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Abstract

The main goal of history matching is to construct updated models
capable of predicting the future performance of the reservoir more ac-
curately. History matching method requires a solution of inverse prob-
lem to minimize the objective function. The main idea of the inverse
problem is to find model parameters that best match to the produc-
tion data. An inverse problem is said to be well-posed if stable and
unique solution exists, else the problem is said to be ill-posed. Typ-
ically history matching is an ill-posed problem, for which non-unique
solution exists. Therefore, regularization by parameterization is ap-
plied in this thesis to reduce the number of unknown parameters in
order to alleviate the problem of ill-posedness. The parameterization
includes two aspects: the parameterization structure determined by
the set of bases functions and the corresponding coefficients embed-
ded in the structure. Stepwise estimation strategy of parameterization
structure is used to sequentially find new parameterization structure
that leads to large decrease in the objective function. There are dif-
ferent approaches that can be used to integrate the geological model
to production data. These include amplitude matching, time inver-
sion and generalized travel time inversion (GTTI). GTTI is used in
this thesis as it merges the travel time matching with the amplitude
matching, in such a way that, it preserves the quasi-linear proper-
ties of travel time inversion while using the overall production data.
In history matching, different optimization algorithms are applied to
minimize the objective function. Levenberg-Marquard optimization
method is used in this thesis. It is Guass-newton method with a trust
region strategy and modified by adding positive term. The work in
this thesis is based on the implementation in [1] and extended using
the idea that are presented in [5]. Then the parameterization method
is compared with standard method both in the ability to reduce the
objective function and in characterizing the permeability field. Sim-
ulation results illustrated that the parameterization method showed
better performance in reducing the objective function and in charac-
terizing the permeability field for simple cases. But for last case the
method did not performed well.
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Preface

Theses organization

This thesis consists of 5 chapters. In chapter 1 the main ideas of the thesis
are presented. In Chapter 2, the basic equations that describe the transport
of fluid flow in the porous medium are presented. The properties of reser-
voirs models are briefly discussed. Single phase and two phase fluid flow
models are considered. Numerical method which is used to solve the trans-
port equation is stated. Chapter 3 discusses history matching and inverse
problem. Least-square method, Amplitude matching, Travel time inversion
and Generalized travel time inversions are briefly discussed. Regularization
by parameterization with stepwise strategy is also discussed in this chap-
ter. Finally optimization algorithms, Levenberg-Marquargt and Newton’s
method, are discussed. Chapter 4 explains streamline based sensitivity cal-
culations and mainly focuses on time of flight, arrival time and time-shift
sensitivities. Chapter 5 is concerned with simulations results, conclusions
and recommendations.
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Chapter 1

1 Introduction

A petroleum reservoir is a porous medium that contains hydrocarbons (oil
and gas). The main goal of reservoir simulator is to predict future perfor-
mance of reservoirs. In addition, it finds ways and means of optimization
recovery of some of the hydrocarbons. It is crucial for reservoir models to
have an accurate description. Rock and fluid properties are the two main
characteristics that can describe the reservoir models. A reservoir model
typically consists of sets of differential equations together with the appro-
priate sets of initial and boundary conditions. Thus, a reservoir simulator
solves the model equations governing fluid flow in the reservoir with the
importance of the available information or data.

According to the [3], the available data about the reservoir can be classi-
fied in to static and dynamic. Static data is time-invariant and direct or
indirect measurement of reservoir properties such as core analysis, well logs,
and 3D seismic data while dynamic data (production data) is the time de-
pendent measurements of flow responses such as pressure, flow rate, tracer
responses and data from 4D seismic. Dynamic data is important source for
the information about reservoirs and should be used to update the reservoir
parameters; the process is referred to as history matching.

Traditionally, the reservoir parameters have been updated manually until
satisfactory match is obtained, but this is extremely onerous and time- con-
suming task for reservoir engineers. Therefore modern approach has been
developed in automatic history matching. The most common and widely
used approach in the oil industry is based on minimizing the objective func-
tion (sometimes called misfit function). The main goal of history matching
is to construct updated models capable of predicting the future performance
of the reservoir more accurately. Thus, history matching method requires
a solution of inverse problem to minimize the objective function. That is
typically the objective function is given as the sum of the misfit between the
observed data dobsj and dcalj over all data points j = 1, . . . , Nd [1]:

Nd∑
j=1

wj(d
obs
j − dcalj )2, (1.1)

where wj is scalar that weighs the influence of each data observation d. The
main idea of the inverse problem is to find model parameters that best match
to the production data. Typically history matching is an ill-posed problem,
for which non-unique solution exists in a sense that many possible combina-
tions of reservoir paramters result in equally good matches to the historical
observations. There are also measuring errors, numerical errors and model
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error involved in the forward problem, which leads to make the problem un-
stable solution. Thus, regularization by parameterization method is used in
order to make the problem stable. For history matching, forward model is
a reservoir simulator that can be used to generate the production response
after the reservoir properties and the initial and the boundary conditions
are specified [3].

In history matching, optimization algorithm is applied to minimize the ob-
jective function. Levenberg-Marquard optimization method is used in this
thesis. Streamline based method is a basic tool for history matching and
provides unique advantages. It is computationally fast and the sensitivi-
ties of production responses can be computed analytically along streamline
with a single forward run of simulators. The main idea for streamline based
methods is to approximate 3D fluid flow in to 1D transport equations along
streamlines. In fact only streamline based sensitivity calculation is con-
sidered in this thesis while implicit difference method is used to solve the
transport equation.
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Chapter 2

2 Fluid flow in porous medium

A petroleum reservoir is a porous medium that contains hydrocarbons (oil
and gas). A porous medium consists of a solid material called matrix and
the empty space which is called pore space. In fact for fluid flow through
it, the pore space should be interconnected. This interconnected pore space
is called effective pore space. There are a certain portions of the intercon-
nected pores which may are considered as in-effective pores, for example
dead end pores (or blind pores), i.e. pores or channel with only narrow
single connection to the interconnected pore space. So that almost no flow
occurs through them.

There are also isolated pores, which do not have any contribution. The typi-
cal size of reservoir is kilometers in each direction while the pore scale size is
millimeters or less. Thus, it is impossible to describe the fluid flow through
the whole reservoir based on the microscopic model. Because of the huge
difference in scales, the porous medium on macroscopic level is character-
ized. To be able to describe on macroscopic level, different parameters that
describe fluid and matrix properties in porous medium must be defined.

2.1 Fluid properties

Fluid possess different properties that play a significant role in every science.
The most common properties of fluid are fliud density and viscosity.

