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Preface

Methods for probability density estimation are traditionally classified as either parametric
or non-parametric. Fitting a parametric model to observations is generally a good idea
when we have sufficient information on the origin of our data; if not, we must turn to
non-parametric methods, usually at the cost of poorer performance.

This thesis discusses local maximum likelihood estimation of probability density func-
tions, which can be regarded as a compromise between the two mindsets. The idea is to
fit a parametric model locally, that is, to let the parameters and their estimates depend on
the location. If the chosen model is close to the true, unknown density, we keep much of
the appealing properties of a full parametric approach. On the other hand, local likelihood
density estimates have performance comparable to well known non-parametric methods,
even though the locally fitted parametric model differs from the true density in a global
sense.

Although traditional methods withstand the test of time as excellent options in many
situations, the local maximum likelihood estimator opens up a range of applications. Hjort
and Jones [1996], who will serve as the main reference for this thesis, call it semi-parametric
density estimation, as it is particularly useful when we have partial knowledge on the
shape of the unknown density, but not enough to trust the ordinary, global maximum
likelihood estimates. Further, many have built on the idea of locally parametric estimation
to applications beyond just density estimation, some of whom have been mentioned and
included as references throughout the following chapters.

One-dimensional density estimation will, however, be the primary focus here, with
particular emphasis on large sample theory. The main results concern asymptotic bias,
which is shown to have a larger order than the bias of traditional kernel estimation as the
sample size increases to infinity, and the bandwidth decreases towards zero. Nonetheless,
in practical situations with reasonable sample sizes, the local likelihood estimator is shown
to perform very well, with an appealing robustness against under- and oversmoothing.
Indeed, no experiment performed show signs of deterioration of local likelihood estimates
compared to kernel estimation as the sample size grows.

Chapter 1 introduces the notion of likelihood, with basic definitions, examples and
properties, as well as some historical remarks. Much of the theory rests upon smoothness
conditions that must be imposed on the functions involved. They are stated in some
theorems, but most arguments are heuristic of nature.

Chapter 2 motivates the need of modifications to the ’ideal’ world of likelihoods in order

i



ii

to accommodate problems encountered in real life.
The local likelihood function is introduced in Chapter 3 along with some examples of

its usefulness in different disciplines of research. Since many results on local likelihood
estimation will be compared with equivalents for the non-parametric kernel estimator, a
section describing the two mechanisms is included.

Chapters 4, 5 and 6 contain the main results of the thesis. First, some results on
asymptotic variance are reviewed, but asymptotic bias receives most of the attention.
Section 4.4 is perhaps of particular interest since it is shown that both sources for bias,
as we will see arise, have convergence rates depending on the number of parameters in
the parametric family, contrary to only one as Hjort and Jones [1996] claim. Simulations
then follow to see how the estimator behaves in some constructed situations, especially for
bimodal data. A section on bandwidth selection is included as well.

Estimation of densities with bounded support is discussed in Chapter 6. In short, it
is demonstrated here that local likelihood estimates perform very much like the kernel
estimator or local polynomial estimation near boundaries, depending on which parametric
family we choose.

The treatment is concluded with a short review of the popular Cox regression model in
light of partial and local likelihood.

The present work would not see the light of day without the pedagogical skills of my
two supervisors, Hans A. Karlsen and Dag Tjøstheim, and the steadfast support they have
given me the last couple of years. I have truly appreciated our sessions together, and I
applaude their ability to let me take the time I need to get my head around the various
concepts encountered during the process.

I would also like to thank my fellow students at the Departement of Mathematics for
creating the social and positive environment that has made me look forward to get out of
bed (almost) every morning. I want to mention my two roomies at the sixth floor, Torbjørn
and Silje, in particular. Our endless discussions on topics ranging from existential to trivial,
have been most enlightening.

Last, but certainly not least, I thank my absolutely wonderful wife, Karina, and our
little boy Kristian, for sticking around, keeping me sane and reminding me each and every
day what life is all about.
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Notation

I have tried to apply standard notational conventions throughout the thesis. These include:

Rk The k-dimensional Euclidean space
X, y, θ, . . . Vectors and matrices
0 The zero vector
XT The transpose of a matrix or vector
diag(·) Diagonal matrix
X, Y, Z, . . . Stochastic variables
f(x) = O(g(x)) as x→ a lim supx→a|f(x)/g(x)| <∞
f(x) = o(g(x)) as x→ a lim supx→a|f(x)/g(x)| = 0
P→ Convergence in probability
a.s.→ Convergence almost surely
∇ Gradient vector
∇∇ Matrix of second partial derivatives
IA The indicator function for the set A
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Chapter 1

Likelihood

A common task for statisticians is parameter estimation. The list of situations in which
we use observed data to say something about the underlying model from which the ob-
servations originate, is seemingly endless; including regression- and time series analysis,
probability density estimation, as well as various applied problems within natural sciences,
medical and social research. Often, we assume that observations stem from a certain class
of models, determined up to a set of parameters. We will hereafter designate this class a
parametric family. The task is then to construct a functional from the observations to the
set of possible parameter values, the parameter space, in such a way that the functional
value, the estimate, which may be a vector, is as close to the true parameters as possible.
Through the last couple of centuries, a number of different paths to good parameter esti-
mation have been pursued, and many of these are now used on a day to day basis. The
term likelihood covers a range of popular methods of estimation, and this chapter will serve
as an introduction to the topic before we delve into the more central parts of the thesis.

1.1 Definition

Let x = (x1, . . . , xn) be a realization of the stochastic variable X with probability density
function fX(x|θ), where θ ∈ Rk is a parameter about which we intend to do inference.
Based on the observed data, it is in many cases possible to intuitively estimate the un-
known parameter by considering different values for it, and determine if one value is more
reasonable, or likely, than some other value. This is a subjective exercise, and does not
guarantee that our estimate is in fact the most likely. What we need is a likelihood func-
tion, a function that, given the observed data x, yields larger values for more likely values
for θ. If such a function should exist, finding the most likely value for θ will be reduced
to the problem of locating a possible global maximum for the likelihood function.

The likelihood is defined as the joint density function of the observed data, considered
as a function of the unknown parameter, θ:

L(θ|x) = fX(x|θ). (1.1)
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2 Chapter 1. Likelihood

Given some number or vector θ, L(θ|x) is the probability of observing x if θ is the true
parameter value (the discrete case), or in the continuous case, the probability density of
the stochastic variable X at the point x, given θ. The likelihood function can thus be
interpreted as how well different values for the parameter explain the observed data. Note
that the likelihood function is not a probability function, as it does not necessarily integrate
to one with respect to θ.

One might think that there are other functions that measure the reasonability of pa-
rameter values, but it will be shown later on that the likelihood function as defined above,
possesses many neat properties, and in some sense is the optimal way of creating such a
function.

The numerical value of the likelihood function is not interesting in itself. We want to
know if the functional value in one point differs from the value in some other point, and
if so, by how much they differ. It is common to consider the logarithm of the likelihood
function as it will often be easier to analyse:

l(θ|x) = log L(θ|x).

We can illustrate the above discussion with a very simple application of the likelihood
function. Suppose x = (x1, . . . , xn) consists of n independent Bernoulli(p)-trials, each with
probability mass function (pmf) P (X = x) = px(1− p)1−x. We want to use the likelihood
function to estimate the unknown parameter p based on x. By independence, their joint
probability function, and hence the likelihood function, is given as the product of each of
the pmf’s:

L(p|x) =
n∏
i=1

P (X = xi)

=
n∏
i=1

pxi(1− p)1−xi

= ps(1− p)n−s,

where s =
∑n

i=1 xi. Upon taking logarithm, we get

l(p|x) = s log p+ (n− s) log (1− p).

Differentiating the log-likelihood and equating it to zero will yield a local maximum or
minimum.

∂

∂ p
l(p|x) =

s

p
− n− s

1− p
= 0,

with solution
p̂ =

s

n
= x.

By differentiating once more, it is easy to verify that p̂ actually maximizes l. The estimator
p̂ for p is called the maximum likelihood estimator (MLE), and the procedure above is quite
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standard for obtaining MLEs in simple cases. The derivative of the log-likelihood function
with respect to the parameter θ is called the score function u(θ) (which is a vector u(θ)
of partial derivatives if there is more than one parameter), and the MLE is the solution
of the score equation, u(θ) = 0 (or u(θ) = 0 in the multi-parameter case). In practical
situations, it is usually not possible to obtain an analytical solution of the score equation,
so numerical methods must be applied.

Finding a global maximum is one thing, but the likelihood function contains more
information for us to take advantage of. For instance, the curvature of the likelihood
function evaluated at the MLE is called the observed Fisher information. Large Fisher
information means that the log-likelihood function has a clear spike, or in other words,
the MLE is much more likely to be true than other possible values nearby. Small Fisher
information could mean that there are other values that are almost equally likely. In fact,
we will show later in this chapter that the asymptotic variance for the maximum likelihood
estimator under some regularity conditions is the inverse of the Fisher information, so
we can use the second derivative of the log-likelihood function to approximate confidence
intervals.

The idea of likelihood can be expanded and generalized in many directions. One can
use likelihood to estimate coefficients in regression problems, or to do factor analysis in
multivariate statistics. One can also modify the likelihood function to partial likelihood
(chapter 2) and local likelihood (chapter 3 and onwards) to mention a few examples. It is
therefore common to speak of likelihood methods as a large collection of procedures and
algorithms in statistical analysis, which are based on the idea of a likelihood function as
defined by (1.1).

Maximum likelihood theory has not always been as polished as it appears today. Several
conjectures and methods have been proven wrong and unusable. Stigler [2007] summarizes
the evolution from the first intelligent attempts on finding the the most probable solution
to a parametric problem to the theory as it stands in modern statistical analysis. Pearson
and Filon [1898] published a method for parameter estimation in a general multivariate
and multi-parameter setting, but the approach was soon rejected by Pearson himself, as it
did not apply to many problems.

Fisher [1920] discovered sufficiency. Fisher first came to the conclusion that maximiz-
ing the likelihood always led to a sufficient statistic, but quickly formulated the weaker
statement that any sufficient statistic maximizes the likelihood. He later realized that a
sufficient statistic of the same dimension as the parameter did not always exist, so he in-
troduced the term efficiency : the asymptotic variance of an estimator should be as small
as possible (i.e. it reaches the Cramér-Rao lower bound). He proved that if there exists
an efficient estimator, then the maximum likelihood estimator is asymptotically efficient
under certain regularity conditions.

The theory of Fisher evolved further with correspondence between him and Hotelling
and critisism from Neyman. Joe Hodges presented in lectures in 1951 what is called
the ‘Nasty Ugly Little Fact’, a so-called super-efficient estimator, with smaller asymptotic
variance then the maximum likelihood estimator. This is dealt with in the regularity
conditions of Fisher. Hodges’ estimator, as well as other examples of estimators that are
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better than the MLE, created significant murmur at the time of their discoveries, but they
are now considered more as technical details than of practical importance. The theory
of maximum likelihood is both powerful and useful, even in situations where no general
theorem can be applied, but let us end this section using the words of Stigler [2007] :
’Maximum likelihood remains a truly beautiful theory, even though tragedy may lurk around
a corner’.

1.2 The likelihood function is optimal

Let us now follow the argument of Severini [2000, p.76] to show that the likelihood function,
as defined by equation (1.1), is indeed the best likelihood function in a certain sense.

Assume x is a vector of observations. Our task is to choose between two possible values
for the unknown parameter θ: θ1 or θ2. This is a very simple, but illustrative case. Based
on the likelihood function, there are two sets in the sample space, X1 and X2, such that
we will choose θ1 to be the true value for θ if x ∈ X1, and likewise let θ = θ2 if x ∈ X2.

In this setting, there are two types of errors that might occur: We observe x ∈ X1

when, in fact, θ = θ2, or we observe x /∈ X1 even though θ = θ1. It is now reasonable
to choose X1 to be the set that minimizes the probability of the sum of the two possible
errors. Let Q(X1) denote this probability:

Q(X1) = P (X ∈ X1|θ2) + 1− P (X ∈ X1|θ1).

Minimizing Q(X1) is equivalent to minimizing∫
X1

f(x|θ2) dx−
∫
X1

f(x|θ1) dx =

∫
X1

(f(x|θ2)− f(x|θ1)) dx

with respect to the set X1. It is easily seen that the set which gives the largest negative
contribution to the integral above is

X1 = {x ∈ X : (f(x|θ2) < (f(x|θ1)},

or in other words, we choose θ = θ1 if L(θ1) > L(θ2). This justifies our use of the word
likelihood, because choosing the most likely value for the parameter θ (i.e. maximizing the
likelihood function) minimizes the probability of making erroneous conclusions.

Note that the argument above is just a version of the Neyman-Pearson Lemma, see for
example Casella and Berger [2002], p. 388.

1.3 The likelihood principle

The business of likelihood is not without controversies. Before reaching conclusions about
the unknown parameter, we want to make sure that we have considered all available in-
formation. It is pleasing to know that the likelihood function itself is a minimal sufficient
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statistic [Pawitan, 2001, p. 56], that is, it captures all the information about the param-
eter available through an experiment, but nothing more; anything less will lead to loss of
information. Does this mean that we only need data and the likelihood function to do
inference, and additional information about the experiment is redundant? The likelihood
principle says yes:

Suppose we have an observation x from a statistical model {f(x|θ); θ ∈ Θ} and an
observation y from a statistical model {g(y|θ); θ ∈ Θ} where the parameter θ has the
same meaning in both models. Let L(θ) denote the likelihood function for the model
f , and let L̃(θ) denote the likelihood function for the model g. If, for given x and y,
L(θ) = L̃(θ) for all θ, then our conclusions regarding θ based on observing x should
be the same as our conclusions regarding θ based on observing y.

(Formulation from Severini [2000], p. 77). At first glance, the likelihood principle is
reasonable as it somehow ensures the objectiveness of our inference. It is, however, not
universally accepted, because there are many examples where the nature of the experiment
should be taken into consideration. A commonly used example follows next (from Pawitan
[2001], p. 195):

Suppose our task is to estimate the probability p of getting heads when tossing a coin.
First, we plan to toss the coin ten times, and of those ten tosses, we observe 8 heads. Then
we do a second experiment, where we plan to stop when the second tail is observed. In
the second experiment, we also observe 8 heads. How do we proceed to estimate p? The
likelihood function is the same in both experiments:

L(p) = constant× p8(1− p)2.

By the likelihood principle, we should therefore reach the same conclusion about p in both
experiments.

Suppose now that we wish to test H0: p = 0.5 versus H1: p > 0.5. The p-value from
the first experiment is

p1 = P (X ≥ 0.8|p = 0.5)

=
10∑
x=8

(
10

x

)
0.510

= 0.055,

thus we would not reject the null-hypothesis at a 5% level. The p-value from the second
experiment is given by

p2 = P (X ≥ 0.8|p = 0.5)

=
∞∑
x=8

(x+ 1)0.5x+2

= 0.020,
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which means that we would reject H0 at a 5% level. This experiment is therefore in conflict
with the likelihood principle, as we will reach different conclusions about p, even though
the likelihood function in both cases are the same.

The example above illustrates why many statisticians do not believe that the likelihood
principle is valid. It should, however, not lead to its total rejection. In fact, Birnbaum
[1962] showed that the likelihood principle is equivalent to the sufficiency and conditionality
principles together, and these two principles are somewhat easier to accept.

Casella and Berger [2002, p. 292] defines an experiment E to be the triple (X,θ, f(x|θ)),
where X is a random vector with probability mass function f(x|θ) for some θ. We denote
by Ev(E,x) the inference we make about θ, and call it the evidence arising from the
experiment and the observations x, including knowledge of the experiment. The sufficiency
principle states:

Suppose we perform an experiment E, and T (X) is a sufficient statistic. If x and y
are sample data from E such that T (x) = T (y), then

Ev(E,x) = Ev(E,y).

Since T is sufficient, we know that it contains all information about θ. Therefore, the
sufficiency principle seems very reasonable as we should not gain any more or less evidence
from the same amount of information.

Suppose now that there are two experiments, E1 = (X1, θ, {f1(x1|θ)}) and E2 =
(X2, θ, {f2(x2|θ)}) where θ is the same in both experiments. Consider a mixture experi-
ment, E∗, where a random index J is chosen to be 1 or 2, each with probability 0.5, and
that EJ is performed after each trial. The conditionality principle states:

The evidence from a mixture experiment is equal to the evidence from the experiment
performed:

Ev(E∗,x∗) = Ev(Ej ,xj),

for j = 1, 2.

Birnbaums theorem states that the sufficiency and conditionality principles together
are equivalent to the likelihood principle, and the proof can be found, for example, in
Pawitan [2001], p. 198.

1.4 Some properties of the MLE

In this section we state some of the most appealing properties of the maximum likelihood
estimator. Recall from the historical discussion in Section 1.1 that, although the theory
of Fisher, Neyman and others is both beautiful and powerful, the discoveries of counter-
examples made it necessary to impose regularity conditions on f in order to prove theorems
on e.g. asymptotic normality and consistency. This is why many results in the theory of
likelihood begin with a phrase of the kind: ’Under appropriate smoothness conditions on f
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. . . ’. Such a formulation may seem a little strange, as any statement can be proved by just
imposing the necessary conditions for the statement to be true. However, the smoothness
conditions in the following theorems are reasonable, but necessary to make the proofs work.

