(x) = ξ(x)/2v will then transfer the 3 DoF from ξ to
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T T3
1
2
Y Q

φ+ 1/2 1/2 1/2 1

φ0 1/2 -1/2 1/2 0

Table 2.3: The quantum numbers for Φ.

the three gauge fields W+
µ , W−

µ and Z0
µ, giving them mass:

Φ(x) = exp

(
iξ(x) · τ

2v

)(
0

(v +H(x))/
√

2

)
SU(2)−−−→ 1√

2

(
0

v +H(x)

)
(2.63)

Inserting this into the Lagrangian, with Dµ defined in terms of the physical fields,

Dµ = ∂µ + ieQAµ + ig(T+W+
µ + T−W−

µ ) + igZ
(
T3 −Q sin2 θW

)
Zµ, (2.64)

yields the same result as we found in the U(1) case: Mass terms for the gauge bosons and

interaction terms between the Higgs boson and the different particles. That is,

L′Φ =
1

2
(∂µH)2 +

1

4
g2W+

µ W
−µ(v +H)2

+
1

8
g2
ZZµZ

µ(v +H)2 − µ2

[
1

2
(v +H)2

]2

− λ
[

1

2
(v +H)2

]4 (2.65)

With MW = 1
2
gv and MZ = MW/ cos θW , we find the mass terms

L′Φ ⊇M2
WW

+
µ W

−µ +
1

2
M2

ZZµZ
µ. (2.66)

We also find the terms (from the kinetic and potential part)

L′Φ ⊇
1

2
(∂µH)2 − 1

2
m2
HH

2 +
1

4
µ2v2

[
−1 +

4H3

v3
+
H4

v4

]
. (2.67)

Here are the cubic and quartic self interactions of H, together with a mass term 1
2
m2
HH

2,

where

mH =
√
−2µ2. (2.68)

The interactions of H are given by Eq. (2.65):

L′Φ ⊇
(

1

4
g2W+

µ W
−µ +

1

8
g2
ZZµZ

µ

)(
H2 + 2vH

)
. (2.69)

Note that no electromagnetic interactions are involved. This is due to H having Q = 0.
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2.8 Yukawa interactions

In the last section, the mechanism for generating the masses of the gauge bosons was discussed.

They arise by adding a field to the Lagrangian, resulting in mass terms for the W± and Z0.

In addition we get a new particle, the Higgs boson.

However, fermion masses were not introduced. This can be done in a seemingly ad hoc

way, by adding a gauge invariant term which generates interactions between the Higgs fields

and fermions under spontaneous symmetry breaking. With an electron isodoublet

`L =

(
νe

e

)
L

, (2.70)

we can write

L = −Ge

[
ēR

(
Φ†`L

)
+
(
¯̀
LΦ
)
eR

]
. (2.71)

The coupling Ge is arbitrary, but inspection of the resulting terms shows that it needs to be

proportional to the electron mass: Ge =
√

2me/v. In the unitary gauge, Eq. (2.71) becomes

L = −meēe− me

v
Hēe, (2.72)

with an electron mass term and an interaction term between H and the electron. For the

other lepton generations,

L = −meēe−mµµ̄µ−mτ τ̄ τ − v (meHēe+mµHµ̄µ+mτHτ̄τ) . (2.73)

Quark masses are generated in the same way, but since their weak and mass eigenstates are

not the same, many new couplings and mass matrices are introduced.

2.9 SU(3) QCD

Quantum Chromodynamics (QCD) can be generalized from the Weinberg-Salam theory, but

contains many novel features. It describes the interactions between the color-charged quarks

and new massless gauge bosons: The gluons. In the sixties, H. Greenberg [15] showed that in

order for the Pauli exclusion principle to allow certain quarks to exist, a new 3-fold charge

was needed. Later, the experimentalists found that hadron creation processes needed an

additional factor 3 to match the data, see Section 10.9 of Henley and Garćıa [16]. This charge

was dubbed color. Quarks can be defined as a color vector

ψ =

 ψred

ψgreen

ψblue

 =

ψrψg
ψb

 . (2.74)
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A word of caution: The mapping of the SU(3) charges to the color spectrum is just a convenient

definition. A color neutral (white) state is created by combining color + anticolor, or three

different colors or anticolors.

The gauge theory to describe the interactions between quarks and gluons is the non-Abelian

SU(3) theory. The Lagrangian has the usual form, but with ψ(x) as color triplets:

L =
∑
flav.

ψ̄flav.(x) [iγµDµ −mflav.]ψflav.(x)− 1

4

8∑
a=1

F a
µν(x)F aµν(x). (2.75)

The first sum is over the 6 different quark flavors defined in the introduction: Up, down,

charm, strange, top and bottom. The second sum, over a, is connected to the eight generators

T a. They are analogous to the three generators T in the SU(2) theory.

The generators T a and the corresponding structure constants fabc depend on the represen-

tation of the theory, but can easily be defined. The covariant derivative is

Dµ = ∂µ + igs

8∑
a=1

T aAaµ(x), (2.76)

where Aaµ is the massless gluon field and gs the SU(3) coupling constant. The field tensor F a
µν

follows from Eq. (2.40)

F a
µν = ∂νA

a
µ − ∂µAaν + gsf

abcAbµA
c
ν . (2.77)

The SU(3) transformations under which the Lagrangian is invariant are

ψ(x)→ ψ′(x) = eigsTaωa(x)ψ(x)

ψ̄(x)→ ψ̄′(x) = ψ̄(x) e−igsTaωa(x) (2.78)

Aµa(x)→ A′µa (x) = Aµa(x)− ∂µωa(x)− gsfabc ωb(x)Aµc (x),

where ωa(x) is an arbitrary function.

The eight generators correspond to eight different gluons, or gluons with eight different

color charge configurations. Since they themselves are charged, they have the ability to

exchange colors. This is a feature absent in the photons of U(1), and gives rise to self

interactions between the gluons. The different gluons will be linear superpositions of the

color-anticolor states rḡ, br̄, bb̄ etc. An r quark, sending out a gr̄ gluon, will itself become a

g quark (converting another quark from g to r). In this way, colors are conserved. As for

the electromagnetic quantum numbers, for the gluon we have Qg = 0. For up-type quarks,

Qu = 2/3, and for down-type quarks Qd = −1/3.

The massless photon has an infinite range, while the massive gauge bosons are limited

by their mass to about 10−18 m. Yet the massless gluons have a very limited range due to
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Figure 2.2: Different parton density functions, taken at Q2 = (100 GeV)2. Left: CTEQ6 [19],

Right: MSTW2008 [20].

color confinement (See K. G. Wilson [17]): No free colors can be observed, and only trios of

rgb or r̄ḡb̄ (baryons, like the proton and neutron) and pairs of rr̄, gḡ or bb̄ (mesons, like the

pion and kaon) can be found as free states†. As two quarks separate, the separation energy

of the gluon field will be converted into a quark-antiquark pair from the vacuum, creating

a color-neutral meson. With high enough energy this process will be repeated, and a high

energy qq̄ pair from a collision will be seen as two jets of hadrons.

Since the gluons are massless, we do not need to introduce a Higgs triplet to create their

mass terms. We do, however, need to add the Yukawa interactions for the quarks, as was

done for the leptons in Section 2.8.

The Standard Model of particle physics will then be given by the product

SU(3)C × SU(2)L × U(1)Y, which is separately gauge invariant under all three gauge transfor-

mations.



2.10 Feynman diagrams 21

2.9.1 Parton Density Functions

In the time scales of collisions, protons can be treated in the impulse approximation where

they consist of free quarks and gluons, historically called partons. This history can be found

in Section 6.9 of Henley and Garćıa [16]. The different partons will each carry a certain

fraction x of the momentum,

x =
parton momentum

proton momentum
. (2.79)

This x is sometimes referred to as the Bjorken x scaling variable, from J. D. Bjorken [21]. The

parton q will have the probability distribution q(x,Q2), and qi(x,Q
2) dx is the probability of

finding qi within the interval dx at x, at momentum transfer Q2. The inclusive cross section

for a process must be multiplied with its luminosity. For the gg → H process, this is

dLgg
dx

=

∫ 1

τ

dx

x
g(x,Q2)g(τ/x,Q2). (2.80)

Here, g(x,Q2) is the gluon parton density function (PDF), and τ is the Higgs mass squared

normalized to the CoM energy: τ = m2
H/s. These PDFs will depend on the momentum

transfer Q and the parton flavor or type. Today, many different PDFs exist for different

applications. CTEQ6 [19] and MSTW2008 [20] are two for general usage. Examples of these

at Q2 = (100 GeV)2 are reproduced in Fig. 2.2. The MSTW2008 NLO PDF is used for

calculating the Higgs production cross section in Section 3.6.1.

2.10 Feynman diagrams

There are a number of ways of displaying and computing processes from the different La-

grangians given in the above sections. One way is looking at the transition probability

between two states, as a perturbation in orders of the interaction Hamiltonian. This method

was streamlined by R. Feynman, with the development of Feynman diagrams and their

corresponding rules. Fig. 2.3 displays such a diagram. It is read against the arrows, and every

time a particle is created, emitted or propagated from one place to another, a factor is picked

up. The factor of every such action is specified by the Feynman rules, and in this example

shown in the figure. In this diagram, the amplitude M becomes

M = v̄r(p2)(−ieγα)ur(p1)
−igαβ
k2 + iε

ūr(p
′
1)(−ieγβ)vr(p

′
2). (2.81)

†Other exotic combinations are theorized, like glueballs (color neutral bound states of gluons) and
tetraquarks (combinations qqq̄q̄). These are not yet found experimentally, as summarized by E. Klempt and
A. Zaitsev [18].
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e−

e+

µ−

µ+

−ieγα

−ieγβ

−igαβ

k2 + iε

time

ūr(p
′
1)

vr(p
′
2)

ur(p1)

v̄r(p2)

Figure 2.3: Example of a Feynman diagram: The annihilation process e+e− → µ+µ−.

The squared amplitude |M|2 is then multiplied with different factors: The phase space, field

normalizations and the particle fluxes. The conservation of four-momentum is also demanded

at every vertex. For collision processes we arrive at:

dσ = (2π)4δ(4)

(∑
f

p′f −
∑
i

pi

)
1

4E1E2vrel.

∏
l

(2ml)
∏ d3p′f

(2π)32E ′f
|M|2, (2.82)

where the index l is for the external leptons, vrel. is the relative velocity between the colliding

particles and p′f (pi) is the final (initial) four-momentum. We can simplify: The differential

cross section in the Centre of Mass (CoM) frame, for a collision between two particles p1 and

p2, is (
dσ

dΩ′1

)
=

1

64π2(E1 + E2)2

|p′1|
|p1|

(∏
l

2ml

)
|M|2. (2.83)

In order to obtain the end result, we combine Eqs. (2.81) and (2.83), use different identities

for the combination of spinors and take a sum over the spins r. This should be true for every

theory, however the procedure and complexity may vary. Rules like the ones specified in

Fig. 2.3 can be derived from the Lagrangian of a theory. Vertex factors will correspond to the

couplings between the different fields and propagators to the vacuum expectation values of

time ordered combinations of two field operators.

To finalize the example of Eqs. (2.81) and (2.83), after a somewhat lengthy calculation

and some approximations, the differential cross section of the process e+e− → µ+µ− becomes(
dσ

dΩ′1

)
=

α2

16E2

(
1 + cos2 θ

)
. (2.84)

Fig. 2.4 shows one experimental measurement of this process by B. Adeva [22]. The theoretical

value is calculated at loop level (see Section 2.11). This forward-backward asymmetry is

induced by the exchange of a Z0 boson, and cannot be calculated from QED alone.
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Figure 2.4: Measurement of the differential cross section of the process e+e− → µ+µ−. The

full line is the theoretical value. The dashed line, while not important to this discussion, is a

fit to a polynomial in cosn θ. From [22].

Often, there is more than one diagram with the same initial and final state. This may

happen in calculations where a higher order of perturbation theory is used, or where different

channels contribute. An example of the latter is e+e− → e+e−, which may happen both as

an annihilation and a scattering process. These diagrams must be summed over in order to

find the amplitude:

M =
∑
i

Mi. (2.85)

2.11 Loop diagrams and renormalizability

The principle of uncertainty, discovered by W. Heisenberg [23] in 1927, defines the relationship

∆E∆t ≥ h. (2.86)

This means that, during the short interval ∆t, ∆E may be “borrowed” from the vacuum

without violating any physical laws.
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k k

k − q

q

p pp− q

q

Figure 2.5: Loop processes. Left: A propagating photon, Right: A propagating electron.

Figure 2.6: Some of the loops in the process e+e− → µ+µ−.

Physically, particles can use this energy to emit and absorb new virtual particles, which

appear as internal lines in Feynman diagrams. Such particles can never be observed, however

their effects can be large. A propagating photon can undergo the process γ → e∗+e∗− → γ,

while an electron e− → γ∗e− → e−. The star signifies virtuality. This process creates a loop

in the propagator, see Chapter 9 of F. Mandl and G. Shaw [24]. Fig. 2.5 shows this process

for an electron and a photon.

These effects will take place everywhere, creating a number of new amplitudes to be

calculated. For the e+e− → µ+µ− annihilation discussed earlier, additional diagrams are

created: See Fig. 2.6 for a few examples of these. Since these diagrams have more vertices than

the lowest order tree level diagrams, they arise as higher-order corrections. This is usually

done in terms of the coupling constant, in QED this is e. The internal energy-momentum

of a loop (q in Fig. 2.5) is not fixed by conservation at the vertices, and must be integrated

over. This is sometimes a convergent integral, and in those cases we get a finite correction to

a physical variable. The loop integrals are on the form∫ Λ

d4k f(k, external momenta), (2.87)

where k is the internal momentum and the cut-off scale Λ is the maximum momentum transfer

to where the theory is supposed to be valid. When the amplitudes diverge, we get infinite

corrections.

In QED, loops of the lowest order diverge, which cause the mass and charge of the electron
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φi

H

φi

f
H H

Figure 2.7: One-loop self energy graphs for the Higgs boson. Left: Fermion (top) contribution.

Center and right: Scalar Higgs contributions.

to be infinite. Considerations show that e.g. the electron mass will diverge logarithmically

as δm ∼ αm ln Λ. At Planck scales Λ ∼ mP , this is only a correction δm ∼ m, as showed in

Chapter 1 of I. Aitchison [25]. However, we want the theory to be convergent even at the

scale Λ → ∞. The procedure is to redefine the mass and charge as bare properties m0, e0;

which cannot be measured, and physical observables m, e. The relationship between these

will depend on Λ, like for the mass

m = m0 + δm. (2.88)

The bare variables e0 and m0 are then divergent, while the physical ones stay finite. Although

the bare variables go into the Lagrangian, every observable is expressed using the physical

ones, so the theory itself is finite. Every observable can therefore be calculated to a given

order. This is a renormalizable theory: The physical parameters remain finite even when the

cut-off is removed.

A non-renormalizable theory will still be well-defined with a finite Λ, but the physical

predictions diverge in the limit Λ→∞. One interpretation is that the cut-off parameter Λ is

not infinite, but rather should be placed at the threshold where the theory is no longer valid.

This often hints at an underlying theory to be found.

The Higgs mechanism is renormalizable. However, the self-energy of the Standard Model

(SM) Higgs boson is quadratically divergent. This can be explained by the absence of a

symmetry protecting the Higgs mass from large radiative corrections. The fermions have the

chiral symmetry, the breaking of which only generates logarithmic corrections. In the same

way, the photons are protected from mass terms by the local gauge symmetry.