Fluid density (ρ)

In a brief definition, it can be described as the mass of fluid per unit volume.
It varies with pressure (P) and temperature (T) according to relations called
equations of state in [4]. As stated by [4], the equation for fluid density
generally presented as

ρ = ρ(p, T ). (2.1)

For isothermal process (temperature is a constant) the equation of density
is only a function of P and equation (2.1) can be rewritten as

ρ = ρ(p). (2.2)

Fluid viscosity(µ)

Fluids continue to deform as long as shear stress is applied. The ability of
a fluid to resist any deformation is called viscosity. A fluid whose behavior
obeys Newtons law of viscosity is called Newtonian fluid. The law states that
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the shear force per unit area is proportional to the local velocity gradient.
This proportionality constant is called viscosity and defined by

τ = µ
∂u

∂y
,

where τ is the shear stress. For isothermal process, the viscosity equation is
a function of p

µ = µ(p). (2.3)

2.2 Rock properties

It is one of fundamental physical properties of reservoir, and has significant
influence in the production of oil in the porous medium. Porosity is one of
the most important parameter as it determines the storage capacity of fluid
in the reservoir rock. Porosity is defined as the fraction of total volume or
(bulk volume) occupied by pore space. In general, it is not the entire pore
system that will contribute to fluid flow, only fluid in the connected pores
can be displaced from the rocks. Thus, it can be defined as the ratio of the
total volume of interconnected pores to the bulk volume of the rock sample,

φ =
Vpe
Vt
, (2.4)

where Vpe is the effective pore volume and Vt is the total volume of the
medium.

As it is mentioned above the fluid will flow through interconnected pores
medium. In 1856, Darcy Henery did a succession of experiments to inves-
tigate the ability of water to flow through a different medium. For one
dimensional, horizontal linear flow of an incompressible fluid, he found a
simple relationship between flow rate is proportional to a given pressures
difference through a given cross sectional area of the medium. According
[4], the generalized and differential form of Darcys law is given by

u = −K
µ

(∇p− ρg), (2.5)

where g is gravitational acceleration.

Permeability is another main parameter for reservoir engineers. It is a mea-
sure of fluid conductivity of the porous medium. The absolute permeability
is a property of the medium which only depends on type of rock not on
fluid type. The unit of permeability is Darcy. In general permeability varies
both in spatial location and direction of flow (anisotropy). Thus, it can be
described by a tensor. If the permeablity field is independent of both spa-
tial lacation and directional flow then, the mediun is called homogenous and
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isotropic respectively. For this thesis work, the case where isotropic medium
is considerd. That is, the permeablity field is independent of directional
flow.

2.3 Continuity equation

A basic principle of science and engineering is the conservation of mass. The
continuity equation is the expression of this basic principle and it is crucial
equation for reservoir engineers to describe the transport of fluid in porous
medium. Conservation law says that, the physical quantities such as mass
and momentum are conserved; that is neither destroyed nor created. To
formulate this law, consider some physical quantity Γ in a closed volume Ω,
f is the amount of Γ flowing through the boundary surface ∂Ω, n is the
outward unit vector and G is the source or sink term. The conservation law
can then be expressed as the following integral equation∫

Ω

∂Γ

∂t
dV =

∫
Ω
GdV −

∫
∂Ω

f.nds. (2.6)

The divergent theorem together with the fact that the conservation law is
valid for an arbitrary volume Ω, leads to the continuity equation

∂Γ

∂t
+∇.f = G. (2.7)

2.4 Single-phase flow

In a single phase flow, only one fluid phase (oil) is presented in pore space
(voids) of the porous medium. In fact reservoir consists of water and gas in
addition to oil. The governing equations for the single phase flow of a fluid
in a porous medium are given by the conservation of mass, Darcys law, and
an equation of state to close the system of equation. For the single phase
flow, the mass density, Γ is given by: ρφ and the flux density, f is given as :
f = ρu, where u Darcy velocity, the continuity equation (2.7) becomes

∂(ρφ)

∂t
+∇.(ρu) = G. (2.8)

The Darcy velocity u is given by the Generelazed version of Darcy’s law
on differential form [2].

u = −K
µ

(∇p− ρg). (2.9)

Equation (2.8) and (2.9) together with equation of state for density(2.2)
and viscosity (2.3) forms a closed set of equation for a single phase flow in
a porous medium.
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2.5 Model for multi-phase flow

In reservoir simulation, we are often interested in the simultaneous flow of
two or more fluid phases within a porous medium. Therefore, basic equations
for multiphase flow in a porous medium are developed. In this section, only
two-phase flow where the fluids are immiscible is considered. When two
fluids are simultaneously presented, the ability of flow of one fluid depends
on the local configuration of the other fluid. Thus, some basic physical
parameters must be introduced.

2.5.1 Basic definitions

Saturation

The saturation of a fluid phase is defined as the fraction of the void volume
of a porous medium occupied by the fluid that is,

Sα =
Vα
Vep

, (2.10)

where Vα is the volume occupied by phase α, where α is represents for oil
and water and Vep is the effective pore volume .

Capillary pressure

Capillary pressure can be defined as the pressure difference between the two
phases

Pc = pnw − pw, (2.11)

where pnw is the pressure in the non wetting phase and pw is the pressure
in the wetting phase. Empirically, the capillary pressure is a function of
saturation of wetting phase, sw.

Relative permeablity

When two immiscible fluids flow simultaneously, only one immiscible fluid
flow through the pore space at a given time, thus the other presented phase
reduces the pore space and influences the permeability. Relative permeabil-
ity is defined as the ability of one fluid flow with respect to the other phase
fluid. The effective permeability of each phase fluid is given by

kw = KrwK

Knw = KrnwK,
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where Krw and Krnw are relative permeablty of wetting fluid and non-
wetting fluid .

The Darcy’s law for a single phase can be directily extended to multiphase
flow.That is

uα = −Kα

µα
(∇pα − ραg ). (2.12)

The above eq(2.12) can be expressed as

uα = −λαK(∇pα − ραg), (2.13)

where λ is mobility and it is defined as

λα =
Krα

µα
. (2.14)

The modified form of the continuty equation (2.8) is

∂(ραφSα)

∂t
+∇.(ραuα) = Gα (2.15)

The modified equation(2.15) and the Darcy’s equation (2.12) forms a coupled
set non-linear differntial equstions. Together with the equation of state,
(2.2) and viscosity (2.3) the capillary equation(2.11) and togther with the
assumption that the two fluids fill the void space completely, that is

∑
α Sα =

1 forms a closed set of equation. Considering initial and boundary condition,
it is possible to solve the equations. In practice numerical method can be
used to solve the differential equation. Infact analytic solution can be also
found for the simplified equation with simple boundaries. In this thesis the
simplified model for two phase flow due to Buckley and Leverett will be
used.