Note further that when obtaining formal results, we usually define maximum likelihood
estimators only as roots of the score equation; we do not require them to be global maxima.

1.4.1 The invariance property

Suppose we do not want to estimate the unknown parameter θ, but rather a function of
it, say τ(θ). The invariance property of the MLE states that if θ̂ is the MLE of θ and τ(θ)
is any function, then τ(θ̂) is the MLE of τ(θ) in general. See Casella and Berger [2002], p.
319, for a short proof and a discussion on the formalities of this problem.

1.4.2 Consistency

One of the most appealing properties of the maximum likelihood estimator is consistency.
By imposing sufficient smoothness conditions on the density function f , we can show that
the MLE converges to the true value θ0. Schervish [1995, p. 415] proves convergence almost
surely for maximum likelihood estimators in parameter spaces not necessarily compact
through the following theorem:

Theorem 1.1. Let {Xn}∞n=1 be a sequence of iid (independent and identically distributed)
variables with density fX(x|θ) and let Θ denote the parameter space. Assume that the true
value for θ is θ0. Define for each Θ′ ⊆ Θ,

Z(Θ′, x) = inf
θ∈Θ

log

{
fX(x|θ0)

fX(x|θ0)

}
.

Assume that for each θ 6= θ0 there is an open set Nθ such that θ ∈ Nθ and Eθ0Z(Nθ, Xi) >
0. If Θ is not compact, assume further that there is a compact C ⊆ Θ such that θ0 ∈ C and
Eθ0Z(Θ \ C,Xi) > 0. Then the corresponding sequence of maximum likelihood estimators

θ̂n
a.s.→ θ0.

Instead of proving the formal version above, we can follow the heuristic argument of
Rice [1995, pp. 261-263] to establish weak consistency in the basic one-dimensional case
for a continuous variable:

Maximizing the log-likelihood l(θ) is equivalent to maximizing

1

n
l(θ) =

1

n

n∑
i=1

log f(Xi|θ).

From the law of large numbers, we get that

1

n
l(θ)

P→ E log f(Xi|θ) =

∫
log f(x|θ)f(x|θ0) dx. (1.2)
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One can now show that the θ that maximizes the left side of (1.2) (i.e. the MLE), converges
to the maximizer of the right side as n → ∞. This maximizer could most certainly be θ0

because the derivative of E log f(X|θ) is (smoothness conditions required)

∂

∂θ

∫
log f(x|θ)f(x|θ0) dx =

∫ ∂
∂θ
f(x|θ)
f(x|θ)

f(x|θ0) dx,

and inserting θ = θ0 gives∫
∂

∂θ
f(x|θ0) dx =

∂

∂θ

∫
f(x|θ0) dx = 0,

so θ0 is at least a stationary point.

1.4.3 Asymptotic normality

Under certain regularity conditions on f , the MLE is approximately normally distributed as
the sample size increases. As in the previous section, we start out by stating a formal version
of the theorem, and then illustrate the concept using a simplified argument. Theorem 7.63
of Schervish [1995, p. 421] states:

Theorem 1.2. Let the parameter space Θ be a subset of Rp, and let {Xn}∞n=1 be i.i.d.
given θ = θ0, each with density fX1(x|θ0). Let θ̂n be the MLE based on the n first observa-

tions. Assume that θ̂n
P−→ θ0. Further, assume that fX1(x|θ) has continuous second partial

derivatives with respect to θ and that differentiation can be passed under the integral sign.
Assume that there exists a function Hr(x,θ) such that, for each θ in the interior of Θ and
each k, j,

sup
‖θ−θ0‖≤r

∣∣∣∣ ∂2

∂θk∂θj
log fX1(x|θ0)− ∂2

∂θk∂θj
log fX1(x|θ)

∣∣∣∣ ≤ Hr(x,θ0),

with limr→0 Eθ0Hr(X,θ0) = 0. Assume that the Fisher information matrix I(θ) is finite
and non-singular. Then, √

n(θ̂n − θ0)
d−→ N(0, I−1(θ0)).

For a simpler presentation, we follow the lemma and theorem as formulated and proved
by Rice [1995, pp. 263-264].

Lemma 1.3. Define I(θ) by

I(θ) = E

[
∂

∂θ
log f(X|θ)

]2

.

Under appropriate smoothness conditions on f (they can be formulated as in Theorem 1.2,
I(θ) may also be expressed as

I(θ) = −E
[
∂2

∂2θ
log f(X|θ)

]
.



1.4. Some properties of the MLE 9

We may now proceed to sketch a proof of the asymptotic normality of the MLE:

Theorem 1.4. Let X1, . . . , Xn, . . . be a sequence of independent and identically distributed
(i.i.d.) observations from the probability density or mass function f(x|θ), let θ̂n be the
MLE of the univariate θ based on X1, . . . , Xn, and let θ0 be the true value of θ. Under the
smoothness conditions mentioned above, the probability distribution of

√
nI(θ0)(θ̂n − θ0)

tends to a standard normal distribution.

Proof. Let l(θ) be the log-likelihood function. From a Taylor-series expansion we have

0 = l′(θ̂n) = l′(θ0) + (θ̂n − θ0)l′′(θ0) +R,

(θ̂n − θ0) =
−l′(θ0)

l′′(θ0)
,

n1/2(θ̂n − θ0) =
n−1/2l′(θ0)

−n−1l′′(θ0)
,

where the remainder R has been set to zero. First we consider the numerator for the last
expression, and find its expectation.

E [l′(θ0)] =
n∑
i=1

E

[
∂

∂θ
log f(Xi|θ)

∣∣∣∣
θ=θ0

]

=
n∑
i=1

∫ [
∂

∂θ
log f(x|θ)

∣∣∣∣
θ=θ0

]
f(x|θ0) dx

=
n∑
i=1

∫
∂

∂θ
f(x|θ0) dx

=
n∑
i=1

∂

∂θ

∫
f(x|θ0) dx

= 0,

because the last integral equals one. The numerator’s variance is

Var
[
n−1/2l′(θ0)

]
=

1

n

n∑
i=1

E

[
∂

∂θ
log f(Xi|θ)

∣∣∣∣
θ=θ0

]2

= I(θ0).

Next, we consider the denominator:

− 1

n
l′′(θ0) = − 1

n

n∑
i=1

∂2

∂θ2
log f(xi|θ0).

By the law of large numbers and from Lemma 1.3, the latter expression converges in
probability to

−E

[
∂2

∂θ2
log f(X|θ0)

]
= I(θ0).
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We have now that

n1/2(θ̂n − θ0) ≈ n−1/2l′(θ0)

I(θ0)
,

with expectation

E
[
n1/2(θ̂n − θ0)

]
= 0

and asymptotic variance

Var
[
n1/2(θ̂n − θ0)

]
=

I(θ0)

(I(θ0))2

=
1

I(θ0)
,

thus

Var(θ̂n − θ0) ≈ 1

nI(θ0)
.

The central limit theorem may be applied to l′(θ0), which is a sum of i.i.d. random variables:

l′(θ0) =
n∑
i=1

∂

∂θ0

log f(Xi|θ),

and the result follows from Slutsky’s theorem.

The argument above deserves a few comments. Firstly, the proof is not rigorous. Both
breaking off the Taylor expansion, the use of Lemma 1.3, as well as interchanging differen-
tiation and integration require smoothness conditions on f which are stated in Theorem
1.2. Secondly, the function I(θ) is the expected the Fisher information. Note that, as
indicated in section 1.1, small Fisher information results in large asymptotic variance, and
large Fisher information results in a smaller asymptotic variance of the MLE. Thirdly,
Theorem 1.4 is here proved for a univariate parameter only. In a multi parameter case, the
argument is similar, but the Fisher information is replaced by the Fisher information ma-
trix, whose inverse serves as the covariance matrix in the asymptotic normal distribution,
and consequently need to be assumed non-singular (see Theorem 1.2).

1.4.4 Stochastic properties of the score function

Before we observe data, the score function U(θ|X) = ∇ log l(θ|X) is a stochastic variable
(and is thus denoted using the upper caseU ). Knowing its expectation and variance is vital,
both for theoretical arguments (some of which we will encounter in later chapters), but also
in the development of numerical procedures to calculate estimates of parameters. Let θ
be the p-dimensional vector of parameters with score function U(θ|X) = (U1, U2, . . . , Up),
where Uj = ∂

∂θj
l(θ, X). Then we have that

• E(U(θ|X)) = 0
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• Cov(Uj, Uk) = −E
(

∂2

∂θj∂θk
l(θ, X)

)
= −E

(
∂Uj

∂θk

)
= −E

(
∂Uk

∂θj

)
,

the second of which is a generalization of Lemma 1.3. In other words, the covariance
matrix of the scores is equal to the expected Fisher information matrix. The proofs for
these claims are straightforward algebra, and can be found, for example, in Lehmann and
Casella [1998], Lemma 5.3.

1.5 Existence and uniqueness

Can we always find a maximum likelihood estimator? If we have found an MLE, can we be
sure that it is unique? These are perhaps the most important questions to ask in a general
setting, and the answer to both of them is, generally, ”no”. The optimality argument
of Section 1.2 will remain valid if the inequality signs < and > are replaced by ≤ and
≥ respectively. If the situation should arise that L(θ1) = L(θ2), which value should we
choose? Both of them maximize the likelihood and are thus MLEs.

If Θ is a subset of R1 or R2, it is easy to visualize likelihood functions with no maximal
value or likelihood functions that are periodic, such that global maxima exist in abundance,
but none are unique. Likelihood functions are, however, special due to their construction.
They are probability density functions considered as functions of a parameter, and thus
follow certain rules. Periodic likelihood functions are rare, but examples where existence
and/or uniqueness are not satisfied exist. Again, we have to identify what conditions that
suffice in order to guarantee a MLE to exist and be unique. The following theorem does
just that [Mäkeläinen et al., 1981].

Theorem 1.5. Let L(θ) be a twice continuously differentiable likelihood function with θ
varying in a connected subset Θ ⊂ Rp. Let ∂Θ denote the boundary of Θ. Suppose that

lim
θ→∂Θ

L(θ) = c, (1.3)

and that the Hessian matrix

H(θ) =

{
∂2L

∂θi∂θj
(θ)

}
,

of second partial derivatives is negative definite at every point θ ∈ Θ for which the gradient
vector

∇L = {∂L/∂θi}

is zero. Then there is a unique maximum likelihood estimate θ̂ ∈ Θ based on the sample
x, and the likelihood function attains

• no other maxima in Θ,

• no minima or other stationary points in Θ,

• its infimum value c on the boundary ∂Θ and nowhere else.
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The constant c is either a real number or −∞. A sequence θ1,θ2, . . . is said to converge
to the boundary ∂Θ if for every compact set K ⊂ Θ there exists an integer k0 ≥ 1 such
that for all k > k0, θk /∈ K. Consequently, if Θ = Rk, condition (1.3) means that the
functional value of any divergent sequence {θk} approaches c.

The easiest way to interpret the conditions may be to see them in the one-dimensional
case. The boundary is constant and the second derivative is negative, so the continuous
likelihood function will then have exactly one maximum.

1.6 Robustness and M-estimators

When we choose a parametric model for data fitting, we always run the risk of choosing
the wrong model. Estimating the mean and variance of a normal distribution is all well
and good if the data at hand is actually normally distributed, but is nothing short of a
catastrophe if the underlying model is exponentially distributed. In other words, the quality
of an estimator is not necessarily determined by its variance and bias only, but also by its
robustness against misspecification of the parametric model and/or flawed observations.

Casella and Berger [2002] present a simple illustration of this problem. The sample
mean is unbiased and has the smallest possible variance as an estimator for the population
mean in a normal distribution. If there are observations that are wrong for some reason
and much larger or smaller than the rest, however, the sample mean will be affected and
perhaps be driven far off its target. The sample median does not suffer very much from
this problem. We can actually let the largest half (roughly) of the observations drift off
to infinity without affecting the median at all. Thus, the sample median is more robust
against outliers than the sample mean, but, as we would expect, we must pay for increased
robustness by poorer performance in terms of more traditional measures; in the normal
case, the median/mean asymptotic relative efficiency is 0.64 [Casella and Berger, 2002, p.
484].

For independent observations x1, x2, . . . , xn, the mean minimizes
∑

(xi−a)2, the median
minimizes

∑
|xi − a|, while the maximum likelihood estimator maximizes

∑
log f(xi|θ)

(and thus minimizes the negative log-likelihood). We can then introduce a larger class of
estimators, defined as the minimum of a certain function

n∑
i=1

ρ(xi, θ), (1.4)

with respect to the unknown parameter, and where the specific choice of ρ depends on the
problem at hand. These estimators are called M-estimators (M for ”maximum likelihood
type” [Huber and Ronchetti, 1981]), and are often found by solving

n∑
i=1

ψ(xi, θ) = 0,



1.6. Robustness and M-estimators 13

where ψ(x, θ) = ∂/∂θ ρ(x, θ). The Huber estimator is an M-estimator designed to estimate
the mean of a population. It is defined as the minimum of (1.4), with

ρ(x) =

{
1
2
(x− µ)2 if |x− µ| ≤ k

k|x− µ| − 1
2
k2 if |x− µ| ≥ k,

[Casella and Berger, 2002, p.484]. For small deviations from the estimated mean, the
Huber estimator behaves like the sample mean, and for larger deviations, it behaves more
like the median. We can vary the parameter k, the tuning parameter, to adjust the level
of robustness. It is also easily checked that ρ is continuous and differentiable in this case.

Theoretically tractable estimators may not always be useful in practical situations. In
the next chapter we will look at some ways to deal with likelihood functions that are hard
to obtain, or too complicated to work with.
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Chapter 2

Variations of the likelihood

A few common variations of the likelihood function will be discussed next, the most im-
portant being the partial likelihood, that will be revisited in Chapter 7 in light of the main
topic in this thesis, local likelihood.

2.1 Definition of partial likelihood

In most real-world applications, obtaining the likelihood function and its maximum is not
as easy as in the example of Section 1.1. There are also situations where the standard like-
lihood function will produce misleading conclusions. These problems call for adjustments
to the theory such that it can be applied to a larger class of problems. One adjustment is
the partial likelihood function, introduced by Cox [1975]. Cox points at several motivations
for introducing partial likelihood, among others the study of problems in which the full
likelihood is complicated or impossible to obtain, and the reduction of dimensionality in
the presence of many nuisance parameters, i.e parameters of little or no interest.

Let Y be a random variable with probability density function fY (y|θ) = fθ(y), and
suppose Y can be transformed to new random variables (X,S) by a transformation not
depending on the unknown parameter. The joint density, and thus the likelihood function,
of (X,S) is given by

LX,S(θ|x, s) = fθ(x)fθ(s|x),

where the two factors in special cases are called the marginal and conditional likelihoods of
X and S respectively, see Section 2.4. Both factors can be analyzed by themselves, and this
is a useful simplification in many applications. In the examples presented below, the choices
of what to include in X and S respectively, are fairly clear. In other applications, this
separation is perhaps neither obvious nor unique, and should be chosen carefully in order
to maximize the efficiency. Suppose now that we have observations Y = (Y1,Y2, . . . ,Yn)
that are transformed into a sequence of Xs and Ss:

Y = (X1,S1, . . . ,Xn,Sn). (2.1)

15
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The full likelihood of (2.1) is

fθ(x1)
n∏
i=2

fθ(xi|di)
n∏
i=1

fθ(si|ci), (2.2)

where di = (s1,x1, . . . , si−1,xi−1) and ci = (s1,x1, . . . , si−1,xi−1,xi), and where c1 = x1.
The last product is called the partial likelihood based on S. Further analysis of the
nature of the unknown parameter θ can now be done based on the partial likelihood
alone, disregarding the first factor. One major strength of this procedure is that we do
not need to specify the first factor in any way if we know that it does not contain any
crucial information about θ. On the other hand, the biggest problem of partial likelihood
estimation is that the partial likelihood function does not carry all available information
about the unknown parameter, so we need to control the loss of information somehow.

2.2 Applications of partial likelihood

In the literature, there seem to be particular focus on applying partial likelihood in the
following settings:

• Situations with censored or missing data,

• stochastic processes consisting of several more or less distinct probabilistic models,
where some models are difficult to handle and/or not interesting to do inference
about, and

• splitting the parameter space into components of interest and nuisance parameters
such that the partial likelihood depends mostly (preferably only) on the parameters of
interest, and the disregarded factor depends essentially on the nuisance parameters.

The following example is presented by Wong [1986].
Suppose we observe J disconnected segments of a Markov chain,

[zn1 , . . . , zm1 ], [zn2 , . . . , zm2 ], . . . , [znJ
, . . . , zmJ

]. The values between zmi
and zni+1

are not
observed for some reason, and are missing. Suppose the one-step transition probabilities
within the observed segments depend on the parameter θ such that P (Zn = zn|Zn−1 =
zn−1) = pθ(zn−1, zn). The full likelihood function for the observed data is given by

L(θ|z) =
J∏
j=1

f(znj
|zmj−1

)

mj∏
nj+1

pθ(znj
|znj
− 1)

 . (2.3)

The likelihood function is here, without any transformation, factorized with two factors.
Comparing (2.3) with (2.2), we see that in this example the Xs describe the path from
one observed segment to the next, while the Ss are random variables within the observed
segments. The sequence {Xn} does not even need to be a Markov chain, and since we do
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not have much information to support a conclusion regarding this process, it will be hard
to conduct inference about θ based on the full likelihood. Luckily, according to Cox [1975],
we can just consider the partial likelihood, which in this example will be the second factor:

Lp(θ|z) =
J∏
j=1

 mj∏
nj+1

pθ(zn|zn−1)

 .
In situations like the example above, the missing segments will typically have a different,

and perhaps a more complicated, probabilistic structure than the observed ones. The
partial likelihood function will then serve as a path around the problem of guessing or
trying models with little evidence to be true, that would create great uncertainty in the
end result.

