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Abstract. Trivium is a hardware-oriented stream cipher designed in 2005
by de Cannière and Preneel for the European project eStream, and it has
successfully passed the first and the second phase of this project. Its de-
sign has a simple and elegant structure. Although Trivium has attached
a lot of interest, it remains unbroken.
In this paper we present differential fault analysis of Trivium and propose
two attacks on Trivium using fault injection. We suppose that an attacker
can corrupt exactly one random bit of the inner state and that he can
do this many times for the same inner state. This can be achieved e.g.
in the CCA scenario. During experimental simulations, having inserted
43 faults at random positions, we were able to disclose the trivium inner
state and afterwards the private key.
As far as we know, this is the first time differential fault analysis is applied
to a stream cipher based on shift register with non-linear feedback.
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1 Introduction

In 2004 eSTREAM project has started as part of the European project ECRYPT.
At the beginning there was a call for stream ciphers and 34 proposals were re-
ceived. Each proposal had to be (according to the call) marked as hardware or
software oriented cipher. At the time of writing this paper, the project was in
phase 3, and there were just some ciphers left. One of the requirements of the call
for stream ciphers was the high throughput, so the winners can compete with
AES. In this respect, one of the best proposals is the stream cipher Trivium,
which is a hardware oriented stream cipher based on 3 nonlinear shift registers.
Though the cipher has a hardware oriented design it is also very fast in software,
which makes it one of the most attractive candidates of the eSTREAM project.

In this paper differential fault analysis of Trivium is described. We sup-
pose that an attacker can corrupt a random bit of the inner state of Trivium.
Consequently some bits of keystream difference (proper keystream XOR faulty
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keystream) depend linearly on the inner state bits, while other equations given
by the keystream difference are quadratic or of higher order in the bits of the
fixed inner state.

Since we suppose that an attacker can inject a fault only to a random position,
we also describe a simple method for fault position determination. Afterwards
knowing the corresponding faulty keystream, we can directly recover few inner
state bits and obtain several linear equations in inner state bits. Just by repeating
this procedure for the same inner state but for different (randomly chosen) fault
positions we can recover the whole cipher inner state, and clocking it backwards
we are able to determine the secret key. The drawback of this simple approach is
that we need many fault injections to be done in order to have enough equations.

To decrease number of faulty keystreams needed (i.e. to decrease the number
of fault injections needed), we also use quadratic equations given by a keystream
difference. But as we will see later on, we do not use all quadratic equations,
but just those which contains only quadratic monomials of a special type, where
the type follows directly from the cipher description. In this way we are able to
recover the whole trivium inner state using approx. 43 fault injections.

As mentioned above, presented attacks require many fault injections to the
same Trivium inner state. This can be achieved in the chosen-ciphertext scenario,
assuming that the initialisation vector is the part of the cipher input. In this
case, an attacker will always use the same cipher input (initialisation vector
and ciphertext) and perform the fault injection during the deciphering process.
Hence, proposed attacks could be described as chosen-ciphertext fault injection
attacks.

We have to stress out, that in this paper we do not consider usage of any
sophisticated methods for solving systems of polynomial equations (e.g. Gröbner
basis algorithms). We work with simple techniques which naturally raised from
the analysis of the keystream difference equations. Hence the described attacks
are easy to implement. This also shows how simple is to attack Trivium by differ-
ential fault injection. We believe that usage of more sophisticated methods can
further improve presented attack, in sense of the number of the fault injections
needed for the key recovery.

The rest of this paper is organised as follows. In Sect. 2 we review related
work and Sect. 3 describes used notation. Trivium description in Sect. 4 follows.
Attacks description can be found in Sect. 5, which also contains attack outline
and differential fault analysis description. We conclude by Sect. 6.