2.6 Buckley-Leverett model for two phase flow

Buckley and Leverett (1942) solved the simplified governing model equation
for two phase fluid flow in porous medium with the assumption that it
is incompressible, immiscible( there is no mass transfer between phases),
constant viscosity, neglecting the effect of gravity and capillary pressure.
For constant ρ and φ equation(2.15) can be rewrite as [1]

φ
Sα
∂t

+∇.uα =
Gα
ρα

. (2.16)

The total velocity for the two phase is defind as u = uo + uw and with
the assumption that the two fluids fill the void space completely, the above
equation becomes

φ
∂

∂t
(So + Sw) +∇. (uo + uw) = G, (2.17)
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where G = Go
ρo

+ Gw
ρw

, and from the assumption, we have Sw +So = 1. Thus,
equation (2.17) is reduced to,

∇.u = G. (2.18)

Negelecting the gravity, the following expression can be found from Darcy,s
law (2.9)

∇p =
−uw
λwK

(2.19)

∇p =
−uo
λoK

. (2.20)

By combining equation (2.19) and (2.20) and using uo= u−uw, the following
expression can be found.

uw = Fwu, (2.21)

where Fw is fractional flow and is defined as, Fw = λw
λt

and λt is the total
mobilty given by; λ = λw + λo.
Equations for water saturation is

φ
∂Sw
∂t

+∇.(Fwu) = G, (2.22)

where G = Gw
ρw

. For incompressible fluid flow, ∇.(Fwu) = u.∇Fw and
∇.u = 0 way from the wells . The saturation equation is then rewrite as

φ
∂S

∂t
+ u.∇F = G. (2.23)

And equation (2.18) is
∇.u = G, (2.24)

where the velocity, u is given by the Darcy’s law with out the gravity term

u = −Kλt∇p. (2.25)

The equation (2.24) and (2.23) are called elliptic pressure equation and the
hyperbolic transport equation respectively. There are different numerical
method to solve these equation and clearly mentioned in the [16]. One way
of solving the differential equation is to discretize using the Finite differnce
method and solve them based on implicit Schemes, which is used in this
thesis. we apply reservour simulator, which is called MRST. To get detail
valuable understanding how the analysis of this shceme applied in practise
refer to [16]. Infact in the next section, the concept of implicite scheme and
explicit scheme will be introduced.
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2.7 Finite difference method

As it is known that , fluid flow in porous medium involves large, coupled
system of non linear time dependent differential equations, it is reasonable
to consider numerical methods that gives stable, efficient and accurate solu-
tions. Consider the general hyperbolic model differential equation [16] given
that,

∂p

∂t
+ b

∂p

∂x
= 0. (2.26)

where b is constant and initial condition given as

p(x, o) = po(x).

In order to solve the above problem numerically three different techniques
(approaches) are used. These are Forward Difference, Backward Difference
and Central Difference (approaches) techniques.

2.7.1 Forward difference

For implicite scheme,

Implicite method are the technique in which it can compute the next state
of the system by solving a equation involving both current state and next
state. The hyperbolic equation (2.26), can be discretized as

Pn+1
i − Pni

∆t
+ b

Pn+1
i+1 − P

n+1
i

h
= 0, (2.27)

where P is a discrete function of time and space, ′n′ is the time step index.
It is important to define amplification factor to analyse the stabilty of this
approach. Assume that, there is an error εn that occur at time step′n′. The
amplification factor of this at time step n+1 can be define as

εn+1 = γεn, (2.28)

where γ is the amplification factor. It is clearly derived how to solve the
amplication factor in [16]. Based on this, the amplication factor can be
expressed as

γ =
γn+1

γn
. (2.29)

The Von Neumann criterion for stability is that the modulus of this factor
should not be greater than one, that is

|γ| ≤ 1 (2.30)
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In general, the simple method for finding the stability criterion is to con-
struct Fourier analysis of difference equation and derive the ampliction fac-
tor. Therefore, the stability analysis of the finite diffence method for the
equation (2.27), can be expressed as

γ =

(
1− b∆t

h
(1− cos(kh)) + i

−b∆t
h

sin(kh)

)−1

. (2.31)

Thus, for the stabilty |γ| ≤ 1, the above equation becomes

|γ|2 =

(
1− 4

b∆t

h
sin2

(
kh

2

)(
1− b∆t

h

))−1

≤ 1. (2.32)

Inequality (2.32), is satified if b < 0. Therefor, the scheme (2.27), is uncon-
ditionally stable when b < 0.

For explicit scheme,

Explicite method are the technique in which it can compute the next state
of the system intems of current state. The hyperbolic equation (2.26), can
be represented as

Pn+1
i − Pni

∆t
+ b

Pni+1 − Pni
h

= 0, (2.33)

where P is function of time and space and ′n′ is the time step.
Similarly, the stability criterion of the explicit forward difference scheme will
be satisfied when b < 0 and with condition given below:

|b|∆t
h
≤ 1 (2.34)

The above Inequality is called the Courant-Friedrichs-Lewy (CFL) condi-
tion. Thus, the Forward difference scheme (2.34) is conditionlly stable if
b < 0. Eventhough the expilcit method is computationally efficient, it re-
qiures the CFL condition should be satisfied for each iteration.This makes
the expilcite method is infeasible in practical simulation.

2.7.2 Backward difference

For implicite scheme,

By applying the same argument as the above, the Backward difference for
hyperbolic equation can be written as

Pn+1
i − Pni

∆t
+ b

Pn+1
i − Pn+1

i−1

h
= 0. (2.35)

A similar argument is used to prove that the shceme (2.35) has the same
stability property as the scheme(2.27) when b > 0 .
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For explicite scheme,

In this case, the hyperpolic eqaution can be represented as

Pn+1
i − Pni

∆t
+ b

Pni − Pni−1

h
= 0. (2.36)

For the explicit difference scheme, it has the similar stability property as
the scheme(2.33) when b > 0 given that,

|b|∆t
h
≤ 1. (2.37)

2.7.3 Centeral difference

For implicite scheme,

The centered difference formulation of the above problem(2.26) is,

Pn+1
i − Pni

∆t
+ b

Pn+1
i+1 − P

n+1
i−1

2h
= 0. (2.38)

The amplification factor γ of the centered difference approach is given as

γ =

(
1 + i

−b∆t
h

sin(kh)

)−1

. (2.39)

which always satisfy the inequalty |γ| ≤ 1. Hence for all values of b, this
scheme is unconditionally stable.

For explicite scheme,

Pn+1
i − Pni

∆t
+ b

Pn+1
i+1 − P

n+1
i−1

2h
= 0. (2.40)

In contrast to implicit, the expicity difference scheme is always unstable.
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Chapter 3

3 History matching

In this chapter, the concept of history matching, and its advantage and
challenges will be discussed. Amplitude matching, travel time inversion and
generalized travel time inversion (GTTI) will be introduced. History match-
ing plays a significant role in characterizing the reservoir accurately. This
helps reservoir engineers to predict future performance of the reservoir. The
major goal of history matching is to find the reservoir parameter that mini-
mizes the misfit between the calculated data and observed production data.
There are different parameters that can be considered for history matching,
such as permeability, relative permeability and porosity. Similarly, some
of the dynamic data that are considered for history matching are pressure
and water cut data. Permeability is the parameter to be considered in this
work for the history matching problem. Likewise watercut data is used in
parameter estimation.

The main challenge in history matching is that history matching is an inverse
problem which is typically ill-posed due to limited amount of available in-
formation. Morever the governing equations for fluid flow in porous medium
are nonlinear. In another way, the relationship between reservoir parameter
and production response is nonlinear. These make it more challenging in
solving the system of equations. Therefore, solving inverse problem needs
carefully analysis. An inverse problem is said to be well possed if stable
and uniques solution exists, else the problem is said to be ill-posed. The
overview of inverse problem will be presented in the next section.

