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Introduction

The thesis is devoted to applications of the theory of quadratic differentials
to the problems of construction of equilibrium measures and of description of
their support for classical Coulomb potential with a logarithmic weight. It is
worth mentioning that classically, quadratic differentials appeared in geometric
function theory in late 30-th in the pioneering works by O. Teichmüller [Tei40]
who revealed deep relations between extremal problems for conformal maps
and quadratic differentials. An heuristic principle named after him states that
considering extremum of a continuous functional on the space of conformal
normalized embeddings of the unit disk to the complex plane leads us to a
certain quadratic differential uniquely defined by the functional. In particular,
fixing a value of a function yields the existence of a simple pole of such a
differential, and fixing of values of derivatives yields the existence of poles of
higher order. M. Schiffer’s variational method confirmed this principle in many
particular cases. That time a lot of activities in geometric function theory was
focused on L. Bieberbach conjecture proved later in 1984 by L. de Branges by
using Loewner’s method. But that time many partial results were obtained by
means of the variational method. However, the original ideas of Teichmüller
extended much further to the theory of quasiconformal maps and Teichmüller
spaces where quadratic differentials were used for construction of extremal
quasiconformal mappings and the Teichmüller metric on the moduli space of
Riemann surfaces. Last decade has been marked by a burst of interest to
quadratic differentials from specialists in potential theory and approximations
where quadratic differentials started to play role in some extremal problems
of different nature, in particular, in construction of equilibrium measures, see
[MFR11]. We develop this idea and describe quadratic differentials that can
be used in this construction.

In the first chapter we introduce the notion of quadratic differential. It is
basically a holomorphic (meromorphic) form defined on a Riemann surface. It
turns out that this notion gives rise to geometry structure on this Riemann sur-
face. A quadratic differential defines a field of line elements in a natural way.
Therefore, one can consider integral curves of this field, that are called tra-
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jectories of the quadratic differential. Moreover, a specific conformal invariant
metric can be associated to the quadratic differential.

Later on, we deal with a special type of quadratic differentials, so-called
Jenkins-Strebel quadratic differentials, with trajectories having finite length
with respect to this metric. Such a kind of quadratic differentials was first
introduced and studied by J. Jenkins [Jen58] and later by K. Strebel [Str84].
Jenkins-Strebel quadratic differentials were successfully applied to extremal
problems for conformal and quasiconformal maps, in particular, by G.V. Kuz’mina
[Kuz82], A. Solynin [Sol99], A. Vasiliev [Vas02].

The Chapter 2 describes an application of quadratic differentials to the
study of the limit distributions of zeros of polynomial solutions to the gener-
alized Lamé equation.

This ordinary differential equation was introduced 1837 by G. Lamé. It
was obtained in a way of separating variables in the Laplace equation with
respect to elliptic coordinates. See, for example, [CH89]. The Lamé equation
has the following form:

q(x)
d2y

dx2
+
q′(x)

2

dy

dx
+ (αx+ β)y = 0, (1)

where q(x) = 4(x− a1)(x− a2)(x− a3); a1, a2, a3 are given constants; and α, β
are constants that are involved in the separation of variables. So the solution
to this equation depends on the choice of α and β. We focus on polynomial
solutions to the Lamé equation, whereas solutions of a different form can be
found. For instance, for the particular choice α = 2, β = −a1−a2, the function
y =

√
x− e1 satisfies (1). The question of existence and characterization

of polynomial solutions to the Lamé equation was studied by T. Stieltjes,
H. Heine, G. Pólya, B. Shapiro. The interest to this problem was caused
by Stieltjes’ discovery of applications of zeros of the polynomial solutions to
an electrostatic extremal problem. Stieltjes [Sti85] considered more general
version of the Lamé equation, namely,

l∏
k=1

(x− ak)
d2y

dx2
+

l∑
j=1

bj
∏
i 6=j

(x− ai)
dy

dx
+ V (x)y = 0. (2)

Here a1 < a2 < ... < al are real, bj, j = 1, ..., l, are positive, V (x) is a
polynomial of degree at most l − 2, and the solution depends on the choice
of V (x). It was established by Sieltjes and Van-Vleck that in this particular
setting there exist

σ(n) =

(
n+ l − 2

n

)
2



polynomials V (x) of degree l−2, such that (2) admits a polynomial solution of
degree n. Let us introduce now a general form of the Lamé equation that plays
an important role in the second chapter. Let A(z) be a polynomial with the
set of zeros a1, ..., al lying in the complex plane, and let B(z) be a polynomial
of degree l − 1 with a complex leading coefficient α. Finally, let V (z) be a
polynomial of degree at most l − 2, in addition, V (z) is monic in the case
deg V = l − 2. The generalized Lamé equation has the following form:

A(z)
d2y

dz2
+B(z)

dy

dz
− n(n+ α− 1)V (z)y = 0. (3)

It was proved by Shapiro [Sha11] that for any given A and B there exists a
natural number N , such that for any n ≥ N , there exist σ(n) polynomials
V of degree l − 2, for which the generalized Lamé equation has a polynomial
solution of degree n.

Stieltjes showed in [Sti85] that the counting measure supported on the set
of zeros of y satisfying (2), provides the equilibrium position, in a certain sys-
tem of charges, which corresponds to this equation. A. Mart́ınez-Finkelstein,
E. Rakhmanov [MFR11] studied generalizations of this problem for the Lamé
equation of the form (3). They considered so-called critical measures provid-
ing critical values of the logarithmic energy of a charge system on the complex
plane, such that the system corresponds to (3). It turns out that critical
measures are supported on the zero set of solutions to (3) and *-weak lim-
its of these measures have their support lying on trajectories of a quadratic
differential represented by a rational function. In Chapter 2 we overview the
properties of such measures.

B. Shapiro, K. Takemura, M. Tater in [STT11] considered a particular form
of the generalized Lamé equation when the degree of the polynomial A is l = 3.
They studied sequences of polynomials Vn(z), such that the Lamé equation
admits a polynomial solution yn of degree n. They established convergence
of the corresponding to yn zero-counting measures to measures with certain
properties. In the third chapter we consider the problem of characterizing
the set of polynomials Vn, such that the corresponding limiting measures are
supported on the trajectories of quadratic differential Q(z) dz2. For l = 3 this
problem can be reduced to a problem of describing the space of parameter c
of a quadratic differential of the form

Q(z) dz2 = − 1

4π2

z − c
(z − a1)(z − a2)(z − a3)

dz2.

This question was studied in collaboration with A. Vasiliev and A. Solynin
and the results represent our own contribution as well as the description of
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the parameter space of Jenkins-Strebel quadratic differentials given in the last
chapter. Also we completed, revised, and clarified at some points original
proofs presented in Chapter 2.
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Chapter 1

Quadratic differentials

This chapter is devoted to the properties of a quadratic differential on a Rie-
mann surface. We start with a brief introduction to the notions we frequently
use, namely, a Riemann surface and basic structures on it.

Riemann surfaces were introduced in 19th century by B. Riemann and
were mainly used in order to represent multivalued functions by single valued
ones. Later on, the Riemann theory was developed by K. Weierstrass and
others. Nowadays, Riemann surfaces may be understood as one of the basic
mathematical structures. Let us now define a Riemann surface.

Let S be a connected Hausdorff topological space, such that whenever we
pick a point p ∈ S, there is an open set U containing p, which is homeomorphic
to a domain in C. This basically means that S locally has the same topological
properties as the complex plane.