2 Related Work

Let us briefly mention some of the previous results in Trivium cryptanalysis.
Raddum introduces a new method of solving systems of sparse quadratic equa-
tions and applies it in [2] to Trivium. The complexity arising from this attack on
Trivium is O(2162). A. Maximov and A. Biryukov [3] use a different approach to
solve the system of equations produced by Trivium by guessing the value of some
bits. In some cases this reduces the system of quadratic equations to a system of
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linear equations that can be solved. The complexity of this attack is O(c · 283,5),
where c is the time taken to solve a sparse system of linear equations. Differ-
ent approaches to Trivium potential cryptanalysis - some ways of construction
and solution of equations system for Trivium mainly - are discussed in [4]. M.
S. Thuran and O. Kara model the initialisation part of Trivium as an 8-round
function in [5]. They study linear cryptanalysis of this part of Trivium and give
a linear approximation of 2-round Trivium with bias 2−31. In [6] the differential
cryptanalysis is applied mainly to initialisation part of Trivium.

Our attack deals with fault analysis of trivium. Side-channel attacks are
amongst the strongest types of implementation attacks. Short overview on pas-
sive attacks on stream ciphers is given in [7]. Differential power analysis of Triv-
ium is described in [8].

Fault attacks on stream ciphers are studied in [9]. The authors are mainly
focused on attacking constructions of stream ciphers based on LFSRs. The cor-
responding attacks are based on the linearity of the LFSR. More specialised
techniques were used against specific stream ciphers such as RC4, LILI-128 and
SOBER-t32 [10].

3 Notation

In this paper the inner state of Trivium is denoted as IS and the bits of the inner
state (there are 288 of these) as (s1, . . . , s288). The inner state at time t0 is
denoted as ISt0 and the following keystream (starting at the time t0) as {zi}

∞

i=1.
We refer to this keystream as the proper keystream. After a fault injection into
the state ISt0 , the resulting inner state is denoted as IS′

t0
and the following

faulty keystream (starting at the time t0) as {z′i}
∞

i=1.
The keystream difference, i.e. the difference between the proper keystream

and the faulty keystream is denoted as {di}, i.e. di = z′i ⊕ zi, i ≥ 1. The fault
position is denoted as e, 1 ≤ e ≤ 288. The righ-hand-side of an equation is (as
usual) abbreviated to RHS.

4 Trivium Description

The stream cipher trivium is an additive synchronous stream cipher with 80-
bit secret key and 80-bit initialisation vector (IV). The cipher itself produces
the keystream, which is then XOR-ed to a plaintext to produce the ciphertext.
Trivium (as other stream ciphers) can be divided into two parts: the initialisation
algorithm described by Alg. 1, which turns the secret key and the initialisation
vector into the inner state of Trivium, and the Keystream generation algorithm
described by Alg. 2, which produces the keystream (one bit per step).

The cipher itself consists of 3 shift registers with non-linear feedback func-
tions. These registers are of length 93, 84 and 111 respectively. Keystream pro-
duction function is a bit sum (i.e. XOR) of 6 bits in total, 2 bits from each
register. Feedback function for register i (i = 0, 1, 2) depends on bits of register
i quadratically and on one bit of register (i + 1)mod3 linearly. If we look closer
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at any of these feedback functions we see, that it contains only one quadratic
term and the rest is linear. Furthermore, this quadratic term is of a special type,
namely sj · sj+1.

In the rest of the paper, by the term pair quadratic equation we denote a
quadratic equation, which contains linear terms and quadratic terms only of
the type sj · sj+1. As we will see, these pair quadratic equations are typical for
Trivium and in our attack we take an advantage of this.

Algorithm 1 The Initialisation Algorithm of Trivium

Input: Secret key K = (K1, . . . , K80), initialisation vector IV = (IV1, . . . , IV80)
Output: Trivium inner state (s1, . . . , s288)

1: (s1, . . . , s93)← (K1, . . . , K80, 0, . . . , 0)
2: (s94, . . . , s177)← (IV1, . . . , IV80, 0, . . . , 0)
3: (s178, . . . , s288)← (0, . . . , 0, 1, 1, 1)
4: for i = 0 to 4 · 288 do

5: t1 ← s66 + s91 · s92 + s93 + s171

6: t2 ← s162 + s175 · s176 + s177 + s264

7: t3 ← s243 + s286 · s287 + s288 + s69

8: (s1, . . . , s93)← (t3, s1, . . . , s92)
9: (s94, . . . , s177)← (t1, s94, . . . , s176)