3.1 Inverse problem

The main goal of reservoir simulator is to predict future performance about
the reservoir. In general, it is possible to predict data from a given model
through physical laws. This is called Forward problem,

G (m) = d, (3.1)

where m is model parameter, d is the observed data set, and G is the oper-
ator that relates m and d. Model is a set of parameters which describes the
physical properties of the system. In reality, some amount of noise present
in the actual observation data.This noise may arise from instrumental read-
ing during observation or numerical round off. Thus, the observed data is
d = dt + η. For linear problem, the matrix equation (3.1) can mathemati-
cally be represented as

Gm = d. (3.2)
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where G ∈ Rm×n, d ∈ Rm×1 and m ∈ Rn×1. In contrast to the forward
problem, the main target of inverse problem is to find model m for a given
data d. History matching problem is an example of inverse problem, where
it consists of adjusting a set of parameters in order to match the predicted
data to the actual production data. There are two main approaches to
formulate inverse theory, deterministic and stochastic. The main focus of
this section will be on deterministic approach. Solution strategies based
on deterministic approach will be presented later in this chapter. In the
presence of measurement, model and numerical error, the observed data will
not fit any model or fit infinitely many model. Therefore, careful analysis
needs to be done in order to find optimal and unique solution. There is a
method that finds a model that minimizes the objective function. This is
called least square method and the model is called least square solution.

3.2 Least-square method

Least square method is a standard approach to approximate solution of over
determined system. This is the case when there are more data than model
parameters. For over determined system of full rank, the solution will be
unique but not exact. It is possible to find a model that minimizes the
objective function rather than the exact solution. The objective function f
is defined in terms of L2 norm

f(m) =‖ r ‖22=
∑

r2
i , (3.3)

where r is residual, r = Gm − d. Minimization problem (3.3) is used to
find a solution for inverse problem.There are different numerical approaches
to solve nonlinearity in inverse problem, which will be considered later in
this chapter. In history matching, there are different approaches that can be
used to integrate the geological model to production data. These includes
amplitude matching, time inversion and generalized travel time inversion
(GTTI).

3.3 Amplitude matching

Amplitude matching is traditional approach that is used to match the am-
plitude of production history directly. The main challenge of amplitude
matching is that, it is highly non-linear inverse problem which is difficult to
converge. The least square formulation for amplitude matching is given by

Nw∑
k=1

Nd∑
i=1

(dobsk (tk,i)− dcalk (tk,i))
2. (3.4)

where dobsk (tk,i) and dcalk (tk,i) are the simulated(calculated) and obseved data
respectively. This is minimized for all time tk,i.where the time index j =
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1, 2, . . . , Nd and the well index k = 1, 2, . . . , Nw.

3.4 Travel-time inversion

The basic idea of the travel time inversion is that the production data at a
given reference time such as breakthrough time or the first arrival time can
be matched. The main advantage of travel time inversion is that, it has the
quasi-linear properties. This makes the travel time inversion more stable and
robust than amplitude matching. However, the travel time inversion only
requires production data at a given time. To incorporate all amplitude data
while retaining the properties of the travel time inversion, the generalized
travel time inversion is introduced.

3.5 Generalized travel-time inversion (GTTI)

The basic idea of generalized travel time inversion is to merge the travel time
matching with the amplitude matching, in such a way that, GTTI preserves
the quasi-linear properties of travel time inversion while using the overall
production data [6]. GTTI approach solves the problem by systematically
shifting the calculated production response towards the observed response in
small increments. Then, the data misfit is computed for each time increment.
Consequently, generalized travel time inversion solves the history matching
problem in two steps: Firstly, it finds the optimal time-shift that minimizes
the objective function given by

f(∆tk) =
Nd∑
i=1

(dobsk (tk,i)− dcalk (tk,i + ∆tk))
2. (3.5)

For all k. The above least square problem can be solved systematically shift-
ing the calculated production curve until the objective function is minimized.
Secondly, it minimizes the following equation

Nd∑
i=1

∆t2k. (3.6)

The advantage of GTTI is that the relation between the reservoir parameter
and the time-shift is less-nonlinear than the direct relation between ampli-
tude of production data. The least square problem in (3.6) is solved with
the algorithm for solving nonlinear least square problem[1].

As it was discussed in section (3.1) inverse problems are ill posed. To obtain
a meaningful solution and alleviate the problem of ill- posedness, a regular-
ization strategy is necessary to stabilize the solution of the inverse problem.
Two main approaches for regularization are commonly applied, The ap-
proaches differ based on whether or not the set of admissible estimates is
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constrained directly by modifying the parameter space, or if it is constrained
indirectly by modifying the inverse estimator [4]. In this paper, the former
approach is used which is called regularization by parametrization.

3.6 Regularization by parameterization

One way of regularizing the problem is reducing redundancy by replacing
the set of unknowns spatially discretized the reservoir properties by small
number of parameters that can capture the most important features of the
field. The process is called parameterization. By using parameterization
with stepwise strategy process, it is possible to obtain representation of
permeability field . A parameterization includes two aspects: the parame-
terization structure determined by the set of basis functions and the corre-
sponding coefficients embedded in the structure. For linear parameterization
of unknowns, discrete permeability field can then be represented as

P = SC, (3.7)

where p is permeability field, C = [c1c2 . . . cn]ᵀ are coefficient vectors,
S = [s1s2 . . . sn] is the m × n structural matrix (m >> n) and s1, s2, . . . sn
are base vectors. In general, the permeability distribution can vary in a
manner determined by the shape and support of the basis vectors. In the
parameterization (3.7), the identification of p is replaced by identification
of coefficient vector c . Hence, during optimization process and sensitivity
calculation, the coefficient vector is considered.

Common choices of paramterization structure are zonation, pilot points and
the other interpolation techniques. In this thesis, an approach where base
vectors that corresponds to discretized radial basis function (RBF) for pa-
rameterization of permeability field is considered. Gaussian RBF is used for
the results that will be presented. Gaussian RBF is then given by

Si = exp(− 1

2σ2
i

(x− xi)2), xi ∈ B, (3.8)

where ′B′ denots the position of knots (base points) and σi is the parameter
shape. Stepwise estimation strategy and performance measurement are basic
concepts which help to update the structural matrix in a sense that by
selecting the best basis vectors among the possible choices.

3.7 Stepwise estimation strategy

The main idea of stepwise estimation strategy is to sequentially find new
parameterization structure that leads to large decrease in the objective func-
tion. At each stage of stepwise strategy one or few basis vectors are added
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to the structure. The new parameter space will then have higher dimension.
This new parameter space includes the previous one, which results in a se-
quence of nested parameter space. This satisfies,

span(S1) ⊂ span(S2) ⊂ span(S3) ⊂ . . . .,

where span(Si) = span(s1, s2, . . . , sn) denotes the column space of Si . At
the beginning of each stages, one or few basis vectors are selected from the
set of possible choices based on performance measure and added to the pa-
rameterization structure. Then the new estimation is started with the result
from the previous estimation as initial state. This process will continue un-
til the convergent criteria is met. The flow chart in fig. (1) illustrate the
process breifly.