We assume that S has an open covering {Uα} with corresponding home-
omorphisms ϕα : Uα → C. We call the pairs (Uα, ϕα) charts. Two charts
(Uα, ϕα) and (Uβ, ϕβ) are compatible if whenever Uα ∩ Uβ 6= ∅ the maps

ϕα ◦ ϕ−1
β : ϕβ(Uα ∩ Uβ)→ ϕα(Uα ∩ Uβ),

ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ)→ ϕβ(Uα ∩ Uβ)

are analytic. We call the collection {Uα, ϕα} an atlas on S if its charts are
pairwise compatible and their collection {Uα} covers S. One can construct so-
called maximal atlas by adding all compatible charts to a given atlas. Finally,
S together with its maximal atlas is a Riemann surface. In other words, a
Riemann surface is a complex analytic manifold of dimension 1.

Remark 1.1. The maximal atlas is called a complex structure.

Example 1.2. One of the basic examples of a Riemann surface is the Riemann
sphere. We set S = Ĉ. One can construct an atlas that consists of the following
charts: (C, id), (Ĉ \ {0}, 1

z
) for z ∈ C, and 1

∞ is defined to be zero. Since 1
z

5



CHAPTER 1. QUADRATIC DIFFERENTIALS 6

is analytic on C \ {0}, the atlas defined above gives a complex structure.
Note that the Riemann sphere is homeomorphic to the 2-sphere, and 1

z
is

basically an inversion of the 2-sphere. Both functions defined in the charts are
homeomorphisms.

Example 1.3. Consider C/Λ, where Λ is a lattice. One can define a quotient
topology on C/Λ with respect to the projection map

p : C→ C/Λ,
z 7→ [z].

Consider collection of all circles of diameter less than 1
2

infw∈Λ\{0} |w| on the

complex plane. Then {(p(Vα), p|Vα−1)}, forms the complex structure for the
quotient space, where Vα belongs to the collection defined above.

Let us consider now a chart (U,ϕ) to be an element of a complex structure.
The composition s◦ϕ is called a local coordinate on U , where s is a coordinate
in C. In general, we call (U,ϕ) a local coordinate system.

Now we introduce briefly some useful objects on a Riemann surface.
A function f : S → C is called analytic on S if for any chart (U,ϕ) on S

the function
f ◦ ϕ−1 : ϕ(U)→ C

is analytic.
Let us pick a point p ∈ S and a chart (U,ϕ) about it. Let z be a local

coordinate on U . We denote the real and imaginary parts of z by x and y

correspondingly. The pair
(

∂
∂z

∣∣
p
, ∂
∂z

∣∣
p

)
forms a basis of the tangent space of

the Riemann surface S at the point p. Here

∂
∂z

∣∣
p

= 1
2

(
∂
∂x

∣∣
p
− i ∂

∂y

∣∣∣
p

)
,

∂
∂z

∣∣
p

= 1
2

(
∂
∂x

∣∣
p

+ i ∂
∂y

∣∣∣
p

)
.

We recall the definition of a partial derivative of the function f at the point p:

∂

∂x

∣∣∣∣
p

=
∂

∂r

∣∣∣∣
ϕ(p)

f ◦ ϕ−1,

where s = r + it is a coordinate on C.
Covectors dz|p,dz|p form a basis of the cotangent space of S at the point

p.
Consider differentials dz, dz. They are 1-forms that assign the covectors

dz|p,dz|p to the point p.
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Consider now a linear function

f : V → C,

where V is a vector space. We define a symmetric product of two linear
functions f(x), g(y) as follows:

f ∨ g =
1

2
(f(x)g(y) + f(y)g(x)) .

We call a bilinear function g(x, y) symmetric if g(x, y) = g(y, x).

Remark 1.4. The symmetric product of two linear functions f : V → C,
g : V → C is a bilinear symmetric function f ∨ g : V × V → C.

A symmetric 2-form ω on S assigns a symmetric bilinear function ω|p to
the point p. By the remark above, the symmetric product of two 1-forms is a
symmetric 2-form.

We define a holomorphic (meromorphic) quadratic differential as a holo-
morphic (meromorphic) symmetric 2-form on a Riemann surface S. If z is
a local coordinate, quadratic differential is locally represented as ϕ(z) dz2,
dz2 = dz ∨ dz, ϕ(z) is a holomorphic (meromorphic) function on S. Alter-
natively, we can define holomorphic (meromorphic) quadratic differential as
follows.

Definition 1.5. Let {(Uα, ϕα)} be a complex structure on a Riemann surface
S. Then Q is a holomorphic (meromorphic) quadratic differential on S if
for any local coordinate zα the functional element Q ◦ ϕ−1

α is holomorphic
(meromorphic) and satisfies the following rule of change of coordinates:

Qα(zα) dz2
α = Qβ(zβ) dz2

β, dzβ =
dzβ
dzα

dzα. (1.1)

Here zα and zβ are local coordinates that correspond to the same point on S.

The rule (1.1) establishes the invariance of the quadratic differential under
the change of variables. Therefore, we can fix some local coordinate z and
denote the quadratic differential by Q(z) dz2.

We call zeros and poles of a quadratic differential critical points. If P ∈ S
is not critical, we call it regular. This definition makes sense because it turns
out that the property of having zero or pole at some point P ∈ S does not
depend on the choice of the local coordinate.

Indeed, let us pick a point P ∈ S and two charts (U1, ϕ1), (U2, ϕ2) about
it. Without loss of generality we may assume that ϕ1(P ) = 0, ϕ2(P ) = 0. We
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denote by z, z̃ the local coordinates corresponding to the charts chosen above.
By the assumption, z = a1z̃ + a2z̃

2 + a3z̃
3 + .... Therefore, we have

dz

dz̃
= a1 + 2a2z̃ + 3a3z̃

2 + ...

Let Q1, Q2 be functional elements of the quadratic differential Q with
respect to z and z̃ correspondingly. Let z = 0 be the zero of order n for Q1.
Then Q1 has the following expansion at the origin:

Q1(z) = zn
(
bn + bn+1z + bn+2z

2...
)
.

The rule (1.1) implies that

Q2(z̃) =
(
a1z̃ + a2z̃

2 + ...
)n

(bn + bn+1(a1z̃ + ...) + ...) (a1 + 2a2z̃ + ...)2 .

Therefore, the expansion of Q2(z̃) at the origin has the form

Q2(z̃) = z̃n(bna
n+2
1 + ...).

Since a1 6= 0, bn 6= 0, we conclude that Q2 has a zero of order n at the point
ϕ2(P ).

Example 1.6. Consider a quadratic differential Q on the Riemann sphere. Let

us set Q = (z−1−i)2
z2−1

dz2 for a fixed local parameter z. This is a meromorphic
quadratic differential with zero of order 2 at the point 1 + i, simple poles at 1,
−1 and pole of order 4 at ∞.

Consider the complex structure defined in Example 1.2. Let z stand for
the chart (C, id). In this coordinate system Q is locally represented by the

function (z−1−i)2
z2−1

, which has simple poles at z = 1, z = −1 and zero of order 2

at z = 1 + i. Obviously, their preimages by identity are −1, 1, 1 + i ∈ Ĉ. We
can conclude that these are finite critical points of Q.

Let us change the coordinate z̃ = 1
z
. By the rule of change of coordinates

we get

Q (z̃) = Q(z)

(
dz

dz̃

)2

=

(
1

z̃

)4
(

1
z̃
− 1− i

)2(
1
z̃
− 1
) (

1
z̃

+ 1
)

in the neighbourhood of ∞. So Q has the pole of order 4 at ∞.
Note that, for instance, this functional element has zero at the point 1

1+i
∈

C. The preimage of this point is 1 + i ∈ Ĉ. This illustrates that the notion of
critical point of a quadratic differential is well-defined.
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It turns out that once the quadratic differential is defined, one can associate
the horizontal and the vertical direction at any regular point on S. Therefore,
horizontal and vertical arcs may be considered. In order to investigate the
structure of these arcs we need to look at some specific local representations
of quadratic differentials. The idea is to introduce a local coordinate such
that the local representation of a quadratic differential in terms of it has a
simple form. We call this coordinate the natural parameter. It makes sense
to distinguish the natural parameters near regular and critical points. This
method was described in [Str84].