The next example, included by Cox [1975] and investigated further by Efron [1977],
shows how partial likelihood can be used to deal with censored data. It is often referred
to as the Cox regression model.

Consider an experiment with initially n individuals at risk of failure. Suppose we
observe the failure times of the individuals i1, i2, . . . , iJ to be t1 < t2 < . . . < tJ . The
hazard rate for subject i is assumed to be on the form

λi(t|zi) = λ0(t)Ψi(t, zi), (2.4)

where Ψi often is on the form Ψi(t, zi,β) = exp(βzi(t)), zi(t) is the vector of observed
covariates, and β is a vector of regression coefficients. Efron [1977] uses the following
real-world analogue to the above situation: Suppose we want to study the life-length of
residents at a senior-citizen’s facility. The residents move in at various ages, and their time
of death is recorded. Residents may also move out of the facility for reasons other than
death, and not all of them will have died at the end of the study. We observe a collection
of covariates for each individual, time-varying or constant, such as age, sex, blood pressure
or body weight, and our aim is to estimate β based on the observations.

The joint probability density function of the failure time of individual ij and the order
statistic {t(j)}Jj=1 can be factorized into the conditional probability that item ij failed at
time tj, given that exactly one item failed at that time (S given X), and the marginal
distribution of the failure times (X). The last factor can be hard to obtain, so we take
the first factor to be the partial likelihood. From the hazard rate (2.4), the conditional
probability can be shown to be [Efron, 1977]

P (ij failed at t = tj| one item failed at t = tj) =
Ψij (tj, zi,β)∑

i∈R(tj) Ψi(tj, zi,β)

where R(tj) is the risk set at time tj, i.e. the number of individuals on trial. The risk
set will vary in size as time goes by due to failures, but also due to censoring. Proceeding
as in (2.3), multiplying the conditional probabilities together give the partial likelihood
function:

Lp(β|t1, t2, . . . , tJ , zi(t)) =
J∏
j=1

Ψij (tj, zi,β)∑
i∈R(tj) Ψi(tj, zi,β)

. (2.5)
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Note that although the factor λ0(t) may be of interest, in this example it will play the role
of a nuisance parameter, and conveniently disappears from the partial likelihood function
due to the multiplicative structure of (2.4).

The important results of Efron [1977] are the efficiency calculations. It is shown that
under some regularity conditions, the asymptotic relative efficiency of the partial maximum
likelihood estimator (PMLE) compared to the full MLE is one in the example above,
even with censoring. This result is achieved by deriving the full likelihood function, and
calculating the ratio of the variances of the PMLE and MLE as the sample size increases
to infinity. Assuming Ψi to be on the form Ψi(t, zi,β) = exp(βzi(t)), (2.5) becomes

Lp(β) =
J∏
j=1

exp(βzi(t))∑
i∈R(tj) exp(βzi(t))

. (2.6)

Further, it is shown by Efron [1977] that the full likelihood of this experiment, when
λ0(t;γ) is a suitable parametrization of the baseline hazard of (2.4), is

L(β, γ) =

(
J∏
j=1

exp(βzi(t))∑
i∈R(tj) exp(βzi(t))

)
(2.7)

·

(
exp

(
−
∫ ∞

0

N(t,β)H(t,γ) dt

) J∏
j=1

N(tj,β)H(tj,γ)

)
where

H(t,γ)
def
= exp(γt),

and

N(t,β) = n
∑
R(t)

exp{βzi(t)}/
n∑
i=1

exp{βzi(t)},

which, if Ψi(t) does not depend on i, is proportional to the number of items at risk at time
t. The first term in (2.7) is the partial likelihood, and the second term will be disregarded.
We are now in the situation where we know the form of the disregarded term, so we can
proceed to calculate the ratio of the limiting variances in the two cases, as Efron [1977] does.
The details are not included here, but it is shown that under some general assumptions,
the covariance matrix of the PMLE will tend to the covariance matrix of the MLE, which
is the inverse of the Fisher information matrix obtained from (2.7). Also, it is shown by
examples that even though some of the assumptions are not completely satisfied, such
that too heavy censoring, the Cox regression model is close to efficient. In the examples
included by Efron [1977], censoring seems to have little effect on the efficiency of partial
likelihood estimation. This example will be revisited in Chapter 7.

2.3 Asymptotic evaluations

Before setting off to investigate the asymptotic properties of partial likelihood estimation,
it can be wise to ponder the basic framework. The most general definition of partial
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likelihood introduced by Cox, requires the researcher of a statistical problem to make a
choice on how to factorize the full likelihood function. This freedom is an advantage in
many applications, allowing one to subjectively adapt the estimation procedure to give the
best fit for the problem at hand, within the frames of well-established theory. On the other
hand, the lack of a precise definition of partial likelihood, poses a problem when we want
to study the behaviour of the estimators when the sample size increases to infinity. There
are two obvious ways to attack this problem. Either developing asymptotic theory for each
application, or imposing strict enough conditions on the partial likelihood function so that
the usual properties can be proven. Both approaches are explored in the next subsections.

2.3.1 AR(1)-process with missing segments

Consider the first example of section 2.2, and suppose the observed segments consist of
observations from an AR(1) model, i.e. Zt+1 = θZt+ εt, where Zt+1 and Zt are in the same
segment, −1 < θ < 1 and the εt’s are iid N(0, 1). The efficiency of the partial likelihood
estimator for the unknown parameter depends on how the model behaves in the missing
segments, and Wong [1986] considers a few such special cases.

Suppose first that the missing segments also follow an AR(1) model and have length
l, while the observed segments have length k. For simplicity, l and k are assumed to be
constant. If l/k is negligible, a lower bound for the ARE of θ̂ is close to one. Similarly, if
l→∞, the ARE approaches 1. The last result makes sense because the observed segments
are almost independent.

Secondly, suppose that the process shifts by an unknown amount µj for each new
unobserved segment, i.e. Zt+1 = θ(Zt +µj) + εt. Under some mild regularity conditions on
the µjs (uniform boundedness is sufficient), it can actually be shown that the partial MLE
is consistent, but the usual MLE is not.

Lastly, Wong [1986] considers the case where the shifts in the unobserved segments are
iid random variables with some unknown density function. After some tedious calculations,
it is shown that the efficiency of the partial MLE, θ̂, is close to one if the true value of θ
is not too close to one and l is large.

All three results above require involved calculations, and further calculations are of
course needed if other special cases should be considered.

2.3.2 The Cox regression model

The Cox regression model is studied extensively by, among many others, Aalen et al. [2008],
Efron [1977], Kedem and Fokianos [2002], Tsiatis [1981], and Wong [1986]. In particular,
it is shown that the asymptotic properties of the partial maximum likelihood estimator,
β̂, are similar to those enjoyed by the MLE based on the full likelihood function. We will
here reproduce the results of Tsiatis [1981] on consistency and asymptotic normality of the
PMLE in this model. The theorems are proved along the same lines as the corresponding
results for the ordinary MLE.
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Theorem 2.1. Let Z denote the vector of covariates in the Cox regression model, and
assume that E(Z exp(βZ)) is uniformly bounded in a neighbourhood of β. Assume also
that P (T ≥ T0) > 0, where T is the survival time of any individual, and T0 is the time at
which the study is terminated. Then there exists a sequence of solutions β̂n of the score
equation ∇Lp(β) = 0 such that β̂n

a.s.−−→ β

Theorem 2.2. Assume that E(Z exp(βZ)) is uniformly bounded in a neighbourhood of
β. Then the statistic

√
n(β̂ − β) converges in distribution to a multi-normal random

variable with expectation zero and covariance matrix equal to (I(β))−1, where I(β) is the
information matrix obtained from the partial likelihood function evaluated at the true value
β.

2.3.3 General theory

Wong [1986] establishes some general theory for the partial likelihood. Regularity condi-
tions must be applied to the partial likelihood function in order to prove consistency and
asymptotic normality. Let us follow Wong [1986] and start by stating consistency when
the parameter space Θ is compact. Let

rn(θ) = log(fθ0(xn|cn)/fθ(xn|cn)), RN =
∑N

n=1 rn

in(θ) = Eθ0(rn(θ)|cn), IN =
∑N

n=1 in

jn(θ) = V arθ0(rn(θ)|cn), JN =
∑N

n=1 jn

mn(θ) = rn(θ)− in(θ), MN =
∑N

n=1 mn(θ).

Here,
∏
fθ(xn|cn) is the partial likelihood function as defined in (2.2), and θ0 denotes

the true parameter value.

Theorem 2.3. Suppose Θ is compact, and suppose that for any θ 6= θ0, there exists an
open neighbourhood Oθ of θ whose closure Oθ does not contain θ0, and that there are
constants δ > 0, αN ↑ ∞ (which may depend on θ) such that

P

(
inf
θ′∈Oθ

IN(θ′)/αN > δ

)
→ 1, (2.8)

JN(θ′)/α2
N

P−→ 0 for all θ′ ∈ Oθ, (2.9)

The distribution of α−1
N MN(θ′) is tight1 in C(Oθ), where MN = RN − IN and C(Oθ) is the

space of continuous functions on Oθ. Then θ̂N
P−→ θ0.

Proof. See Wong [1986].

1For all ε > 0, there exists a K such that supN P (|α−1
N MN (θ′)| > K) < ε.
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IN(θ) is the Kullback-Leibler discrimination information, and condition (2.8) ensures
that we in the long run accumulate enough information to discriminate between

∏
fθ

and
∏
fθ0 , while condition (2.9) ensures that the variance of the (partial) likelihood ra-

tio converges in a proper manner. The tightness condition “forces” RN to approach its
expectation IN , and together with compactness, the theorem can be proved.

It is desirable to ease the condition of compactness in the previous theorem, consider
for example Θ = Rk. This is achieved by imposing the condition that there exists a
fixed, compact subset K of Θ such that θ̂ will eventually be contained in K, much in the
same way as for the consistency argument of Chapter 1. If this is the case, only slight
modifications of Theorem 2.3 are required to prove consistency of the partial maximum
likelihood estimator.

This section will now be concluded by stating sufficient conditions for asymptotic nor-
mality for the partial maximum likelihood estimator. The theory is again covered in depth
by Wong [1986]. Some notation is required; let

ln(θ) = log fθ(xn|cn), LN =
N∑
n=1

ln. (2.10)

The vector, matrix and triple array of the first, second and third derivatives of ln are
assumed to exist almost everywhere, and for simplicity we also assume Θ ⊂ Rk. Denote
the conditional score for the experiment xn|cn by un = l′n(θ0). Here, cn has the same
meaning as in (2.2). In the same manner as in Section 1.4.4, we have

E(Un|cn) = 0, vn = Cov(Un|cn) = E(−l′′n(θ0)|cn). (2.11)

Let UN =
∑N

n=1Un and VN =
∑N

n=1 vn.

Theorem 2.4. Suppose θ̂ is consistent for θ0 ∈ interior of Θ ⊂ Rn, and for each n, ln has
third order derivatives almost surely and (2.11) holds. Assume also that there are constants
aN ↑ ∞ and a neighbourhood O of θ0 such that

a−1
N VN

P−→ some positive definite matrix Q, (2.12)

a−1
N (−L′′N(θ0))

P−→ some positive definite matrix Q1, (2.13)

P

(
a−1
N sup

θ∈O
|L′′′N(θ)| < M

)
→ 1 for some constant M, (2.14)

a−3/2
n

N∑
n=1

E(‖un‖3|cn)
P−→ 0. (2.15)

Then
a

1/2
N (θ̂N − θ0)

d−→ N(0,Q−1
1 QQ

−1
1 ).
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2.4 Conditional and marginal likelihood

The definition (2.2) of partial likelihood is somewhat loose and unrestrictive. The only
thing we demand is that the likelihood function can be factorized, and that the factors of
interest carry enough information to do useful analysis. Conditional and marginal likeli-
hoods are special cases of the partial likelihood with stricter definitions.

Let X = (x1, x2, . . . , xn)T be a sample with likelihood function L(θ,X), where θ =
(ψ,λ) is the vector of parameters, separated into the parameters of interest, ψ, and nui-
sance parameters λ. A statistic T (X) is sufficient for λ if the conditional distribution of
X given T does not depend on λ [Casella and Berger, 2002, p. 272]. If T is sufficient for
λ, but not for λ and ψ together, then the likelihood can be written

L(θ,X) = fX|T (X|t;ψ)fT (t;ψ,λ),

and the conditional likelihood is defined to be the first factor;

Lcond(ψ|X) = fX|T (x|t;ψ),

[Severini, 2000, p. 279]. This is a genuine likelihood function because it is a probability
density function regarded as a function of x, but, again, we discard information by analyzing
only a part of the full likelihood. For details on this construction, see Kalbfleisch and Sprott
[1973].

Suppose now, on the other hand, that there exists a statistic S whose distribution
depends only on ψ, so the the full likelihood may be written

L(ψ,λ|X) = fS(s;ψ)fX|S(X|S;ψ,λ).

We now extract the marginal distribution of S for further analysis, and denote it the
marginal likelihood based on S [Severini, 2000, p. 298]. For a simple example of the
marginal likelihood, suppose X consists of independent observations from a normal distri-
bution with mean µ and variance σ2, and that we wish to estimate the latter. We know
that

∑
(Xi −X)2/σ2 is chi-squared distributed with n− 1 degrees of freedom, so that the

marginal log-likelihood for σ2 becomes

lmarg(σ2|X) = −
(
n− 3

2

)
log σ2 −

∑
(Xi −X)2

2σ2
,

with maximum σ̂2 =
∑

(Xi−X)2/(n−3). Thus, the marginal likelihood introduces a little
more bias than the ordinary maximum likelihood estimator we get when maximizing with
respect to both parameters.

There are several other strategies to dealing with nuisance parameters, some of which
are discussed by Severini [2000]. These include the integrated likelihood, where we integrate
out the nuisance parameters with respect to some weight function, and the profile likelihood
in which the nuisance parameters are replaced by their respective maximum likelihood
estimates, calculated while keeping the parameters of interest fixed.
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The local likelihood, however, modifies the traditional maximum likelihood with a rather
different motivation than dealing with nuisance parameters. In the recent years, its appli-
cations have been explored in a wide range of diciplines, some of which will be mentioned
in later chapters. Our main focus from now on will be probability density estimation using
local likelihood, both from a theoretical and practical point of view.
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Chapter 3

Introduction to local likelihood

3.1 Motivation and definition of the local likelihood

function

Up to this point, we have focused on the parametric aspect of estimation. There are,
however, many applications in which a full parametric approach may not be the best path
to a good result. For example, suppose you were to estimate an unknown probability
density function, but had no prior knowledge of the true density whatsoever. Choosing
a parametric family would be plain guesswork and could result in both good, but most
certainly also bad conclusions. An alternative approach would then be the traditional non-
parametric kernel estimator, f̂(x) = n−1

∑n
i=1Kh(x − xi), where Kh(z) = h−1K(h−1z),

K(z) is a unimodal, symmetric density, and n is the total number of observations, with
its well known properties, advantages and drawbacks. The purpose of this chapter is to
introduce a local likelihood function, which, by varying the bandwidth h, can be interpreted
on a continuous scale from the non-parametric kernel estimator, to the fully parametric
likelihood function.

As we will see, density estimates calculated using local likelihood are good in practice,
but there is usually not much to gain in terms of theoretical performance. The variance is
the same as the kernel estimator, and the bias is sometimes better (and sometimes worse).
It is nonetheless important to consider, both for the sake of completeness, but also because
the local likelihood function is the entry point to more interesting applications, real-world
as well as more theoretically motivated.

Let f(x) be our unknown density, and let φ(x,θ) be a family of densities with a p-
dimensional vector of parameters θ. The idea of local likelihood is to approximate f by φ
locally, that is,

f̂(x) = φ(x, θ̂(x)).

The non-parametric aspect of this estimation is obvious; the choice of parametric family
φ(x,θ) and especially the kernel K(x), should not have too much influence on the esti-

25
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mate f̂ . Estimating the functions θ1(x), θ2(x), . . . , θp(x), however, resemble the parametric
approach studied so far. Hjort and Jones [1996] introduce the local likelihood function:

ln(x,θ) =
1

n

n∑
i=1

Kh(x−Xi) log φ(Xi,θ)−
∫
Kh(x− y)φ(y,θ) dy, (3.1)

where Kh is some unimodal density symmetric about the origin. Observe that for large
h, the local likelihood function is close to K(0)h−1 times the ordinary, normalized log-
likelihood function, n−1

∑n
i=1 log φ(Xi, θ) − 1, and for small h, the global properties of φ

will play a very little role in the final result.
One might be tempted to let the local log-likelihood function just be the first term in

the above definition. It would certainly be a good candidate at first glance, but simple
maximization in the normal case gives the MLEs µ̂(x) = x and σ̂(x) =∞, which does not
make much sense. To see that (3.1) is a reasonable function to maximize, observe that
[Tjøstheim and Hufthammer, 2012]

∂ln
∂θj

=
1

n

∑
Kh(x−Xi)uj(Xi,θ)−

∫
Kh(x− y)uj(y,θ)φ(y,θ) dy

→
∫
Kh(x− y)uj(y,θ){f(y)− φ(y,θ)} dy

as n→∞ by the law of large numbers. Here uj denotes the j’th score function,

∂/∂θj log φ(x,θ). We see that the parameter function θ̂(x) satisfying the local score func-

tion, ∂ln/∂θj = 0, requires φ(x, θ̂(x)) to be close to the true density f(x).