Figure 1: Flow chart for stepwise estimation procedure to update the
parametrizatio stracture
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3.8 Performance measure

There are two approach that are used to estimate the tentative performance
of the parameterization stracture. The first approach is, the objective func-
tion gradient and the other is linearization of the model response. In this
work the first approach is used for the performance measurement. The ob-
jective function gradient gives for the representation to the steepest descent
direction in solving minimization problem. By considering the norm of the
objective gradient, one can analyze the effectiveness of coefficient values that
corresponds to the refined structure. This norm implies a measure of how
sensitive the objective function is to change in coefficient vector which cor-
responds to a new structure. The norm which has the greatest value will be
taken to choose the basis vectors for the representation.

3.9 Optimization method for solving non-linear inverse prob-
lem.

In section (3.6) how to regularize inverse problem based on parameterization
approach have been shown. Optimization technique that solves nonlinear
inverse problem will be considered in this section. The main task is that to
find the parameter that gives optimal solution. One approach is to use local
Taylor approximation of the objective function iteratively at the point at
which the objective function is smaller than the surrounding points. This
is local solution, not the global. In fact global solution is essential in some
application, but it is difficult to find the solution [11]. The optimization
algorithm which is presented in this paper is Levenberg-Marquardt which is
a local solver.

Levenberg-Marquargt method (LM)

To come up into insight explanation on LM method, first let’s introduce line
search, trust region and scaling strategies along with Newtons method and
Gauss Newtons method for solving minimization problem.

3.9.1 Line search, trust region and scaling strategies

In the line search strategy, the main approach is to choose some direction pk
and searches for the next iterate xx+1 along this direction from the current
iterate xk such that the new iterate will have a lower function value. The
step length can be found by solving the following optimization problem,

minα>0f(xk + αpk),

where α is step length and pk is the direction. A trust region strategy is
based on constructing a trust region where the solution is searched within.
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The trust region sub-problem can be formulated as

min
m

f(m)suchthat||m|| ≤ ∆k.

The trust region radius ∆k is chosen based on the performance of the previ-
ous iterations. There are different algorithm that computes the trust region
refer [11].

The performance of an algorithm may depend crucially on how the problem
is formulated. One important issue in problem formulation is scaling. In
unconstrained optimization, a problem is said to be poorly scaled if changes
to x in one direction produce much larger variations in the value of f than
do change to x in another direction. One way to scale the problem is to
use a ellipsoidal trust region instead of a spherical trust region. The trust
region sub-problem then becomes

min
m

f(m)suchthat||Dkm|| ≤ ∆k, (3.9)

where Dk is a diagonal matrix where the diagonal elements are the principal
axes of the trust region.

3.9.2 Newton’s method

Given initial m0, the algorithm generate a sequence of vector(m1,m2, ..)
iteratively until it will converge or no more progress can be made. If f is
twice continuously differentiable, the nonlinear objective function f can be
approximated using Taylor series approximation around mk,

f(mk + ∆m) ≈ f(mk) + ∆mᵀ∇f(mk) + ∆mᵀ∇2f(mk)∆m, (3.10)

where ∇f(mk) and ∇2f(mk) are the gradient and the Hessian of f(mk)
respectively. To get the minmum value m∗ for the objective function, the
gradient must be zero, then it can be approximate the gradient of f(mk +
∆m) about mk,

∇f(mk + ∆m) ≈ ∇f(mk) +∇2fmk)∆m. (3.11)

By approximating the gradient equal to zero, a local minimum of the objec-
tive function can then be found by solving the following equation,

∇2f(mk)∆m ≈ −∇f(mk), (3.12)

where this solves for successive solution steps until it convergence see the
detail [12].

For least square problem, the gradient of objective function can be written
in marix notation interms of jaccobian of r(m) see [11 ]
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∇f(m) ≈ J(m)ᵀr(m). (3.13)

Similarly, the Hessian is,

∇2f(m) ≈ J(m)ᵀJ(m) +
m∑
j=0

rj(m)∇2rj(m). (3.14)

In many application, it is possible to calculate the Jacobian matrix expicitly
where as to find the Hessian of f(m) explicitly are often not possible. In
newtons method, the Hessain of f f(m) must be calculated in each iteration
which is often computationally expensive. There is an optimization method
developed which ignores the last part of the Hessian which is ∇2f(m) =
J(m)ᵀJ(m). This method is called Guass-Newtons method. Then equation
(3.12) beomes,

J(mk)ᵀJ(mk)∆m ≈ −J(mk)ᵀr(mk). (3.15)

Even though Guass-newtons method is the modification of newtons method
and it works well in practice. The method fails when the matrix J(mk)ᵀJ(k)
is singular. Therefore, there is a method called Levenberg-Marquargt method
(LM) which modifies GN.

3.9.3 Levenberg-Marquardt method

A Guass-newton method with a trust region strategy is called LM method.
A GN method is then modified by adding positive term, λI to (3.15). The
LM method is then represented as

(J(mk)ᵀJ(mk) + λI)∆m ≈ −J(mk)ᵀr(mk) (3.16)

The positive parameter that is added, is adjusted during the course of al-
gorithm to ensures convergence, the reason for using positive value of λ is
that the term λI enures that the matrix is non singular. The paramter λ is
closely related to the trust radius since it always a positve λI exits such that
equation (3.16) and (3.9) satified. For large λ, the algorithm simply moves
to the steepest-desent direction rapidly in a sense of reducing the objective
function. The steepest-desent direction provides convergence if a certain
steps are taken. Conversely for small value of λ, the LM method reverts to
the GN [12].

As it is mentioned in section (3.9.1), the scaling startegy can be applied on
Lm method. One way is to use ellipsoid trust region instead of spherical
trust region. Thus, the problem (3.16) is modifies to

(J(mk))ᵀJ(mk) + λk((Dk)ᵀDk)∆m ≈ −J(mk)ᵀr(mk). (3.17)
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Chapter 4

4 Streamline based sensitivity calculation

The basic advantage of streamline based sensitivity calculation is that the
sensitivities can be computed semi-analytically along the streamline.This
makes it to have the ability of efficiently (fast) computing the sensitivity
of the production data to reservoir parameters for high-resolution geological
models. In addition, the computation of sensitivity for all model parameters
requires a single simulation run. The computations of sensitivities are based
on the assumption that the streamlines do not shift during perturbation.
But first some basic concept will be introduced.

4.1 Fundemental definition

4.1.1 Streamline

Streamlines are instantaneous lines that are everywhere tangential to the
direction of velocity. Mathematically can be defined as a function of x that
solves differential equation

dx× u (x, t0) = 0,x (to) = xo, (4.1)

where u is the velocity field. A streamline is generated by defining a start-
ing point( initial position ) commonly referred to as a seed point, and the
velocity field at that instant in time. If the velocity field is steady state
(time independent), streamline are related to path line. path line is phys-
ical trajectory of a single particle through time and space. But as in the
case of unsteady state problem where the velocity field varies through time,
streamlines represents the instantaneous velocity, not physical trajectory. In
addition to this, pathlines may often cross each other, but streamlines does
not. Therefore, there is no mass transfer between each fuid particles.