Let P be a regular point of a quadratic differential Q(z) dz2 on a Riemann
surface S. So the point P has a neighbourhood small enough to choose a single
valued branch of

√
Q(z). We define the natural parameter near the regular

point as:

w =

∫ √
Q(z) dz. (1.2)

By the rule of change of variables we get:

Q(z) = Q(w)

(
dw

dz

)2

.

Therefore, Q(w) ≡ 1 in this neighbourhood of P . In other words, Q(z)dz2 =
dw2 in the corresponding neighbourhood. Note that the natural parameter
near a regular point is defined up to a constant.

Note that the function
∫ √

Q(z) dz plays an important role in determining
the geometric structure associated to Q.

In the case when P ∈ Ĉ is a pole or a zero of Q(z) dz2 we can not always
pick a single valued branch of the square root of the functional element in the
neighbourhood of P . Therefore, the parameter defined by (1.2) can be not
single valued. That is why we have to consider a different form of the natural
parameter near the critical points.

Let P ∈ S be a critical point of order n of the quadratic differential
Q(z) dz2. In addition, consider n to be odd integer. Without loss of gen-
erality we may assume that z(P ) = 0 ∈ C. Then the quadratic differential
may be represented in terms of z as:

Q(z)dz2 = zn (an + an+1z + ...) dz2 (1.3)

where an 6= 0. We may consider a covering surface
(
Ŝ, f

)
, f is projection

map, f(P̂ ) = P ∈ S. We define f , such that for a local parameter ξ about P̂
we get z = ξ2. We define Q̂(ξ) as

Q̂(ξ) dξ2 = Q(z) dz2.
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The quadratic differential Q̂ is called the lift of Q. Then, by the rule of change
of variables, the quadratic differential Q̂ has the form

ξ2n+2
(
4an + 4an+1ξ

2 + 4an+2ξ
4 + ...

)
dξ2.

Then, in a small enough neighbourhood of the origin, we can choose a single
valued branch of the square root of the functional element. In a punctured
neighbourhood of the origin we obtain√

Q̂(ξ) = ξn+1
(
b0 + b1ξ

2 + b2ξ
4 + ...

)
. (1.4)

Here coefficients bi correspond to the series representation of the square root
of (4an + 4an+1ξ

2 + 4an+2ξ
4 + ...). Let us integrate the right-hand side of the

last expression term by term. We obtain

ξn+2
(
c0 + c1ξ

2 + c2ξ
4 + ...

)
.

for some ci. In a small enough neighbourhood of the origin we choose a single

valued branch of (c0 + c1ξ
2 + ...)

1
n+2 . Suppose it has the series expansion d0 +

d1ξ
2 + ... at the origin. Then we set a single valued function

ζ = ξ
(
d0 + d1ξ

2 + ...
)
.

By differentiating ζn+2 and squaring we obtain the following representation of
the functional element

Q̂(ζ) = (n+ 2)2 ζ2(n+1). (1.5)

We introduce the parameter w = ζ2 about P . Then, by the change of variables
rule we arrive at

Q̂(ζ) = Q(w)
(
dw
dζ

)2

,

(n+ 2)2 ζ2(n+1) = Q(w)4ζ2.
(1.6)

Therefore, in a punctured neighbourhood of the origin the quadratic differential
in terms of w has the form

Q(z) dz2 =

(
n+ 2

2

)2

wn dw2 (1.7)

We call w the natural parameter of Q near the critical point P .
Suppose now P is a zero of even order. For a fixed parameter z(P ) =

0 ∈ C we obtain representation (1.3), n is even and positive. Then in some
neighbourhood of the origin we can choose a single valued branch of the square
root of Q and integrate termwise. We obtain the following expression:

z
n+2
2 (c̃0 + c̃1z + ...) .
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Let d̃0 + d̃1z + ... correspond to a single valued branch of (c̃0 + c̃1z + ...)
2

n+2 .
We define a natural parameter of Q near the odd pole P as follows:

w = z
(
d̃0 + d̃1z + ...

)
.

This parameter is well defined. The functional element of Q has representation
(1.7).

So we proved the following theorem:

Theorem 1.7. Let Q be a quadratic differential on a Riemann surface S. If
P ∈ S is a critical point of order n of Q, n is either positive or negative and
odd, then there exists a local parameter w about P in terms of which the the
quadratic differential has the form (1.7).

Remark 1.8. Note that w is defined up to a factor e
2πil
n+2 , l = 0, ..., n+ 1.

In case of an even order pole we get logarithmic terms when integrating the
square root of the functional element and we can not use the same algorithm.
We deal with the case of a second order pole in the following way.

Let P ∈ S be a pole of order 2 of the quadratic differential Q. Then
locally Q may be represented by (1.3) for n = −2. Taking the square root and
integrating term by term we get

b0 log z + b1z + ...

We put logw equal to the last expression divided by b0. Then w has the form

w = ze
b1
b0
z+...

,

and the quadratic differential can be represented as

Q(z) dz2 =
(
b0w

−1 dw
)2
dw2 = a−2w

−2 dw2. (1.8)

Let us turn now to the case of an even order pole n, n > 2. We integrate a
single valued branch of the square root of the functional element about a pole
P . The local variable z is set such that the pole P is mapped to the origin.
After integration we obtain the sum of the logarithmic term b log z and the
powers of z: z

n
2

+1 (c0 + ...). We put w = d0z + d1z
2 + ..., such that

b log z + z
n+2
2 (c0 + ...) = b logw + w

n+2
2 + c.

Then the quadratic differential Q has the following representation:

Q(z) dz2 =

(
bw−1 +

n+ 2

2
w

n
2

)2

dw2. (1.9)

Now we can formulate the theorem:
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Theorem 1.9. Let P ∈ S be a pole of odd order n of the quadratic differential
Q. Then there exists a parameter w in a neighbourhood of P , such that

1. In the case n=2 the quadratic differential has the representation (1.8) in
terms of w.

2. In the case n > 2 the quadratic differential has the representation (1.9)
in terms of w.

Now we turn to describing a geometric structure corresponding to a quadratic
differential.

A trajectory of the quadratic differential Q(z) dz2 is a maximal smooth
curve γ ∈ S, such that

argQ(z) dz2 = 0 (1.10)

along γ.
A maximal curve lying in the Riemann surface S, such that

argQ(z) dz2 = π,

is called the orthogonal trajectory of the quadratic differential Q.

Remark 1.10. Note that the trajectories of the quadratic differential Q are the
orthogonal trajectories of the quadratic differential −Q.

The trajectories can be also defined as the maximal curves along which the
inequality Q(z) dz2 > 0 holds. In other words, the integral curves of the vector
field associated to this inequality are the trajectories of the corresponding
quadratic differential. We also can consider them as maximal solutions to the
equation

Q(z)

(
dz

du

)2

= 1.

Here u stands for the natural parameter of the curve.
Let P ∈ S be a regular point of the quadratic differential Q(z) dz2. Let w

be the natural parameter of Q at P . Then the quadratic differential has the
form dw2 in terms of w. The curve γw in the w−plane along which the equality
argw = 0 is satisfied is simply a horizontal line. So the preimage w−1(γw) is
an arc of the trajectory of the quadratic differential in the neighbourhood of
the regular point P .

The trajectory structure near critical points of the quadratic differential is
more complicated. But we also can use the representation of the quadratic
differential in terms of the natural parameter w near critical points in order to
describe the trajectory structure.
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(a) (b)

1

Figure 1.1: The local trajectory structure near (a) simple zero, (b) simple
pole

a−2 < 0 a−2 > 0 !a−2 "= 0

1

Figure 1.2: The local trajectory structure near a double pole

Remark 1.11. Analytic homeomorphisms ϕk : Uk → C belonging to the com-
plex structure on S are automatically conformal. Therefore, both topological
and geometrical structures are preserved under these mappings and their in-
verses. That is why, the trajectory structure and the structure of the homeo-
morphic images of the trajectories are identical locally.