Without such a symmetry, the Higgs mass gets corrections from the fermionic loops shown

in Fig. 2.7. In I. Aitchison [25] these are written as

λ

∫ Λ

d4k
1

k2 −m2
H

. (2.89)
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The divergence can be guessed at: By power counting, we have k4 in the numerator and k2 in

the denominator. Thus a Λ2, or quadratic, divergence should be the result. Careful analysis

shows that the fermionic contribution for Nf fermions is just that, see A. Djouadi [26]. The

correction is

∆m2
H = Nf

2m2
f

8v2π2

[
−Λ2 + 6m2

f ln
Λ

mf

− 2m2
f

]
+O(1/Λ2). (2.90)

The leading order of Eq. (2.90) is ∼ Λ2.

In QED, we defined physical and bare parameters. Now, we do the same and define a

parameter µphys.,

µ2
phys. = µ2 − λΛ2. (2.91)

Remember that all the different masses mi in the SM depend on µ somehow. In the

Yukawa interactions of Section 2.8, we have mi ∝ µ, and for the gauge bosons we have e.g.

MW = gµ/
√
λ.

The theory is valid up to the momentum transfer scale Λ2. From the definition

4µ2 = v2λ, (2.92)

and using I. Aitchison [25], we find that µphys. '
√
λ123 GeV. Since we generally want to

be able to treat the Higgs couplings pertubatively†, λ should be below unity. From these

constraints,

µphys. ∼ 100 GeV, (2.93)

and to be able to obtain this value we need

µ ∼ Λ. (2.94)

A natural choice for Λ is the Planck scale, mP ∼ 1019 GeV. In that case, µ must be chosen

with a precision of 102 : 1019. This is called the fine tuning problem, one of the problems a

theory Beyond the Standard Model must endeavour to solve.

†This is not a physical constraint, but rather based on the wishful idea that nature is simple.



Chapter 3

The Standard Model Higgs Boson

A general treatment of the Higgs boson of the Standard Model was given in Section 2.6. In

this part, we focus on the different decay modes of H. Recently, hints of a 125 GeV Higgs

boson were given by the CMS [13] and ATLAS [14] collaborations at the LHC. One of the most

sensitive channels in the detection of a Higgs boson in this mass range is the diphoton channel,

where the Higgs decays via a triangle diagram into two photons. Since this is a process only

happening at loop level, it is very sensitive to new physics. An unknown charged particle in

the triangle could distort the decay width away from its SM value. In the following sections,

tools for calculating the width and branching ratio of this decay channel are presented, as

well as for the other interesting channels. Another phenomenologically important channel is

the H → W+W−.

The outline of this chapter is the following: In the two first sections, we find the decay

width, including corrections, to the process H → γγ. We will also see in Section 3.3 how new

physics can affect this process. Then, in Section 3.5 we find the widths of the other possible

decay processes of H, and in the last section we look at some of the production mechanisms

for the Higgs boson.

First, a definition. H is the standard model Higgs, while h will signify an unspecified

charge-parity-even (CP-even) Higgs boson in the minimal supersymmetric extension of the

SM (MSSM): h0 or H0.
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H f

γ

γ

W W

φi φi

Figure 3.1: The different tree-level triangle diagrams for the process H → γγ. They can be

characterized as spin 1/2 (f), spin 1 (W ) and spin 0 (φi).

3.1 The width of H → γγ

The width is calculated using triangle loops, as shown in Fig. 3.1. From J. Gunion et al. [9],

we have

Γ(H → γγ) =
α2GFm

3
H

128
√

2π3

∣∣∣∣∣∑
i

Ncie
2
iFi

∣∣∣∣∣
2

, (3.1)

where i is the spin of the different loop particles (i = 1/2, 1, 0), and ei the electric charge. Nci

is the color charge multiplicity, 1 for leptons and 3 for quarks. Furthermore,

F1 = 2 + 3τ + 3τ(2− τ)f(τ)

F1/2 = −2τ [1 + (1− τ)f(τ)] (3.2)

F0 = τ [1− τf(τ)],

where τ is defined as

τ = 4m2
i /m

2
h, (3.3)

and the function f(τ) is

f(τ) =


[
sin−1

(√
1/τ
)]2

if mi ≥ 0.5 mH

−1

4

[
ln

(
1 +
√

1− τ
1−√1− τ

)
− iπ

]2

if mi < 0.5 mH .
(3.4)

To get a precise value, we need to include all the possible particles that can participate in

these loops, shown in Fig. 3.1.
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3.2 Corrections to Γ(H → γγ)

The tree level width of the diphoton decay is given by Eq. (3.1). Different kinds of higher-order

correction can be included: Electroweak radiative corrections on GF and higher order loop

will be used here. Also, running quark masses in the modified minimal subtraction-scheme

(MS) are used on the heavy quarks, introduced by G. t’Hooft [27] and S. Weinberg [28] in

1973. Each of these will be discussed in the following section.

3.2.1 Electroweak corrections

The electroweak corrections can be controlled through a single variable: ∆r. It is the sum of

many different loop corrections, e.g. on the gauge boson propagators. Following B. Kniehl [29],

we alter the value of Fermi’s constant

GF =

√
2g2

8M2
W

= 1.16637 · 10−5 GeV−2 →
√

2g2

8M2
W

1

1−∆r
. (3.5)

The value of ∆r is given by the PDG [2], and is

∆r = 0.0362. (3.6)

Then, we find the corrected value

GF = 1.21018 · 10−5 GeV−2. (3.7)

This correction will propagate to all the other electroweak constants, like αe.m., sin
2 θW and

MW ,MZ . Therefore, we will keep them at their “standard” value of αe.m. = 1/137.036,

sin2 θW = 0.2310, mW = 80.399 GeV and mZ = 91.1876 GeV, which are all given in the

PDG [2].

3.2.2 Running of quark masses

From [9] we have the relation between the pole (mq) and MS (mq) masses:

mLL(mH) = mq

[
ln
(
m2
H/Λ

2
QCD

)
ln
(
m2
q/Λ

2
QCD

) ]γ0/2β0

(3.8)

mq = mLL(mH)

[
1 + αs(mH)

(
γ0β1

2β2
0

ln ln
(
m2
H/Λ

2
QCD

)
+
γ0β1 − γ1β0

2β2
0

)]
, (3.9)
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where the scale µ in mLL(µ) is chosen to be the Higgs mass, µ = mH
†. The parameters are

given by γ0 = −8, γ1 = −(404/3) + (40/9)Nf , β0 = 11− (2/3)Nf and β1 = 102− (38/3)Nf .

Nf is the number of active flavours (5 with the Higgs mass mb < mH < mt). αs(µ) is the

value of the strong coupling constant at the scale µ, given by

αs(µ) =
1

β0 ln
(
µ2/Λ2

QCD

) . (3.10)

The renormalized mass mq is now used in the function f(τ) of Eq. (3.4), instead of the pole

mass mq. This is done every time we encounter mq.

3.2.3 Two-loop contributions to Γ(H → γγ)

Two-loop corrections to the diphoton decay are mainly given by t quark loops and other QCD

loops, see G. Degrassi and F. Maltoni [31]. In the high t quark mass limit, the electroweak

two-loop correction is given by a term F2l
t which goes into the sum in Eq. (3.1):

F2l
t = − α

4π sin2(θW )
NcQ

2
t

m2
t

m2
W

(
367

96
+

11

16
h4w +

19

56
h2

4w +
29

140
h3

4w +O (h4
4w

))
, (3.11)

where Nc = 3 is the color factor, Qt = 2/3 and h4w = m2
H/4m

2
W . The term for the two-loop

QCD corrections is

F2l
QCD =

αs
π

4Q2
tNc

3

(
1− 122

135
h4t − 8864

14175
h2

4t −
209186

496125
h3

4t +O (h4
4t

))
, (3.12)

Here, h4t = m2
H/4m

2
t .

Note that these two corrections will almost cancel for mH ∈ [100, 150] GeV, and exactly

at mH ' 130 GeV: See Fig. 6 in [31] for this.

3.3 The effects of new physics

A plot of the different contributions to the γγ decay rate is given in Fig. 3.2. Since the gauge

bosons give the largest (and positive) contribution to the amplitude, we can add new heavy

quarks, which give a negative contribution: This will create a destructive interference in the

amplitude. Since the width is proportional to the amplitude squared, the width is reduced.

This effect is shown in Fig. 3.2.

†Note that some set µ = 1
2mH , but this choice is somewhat arbitrary. Section 2.3 of S. Dittmaier [30]

argues that µ < mH leads to more consistent calculations of the Higgs production cross section.
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Figure 3.2: The width of H → γγ, given different triangle contributions. The W and t triangle

will interfere, putting the sum (“SM”) below the W contribution. The top quark contribution

is negative, and a 4th quark generation will further decrease the sum.

In general, following the discussion from J. Gunion et al. [9], the limits of Eq. (3.2) when

mtriangle/mH →∞ are

F0 → −1

3
, F1/2 → −4

3
, F1 → 7. (3.13)

Adding new heavy particles of spin 1 will increase the width, while new spin 1/2 or 0 particles

will decrease it. Thus a 4th quark generation would create constructive interference. However,

such effects in this toy model are isolated. For the interesting variables (like the branching

ratios and cross sections), adding new particles will affect existing channels or create new

ones, and the end result is not as easily discerned. One of these effects is that when the total

decay width is increased, existing particles get a smaller share of the width – and their BRs

are decreased.

In supersymmetric theories, the extra participating particles will be the sfermions f̃L, f̃R

and charginos χ̃±i .



32 The Standard Model Higgs Boson

Higgs mass [GeV]
100 200 300 400 500 600 700

B
ra

nc
hi

ng
 r

at
io

-410

-310

-210

-110

1

bb

ss

-µ+µ

γγ

γZ

ZZ

-W+W

cc

-τ+τ

gg

tt

Branching ratio for the decays of SM Higgs

Figure 3.3: Branching ratios for the main decays of the SM Higgs boson, computed with the

formulae in sections 3.2.3 and 3.5.

3.4 Branching Ratios

The branching ratio (BR) is defined as the ratio between the width of a channel and the sum

of all the channels:

BR(H → γγ) ≡ Γ(H → γγ)

ΓH,tot

(3.14)

We then need to know the widths of all the channels. From [9,29,32] we get the widths (in-

cluding loop corrections) for the decay processes: H → ff̄ , H → V V (including contributions

from virtual vectors V ∗V and V ∗V ∗ at the mass regime mH < 2mV ), H → Zγ and H → gg.

To get the branching ratios, each channel is normalized to the sum of all the channels.

The result is shown in Fig. 3.3. At low mH (around 120 GeV), the contributions from W ∗W

and bb̄ are the most substantial ones.
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Figure 3.4: Some of the one-loop corrections to H → ff̄ .

3.5 The width of other channels

As mentioned above, knowledge about the various decay channels is required to find the

normalized width, or branching ratio. Below, each channel will be discussed briefly. When

applicable, contributions from loop corrections and other effects are included. They are

outlined in B. Kniehl [33].

3.5.1 H → l+l−

The lepton channel is extracted from the fermion width in J. Gunion et al. [9]. It is given by

Γ0(H → l+l−) =
GFm

2
lmH

4π
√

2

(
1− 4

m2
l

m2
H

)3/2

(3.15)

Some examples of one-loop electroweak corrections to the more general H → ff̄ are shown in

Fig. 3.4. They are given by B. Kniehl [29]:

Γ(H → l+l−) = Γ0(H → l+l−)
[
1 + (α/π)Q2

f∆em

]
(1 + ∆weak), (3.16)

where Qf is the electric charge, and

∆em = −3

2
ln
m2
H

m2
f

+
9

4
(3.17)

∆weak =
GF

8π2
√

2

{
Cfm

2
t +M2

W

(
3

sin2(θW )
ln cos2(θW )− 5

)
+M2

Z

[
1

2
− 3

(
1− 4 sin2(θW )

) |Qf |2
]} (3.18)

With one-loop corrections, Cf = 7. Two-loop corrections can be included through this

constant, which yields

Cf = 7− 2

(
π

3
+

3

π

)
αs. (3.19)
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3.5.2 H → qq̄

Apart from a color factor of 3, the quark channel is the same as Eq. (3.15) at tree level.

Including corrections, the electroweak ones mentioned above are the same. We need to include

QCD effects, as shown in Fig. 3.5. Up to O(α2
s), we have from B. Kniehl [29]

Γ(H → qq̄) =
3GFmHm

2
q

4π
√

2

{(
1− 4

m2
q

m2
H

)3/2

+ CF
αs
π

(
17

4
− 30

m2
q

m2
H

)

+
(αs
π

)2
[
K1 +K2

m2
q

m2
H

+ 12
∑

i=u,d,s,b

m2
q

m2
H

+
1

3

(
1

3
ln2 m

2
H

m2
q

− 2 ln
m2
H

m2
t

+ 8− 2ζ(2)

)]}
(3.20)

We have used K1 = 35.93996− 1.3586Nf , K2 = −129.72924 + 6.00093Nf , where Nf is the

number of active quark flavours at µ = mH . ζ(2) = π2/6 is the Riemann Zeta function, and

CF = (N2
c − 1)/2Nc = 4/3 where Nc = 3 is the number of colors.

The electroweak corrections Eqs. (3.17) and (3.18) apply here as well, with Eq. (3.16).

The Cf of Eq. (3.19) is valid for the u, d, s, c quarks, but for the b quark another definition

must be used:

Cb = 1− 2

(
π

3
+

2

π

)
αs. (3.21)

3.5.3 H → V V

The decays into the massive vector bosons are split into three parts, depending on the Higgs

mass. Each of them is shown in Fig. 3.6. First, for mH > 2mV , the on-shell decays are given

for H → WW,ZZ in J. Fleischer and F. Jegerlehner [34]:

Γ0(H → V V ) =
σVGFm

3
H

16π
√

2

√
1− xV

(
1− xV +

3

4
x2
V

)
, (3.22)

for V = W,Z. We define σW = 2, σZ = 1 and xV = 4m2
V /m

2
H . For better precision, compli-

cated loop functions can be used, as done by B. Kniehl [35,36]. They include evaluation of the
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Figure 3.6: Two-, three- and four-body decays of H into the massive vector bosons V .

three-point scalar functions and different regularization schemes. We use an approximation

from J. Gunion et al. [9],

Γ = Γ0

[
1 +

GFm
2
H√

2π2

(
19

16
− 3
√

3π

8
+

5π2

48

)]
. (3.23)

For a lighter Higgs, decays into V ∗V (one virtual, one real vector boson) are considered.

These are valid for mV < mH < 2mV ,

Γ(H → W ∗W ) =
3G2

Fm
4
WmH

16π3
F (mW/mH)

Γ(H → Z∗Z) =
G2
Fm

4
WmH

64π3

7− 40
3

sin2 θW + 160
9

sin4 θW

cos4 θW
F (mZ/mH),

(3.24)

where F (x) is a phase space integral for the different possible decays of V ∗. From W-Y Keung

and W. Marciano [37],

F (x) =

∫ 1+x2

2x

dy
√
y2 − 4x2

(1− y)2
(y2 − 12x2y + 8x2 + 12x4) (3.25)

= −|1− x2|
(

47

2
x2 − 13

2
+

1

x2

)
+ 3(1− 6x2 + 4x4)| lnx|

+
3(1− 8x2 + 20x4)√

4x2 − 1
cos−1

(
3x2 − 1

2x3

)
.