10: (s178, . . . , s288)← (t2, s178, . . . , s287)
11: end for

Algorithm 2 The Keystream generation algorithm

Input: Trivium inner state (s1, . . . , s288), number of output bits N ≤ 264

Output: Keystream {zi}
N
i=1

1: for i = 0 to N do

2: zi ← s66 + s93 + s162 + s177 + s243 + s288

3: t1 ← s66 + s91 · s92 + s93 + s171

4: t2 ← s162 + s175 · s176 + s177 + s264

5: t3 ← s243 + s286 · s287 + s288 + s69

6: (s1, . . . , s93)← (t3, s1, . . . , s92)
7: (s94, . . . , s177)← (t1, s94, . . . , s176)
8: (s178, . . . , s288)← (t2, s178, . . . , s287)
9: end for
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5 Differential Fault Analysis of Trivium

In this section we will describe our contribution to the cryptanalysis of Trivium.
To show how our attack evolved, we describe more versions of differential fault
analysis of Trivium, from the simplest one, to the more sophisticated ones.

Before describing our contribution, let us briefly recall the basic ideas of
Differential Fault Analysis (DFA).

Differential fault analysis is an active side channel attack technique, in which
an attacker is able to insert a fault into the enciphering or deciphering process
or he is able to insert a fault into a cipher inner state. The later is the case of
our attack, we suppose that an attacker is able to change exactly one bit of the
Trivium inner state. Another assumption of DFA is that an attacker is able to
obtain not only the cipher output after the fault injection, but he is also able to
obtain the standard output, i.e. the output produced by the cipher without the
fault injection.

In this paper, according to the DFA description, we assume that an attacker
is able to obtain a part of a Trivium keystream {zi}

∞

i=1 produced from the
arbitrary but fixed inner state ISt0 and that he is also able to obtain a part
of the faulty keystream {z′i}

∞

i=1 produced by the fault inner state IS′

t0
. We will

discuss the amount of keystream bits needed for any of presented attacks later
on. Just for illustration, the attack we have implemented needs about 280 bits
of the proper keystream and the same amount of the faulty keystream bits.

Furthermore, in our attacks, an attacker has to be able to do the fault injec-
tion many times, but for the same inner state ISt0 , where the value of t0 is fixed,
but arbitrary and unknown. It follows, that in our scenario the stream cipher
Trivium has to be run many times with the same key and IV, so an attacker is
able to inject a fault to the same inner state ISt0 . This can be achieved e.g. by
attacking the cipher in the deciphering mode, assuming the initialisation vector
is the part of the cipher input. In this case, we will always use the same pair of
IV and cipher text as the cipher input, and we will perform fault injections to
the cipher inner state during the deciphering process. Hence, proposed attacks
can be performed in the chosen-ciphertext attack scenario.

All our prerequisites are gathered in Sect. 5.1.
The result of our attack is the determination of the inner state ISt0 , which

can be used afterwards to obtain the secret key K and initialisation vector IV .
This can be done due to the reversibility of the Trivium initialisation algorithm
and due to the fact, that the initialisation part is the same as the keystream
generation part. Thus, after we determine ISt0 , we run trivium backwards (which
also allows us to decipher previous communication) until we obtain an inner state
of the form

(s1, . . . , s93) = (a1, . . . , a80, 0, . . . , 0),

(s94, . . . , s177) = (b1, . . . , b80, 0, . . . , 0), (1)

(s178, . . . , s288) = (0, . . . , 0, 1, 1, 1)
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Afterwards if the values (b1, . . . , b80) are equal to the known IV, we can (with very
high probability) claim, that (a1, . . . , a80) is the secret key used for encryption.

5.1 Attack prerequisites

Let t0 be arbitrary but fixed positive integer and let ISt0 be arbitrary but fixed
Trivium inner state at time t0. These are the prerequisites of our attack:

– an attacker is able to obtain first n consecutive bits of the keystream {zi}
produced out of the inner state ISt0 ,

– an attacker is able to inject exactly one fault at random position of the inner
state ISt0 ,

– an attacker is able to repeat the fault injection at random position of ISt0

m times

– an attacker is able to obtain first n consecutive bits of the keystream {z′i}
produced out of the inner sate IS′

t0
for all fault injections.