Let P be a zero of order n. Then, according to Theorem 1.7, the quadratic
differential Q can be represented as in (1.7). Integrating the square root of Q

we get w
n+2
2 . Then the w−plane is divided into n+ 2 sectors and the function

v = w
n+2
2 maps each of them to a half-plane. The trajectories on the w−plane

are mapped by w
n+2
2 to the horizontal lines in the v−plane.

Analogously we reveal the trajectory structure near a simple pole. So the
trajectory structure about a zero and a simple pole is visualized in Figure 1.1.

In the case of a pole of order 2 we use Theorem 1.9 and set v =
√
a−2 logw.

Depending on whether a−2 is negative, positive or non-real, we get three dif-
ferent pictures corresponding to the trajectory structure on the w−plane.

Now let P be a pole of higher odd order. We use Theorem 1.7 and put
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1

Figure 1.3: The local trajectory structure near a pole of order 5

v = w
n+2
2 , where n stands for the power of leading term of the functional

element expansion. The trajectories of Q in the w−plane are mapped by v to
horizontal straight lines. When n is even, it is a bit tricky to deal with the
logarithmic term. But introducing new parameters and getting the preimages
as above we obtain a similar picture: the w−plane is divided into |n| − 2
sectors, in each sector the trajectories tend to w(P ) in two directions as on
the Figure 1.3.

One can associate a conformal metric with the quadratic differentialQ(z) dz2

by setting the length element to be |dw| = |Q(z)| 12 |dz|. The length of some
curve γ ∈ S can be defined as:

|γ|Q =

∫
γw

|dw|,

where γw is the image of the curve γ in the w−plane. Note that we can continue
analytically the branch of square root along γ in order to get the whole image
of the curve.

The corresponding area element is |Q(z)| 12 dx dy.
We define an L1−norm of Q as

‖Q‖ =

∫∫
S

|Q(z)| dx dy.

If the closure of a trajectory of the quadratic differential Q contains a
critical point of Q, it is called a critical trajectory. Let us denote by Φ the union
of all critical trajectories and their closures. Then S \ Φ consists of a certain
number of domains, we call it a domain decomposition. The comprehensive
description of this global geometric structure for certain types of surfaces and
quadratic differentials was given by J. Jenkins in Basic structure theorem,
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[Jen58] and K. Strebel [Str84]. Let us consider several types of domains, which
may be associated to a quadratic differential.

Definition 1.12. Let D ⊂ S be a maximal doubly connected domain, such
that it does not contain critical points and whenever a trajectory passes through
a point in D, it lies entirely in D. Moreover, there exists a map

v = exp{c
∫ √

Q(z) dz}, c 6= 0,

which maps D onto a ring. Then we call D a ring domain.

Definition 1.13. Let D ⊂ S be a maximal simply connected domain, such
that it contains a double pole p and is swept out by trajectories separating the
pole from δD, and whenever a trajectory passes through a point in D, it lies
entirely in D. Moreover, there can be found a map v = exp{c

∫ √
Q(z) dz},

c 6= 0 that maps D \ p to a disc |v| < R. The pole is mapped to a origin. Such
D is called a circular domain.

Definition 1.14. Let D ⊂ S be a maximal simply connected domain, such
that it is swept out by trajectories connecting two double poles lying on δD,
and whenever a trajectory passes through a point in D, it lies entirely in
D. Moreover, there is a map v =

∫ √
Q(z) dz, which maps D onto a strip

a < = v < b. Such D is called a strip domain.

Definition 1.15. Let D ⊂ S be a maximal simply connected domain, such
that it is swept out by trajectories having both their limiting end points at a
pole of order n > 2, and whenever a trajectory passes through a point in D, it
lies entirely in D. Moreover, there is a map v =

∫ √
Q(z) dz, which maps D

onto an upper or a lower halfplane. Then D is called an ending domain.

Let S be a compact Riemann surface and Q be a meromorphic quadratic
differential on S.

Note that a quadratic differential on a compact Riemann surface has a
finite L1−norm if and only if it does not have poles of order higher than two.

Let P be a regular point of the quadratic differential Q(z) dz2. Consider
natural parameter w =

∫ √
Q(z) of Q(z) dz2 near P . We can obtain represen-

tation of a trajectory containing the point P in terms of inverse of the map
w =

∫ √
Q(z).

There exists a neighbourhood U of P which is mapped homeomorphically
and conformally onto a disk V centered in the origin in the w−plane. Let us
construct the analytic continuation of w−1 along the chain of discs centered on
the real axis. We denote the real axes by R. Let us pick a point u ∈ V ∩ R.
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There is a neighbourhood Ũ around w−1(u1), which is mapped homeomorphi-
cally and conformally onto a disk Ṽ . We choose the branches of w such that
they coincide on U ∩ Ũ . Then we may choose a point ũ ∈ Ṽ ∩ R and proceed
the procedure. We denote the obtained chain of discs by C. Then w−1 is
uniquely defined on C. In addition, it is a conformal homeomorfism of C onto
its image. Let u belong to C ∩ R, then w−1(u) defines a trajectory γ passing
through P . By this representation, γ = w−1(I), where I is an interval (u1, u2)
on the real axis. Note that the Q−length of γ is equal to u2 − u1.

The point P divides γ into two rays. More precisely, we define a trajec-
tory ray γ+ to be w−1 ([0, u2)), and a trajectory ray γ− to be w−1 ((u1, 0]).
Moreover, they are oriented such that they start at the point P . We define
A+ = limu→u2 w

−1([u, u2)) to be a limit set of the trajectory ray γ+. Analo-
gously, A− = limu→u1 w

−1((u1, u]) is a limit set of γ−. We call a trajectory ray
γ+ recurrent, if P ∈ A+. It turns out that if γ+ is recurrent, the interior of
the corresponding limit set is a domain. Moreover, it is bounded by critical
trajectories with finite Q−length. Note that critical trajectory γ of Q has a
finite Q−length if and only if both γ+ and γ− tend to either a zero or a simple
pole of Q.

Now we turn to describing the global trajectory structure of the quadratic
differential Q on S.

Remark 1.16. All situations conformally equivalent to the special cases, when
S = Ĉ, Q(z) dz2 = dz2 or Q(z) dz2 = reiα

z2
dz2, where r > 0 and α is real, are

out of following consideration.

Let γ be the trajectory of Q. Suppose, one of the corresponding rays tends
to a zero or a simple pole. Then the other ray either tends to a critical point
or is recurrent.

If both γ+ and γ− tend to a pole of order n ≥ 2, then a strip domain or an
ending domain appears in the domain decomposition.

If both γ+ and γ− are recurrent, a spiral domainD = intγ can be associated
to the quadratic differential.

If non-critical closed trajectories appear in the global trajectory structure,
they sweep out the circular domains and the ring domains.

The recurrent rays of the trajectories may induce so-called dense structure,
when the trajectory is dense in a certain domain.

We conclude the following

• We associate ring domains, circular domains, ending domains, strip do-
mains, spiral domains and dense structures with the meromorphic quadratic
differential Q on the compact Riemann surface S.
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• If Q has a finite L1−norm, it possesses the domain decomposition con-
sisting of ring domains and dense structures.

• If the trajectories of Q have finite Q−length, the domain decomposition
consists of ring domains, circular domains, ending domains and strip
domains.

Note that in the most of cases dense structures appear in the domain de-
composition.