(3.26)

When x→ 1/2 (or when mH → 2mV ), a correction for the gauge boson Breit-Wigner width

must be included. In this case,

F (x) =

∫ 1+x2

2x

dy
√
y2 − 4x2

(1− y)2 + x2Γ2
V /m

2
H

(y2 − 12x2y + 8x2 + 12x4), (3.27)

where ΓV is the width of the V boson. This integral is harder to solve analytically, so it is

evaluated numerically using the SciPy.quad package for Python [38]. For convenience, the

widths ΓV are given in the PDG [2]:

ΓW = 2.085 GeV, ΓZ = 2.4952 GeV. (3.28)
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Lastly, the most general and computational demanding method is to consider two off-

shell vectors, i.e. H → V ∗V ∗. This is done with a double integration, evaluated with

SciPy.dblquad [39]. From A. Djouadi [40],

Γ(H → V ∗V ∗) =
1

π2

∫ m2
H

0

dq2
1mV ΓV

(q2
1 −m2

V )2 +m2
V Γ2

V

∫ (mH−q1)2

0

dq2
2mV ΓV

(q2
2 −m2

V )2 +m2
V Γ2

V

Γ0, (3.29)

where

Γ0 =
GFm

3
H

16
√

2π
σV

√
λ(q2

1, q
2
2;m2

H)

[
λ(q2

1, q
2
2;m2

H) +
12q2

1q
2
2

m4
H

]
. (3.30)

The function λ is given by

λ(x, y; z) = (1− x/z − y/z)2 − 4xy/z2. (3.31)

This expression is general and includes the lower-order expressions, so it should be used

instead of Eqs. (3.23) + (3.24). It is only a minor correction, although it reaches the percent

level at around 100 (110) GeV for W (Z) decays.

3.5.4 H → Zγ

Decays of H into a Z and γ are given by triangle diagrams in J. Gunion et al. [9]. This

becomes important when we add new particles into the theory. The diagrams are similar to

the ones for γγ, but here the W boson plays a even bigger role. According to A. Djouadi [40],

this is true for masses up to mH ∼ 400 GeV. The decay width is

Γ(H → Zγ) =
GFα

2m3
H

16
√

2π3
|AF + AW |2

(
1− m2

Z

m2
H

)3

, (3.32)

where the functions for fermion and W triangles (AF and AW , respectively) are given by

AF =
∑
f

Ncf
−2ef (T3f − 2ef sin2 θW )

sin θW cos θW
[I1 (τf , λf )− I2 (τf , λf )] (3.33)

AW = − cot θW

{
4(3− tan2 θW )I2 (τW , λW )

+

[(
1 +

2

τW

)
tan2 θW −

(
5 +

2

τW

)]
I1 (τW , λW )

}
.

(3.34)

Here, ef is the charge of f given in units of e and T3f is the 3rd component of the weak

isospin. Ncf is the color multiplicity of a fermion f . τ and λ are defined by

τf =
4m2

f

m2
H

, λf =
4m2

f

m2
Z

, τW =
4m2

W

m2
H

, λW =
4m2

W

m2
Z

. (3.35)
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The integrals Ii are given by

I1(a, b) =
ab

2(a− b) +
a2b2

2(a− b)2
[f(a)− f(b)] +

a2b

(a− b)2
[g(a)− g(b)], (3.36)

I2(a, b) = − ab

2(a− b) [f(a)− f(b)]. (3.37)

f(τ) is defined in Eq. (3.4), while

g(τ) =


√
τ − 1 sin−1(1/

√
τ), if τ ≥ 1

1

2

√
1− τ

[
ln

(
1 +
√

1− τ
1−√1− τ

)
− iπ

]
, if τ < 1.

(3.38)

A minor QCD correction from M. Spira et al. [41] can be applied to the top quark amplitude

AF :

AF → AF

[
1 +D(τf )

αs
π

]
, (3.39)

where D(τf ) ' −0.6 for mH ∼ 125 GeV. The total correction is at the percent level.

3.5.5 H → gg

A treatment of the H → gg channel is given by J. Gunion et al. [9], and corrections are defined

by M. Steinhauser [32], albeit with a low Higgs mass approximation. It is an important

channel, as it is through gluon fusion that most of the Higgs production happens at the LHC,

and σ(gg → H) ∝ Γ(H → gg). At one loop, the decay width is

Γ0(H → gg) =
α2
sGFm

3
H

16π3
√

2

∣∣∣∣∣∑
i

τi[1 + (1− τi)f(τi)]

∣∣∣∣∣
2

, (3.40)

where the sum is over the different quarks that contribute. τi and f(τi) are defined in Eqs.

(3.3) and (3.4). QCD corrections are important for this channel, with some diagrams shown in

Fig. 3.7 (again, see A. Djouadi [40]). M. Steinhauser gave a parametrization up to O(α3
sGFm

2
t )

in [32]:

Γ(H → gg) = Γ0

[
1 + xt +

αs(mH)

π

[
17.917 + xt

(
33.004 + 2 ln

m2
H

m2
t

)]

+

(
αs(mH)

π

)2 [
156.808 + 5.708 ln

m2
H

m2
t

]]
,

(3.41)

with the electroweak corrections parametrized as

xt =
GFm

2
t

8π2
√

2
. (3.42)
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Figure 3.7: Corrections to Γ(H → gg). Above: Virtual corrections not present in H → γγ.

Below: Real corrections, with additional final particles.

3.6 Production of H

Up until this point, we have been looking at widths and branching ratios for the Higgs boson.

In order to get a complete picture of the probability of seeing a specific decay, it is important

to know the probability of creating a Higgs. This depends on the type of collider, as well as

its energy. As commented in Section 3.5.5, gluon fusion is the single most important channel

in hadron colliders like the LHC. In addition, the other production channels are vector boson

fusion (VBF), Higgs-strahlung and QQ̄ associated production, see A. Djouadi [42]. Fig. 3.8

shows the diagrams for these channels.

Although less interesting at the present time, at e+e− colliders the prominent production

channels are from Higgs-strahlung e+e− → νν̄ + H (see R. Barger and V. Philips [8]), via

W+W− fusion, as well as e+e− → Z∗ → Z +H. The latter is treated in J. Gunion et al. [9].

Future e+e− colliders like the International Linear Collider (ILC) will use these production

channels to make precision measurements of the Higgs, as T. Nelson [43] proposes.

3.6.1 gg → H

Production of the Higgs through gluon fusion is analogous to the decay channel H → γγ,

and differ at two points: The phase space is different, and in order to get physical answers,

the parton density functions (PDFs) of Section 2.9.1 must be considered. Following A.

Djouadi [40], the lowest-order inclusive cross section is

σ0(pp→ H +X) =
GFα

2
sτ

288
√

2π

∣∣∣∣∣∑
Q

AQ(τQ)

∣∣∣∣∣
2 ∫ 1

τ

dx

x
g(x,Q2)g(τ/x,Q2). (3.43)
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Figure 3.9: Some of the real QCD corrections to gg → H.

The variables τ and τQ refer to the quark and Higgs masses: If s is the CoM energy squared,

τQ =
4m2

Q

m2
H

, τ =
m2
H

s
. (3.44)

Without the integral over the PDF, the resulting cross section would be between two individual

gluons, σ(gg → H). Integrating over the gluon parton density in the colliding protons, we

find the gluon contribution to the cross section σ(pp→ H), where other final states may or

may not be produced.

Higher order QCD corrections described by A. Djouadi [44] will increase the lowest-order

cross section σ0 by about 50%. They consist of self energy corrections, extra gluon final states

and initial-state rescattering of the gluons. This is done by adding terms for the different

contributions. From Chapter 2.1 of the HIGLU manual [45],

σ(pp→ H +X) = σ0 + ∆σvirt. + ∆σgg + ∆σgq + ∆σqq̄, (3.45)
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where ∆σvirt. is the infrared virtual two-loop corrections, and ∆σij (i, j = g, q, q̄) are the real

one-loop corrections for the subprocesses shown in Fig. 3.9:

gg → Hg, gq → Hq, qq̄ → Hg. (3.46)

Due to the complicated nature of the parton density functions in Eq. (3.43), the program

HIGLU [45] is used for calculation of the complete gluon fusion process. See Section 6.3.3 for

more information on this program.

Choosing a CoM energy
√
s, the cross section will fall with increasing mH . After calculation

of the different cross sections with HIGLU, these can be used to redraw Fig. 3.3, with

σ(pp→ H +X)× BR(H → ij) (3.47)

instead of just the branching fractions. See Fig. 3.10 for this. The full cross section is also

included in the figure, corresponding to the sum
∑

ij BR(H → ij) = 1.

There are a few sources of error in calculating this uncertainty, mainly from the PDFs.

S. Dittmaier et al. estimate an error of O(10%) from the MSTW2008NLO PDF in Section

2.3 of [30].



Chapter 4

Beyond the Standard Model

The Standard Model (SM) has been remarkably successful in precisely explaining the rich

phenomenology of nature. See the PDG [2] in its entirety for such examples. There are,

however, both observations not explained by the standard model, and theoretical arguments

for wanting to go beyond it.

In this chapter, we will explain why we want to go further than the SM. In Sections 4.1

and 4.2 we will list the experimental and theoretical problems with the SM. Then we will

use the rest of the chapter to discuss the different models beyond the standard model: The

Two-Higgs-Doublet Model and different versions of supersymmetric theories.

4.1 Experimental issues with the Standard Model

4.1.1 Gravity

While the general relativity (GR) of Einstein [46] and the SM are equally successful, they

cannot be explained within the same framework. See B. Bertotti et al. [47] for precision tests

of the GR. Phenomena like black holes are in the domains of both quantum theory and GR.

Put more precisely: A black hole is a classic (GR) concept, but some of its properties need

quantum theory to be explained. Hawking radiation, described by G. t’Hooft in [48] is one

such example. The merging of these two is an ongoing task, with almost a century of history.

These attempts are usually made in the context of merging all the elementary forces, creating

a Theory of Everything (ToE). Some examples of ToEs will come later in this chapter.

4.1.2 Dark Matter

To quote S. Maurer from a 2001 SLAC article [49],
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Figure 4.1: Left: Rotation curves for the galaxy NGC 6503, from K. G. Begeman et al. [53].

The dashed curve is for the visible component, while the dash-dotted curve is for a dark matter

“halo” component. Right: The contents of the universe, from the WMAP project [54].

When researchers talk about neutron stars, dark matter, and gravitational lenses,

they all start the same way: “Zwicky noticed this problem in the 1930s. Back

then, nobody listened. . . ”

In 1933, F. Zwicky used the Virial theorem [50, 51] on the Coma cluster to show that the

galaxies rotated faster than the visible mass could account for. Such a rotational curve is

shown in Fig. 4.1. J. Oort had by then already proved [52] that there is a discrepancy between

stellar motions in the local galactic neighbourhood, compared to the visible mass. This unseen

mass was dubbed dark matter (DM).

Today, there is an abundance of different observations that point towards the existence of

DM. More specifically in the form of a new kind of particle, not interacting electromagnetically:

A Weakly Interacting Massive Particle (WIMP). In addition to the rotational evidence listed

above, gravitational lensing in levels exceeding the visible mass of galaxies have been observed,

see R. Massey et al. [55].

There are many experiments looking for direct and indirect scattering effects from such a

WIMP, like the XENON [56] and IceCube [57] collaborations where they search for direct

recoil effects of a WIMP. The Fermi Large Angle Telescope (Fermi-LAT) [58] and Cherenkov

telescopes like HESS [59] are searching for indirect photon energy signatures from relic WIMP
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annihilations. So far, they have been inconclusive [60–62], but set limits on cross sections.

In the SM, there is no candidate for a WIMP. Neutrinos are too light, since the abundance

needs to be cold, or non-relativistic, to keep its structure (see standard texts, like [63]). From

theories Beyond the Standard Model (BSM), we have potential candidates. From supergravity,

the spin 3/2 gravitino [64]. As a solution to the strong CP problem, the Peccei-Quinn theory

theorizes a scalar particle, the axion [65]. From supersymmetric theories, the fermionic

neutralino χ̃0
1.

The current Standard Model of cosmology is the ΛCDM (Λ Cold Dark Matter), where

Λ signifies the dark energy. An estimate of the fraction of baryonic matter, DM and Λ is

found from the Wilkinson Microwave Anisotropy Probe (WMAP) in Fig. 4.1. It is usually

parametrized as the normalized density Ω = ρ/ρc, where the critical density for a flat universe

is ρc ' 11h2 keV/cm3. The dimensionless Hubble parameter h is defined later in Eq. (4.4).

Roughly speaking, Ω = 1 would allow the universe to keep its expansion rate at a constant

value, while a value Ω > 1 or ΩΛ < 0 would cause the universe to re-collapse. Here we have

defined ΩΛ as the dark energy component of the normalized density. A value Ω < 1 would

slow down the expansion rate (see T. Padmanabhan [66]). We can define the components of

Ω as

Ω ' Ωbaryonic + ΩDM + ΩΛ, (4.1)

where each component has the value (from the WMAP project [54])

ΩDM = 0.23± 0.04, ΩΛ = 0.73± 0.04, Ωbaryonic = 0.044± 0.004. (4.2)

Including a small fraction for relativistic particles, the numbers add up to

Ω = 1.02± 0.02. (4.3)

The WMAP project [54] has measured the curvature of the universe to be flat, which is

consistent with Ω = 1. This is done by constructing a triangle between galaxies, and checking

if the angles add up to 180◦.

In this thesis, we assume the DM to consist of neutralinos. More specifically, the lightest

neutralino χ̃0
1, which is also the LSP. Its different properties will be calculated to match (or

at least not be larger than) the current limits set by telescope and scattering experiments

[58–62,67].

It is convenient to introduce the dimensionless Hubble parameter h, which is defined as

H0 =
proper distance to galaxy

“velocity” of galaxy
= h× 100

km

sec Mps
. (4.4)

Measurements of the Hubble parameter H0 give h. The “velocity” is the derivative of the

proper distance with respect to the cosmological time coordinate. This equation is referred to
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as Hubble’s law, but was originally derived in a 1927 article by the priest and astronomer G.

Lemâıtre [68].

The parameter h is often used together with other quantities: From the WMAP 7 year

Cosmological parameter survey [69], the dark matter relic density (after thermal equilibrium

was reached) is given as

ΩDMh
2 = 0.1123± 0.0035. (4.5)

This number will later be compared to a calculated DM relic density in our scans. More

information about these constraints in Section 6.5.

4.1.3 Dark Energy

Although a similarity of name with dark matter, dark energy is a far more enigmatic subject.

Historically, Einstein’s cosmological constant appears in his modified field equation as Λ [46],

Rµν − 1

2
Rgµν + gµνΛ =

8πG

c4
Tµν . (4.6)

By putting Λ = 0, Eq. (4.6) is reduced to the original field equation of general relativity. He

later rejected the idea of a cosmological constant.

Combining the WMAP data (requiring Ω = 1) and the fact that the baryonic and dark

matter only add up to a non-relativistic component of about ΩNR = 0.3, see P. Peebles and B.

Ratra [70], discarding the cosmological constant was (in hindsight) a bad idea.

Yielding the 2011 Nobel Prize in physics, the measurement of ΩΛ and its identification

with an accelerating expansion of the universe was done in the 1990s by Perlmutter et al. [71].

These measurements were done by studying high red-shift type Ia supernovae.

We see that around 70% of the universe needs to consist of a novel kind of energy. It was

dubbed dark energy, and is supposed to have a large negative pressure. It is this property that

makes the expansion accelerate. In contrast to DM, which stack up about galaxies and galaxy

clusters, dark energy is uniform through the whole universe, and has a far lower density: See

P. Peebles and B. Ratra [70].

4.1.4 Matter-antimatter asymmetry

Shortly after the Big Bang, different annihilation and creation processes were in equilibrium.