The number of consecutive bits of the proper and of the faulty keystream
needed, n, differs for presented attacks. For the most simple one n = 160 and
for the second one n = 280. The number of fault injections needed for any of the
presented attacks, m, is discussed after the attack descriptions.

5.2 Attack outline

The core of the presented attack is to solve the system of equations in the inner
state bits of a fixed inner state ISt0 = (s1, . . . , s288). Because the output function
of the Trivium is linear in the inner state bits, some equations can be obtained
directly from the proper keystream. Specifically, the first 66 keystream bits are
linear combinations of bits of ISt0 ,

zi = s67−i + s94−i + s163−i + s178−i + s244−i + s289−i, 1 ≤ i ≤ 66, (2)

and the following 82 keystream bits depends quadratically on s1, . . . , s288. These
are followed by polynomials of degree 3 and higher.

Since we have 288 variables (bits of inner state) and the degree of keystream
equations grows very fast, we are not able to efficiently solve this polynomial
system. The question is how to obtain more equations. By the analysis of Triv-
ium, we have noticed that a change of a single bit of the inner state directly
reveals some inner state bits and also gives us some more equations. Hence, we
decided to use DFA as a method for obtaining more equations. For illustration,
Tab. 1 contains the first equations given by a keystream difference after a fault
injection on position 3, i.e. s′3 = s3 + 1.
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Table 1. Non-zero elements of {di}
230
i=1 for s′3 = s3 + 1.

i di

64,91,148,175,199,211,214,217 1
158,175,224 s4

159,174,225 s3

212 s4 + s31 + s29s30 + s109

213 s2 + s29 + s27s28 + s107

227 s178 + s223 + s221s222 + s4

228 s161 + s176 + s174s175 + s263 + s221 + s2 + s219s220

5.3 Fault position determination

In our attack we suppose that an attacker is not able to influence the position
of a fault injection, i.e. he can inject a fault to the Trivium inner state only at
a random position. But as we will see further on, he also needs to determine
the fault position, since the equations for the keystream difference depend on
this position.

The core of the fault position determination is that the distance between the
output bits differs for each register. According to the line 2 of Alg. 2, s66 and
s93 are the output bits of the first register and their distance is 93− 66 = 27. In
the second register, s162 and s177 are used as the output bits and their distance
is 15. In the third register s243 and s288 are used and their distance equals 45.

For example suppose that we have injected a fault into one of the registers
at an unknown position e, so s′e = se + 1, and (only for this example) assume
that we know that e ∈ {1, . . . , 66} ∪ {94, . . . , 162} ∪ {178, . . . , 243}. Denote the
index of the first non-zero bit in the keystream difference by a, i.e. da = 1 and
dj = 0 for all 1 ≤ j < a. If the fault was injected into the first register, then
according to the output function we have also da+27 = 1, since the distance
between the output bits of the first register is 27. In the same manner, if the
fault was injected to the second register, we have da+15 = 1 while da+27 = 0,
and da+45 = 1 while da+15 = da+27 = 0 for the third register.

A non-zero bit can occur in the keystream difference at many positions,
depending on the values of inner state bits. But since some occurrences of the
non-zero bit are certain, with a little bit more work that in our example, we can
easily determine the exact fault position. Tables 6, 7 and 8 in Appendix show
the positions and the values of the some first (potentially) nonzero bits of the
keystream difference in the correspondence to the fault position. In these tables,
symbol X denotes a value which is neither 1 nor si+1 or si−1. By the help of
these tables, it is easy to determine the fault position assuming that exactly one
fault was injected (our assumption from 5.1). E.g. assume that the first non-zero
keystream difference bit has index a, the second non-zero bit has index b and
that b− a = 42. According to the tables 6, 7 and 8, we see that this can happen
only in the case described by the third row of Tab. 6 (136− 94 = 42) and in the
case described by the third row of Tab. 8 (331 − 289 = 42). In the first case we
will also have db+42 = 1 (178 − 136 = 42) and db+24 = 0, while in the second
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case db+42 = 0 and db+24 = 1 (355 − 331 = 24). In this way we can distinguish
between the two cases and we can claim that the fault position is 94 − a in the
first case and 289 − a in the second case.