See more details on the global trajectory structure in [Vas02, Str84].
The trajectory structure of a quadratic differential has not only its own

interest. This theory is applicable to various problems related to conformal
and quasiconformal maps. For instance, quadratic differential gives a solution
to the problem of maximizing reduced moduli of punctured discs, which was
posed and solved by O. Teichmüller in late 30-s [Tei40]. Another example is
the problem of maximizing weighted moduli sum. The solution was given by
J. Jenkins in a form of Jenkins-Strebel differentials.
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Chapter 2

Lamé equation and critical
measures

In this chapter we will be mainly concerned with the generalized Lamé equation

A(z)
d2y

dz2
+B(z)

dy

dz
− n(n+ α− 1)V (z)y = 0, (2.1)

where A and B are polynomials of degree l and l − 1 correspondingly; V is a
polynomial as well, deg V ≤ l − 2. The polynomials A and B are fixed, while
V can vary. This is a natural generalization of the classical Lamé equation
given in the introduction.

In [MFR11] the authors described the limit distribution of the zeros of
the polynomial solutions to the generalized Lamé equation. However, the
motivation for studying the polynomial solutions to the Lamé equation was
given by Stieltjes in 1880-s [Sti85]. His electrostatic model involves a system of
charges, which can be associated with a particular kind of the Lamé equation.
Stieltjes showed that the zeros of the polynomial solution to this equation
correspond to the equilibrium position of the charge system.

Consider a set {a1, ..., al}, ak ∈ R, such that ak < ak+1 for k = 1, ..., l − 1.
These points correspond to the positions of l external charges. Let bj, j =
1, ..., l, be positive numbers corresponding to the values of the external charges.
For each k = 1, ..., l − 1 we put nk unit charges in the interval (ak, ak+1). Let
us set n = n1 + ...+ nl−1. We define an external field as

φ(x) = <
(

l∑
k=1

bk
2

log
1

x− ak

)
.

Let us consider the weighted potential energy

Ed =
∑
i 6=k

log
1

|ξi − ξk|
+ 2

n∑
k=1

φ(ξk), (2.2)

19
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where the points ξk correspond to the positions of the unit charges, and let us
denote the Dirak delta distribution at ξk by δξk . Then the discrete measure
µ =

∑n
k=1 δξk can be associated with a system of unit charges.

We denote by Md
n the class of measures of the form µ =

∑n
k=1 δzk , zk ∈ C.

Let us define a class Md of measures on the complex plane as the union over
n of the classes Md

n. Finally, we define a class of measures M
′
, consisting of

measures µ =
∑n

k=1 δxk ∈ Md
n supported on the interval (a1, al), such that

µ((ak, ak+1)) = nk for k = 1, ..., l − 1.
Consider a problem of minimizing the weighted energy (2.2) in the class M

′
.

In other words, we are looking for a measure corresponding to the equilibrium
position of the system of charges.

Denote the minimizer by µ̂. Stieltjes proved in [Sti85] that the global
minimizer corresponds to a unique equilibrium position. Moreover, the support
of the minimizer µ̂ is formed by the zeros of the polynomial solution y of degree
n to the corresponding Lamé equation.

l∏
k=1

(x− ak)
d2y

dx2
+

l∑
j=1

bj
∏
i 6=j

(x− ai)
dy

dx
+ V (x)y = 0. (2.3)

It was proved by Shapiro in [Sha11] that for any given A and B there exists
a natural number N , such that for any n ≥ N , there exist σ(n) polynomials
V of degree l − 2, for which the generalized Lamé equation has a polynomial
solution of degree n.

The problem of minimizing the discrete energy of the charge system can
be extended to analogous problem for a continuous energy.

We define M c to be a class of probability Borel measures m with a compact
support on the complex plane. We choose an external field φ = <Φ(z), where
Φ(z) is an analytic function. Assume in addition, that the field is an integrable
function with respect to measures in M c. Then we construct a continuous
weighted energy

Ec =

∫∫
C

log
1

|x− y| dm(x)dm(y) + 2

∫
C
φ dm. (2.4)

The extremal problem can be reformulated as the problem of finding the min-
imum of the energy with respect to the class M c.

We call a minimizer m̂ an equilibrium measure. Such minimizer exists and
is unique under additional conditions [ST97].

Let us turn to a more general situation, when the charges are placed on
the complex plane. This leads us to a study of measures corresponding to the
critical points of the weighted logarithmic energy on the complex plane. This
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is the main subject of the paper by A. Mart́ınez-Finkelstein and E. Rakhmanov
[MFR11].

Definition 2.1. Let us choose a set A ⊂ C, such that capA = 0. Consider

function φ = <Φ(z), where Φ(z) is analytic and
dΦ

dz
is single valued. Let

µ be a discrete measure in the class Md, which is supported on C \ A. So
µ =

∑n
k=1 δzk . Assume in addition, that the points zk are pairwise distinct.

We associate to µ and φ the weighted discrete energy Ed of the form (2.2) in
the complex plane. We call µ (A, φ)−critical in the complex plane if

∂

∂z
Ed
∣∣
z=zk

= 0 (2.5)

for any k = 1, ..., n .

Consider now the generalized form (2.1) of the Lamé equation. Suppose,

B(z)

A(z)
=

l∑
k=1

bk
z − ak

.

for real bk. The following theorem shows the relation between the extremal
problem and the solution to the corresponding Lamé equation.

Theorem 2.2. Let A be the set of points a1, .., al, aj 6= ak when j 6= k.

Choose φ, such that φ(x) = <
(∑l

k=1

bk
2

log
1

z − ak

)
, bk are real. Then µ

is (A, φ)−critical if and only if there is a polynomial V (z) such that zeros of
the corresponding polynomial solution y(z) form a support of µ.

Proof. Consider the derivative of the discrete logarithmic energy

∂

∂zk

(∑
i 6=k

log
1

|zi − zk|

)
= −

∑
i 6=k

∂

∂zk
log |zi − zk| = −

1

2

∑
i 6=k

1

zi − zk
.

Here we use that

∂

∂z
log |z − w| =

1

2

∂

∂z
log |z − w|2

=
1

2

1

|z − w|2
∂

∂z

(
(z − w)(z − w)

)

=
1

2

z − w
|z − w|2

=
1

2

1

z − w.

(2.6)
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By definition of critical measure, φ(z) has a single valued derivative

∂

∂z
φ(z) = − ∂

∂z
<
(

l∑
k=1

bk
2

log(z − ak)
)

= −
l∑

k=1

bk
2

∂

∂z
log |z − ak|

= −
l∑

k=1

bk
4

1

z − ak
.

So in our case the condition (2.5) is equivalent to

−1

2

∑
i 6=k

1

zi − zk
−

l∑
k=1

bk
4

1

zk − ak
=
∑
i 6=k

1

zi − zk
+

1

2

B(zk)

A(zk)
= 0.

We put y(z) = (z − z1)...(z − zl). Let us rewrite the last expression in terms
of y. (

y
′′
(zk)

y′(zk)
+
B(zk)

A(zk)

)
= 0.

This holds for any k = 1, ..., n. Then a polynomial A(z)y
′′
(z) +B(z)y

′
(z) has

the degree l + n− 2 and is divisible by y(z). This implies that

A(z)y
′′
(z) +B(z)y

′
(z) = V (z)y(z),

where V (z) is a polynomial of degree l − 2. This proves Theorem (2.2) and
shows that if n unit charges are placed in a field of l external charges with
values bk, k = 1, ..., l, then the critical point of the resulting potential energy
is provided by the zeros of solutions to the Lamé equation.

B. Shapiro in [Sha11] obtained that the zeros of polynomial solutions to
the Lamé equation corresponding to the external field of the form

φ = <
(

l∑
k=1

bk
2

log
1

z − ak

)
,

where bk are complex, are included into the convex hull of the set A =
{a1, ..., al}.

Let us turn to the continuous case.
We use the variational derivative of the energy functional with respect to a

measure in order to define the continuous critical measure. Let D be a domain
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in the complex plane. We consider a continuous function h : D̂ → C. This
function induces a variation F t of a set F ⊂ C as

F t = {z + th(z)|z ∈ F},
where t is a complex number. We define a variation mt of a measure m
as mt (F t) = m (F ). In the differential form we define dmt (xt) = dm(x). In
addition, we consider a variation of energy while the external charges are fixed,
i.e. h(z) vanishes at the points corresponding to the external charges.