According to the SM, matter and antimatter should have been produced in almost equal

amounts.

Experiments looking for primordial antimatter, summarized by P. Ahlen [72] have not

revealed any. This is a discrepancy, as the universe has a huge imbalance of ordinary matter.
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The only known source of CP violation in the SM is through the weak interactions. However,

it can only account for a very small fraction of the observed asymmetry.

4.1.5 Neutrino masses

Neutrino masses are not incorporated in the SM today. Mixing and oscillation in the neutrino

sector has shown that such terms are necessary, but their nature is still unclear: Whether

they are Dirac or Majorana particles, their masses and how they mix. A good review of this

can be found in the PDG [2].

4.2 Theoretical issues with the Standard Model

4.2.1 Fine-tuning, or the Hierarchy problem

The Higgs boson gets very large corrections from virtual top quarks. The corrections can be

canceled by fine-tuning some of the SM-parameters with a precision of 10−17, but this is not

an elegant or natural solution. See Section 2.11 for more details. The Hierarchy problem is

analogous, and refers to the orders of magnitude between the lightest (ν) and heaviest (t)

observed particles.

4.2.2 Number of parameters

The standard model contains 19 parameters† which must be input to match experimental

data. Even though many BSM theories add to this number, ultimately we want to find why

the parameters of the SM (or a theory beyond) are what they are. String theory tries to

explain every phenomenon with one parameter – the tension of its eponymous strings. A

review of string theory can be found in K. Dienes [73].

4.2.3 Unification of forces

More than once in history have different forces been found to have a shared parent force,

often at higher energies. The electromagnetic force of J. Maxwell combined the electric

and magnetic forces [74], while the electroweak interactions of A. Salam, S. Glashow and S.

Weinberg combined electromagnetism and the weak force [75].

†They are: 9 fermion masses, 3 CKM angles, 1 CKM CP-violating phase, 3 gauge couplings, 1 QCD
vacuum angle and the 2 Higgs parameters for its quadratic coupling and self-coupling strength. The neutrino
mass sector is not included here.
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Figure 4.2: Gauge coupling unification using LEP data from the PDG [2]. Left: Non-

supersymmetric GUTs, Right: Supersymmetric GUTs.

A Grand Unification Theory (GUT) tries to unify all the forces (sans gravity). Running of

the different coupling constants shows that this is almost possible in the SM at high energies,

where the three coupling constants (strong, weak and electromagnetic) just fail to meet at

ΛGUT ∼ 1016 GeV.

One of the most well-known examples of a GUT is the SU(5) extension of the Standard

Model. It was shown in 1974 by H. Georgi and S. Glashow [76] that it is possible to

unify quarks and leptons by introducing a SU(5) gauge group, which is broken down into

SU(3) × SU(2) × U(1) below the GUT scale. With this unification, the proton gets a finite

lifetime. Since such a decay has not been observed, we can either keep fiddling with the

theory to increase the proton lifetime, or abandon it. The gauge symmetry SO(10) has also

been proposed.

Supersymmetric theories can provide heavy particles which modify the running of the

couplings, so that they meet at ΛGUT, see Fig. 4.2. These kinds of theories will be treated in

the next chapter.

A Theory of Everything is a unification of the forces including gravity, described in the

Nature article by J. Ellis [77]. The idea of unifying gravity and electromagnetism came

shortly after Einstein discovered general relativity. T. Kaluza and O. Klein [78, 79] found

that if a fourth (rolled-up) spatial dimension was entered into Einstein’s theory, equations

similar to Maxwell’s equations appeared. Einstein devoted most of his life to develop this
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idea, but without success – the fourth dimension could not be dynamical, as the electron

charge depended on its size. Without a dynamical metric, GR would not work.

There are also other ways to include gravity. String theory tries to construct a new theory

bottom-up at Planck energies, and is therefore experimentally tricky to probe. Loop Quantum

Gravity, reviewed by A. Ashtekar [80], is a fusion of general relativity and quantum theory.

Since there is a strong duality between the dynamics and the metric in GR, both of these are

quantized: The dynamical equations are quantized on a quantum Riemannian geometry.

In the next section, a selection of the proposed BSM models will be presented, with focus

on the phenomenology of the Higgs boson.

4.3 The Two-Higgs-Doublet Model

The minimal extension to the SM for the mechanism of electroweak symmetry breaking is

described in Section 2.6, and consists of one new scalar Φ. More complex varieties can be

constructed, however there are two major restrictions on how this can be done – see J. Gunion

et al. [9].

First, the parameter ρ = m2
W/(m

2
Z cos2 θW ) should be very close to 1. It is given by the

sum over Higgs multiplets with weak isospins Ti, hypercharges Yi and vevs vi:

ρ =

∑
i [Ti(Ti + 1)− Y 2

i ] v2
i∑

i 2Y
2
i v

2
i

' 1. (4.7)

The choice T = 1/2 and Y = ±1 is one possible solution to Eq. (4.7).

The second requirement comes from the experimental non-observation of flavor-changing

neutral currents (FCNCs). These are automatically absent at tree-level in models with one

doublet, because the Higgs-fermion couplings are always diagonalized. With more than one

doublet, a theorem from Glashow and Weinberg [81] states that if all fermions of a given

charge couple to only one doublet, FCNCs at tree level are absent.

The Two-Higgs-Doublet Model (2HDM), described in V. Barger and R. Philips [8], is

created with both requirements in mind. The extension is needed for supersymmetric models,

but can also be used as a minimal extension to the SM Higgs. Two SU(2) Higgs doublets are

introduced,

Φ1 =

(
φ0

1

−φ−1

)
, Φ2 =

(
φ+

2

φ0
2

)
, (4.8)

with hypercharge Y = 1.

To cope with the FCNCs, different versions of the 2HDM exist. In type I models, all

the fermions couple to Φ2. In type II models, up-type quarks couple to Φ2, while down-type
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V V uū dd̄

H0 cos(β − α)
sinα

sin β

cosα

cos β

h0 sin(β − α)
cosα

sin β

− sinα

cos β

Table 4.1: Couplings between h0, H0 and V V, uū and dd̄ for the type II 2HDM, normalized

to the SM Higgs coupling. The dd̄ coupling also apply for the charged leptons.

quarks and leptons couple to Φ1. While these are the most important, there exist other

possibilities: In type III models, FCNCs are allowed at tree level. Lepton-specific models

couple the quarks to Φ2 as with type I, but couple the leptons to Φ1. Flipped models mimic

type II models, but here leptons couple to Φ2. Of these, type II models are the most widely

studied, and is also responsible for the Higgs sector in the Minimal Supersymmetric Model

of Section 4.5. See Chapter 2 of G. Branco et al. [82] for a information about the different

coupling schemes of the 2HDMs.

In contrast to the SM, in the 2HDM we have eight degrees of freedom (DoF), and two

vacuum expectation values (vevs) v1 and v2. The relation between GF and the vevs is√
v2

1 + v2
2 = v =

2−1/4

√
GF

. (4.9)

Two new parameters are introduced, in addition to the coefficients of the potential. They are

tan β = v2/v1, (4.10)

and a mixing angle α between the φ0
i and the physical neutral CP-even Higgs bosons. This is

a result of the 2HDM being a CP-invariant theory: α and β decouple the complex states into

the real CP-even states h0, H0 and the imaginary CP-odd state A0.

The DoF needed to give the gauge bosons mass are the same as with the SM, so we are

left with five physical states in the unitary gauge: Two CP-even neutral particles h0 and H0

(where by definition mH0 > mh0), one C-odd pseudoscalar A0 and two charged states H±.

These states are given by(
H0

h0

)
=
√

2

(
cosα sinα

− sinα cosα

)(
Re φ0

1 − v1

Re φ0
2 − v2

)
,

A0 =
√

2
(−Im φ0

1 sin β + Im φ0
2 cos β

)
,

H± = −φ±0 sin β + φ±2 cos β.

(4.11)

Couplings between these 2HDM Higgs bosons, fermions and gauge bosons are modified by

trigonometric factors of α, β. These are given in Table 4.1 for the type II model. The
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phenomenology of 2HDM will be explored further in the context of supersymmetry, which is

the theme of the next sections.

4.4 Supersymmetry

In Section 2.11, the divergence of the mass corrections to the Higgs boson was discussed. The

lack of a symmetry to protect the Higgs was proposed as the source of this divergence. This

problem was also briefly referred to as the Hierarchy problem in Section 4.2.1.

Extending to that discussion, a symmetry connecting scalar and fermionic particles would

provide such a protection. From Fig. 2.7 and A. Djouadi [26], we can add scalar partners S

to Eq. (2.90), in addition to the fermions already contributing. The trilinear and quadrilinear

couplings of S to the Higgs boson are vλS and λS. From Chapter 1 of A. Djouadi [26], the

contribution from NS scalar partners is

∆m2
H =

λSNS

16π2

[
−Λ2 + 2m2

S ln

(
Λ

mS

)]
− λ2

SNS

16π2
v2

[
−1 + 2 ln

(
Λ

mS

)]
+O

(
1

Λ2

)
. (4.12)

If such a symmetry exists in a way that λ2
f = 2m2

f/v
2 = −λS and NS = 2Nf , then a

combination of Eqs. (2.90) and (4.12) becomes

∆m2
H = λm2

fNf4π
2v2

[
(m2

f −m2
S) ln

(
Λ

mS

)
+ 3m2

f ln

(
mS

mf

)]
+O

(
1

Λ2

)
. (4.13)

If the symmetry between f and S is exact, mS = mf and then ∆m2
H = O(Λ−2). Other

particles will also contribute to the mass correction. The process can be repeated (and the

new quadratic corrections canceled) by introducing fermionic partners to W±, Z0, and to the

Higgs bosons.

The symmetry cannot be exact, since we have not observed partner scalars at any of the

fermion masses. Luckily, the quadratic divergences are still canceled, but a logarithmic one

remains. To keep the Higgs mass at O(100 GeV) and avoid more fine-tuning, the partners

should not be heavier than the TeV scale.

Supersymmetry (SUSY) is such a symmetry, relating particles with integer and half-integer

spin. The SUSY generators Q transform back and forth between fermions and bosons:

Q|fermion〉 = |boson〉, Q|boson〉 = |fermion〉. (4.14)

When the symmetry is exact, the only difference between a normal state and a transformed

superpartner state is their spin. In this case, supersymmetry is fully specified, with no new

parameters (other than the form of the Higgs potential W ).
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Superfield SU(3)C SU(2)L U(1)Y Particle content

Ĝa 8 1 0 Gµ
a , G̃a

Ŵa 1 3 0 W µ
a , W̃a

B̂ 1 1 0 Bµ, B̃

Table 4.2: The MSSM superpartners of the gauge boson and their quantum numbers.

We will not go into details on the algebra behind supersymmetry here. Roughly speaking,

the operator Q correspond to the square root of the energy-momentum operator Pµ. Formally,

from Eq. (4.48) in [25] we have the anticommutation relation{
Qa,Q†b

}
= (σµ)abPµ. (4.15)

Particles are combined with their superpartners into superfields, denoted with a hat. They

can consist of a complex scalar field S with two degrees of freedom, plus a Weyl fermionic field

with two components ζ. The Weyl fields correspond to the ur and vr spinors of the standard

fermionic field ψ(x) of Eq. (2.20), see P. Labelle [83]. There are other possible superfield

constructions, however this is the one used in the minimal supersymmetric extension of the

SM, which is the theme of the next section.

4.5 Minimal Supersymmetric Standard Model

Supersymmetry as a usable theory is incomplete. As two examples, it does not specify any

particle content, nor which gauge symmetries to use. Its main idea is to provide an algebra

behind this new symmetry we need to protect the Higgs.

The Minimal Supersymmetric Standard Model (MSSM) is the minimal realization of

SUSY. It follows four basic assumptions [26]:

1. Minimal gauge group: The SM gauge symmetry SU(3)C×SU(2)L×U(1)Y is reproduced

in MSSM. This requires the spin-1
2

superpartners of the gauge bosons, the gauginos, to

mimic the SM: The bino B̃ for the Bµ, the three winos W̃1−3 for Wµ and the eight gluinos

G̃1−8 for Gµ. Their quantum numbers are listed in Table 4.2.

2. Minimal particle content: Three scalar sfermion generations are introduced. Chi-

ral superfields contain the spin-1
2

SM particles, together with their spin-0 partners:

Q̂, ÛR, D̂R, L̂, ÊR. In order to break the electroweak symmetry, the Higgs sector from

the 2HDM is adopted (see Section 4.3). The two chiral superfields Ĥ1 and Ĥ2 contain both

the two Higgs doublets and their Higgsino partners. Their quantum numbers are listed in



4.5 Minimal Supersymmetric Standard Model 51

Superfield SU(3)C SU(2)L U(1)Y Particle content

Q̂ 3 2 1
3

(uL, dL), (ũL, d̃L)

Û c 3̄ 1 −4
3

ūR, ũ
∗
R

D̂c 3̄ 1 2
3

d̄R, d̃
∗
R

L̂ 1 2 −1 (νL, eL), (ν̃L, ẽL)

Êc 1 1 2 ēR, ẽ
∗
R

Ĥ1 1 2 −1 H1, H̃1

Ĥ2 1 2 1 H2, H̃2

Table 4.3: The MSSM superpartners of the fermions and their quantum numbers.

Table 4.3. The Higgsinos mix with the winos and the bino, with the resulting particles as

the two charginos χ̃±1,2 and the four neutralinos χ̃0
1,2,3,4.

3. Minimal Yukawa interactions and R-parity conservation: R-parity requires that

the lepton and baryon numbers (L and B) are conserved. This parity is defined by

Rp = (−1)2s+3B+L, (4.16)

where s is the spin. Now, Rp = 1 for ordinary particles, and Rp = −1 for superpartners.

When Rp is conserved, supersymmetric particles can only be produced in pairs, and the

lightest SUSY particle (LSP) is stable. The minimal Yukawa superpotential is given by

W =
∑

i,j=gen.

(
−Y u

ij ûRiĤ2 · Q̂j + Y d
ij d̂RiĤ1 · Q̂j + Y `

ij
ˆ̀
RiĤ1 · L̂j

)
+ µĤ1 · Ĥ2. (4.17)

Y u,d,l
ij are the Yukawa couplings, and H ·Q ≡ εabH

aQb, for εab as the antisymmetric tensor.

Note how only Ĥ2 couples to up-type quarks, and Ĥ1 to down-type (including leptons).

This is due to the Glashow-Weinberg theorem mentioned earlier.

4. Minimal set of soft SUSY-breaking terms: The property soft refers to a breaking

of SUSY, while preventing the reappearance of quadratic divergences. These terms are

the masses and the different Higgs couplings, which are added to the Lagrangian. For

convenience, they are listed below:

(a) Mass terms for the gauginos:

− Lgaugino =
1

2

[
M1B̃B̃ +M2

3∑
a=1

W̃ aW̃b +M3

8∑
a=1

G̃aG̃a + h.c.

]
(4.18)
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(b) Mass terms for the sfermions:

− Lsfermions =
∑
i=gen.

(
m2
Q̃i
Q̃†iQ̃i +m2

L̃i
L̃†i L̃i +m2

ũi
|ũRi|2 +m2

d̃i
|d̃Ri|2 +m2

˜̀
i
|˜̀Ri|2

)
(4.19)

(c) Mass and trilinear terms for the Higgs bosons:

− LHiggs = m2
H2
H†2H2 +m2

H1
H†1H1 +Bµ(H2 ·H1 + h.c.) (4.20)

(d) Trilinear couplings between sfermions and the Higgs bosons:

−Ltril. =
∑

i,j=gen.