3.2 Examples of local likelihood estimation

The idea sketched in the previous subsection was first introduced by Tibshirani and Hastie
[1987] in regression models by fitting a line locally instead of globally. It was then applied
to density estimation by Loader [1996], and also generalized to fit the unknown density
f(x) by a low-degree polynomial in a neighbourhood of x. The most general form of local
likelihood estimation was introduced by Hjort and Jones [1996], where the locally fitted
parametric family is allowed to take any smooth form, and where the Gaussian family
has proved especially attractive. This opens up for many interesting applications. Let us
briefly mention three of them.

Ordinary linear regression is perhaps one of the most used methods of statistics. In
fact, where the subject statistics is supposed to be illustrated by a simple figure, perhaps
as the icon of a computer program, or at the cover of a book, it is not unusual to see a
scatter plot of observations in two variables, and the least squares line estimating the linear
relationship between them. Say we observe the pairs (xi, yi), i = 1, . . . , n and that the ys
depend on the xs through the equation

yi = α + βxi + εi,
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where α and β are constants, and the εi’s are normally distributed with zero mean and
variance equal to σ2. Simple arguments yield estimators for α and β in the least squares-
or maximum likelihood sense. In many situations we do not even have to assume this
relationship to exist in order to do interesting statistical analysis. Often, our main objective
is to discover if there is any significant growth or decay as x increases, and this can be
achieved by testing whether the parameter β is different from zero.

In other cases, however, the shape of the trend can be of significance. Is it exponential?
Logarithmic? Or perhaps it is linear after all. In any case, simple linear regression will not
answer these questions, as the estimated relationship will be a straight line no matter how
the data looks. We can then apply the idea from Tibshirani and Hastie [1987], where the
line is fitted locally using only the observations within a certain window, instead of using
them all to fit just one line.

Let w be our desired window size, and for simplicity, assume that w is an odd number.
Let yi = s(xi) + εi be our new model, not necessarily linear. For each observation (xi, yi),
we fit a line using this observation and the (w − 1)/2 nearest observations on each side
measured by the x-values. Call this local line yi = mi(x) and let

s(xi) = mi(xi).

Near the endpoints, we truncate the window corresponding to the points missing. Tibshi-
rani and Hastie [1987] show that the local regression does not suffer from the sometimes
severe end effects that arise when applying a simple moving average filter. We will demon-
strate this property in a more general setting in Section 6.3.2.

In Figure 3.1 we see local regression in action. We have 51 synthetic, equidistant
observations from the function y = x3 plus some Gaussian noise with zero expectation and
standard deviation equal to 3. The least squares line captures the growth; β̂ is obviously
greater than zero, but we also see that the growth is not linear. The local regression model
with window size equal to 21 seem to capture the trend in an excellent way.

Bearing in mind that the least squares estimates for α and β equal the corresponding
maximum likelihood estimates in a Gaussian model, calling this procedure a local likelihood
method is certainly reasonable.

Consider next the problem of two dimensional density estimation, and suppose we want
to estimate the density f(x, y) by local likelihood estimation, using the bivariate normal
density as our parametric family, that is

φ(x, y|µX , µY , σX , σY , ρ) =

1

2πσXσY
√

1− ρ2
exp

{
− 1

2(1− ρ2)

[(
x− µX
σX

)2

− 2ρ

(
x− µX
σX

)(
y − µY
σY

)
+

(
y − µY
σY

)2 ]}
.

The multivariate normal distribution is attractive in that the correlation coefficient ρ com-
pletely characterizes the dependence between X and Y . The function ρ̂(x, y) resulting
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Figure 3.1: Local regression
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from a local likelihood estimation, will then be an appealing measure of local correlation
between two stochastic variables, see Tjøstheim and Hufthammer [2012].

For a final example, consider the problem of estimating the size of a population of
objects in a certain area that can be identified as points on a plane, for example animals
or plants. A commonly used method for estimating the intensity D of the population (i.e.
the number of individuals per unit area), is line transect sampling. This method consists
of two parts. First, straight lines of total length L are randomly drawn across the area of
interest, before researchers travel along these lines and record the perpendicular distance
from the line to each observed object.

Barabesi [2000] introduces an estimator for D using local likelihood estimation. First,
introduce the detection function g(x) which is the conditional probability of detecting an
object, given that its distance to the line is x. We assume that g is monotonically decreasing
and that g′(0) = 0. These conditions also apply to the function f , which is the g-function
normalized so that it integrates to one. It can be shown that [Burnham and Anderson,
1976]

D̂ =
nf̂(0)

2L
(3.2)

is an unbiased estimator for D if f̂(0) is an unbiased estimator for f(0). Under some
assumptions (e.g. setting the score function ∂/∂θ log φ(x, θ) equal to one, justified by
Hjort and Jones [1996]), it turns out that the local score equation in this case, evaluated
at x = 0, is

f̃h,K(0)−
∫ ∞

0

Kh(t)φ(t; θ)(0) dt = 0, (3.3)

where f̃h,K(0) is the ordinary kernel estimator for f evaluated at zero. Zero is a so-called
boundary point in this case, which generally leads to consistency problems (see Chapter
6), but by some clever choices for the kernel K and parametric family φ, we avoid this
problem and show further that we are able to find an explicit estimator for θ(0), which is
the parameter estimate at zero.

Denote by ψ(x) the standard normal distribution and let Kh(x) = 1
h
ψ(x

h
). Further, let

the parametric family be the so called half-normal density;

φ(x; θ) =
2

θ
ψ
(x
θ

)
I[0,∞)(x),

with one unknown scale parameter θ. In Chapter 6 we will see that since the parametric
family φ and the true density f share the same boundary x = 0, the density estimate will
be consistent. The integral in (3.3) is now easy to evaluate using the fact that densities
integrate to one. We arrive at the equation

f̃h,K(0)− 1√
2π(h2 + θ2(0))

= 0,
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which, by solving with respect to θ(0), yields

θ̂(0) =

√
1

2πf̃h,K(0)2
− h2.

Using this result, we get the estimate f̂(0) = φ(0, θ̂(0)), which, in turn, give an estimate
of the unknown quantity D through equation (3.2).

3.3 Local likelihood versus the kernel estimator

In the following chapters, we will compare the local likelihood approach to density estima-
tion with the more traditional non-parametric kernel estimator. The concepts are rather
different, as we will see below.

The kernel estimator is perhaps the most popular and best understood tool for non-
parametric estimation. Suppose we have a vector of one-dimensional observations x =
(x1, x2, . . . , xn). Then each observation contributes to the estimate with density determined
by a symmetric probability density function, K, chosen beforehand:

f̂(x) =
1

n

n∑
i=1

Kh (x− xi) ,

where h is a scale parameter in the K-distribution, usually called the bandwidth or smooth-
ing parameter. See Figure 3.2 for a graphical presentation of the kernel estimator. The
Gaussian distribution is perhaps the most common choice for the kernel K, but Silverman
[1986] shows that minor performance improvements can be made by choosing differently.

The problem of finding the ideal bandwidth h is not trivial, however. Silverman [1986,
Section 3.4] discusses this problem in detail. See also section 5.3 on bandwidth selection
in connection with the local likelihood case.

Figure 3.3 shows the concept of local maximum likelihood density estimation. For any
point x0 on the x-axis at which we wish to estimate the unknown density, we estimate the
parameters of the parametric family locally by maximizing the local likelihood function
(3.1), with contribution from each observation determined by the kernel. The resulting

estimate, f̂(x0) = φ(x0; µ̂(x0), σ̂(x0)), in this case using the Gaussian parametric family,
will then approximate the true density in a neighbourhood around x0, and is given in figure
3.3.
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Figure 3.2: Illustration of the Kernel Estimator. The estimate (blue) is defined as the sum
of the red kernels, each centred at a datum point. The figure is meant for illustration only.
Seven observations will normally not suffice for a good estimate.
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Figure 3.3: Illustration of the Local Maximum Likelihood. We wish to estimate the density
at x0, and maximize the local likelihood function there using the Gaussian distribution as
parametric family. The estimate is only valid in a neighbourhood of x0 (indicated as the
red portion of the estimated density). Estimation must be carried out for a selection of
points in the interval where we wish to estimate the unknown density. The red kernel
indicates that the influence of observations decreases with distance to x0. Again, the figure
is for illustration only. Do not expect seven observations to yield such a good estimate.
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Asymptotic properties

We will now proceed to study local likelihood in more technical detail. Some of the results
presented in this section are, for the sake of completeness, merely reproduced here from
other sources, while others receive a more thorough treatment than we have found in the
literature.

The following results rely on the assumption that there exists a unique solution θ0 to
the system of equations

V (x,θ) =

∫
Kh(x− y)uj(y,θ){f(y)− φ(y,θ)} dy = 0, (4.1)

for j = 1, . . . , p. The number or vector θ0 will play the role of the ’true’ parameter value
from now on, and to keep the record straight, we must distinguish between the following
quantities:

f(x) : The true, unknown density,

f̂(x) = φ(x, θ̂(x)): Our density estimate; θ̂ maximizes (3.1), and
φ0(x) = φ(x,θ0(x)) : The parametric family with θ0 as defined above.

The actual existence of a unique θ0 is yet to be established in general, but this condition
essentially requires the true density f to be somewhere within reach of the chosen para-
metric family. It is nonetheless a reasonable assumption, since the local likelihood function
converges in probability to its expectation, namely V (x,θ).

The definition of φ0(x) will aid us in developing asymptotic bias expressions, but as a
consequence we end up with two sources of bias; one stemming from the approximation of
Ef̂(x) by φ0(x), and one from the difference between f(x) and φ0(x). The second one is
treated by Hjort and Jones [1996] and included in some more detail in Section 4.5. They

claim, however, that Ef̂(x) = φ0(x)+O((nh)−1) for all dimensions p of the parameter space.
It is true for p = 1, but we show in section 4.4 that the convergence rate is O((nh3)−1) for
p = 2. For p ≥ 3 we no not believe this rate to be any faster, but that is not discussed
here.

33
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4.1 Asymptotic normality

Assume (4.1) to hold for some θ0. Asymptotic normality for the local likelihood estimate
is proved much along the same lines as in the ordinary case. The following derivation can
be found in Hjort and Jones [1996] and in some more detail in Hufthammer and Tjøstheim
[2008b], and the argument is similar to that of the corresponding result in Chapter 1.

First, denote the vector of local score functions by Vn(θ) = {∂/∂θj ln(θ,X)}pj=1, where
p is the number of parameters in the parametric family. Then, by a first order Taylor
expansion, we get

0 = Vn(θ̂) = Vn(θ0) +∇Vn(θ0)(θ̂ − θ0) +R.

We thus have the approximation

(nh)1/2(θ̂ − θ0) = −∇Vn(θ0)−1(nh)1/2Vn(θ0). (4.2)

By performing the p differentiations to obtain an explicit expression for Vn(θ0), we obtain

(nh)1/2Vn(θ0) = (nh)1/2

(
n−1

∑
Kh(x−Xi)u(Xi,θ0(x))

−
∫
Kh(x− y)u(y,θ0(x))φ(y,θ0(x)) dy

)
,

where u(x,θ) = ∇ log φ(x,θ). Using the Central Limit Theorem, we see that the above
expression is normally distributed as n→∞ when the bandwidth h is held fixed. We know
that Vn(θ0) converges towards its expectation, and by (4.1), we see that E(Vn(θ0)) = 0.
For the variance we have

Mh ≡ Var
(
(nh)1/2Vn(θ0)

)
= h

{
E

[
Kh(x−Xi)u (Xi,θ0(x))

][
Kh(x−Xi)u

T (Xi,θ0(x))

]
− E

[
Kh(x−Xi)u (Xi,θ0(x))

]
E

[
Kh(x−Xi)u

T (Xi,θ0(x))

]}
= h

∫
K2
h(x− y)u(y,θ0(x))uT (y,θ0(x))f(y) dy

− h
∫
Kh(x− y)u(y,θ0(x))f(y) dy

·
∫
Kh(x− y)uT (y,θ0(x))f(y) dy.
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We then turn our attention to the leading term of (4.2),

−∇Vn(θ0) = −n−1
∑

Kh(x−Xi)∇u(Xi,θ0(x))

+

∫
Kh(x− y)

[
∇u(y,θ0(x))φ(x,θ0(x))

+ u(y,θ0(x))∇φ(y,θ0(x))

]
dy.

As n→∞, the above quantity will converge in probability to

Jh ≡
∫
Kh(x− y)u(y,θ0(x))uT (y,θ0(x))φ(y,θ0(x)) dy

−
∫
Kh(x− y)∇u(y,θ0(x))

[
f(y)− φ(y,θ0(x))

]
dy.

We can finally apply Slutsky’s theorem on (4.2) to see that, as n→∞ with h held fixed,

(nh)1/2(θ̂(x)− θ0(x))
d→ N(0, J−1

h Mh(Jh)
−1)T ). (4.3)

This derivation, of course, also goes through in the particular case of one parameter. In
that case the quantities Jh and Mh are just numbers instead of matrices and we will avoid a
lot of trouble that we will see arise when the parametric model has two or more parameters.
In the one parameter case, the delta method gives

(nh)1/2(f̂(x)− φ(x, θ0(x)))
d→ N(0, φ(x, θ0(x))2u(x, θ0(x))2Mh/J

2
h).

4.2 Asymptotic variance for two parameters

For one parameter, we see from the expression above that the asymptotic variance is of
order 1/nh. We now turn to the case of two parameters, which is especially useful because
the normal distribution, with its two parameters, seems like a natural choice as parametric
family in many cases. The following derivation is merely a reproduction of the argument
by Hufthammer and Tjøstheim [2008b], but with a little more attention to the details.

We attack the problem of determining the convergence rate by approximating the ma-
trix J−1

h Mh(J
−1
h )T by Taylor expansions for each term, and start out by considering the

first term of Mh, denoted by IM . By making the substitution s = (x− y)/h, we have

IM =

∫
K2(s)u(x+ hs,θ0)uT (x+ hs,θ0)f(x+ hs) ds.

We can already now see the reason why this argument is not straightforward. Note that the
first order term of the above integral contains the outer product, uuT as a factor, which is
a singular matrix. This expression also appears in Jh, which we must assume invertible. It
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is therefore necessary to keep one more term in the expansion of the functions constituting
uuT . Keeping only the terms consisting of the scores and their first derivatives, we can
write

IM ∼
∫
K2(s)A

[
1
hs

] [
1 hs

]
ATf(x+ hs) ds

= A

[
1 0
0 K2h

2

]
ATf(x) +A

[
0 K2h

2

K2h
2 0

]
ATf ′(x) + o(h2), (4.4)

where the last equality follows from a first order expansion of f(x+hs). We assume that f
is differentiable and that

∫
|s|iK2(s) <∞ for i ≤ 3. The matrix A is here and throughout

this chapter defined as

A =

[
u1(x,θ0) u′1(x,θ0)
u2(x,θ0) u′2(x,θ0)

]
.

To arrive at the equality (4.4), we also denote K2 ≡
∫
s2K2(s) ds and exploit the fact that∫

siK2(s) ds = 0 for i = 1 and i = 3. Further, we note that the second term of Mh is of
smaller order because the K-function is not squared, so the whole integral is multiplied by
h.

Consider next the first term of Jh, which we denote IJ . Identical calculations as for IM
yield

IJ =

∫
Kh(x− y)u(w,θ0)uT (w,θ)φ(w,θ0) dy

= A

[
1 0
0 K2h

2

]
ATφ(x,θ0) +A

[
0 K2h

2

K2h
2 0

]
ATφ′(x,θ0) + o(h2)

= A

[
φ(x,θ0) µ2h

2φ′(x,θ0)
µ2h

2φ′(x,θ0) µ2h
2φ(x,θ0)

]
AT ,

where µ2 =
∫
s2K(s) ds. For the second term we have, again by a first order Taylor

expansion,

IIJ =

∫
Kh(x− y)

[
u11(y,θ0) u12(y,θ0)
u21(y,θ0) u22(y,θ0)

](
φ(y,θ0)− f(y)

)
dy

= B

(
φ(x,θ0)− f(x)

)
+ o(h2),

where uij = ∂ui/∂θj, and where

B =

[
u11(x,θ0) u12(x,θ0)
u21(x,θ0) u22(x,θ0)

]
. (4.5)

An important observation here, that will be made clear by Equation (4.15) below when we
discuss the bias of the density estimate, is that φ(x,θ0)− f(x) is of order O(h2) and thus
can be expressed as F (x,θ0)h2 where F (x,θ0) is O(1). Further, and we still follow the
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exact argument and notation of Hufthammer and Tjøstheim [2008b], denote by cij(x) the
elements of the matrix C = A−1B(A−1)T . Then, by direct manipulation, one can verify
that

Jh ∼ Aφ(x,θ0)

[
1 0
0 µ2h

2

]{
I2 +

[
h2a(x) h2b(x)
d(x) e(x)

]}
AT ,

where I2 is the two-by-two identity matrix, and

a(x) = c11(x)
F (x,θ0)

φ(x,θ0)
, b(x) = µ2

φ′(x,θ0)

φ(x,θ0)
+ c12(x)

F (x,θ0)

φ(x,θ0)
,

d(x) =
φ′(x,θ0)

φ(x,θ0)
+ µ2c21(x)

F (x,θ0)

φ(x,θ0)
, e(x) = µ2c22(x)

F (x,θ0)

φ(x,θ0)
.