Definition 2.3. Consider the function φ = <Φ(z), where Φ(z) is analytic and
dΦ

dz
is single valued. Let A be a subset of the domain D, such that capA = 0.

Let m ∈ M c be a signed measure supported in the domain D. We call m
continuous (A, φ)−critical if for any h continuous in D \A, such that h|A = 0,
we have

d

dt
Ec
(
mt
)∣∣
t=0

= lim
t→0

Ec (mt)− Ec(m)

t
= 0. (2.7)

If an external field φ = 0, we call such m continuous A−critical measure.

Remark 2.4. Suppose a set A consists of finitely many points in the plane.
Then for the discrete weighted logarithmic energy with the external field of

the form φ = <
(∑l

k=1

bk
2

log
1

z − ak

)
, bk ∈ C, two definitions of critical

measures agree. Note that definition 2.1 involves the Frechét derivative, while
definition 2.3 involves the Gâteaux derivative.

The following equivalent condition is convenient to use.

Theorem 2.5. Let D be a simply connected domain. Consider φ = <Φ, where
is Φ is analytic in D. Then condition (2.7) is equivalent to the equation∫∫

D

h(x)− h(y)

x− y dm(x)dm(y)− 2

∫
D

Φ
′
(x)h(x)dm(x) = 0. (2.8)

Proof. In order to prove this statement it is enough to show that

Ec
(
mt
)
− Ec(m) = −<

(
tf +O

(
t2
))
, (2.9)

where f denotes∫∫
D

h(x)− h(y)

x− y dm(x)dm(y)− 2

∫
D

Φ
′
(x)h(x)dm(x).

The variation of the logarithmic energy has the form∫∫
D

log
1

|xt − yt|dm
t (xt) dmt (yt)

=
∫∫

D
log

1

|x+ th(x)− y − th(y)| dm(x)dm(y).
(2.10)
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Then∫∫
D

log
1

|xt − yt|dm
t (xt) dmt (yt)−

∫∫
D

log
1

|x− y|dm (x) dm (y)

= −
∫∫

D
log

∣∣∣∣(x− y) + t(h(x)− h(y))

x− y

∣∣∣∣ dm(x)dm(y)

= −
∫∫

D
log

∣∣∣∣1 + t
h(x)− h(y)

x− y

∣∣∣∣ dm(x)dm(y)

= −<
∫∫

D
log

(
1 + t

h(x)− h(y)

x− y

)
dm(x)dm(y).

(2.11)

Expanding logarithm in the Taylor series we obtain∫∫
D

log
1

|xt − yt|dm
t (xt) dmt (yt)−

∫∫
D

log
1

|x− y|dm (x) dm (y)

= −<
∫∫

D

(
t
h(x)− h(y)

x− y +O (t2)

)
dm(x)dm(y)

(2.12)

for small t.
For the external field we get∫

Dt
φ (xt) dmt(xt)−

∫
D
φ(x) dm(x)

=
∫
D
φ(x+ th(x)) dm(x)−

∫
D
φ(x) dm(x)

= <
(∫

D
Φ (x+ th(x)) dm(x)−

∫
D

Φ(x) dm(x)
)
.

(2.13)

Note that

Φ
′
(x) =

1

2
lim
t→0

Φ(x+ th(x))− Φ(x)

th(x)
.

This leads us to∫
Dt
φ
(
xt
)
dmt(xt)−

∫
D

φ(x) dm(x) = 2<
∫
D

(
tΦ

′
(x)h(x) +O(t2)

)
dm(x).

(2.14)
for small t. Hence, (2.9) follows from (2.12) and (2.14) letting t tend to zero.

The authors discovered in [MFR11] that for a certain choice of the set A
and the external field φ the (A, φ)−critical measure is supported on the critical
trajectories of a quadratic differential represented by a rational function.

Let A be a set of points ak, k = 1, ..., l, in the complex plane. We assume
ak 6= aj whenever k 6= j. Suppose,

B(z)

A(z)
=

l∑
k=1

bk
z − ak

, (2.15)
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where bk ∈ C. Let domain D be the complex plane punctured at the points
ak. We put φ = <Φ(z), where

Φ(z) =
l∑

k=1

bk
2

log
1

z − ak
,Φ

′
(z) = −1

2

B(z)

A(z)
.

Theorem 2.6. Consider the a set A and an external field described above.
Then for any corresponding (A, φ)−critical measure there exists a quadratic
differential −Q(z) dz2, where Q(z) is rational, such that

• Q(z) has the second order poles at the points ak ∈ A, unless bk = 0,
k = 1, ..., l. In case bk = 0, ak is either a simple pole or regular point of
Q(z).

• The support of the measure is included into the union of trajectories of
−Qdz2.

Proof. Let us split the proof into two parts:

• Suppose m is a (A, φ)−critical measure, where A, φ are defined as above.
Then there exists a rational function Q(z), which satisfies the first prop-
erty of Theorem 2.6. Moreover, the principal value of the Cauchy trans-
form of m

C(z) = lim
ε→0

∫
|x−z|>ε

dm(x)

x− z
and the function Q satisfy the equality

Q(z) =
(
C(z) + Φ

′
(z)
)2

(2.16)

almost everywhere with respect to the Lebesgue measure.

• Let m belong to the class M c. Suppose there are rational functions Q,
R, such that

Q(z) = (C(z) +R(z))2 (2.17)

almost everywhere with respect to the Lebesgue measure in the plane.
Then suppm in included into the union of trajectories of the quadratic
differential −Q(z) dz2.

We need to prove that (2.16) holds for any point z, such that C(z) converges
absolutely. We use the fact that for such z the equality

lim
ε→0

∫
|x−z|<ε

dm(x)

|x− z| = 0 (2.18)



CHAPTER 2. LAMÉ EQUATION AND CRITICAL MEASURES 26

holds almost everywhere with respect to the Lebesgue measure in the plane.
Consider a disk D(z, r) centered at z of radius r ∈ (0, 1). Then m(D(z, r))

is a function of r. Suppose r ∈ (0, 1). If m is a positive measure, the function
m(r) increases monotonically and is continuous from the left. As a conse-
quence, it is almost everywhere differentiable with respect to the Lebesgue
measure. Let m be a real measure. By Hahn decomposition theorem, it can
be represented as m = m+ − m−, where m+, m− are positive and negative
variations of the measure m. Being positive measures, they are monotonically
increasing and continuous from the left functions of r. Therefore, m is almost
everywhere differentiable with respect to the Lebesgue measure.

Let us fix r, such that m
′
(r) exists. For ε ∈ (0, 1) we define an auxiliary

function F as

F (x) =


0, 0 ≤ x < 1− ε,
(x− 1 + ε)2(2ε+ 1− x)

4ε3
, 1− ε ≤ x < 1 + ε,

1, x ≥ 1 + ε.

(2.19)

The function F is continuous with respect to x ≥ 0. Moreover, we can
estimate the absolute value of its derivative with respect to x. For −ε <
x− 1 < ε the derivative

dF

dx
=

2((x− 1) + ε)(2ε− (x− 1))− ((x− 1) + ε)2

4ε3
<
c

ε
,

where c is an integer, which does not depend on ε. Then for x ≥ 0 the following
estimate holds ∣∣∣∣dFdx

∣∣∣∣ < c

ε
. (2.20)

Further on, we use Theorem 2.5. Since m is (A, φ)−critical, the condition
(2.8) holds for any variation h ∈ C(C \ A) vanishing at the zeros of A(z). So
we pick

h(w) = F

( |w − z|
r

)
A(w)

w − z .

Observe that

F

( |w − z|
r

)
=

{
0, 0 ≤ |w − z| ≤ r(1− ε),
1, |w − z| ≥ r(1 + ε).