[
AuijY

u
ij ũ
∗
RiH2 · Q̃j + AdijY

d
ij d̃
∗
RiH1 · Q̃j + A`ijY

`
ij

˜̀∗
RiH1 · L̃j + h.c.

]
(4.21)

In all, we gain 110 parameters from the above considerations, which is the basis of this

unconstrained MSSM. They are outlined in D. Sutter and S. Dimopoulos [84], and consist of

30 masses, 39 mixing angles and 41 phases.

4.6 Phenomenological MSSM

The unconstrained MSSM from the last section may lead to unphysical models, and contains

many parameters. The phenomenological MSSM (pMSSM) model is a subset of the MSSM,

with some additional constraints described in F. Gabbiani et al. [85]:

1. All the soft SUSY-breaking parameters are real, so no new sources of CP-violations. The

CP-violations from the CKM matrix are kept.

2. The soft SUSY-breaking masses and trilinear couplings of the first and second generations

are degenerate. This is to satisfy constraints from K0 − K̄0-mixing.

3. The matrices for sfermion masses and trilinear couplings are diagonal. If not, inter-

generational mixing would have allowed FCNCs at tree level.

Depending on the choice of the degenerate first two generations of trilinear couplings Au,d,e,

we are left with 19 (Au,d,e = At,b,τ in C. Berger et al. [86]) or 22 parameters (Au,d,e and At,b,τ

chosen separately in A. Djouadi [26]). This difference is not important, since the Agen.
i are

multiplied with mgen.
i , and m1,2

i < m3
i . There is also a choice on how to specify the Higgs

masses: Either by the doublet masses m2
H1

and m2
H2

, or by the pseudoscalar mass m2
A and

the Higgsino mass parameter µ.

These parameters are given in Table 4.4. It should be noted that even though the structure
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tan β The ratio of the vevs of the 2HD field

mA The pseudoscalar Higgs mass

µ The Higgsino mass parameter

M1,M2,M3 The gaugino masses: B̃, W̃a and G̃a

mq̃,mũR
,md̃R

,m˜̀,mẽR The 1st/2nd gen. sfermion masses

(Au, Ad, Ae) (The 1st/2nd gen. trilinear couplings)

mQ̃,mt̃R
,mb̃R

,mL̃,mτ̃R The 3rd gen. sfermion masses

At, Ab, Aτ The 3rd gen. trilinear couplings

Table 4.4: The 19 (22) parameters of the pMSSM.

of the 2HDM is adopted by the MSSM, the choice of parameters are not the same. In the

2HDM, all the Higgs masses and the angles α, β can be input independently. In pMSSM,

they are calculated from mA, tan β and the Z0 mass. The angle α is found by

tan 2α = tan 2β
M2

A +M2
Z

M2
A −M2

Z

, −π
2
≥ α ≥ 0. (4.22)

We will focus on the CP-even particles h0 and H0. It may be worth mentioning that the mass

of the SM Higgs is calculated by the quartic coupling λ, which is a free parameter. In the

MSSM, this quartic coupling comes from the gauge coupling (through mA, tan β and mZ , as

mentioned above), so the h0 and H0 masses are not free parameters! The masses and other

properties of the MSSM Higgs bosons will be calculated in Chapter 5.

4.6.1 Mixing of the sfermions

In later chapters, the fermions are denoted as f̃1,2. The index refers to the light and heavy

mass eigenstates. In the sfermion sector, the chiral eigenstates are f̃R and f̃L. These are

mixed into the mass eigenstates f̃1 and f̃2, where by definition mf̃1
< mf̃2

. With

m2
LL = m2

f̃L
+ (T3 −Q sin2 θW )m2

Z cos 2β

m2
RR = m2

f̃R
+Q sin2 θWm

2
Z cos 2β

Xf = Af − µ(tan β)−2T3 ,

(4.23)

the mixing from the chiral into the mass eigenstates is (see [26]):

m2
f̃1,2

= m2
f +

1

2

[
m2

LL +m2
RR ∓

√
(m2

LL −m2
RR)2 + 4m2

fX
2
f

]
. (4.24)
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Another way of looking at the mixing is as a rotation. In that case, the rotational angle

between the chiral and mass eigenstates is

θf̃ =
1

2
sin−1

[
2mfXf

m2
f̃1
−m2

f̃2

]
=

1

2
cos−1

[
m2

LL −m2
RR

m2
f̃1
−m2

f̃2

]
. (4.25)

This is most prominent in the t̃ (stop) sector. Large values of Xt = At − µ/ tan β give a

large mass splitting between t̃1 and t̃2, and the lightest state may be comparable to the

ordinary top mass. This is of interest, since it may increase the Higgs mass without too much

unnatural strain on the parameter space, see Csaki et al. [87]. For the effect of a small mt̃1 on

Γ(h0 → γγ), see Carmi et al. [88].

4.7 Constrained MSSM

While pMSSM is a constrained version of MSSM, it is possible to constrain the MSSM

further. Such models are collectively called constrained MSSMs (cMSSMs). One of their main

requirements is that of unification – that the couplings meet at MGUT. This translates to

fewer parameters which are input at the GUT scale: m0, m1/2, A0, tan β and the sign of µ

are the five parameters of minimal supergravity (mSUGRA) [89].

These models specify a messenger, which breaks the SUSY at a given scale. mSUGRA

uses the gravitino for this, but there are also models which break the symmetry through

loops (Anomaly Mediated Symmetry Breaking [90]), gauge interactions (Gauge Mediated

Symmetry Breaking [91]) and gauginos [92].

With fewer parameters, it can be easier to probe the parameter space – and to exclude

large parts of it using experimental data. We will briefly see this in Chapter 6, where a far

smaller fraction of mSUGRA models pass our experimental constraints than with the pMSSM.
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The MSSM Higgs bosons

In this chapter, we will study the Higgs bosons of the MSSM. One of the differences with

respect to the SM is that their masses are not free parameters. We will see how to calculate

them in Section 5.1. We will then discuss how the different parameters affect this mass,

before we continue to the decay widths and branching ratios in Section 5.3. After finding

the production mechanisms in Section 5.4, we will round off with a quick discussion on

loop-corrections to the parameters.

5.1 The masses of h0 and H0

In the MSSM, the tree-level masses of h0 and H0 are calculated as the eigenvalues from the

mass matrix V with input parameters mZ , the pseudoscalar Higgs mass mA0 , and the ratio

between the vacuum expectation values tan β. From P. Labelle [83], the mass matrix is

V =

(
b cot β +m2

Z sin2 β − sin 2β
2
m2
Z − b

− sin 2β
2
m2
Z − b b tan β +m2

Z cos2 β

)
, (5.1)

with b = 1
2
m2
A0 sin 2β. The eigenvalues of this matrix are the tree-level masses mtree

h :

(
mtree
h0

)2
=
m2
A0 +m2

Z

2
− 1

2

√
(m2

A0 −m2
Z)2 − 4m2

A0m2
Z cos2 2β (5.2)(

mtree
H0

)2
=
m2
A0 +m2

Z

2
+

1

2

√
(m2

A0 −m2
Z)2 − 4m2

A0m2
Z cos2 2β. (5.3)

In the β → 0 and mA0 →∞ limit, we get

mtree
h0 → mZ , mtree

H0 →∞. (5.4)
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This is called the decoupling limit, where h0 acts as the SM Higgs. Then the gauge and

Yukawa couplings will take their SM values. At tree level, mtree
h0 is bounded by mZ | cos 2β|.

To match experimental data, we would like mh0 to be higher.

To increase mh0 , we introduce radiative corrections from B. Allanach [93], both to h0 and

to the particles participating in the loops. The dominating one-loop corrections increase the

masses from mtree
h0 to mh0 . Using mh0 =

√(
mtree
h0

)2
+ ε, we find

ε =
3m4

t

2π2v2

(
ln
M2

S

m2
t

+
X2
t

2M2
S

− X4
t

12M4
S

)
− 3m4

b

2π2v2

X4
b

12M4
S

. (5.5)

MS is the common soft SUSY-breaking mass term for the third-generation squarks (often

called the SUSY-scale), here defined by

MS =
√
mt̃1mt̃2 . (5.6)

Some use another definition, that of the arithmetic average MS = 1
2
(mt̃1 + mt̃2). Notice

the logarithmic dependence on M2
S – this is the remainder of the diverging Higgs mass we

discussed in Section 4.4. Xt and Xb are the stop and sbottom mixing terms:

Xt = At − µ cot β, Xb = Ab − µ tan β. (5.7)

These Xf are related to the stop and sbottom mixing angles θt̃,b̃, defined in Eq. (4.25).

Corrections up to two-loop order are needed for a satisfactory precision. In order to do

this, the program SuSpect is used for the calculation of the pMSSM Higgs masses. The

details on how this is done are located in Chapter 6.

Fig. 5.1 shows the result of a scan over the different pMSSM parameters, with the masses

of h0 and H0 plotted. Section 6 describes how such scans are done. Note the peak around

mZ , due to this being the maximum tree-level value, and a broad peak around 120 GeV. No

experimental constraints are imposed in this scan.

5.2 The effects of different parameters on the h0 mass

In the preceding section, the h0-mass was defined by parameters like tan β, mA0 , and the stop

masses through radiative corrections.

The mass of h0 has a nice dependence on the parameter Xt/MS. See both Eq. (5.5)

and Fig. 1 in A. Arbey [94]. Through the scans later described in Chapter 6, the figure is

reproduced in Fig. 5.2. The lines at 125± 2 GeV are placed as reference to the possible h0

candidate.
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Figure 5.1: The masses of h0 and H0.

Another way of looking at this is by constraining the Higgs mass to 125 ± 2 GeV, and

plotting Xt versus MS. See Fig. 5.3. By doing this, it is easy to see how big the SUSY-scale

needs to be to get a certain Higgs mass. One prominent feature is the disappearance of models

with small stop mixing (|Xt| . 2 TeV). Two cuts are imposed: tan β < 60 and tan β < 5.

5.3 The width of the CP-even MSSM Higgs bosons

The MSSM Higgs bosons will have different couplings to the SM particles than the SM Higgs.

The couplings will get additional factors, which are trigonometric functions of the angles α

and β, adopting the 2HDM couplings. At tree-level, we retain a similarity of decay widths

compared to the SM, up to these trigonometric factors. This does not include triangle diagrams

however, where new mediating particles play a role, or decays with two final supersymmetric

particles.

We can define Ri as the couplings between the light MSSM Higgs boson and i, normalized

to the SM value. More explicitly,

RW =
gW
gSM
W

, RZ =
gZ
gSM
Z

, Ru,c,t =
yu,c,t
ySM
u,c,t

, Rd,s,b =
yd,s,b
ySM
d,s,b

, Re,µ,τ =
ye,µ,τ
ySM
e,µ,τ

. (5.8)
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Figure 5.2: The mass of h0 versus the stop mixing divided by the SUSY scale.

Figure 5.3: The stop mixing versus the SUSY scale. Constraints on the light Higgs mass

(mh ∈ [123, 127] GeV) and tan β are placed.
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The couplings acquire the factors Ri, which are given in [95]. For vectors and up- and

down-type fermions, they are

RV ≡ RW = RZ = sin(β − α), Rd = Re = − sinα

cos β
, Ru =

cosα

sin β
. (5.9)

We can also define the normalized couplings between the heavy Higgs H0 and the different

particles:

RH
V = cos(β − α), RH

d =
cosα

cos β
, RH

u =
sinα

sin β
. (5.10)

Now, the decay widths for the different processes outlined in Section 3 are modified in

different ways. For the tree-level (and some of the loop-mediated) processes, the new decay

widths are ΓSMR
2
i , while the more complicated processes are altered in different ways. See

Chapter 3 for details on ΓSM.

5.3.1 h→ ff̄

The decay of h0 to ff̄ gets modified with the parameter R2
f . At tree level, from Eq. (3.15)

we get

Γ(h0 → ff̄) = ΓSM(H → l+l−)NcR
2
i ,

Γ(H0 → ff̄) = ΓSM(H → l+l−)Nc(R
H
i )2,

(5.11)

where Nc = 3 for quarks and 1 for leptons. For up-type particles like u and c (remember that

h0 → tt̄ is kinematically inaccessible), we find

Γ(h0 → qq̄) =
3GFm

2
qmh0

4π
√

2

cos2 α

sin2 β

(
1− 4

m2
q

m2
h0

)3/2

,

Γ(H0 → qq̄) =
3GFm

2
qmH0

4π
√

2

sin2 α

sin2 β

(
1− 4

m2
q

m2
H0

)3/2

,

(5.12)

where mq is the quark mass. For down-type particles like d, s, b and the leptons e, µ and τ ,

we find

Γ(h0 → ff̄) =
GFNcm

2
fmh0

4π
√

2

sin2 α

cos2 β

(
1− 4

m2
f

m2
h0

)3/2

,

Γ(H0 → ff̄) =
GFNcm

2
fmH0

4π
√

2

cos2 α

cos2 β

(
1− 4

m2
f

m2
H0

)3/2

.

(5.13)
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5.3.2 h→ V ∗V

The decay h0 → V V is kinematically inaccessible, and we need one of the vectors to be virtual.

In both cases, that is for W ∗W and Z∗Z, the width is rescaled by R2
V . This is a factor

RV = sin(β − α), (5.14)

for the light Higgs, and

RH
V = cos(β − α) (5.15)

for the heavy one. The latter can decay into two real vector bosons. See Eq. (3.24) for the

complete expression of H → V ∗V . This process may also be applied when both vectors are

off-shell, i.e. h0 → V ∗V ∗.

5.3.3 The loop-mediated decays

The loop mediated decays are affected by the new couplings. In Eqs (3.1), (3.40) and (3.32),

the factors R2
i are added. Secondly, new charged SUSY particles will contribute in the loops:

These are the charged Higgs bosons H±, sleptons and squarks f̃ , in addition to the charginos

χ̃±i . The gluon loops are only affected by squarks. For the case of SUSY loop particles, many

different couplings are used – this is calculated through HDECAY.

5.3.4 Invisible decays

Decays of the Higgs boson into the SUSY particles f̃i
¯̃fj and χ̃iχ̃j are often hard to see in the

detector, giving them the name invisible decays. Kinematically, this is more important for H0

than for h0, but if the SUSY particles are light (below around 60 GeV) we may see decays

such as h0 → χ̃0
1χ̃

0
1. In Chapter 7, we will look at the total branching ratio into invisible

decays for different scenarios.

5.4 Production of MSSM Higgs bosons

As with the SM, there are many different production channels. In hadron colliders like the

LHC, the gluon fusion process gg → h is still the dominant one. Approximating the production

to only this channel is valid at the 10% level: See Fig. 41 in Dittmaier et al. [30]. There

are many sources for an altered cross section: New couplings Rt, Rb and loop contributions

from squarks are two examples. We ignore the effect from the latter, and focus on the new

couplings. According to Dittmaier et al. [30], this is a reasonable approximation, and we

remember that there are already some sources for uncertainty on the cross sections.
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In Section 3.6.1, a method for calculating the SM cross section was outlined. If we assume

the gluon loop process to consist of top and bottom quarks, the cross section has three

contributions: Two pure quark terms σbb and σtt, and an interference term σbt. From J.

Gunion et al. [9], the amplitude squared (and cross section) is proportional to

σ ∼
∣∣∣∣τb[1 + (1− τb)f(τb)] + τt[1 + (1− τt)f(τt)]

∣∣∣∣2, (5.16)

where τi = 4m2
i /m

2
h0 , and f(τ) is defined in Eq. (3.4). The real part of the loop integral, or

f(τ), is negative for 2mb < mh0 < 2mt: The σbt interference is destructive.