5.4 First attack, using linear equations

Let us start with the description of a simple attack on Trivium using fault
injection technique.

In this attack an attacker uses only linear equations in the inner state bits
(s1, . . . , s288) given by the proper keystream and by the keystream difference.

Before the attack itself, the attacker does the following precomputation: for
each fault position 1 ≤ e ≤ 288, the attacker expresses potentially non-zero bits
of the keystream difference as polynomials in (s1, . . . , s288) over GF(2), using
Alg. 2 and the fact that di = z′i ⊕ zi. Since he only needs linear equations, the
attacker has to express only the first n bits of keystream difference and store
these equations in a table. The value of n is discussed below. During the attack,
the attacker will just make table look-up for the right equation for the actual
fault position.

The average number of linear equations given by the keystream difference for
a single fault injection can be found in Tab. 2. It follows from this table, that
in the precomputation phase of this attack, it is enough to make 180 steps of
Trivium (in a symbolic computation) for each fault position, so n = 180.

Table 2. The average number (among all fault positions) of equations obtained from
a random fault.

number The average number of equations of degree d obtained from one fault.
of steps d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

160 1.86 0.24 0.08 0 0 0 0
180 1.99 1.17 0.39 0 0 0 0
200 1.99 2.52 0.89 0 0 0 0
220 1.99 4.14 1.53 0 0 0 0
240 1.99 5.99 2.82 0.03 0 0 0
260 1.99 7.76 4.15 1.13 0.45 0.37 0.28
280 1.99 9.22 5.22 3.42 1.47 1.23 0.96
300 1.99 9.77 5.86 7.10 3.55 2.66 2.09

Let us have a closer look on the relation between the number of fault in-
jections and the number of inner state bits obtained. At the beginning of the
attack, almost every fault injected gives us directly two new variables. But as the
attack progresses, it becomes much harder to hit the positions which will bring
us two new inner state bits and there will be many fault injections, which bring
only one or even no new variable. If we would like to obtain all of the 288 bits of
the inner state just by the fault injection, at the end of the attack we will waste
many fault injections until we hit the right positions. Hence, it will significantly
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reduce the number of fault injections needed, if we stop the attack at the point
when T bits of inner state are known and we will guess the remaining 288 − T
bits afterwards.

Table 3 shows the number of fault injections needed, m, to obtain T bits of
inner state for different values of T . This is also illustrated on the left of Fig. 1.

Table 3. Number of fault injections needed (m) to obtain a certain number of inner
state bits (T ) (average over 1000 experiments) in the linear attack

T 20 40 60 80 100 120 140 160 180 200 220 240 260 280 288

m 10 21 33 46 58 71 84 98 113 127 145 165 189 270 382

During the attack, the attacker stores linear equations obtained in a binary
matrix M with 289 columns (288 bits of ISt0 plus RHS). The attack itself is
described by Alg. 3.

Algorithm 3 Linear attack

Input: Trivium stream cipher with possibility of fault injections (see Sect. 5.1)
Output: Secret key K

1: obtain n consecutive bits of {zi}
2: insert linear equations (2) (see Sect. 5.2) to M , using bits of {zi} as RHS
3: while rank(M) < T do

4: insert a fault into ISt0

5: obtain n consecutive bits of the faulty keystream {z′

i}
6: compute keystream difference di = z′

i + zi, 1 ≤ i ≤ n

7: determine the fault position e

8: insert equations for the keystream difference (according to value of e) into M

9: do Gauss elimination of M

10: end while

11: repeat

12: guess the remaining 288− T inner state bits
13: solve the linear system given by M and guessed bits
14: store the solution in ISS

15: produce the keystream {z̃i}
n
i=1 from the inner state ISS

16: until ∃ i ∈ {1, . . . , n} : z̃i 6= zi

17: run Trivium backwards starting with ISS until an inner state IS0 = (s0
1, . . . , s

0
288)

of type (1) (see page 5) is reached
18: output K = (s0

1, . . . , s
0
80).