(2.21)

Let us denote by D the disk centered at z with radius r(1− ε), by E the ring
r(1− ε) ≤ |w − z| ≤ r(1 + ε), and by G the set |w − z| ≥ r(1 + ε). Then the
variation h has the form

h(w) =

 0, w ∈ D,
A(w)

w − z , w ∈ G. (2.22)
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Consider the integral

∫∫
C
h(x)− h(y)

x− y dm(x)dm(y) = I(D ×D) + I(E × E) + I(G×G)

+2I(D × E) + 2I(D ×G) + 2I(G× E),
(2.23)

where I(S) denotes the corresponding integral over the set S.
Observe that, by construction, I(D ×D) = 0.
The aim is to analyze the behaviour of the left-hand side of (2.23) as ε→ 0.
Let w belong to the ring E. Then h has the form

h(w) =
A(w)

w − zF
( |w − z|

r

)
.

Let us estimate the gradient of F for w ∈ E.

∂

∂w
F

( |w − z|
r

)
=

1

r
F

′
( |w − z|

r

)
∂

∂w
|w − z| = 1

r
F

′
( |w − z|

r

)
w − z
|w − z| .

(2.24)
Then the last expression together with (2.20) yields

1

2

∥∥∥∥gradF

( |w − z|
r

)∥∥∥∥ =

∣∣∣∣ ∂∂wF
( |w − z|

r

)∣∣∣∣ ≤ c

rε
.

Therefore, by the mean value theorem, we obtain∣∣∣∣h(x)− h(y)

x− y

∣∣∣∣ 5 c̃

rε
,

where x, y lie in the ring E and c̃ does not depend on ε. Therefore,

|I(E × E)| ≤
∫∫

E×E

∣∣∣∣h(x)− h(y)

x− y

∣∣∣∣ dm(x)dm(y) ≤ c̃

rε
(m(E))2. (2.25)

By assumption, the measure is almost everywhere differentiable as a function
of r. Denote by Dr+εr the set of all w, such that |w − z| ≤ r + εr, then

m(E) = m(Dr+εr \D) = m(r + εr)−m(r − εr).

Therefore,

lim
ε→0

m(E)

ε
= 2rm

′
(r).

Taking into account (2.25) we conclude that I(E × E) = o(1) for ε→ 0.
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Now we come to estimating the integral I(E ×D). By construction,

h(x) =
A(x)

x− zF
( |x− z|

r

)
for x ∈ E, and h(y) = 0 for y ∈ D. We obtain

h(x)− h(y)

x− y =
A(x)

(x− z)(x− y)
F

( |x− z|
r

)
.

If r − 2rε < |y − z| < r − rε and x ∈ E we can use analogous arguments and
obtain that the integral is o(1) as ε→ 0 for this choice of y. If |y−z| < r−2rε
and x ∈ E, the situation is different, since domain of integration contains a
singularity. There is a constant c, such that∣∣∣∣h(x)− h(y)

x− y

∣∣∣∣ ≤ c

r(1− ε)|x− y| ≤
c

r(1− ε)(|x| − |y|) .

Then ∣∣∣∣∫|y−z|<r−2rε

∫
x∈E

h(x)− h(y)

x− y dx dy

∣∣∣∣ ≤
c̃

r(1− ε)
∫
|y−z|<r−2rε

∫
x∈E

1

|x| − |y| dx dy.
(2.26)

After change of variables the last integral has the form

const

r(1− ε)

∫ r−2rε

0

∫ r+rε

r−rε

ts

t− s dt ds

and is o(1) as ε→ 0. Similarly, I(E ×G) = o(1) as ε→ 0.
Binding the estimates of the integrals together we arrive at

limε→0

∫∫
C
h(x)− h(y)

x− y dm(x)dm(y)

=
∫∫
|x−z|≥r,|y−z|≥r

h̃(x)− h̃(y)

x− y dm(x)dm(y)

+2
∫∫
|x−z|≥r,|y−z|<r

h̃(x)− h̃(y)

x− y dm(x)dm(y),

(2.27)

where

h̃(w) =

{
0, |w − z| < r,
A(w)
w−z , |w − z| > r.

(2.28)

Now let us look at the behaviour of the left-hand side of (2.27) as r → 0.
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By (2.18) the Fubini theorem is applicable to the integral

∫∫
|x−z|≥r,|y−z|<r

h̃(x)− h̃(y)

x− y dm(x)dm(y)

=
∫∫
|x−z|≥r,|y−z|<r

A(x)

(x− y)(x− z)
dm(x)dm(y).

(2.29)

We obtain that ∫∫
|x−z|≥r,|y−z|<r

A(x)
(x−y)(x−z)dm(x)dm(y)

=
∫
|x−z|≥r

A(x)
x−z

(∫
|y−z|<r

1
x−y dm(y)

)
dm(x).

(2.30)

Condition (2.18) implies that the last integral tends to zero as r → 0.
However,

∫∫
|x−z|≥r,|y−z|≥r

h̃(x)− h̃(y)

x− y dm(x)dm(y)

=
∫∫
|x−z|≥r,|y−z|≥r

(
A(x)

(x− y)(x− z)
− A(y)

(x− y)(y − z)

)
.

(2.31)

There exists a polynomial P (z, x, y) of degree l − 2, such that

(y − z)A(x)− (x− z)A(y) + (x− y)A(z) = (y − z)(x− z)(x− y)P (z, x, y).

Therefore,

A(x)

(x− y)(x− z)
− A(y)

(x− y)(y − z)
= − A(z)

(x− z)(y − z)
+ P (z, x, y).

Since ∫∫
|x−z|≥r,|y−z|≥r

A(z)

(x− z)(y − z)
dm(x)dm(y)

= A(z)
∫
|x−z|≥r

1

x− z dm(x)
∫
|y−z|≥r

1

y − z dm(y),
(2.32)

we obtain

limr→0

∫∫
|x−z|≥r,|y−z|≥r

(
A(x)

(x− y)(x− z)
− A(y)

(x− y)(y − z)

)
= P1(z)− A(z) (C(z))2 ,

(2.33)

where polynomial function P1(z) stands for

P1(z) =

∫∫
C
P (z, x, y) dm(x)dm(y).
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Therefore,

lim
r→0

lim
ε→0

∫∫
C

h(x)− h(y)

x− y dm(x)dm(y) = P1(z)− A(z) (C(z))2 . (2.34)

Analyzing similarly, we come to∫
Φ

′
(x)h(x) dm(x) =∫

E
Φ

′
(x)h(x) dm(x) +

∫
G

Φ
′
(x)h(x) dm(x).

(2.35)

Analogous estimates for x ∈ E imply that

lim
ε→0

∫
Φ

′
(x)h(x) dm(x) =

∫
|x−z|≤r

Φ
′
(x)

A(x)

x− z dm(x).

By the choice of the external field,

Φ
′
(x)

A(x)

x− z = −1

2

B(x)

x− z . (2.36)

Therefore, we have∫
|x−z|≤r

B(x)

x− z =

∫
|x−z|≤r

B(x)−B(z)

x− z dm(x) +B(z)

∫
|x−z|≤r

1

x− z dm(x).

(2.37)
We denote the integral ∫

|x−z|≤r

B(x)−B(z)

x− z dm(x)

by P2(z). Note that P2 is rational. We obtain

lim
r→0

lim
ε→0

∫
Φ

′
(x)h(x) dm(x) = −1

2
(P2(z) +B(z)C(z)) .

We put the last equality together with (2.34) and use Theorem 2.5. Then

P1(z)− A(z) (C(z))2 + P2(z) +B(z)C(z) = 0.

We rewrite it as

C2(z)− B(z)

A(z)
C(z) +

(
1

2

B(z)

A(z)

)2

=
P1(z) + P2(z)

A(z)
+

(
1

2

B(z)

A(z)

)2

.