Now we can calculate the MSSM h0 production cross section with the method from S.

Dittmaier et al. [30]:

σMSSM = R2
tσtt +R2

bσbb +RtRbσbt. (5.17)

Practically, we find the separate terms by calculating the SM cross section in HIGLU, setting

gb = 0 for σtt, and conversely, gt = 0 for σbb. The interference term is found by looking at the

difference between σSM and σtt + σbb.

In Fig. 5.4 we compare the cross section calculated here with σSM. Note that most of the

non-SM-like cross sections in pMSSM disappear when we apply the constraints (red points),

which are described in Chapter 6.

5.5 Corrections to the parameters

In essence, the electroweak and QCD-corrections we found in Chapter 3 can be used here

as well. Care must be taken when doing loop corrections, to account for modified couplings

and new SUSY particles in the loops. The details of this will not be treated here, but some

qualitatively new corrections will be mentioned.

Two of the methods to implement higher-order corrections (apart from the corrections

to mh, which were discussed in Section 5.1) are to include loop effects in the heavy quark

masses mb and mt, and in the angle α used in couplings to the Higgs bosons.

5.5.1 Corrections to the mixing angle: ᾱ

The same radiative corrections which affect the neutral Higgs bosons also affect the angle α.

Therefore, we can use the same approximation scheme: A correction to ε/ cos 2β is added to

the denominator in Eq. (4.22). From A. Djouadi [26], this is

tan 2ᾱ = tan 2β
m2
A +m2

Z

m2
A −m2

Z + ε/(sin2 β cos 2β)
, −π

2
≤ ᾱ ≤ 0. (5.18)
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Figure 5.4: The gluonic contribution to the cross section pp → h0. The blue points are all

models, whereas the red points follow the tight constraints described in the next chapter. The

dashed cyan line signifies the SM value.

The correction ε was defined in Eq. (5.5). Now, this ᾱ may be used in any place where α was

earlier used. As an example, the gh0V V coupling becomes

RV = sin(β − ᾱ). (5.19)

5.5.2 Corrections to the heavy quark masses: ∆b,∆t

The heavy quarks (and τ) are affected by SUSY-QCD corrections from squark/gluino loops

(see Section 1.1.6 of A. Djouadi [26]), parametrized by ∆b and ∆t. The functions ∆q are

defined as the ratio

∆q ≡ ∆mq

mq

. (5.20)

With the auxiliary function

I(x, y, z) =
xy ln(x/y) + yx ln(y/z) + xz ln(z/x)

(x− y)(y − z)(z − x)
, (5.21)
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we can write the approximate corrections to the 3rd generation fermion masses from:

∆τ ' α

4π

[
M1µ

cos2 θW
I(M2

1 ,m
2
τ̃1
,m2

τ̃2
)− M2µ

sin2 θW
I(M2

2 ,m
2
ν̃τ , µ

2)

]
tan β,

∆b '
[

2αs
3π

µmg̃I(m2
g̃,m

2
b̃1
,m2

b̃2
) +

m2
t

8v2π2 sin2 β
AtµI(µ2,m2

t̃1
,m2

t̃2
)

]
tan β, (5.22)

∆t ' −2
αs
3π
mg̃AtI(m2

g̃,m
2
t̃1
,m2

t̃2
)− m2

b

8v2π2 cos2 β
µ2I(µ2,m2

b̃1
,m2

b̃2
).

This is most important for ∆b, and will in turn affect the coupling Rb. From [26,30],

Rb ' − sin ᾱ

cos β

[
1− ∆b

1 + ∆b

(1 + cot ᾱ cot β)

]
. (5.23)

For completeness, the correction for RH
b is given by

RH
b '

cos ᾱ

cos β

[
1− ∆b

1 + ∆b

(1− tan ᾱ cot β)

]
. (5.24)





Chapter 6

Scans of the pMSSM parameter space

The large number of parameters in the pMSSM makes detailed analyses hard to do analytically.

While a calculation of the tree level value of a decay channel may be trivial, higher order

corrections on a number of the involved components will greatly increase the complexity.

In analyses involving 2 or 3 variables, one might picture a grid: Dividing each variable into

partitions, creating unique areas or volumes. Each of these will correspond to a “point” in the

parameter space. The number of different points increases as nD, where n is the number of

partitions per variable and D is the number of variables. In pMSSM, there are 22 parameters.

Even with a very coarse-grained partitioning (say, 5 per variable), 522 ∼ 2 quadrillion. This is

clearly unfeasible.

The strategy, then, is to employ a random scan à la Monte Carlo. It will not exhaust the

parameter space, but will give us a good idea of its structure. It is also scalable, since more

points only will add to the statistics. A sample run with 100 models will most probably point

in the same direction as a full run with 107 points, whereas in systematic “grid” scans this is

often not the case.

For each model, each of these 22 parameters is generated as a random number within a

given range, and then fed to different spectrum and decay calculators.

In the following sections, these parameters and calculators will be discussed. We will start

with an outline of the parameters and their ranges in Section 6.1. After that, the different

programs and some modifications which have had to be done on them are given in Sections 6.2

through 6.4. Sections 6.5 and 6.6 will be devoted to the numerous constraints we impose on

the models.
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Parameter Range

|M1,M2| [50, 1500] GeV

Au, Ad, Ae [-9000, 9000] GeV

At, Ab, Aτ [-9000, 9000] GeV

µ [-9000, 9000] GeV

mA [50, 3000] GeV

m˜̀,mẽR ,mq̃,mũR
,md̃R

[50, 3000] GeV

mL̃,mτ̃R ,mQ̃,mt̃R
,mb̃R

[50, 3000] GeV

M3 [50, 3000] GeV

tan β [1, 60]

Table 6.1: Parameter ranges for the scans.

6.1 Parameters

In Section 4.6, the model pMSSM was outlined together with the parameters involved. Here,

we will describe the bounds on each parameter in the scans performed. Many different schools

of thought exist when placing such bounds. C. Berger et al. [86] use high bounds on the

soft SUSY-breaking parameters (3 TeV in logarithmic scans, 1 TeV in linear scans). Some

argue that a low mA (already at a few hundred GeV) triggers the decoupling limit, making it

unnecessary to raise mA further. Arbey et al. [96] use high limits for the trilinear couplings

Ai.

Table 6.1 summarizes the limits used in the scans described above. See Table 4.4 for

a description of each parameter. Each value is chosen uniformly (or linearly) between the

bounds. The result is saved to an SLHA file, which is used as input for SuSpect. If no error

flags are raised, the result is saved to a new SLHA file, on which further manipulations are

done.

6.2 The SUSY Les Houches Accord (SLHA) format

The plethora of different SUSY model generators, spectrum calculators, decay packages and

event generators creates the need for a standardized interface. Following the philosophy of

FORTRAN, The SUSY Les Houches Accord [97] provides a framework for storing information

about a supersymmetric model in different BLOCK sectors: EXTPAR, SMINPUTS, MASS and
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DECAYS are such examples. As an example, the format of the MASS block is

BLOCK MASS

PID1 VALUE1 (6.1)

PID2 VALUE2

PID is the particle ID in the Monte Carlo numbering scheme, described in chapter 35 of the

PDG review [2]. An SLHA file is usually readable by programs calculating SUSY quantities,

both by input and output. Often, a specific calculator will take an input SLHA file, outputting

the same file but with its own values added.

6.3 The programs

6.3.1 SuSpect

SuSpect, or SUpersymmetric SPECTrum calculator, is created by A. Djouadi et al. [98]. It

takes a parameter point, a number of options, and calculates:

1. All the masses of the supersymmetric particles in pMSSM. It evaluates two-loop expres-

sions for the renormalization group equations, for the radiative corrections to the Higgs

boson masses, and also radiative corrections to the masses of the squarks and gauginos.

2. Values for different experimental processes to be used as constraints. These are the super-

symmetric contributions to the muon magnetic dipole moment, electroweak corrections

and the rate for b→ sγ.

The output is stored as SLHA files. It should be said that SuSpect provides its own caller

file suspect2 call.f, where all the parameters can be initialized. Here, each model point is

defined, and the main program suspect2.f is looped over with a new model each time. The

end result is a folder containing multiple SLHA files.

There are two main ways of generating a parameter point: Either through a loop in the

caller file, or through an input SLHA file. In the latter case, an external program must create

the necessary parameters. Both of these will be mentioned shortly in Section 6.4.

6.3.2 HDECAY

The program HDECAY, also developed by A. Djouadi et al. [99], adds decay tables for each

model provided. It calculates the width and branching ratio for each of the five Higgs bosons
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in the MSSM. Their mixing angles and couplings are also found. HDECAY uses complete

radiative corrections due to top/bottom quark and squark loops, next-to-leading order QCD

corrections and full mixing in the stop and bottom sectors.

It can also be used as a SM Higgs decay calculator, which was done to check the results in

Section 3. Practically, a Python program controls the work flow: An input SLHA file from

SuSpect is given to HDECAY, the output SLHA file copied to a new directory.

6.3.3 HIGLU

The program HIGLU [45], created by M. Spira, calculates the production cross section for the

Higgs, through the gluon-fusion contribution to the process pp → H. This is the leading

production channel at the LHC. The cross section is calculated with next-to-leading order

QCD corrections, both in the case of the SM and the MSSM. See Sections 3.6.1 and 5.4 for

more information on the production mechanisms through gluon fusion.

The integration of the parton density functions (PDFs) is a time demanding process, and

due to some other limitations like theoretical uncertainties in the Higgs boson mass, we limit

the program to SM calculations. It is possible to set the couplings between Higgs and the

quarks separately, which is needed when the MSSM cross sections are calculated. This process

is described in Section 5.4, and the PDFs in Section 2.9.1.

In order to interface HIGLU with the PDFs, the framework LHAPDF [100] is used.

6.3.4 DarkSusy

In Section 4.1.2, the neutralino χ̃1
0 was proposed as a dark matter candidate. There are a

number of ways to test a given pMSSM model against the constraints from astrophysical data

and scattering experiments on earth. The program DarkSusy [101] will calculate all these

values: The LSP relic density in terms of ΩDMh
2, and the spin dependent, independent and

thermally averaged cross sections.

The program uses SLHA files, and writes the output as a simple text file with the desired

information. This is appended to the input SLHA file, in a new structure we have called

BLOCK RELICS.

6.4 Modifications to the standard program files

In order for the programs to perform optimally, some modifications and even bug fixes had to

be made.
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In SuSpect, the follow changes have been done:

1. Generation of the random parameters, looping over each model, and copying of the

result files. This was done in suspect2 call.f.

2. An extra test condition .or.input.eq.11 in suspect2.f, line 524. Without this, some

variables are not transferred correctly before calculations, and the output file is useless.

This error is known, but not corrected in the public version 2.41, as stated by J-L.

Kneur [102].

3. Corrections to the neutralinos will sometimes yield a NaN (“Not a Number”) for their

masses. This will create a segmentation fault, aborting the scan. A test for this has

been implemented, gracefully aborting, allowing the routine to continue with the next

model. The test is inserted in the main program hdecay.f, before the SU GAUGINO call

in line 1910. The authors have been notified [102].

4. There are different ways to create the points, and some care must be taken when

looping inside the caller file suspect call.f. Not every shared variable (those inside

the common blocks) is reset after the point is generated. This will cause an asymmetry

in the distribution of the models generated, see Fig. 6.1. The sign of the parameter µ

plays a vital role in this case. If a line sgnmu0 = 0 is added before a new parameter

point is generated, this asymmetry disappears. It should also be noted that using SLHA

input may distort the Higgs masses: This behavior was observed, and these kinds of

scans were abandoned. See Fig. 6.2 for an example of this.

In HDECAY,

1. The SUSY-QCD correction factor to the h0 → bb̄ rate can deviate wildly from its

intended value of ∼ 1. This in turn will create negative values for the width. According

to the author, this behavior is known but not documented. Those models should be

discarded, which M. Spira pointed out in [103].

2. The particle ID for the light CP-even Higgs h0 is wrongly set to 26 in the SLHA output.

In line 1844 of hdecay.f, the number 26 should be 25, which is the correct PID for h0.
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Figure 6.3: Some of the loops for the dipole moment of electrons and muons. The two first

are from the SM, while the last two are from the MSSM.

6.5 Bounds from experimental results

6.5.1 The anomalous dipole moment of the muon: g − 2

The magnetic moment of a spin 1/2 particle can be derived from the Dirac equation, and is

on the form

µ = − e

2m
. (6.2)

Higher order corrections have been calculated both for the muon and the electron. In both

cases a first order correction from the loops in Fig. 6.3 is applied, with the result

µ = − e

2m

(
1 +

α

2π

)
≡ − e

2m
(1 + ae) . (6.3)

This correction was derived by Schwinger in 1948 [104]. Later results (experimental and

theoretical up to O(α4), from F. Mandl and G. Shaw [24]) give the value for the electron

ath.e = (1159652183± 8) · 10−12

aexp.e = (1159652181± 7) · 10−12
(6.4)

These results are in excellent agreement with each other.

For the muon, the agreement is not so good. Theoretical values from different processes

are given in [105–109], summarized by F. Jegerlehner and A. Nyffeler in [110]. Experimental

values from the E821 experiment at Brookhaven [111] are also given below:

ath.µ = (11659180± 5) · 10−10

aexp.µ = (11659209± 6) · 10−10
(6.5)
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This discrepancy is often attributed to new physics, which will create new loop diagrams and

push the theoretical value up or down. The discrepancy is

∆aµ = aexp.µ − aSM
µ = (290± 90) · 10−11. (6.6)

The leading contributions from MSSM is through chargino and neutralino loops. From F.

Jegerlehner and A. Nyffeler [110],

aSUSY
µ ' aχ̃

±

µ + aχ̃
0

µ

' sgn(µM2)α

8π sin2 θW

(5 + tan2 θW )

6

m2
µ

M2
S

tan β

(
1− 4α

π
ln
MS

mµ

)
.

(6.7)

The program SuSpect returns the value aSUSY
µ , and a constraint here may be placed early

in the process. Fig. 6.4 shows the distribution of aSUSY
µ versus both the SUSY scale MS

and tan β, together with a ±3σ band. Models that give aµ a correct contribution can be

characterized by a central MS value

1000 GeV < MS < 2500 GeV, (6.8)

and values of tan β above 5-6, as aSUSY
µ grows as tan2 β.

This constraint is not always taken as absolute. For example, J. Ellis et al. [112] points

out that the calculation of aSM
µ is not completely certain. In addition, we do not know if

the whole discrepancy ∆aµ needs to be closed by MSSM. In constrained MSSM models like

mSUGRA, a very large fraction of the models will fail the g − 2 test, so this constraint is

often overlooked.