By inverting this matrix, it follows that

J−1
h ∼

1

φ(x,θ0)
(AT )−1

{[
1 0
0 1

µ2h2

]
−
[
−e(x) b(x)

µ2

d(x) −a(x)

]}
A−1,

which is simplified by the fact that the determinant is O(1) as h → 0. An expression for
the covariance matrix, which is correct up to the order of the bandwidth h, is:

J−1
h Mh(J

−1
h )T ∼ f(x)

φ2(x,θ0)
(AT )−1{}1A

−1A{}2A
T (AT )−1{}3A

−1

=
f(x)

φ2(x,θ0)
(AT )−1{}1{}2{}3A

−1, (4.6)

where

{}1 = {}T3 =

[
1 0
0 1

µ2h2

]
−
[
−e(x) b(x)

µ2

d(x) −a(x)

]
and

{}2 =

[
1 0
0 K2h

2

]
+

[
0 K2h

2

K2h
2 0

]
f ′(x)

f(x)
.

It is straightforward to calculate the matrix product in (4.6), either by hand, taking
only the h-order into account, or by using a symbolic software package such as Maple.
In any case, the resulting matrix turns out to be O(h−2), and thus the variance of the
parameter estimate converges at the somewhat slower rate of O(1/nh3) in the case of two
parameters, compared to the one parameter case, in which the variance converges as 1/nh.
The equivalent convergence rate for the density estimate is O((nh)−1), however, as we now
proceed to establish. A first order Taylor expansion yields

Varf̂(x) ∼ E(φ(x, θ̂)− φ(x,θ0))2

∼ (φ′(x,θ0))2uT (x,θ0)E(θ̂ − θ0)(θ̂ − θ0)Tu(x,θ0)

∼ (φ′(x,θ0))2uTJ−1
h Mh(J

−1
h )Tu(x,θ0),
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but observe that u(x,θ0) = [ 1 0 ]AT , and by using this as well as the expression we have
already found for J−1

h Mh(J
−1
h )T , we see that the only dependence on h in this expression

is found in the upper left corner of the matrix {}1{}2{}3, which is O(1), as easily derived
from (4.6). The variance of the density estimate consequently has the same rate as in the
one-parameter case.

4.3 Asymptotic bias of f̂ (x) relative to φ0(x) for one

parameter

In this section, we will see that Ef̂(x) = φ0(x)+O((nh)−1) if the parameter has dimension

one. This will prove useful later on, when the bias of f̂(x) relative to the true density
f(x) is the subject of investigation. The following argument goes along the same lines as
the derivation by Cox and Snell [1968] in the ordinary likelihood case, but with necessary
adjustments.

Our starting point will be the local likelihood function (3.1). For large n, we have the
following second order approximation of the score equation:

l′n(θ̂) = l′n(θ0) + (θ̂ − θ0)l′′n(θ0) +
1

2
(θ̂ − θ0)2l′′′n (θ0) +R = 0, (4.7)

where R is the remainder term from the Taylor expansion. By taking expectation in the
above expression, we have from equation (4.1) that the leading term disappear. Since
Cov(X, Y ) = E(XY )− E(X)E(Y ),

E(θ̂ − θ0)E(l′′n(θ0)) + Cov(θ̂ − θ0, l
′′
n(θ0))

+
1

2
E(θ̂ − θ0)2E(l′′′n (θ0)) + Cov(

1

2
(θ̂ − θ)2, l′′′n (θ0)) + E(R) = 0, (4.8)

and we proceed by assessing the size of each term.

• The first term contains the bias of θ̂, in which we are interested. It is multiplied by
the expected second derivative of the local likelihood function. By differentiating ln
with respect to the parameter and inserting θ0, we arrive at

El′n(θ0) = E

(
1

n

n∑
i=1

Kh(x−Xi)u0

)
−
∫
Kh(x− y)u0φ0 dy

=

∫
Kh(x− y)u0(f − φ0) dy, (4.9)

By (4.15) below, it follows that l′n(θ0) = O(h2) as h→ 0. For the second derivative,



4.4. Asymptotic bias of f̂(x) relative to φ0(x) for two parameters 39

we have

El′′n(θ0) = E

(
1

n

n∑
i=1

Kh(x−Xi)u
′
0

)
−
∫
Kh(x− y)φ0u

′
0 dy −

∫
Kh(x− y)φ0u

2
0 dy

=

∫
Kh(x− y)u′0(f − φ0) dy −

∫
Kh(x− y)φ0u

2
0 dy,

The first integral vanishes as O(h2) when h → 0 due to the convergence of f − φ0.
The second integral, however, has a finite first order term, (φ0u

2
0)(x), that does not

disappear. The second derivative is therefore O(1) asymptotically.

• For the second term, using Schwarz’ inequality, we have

Cov(θ̂ − θ0, l
′′′
n (θ0)) ≤

√
Var(θ̂)

√
Var(l′′n(θ0)), (4.10)

where, from (4.3), the variance of θ̂ is of order (nh)−1. Further, Var(l′′n(θ0)) =
O((nh)−1) as we will see in Equation (4.12). Together with (4.10), it follows that the
second term of (4.8) has a convergence rate not slower than 1/nh.

• The third term is essentially the variance of θ̂, which we have already established
converges with a rate of (nh)−1, multiplied with the expected third derivative, which
by similar claculations as that of the second derivative, is O(1).

• The fourth term does not converge any slower than the second, since, using Schwarz’
inequality again, it contains Var(θ̂2), which is seen to have the same order as Var(θ̂)
when applying the delta method. We neglect the remainder and assume that it is of
higher order than the preceeding terms.

The dominating term on the right hand side is therefore O((nh)−1) which is the con-
vergence rate for the asymptotic bias of the parameter estimate. Since the delta method
here applies without complications, it follows that Ef̂(x) = φ0(x) +O((nh)−1).

4.4 Asymptotic bias of f̂ (x) relative to φ0(x) for two

parameters

Increasing the number of parameters from one to two, created complications in large sample
variance calculations due to singular matrices appearing in asymptotic expressions. That
is the case for asymptotic bias as well. We start by introducing some notation. Let the
three first derivatives of the local likelihood function be given by

Ui(θ) =
∂ln
∂θi

, Vij(θ) =
∂2ln
∂θi∂θj

, Wijk(θ) =
∂3ln

∂θi∂θj∂θk
.



40 Chapter 4. Asymptotic properties

The matrix of expected second derivatives is denoted by I = E{−Vij}i=1,2, j=1,2, while
the two matrices of expected third derivatives are denoted by Ji = E{Wijk}j=1,2, k=1,2 for
i = 1, 2. Let also

θ̂ =

[
θ̂1

θ̂2

]
, θ0 =

[
θ0,1

θ0,2

]
.

We proceed by expanding the two components of the score function, making the necessary
smoothness assumptions on the local likelihood function. For component i, it follows that

0 = Ui(θ̂)

= Ui(θ0) +
2∑
j=1

(θ0,j − θ̂j)Vij(θ0) +
1

2

2∑
j=1

2∑
k=1

(θ0,j − θ̂j)(θ0,k − θ̂k)Wijk(θ0) +R.

Upon taking expectations and applying the well known identity that describes the rela-
tionship between expectations and covariances, we arrive at the following equality;

0 =
2∑
j=1

[
E(θ̂j − θ0,j)E(Vij) + Cov(θ̂j − θj,0, Vij)

]

+
1

2

2∑
j=1

2∑
k=1

[
E(θ̂j − θ0,j)(θ̂k − θ0,k)E(Wijk)

+ Cov

(
(θ̂j − θ0,j)(θ̂k − θ0,k),Wijk

)]
+ E(R),

which we can rewrite using matrix notation when including both components,

IE

[
θ̂1 − θ0,1

θ̂2 − θ0,2

]
∼

 Cov
(
θ̂1 − θ0,1, V11

)
+ Cov

(
θ̂2 − θ02, V12

)
Cov

(
θ̂1 − θ0,1, V21

)
+ Cov

(
θ̂2 − θ02, V22

) 
+

1

2

 Tr
(

Cov
(
θ̂
)
J1

)
Tr
(

Cov
(
θ̂
)
J2

) 
+

1

2

 ∑2
jk Cov

(
(θ̂j − θ0,j)(θ̂k − θ0,j),W1jk

)
∑2

jk Cov
(

(θ̂j − θ0,j)(θ̂k − θ0,j),W2jk

) + E(R). (4.11)

Again, we need to discuss the order of each of the factors above.

• I is the matrix of expected second derivatives, whose element (i, j) is given by

E
∂ln

∂θi∂θj
(θ0) = E

(
n∑
i=1

Kh(x− xi)
∂ui
∂θj

)
−
∫
Kh(x− y)

∂ui
∂θj

φ0 dy

−
∫
Kh(x− y)ujuiφ0 dy,
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and the first two terms cancel each other out as O(h2) again. The last term is
the element of a matrix containing the singular matrix uuT as a factor, and from
the arguments of Section 4.2, such matrices are O(h2) as well. Thus, the matrix of
expected second derivatives is O(h2) in the two-parameter case.

• The terms on the form Cov(θ̂i − θ0,i, Vij) for i, j = 1, 2 can be considered using
Schwarz’ inequality:

Cov(θ̂i − θ0,i, Vij) ≤
√

Var(θ̂i − θ0,i)
√

Var(Vij)

The variance of the parameter is known to be O((nh3)−1). The variance of the
second derivatives can be calculated as follows;

Var(Vij) = Var

(
1

n

n∑
i=1

Kh(x− xi)
∂ui
∂θj

(x)

)

=
1

n2

n∑
i=1

[
E

(
1

h
K

(
x− xi
h

)
∂ui
∂θj

(x)

)2

−
(

E

(
1

h
K

(
x− xi
h

)
∂ui
∂θj

(x)

))2
]

=
1

n2

n∑
i=1

[
1

h

∫
K2(s)

(
∂ui
∂θj

(x+ sh)

)2

f(x+ sh) ds

−
(∫

K(s)
∂ui
∂θj

(x+ sh)f(x+ sh

)
ds

]
∼ 1

nh
− 1

n
∼ 1

nh
, (4.12)

and this is really valid for all order of derivatives, and all number of parameters.
Thus, the first term on the right side of (4.11) is asymptotically bounded above by
the inequality

Cov(θ̂i − θ0,i, Vij) ≤
√

1/(nh3)
√

1/(nh) = 1/(nh2).

• The covariance matrix of θ̂ is of order O((nh3)−1)). The two matrices of expected
third derivatives, J1 and J2 are given by

E
∂3ln

∂θi∂θj∂θk
(θ0) = E

(
n∑
i=1

Kh(x− xi)
∂2ui
∂uj∂uk

)
−
∫
Kh(x− y)

∂2ui
∂θj∂θk

φ0 dy

−
∫
Kh(x− y)

∂ui
∂θj

ukφ0 dy −
∫
Kh(x− y)uiujukφ0 dy

−
∫
Kh(x− y)

∂ui
∂θk

ujφ0 dy −
∫
Kh(x− y)ui

∂uj
∂θk

φ0 dy,

where i denotes the matrix Ji, and the indices j and k denotes the elements of that
matrix. The two leading terms are O(h2). The next three terms are all elements of
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matrices on the form
∫
Kh(x − y)vwTφ0 dy, where v and w are vectors containing

various combinations of differentiations of u. Thus they are all O(h2), following
similar arguments as that of Section 4.2. The last term, however, can not be treated
this way automatically, as the matrix {∂uj/∂θk}j,k=1,2 is not singular and can not be
written as an outer product. Comparing its elements with the preceeding matrices,
however, reveals that

J1 ∼
(
O(1) O(h2)
O(1) O(h2)

)
, J2 ∼

(
O(h2) O(h2)
O(h2) O(h2)

)
. (4.13)

• The last term can be shown to be at least as fast as the first by using the same argu-
mentation as in the one-parameter case. We assume that the remainder is dominated
by 1/nh3 asymptotically.

Upon left-multiplying (4.11) with I−1, the asymptotic bias turns out to be O((nh3)−1),
that is, the same order as the asymptotic variance.

Recall that, due to some ’lucky’ cancellations, the asymptotic variance of density esti-
mates, was not affected by the slower convergence rate established for parameter estimates.
This does not happen for the asymptotic bias, however. We have the following Taylor ex-
pansion;

f̂(x) = φ(x, θ̂) = φ(x,θ0) + (θ̂ − θ0)T∇φ(x,θ0) +
1

2
(θ̂ − θ0)T∇∇φ(x,θ0)(θ̂ − θ0) +R,

where R is of higher order. Taking expectation, we arrive at the following expression for
the bias:

E

[
f̂(x)− φ(x,θ0)

]
∼ φ(x,θ0)uT (x,θ0)E(θ̂ − θ0)

+
1

2
E

[
(θ̂ − θ0)T (∇φ0u

T + φ0B)(θ̂ − θ0)

]
,

where B is the matrix of second derivatives of φ, defined by Equation (4.5). Everything
involving the parametric family is non-stochastic and independent of h, so the dominating
term turns out to be E(θ̂ − θ0), that is, the density estimates share the same slower
convergence rates of order O((nh3)−1) as the parameter estimates.

4.5 Asymptotic bias of φ0(x) relative to f (x)

In this section, we will examine the bias arising due to the difference between f(x) and
φ0(x).

Hjort and Jones [1996] show that the asymptotic variance in local likelihood density
estimation is equal to the variance for the kernel estimator. The bias, although similar, is
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shown to differ from its kernel estimator equivalent. The derivation of asymptotic bias is
sketched by Hjort and Jones, and the details are included below.

Generally, the unknown parameter θ is p-dimensional. Denote the score function by

u(x,θ) =


u1(x,θ)
u2(x,θ)

...
up(x,θ)

 =


∂
∂θ1
φ(x,θ)

∂
∂θ2
φ(x,θ)

...
∂
∂θp
φ(x,θ)

 .
By a standard Taylor series argument it follows that, as h→ 0,∫

Kh(t− x)g(t) dt = g(x) +
1

2
K2h

2g′′(x) +O(h4) (4.14)

for any smooth function g(·) and kernel K, and where K2 =
∫
s2K(s) ds as before. To see

this, let

F (h) =

∫
Kh(t− x)g(t) dt =

∫
1

h
K

(
t− x
h

)
g(t) dt

and make the substitution z = (t− x)/h. We then have dt = hdz, so

F (h) =

∫
K(z)g(x+ zh) dt.

The quantity F (h) is next expanded about zero;

F (h) = F (0) + F ′(0)h+
1

2
F ′′(0)h2 +

1

6
F ′′′(0)h3 +O(h4).

F ′(0) = F ′′′(0) = 0 because K is even and the functions z and z3 are odd. It remains that

F (0) =

∫
K(z)g(x) dz = g(x)

∫
K(z) dz = g(x)

F ′′(0) =

∫
z2K(z)g′′(x) dz = K2g

′′(x),

from which (4.14) follows. Letting g(x) = u(x, θ)(f(x)− φ0(x)), we easily see from (4.14)
and (4.1) that, in general, φ(x, θ0(x))− f(x) = O(h2):

0 =

∫
Kh(t− x)u(t, θ)(f(t)− φ(t, θ0(x)) dt

=

∫
K(z)u(x+ zh, θ)(f(x+ zh)− φ(x+ zh, θ0(x)) dz

= u(x, θ)(f(x)− φ(x, θ0(x))) +O(h2). (4.15)
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By including another term in the Taylor expansion above, we have under smoothness
assumptions on f and the weight functions uj, and by writing φ0(x) = φ(x, θ0(x)) and
uj,0 = uj(x, θ0), that

uj,0(x)(φ0(x)− f(x)) =
1

2
K2h

2{uj,0(f − φ0)}′′(x) +O(h4). (4.16)

Dividing through with uj,0 and applying the bias results from preceding sections, we have

Ef̂(x) = f(x) +
1

2
K2h

2bj(x) +O(h4 + (nhc)−1),

where
bj(x) = {uj,0(f − φ0)}′′(x)/uj,0(x) (4.17)

and where c depends on the number of parameters in the parametric family.

4.5.1 The one-parameter case

To proceed further, we need to investigate the bias term by first specifying the number of
parameters in the parametric family. Do note that the bias shows a striking resemblance
to the bias of ordinary kernel estimation where bj(x) = f ′′(x). Finding, and discussing
the nature of bj(x) compared to f ′′(x) for various cases (i.e. different dimensions of the
parameter θ), is imperative in this context, as it seems to be our only possibility of better
performance. In the one-parameter case,

bj(x) = f ′′(x)− φ′′0(x) + 2
u′0(x)

u0(x)
(f ′x)− φ′0(x)). (4.18)

This follows by performing the differentiation in (4.17). The term containing (f − φ0)
seemingly disappears, but as we have shown earlier it is of order O(h2), and thus can be
included in the O(h4)-term. As we see, closeness between f and φ0 may reduce the bias
compared with the kernel estimator. Indeed, if the unknown density is a member of our
parametric family, bj(x) will vanish altogether, and we will be left with the O((nh3)−1)-
term.