As already mentioned, according to Tab. 2, in Alg. 3 we can set n = 180,
since we would not get any more (previously unknown) linear equations from
the bits of the keystream difference {di} for i > 180.

The complexity of this simple attack is given by the complexity of solving
a system of linear equations (suppose this is O(n3)) multiplied by the complexity
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of guessing 288 − T variables. For T = 258, we obtain the complexity of 2583 ·
230 = 254 operations and we need to do (according to Tab. 3) approximately 189
fault injections. For T = 268, the attack has the complexity of 244.2 operations
and we need to do approximately 200 fault injections.
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Fig. 1. Number of fault injections needed to obtain a certain number of inner state
bits. Left: linear attack. Right: pair quadratic attack.

5.5 Second attack, using pair quadratic equations

The attack presented in this section is a natural successor of the previous one,
in the terms of reduction of the number of fault injections needed.

The main difference is that in this case, we do not use only linear equations
but also pair quadratic equations (see Sect. 4). The reason why we have de-
cided to use only pair quadratic and not all quadratic equations is that most
of quadratic equations that appear in Trivium analysis are pair equations. For
example all 82 quadratic equations for keystream bits are pair and also most
(approx. 80%) of the quadratic equations for the keystream difference bits are
also pair (see Tab. 4). Furthermore, the number of all possible quadratic terms
in 288 inner state bits is too large (approx. 216.3) and hence the complexity of
solving a linear system in all quadratic variables would be too high.

Lets have a look at the precomputation part of this attack. Here again, for
all possible fault positions 1 ≤ e ≤ 288, we need to express bits of the keystream
difference as polynomials in the bits of ISt0 = (s1, . . . , s288). However, now we
will store not only all linear but also all pair quadratic equations for each value of
e. Hence for each e we need to do more Trivium steps (in symbolical computing)
for both the proper inner state ISt0 and for the fault inner state IS′

t0
.

As common in cryptology, to simplify the computations we work in the factor
ring GF(2)[s1, . . . , s288]/(s2

1−s1, . . . , s
2
288−s288) instead of the whole polynomial

ring GF(2)[s1, . . . , s288]. This can be done, since for any x ∈ GF(2) we have
x2 = x and we would like to make these computations as simple as possible. In
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this way we also obtain more equations of small degrees, since this factorisation
reduces any term of type sn

i to the term si.

In our implementation, we have used the value n = 280, so we need to
obtain 280 bits of a keystream and we need to do 280 steps of Trivium (in
symbolical computing) during the precomputation. We will not theoretically
discuss the complexity of these precomputations, but in our implementation the
precomputation phase with 280 Trivium step took couple of hours on a standard
desktop computer.

The average number of equations of a degree up to 7 given by the keystream
difference for a single fault injection and for a certain number of Trivium steps
can be found at Tab. 2. Table 4 describes number of pair quadratic equations
given by the keystream difference for a single fault injection and certain number
of Trivium steps and it compares this number to the amount of all quadratic
equations obtained. As we can see, the loss is around 20%.

Table 4. The average number (among all fault positions) of pair quadratic equations
obtained from a random fault compared to the average number of all quadratic equa-
tions.

number avg. num. of avg. num. of loss
of steps all quad. eq. pair quad. eq. (percentage)

160 0.24 0.19 18.84%
180 1.17 0.94 19.64%
200 2.52 1.98 21.63%
220 4.14 3.19 22.75%
240 5.99 4.75 20.75%
260 7.76 6.08 21.66%
280 9.22 7.14 22.52%

During this attack, we store the equations obtained in a matrix M over
GF(2) which has 288 + 287 + 1 columns. The first 288 columns will represent
the variables s1, . . . , s288 and the following 287 columns will represent all pair
quadratic terms. We denote the variable of a column j by yj and define

yj =

{

sj , 1 ≤ j ≤ 288
sj−288 · sj−287, 289 ≤ j ≤ 575.