6.5.2 Electroweak corrections: ∆ρ

In the standard model, the self energy corrections to the massive gauge bosons is defined as

1

1−∆ρ
=

ΠZZ(0)

M2
Z

− ΠWW (0)

M2
W

, (6.9)

where ΠZZ and ΠWW are the radiative self energy corrections (or vacuum polarizations) to

the Z and W bosons, evaluated at zero momentum transfer. In the standard model, ∆ρ is

dominated by the top quark. From A. Djouadi [113],

∆ρ(t) =
3α

16π sin2 θW cos2 θW

m2
t

m2
Z

∼ 9× 10−3. (6.10)

Some one-loop and two-loop contributions are shown in Fig. 6.5.
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Figure 6.4: The MS and tan β dependence on the pMSSM contribution for aµ in a scan. Note

the lines at ∆aµ ± 3σ. Top: MS, Bottom: tan β.
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γ

γ

γ

W±, Z0 W±, Z0f

f̄

Figure 6.5: One- (upper left) and two-loop contributions to the gauge boson self energy, from

A. Djouadi [114].

The supersymmetric contributions can grow large if there are large mass splittings in the

same SU(2) doublet. There is also a contribution from the Higgs bosons. We first define some

functions

f(x, y) = x+ y − 2xy

x− y lnx/y, τi =
m2
i

m2
W

, ηi =
mi

m2
Z

f1(x) = x

[
ln cos2 θW − lnx

cos2 θW − x +
lnx

cos2 θW (1− x)

]
(6.11)

f2(x, y) =
xy

x− y ln
x

y
+

1.165

2
(x+ y),

and given in Chapter 1 of A. Djouadi [26], the SUSY contributions from squarks and Higgs

bosons to ∆ρ are

∆ρSUSY = ∆ρHiggs + ∆ρt̃,b̃, (6.12)

where the Higgs contribution is

∆ρHiggs = −GFm
2
W

8
√

2π2

{
3 sin2(β − α)f1(ηh0) + 3 cos2(β − α)f1(ηH0)

+ sin2(β − α) [f2(τH± , τH0)− f2(τA0 , τH0)] + f2(τH± , τA0)

+ cos2(β − α) [f2(τH± , τh0)− f2(τA0 , τh0)]

}
,

(6.13)

and the stop/sbottom contribution is

∆ρt̃,b̃ =
3GF

4π2
√

2

[
cos2 θtf(m2

t̃1
,m2

b̃1
) + sin2 θtf(m2

t̃2
,m2

b̃1
)− cos2 θt sin2 θtf(m2

t̃1
,m2

t̃2
)
]
. (6.14)

The angle θt is the stop mixing angle, defined in Eq. (4.25).

SuSpect also calculates ∆ρ, and with more contributions than we have showed here. It is

possible to only keep models where this extra contribution is within 3σ of the SM value:∣∣∆ρ(SUSY)
∣∣ < 3 · 10−3. (6.15)
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b sW±

γ

Q Q

γ

W± W± Q Q φ± φ±

γ γ

b sQ b b ssφ± φ±

Figure 6.6: Different diagrams contributing to b → sγ. The two to the left are from the

SM [115], while the two to the right are from MSSM [116, 117]. qi is any quark, ui is any

up-type quark. φ = H±, G±.

In Fig. 6.8 we show this contribution, where the cyan area is excluded by 3σ. Only models

below should be considered.

6.5.3 Precision flavor physics: b→ sγ

Decays like B → Xsγ happen at loop level in the SM, involving charge up-type quarks and W

bosons. In SUSY theories, this will happen at the same level of perturbation theory, involving

charginos, stops, top quarks and charged Higgs bosons. This decay is calculated by M. Misiak

et al. [118]:

[BR(b→ sγ)]th. = (3.15± 0.23)× 10−4. (6.16)

Fig. 6.6 shows the diagrams at leading order. The Babar [119] and Belle [120] collaborations

have measured the rate b→ sγ, and we use some extrapolations from the PDG [2]:

[BR(b→ sγ)]exp. = (3.61± 0.49) · 10−4. (6.17)

SuSpect outputs the value of BR(b→ sγ), these are shown in Fig. 6.7.

6.5.4 Light charginos

A (still unpublished) combination of the four LEP experiments gives a limit on the lightest

chargino χ̃±1 in the general MSSM, which is the kinematical limit from e+e− collisions at√
s ' 209 GeV. From the PDG [2], this lower limit is

χ̃±1 > 103.5 GeV. (6.18)
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Figure 6.7: The b→ sγ dependence on MS, as defined in (6.17).

Figure 6.8: The pMSSM contributions to ∆ρ, as a function of the stop mixing, normalized to

the SUSY mass scale.
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6.5.5 Relic neutralino density

The relic density of the neutralino is calculated from its cross section to different particles,

together with thermal averaging with the Boltzmann equation. See J. Edsjo and P. Gondolo

[121]. This is done using the program DarkSusy [101] as described earlier. The value found is

compared to the one from the WMAP data [69]:

ΩDMh
2 = 0.1123± 0.0035. (6.19)

From DarkSusy, these values are shown in Fig. 6.9.

If there is a small mass splitting between the next-to-lightest SUSY particle (NLSP) and

the LSP χ̃0
1, coannihilation may occur, see J. Ellis [122]. These are processes like τ̃1χ̃

0
1 → Zτ .

A small mass splitting means that they are thermally available in the same time frame since

Big Bang. This way, a large fraction of the χ̃0
1 can coannihilate before they are “frozen out”,

and the relic density will be much lower. Fig. 6.10 shows the correlation between the mass

splitting and ΩDMh
2.

With this constraint, a large portion of the models are rejected: Almost every model with

a mass splitting

mNLSP −mχ̃0
1
> 70 GeV (6.20)

will create huge relic densities, far above the measured values.

6.5.6 Dark matter detection experiments

There are two main methods for searching for a weakly interacting massive particle (WIMP):

1. Direct detection, where neutralinos scatter on atomic nuclei. The XENON experiment

in Gran Sasso [61] gives spin-independent limits on the WIMP-nucleon cross section.

Fig. 6.11 shows these limits against values from DarkSusy.

2. Indirect detection, where annihilation products are observed in telescopes: Gamma

rays at the Fermi Large Area Telescope [58], Cherenkov radiation at HESS [59, 62]

and neutrinos at XENON [61] in the Antarctic. Each of these is shown against their

respective calculated values (spin dependent WIMP-nucleon cross section for IceCube

and the thermally averaged one for Fermi-LAT and HESS in Figs. 6.12 and 6.13.

We require that the cross sections generated from DarkSusy are below the limits set by these

experiments.

Many of these experiments are still in their relative infancy, and as they collect more data

they will be able to set lower limits or find signals. As an example, the “100” in XENON100



78 Scans of the pMSSM parameter space

Figure 6.9: The calculated relic density versus χ̃0
1 mass. The constrains on the red dots are

mh0 ∼ 125 GeV, mχ̃±1
> 103.5 GeV and ∆ρ,∆aµ, b→ sγ.

Figure 6.10: Same as above, but with the mass splitting between the NLSP and LSP on the x

axis. A low mass splitting means large coannihilation, and a lower resulting relic density.
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refers to just 100 days of data taking. As for a signal example, Fermi-LAT has found a

preliminary photon signature at 130 GeV. C. Weniger [123] was the first to report this from the

Fermi-LAT data. Further independent studies have confirmed the result [124–126], although

the official collaboration has failed to find any such signature [127]. We will check if our

models can accommodate such a result in Chapter 7.

6.6 Summary of constraints

At the end of this chapter, we summarize how the pMSSM models are affected by the

constraints outlined above.

Table 6.2 shows the survival rate of 500 000 created models, using each of the constraints

from the above sections. The “consistency check” is the survival after HDECAY and DarkSusy,

where some of the models are flagged as bad. It should be noted that the total fraction of

models which survive, about 0.7%, is exactly the number found by C. Berger et al [86]. They

use a different set of constraints with sometimes different limits, so this is a coincidence.

We can compare these numbers with mSUGRA, one of the constrained MSSMs mentioned

in Section 4.7. A quick scan over the mSUGRA parameters done by J. Lindroos [128], using

analogous limits: m0 with our M1,M2 and M3 ranges, m1/2 with our sfermion ranges and

A0 with our Ai ranges. Our ranges were listed in Table 6.1. The obtained survival rates are

shown in Table 6.2. We use |∆ρ|SUSY < 1.3 · 10−3 for ∆ρ this time, but the limits for the

rest of the constraints stay the same. We generated a total of 90351 models for this scan,

all of which had a χ̃0
1 LSP. Of special interest is the dark matter relic density ΩDMh

2, where

only 4.2% models survive in mSUGRA, against 58.2% in pMSSM. This may be due to larger

coannihilation regions in pMSSM, with higher occurrences of small mass differences between

the NLSP and χ̃0
1.
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Figure 6.11: The calculated spin independent χ̃0
1-nucleon cross section versus the χ̃0

1 mass.

Figure 6.12: The calculated spin dependent χ̃0
1-nucleon cross section versus the χ̃0

1 mass.
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Figure 6.13: The thermally averaged cross section 〈σχ̃0
1χ̃

0
1
v〉, with Fermi-LAT [58] and HESS

[62] limits. The constraints are: mh ∼ 125 GeV, mχ̃±1
> 103.5 GeV, and from ∆ρ,∆aµ and

b→ sγ.

Constraint Remaining models SR mSUGRA SR

None 500000 100%

Consistency 378221 75.6%

g − 2 52422 13.9% 15.7%

Higgs mass 12379 20.3% 12.8%

ΩDMh
2 9116 58.2% 3.24%

Fermi-LAT / HESS 6612 83.9%

χ̃±1 mass 5216 87.2% 98.1%

∆ρ 4582 74.6% 100%

b→ sγ 4085 90.1% 98.3%

XENON100 3363 91.6%

IceCube 3362 97.8%

Table 6.2: The effect of the different constraints. The number of remaining models is the

number after each constraint has been successively applied, and the survival rate (SR) is the

fraction of surviving models to all models when confronted with the constraint. The survival

rates for some of the constraints in a scan over mSUGRA are also shown.





Chapter 7

Results

In Chapter 3, the different observables of the Standard Model Higgs boson were given with a

certain precision. This was fairly easy as there is only one free parameter, and the different

corrections are well known. Thus we reached a more or less complete picture of the different

possible branching ratios, pictured in Fig. 3.3.

In the pMSSM, we encounter a more complex situation. The number of free parameters is

O(20) (with O(100) in the unconstrained MSSM), and the different corrections play a bigger

role than in the SM. In Chapter 5, the different observables of the pMSSM were outlined, as

well as how they relate to their SM counterparts.

We will use the scan method described in Chapter 6 to visualize these observables, with

the SM as a comparison. We will use them to find accepted models – models not yet excluded

by the different constraints.

This chapter is organized as follows: In Section 7.1 we will discuss two specific accepted

models, and describe their properties. After that, we will look at the different properties of

the set of all models: Decay widths and branching ratios in Section 7.2, and cross sections

in Section 7.3. For the remainder of the chapter, we will discuss how the models stand up

against different experimental tests. The 125 GeV Higgs results from LHC will be tested in

Section 7.4, and in Section 7.5 we check whether our models have large branching fractions

into invisible decays. In the last two sections, we will see if the LHC data can accommodate a

heavy MSSM Higgs, and then if we can recreate a 130 GeV neutralino to fit with the potential

discovery at Fermi-LAT.
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7.1 Two sample models

Later in this chapter, we will look at different characteristics of the many models generated.

Before we do that, two specific models will be described. They are chosen randomly, based

on experimental constraints: A light Higgs boson mass between 124 GeV and 126 GeV, and

all the constraints from Section 6.5. We also look for some interesting mass hierarchies.

These two models (“A” and “B”) are created with the input parameters listed in Table 7.1.

After giving the parameters to the spectrum, decay and cross section calculators, some

interesting properties of models A and B are listed in Table 7.2. We also give the SM values

as a comparison.

While model B closely resembles the SM in terms of cross sections and branching ratios,

we are looking at a different picture in Model A: A 35% increase in the γγ and V V rates,

while the bb̄ rate is down by 20%. Such low bb̄ rates can often be attributed to a low (and

negative) sbottom mixing Xb, defined in Eq. (5.7). See Fig. 7.1 for the bb̄ decay rate versus

sbottom mixing, divided by the sbottom mass scale
√
mb̃1

mb̃2
.

For the mass hierarchies, we have already demanded that the χ̃0
1 is the lightest SUSY

particle (LSP) in both cases. In model A, we have the following hierarchy

h0 < ν̃τ < H0 < τ̃1, (7.1)

while for model B we have

h0 < ν̃τ < τ̃1 < H0. (7.2)

Both of these may lead to some interesting decay chains. A sneutrino ν̃τ is for example hard

to find as an end-product in decay chains.

Only one of the models can produce a correct dark matter relic density. With model A,

we have Ωχ̃0
1
h2 = 0.1025. Using h2 ' 0.52, this is the same as a 20% DM component in the

universe. With model B, on the other hand, there is a large discrepancy between the ideal

value ΩDMh
2 ' 0.13 and Ωχ̃0

1
h2 ' 6.2 · 10−3, so in that case we need to explain dark matter

with another mechanism.

7.2 Decays and branching ratios

We move from looking at specific models to extracting information from large data sets. We

generated 500 000 models in Chapter 6, and after imposing the constraints listed there, as well

as discarding models which did not pass consistency checks, we were left with 3362 accepted

models. Both the full set and the subset of accepted models will be studied in this chapter.
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Figure 7.1: The decay width of h→ bb̄ versus the sbottom mixing divided by the sbottom scale,

normalized to the SM values (cyan line). The red and blue points are values from our scans,

where the red ones satisfy the experimental constraints described in Section 6.5.

Model A Model B

M1 [GeV] 360.0 -1147

M2 [GeV] 1375 -461.1

M3 [GeV] 1359 823.3

At [GeV] -3191 -3111

Ab [GeV] -1511 739.1

Aτ [GeV] -8765 3238

Au [GeV] -5594 18.74

Ad [GeV] -7026 8931

Ae [GeV] -876.9 2190

µ [GeV] 376.7 -235.0

tan β 54.0 9.1

Model A Model B

mA [GeV] 1474 2672

mẽL [GeV] 719.1 279.9

mτ̃L [GeV] 2756 1069

mẽR [GeV] 2690 2060

mτ̃R [GeV] 1543 1511

mq̃ [GeV] 1200 2645

mQ̃ [GeV] 1769 1465

mũR
[GeV] 1465 2707

mt̃R
[GeV] 1350 2138

md̃R
[GeV] 2776 2404

mb̃R
[GeV] 1041 2558

Table 7.1: The input parameters for the models A and B.
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Figure 7.2: The decay width Γ(h0 → γγ). The cyan line signifies the SM value. The red and

blue points are values from our scans, where the red ones are only the accepted models.

Figure 7.3: The decay width Γ(h0 → bb̄). The cyan line signifies the SM values. The red and

blue points are values from our scans, where the red ones are only the accepted models.
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h→ Model A Model B SM

bb̄ 48% 59% 58%

τ+τ− 8.9% 6.6% 6.3%

µ+µ− 0.031% 0.023% 0.022%

ss̄ 0.034% 0.025% 0.025%

cc̄ 3.8% 2.6% 2.9%

gḡ 11% 8.3% 8.6%

γγ 0.31% 0.24% 0.23%

Zγ 0.19% 0.15% 0.15%

W+W− 25% 20% 22%

Z0Z0 3.1% 2.6% 2.7%

pp→ h 16.7 pb 16.5 pb 17 pb

Table 7.2: Branching ratios and cross sections for the models A and B, including the SM. The

cross section is purely gluonic.

We have spent some time on calculating the different decay widths, so this might be a

good place to start. In general, the decay widths often match their SM values. Two examples

of this are seen in Fig 7.2 and 7.3, where Γ(h0 → γγ) and Γ(h0 → bb̄) are plotted. Note the

wide spread in Γ(h0 → bb̄) when compared to Γ(h0 → γγ).

However, such isolated decay widths can lack vital information. A SM-like channel in the

MSSM may have a branching fraction far from the SM value if there are large deviations in

other channels. The decay of h0 into two b-quarks is an example of a channel which may

affect the others. We saw this in the last section, where the low bb̄ rate in model B increased

the branching fraction of the other channels.