Streamfunction

Streamfunctions are scalar quntities whose main advantage is to define
streamlines by constant values of streamfunction. That means, the con-
tour line of this scalar function is given as streamlines, which represent the
trajectories of particles in a steady flow. It is possible to illustrate this by
considering streamfunction in 2D.

Streamfunction in 2D

In addition to determining the fluid velocity from Darcys equation and the
gradient of pressure equation, it is also possible to determine from the deriva-
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tive of streamfunction Ψ. For 2D flow of incompressible fluid describing a
function Ψ in Cartesian coordinate system, the velocity can be represents
as

ux =
∂Ψ

∂y

uy = −∂Ψ

∂x
,

(4.2)

where ux and uy are the velocities in the x and y coordinate.

The definition of streamline in equation(4.1) in xy plane simplifies into

dx

ux
− dy

uy
= 0. (4.3)

By substitute eq(4.2) into (4.3) gives as

∂Ψ

∂x
dx+

∂Ψ

∂y
dy = 0. (4.4)

The above solution implies that Ψ (x, y) is constant along streamline. From
the above derivation, it can be observed that the streamfunction and stream-
line are related in a such way that, a line given by constant streamfunction
Ψ is defined streamlines.

Streamfunction in 3D

The concept of streamfunction in 2D can be visualized(extended) into 3D
flow. It repersents two family of surface whose intersection define streamline
[3 ]. Following Bear( 1972), for divergence free flow and incompressible fluid,
the velocity field in 3D can be represented intermes of two scalar functions
ψ and χ is

u = ∇ψ ×∇χ, (4.5)

where ψ and χ are bi-streamfunctions.
Following the above definition, the continuity equation is

∇. (∇ψ ×∇χ) = 0. (4.6)

Since the cross product of must lie in both surfaces, their intersection de-
fines streamline. Bi-Streamfunctions have significant role for time of fight
coordinate system.
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4.1.2 Time of flight

Time of flight is the travel time of passive particles along streamline. For
steady state, streamline are traced out by following the physical trajectory of
passive particles with in a reservoir, so that the velocity field u is tangential
to streamline at every point along streamline. According to [3] time of flight
τ along streamline Γ is represented as

τ =

∫
Γ

φ

|u|
dξ, (4.7)

where dξ is spatial coordinate.
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4.1.3 Pollocks method for tracing streamlines

To use streamline time of flight as spatial coordinate is a unique feature for
streamline simulation. Thus it is important to consider the computation of
time of flight. It is common to use the semi-analytical Pollocks method to
obtain streamline and time of flight in 3 dimensional regular grid blocks. For
every grid cells, Pollocks method is assumed piece wise linear approximation
of velocities in each direction. The velocities are given as

ux = ux1 + cx (x− x1) ;

uy = uy1 + cy (y − y1) ;

uz = uz1 + cx (z − z1) ,

(4.8)

Figure 2: Pollock’s construction of streamline

where (x1, x2, y1, y2, z1, z2) are the corners in the cell and (ux1, ux2, uy1, uy2, uz1, uz2)
are fluid velocities on each of the six faces of the cell see Figure(2). These
velocities on the faces s are usually provided by solving pressure equation
(2.24) numerically. The coefficients are found directly from the differences
of the Darcy’s velocities on each of the cell faces

cx =
(ux2 − ux1)

(x2 − x1)
, cy =

(uy2 − uy1)

(y2 − y1)
, cz =

(uz2 − uz1)

(z2 − z1)
. (4.9)

For incompressible fliud flow, we have ∇.u = 0. By applying this to equation
( 4.8) becomes

cx + cy + cz = 0. (4.10)
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The above eq(4.10) implies that for an incompressible flow, the discrete
solution conserves flux locally. The differential equations for streamline
trajectories and time-of-flight within the gridblock are given as

dτ

φ
=
dx

ux
=
dy

uy
=
dz

uz
. (4.11)

To compute time of filght, consider a particle that travel from a point
(x0, yo, zo) in the inlet cell to any point (xi, yi, zi) in any of the exit cell
in the x, y ,z direction. The time of flight can then be obtain by integrating
equation(4.11) and together with linear velociteis given in equation(4.8) is

∆τxi
φ

=

∫ xi

xo

dx

uxo + cx (x− xo)
=

1

cx
ln

(
uxi
uxo

)
;

∆τyi
φ

=

∫ yi

yo

dy

uyo + cy (y − yo)
=

1

cy
ln

(
uyi
uyo

)
;

∆τzi
φ

=

∫ zi

zo

dz

uzo + cx (z − zo)
=

1

cz
ln

(
uzi
uzo

)
.

(4.12)

In Pollocks method, the actual cell time of fight for a particle is given as the
minimum positive time of flight, that is

∆τ = min
∆τ>0

(∆τx1,∆τx2,∆τy1,∆τy2,∆τz1,∆τz2) . (4.13)

The exit coordinate can then be found by rearranging eq (4.12)

x = xo + uxo

(
ecx ∆τ

φ − 1

cx

)

y = yo + uyo

(
ecy ∆τ

φ − 1

cy

)

z = zo + uzo

(
ecz ∆τ

φ − 1

cz

)
.

(4.14)

4.2 Semi-analytic expression for the sensitivity

4.2.1 Time of flight sensitivity

Time of flight sensitivity is basic concept to obtain streamline based-calculation
of the sensitivities for reservoir responses. Once time of flight sensitivities
are found, it can be possible to find sensitivities that can be related to time
of flight sensitivities. Therefore, it is crucial to find time of flight sensitivities
first. Referring the definition of time of flight (4.7)
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τ =

∫
Γ
s(x)dr,

where s is slowness function, and it is given as

s(x) =
φ(x)

|u(x)|
,

where u is the Darcy’s velocity. By assuming that each reservoir paramter
mi is constant inside grid i. Then, the sensitivity of time of flight τ with
respect to a reservoir parameter mi along streamline Γi is given as

∂τ

∂mi
=

∫
Γi

∂s(x)

∂m(x)
. (4.15)

For instance, the sensitivity of time of flight τ with respect to permeablity
Ki along streamline Γi is given in [13]

∂τ

∂Ki
=

∫
Γi

∂s(x)

∂K(x)
=

∫
Γi

−s(x)

ki
= −∆τ

ki
(4.16)

4.2.2 Arrival time sensitivities

Arrival time measures the time takes a quantity to propagate from one point
to a reservoir to another. As it is indicated in [3], it is possible to find the
arrival time sensitivity that is related to time of flight sensitivities. In history
matching problem, data is often measured at the producer(wells). Thus, it
is important to compute the sensitivities of the reservoir responses at the
given wells. Arrivel time sensitivities for each well k can then be found by
flux weighted average [1],

∂tj
∂mi

=
1

q

Nsl∑
l=1

ql
∂tj,l
∂mi

, (4.17)

where Nls the total number of streamlines connected to the well and q is
the total flux in the well.