4.5.2 The two-parameter case

Let the parametric family be given by φθ(x) = φ(x, θ1, θ2). From (4.16) we see that

φ0(x)− f(x) =
1

2
σ2
Kh

2

(
f ′′(x)− φ′′0(x) + 2

u′j,0(x)

uj,0(x)
(f ′(x)− φ′0(x))

)
(4.19)

for j = 1, 2. Note that the left side of (4.19) is independent of j, but the right side is not.
Thus, equality can only hold if f ′(x)−φ′(x) = o(h) as h→ 0. Taking the results of Section
4.4 into account, we can therefore write

Ef̂(x) = f(x) +
1

2
σ2
Kh

2(f ′′(x)− φ′′0(x)) +O(h3 + (nh3)−1) (4.20)

in the case of two parameters.
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4.5.3 Three or more parameters

Hjort and Jones [1996] proceed by investigating the asymptotic bias when we introduce
even more local parameters. This sub-section fills in some of the details that Hjort and
Jones did not include in their paper. This discussion is really only valid for the difference
between f and φ0, though, as neither we, nor Hjort and Jones, consider the difference
between Ef̂ and φ0 for three or more parameters. In light of Section 4.4, however, we
believe that this difference is not smaller than O((nh3)−1), that was established for two
parameters, contrary to O((nh)−1) as claimed by Hjort and Jones.

For p ≥ 3, where p denotes the number of parameters, we can make further improve-
ments by deriving that (f − φ0)′′ is o(1). This is done by differentiating (4.16) four times
and writing gr ≡ (f −φ0)(r) ≈

∑4−r
i=0 a(r, i)hi. In order to obtain enough equations to solve

for a(i, j), we approximate V (x, θ) in (4.1) by a sixth order Taylor expansion:

g0 +
1

2
k2h

2(uj,0g0)′′/uj,0 (4.21)

+
1

24
k4h

4(uj,0g0)(4)/uj,0 +
1

720
k6h

6(uj,0g0)(6)/uj,0 = 0,

where ki =
∫
ziK(z) dz. We proceed by performing the differentiations in the above

equations, collecting terms in equal powers of h, and then equating each coefficient of hi

with zero. After some calculations, we see that these coefficients are:

1 : a(0, 0)

h : a(0, 1)

h2 :
1

2
k2a(2, 0) + a(0, 2) + k2a(1, 0)

u′j,0
uj,0

+
1

2
k2a(0, 0)

u′′j,0
uj,0

h3 :
1

2
k2a(2, 1) + a(0, 3) + k2a(1, 1)

u′j,0
uj,0

+
1

2
k2a(0, 1)

u′′j,0
uj,0

h4 :
1

2
k2a(2, 2) +

1

24
k4a(4, 0) + a(0, 4) +

(
k2a(1, 2) +

1

6
k4a(3, 0)

)
u′j,0
uj,0

+

(
1

2
k2a(0, 2) +

1

4
k4a(2, 0)

)
u′′j,0
uj,0

h5 : +

(
1

2
k2a(1, 3) +

1

6
k4a(3, 1)

)
u′j,0
uj,0

+

(
1

2
k2a(0, 3) +

1

4
k4a(2, 1)

)
u′′j,0
uj,0

+
1

6
k4a(1, 1)

u
(3)
j,0

uj,0
+

1

24
k4a(0, 1)

u
(4)
j,0

uj,0
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h6 : g6 + g5

u′j,0
uj,0

+

(
1

2
k2a(0, 4) +

1

4
k4a(2, 2) +

1

48
k6a(4, 0)

)
u′′j,0
uj,0

+

(
1

6
k4a(1, 2) +

1

36
k6a(3, 0)

)
u

(3)
j,0

uj,0
+

(
1

2
k4a(0, 2) +

1

48
k6a(2, 0)

)
u

(4)
j,0

uj,0

+
1

120
k6a(1, 0)

u
(5)
j,0

uj,0
+

1

720
k6a(0, 0)

u
(6)
j,0

uj,0

First of all, we observe that a(0, i) = a(j, k) = 0 for i = 0, 1, 2, 3, j = 1, 2, k = 0, 1, so we
can immediately conclude that (f − φ0)′′ is o(1). Secondly, we pay extra attention to two
of the expressions in the h4-coefficient, both of which must equal zero:

1

2
k2a(2, 2) +

1

24
k4a(4, 0) + a(0, 4) = 0, (4.22)

k2a(1, 2) +
1

6
k4a(3, 0) = 0. (4.23)

Consider next the h6-coefficient, which last three terms have already been shown to be
zero. We then have left three equations in the four unknowns g5, g6, t and u;

g6uj,0 + g5u
′
j,0 + tu′′j,0 + uu

(3)
j,0 = 0, j = 1, 2, 3 (4.24)

where

t =
1

2
k2a(0, 4) +

1

4
k4a(2, 2) +

1

48
k6a(4, 0) (4.25)

u =
1

6
k4a(1, 2) +

1

36
k6a(3, 0). (4.26)

Writing t = Au for a constant A and solving equations (4.22)-(4.23) and (4.25)-(4.26) with
respect to a(0, 4), we get

a(0, 4) =
k2k6 − k2

4

k4 − k2
2

(
1

24
a(4, 0)− 1

18
Aa(3, 0)

)
,

where it is seen from (4.24) that A solves the system of equations g6uj,0+g5u
′
j,0+Au′′j,0 = u

(3)
j,0

for j = 1, 2, 3. Thus, we arrive at the following expression for asymptotic bias for p = 3
parameters;

Ef̂(x) = f(x)− k2k6 − k2
4

k4 − k2
2

h4

[
1

24

{
f (4)(x)− φ(4)

0 (x)
}

− 1

18
A
{
f (3)(x)− φ(3)

0 (x)
}]

+ o(h4 + d(n, h)),

where d(n, h) denotes the unknown asymptotical convergence rate for the expectation of

f̂(x). For four parameters, the expression above simplify, as we may set A = 0. On the



4.5. Asymptotic bias of φ0(x) relative to f(x) 47

other hand, we must introduce another unknown function, e(n, h), to take the difference

Ef̂(x)− φ0(x) into account:

Ef̂(x) = f(x)− k2k6 − k2
4

k4 − k2
2

h4 1

24

{
f (4)(x)− φ(4)

0 (x)
}

+ o(h4 + e(n, h)). (4.27)

A pattern emerges for even number of parameters, compare equations (4.20) and (4.27),
that resembles the similar behaviour seen for curve estimation using local polynomials, see
Section 6.3. Hjort and Jones conjecture that this pattern continues with o(h6)-convergence
for five and six parameters and so on, but that is subject to more analysis not pursued
here.
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Chapter 5

Simulations

In this chapter, the practical implementation of local likelihood for density estimation will
be demonstrated. We will also compare the performance of the local maximum likelihood
estimator with that of the traditional kernel estimator.

In all of the simulations below, the normal distribution will be used both as kernel
K(·) as well as the parametric family φ(·;θ). Obviously, the subject of estimation is then
a two-dimensional parameter; θ = (µ(x), σ(x))T . Further, all estimations are carried out
using the excellent R-implementations developed by K.O. Hufthammer in connection with
Hufthammer and Tjøstheim [2008a] and [2008b]. The bandwidths in the following section
are chosen so that the estimated mean squared error is minimized (using the unrealistic fact
that we know the true density). A general discussion on determination of reasonable band-
widths is included in Section 5.3, and a data driven bandwidth selector is demonstrated in
Section 5.4.

5.1 Density estimation

This section treats only local likelihood density estimates, while comparison with the Kernel
estimator is treated in Section 5.2.

5.1.1 The normal distribution

Let us first consider the simple case in which we try to estimate the standard normal
density. Of course, the natural choice for the parametric family in this case is the normal
distribution, but as we will see in later examples, this works well also for other types of
data. In figure 5.1 we see the true, standard normal density f(x), and the estimated density
φ(x; µ̂(x), σ̂(x)) for n = 500 and n = 5000.

49
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(a) f̂(x) = φ(x; µ̂(x), σ̂(x)) for two different sample sizes

(b) µ̂(x) (c) σ̂(x)

Figure 5.1: Local maximum likelihood estimate of the standard normal distribution

The bandwidth is in all cases chosen to be 1, since choosing a too large bandwidth is
hardly a problem when working with the correct parametric family.

We see that in this simple case, the local maximum likelihood estimator performs
as expected. With n = 5000 observations, the estimate is barely distinguishable from
the true density. There is, however, no reason to use this procedure if the form of the
underlying distribution is known, and ordinary, global maximum likelihood estimators can
be calculated.
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5.1.2 The gamma distribution

(a) f̂(x) = φ(x; µ̂(x), σ̂(x)) for two different sample sizes

(b) µ̂(x) (c) σ̂(x)

Figure 5.2: Local maximum likelihood estimate of the Gamma(α = 2, β = 1)-distribution

Let us next try to estimate a non-normal density, such as the Gamma(2,1)-distribution,
while keeping the Gaussian kernel and parametric family in the local likelihood procedure.

Sums of exponentially distributed variables are gamma distributed, and waiting times
are often regarded as such. Several real-world phenomenons can also be modelled using
this distribution, such as rainfalls [Aksoy, 2000] and emissions from cars [Zhang et al.,
1994]. However, the maximum likelihood estimators for the two parameters, often referred
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to as α and β, can not be written out explicitly, so numerical methods must be applied
anyhow to estimate the density function. If, in addition, we do not have enough evidence
to deem our data gamma distributed, the local maximum likelihood estimator can be a
fruitful way of doing inference.

Figure 5.2 summarizes the estimation in the same way as the previous example. The
left part of the gamma distribution in question (say for x < 2.5) resemble the Gaussian
bell-shaped curve, and we recognize this feature in the parameter estimates, which exhibit
little variation in this area. The right tail, however, is heavier than its normal counterpart,
so we expect σ̂(x) to increase as x increases. The volatility seen in Figure 5.2a and b can
be explained intuitively by realizing that estimating a flat portion of a curve locally by a
Gaussian curve, can potentially locate µ̂(x) at both sides of x, as well as compensating for
a distant µ̂ by a large σ̂. Further, we have little data in the tails, which increases both
variance and bias.

To see that the erratic behaviour of the estimated parameters in figure 5.2 are mostly
random fluctuations and not underlying structures in the dataset, we can average the
estimates over, say, 100 independent datasets, each with 500 or 5000 observations.

(a) µ̂(x) (b) σ̂(x)

Figure 5.3: Averages of parameter estimates over 100 datasets, each with 500 (red) and
5000 (blue) observations.
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5.1.3 The bimodal normal distribution

(a) f̂(x) = φ(x; µ̂(x), σ̂(x)) for two different sample sizes

(b) µ̂(x) (c) σ̂(x)

Figure 5.4: Local maximum likelihood estimate of the bimodal normal distribution with
parameters µ1 = 0, µ2 = 3, σ1 = 1, σ2

2 = 1/3 and p = 2/3

Many natural phenomenons follow bimodal distributions, that is, their probability density
functions have two distinct modes. Examples of such are the size of a certain species of
ants [Cole and Jones, 1948], and the time between eruptions of the Old Faithful Geyser in
Yellowstone National Park, USA [Rinehart, 1969].
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A linear combination of two normal distribution will suffice for our purpose of simula-
tions in this section. Let φσ2(x− µ) denote the density function of a normally distributed
variable with expectation µ and variance σ2, then

f(x) = pφσ2
1
(x− µ1) + (1− p)φσ2

2
(x− µ2)

is the density function of the variable X that is drawn with probability p from a N(µ1, σ
2
1)-

distribution, and with probability 1− p from a N(µ2, σ
2
2)-distribution.

Figure 5.4 shows that the local maximum likelihood estimator performs much as ex-
pected in this case. The bi-modality is especially clear in µ̂(x), graphed in figure 5.4b, where
the two distinct expectations are easily recognized for both sample sizes. This feature is
not as clear in σ̂(x), but the density estimates are good nevertheless. The ”singularity”
seen at approximately x = 2 in both µ̂(x) and σ̂(x) can be explained using earlier argu-
ments. It coincides with the local minimum located here, and thus with the simplest of
classification rules to allocate observations to either of the two normal populations.

(a) µ̂(x) (b) σ̂(x)

Figure 5.5: Averages of parameter estimates over 100 datasets, each with 500 (red) and
5000 (blue) observations.

Averages over several data sets, seen in Figure 5.5, show the same signs of consistency
as for the Gamma(2,1) distribution.
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5.1.4 The exponential distribution

(a) f̂(x) = φ(x; µ̂(x), σ̂(x)) for two different sample sizes

(b) µ̂(x) (c) σ̂(x)

Figure 5.6: Local maximum likelihood estimate of the exponential(1) distribution

The distributions estimated so far in this chapter are well approximated locally by the
Gaussian distribution. One possible problem for the Gamma distribution could be the the
point x = 0, where the density changes from being identically zero to positive values in
a non-smooth manner. Even so, since the density approaches zero when x → 0 from the
right, this small problem is solved by also letting σ̂(x)→ 0. The exponential distribution,
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however, with density

f(x) =

{
1
θ
e−x/θ if x ≥ 0

0 if x < 0,

is not even continuous at zero, so using Normal distributions as building blocks for esti-
mation should be carefully considered in applications.

Figure 5.6 shows that the local maximum likelihood estimator with the Gaussian dis-
tribution as parametric family, does not perform very well for small xs when the unknown
density is the exponential distribution. This phenomenon persists, even for very large
datasets and small bandwidths and is a well known problem also for the kernel estimator.
Effective ways to reduce boundary bias have been studied in detail in the literature, and
will be discussed in connection with local maximum likelihood in Chapter 6.

5.2 ISE calculations

Let us now investigate how the error of our estimates behave when we vary the bandwidth
h, the sample size n, and how they compare with the kernel estimator. We keep the error
analysis in this section simple by measuring the distance from the estimated density f̂(x)
to the true density f(x) using the integrated squared error, defined as

ISE(h) =

∫ (
f̂h(x)− f(x)

)2

dx.

We calculate ISE for the distributions considered in the preceding section using the sample
sizes n = 500 and n = 5000 for a set of bandwidths in the interval [10−4, 3], and average
over 50 realizations of the data sets. The results are presented in Figures 5.7 - 5.10, where
the solid lines represent the calculated ISE as a function of h, and the dashed lines represent
approximate 95% confidence bands (ISE ± two times the empirical standard deviation).
Note that, upon averaging over several data sets, the observed ISE will approach its mean,
the MISE.

The most important lesson to learn from the following graphs is perhaps that the
local maximum likelihood estimator seems to be a safe choice compared to the kernel
estimator if we know that the unknown distribution is not very far from normal, and
we are unsure about which bandwidth to use (in that case choose a moderately large
one). Indeed, choosing a too large bandwidth in the local case will be close to a full
parametric approach, while doing the same mistake for the kernel estimator will yield a
flat, structureless density estimate, and the consequences of this is in terms of ISE are
easily seen in the illustrations. In particular, for unimodal data, like the normal- and
gamma distribution (Figures 5.7 and 5.8), the error increases much faster for the kernel
estimator comared to the local likelihood approach, while for bimodal data (Figure 5.9), a
fully parametric Gaussian approach would naturally yield poor results, and thus the local
likelihood is more sensitive to large bandwidths.
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Local polynomials (discussed in Section 6.3) would probably perform more like local
likelihood, as they approach a polynomial as the bandwidth increases.

Of our four examples, the only case in which the kernel estimator is clearly the better
choice, is the exponentially distributed data, especially for large n and small h.
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(a) n = 500

(b) n = 5000

Figure 5.7: ISE for estimates of the Standard Normal distribution using the kernel estima-
tor (blue) and local maximum likelihood likelihood estimator (red)



5.2. ISE calculations 59

(a) n = 500

(b) n = 5000

Figure 5.8: ISE for estimates of the Gamma(2,1) distribution using the kernel estimator
(blue) and local maximum likelihood likelihood estimator (red)
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(a) n = 500

(b) n = 5000

Figure 5.9: ISE for estimates of the bimodal Normal Distribution using the kernel estimator
(blue) and local maximum likelihood likelihood estimator (red)
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(a) n = 500

(b) n = 5000

Figure 5.10: ISE for estimates of the Exponential(1) distribution using the kernel estimator
(blue) and local maximum likelihood likelihood estimator (red)
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5.3 Bandwidth selection

The bandwidths applied in Section 5.1 are all chosen to best suit the true density from
which the data is sampled. In applications, however, this information is not available,
so we need methods for selecting the bandwidth based on the data set at hand. We will
therefore review some common methods developed for the traditional kernel estimator, see,
e.g., Jones et al. [1996], and then apply one of the to the local likelihood case.

A typical measure of error for the kernel method is the mean integrated squared error
(MISE);

MISE(h) = E

∫
(f̂h − f)2 dx,

which we wish to minimize with respect to h. By letting n→∞ in the above expression,
we obtain the asymptotic mean integrated squared error (AMISE), which can be written
as [Wand and Jones, 1995]

AMISE(h) = (nh)−1R(K) +
1

4
h4R (f ′′)

(∫
z2K(z) dz

)2

,

where R(g) =
∫
g2(x) dx. A convenient consequence of using AMISE to measure the error,

is that it is easily minimized. The optimal bandwidth with respect to AMISE, denoted by
hAMISE, is given by

hAMISE =

[
R(K)

nR(f ′′)
(∫

z2K
)2

]1/5

. (5.1)

The fact that hAMISE is proportional to n−1/5 is nice to know in many situations, but
we can still not calculate the value exactly since the true density is involved through the
expression R (f ′′). The latter, however, can be estimated, and this forms the basis for many
data driven bandwidth selectors. Jones et al. [1996] discuss several variations of such, as
well as other types of algorithms.