A large number of the models have a Higgs mass between 115 and 130 GeV. This is

important to have in mind, and can be seen in Fig. 5.1, with the h0 masses in a binned

histogram. For example, the broader Γ(h0 → bb̄) distribution around 125 GeV may be nothing

more than a statistical effect, since there are more models with that Higgs mass.

The branching ratio of the light Higgs into γγ, shown in Fig. 7.4, displays some of the

features discussed above. There are two main differences between this branching ratio and

the decay width in Fig. 7.2: The decay width rises sharply with the Higgs mass, and is

concentrated about the SM value. For the branching ratio, the mass dependence is much

weaker and the spread is larger.

As mentioned, there are many models with a low branching ratio compared to the SM,

although not many of these are accepted after the constraints have been imposed. The invisible
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Figure 7.4: The branching ratio of the diphoton decay of the Higgs boson. The cyan line

signifies the SM value. The red and blue points are values from our scans, where the red ones

are only the accepted models.

Figure 7.5: The decay width of the Higgs boson decaying into two W bosons. The cyan line

signifies the SM value. The red and blue points are values from our scans, where the red ones

are only the accepted models.
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decays described in Section 5.3.4 will, when kinematically accessible, have considerable decay

widths. This will decrease the other branching ratios. This effect will be further studied in

Section 7.5.

There is also an effect from the h0 → WW decay width. It goes as ∼ m4
H (see Fig. 7.5),

and above mh ' 100 GeV it will act as a lower limit on the total width. This in turn will

translate as an upper limit for the different branching fractions, as seen in Fig. 7.4.

7.3 Cross sections

To compare these results with real data, we need one more component: The cross section.

Treated in Section 5.4, we have calculated the gluonic contribution to the cross section

σ(pp→ h0) for every pMSSM model point.

The two processes we are going to use are of experimental interest. The channels

pp→ H → γγ and pp→ H → W+W− have been measured at the LHC [13,14, 129,130] and

Tevatron [131].

Figs. 7.6 and 7.7 show these cross sections. Due to factors from the MSSM coupling

strengths, which are often slightly below unity, the main body of MSSM cross sections are

also slightly below the SM values. This is most prominent in the WW channel.

Individually, the γγ and WW channels can both produce SM-like cross sections. When

put together, though, there are some interesting correlations. If we impose all the constraints,

we cannot reproduce the SM. With a SM-like WW rate we get too high γγ rate, and with a

SM-like γγ rate we are left wanting in the WW sector. Without the constraints, though, a

few of the models reproduce the SM.

Fig. 7.8 shows the correlations between the normalized cross sections σMSSM/σSM for the

processes pp→ h0 → W+W− and pp→ h0 → γγ, one on each axis. The two cyan lines (one

for each SM cross section) do not intersect in the red area, where every constraint is imposed.

It should be stressed that there is a O(10%) error on the SM cross section, from omitting

squark loops and from the parton density functions. This might account for this discrepancy.

In addition, these channels are not yet measured precisely, and we would rather be able to

recreate Nature than one of our propositions on how she looks.

7.4 Comparison with LHC results

In the last section, we looked at the cross sections for pp→ h0 → γγ and pp→ h0 → W+W−.

Preliminary measurements of these channels are available from the LHC and Tevatron
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Figure 7.6: The cross section for pp→ h0 → γγ. The cyan line signifies the SM value. The

red and blue points are values from our scans, where the red ones are only the accepted models.

Figure 7.7: The cross section for pp→ h0 → W+W−. The cyan line signifies the SM value.

The red and blue points are values from our scans, where the red ones are only the accepted

models.
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Figure 7.8: The normalized cross sections for pp → h0 → WW on the y axis, and

pp→ h0 → γγ the x axis. The two cyan lines are the SM values for each of the processes.

collaborations. The official results are often experiment-specific (like analyses from the

CMS [13,129] and ATLAS [14,130] experiments at CERN), and official combinations between

experiments are scarce at this preliminary stage. Independent discoveries at both ATLAS and

CMS is an argument for waiting with combined analyses, as this would be a stronger claim

than a single discovery from a combined dataset. In addition, such analyses have a complex

nature due to different systematical errors and from calibration. It is a good idea to have all

of these under control before merging the data.

However, we will use unofficial analyses in order to obtain the largest amount of data.

Philip Gibbs is known for combining results, often with good quality. See his “viXra log” [132]

for a comparison between some of his unofficial combinations and the official ones.

The combination we will use is between the Tevatron and LHC data. For the former, an

official combination for the CDF and D0 detectors is available [131], with a total integrated
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luminosity of 10/fb each. From the LHC, we will use the ATLAS and CMS results from the

2011 dataset [13,14,129,130], with a luminosity of almost 5/fb each. It should be pointed out

that Tevatron has low sensitivity in the interesting mass range of mh ' 125 GeV, while LEP

had none. The interesting combination is therefore ATLAS + CMS. Nevertheless, both LEP

and Tevatron are included in our combinations.

The best fit for signal strength σ/σSM for the γγ and the W+W− channels is shown in

Figs. 7.9 and 7.10. While the combination of every channel (not shown) fits well with a SM

scenario (σ/σSM = 1), and while the statistical significance is still too low to make any strong

conclusions, it looks like there is an excess of γγ events and a deficiency of W+W− events.

Since we have chosen a mass range of mh ∈ [124, 126] GeV in the γγ – W+W− plane, we

find the signal strength at the three points mh ∈ {124, 125, 126} GeV in the combinations.

This is done to see the “shape” of the uncertainty: The correlation between the systematic

errors. The result of this is shown in Table 7.3. In the γγ case, the resolution is 0.5 GeV, so it

is possible to directly read off the values. For W+W−, the mass resolution is only 5 GeV, and

we must interpolate between the points to find the values. Since the signal strength σ/σSM is

just the quantity we have calculated in Fig. 7.8, we can include the fit there. This is done in

Fig. 7.11.

Process σ
σSM

at 124 GeV σ
σSM

at 125 GeV σ
σSM

at 126 GeV

pp→ h0 → W+W− 0.35± 0.35 0.31± 0.33 0.32± 0.33

pp→ h0 → γγ 1.33± 0.40 1.78± 0.37 1.68± 0.40

Table 7.3: The signal strength for different h0 masses, from a global data fit by P. Gibbs [133].

We might be fitting the fluctuations of the still-early data of LHC, however the fit for

mh = 125 GeV is about 3σ away from the SM value. This can be seen geometrically from the

figure. With the same technique, we find that the 125 GeV fit is 2.7σ (2.6σ) away from the

main body of pMSSM values with (without) the different constraints. In other words: To a

3σ level, the current data can be accommodated by neither the SM nor by the pMSSM – but

there is a pull towards pMSSM.

We reiterate that this short analysis should not be taken as conclusive. Uncertainties in

the calculations of the cross sections may affect our values, and with new collision data being

recorded at unprecedented rates†, the scale may tip either way: Towards the rate predicted

by SM or towards something else.

†The current 2012 dataset weighs in at 3.58 fb−1, see the ATLAS LuminosityPublicResults website [134]
for updated values.
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Figure 7.9: Unofficial combinations for the σ/σSM fit in the h→ γγ channel at the LHC and

Tevatron [133]. The data used for the combination is listed, and the yellow curve is irrelevant.

Figure 7.10: Unofficial combinations for the σ/σSM fit in the h → W+W− channel at the

LHC and Tevatron [133]. The data used for the combination is listed, and the yellow curve is

irrelevant.
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Figure 7.11: The global signal strength fits for mh = {124, 125, 126} GeV, overlaid with the

signal strengths from our scans. The fit values are given at 1σ (blue cross) and 2σ (red cross).

The red points signify the accepted models, and the blue ones are all models.



7.5 Invisible decays 95

7.5 Invisible decays

For SUSY masses below about 2mh, the decay widths of both the light and heavy Higgs

bosons into pairs of sfermions or gauginos can be huge when compared with the SM. Such

decays are called invisible, and can be hard to find in the detector. This is especially true for

decays into neutral SUSY particles like neutralinos and sneutrinos. About 6% of the 500 000

models generated have such channels.

In the diphoton branching fraction seen earlier in Fig. 7.4, much of the structure below

the bulk of accepted models at mh ∈ [115, 130] GeV is due to such invisible decays. With

them “turned off”, much of this structure disappears.

In Fig. 7.12, we have plotted the sum of all invisible decays of the light Higgs boson. As

most of the decays happen as pair annihilations to the lightest neutralino, the branching ratio

is shown versus the χ̃0
1 mass. Note that very few of the models that do have invisible decays

are accepted. In our scans, of the about O(25000) models with invisible decays, only O(10)

survive. This is due to the constraint of the chargino mass – a light neutralino often leads to

a light chargino†, which have been excluded by the LEP2 data.

7.6 A Heavy Higgs

A heavy CP-even Higgs could in principle be detectable. If we use the separate data sets

from CMS and ATLAS for the decay mode H → W+W−, presented at the Moriond 2012

conference [129,130], these can serve as upper bounds. In this mass region, the W+W− decay

channel is the most prominent one. Having demanded a Higgs mass of about 125 GeV, this

acts as a lower bound on the heavy Higgs boson mass of about 180 GeV. In addition to this, a

SM-like light Higgs will trigger the decoupling limit, where the heavy Higgs has a very small

coupling to the fermions and gauge bosons. The reasoning is this: If sin2(ᾱ− β) ' 1, then by

construction cos2(ᾱ− β) ' 0.

Despite these shortcomings, there are still some models which could produce signals in the

future. Fig 7.13 shows the accepted models which give cross sections inside a ±20% SM-band

for pp→ h0 → γγ and pp→ h0 → W+W−, and have mH0 < 600 GeV.

We see that there are a few models with cross sections above the signal fit, although the

main body of decays are reduced to the percent level of σSM. As the LHC exclusion limit

continue to shrink, maybe a novel structure will be found, unveiling a H0 decay?

†This is because their mass matrices share some parameters: The SU(2) gaugino mass M2 and the Higgsino
mass parameter µ.
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Figure 7.12: The sum of the invisible decays of the Higgs boson versus the χ̃0
1 mass. The (few)

red points passes all the constraints.

Figure 7.13: The normalized cross section for the process pp → H0 → W+W−. The two

lines are the signal fit from CMS and ATLAS. Every model displayed have survived the tight

constraints, described in the text.
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7.7 A 130 GeV neutralino

In Section 6.5.6 we said that the Fermi-LAT experiment has released data pointing to a

potential WIMP annihilation signal at 130 GeV. See C. Weniger [123] for further details. We

have no problems recreating a 130 GeV χ̃0
1 with the correct characteristics: A low µ, M1 or

M2 can give us such a state, and this is not in direct conflict the the chargino mass limit of

103.5 GeV (although that constraint often requires µ or M2 to be above 103.5 GeV). A total

of 1.1% of our models had mχ̃0
1
∈ [128, 132] GeV, and of the accepted models 0.7% had this

feature.





Chapter 8

Conclusion

In this thesis, we set out to see how supersymmetric theories hold up against experiments,

with particular emphasis on the new results regarding the potential discovery of the Higgs

boson at CERN.

We chose supersymmetry in the form of the Minimal Supersymmetric Standard Model

(MSSM). Due to a complex picture, we imposed some phenomenological constraints: No

CP-violation from the supersymmetric sector, no flavor-changing neutral currents and with

no assumptions about unification of the forces at the Grand Unification scale. We simplified

the problem by using the phenomenological MSSM (pMSSM), which is a version of MSSM

following these assumptions.

We have detailed how to produce a large set of pMSSM models. This was done by a

random scan in the formidable parameter space of pMSSM. Through the various existing

programs, we have calculated the masses, branching fractions and cross sections for the

pMSSM Higgs bosons. In addition, we have done the same calculations “by hand” for these

quantities in the Standard Model.

We then put the models through an array of different constraints: From unobserved

decay channels, through mass limits and constraints on the sizes of loop corrections to known

observables, to limits on the observed influxes of dark matter from the galaxy. At the end,

0.7% of the models survived these tight constraints. This is orders of magnitudes above the

survival rate in constrained theories like mSUGRA, which we also saw some examples of.

After imposing all the constraints, we were unable to find models which reproduced the

SM in the case we studied. This was partly due to a reduced coupling strength between the

light Higgs and the W boson in the pMSSM. We noted that uncertainties in the cross section

calculations could help close this gap. However, the more constraints we impose, the less

flexible is the pMSSM. If the Higgs boson turns out to be SM-like we may have to exclude
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the pMSSM.

After this exercise, we applied our models to the recent data from (amongst other) the

LHC. In order to obtain the best results, we used an unofficial combination of all the relevant

data from different collaborations. The early data from the LHC shows an excess of diphoton

decays H → γγ and a deficit of vector decays H → WW . This could be fluctuations which

disappear with more statistics. However, we wanted to see how this would fit in with a

pMSSM scenario. We found that there is a 3σ difference between the data and the SM, and a

somewhat smaller difference between the data and the pMSSM. If this tendency does not

disappear later on, we have an interesting situation. If we combine all the channels, however,

the data fits well with a Standard Model scenario.

We have also seen how the heavy Higgs from the pMSSM can be observed at the LHC.

With tight constraints from the light Higgs, the coupling strength of the heavy one is severely

reduced. We find some models where H0 would be observed at the LHC, although with very

low production cross sections.

There have been some results on galactic photon signatures from the Fermi-LAT collabo-

ration, which might be hints of a dark matter WIMP. We found that the pMSSM neutralino

can accommodate this signal, without creating any trouble for the other constraints.

We are excited about how new data would affect this analysis, and others like it. Tighter

constraints on the neutralino from dark matter searches, higher mass bounds on charged

SUSY particles and of course measurements of the coupling strengths of the observed Higgs

boson will all help to further uncover the theory behind. Even in the near future, for example

at the summer conferences of 2012, the mystery of the Higgs could be unravelled.



Appendix A

Acronyms

2HDM Two-Higgs-Doublet Model

ATLAS A Toroidal LHC ApparatuS, LHC experiment

BR Branching Ratio

BSM Beyond the Standard Model

CMS Compact Muon Solenoid, LHC experiment

cMSSM constrained MSSM

CP Charge-Parity

CTEQ6 A PDF

CoM Center of Mass

DM Dark Matter

DarkSusy A program for generating relic densities

Fermi-LAT Fermi-Large Angle Telescope

DoF Degrees of Freedom

FCNC Flavor-Changing Neutral Currents

GR General Relativity

GUT Grand Unification Theory

GeV Giga electron Volt, equals 1.6 · 10−10 J

HDECAY A program for generating Higgs BRs

HIGLU A program for generating Higgs cross sections

ILC International Linear Collider

LEP Large Electron-Positron collider

ΛCDM Λ (dark energy) Cold Dark Matter

LHC Large Hadron Collider

LSP Lightest Supersymmetric Particle
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MSSM Minimal Supersymmetric Standard Model

MSTW2008 A PDF

mSUGRA minimal SUperGRAvity

NLSP Next-to-Lightest Supersymmetric Particle

PDF Parton Density Function

PDG Particle Data Group

pMSSM phenomenological MSSM

QCD Quantum ChromoDynamics

QED Quantum ElectroDynamics

SLHA SUSY Les Houches Accord

SM Standard Model

SU(n) Special Unitary group of degree n

SUSY Supersymmetry

SuSpect A program for generating SUSY mass spectra

U(n) Unitary group of degree n

VBF Vector Boson Fusion

vev vacuum expectation value

WIMP Weakly Interacting Massive Particle

WMAP Wilkinson Microwave Anisotropy Probe
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