The last column contains the right-hand-side value for each equation. At the
beginning of the attack, we put all linear and pair quadratic equations obtained
from the proper keystream into M . Afterwards for each fault injection, we make
fault position determination and according to the fault position, we insert the
precomputed equations for the actual fault position.

In addition to the previous attack, we also hold a list of already known vari-
ables. This list will help us employ quadratic connections between variables yi.
Strictly speaking, anytime we determine the value of some previously unknown
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variable yi, for some 1 ≤ i ≤ 288 (so yi = si), we go through the whole ma-
trix M and we eliminate variables yi+287 and yi+288 in each row (only y289 for
i = 1 and only y575 for i = 288). If we for example determine that for some
1 ≤ i ≤ 288, yi = si = 1, then we go through all rows of M with non-zero value
in column yi+287 or yi+288, set this variable to zero and add 1 to yi−1 or yi+1

respectively. In the case of yi = 0 for some 1 ≤ i ≤ 288, we just set yi+287 and
yi+288 to zero. In this way, we can possibly obtain some more linear equations in
s1, . . . , s288 or even determine some new variables. If this is the case, we repeat
this procedure again. For the rest of the paper, we denote this procedure as
quadratic to linear().

In the description of the attack, we suppose that the list of known variables is
updated automatically, so we do not mention this explicitly. E.g. 2 new variables
will be added automatically to the list of known variables after almost each fault
injection.

During the attack, we also use classical linear algebra techniques for solving
a system of linear equations in yi, 1 ≤ i ≤ 575, represented by M . Let us denote
this by elimination(). It is clear, that this procedure can also reveal some new
variables. If this happens, we use these new variables for the quadratic to linear()
procedure and if this changes at least one equation in M , we do the elimination()
again.

The attack is described by Alg. 4.

Algorithm 4 Attack using pair equations

Input: Trivium stream cipher with possibility of fault injections (see Sect. 5.1)
Output: Secret key K

1: obtain n consecutive bits of {zi}
2: insert equations for {zi}

148
i=1 to M , using bits of {zi} as RHS

3: while not (all s1, . . . , s288 are known) do

4: insert a fault into ISt0

5: obtain n consecutive bits of the faulty keystream {z′

i}
6: compute keystream difference di = z′

i + zi, 1 ≤ i ≤ n

7: determine the fault position, e

8: insert equations for the keystream difference (according to value of e) into M

9: repeat

10: do quadratic to linear()
11: until it keeps changing M

12: do elimination()
13: if new variables obtained by elimination() then

14: goto 9
15: end if

16: end while

17: run Trivium backwards starting with IS = (s1, . . . , s288) until an inner state IS0 =
(s0

1, . . . , s
0
288) of type (1) (see page 5) is reached

18: output K = (s0
1, . . . , s

0
80).
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We have not theoretically analysed the complexity of this algorithm, but
its running time on a standard desktop computer was always only a couple of
seconds.

The average number of fault injections needed to obtain a certain number of
inner states bits by the described attack is shown on Tab. 5 and illustrated on
the right of the Fig. 1. These experimental results show, that the behaviour of
Alg. 4 is opposite to the behaviour of Alg. 3. In this case, if we would like to
obtain only 100 inner state bits, we need to inject approx. 40 faults and for 288
inner state bits we need only approx. 43 faults. It follows that stopping Alg.4
earlier and guessing the remaining variables would be of no significance.

Table 5. Number of fault injections needed (m) to obtain a certain number of inner
state bits (T ) (average over 1000 experiments) by Alg. 4

T 20 40 60 80 100 120 140 160 180 200 220 240 260 280 288

m 10.1 20.3 28.4 35.4 39.8 41.9 42.4 42.5 42.7 42.8 42.9 43.0 43.1 43.1 43.1

5.6 Possible extensions, future work

In this section we will shortly describe some possible extensions of the previous
attack.

The first extension could be an algorithm, which would use all quadratic
equations and not only pair equations. The size of the matrix M would be
much higher in this case. However, since the matrix would be sparse, it could be
represented and handled efficiently. According to Tab. 4, we would get approx.
2 more equations from each fault, so this would reduce the number of faults
needed to less than 40.