4.2.3 Time-shift sensitivity

The time-shift is described in section (3.5) and, it measure for how much
a simulated production curve should be shifted in time to maximaize the
correlation with an observed production-response curve.The time of shift
sensitivity with respect to parameter m is then defined as the average of
the travel-time sensitivities given in (4.17) for each well k is

∂∆tk
∂mi

=
1

Nd

Nd∑
j=1

∂tk,j
∂mi

. (4.18)
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Chapter 5

5 Result and discussion

5.1 Synthetic cases

Parameterization and pixel based methods are considered for estimation of
permeability field based on the synthetic watecut data. Synthetic data is
obtained from the true permeability field. In all of the examples, two phase
flow of oil and water are considered. The porosity is assumed constant, φ.
Initially, the reservoir is saturated with oil with viscosity, 1 centipose. In
the center of reservoir one injector is placed and starts to inject water with
viscosity, 1 centipose. In each corner, production wells are placed in such
way that, well1 is placed on the left bottom, well 2 on the right bottm, well
3 on the left top and well 4 on the right top corner of the reservoir. The
pressure is set up at the producer, P0 = 0 and at the injecter, P1 = 1.
One thousand streamlines are used. Different examples are considered in
the following sections. Through out all examples the initial permeablity is
assumed constant and plotted in Figure 3. In the relative and objective
function figures. (The word param stands for paramterization method and
standard stands for pixel method.)

Figure 3: Initial permeability

5.1.1 Case 1

In this example, basis vectors that correspond to discretized Gaussian radial
base function are applied on 40× 40 computational grid cells. The domain
size of the grid is 10× 10 (dimentionless). 9× 9 basis points are distributed
uniformly (since we consider circular contours of basis funnctions) with pa-
rameter shape, σ = 3. Thus, 81 total sets of basis functions are possibly
incorporated in the parameter estimation. This example and the next ex-
ample are made to test the parametrization method as well as to compare
with the pixel based method.
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Figure 4(a) shows that the true permeability which is generated based on
Gaussian radial base function with constant value. As the Figure 4(b)
shows in parameterization method, the updated permeability field is resem-
bles the true permeability field, eventhough it is not able to find the exact
region. The norm of relative error for the parameterization method decays
fast on early iteration and then it shows gradual increment see ( Figure 5
(top) ). This implies that there is still a small difference in the value of the
premeablty field which is acceptable in reality see( the axis). In Figure 4(c),
the updated permeability field for pixel method tries to find the region but
not really match the true permeability. This is becouse of non-uniqueness of
the inverse problem. That means there are different permeabilty field that
can match the data exaclty. This effect clearly demonstrated in Figure 5
(bottom) as the objective function decreases rapidly even if, the permeablity
field is not physically acceptable. In this case the relative error at the be-
ginning tries to increase and eventually decreases.

In Figure 6, base vector that is used to generate true permeability field is
shown. The selected base vector in Figure 7, is based on stepwise strat-
egy together with performance measurement. The updated permeability in
Figure 4(b) is the result of the refined stracture matrix. The selected base
vector is resembles to the base vector that is used to generate the true per-
meability field. This indicates that, the performance measurement used for
the selection of basis vectors has selected the best among possible sets of
base vectors.

The objective function, in Figure 5 is plotted norm of the objective function
value with respect to number of iterations. The figure shows the objective
function converges for the parameterization method more early and sharply
compared to standard method.
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(a)

(b)

(c)

Figure 4: True Permeability (a), updated permeability based on parameter-
iztion method (b) and updated permeability based on pixel method (c)
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Figure 5: Relative error (top ) and objective function for time-shift (bottom)
( paramterization (green), pixel ( blue))

Figure 6: base vector is that is used
to generate the true permeabililty

Figure 7: Selected base vector to rep-
resent to the updated permeabililty
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Figure 8: Watercut data resulted based on parametrization method (top)
and based on pixel method (top)

In Figure 8 watercut data in the production wells for initial, observed
and updated permeability for both methods are shown. As In Figure 8
clearly shows in both wells are able to match. The curve in the Figure 8
are resulted from injector to well 1, which is high preamble zone.
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5.1.2 Case 2

In this case, The true permeability field is generated by combination of two
base vectors and plotted in Figure 9(a). Twenty nine non-uniformly dis-
tributed basis points (29 total basis vectors) are possibly incorporated in the
parameter estimation with the chosen parameter shape, σ = 6. All other
setups are similar as previous case.

The Figure 9(b) shows the updated permeability field is resembles the true
permeability field, but still is not able to reduce in the lower permeable
zone. In Figure 10(a) the relative error for parameterization method de-
creases gradually at the beginning of iteration, and then starts increasing
sharply with different slop. Looking at Figure 9(b), the updated perme-
ablity in the upper corner is not a ble to find the right region compare to
lower corner.

In the pixel based method, as shown in the Figure 9(c) the updated per-
meability tries to find the region, but not able to characterize the true per-
meability as the previous example. In this case, the relative error increases
sharply and it starts decreasing. Figure 10(b) shows the objective function
decreasing while the updated permeability are not able to characterize the
permeability field as the permeability field has pixel based variation. This
may lead to non-unique solution. In another way round there are a lot of
possibilities to change the permeablity field which results in decreasing the
objective function.

In Figure 10 (c) the dot points are just to show the behaviour of objective
function which is resulted for each of the selected basis vectors. As it is
observed, the objective function deceases until no change in the value and
then shows large decreament for the selected base vector for the second time
and shows finally gradual decreament for the last step.
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(a)

(b)

(c)

Figure 9: True permeability (a), updated permeability based on
parametrization method (b) and updated permeability based on pixel
method (c)
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(a)

(b)

(c)

Figure 10: Relative error (a) for both method ( pixel (blue) and parame-
terization (blue) ), norm objective function based on pixel method (b) and
norm objective function based on parameraization method (c)
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Figure 11: Watercut data at well1 and well2 resulted based on parametriza-
tion method for observed data, updated data and initial data )
.
The watercut data are able to match in both wells as in indicated in Figure
11.The watercut data in Figure 12 are able to match in both wells. Since
there is no any change in permeablity field, we are not able to see any effect
on the watercut data at well3. But in the pixel based method where high and
law permeable zone ( well 1 and well 4 ) are not able to match as indicated
in Figure 13 compared to the parameterization method.
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Figure 12: Watercut data at well3 and well4 resulted based on parametriza-
tion method ( observed data (blue), calculated data (red ) and initial data
(green)
.
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Figure 13: Watercut data resulted based on pixel method ( observed data
(blue), calculated data (red ) and initial data (green) )
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5.1.3 Case 3