One straightforward way to estimate R (f ′′) is to replace f by some known distribution
such as the normal distribution, but, as Jones et al. [1996] points out, this method tends to
oversmooth the data. Another way around the problem of estimating R (f ′′) is to replace it

by R
(
f̂ ′′
)

, where f̂ is a kernel estimate of f . Again, we arrive at the problem of selecting a

suitable bandwidth. Sheather and Jones [1991] suggest then to choose h to be the solution
of the fixed-point equation

h =

 R(K)

nR
(
f̂ ′′g(h)

) (∫
z2K

)2

1/5

.

Note especially that the bandwidth used to estimate the curvature of f is different from
the bandwidth used to estimate f itself, a feature that, along with the actual selection of
a function g, is discussed by Jones et al. [1996] and Sheather and Jones [1991].
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The methods above can in principle be applied to local likelihood estimation directly,
but, as [Hjort and Jones, 1996] argues, local likelihood is in many situations better than
the kernel estimator, and therefore requires smaller bandwidth to obtain minimum error.
Specifically, since the variance is the same for both kernel- and local likelihood estimation,
and the bias (in the two parameter case) differ only by replacing f ′′ with f ′′ − φ′′0, the
derivation of the AMISE for local likelihood density estimates goes through in an identical
manner, and turns out to be (5.1) but with R(f ′′ − φ′′0) in place of R(f ′′). Further, Hjort
and Jones [1996], suggest to use a modified fixed-point method, where h is chosen to be
the solution of

h =

 R(K)

nR
(
f̂ ′′g(h) − φ′′0h

) (∫
z2K

)2

1/5

.

Most distributions have areas with higher density, and thus more observations, which
again call for a smaller bandwidth in order to reveal important structures here. But if
that bandwidth is also applied to lower density areas, the estimated density will suffer
from undersmoothing as it decreases. On the other hand, if we smooth the tails to a
reasonable level, the higher density areas will tend to be oversmoothed. Instead of making
a compromise, often resulting in oversmoothed modes and undersmoothed tails, we can
let the bandwidth h vary with x. Silverman [1986] discusses an approach for the ordinary
kernel estimator, called the nearest neighbour method, where the bandwidth used at Xj

is proportional to the distance to the kth nearest observation. Variable bandwidths can
greatly improve a density estimate, but the drawback of using such a method is that we,
a priori, not only have to chose the proportionality constant, which we by analogy call h,
but also k.

5.4 A closer look at the bimodal normal

distribution

Figures 5.4 and 5.9 suggest that local maximum likelihood may be suitable to estimate
bimodal distributions. In this section we will do some simulations to compare this ap-
proach with the kernel estimator in the more realistic situation where we use an automatic
bandwidth selector. Silverman [1986] discusses an easily implemented procedure to choose
the bandwidth. Start with expression (5.1), but replace R(f ′′) with R(φ′′), where φ is a
parametric family, here chosen to be the N(0, σ2)-distribution. If we use the Gaussian
distribution also for the kernel, some calculations then yield

hAMISE =

(
4

3

)1/5

σn−1/5 ≈ 1.06σn−1/5,

where σ must be estimated from the data. It is clear that the integrated curvature R(f ′′)
is greater than R(φ′′) if f is bimodal, so this bandwidth will oversmooth the estimated
density if applied unaltered. We make two adjustments to address this problem. First,
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choose a more robust estimator for σ than just the empirical standard deviation. The
interquartile range (IQR) is less prone to extreme values, so since IQR = 2Φ−1(0.75) =
1.34σ for the N(0, σ)-distribution, where Φ denotes the cumulative distribution function,
we let σ̂R = min(standard deviation, IQR/1.34) for our purposes. Next, simply reduce
the constant 1.06 to reduce smoothing even further. Silverman [1986] suggests to use 0.9
instead for multi-modal distributions, so the bandwidth selector that will be employed in
the following experiments becomes

hAMISE = 0.9σ̂Rn
−1/5.

Recall that the bimodal normal density is of the form

f(x) = pφσ2
1
(x− µ1) + (1− p)φσ2

2
(x− µ2),

and we will look specifically at six different cases, each with parameters as presented
in Table 5.1. The estimates are averaged over 50 datasets consisting of 500 and 5000
observations respectively, and for each estimation, the bandwidth selector discussed in the
previous paragraph is used. The bandwidths used for estimation are also averaged over
the different realizations, and presented in table 5.2 and 5.3 along with the optimal h that
minimizes ISE, using information of the true density.

The automatic bandwidth selector is not very sophisticated, but performs reasonably
well. As expected, densities with very large curvatures, like the cases 2, 3 and 6, are
oversmoothed because the leading constant is 0.9 regardless of the observations. If we were
to know information about the true curvature, for example that there are two sharp peaks
far apart, one might consider to reduce this constant even further. Nevertheless, the local
maximum likelihood estimator (red curves) is consistently better than the kernel estimator
(blue curves) in all cases and for both sample sizes. This is especially true in the difficult
areas where f ′′ is large.

It should be noted here that since the ’unknown’ densities here are Gaussian of nature,
so using the normal distribution as parametric family will naturally fit very well.

µ1 µ2 σ1 σ2 p
Case 1 2 5 1 1 0.5
Case 2 2 7 1 1 0.5
Case 3 2 9 1 1 0.5
Case 4 3.2 5 1 0.5 0.65
Case 5 3.5 5 1 0.5 0.65
Case 6 3.3 5 0.3 0.3 0.65

Table 5.1: Six different bimodal normal distributions
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Bandwidth selector Kernel Estimator Local Likelihood Estimator

hAMISE hISE ISE ÎSE hISE ISE ÎSE
Case 1 0.47 0.39 0.00152 0.00164 0.41 0.00140 0.00144
Case 2 0.70 0.35 0.00175 0.00475 0.40 0.00167 0.00278
Case 3 0.95 0.37 0.00172 0.00958 0.41 0.00164 0.00380
Case 4 0.31 0.26 0.00231 0.00253 0.29 0.00222 0.00223
Case 5 0.29 0.26 0.00236 0.00243 0.31 0.00222 0.00223
Case 6 0.22 0.11 0.00510 0.01818 0.13 0.00467 0.00730

Table 5.2: Bandwidths calculated for each case, in terms of ISE and AMISE using a sample
size of n = 500. ISE denotes the observed integrated squares error for each case using the
optimal banwidth, hISE (calculated using the true f), while ÎSE denotes the observed
integrated squared error using the estimated bandwidth, hAMISE.

Bandwidth selector Kernel Estimator Local Likelihood Estimator

hAMISE hISE ISE ÎSE hISE ISE ÎSE
Case 1 0.30 0.23 0.00026 0.00030 0.26 0.00025 0.00026
Case 2 0.44 0.22 0.00027 0.00010 0.25 0.00025 0.00054
Case 3 0.60 0.22 0.00027 0.00233 0.26 0.00024 0.00101
Case 4 0.20 0.15 0.00038 0.00046 0.17 0.00037 0.00039
Case 5 0.18 0.15 0.00040 0.00042 0.18 0.00036 0.00036
Case 6 0.14 0.07 0.00097 0.00412 0.08 0.00082 0.00169

Table 5.3: Bandwidths calculated for each case, in terms of ISE and AMISE using a sample
size of n = 5000. ISE denotes the observed integrated squares error for each case using
the optimal bandwidth, hISE (calculated using the true f), while ÎSE denotes the observed
integrated squared error using the estimated bandwidth, hAMISE.
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(a) n = 500 (b) n = 5000

Figure 5.11: Case 1

(a) n = 500 (b) n = 5000

Figure 5.12: Case 2

Red curves: local likelihood, blue curves: the kernel estimator.
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(a) n = 500 (b) n = 5000

Figure 5.13: Case 3

(a) n = 500 (b) n = 5000

Figure 5.14: Case 4

Red curves: local likelihood, blue curves: the kernel estimator.
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(a) n = 500 (b) n = 5000

Figure 5.15: Case 5

(a) n = 500 (b) n = 5000

Figure 5.16: Case 6

Red curves: local likelihood, blue curves: the kernel estimator.
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Distributions with bounded support

The local maximum likelihood estimator exhibits the same boundary effects for discontin-
uous distributions as the kernel estimator, see Figure 5.6. Literature on reduction of these
boundary effects exists in abundance in connection with the kernel estimator, and we will
review a few of these methods below and demonstrate that they apply also for the local
likelihood case.

6.1 The kernel estimator

Suppose first that the unknown density f(x) is positive and smooth on the whole real line.
The kernel estimator has then the following well known expression for asymptotic bias:

E f̂(x) = f(x) +
1

2
h2µ2f

′′(x) +O(h4), (6.1)

where µ2 =
∫
s2K(s) ds again, and with a similar expressions for the local likelihood [Hjort

and Jones, 1996, Section 3]. If the support of f is bounded in either direction, the bias
near the boundary is different. Suppose now, for simplicity, and without loss of generality,
that the boundary is located at x = 0, as is the case for the exponential distribution that
we use as example in this chapter. Suppose further that the Kernel K is positive only on
[−1, 1], although modifying the arguments below to kernels of infinite support, such as the
normal distribution, is possible according to Jones [1993].

For x < h, the bias for the kernel estimator is given by [Marron and Ruppert, 1994]:

E f̂(x) ≈ a0(c)f(x)− ha1(c)f(′x) +
1

2
h2a2(c)f ′′(x) + o(h2), (6.2)

where x = ch, c ∈ [0, 1] and as(c) =
∫ c
−1
usK(u)du. Note that for c > 1, this expression

reduces to (6.1), so it is really valid for all x. We see that the estimate is not even consistent
for x < h, but that is easily fixed by dividing our estimate with the inconsistency factor
a0(c). Still, the bias near the boundary is of order O(h), and not O(h2) as we have in the

69
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interior. Jones [1993] then call for modifications of the kernel function so that a0(c) = 1
and a1(c) = 0. One such modification is given by

KL(x) =
(a2(c)− a1(c)x)K(x)

a0(c)a2(c)− a2
1(c)

, (6.3)

for which the desired properties are easy to verify.
Another simple way of reducing bias is by reflecting the data about the boundary and

letting the new estimate, f̃(x), be defined as f̃(x) = f̂(x) + f̂(−x), where f̂(·) is the
traditional kernel estimate based on the reflected data. The resulting estimate is of order
O(h), however, as Marron and Ruppert [1994] show:

Ef̃(x) = f(x)− 2h{ca0(−c) + a1(−c)}f ′(x) +
h2

2
f ′′(x)

+ 2h2{c2a0(−c) + ca1(−c)}f ′′(x) + o(h2). (6.4)

6.2 Local likelihood

There are two cases worth considering when investigating the boundary bias for the local
likelihood estimator; when the parametric family respects the boundaries of the true den-
sity, and when that is not the case. The first instance results in consistent estimates, also
near the boundary, with convergence rates comparable to those of local polynomial esti-
mation (see Section 6.3). For the second case, the boundary estimates behave like kernel
estimates. Details on these properties follow in the following two subsections.

6.2.1 Coinciding support

The choice of parametric family should reflect the knowledge we may have on the true
density, also with regard to boundaries. If we know that the true density vanishes for x < 0,
then the exponential distribution is perhaps better suited for local density estimation than
the normal distribution. Assume now that f(x) is zero for x < 0, that the parametric
family has support [0, 1], and, of course, that the parametric family φ(x,θ(x)) is actually
able to reach the true value f(x) at any given x by varying the parameter. Then the
following results, as presented by Hjort and Jones [1996], hold.

Assume again that ∫
Kh(x− y)u(y, θ){f(y)− φ(y, θ)} dy = 0 (6.5)

has a unique solution θ(x) = θ0(x) for all x. In the one-parameter case, we may expand the
integral above near zero using the same notation as introduced for the kernel estimator,
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resulting in

0 =

∫ ∞
0

Kh(x− y)u0(y){f(y)− φ0(y)} dy

= a0(c)u0(x){f(x)− φ0(x)} − ha1(c) [u0(x){f(x)− φ0(x)}]′

+
1

2
h2a2(c) [u0(x){f(x)− φ0(c)}]′′ +O(h3), (6.6)

where u0 and φ0 again means the u and φ functions with θ0 inserted as the parameter.
Rearranging the terms and replacing φ0(x) with Ef̂(x) +O((nh)−1) as before, we arrive at

Ef̂(x) = f(x)− a1(c)

a0(c)
h(f(x)− φ0(x))′ +O(h+ (nh)−1),

where we use the earlier established fact that f(x) − φ0(x) = O(h2) in general. For two
locally fitted parameters, however, we regain the appealing O(h2) bias that we also have
in the interior. We now have two equations,

0 =

∫ ∞
0

Kh(x− y)u0,j(y){f(y)− φ0(y)} dy,

for j = 1, 2. We may also write (again from Chapter 4) (f(x) − φ0(x))′ = Bh and
(f(x)−φ0(x))′′ = C as well as f(x)−φ0 = Ah2. Expanding the two integrals aboue to the
third power yields a second order term involving A − {a1(c)/a0(c)}B + 1

2
{a2(c)/a0(c)}C

and a third order term that contains −a1(c)A + a2(c)B − 1
6
a3(c)C as a factor. Equating

those terms with zero to eliminate B, results in

Ef̂(x) = f(x) +
1

2
Q(c)h2{f(x)− φ0(x)}′′ + o(h2 + (nh3)−1),

where

Q(c) =
a2

2(c)− 1
3
a1(c)a3(c)

a2(c)a0(c)− a2
1(c)

.

We will see in Section 6.3 that locally fitted polynomials also have O(h) bias for one
parameter, and O(h2) for two. Hjort and Jones [1996] conjecture that local likelihood fit
into this pattern as the number of parameters increases, but that is yet to be proved.

6.2.2 Non-coinciding support

The expressions (6.2) and (6.4) have equivalents in the local likelihood case when the
parametric family’s support exceeds the limits of the true density. The bias reduction
methods proposed by Jones [1993] can therefore be applied. These expressions follow
again from expanding integrals like the right hand side of (6.5) in powers of h, but we must
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take extra care of the integration limits in order to include all the estimated density. We
assume that the kernel has support [−1, 1], and find that:

0 =

∫
Kh(x− y)u0(y){f(y)− φ0(y)}dy

=
1

h

∫ x+h

0

K

(
x− y
h

)
u0(y){f(y)− φ0(y)} dy − 1

h

∫ 0

x−h
K

(
x− y
h

)
u0(y)φ0(y) dy

=
1

h

∫ h(c+1)

0

K
(
c− y

h

)
u0(y){f(y)− φ0(y)} dy − 1

h

∫ 0

h(c−1)

K
(
c− y

h

)
u0(y)φ0(y) dy

=

∫ c

−1

K(u)u0(x− uh){f(x− uh)− φ0(x− uh)} du−
∫ 1

c

k(u)u0(x− uh)φ0(x− uh) du

= a0(c)u0(x){f(x)− φ0(x)} − a1(c)h[u0(x){f(x)− φ0(x)}]′

+
1

2
a2(c)h2[u0(x){f(x)− φ0(x)}]′′ − b0(c)u0(x)φ0(x) + b1(c)h[u0(x)φ0(x)]′

+
1

2
b2(c)h2[u0(x)φ0(x)]′′, (6.7)

where bs(c) =
∫ 1

c
usK(u) du. The argument above is very much like that of Marron and

Ruppert [1994], with the necessary modifications. The extra terms resulting from the
wider integration limits ruin our hope for consistency and O(h2)-convergence no matter
how many parameters we include. Using that a0(c) + b0(c) = 1 and a1(c) + b1(c) = 0, the
boundary bias then becomes

Ef̂(x) = a0(c)f(x)− ha1(c)
(f(x)u0(x))′

u0(x)

h2

2

(
a2(c)(f(x)u0(x))′′ − a2(1)(u0(x)φ0(x))′′

u0(x)

)
+O(h2 + (nh)−1).

We see that the coefficients causing inconsistency and O(h)-bias are the same as for the
kernel estimator, so we can apply the same alternative kernel (6.3) in order to achieve
O(h2)-bias.

As for the reflection method, similar calculations confirm that the boundary bias is
of order O(h) also for the local maximum likelihood estimator. Figure 6.1 displays the
reflection method in practice when we estimate the Exponential(1)-distribution using the
Gaussian parametric family. The estimates are averaged over 50 realizations, each with
500 observations. There is still some O(h) bias near zero, but this simple method at least
ensures consistency for all x, which is the case for the Kernel estimator as well.
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Figure 6.1: The dashed lines show unaltered density estimates for the exponential distri-
bution (solid black line), using local likelihood (red) and the kernel method (blue). The
solid red and blue lines show corresponding estimates when using the reflection method.
The parametric family is here the normal distribution.