Next possible extension would be an attack, which would also use equations
of higher order. This doesn’t necessarily mean that we would try to solve systems
of polynomial equations. We could only store these equations, and then use a
function similar to the quadratic to linear() to eliminate terms of higher order.
E.g. if we will decide to use equations up to degree 3, we could possible eliminate
cubic terms and get some new equations of degree 2. E.g. for fault position 95
we have

d256 = s96s81s82 + s96s56 + s96s83 + s96s161 + s96s98 + s96s97 + s96s185 =
= s96 · (s81s82 + s56 + s83 + s161 + s98 + s97 + s185)

so if s96 = 1 we get new a pair equation. In this way we could obtain more
equations, which could be used in the previous attack. This would further reduce
the number of fault injections needed.

By adjusting the prerequisites, we can obtain other improvements. E.g. if an
attacker can choose the fault position, the number of fault injections needed for
the proposed attacks would significantly reduce. Yet another option could be
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injection of more faults at once. It is clear, that in this case an attacker would
obtain much more information from each fault injection (e. g. if two faults are
injected at once, 4 inner state bits are obtained directly). Hence, an attack could
be carried out using only few fault injection. On the other hand, the fault position
determination could be problematic.

6 Conclusion

In this paper, differential fault analysis of Trivium was described. As far as we
know, this was the first time differential fault analysis was applied to a stream
cipher based on non-linear shift registers.

We have shown, that an attacker is able to obtain the secret key after ap-
proximately 43 fault injections using one of the described algorithms, assuming
the chosen-ciphertext attack scenario. All the methods proposed in this article
arise directly from the Trivium analysis, they are of low complexity and are easy
to implement.
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Appendix

Table 6. Non-zero elements of {dj}, with s′i = si + 1, for 1 ≤ i ≤ 93.

fault pos. keystream difference dj for j =
s′i = si + 1 67-i 94-i 136-i 151-i 161-i 162-i 163-i 176-i 177-i 178-i 202-i 220-i 242-i

i = 1 1 1 1 si+1 X si+1 X 1 1
i = 2, . . . , 66 1 1 1 si+1 si−1 si+1 si−1 1 1
i = 67, . . . , 69 1 1 si+1 si−1 si+1 si−1 1 1
i = 70, . . . , 90 1 si+1 si−1 1 si+1 si−1 1 1

i = 91 1 si+1 si−1 1 si+1 si−1 1
i = 92 1 si−1 1 si−1 1
i = 93 1 1 1

Table 7. Non-zero elements of {dj}, with s′i = si + 1, for 94 ≤ i ≤ 177.

fault pos. keystream difference dj for j =
s′i = si + 1 163-i 178-i 229-i 241-i 242-i 243-i 244-i 256-i 274-i 287-i 288-i 289-i

i = 94 1 1 1 1 si+1 X 1 1 1 si+1 X 1
i = 95, . . . , 162 1 1 1 1 si+1 si−1 1 1 1 si+1 si−1 1
i = 163, . . . , 171 1 1 si+1 si−1 1 1 si+1 si−1 1
i = 172, . . . , 174 1 si+1 si−1 1 si+1 si−1 1

i = 175 1 si+1 si−1 1 si+1 si−1 1
i = 176 1 si−1 1 si−1 1
i = 177 1 1 1
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Table 8. Non-zero elements of {dj}, with s′i = si + 1, for 178 ≤ i ≤ 288.

fault pos. keystream difference dj for j =
s′i = si + 1 289-i 310-i 331-i 371-i 353-i 354-i 355-i 376-i 380-i 381-i 382-i 394-i

i = 178 1 1 1 1 si+1 X 1 1 si+1 X 1 1
i = 179, . . . , 243 1 1 1 1 si+1 si−1 1 1 si+1 si−1 1 1
i = 244, . . . , 264 1 1 si+1 si−1 1 1 si+1 si−1 1
i = 265, . . . , 285 1 si+1 si−1 1 si+1 si−1 1

i = 286 1 si+1 si−1 1 si+1 si−1 1
i = 287 1 si−1 1 si−1 1
i = 288 1 1 1