As it is described in chapter 3, the permeability distribution can vary in
a manner determined by the shape and support of the basis functions. To
investigate the effect of the parameter shape 9 × 9 regularly distributed
base points are considered. Therefore, 81 possible basis vectors are incorpo-
rated in the parameter estimation. Then seven different values of parameter
shapes are used to analyses how the permeability field varies with respect
to parameter shape. All other setups are similar to previous cases. The
updated permeability field results are plotted from Figure 12 to 18. The
distribution of these basis points are shown in Figure (23 ) and the true
permeability field is plotted in Figure (14). These plots clearly show that
the selection of parameter shapes has effect on variation of permeability
distribution. In this particular case, the updated permeablity field that cor-
respondes to Figure 13 to 16 are able to charcterize the true permeability
field. But the updated permeability in Figure 15 and Figure 16 are not
able to charachterize. For parameter shape values of σ = 1 and σ = 2 the
basis vectors are not able to identify the pereambility field since it covers
very small area. In case of parameter shape 7 it covers very large area as
indicated in Figure ( 18)
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Figure 14: True Permeability Figure 15: Updated permeability for σ = 1

Figure 16: Updated permeability fro σ = 2 Figure 17: Updated permeability for σ = 3

Figure 18: Updated permeability for σ = 4 Figure 19: Updated permeability for σ = 5

Figure 20: Updated permeability for σ = 6 Figure 21: Updated permeability for σ = 7
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Figure 22: basis vectors used to generate true permeability

Figure 23: The distibuted basis points (81)

The basis vectors that is used to generate the true permeabiltiy field are
plotted in Figure 22 and the uniformly distributed basis points are plotted
in Figure 23.
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Figure 24: The selected base vector in the first step (top left), The selected
base vector in the second step (top right) and The selected base vector in
the third step (bottom)

Figure 24, shows the selected basis vectors at each step. The updated
permeability in Figure (20) is the result of the combination of the selected
basis vectors. The selected basis vectors are resembles to the basis vectors
in Figure 22 that are used to generate the true permeability even though
they are not in the right region.
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Figure 25: Relative error for σ = 1(top left), for σ = 2 (top right), for σ = 3
(middle left), for σ = 4 (middle right), for σ = 5 ( bottom left), for σ = 6
(bottom right)

The norm of relative errors that corrosponds to each σ with respect to
number of iteration are plotted on Figure 25. The norm of relative error
for all value of σ are shown increament, but the value of relative error for
σ = 1 and σ = 2 that corresponds to the updated permeability field in
Figure 15 and Figure 16 resepectively are higher than the rest. This is
the reason that, the values of updated permeability for parameter shapes
σ = 1 and σ = 2 have great discrepancy as it is observed from the axis.
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Figure 26: norm of objective function for time-shift for σ = 1(top left), for
σ = 2 (top right), for for σ = 3 (middle left), for σ = 4 (middle right), for
σ = 5 ( bottom left), for σ = 6 (bottom right)

The behavoir of the objective function for time-shift that related to dif-
ferent paramter shape are plotted in Figure 26. All these figures shows
approximalty the same perforamnce in sense of reducing the the objective
function. All of the objective function converges at early iteration compare
to objective function for the case where σ = 2,
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Figure 27: True permeability (top left), updated permeability (top right),
relative error (bottom left) and norm of objective function for time-shift
(bottom right)

5.1.4 Case 4

In this example, basis vectors that correspond to discretized Gaussian radial
base function is applied on 41 × 41 computational grid cells. The possible
basis vectors are the same as the previous case 3. The chosen parameter
shape is, σ = 7.

The true and updated permeability field are plotted in figure (27) (top left)
and figure 27 (top right) respectively. The high-permeable distribution in
true permeability field trends from north west to south east. As figure 27
( top right) indicates that the permeability field is able to find the region,
but not able to characterize the permeability field. The relative error in
figure 27 (bottom left) is increasing in each of iteration while the behaviour
of objective function is decreasing in all of the selected basis vectors see
Figure 27 (bottom right)
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The definition and formulation of time-shift sensetivity are clearly persented
in section (4.2.3). This concept is cleary shown in figure 28. The water-
cut data and sensitivity based on both initial and updated permeability are
plotted in Figure 28.). It is reasonable to get lower sensitivity in high per-
meable region of the updated permeability field as indicated in Figure 27
(top right). The watercut data in well1 are not able to observe any change
except very small difference at the beginning of the production curve. This
is cleary manifested in the senstivity plotes as we are able to observe very
small change near in the area of injecter well. The watercut data are able
to match perfectly in well3 compare to well2 and well4. This is due to sen-
sitivity at upper left corner for updated permeability is quite uniform and
lower compare to the other. Thus, the time takes to shift the calculated
production curve was earlier than the other. Infact the watercut data at
well 2 and 3 are alse able to match in a good way.
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Figure 28: Sensitivity based initial permeability (top left), sensitvity based
on updated permeability (top right),watercut data at well1 (middle left),
watercut data at well2 (middel right), watercut data at well3 (bottom left)
and watercut data at well4 (bottom right)
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5.2 Conclusion and recommendation

The main purpose of this thesis was to investigate history matching with
reduced parameterizaton. The purpose of reduced parameterizaton was to
regularize the inverse problem encountered in history matching. Regular-
ization by parameterization was implemented in this work. The parameter-
ization structure was updated sequentially by using stepwise strategy.

The simulation results in case 1 and case 2 demonstrated, parameterization
method performs well in terms of characterizing permeability field and min-
imizing the objective function compared with pixel based method. For pixel
based method, indicated the property of non-unique problem. As the per-
meability field has pixel based variation, there are usually many parameters
that are equally good in approximately matching the data which may lead
to unphysical estimation.

Then the effect of parameter shape on parameterization method was in-
vestigated in case 3. The simulation results showed that the selection of
parameter shape has effect in a sense of characterizing permeability field.

The last case, the simulation results showed that the updated permeability
tried to find the region, but it did not able to characterize the true perme-
ability field. This is due to limited amount of avaliable information as it is
only watercut data is considerd.

Generally the method has improved the non-unique problem and was able
to give expected result for the simple test cases. Due to the complexity of
history matching problem, the regularization method was not able to im-
prove the performance of ill-posed for the last case.

In this work, objective gradient base function is applied for the performance
measure. But linearization of model response can also be applied to inves-
tigate the effect of the performance measurement. In addition considering
more information and prior knowledge can be used to improve the results.
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Nomenclature

Symbol Description
α fluid phase
α step length
∆tk time-shift at well k
∆k trust- region radius
Γ the path of streamline
λ trust-region parameter
λα mobility of phase
µ viscosity in centipose
φ porosity
Ψ Stream function in 2D
ψ, χ Bi-Stream function in 3D
ρ density in kg/m3

τ time of flight
ξ arc-length
dcalj calculated data j

dobsj observed data j

F fractional flow of water
f objective function
i, l cell indexes
k well index
kw relative permeability for the wetting phase
knw relative permeability for the non-wetting

phase
m size of model space
n size of data space
Nd number of data points
Nw number of wells
Nsl number of streamlines
p pressure in Pa
Pc capillary pressure
G flow rate from source or sink in m2/day
S saturation of water
s(x) slowness function
t time
tcalk calculated reference time at well k
tobsk observed reference time at well k
wj weight of data j
d data vector
Dk diagonal scaling matrix
G linear forward operator
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g gravitational acceleration constant
I identity matrix
r residual vector
u the Darcy velocity in m/day
P Permeability field
S stractural matrix
C Coefficient vector
σ Parameter shape
Γ amplication factor
B basis points
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