6.3 The local polynomial connection

Recall the example from Chapter 3 where the least squares regression line was estimated
locally rather than globally. This kind of non-parametric approach makes us able to es-
timate any smooth relationship between explanatory- and response variables. We can
generalize the method to include polynomials of higher degree, and more efficient kernels
than the uniform kernel we applied in Chapter 3. To see how local polynomials compare
with the local maximum likelihood method when applied to density estimation, we follow
the treatment of local polynomial estimation by and Fan and Gijbels [1996].

Suppose we observe n pairs of observations, (X1, Y1), (X2, Y2), . . . , (Xn, Yn), and that
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there exists an unknown relationship between the two variables on the form

E(Y |X = x) = m(X).

If the pth derivative of m(x) exists at x0, then the following approximation is valid in a
neighbourhood of x0:

m(x) ≈ m(x0) +m′(x0)(x− x0) +
1

2!
m′′(x0)(x− x0)2 + · · ·+ 1

p!
m(p)(x0)(x− x0)p.

The unknown coefficients βk = m(k)(x0)/k! may be estimated by minimizing

n∑
i=1

(
Yi −

p∑
j=1

βj(Xi − x0)j

)2

Kh(Xi − x0), (6.8)

where, following convention, K is a unimodal and symmetric kernel damping the influence
of observations far from x0, and Kh(x) = h−1K(x/h). The estimates are valid only in
the vicinity of x0, so estimates must be calculated for each point of a reasonably chosen
set of xs. It follows immediately that m̂(x0) = β̂0(x0), and equivalently for higher order

derivatives; m̂(k)(x0) = k!β̂k(x0). Minimizing (6.8) is a weighted least squares problem; let

X =

 1 (X1 − x0) · · · (X1 − x0)p

...
...

. . .
...

1 (Xn − x0) · · · (Xn − x0)p


be the design matrix, and collect response variables and estimates in the following vectors:

y =

 Y1
...
Yn

 , β̂ =

 β̂0
...

β̂p

 ,

and let W = diag(Kh(Xi − x0)). The estimates are then given by

β̂ =
(
XTWX

)−1
XTWy.

6.3.1 Density estimation

Density estimation can be formulated as a regression problem, as Fan and Gijbels [1996]
explain. Suppose we have n observations X1, X2, . . . , Xn from an unknown probability
density function, f(x), that we wish to estimate on the interval [a, b]. Let {Ik, k = 1, . . . , n}
be a partition of [a, b] consisting of N intervals of equal size δ, and denote xk as the center
of Ik. Denote further by yk the proportion of observations that are covered by Ik divided
by δ. One can easily show that E(yk) ≈ f(xk) as N → ∞ and n → ∞. Therefore, we
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may estimate f by local polynomials using the weighted least squares method from the
previous section. Expression (6.8) becomes

n∑
k=1

(
yk −

p∑
j=1

βj(xk − x)j

)2

Kh(xk − x) (6.9)

for each x, and the resulting density estimate is f̂(x) = β̂0(x), with estimators for deriva-

tives given by f̂ (k)(x) = k!β̂k(x) .
Recall from Section 4.5.3 that for local maximum likelihood, the difference between f

and f0 is of order h2 in the one- and two-parameter cases, h4 for three or four parameters,
and that Hjort and Jones [1996] conjecture that this pattern continues with h6-convergence
for five and six parameters and so on. Hjort and Jones [1996] demonstrate that boundary
bias also follow this pattern with a wisely chosen parametric family. This is analogous with
local polynomials, as summarized in a general theorem by Fan and Gijbels [1996] (Theorem
3.1). For a local linear fit, we estimate two parameters locally, namely the intercept and
the slope. In that case, the bias is of order h2. Second and third order polynomials mean
three and four parameters, and thus h4-bias. This pattern holds for all orders, and similar
results are derived for estimates of derivatives.

Fan and Gijbels [1996] show that polynomials of odd orders are preferable to those of
even orders, so in practice, the local linear fit seems like a logical choice.

6.3.2 Automatic boundary correction

A striking feature of curve estimation by local polynomials is that it does not suffer from
the boundary effects that occur when we work with the kernel estimator or local maximum
likelihood, a fact also demonstrated by Fan and Gijbels [1996]. We adjusted for this
quite easily by reflecting the data or by kernel adjustments, but we still had to know the
location of the boundary point. This is not required by local polynomials. In fact, the
local polynomial estimator automatically adjusts for boundary effects automatically by its
construction. To see this, we introduce some notation.

Let eν be the unit vector, with one in the νth position and zero elsewhere. Further, let

Sn,j =
n∑
i=1

Kh(Xi − x0)(Xi − x0)j,

so that Sn
def
= XTWX is the (p+1)×(p+1) matrix {Sn,j+l}0≤j,l≤p. From now on, we focus

on the density curve itself, but identical derivations may be carried out for its derivatives
up to order p. The estimate can now be written as

β̂0 = eT1 β̂ = eT1 S
−1
n X

TWy

=
n∑
i=1

Wn

(
Xi − x0

h

)
Yi,
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where Wn(x) = eT1S
−1
n {1, xh, · · · , (xh)p}TK(t)/h, and p is the order of the approximating

polynomial. We see now that local polynomials very much resemble ordinary kernel esti-
mation, but the kernel Wn in this case changes its shape with location along the x-axis.
We will see below that for points near the boundary, this ’kernel’ is exactly on the form
(6.3) for a local linear fit, that is, boundary bias will be taken care of automatically.

Fan and Gijbels [1996] proceed by showing that

Sn,j = nhjf(x0)µj{1 + oP (1)} (6.10)

where oP (1) is a quantity that tends to zero in probability as h → 0 and nh → ∞, and
µj =

∫
ujK(u) du as before. Let now S = {µj+l}0≤j,l≤p, so that we can write

Sn = nf(x0)HSH{1 + oP (1)},

where H = diag(1, h, . . . , hp). Substituting this back into the definition of Wn, we get

Wn(x) =
1

nhf(x0)
eT1S

−1(1, x, . . . , xp)TK(x){1 + oP (1)},

which in turn yields

f̂(x0) = β̂0 =
1

nhf(x0)

n∑
i=1

K∗
(
Xi − x0

h

)
Yi{1 + oP (1)},

where
K∗(x) = eT1S

−1(1, x, . . . , xp)TK(t).

Fan and Gijbels [1996] refer to K∗(t) as the equivalent kernel.
Consider now a boundary point, x = ch. The quantity Sn,j is again given by (6.10),

but with aj(c) in place of µj. The equivalent kernel then turn out to be

K∗c (x) = eT1S
−1
c (1, x, . . . , xp)TK(x),

where Sc = {aj+l(c)}0≤j,l≤p. When we write out the equivalent boundary kernel in the
linear case, we finally see that

K∗c (x) =
(a2(c)− a1(c)x)K(x)

a0(c)a2(c)− a2
1(c)

,

which is exactly the kernel we introduced for the kernel estimator in (6.3) to eliminate
boundary bias. Fan and Gijbels [1996] show that similar bias-eliminating equivalent kernels
arise for all order of derivatives up to an arbitrary order p.

To sum up, boundary estimates generated by the Kernel estimator with a kernel K
that is symmetric and has support [−1, 1], are generally not consistent for distributions
with bounded support. This is easily fixed, though, by employing alternative kernels as
described by Jones [1993].
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The Local Likelihood Estimator yields consistent boundary estimates, if the para-
metric family respects the boundary a shown in Section 6.2.2. Otherwise, the methods by
Jones [1993] will work also here.

Compact supports of the kernels give simple calculations, but according to Jones [1993],
this assumption can be relaxed. Especially distributions with exponential decay, such as
the Gaussian distribution, should not have too much influence on the results. Note further
that both these methods require knowledge on the location of the boundary, and also active
implementation by the researcher, either to modify the kernel, or to choose a suitable
parametric family.

The Local Polynomial approach takes care of boundary estimation automatically, as
demonstrated above. This is, of course, much easier from a programmer’s point of view,
and is a good alternative when the estimated curve is our ultimate goal.



78 Chapter 6. Distributions with bounded support



Chapter 7

Local partial likelihood in the Cox
regression model

The previous chapters have dealt manily with probability density estimation. We will now
turn our attention to another application, in which a local likelihood approach can be
useful in practice.

Recall the Cox regression model introduced in Section 2.1. We wish to estimate the
failure rate of an item (or individual) as a function of time, t, based on a set of observed
covariates, x. The model in its most general form, is given by [Fan et al., 1997]

λ(t|x) = λ0(t)Ψ(x, t), (7.1)

where λ is the hazard rate of interest, λ0 is the baseline hazard, and Ψ is the effect on the
baseline hazard resulting from covariates. By assuming Ψ(0) = 1, the hazard rate is just
the baseline hazard when all covariates are zero. Consequently, a common reformulation
of (7.1) is

λ(t|x) = λ0(t) exp (ψ(x, t)) .

We take censoring into account as follows. Suppose for individual number i that we
observe either the failure time ti or the censoring time ci, as well as the corresponding
set of covariates xi as a realization from the bivariate variable {Ti,Xi} or {Ci,Xi}. The
censoring mechanism is assumed independent from failure times. Denote Zi = min(Ti, Ci),
and the indicator variable δi, being one if the observed event-time is uncensored, and zero
otherwise. Thus, we observe the triples

{(Xi, Zi, δi) , i = 1, . . . , n} ,

which are iid samples from the population(
X,min(T,C), I{T≤C}

)
.

We will now consider three different levels of parametrizations of the model (7.1), in which
ordinary likelihood, local likelihood and local partial likelihood will be employed corre-
spondingly, all of which are studied in detail by Fan et al. [1997]. For the time being,
assume that all covariates are independent of time.
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7.1 Parametric baseline, parametric covariate

effects: ordinary likelihood

Suppose the baseline hazard is parametrized by λ0(t) = λ0(t;θ) and that ψ is parametrized
by ψ(x) = ψ(x;β), for example a linear function with β as vector of coefficients as men-
tioned in Chapter 2. According to Fan et al. [1997], the likelihood function of θ and β
conditioned on X is given by

L =
∏
u

f(Zi|Xi)
∏
c

S(Zi|Xi),

where f(t|x) is the conditional density function of T given X, S(t|x) = P (T > t|X = x) is
the conditional survival function, and

∏
u and

∏
c denote multiplication over uncensored

and censored individuals respectively. It is further shown that under the model (7.1), the
log-likelihood function becomes

log L =
n∑
i=1

[
δi
{

logλ0(Zi;θ) + ψ(Xi; β)
}

− Λ0(Zi;θ) exp
{
ψ(Xi; β)

}]
, (7.2)

where Λ0 =
∫ t

0
λ0 dt is the cumulative hazard function. Note that (7.2) is the logarithm of

(2.7) with censoring taken into account. Maximum likelihood estimates of θ and β follow
upon maximization of (7.2).

7.2 Parametric baseline: local likelihood

Next, keep the parametric assumption for the baseline hazard, but assume that ψ(x) is not
specified by any parametric model, only that it is smooth enough for a Taylor expansion.
In the case of only one covariate, we have

ψ(X) ∼ ψ(x) + ψ′(x)(X − x) + · · ·+ ψ(p)(x)

p!
(X − x)p (7.3)

in a neighbourhood of X. We can then construct the vectors

X = {1, X − x, . . . , (X − x)p}T and Xi = {1, Xi − x, . . . , (Xi − x)p}T ,

so that in a neighbourhood of x, ψ can be modelled as

ψ(X) ∼XTβ, (7.4)
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where β = {ψ(x), ψ′(x), . . . , ψ(p)(x)/p!}. By introducing a kernel function Kh = h−1K
such as the normal distribution, a localized version of (7.2) becomes

lloc =
n∑
i=1

[
δi
{

logλ0(Zi;θ) +XT
i β
}

− Λ0(Zi;θ) exp
{
XT

i β
}]
Kh(Xi − x). (7.5)

Again, maximization yield estimates for θ and β, but they are now dependant on x.

7.3 Non-parametric baseline: local partial

likelihood

Lastly, we discard the parametric model for the baseline hazard, and follow Fan et al.
[1997] in the derivation of a local partial likelihood function. Let t1 < · · · < tN be the
ordered failure times, and let (j) denote the item failing at time tj. The cumulative baseline
hazard function, Λ0, is non-decreasing by definition, so the weakest assumption we are in
the position to do, is that Λ0 has a jump θj at tj. Thus, Λ0 =

∑N
j=1 θjI{tj ≤ t}, so

Λ0(Zi;θ) =
∑

i∈R(tj)

θj,

where R(tj) denotes the risk set at time tj again. Substituting this into (7.2), the log-
likelihood becomes

log L =
J∑
j=1

[{
logθj + ψ(Xi; β)

}]
−

n∑
i=1

[ ∑
i∈R(tj)

θj exp{Xi; β}
]
, (7.6)

where the δi’s have become superfluous, because we only sum over the non-censored indi-
viduals in the first term. According to Breslow [1972], the maximizer of log L with respect
to θj is

θ̂j =

[ ∑
i∈R(tj)

exp{ψ(Xi;β)}
]−1

,

so that the likelihood function with respect to β turns out to be

max
λ0

log L =
N∑
j=1

[
ψ(X(j);β)− log

{ ∑
i∈R(tj)

exp
(
ψ(Xi;β)

)}]
−N, (7.7)

which upon maximization, is equivalent to the partial likelihood function for the Cox
regression model used in Chapter 2. By analogy with the preceding sub-section, the local
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partial likelihood function is then

lploc =
N∑
j=1

Kh

(
X(j) − x

) [
XT

(j)β − log

{ ∑
i∈R(tj)

exp
(
XT

(j)β
)}
Kh (Xi − x)

]
. (7.8)

Apart from just being a localized version of (7.7), according to Fan et al. [1997], it can also
be derived more formally from the local likelihood function (7.2).

This is not the place for technical proofs on properties of the local partial likelihood
estimators. Suffice it to say, theorems concerning consistency, asymptotic normality, ex-
istence and uniqueness under suitable regularity conditions are all covered by Fan et al.
[1997]. An important, and perhaps also surprising, point made in this reference, is that
the asymptotic bias and variance are the same in the two preceding situations. We do
not gain any more information by selecting a parametric model for the baseline hazard
(asymptotically, that is), so the local partial likelihood is indeed preferable, as we avoid
parametric misspecification without losing performance.

7.3.1 Other variations

Let us briefly consider a few variations of de model discussed above. Obviously, we need to
be able to derive a version of (7.5) for situations with more than one covariate. Although
demanding more involved notation, the Taylor expansion (7.3) is straightforward to perform
with respect to more than one covariate. The vectors X and Xi then becomes matrices,
and we have to let go of the compact notation (7.4), especially for more than two covariates.

A second natural extension of the theory, as was mentioned in Chapter 2, is the in-
troduction of time-dependant covariates. Fan et al. [2006] discusses this option, using the
following model as a starting point. Let

λ(t|w, z) = λ0(t) exp

(
β(W (t))TZ(t) + g(W (t))

)
,

where β(·) and g(·) are unknown coefficient functions depending on the value of the expo-
sure variable W (t), which usually represents just time when dealing with individuals, or
perhaps mechanical stress when we study the lifetime of certain devices. Z(t) denotes the
vector of time-dependant covariates. The partial likelihood is

L(β(·), g(·)) =
n∏
i=1

[
exp

(
β(Wi)

TZi + g(Wi)
)∑

j∈R(ti)
exp (β(Wj)TZj + g(Wj))

]δi
, (7.9)

which we localize in time (or at a certain value of the exposure variable if it measures
something else) by the following Taylor expansions

β(w) ≈ β(w0) + β′(w0)(w − w0)
def
= τ + η(w − w0)

g(w) ≈ g(w0) + g′(w0)(w − w0)
def
= α + γ(w − w0).
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When we insert these expressions into the partial likelihood function, note that α disap-
pears. By analogy with (7.8), the local partial log-likelihood becomes

l(γ, τ ,η) = n−1

N∑
j=1

Kh(Wi − w0)

×
[
τ TZj + ηTZj(Wj − w0) + γ(Wj − w0)

− log

( ∑
i∈R(tj)

exp{τ TZi + ηTZi(Wi − w0) + γ(Wj − w0)} ×Kh(Wi − w0)

)]
.

Maximization yield estimators β̂(w0) = τ̂ (w0) and ĝ(w0) by integration of ĝ′(w0) = γ̂(w0).
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Chapter 8

Concluding remarks

There is little doubt that local likelihood methods are valuable contributions to a statisti-
cian’s toolbox. Some of the mentioned references point at useful applications, and many
more exist that were not included in the preceding, more theoretically motivated work.
Perhaps more important than the local likelihood function itself, is the idea of locally
parametric estimation which, if used wisely, can draw on appealing characteristics from
well-established methods, both parametric and non-parametric.

Judging by the calculations in Section 5.2, local likelihood estimates seem to be more
robust against bad bandwidths than the kernel estimator, which, if true more generally,
is a major advantage. Also, we see from the illustrations in Section 5.4 that we get good
performance in the difficult areas of large curvature.

The theoretical foundation, however, is in need of more thorough investigations. In
light of Chapter 4, it appears that the asymptotic behaviour of local likelihood estimates is
highly dependant on the number of parameters in the parametric model. A general theory
on asymptotic variance and bias like that of local polynomials is yet to be established. Also,
it would be interesting to perform a more systematic study on performance compared with
the kernel estimator based on smaller sample sizes than the simple simulations of Chapter
5.

Further, a review on which situations we may assume existence and uniqueness for the
’true’ parameter θ0, as defined for example by equation (4.1), would be useful.
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