We put

Q(z) =
P1(z) + P2(z)

A(z)
+
(

Φ
′
(z)
)2

.
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So we found a rational function Q(z) with possible poles at the zeros of A(z),
such that (2.16) holds. Moreover, whenever bk 6= 0, the corresponding ak is a
double pole of Q(z). This concludes the first part of the proof.

Consider the natural parameter w of Q near a regular point

w(z) =

∫ √
Q(z) dz.

We pick a simply connected domain D around the chosen point, such that
the domain does not contain critical points of the quadratic differential and is
bounded by two horizontal and two vertical arcs. Then the natural parameter
mapsD conformally onto a rectangle in the w−plane. We define a sign function

s(w) = sgn

(
C +R√

Q
(z(w))

)
.

For z ∈ D we rewrite (2.17) as

s(w(z))
√
Q(z) = C(z) +R(z). (2.38)

Note that
∂

∂z
C(z) = πm(z),

in a sense of generalized functions. Here the conjugate derivative is defined as

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

Therefore,
∂

∂z
(C(z) +R(z)) = πm(z).

Differentiating the left-hand side of (2.38) we get

∂

∂z

(
s(w(z))

√
Q(z)

)
=

∂

∂w
s(w(z))

(
∂w(z)

∂z

)√
Q(z). (2.39)

Taking into account that (
∂w(z)

∂z

)
=
√
Q(z),

we obtain
∂

∂w
s(w(z)) =

πm(z)

|Q(z)| . (2.40)
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From the last expression we conclude that the generalized partial derivative
of the sign function s vanishes along the axis {<w = 0}. Therefore, s(w) is a
function of <w. Whenever s(<w0) 6= 0 for some w0, it takes the same value
along the whole vertical line passing through the point w0. Then the set

σ =

{
w

∣∣∣∣ ∂∂ws(w) 6= 0

}
consists of certain vertical lines.

Therefore, suppm∩D is generated by a union of trajectories of the quadratic
differential −Q(z) dz2.

Consider now positive measure m. Then, by (2.40), we get

∂

∂w
s(w) ≥ 0,

where w ∈ w(D). The function s(w) changes sign only once in w(D) and,
therefore, at most one vertical arc is contained in suppm ∩D.

Remark 2.7. Suppose bk ∈ R, k = 1, ..., l in the representation (2.15). Then
the support of the (A,ϕ)−critical measure is provided by the Jenkins-Strebel
quadratic differential. See the details in [MFR11].

We conclude that any continuous critical measure is supported on the tra-
jectories of a certain quadratic differential. But in general, there is no one-
to-one correspondence between continuous critical measures and the quadratic
differentials providing their support.

Example 2.8. Consider the quadratic differential Q with four simple poles
and two simple zeros with critical trajectories as on the Figure 2.1. Let us
pick the external energy ϕ = 0 and the set A consisting of poles of Q. Then
three different (A,ϕ)−critical measures can be associated with the quadratic
differential Q. On the figure 2.1 three copies of the critical graph of Q are
illustrated. The highlighted with bold lines correspond to the support of the
corresponding (A,ϕ)−critical measures.
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Figure 2.1: Three measures associated with a Jenkins-Strebel differential.
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Chapter 3

Parameter space of
Jenkins-Strebel quadratic
differential

Recall the Lamé equation

l∏
k=1

(z − ak)
d2y

dz2
+

l∑
j=1

bj
∏
i 6=j

(z − ai)
dy

dz
+ V (z)y = 0. (3.1)

Here ak, bk are fixed points on the complex plane. Polynomial V (z) of degree
at most l − 2 can vary. It was proved by B. Shapiro in [Sha11] that there is a
number N ∈ N, such that for any n ≥ N , there exist(

n+ l − 2
n

)
polynomials V (z) of degree l − 2, for which a polynomial y(z) of degree n
satisfies (3.1).

Sequences of V (z) = Vn(z) and corresponding y(z) = yn(z) for such n were
considered in [MFR11].

When the values of bk are real, the measures µn counting zeros of yn(z)
provide the minimum of discrete weighted potential energy of a charge system,
which corresponds to (3.1). So we can associate a sequence of measures µn to
the sequences Vn(z) and yn(z).

Remark 3.1. B. Shapiro showed in [Sha11] that the zeros of Vn(z) lie in an
ε−neighbourhood of the convex hull of the set A = {a1, ..., al}, for n greater
than some number N .

35
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Authors proved in [MFR11] a theorem about limit of sequence of zero
counting measures associated to the Lamé equation. We observe this theorem
for the particular case when l = 3. Then the sequence Vn(z) is a sequence
of monomials. By Remark 3.1, the sequence of roots of Vn(z) has a limiting
point. This is equivalent to that the sequence Vn(z) has a limiting polynomial.
We suppose that for the sequence Vn(z) there is a limiting polynomial Ṽ (z)
with leading coefficient 1.

Theorem 3.2. Suppose there exists a polynomial Ṽ with the leading coefficient
1, deg Ṽ = 1, such that

lim
n→∞

Vn = Ṽ .

Then the normalized zero counting measure µn/n
2 converges to a continuous

A−critical measure m ∈M c in a weak-* sense.

In this case the Cauchy transform of m satisfies the equality

C2(z) =
Ṽ (z)∏3

k=1(z − ak)
(3.2)

almost everywhere with respect to the Lebesgue measure. Recall thatA-critical
measure provides a saddle point of continuous logarithmic energy associated
with (3.1).

B. Shapiro, K. Takemura and M. Tater [STT11] analysed an analogous
problem for the Heun equation, and therefore, for the Lamé equation of degree
l = 3. They considered the sequences of polynomials Vn of degree 1 and corre-
sponding sequences of so-called normalized polynomials Ṽn = Vn/v, where v is
the leading coefficient of Vn. By Remark 3.1, there exists a monic polynomial
Ṽ , which is the limit of the sequence of normalized polynomials Ṽn. More-
over, it was proved in [STT11], that the sequence of normalized zero counting
measures µn/n

2 corresponding to the polynomial solutions yn(z) weakly con-
verge to a measure m ∈M c with the Cauchy transform satisfying (3.2) almost
everywhere with respect to the Lebesgue measure.

Note that the limiting measures are supported on the trajectories of a
Jenkins Strebel quadratic differential

Q(z) dz2 = − Ṽ (z)∏3
k=1(z − ak)

dz2.

This description of the weak-* limits of the zero counting measures corre-
sponding to (3.1) depends on the limit polynomials Ṽ . One can consider the
problem of characterizing the set of such Ṽ . We choose the degree l = 3 be-
cause this case is the simplest non-trivial case of this problem. We reformulate
it as follows.
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Consider the quadratic differential

Q(z) dz2 = − 1

4π2

z − c
(z − a1)(z − a2)(z − a3)

dz2. (3.3)

The points a1, a2, a3 are given, the parameter c can vary. The goal is to
characterize the set of all possible Ṽ = z − c by describing the parametric
space of c, for which the quadratic differential Q(z) dz2 is a Jenkins-Strebel
quadratic differential.

This quadratic differential has a simple zero at the point c, simple poles
at a1, a2 and a3, and a second order pole at ∞. The trajectory structure in
large of Q(z) dz2 consists of at most two domains. Denote by D∞ the domain
containing ∞. It is a circular domain. The other domain D can vary. There
are three cases

i. Domain D degenerates, i.e. D = ∅.

ii. Domain D forms a density domain.

iii. Domain D is a ring domain. It separates the simple poles from the zero
c and ∞.

The first case can be associated with the well-known Chebotarev problem of
finding a continuum of minimal logarithmic capacity, such that it contains the
points a1, a2, a3. The extremal continuum exists, is unique and is well-known
as the Chebotarev continuum (see [Kuz82]). We denote it by E = E(a1, a2, a3).
The Chebotarev continuum can be given by the closure of the critical graph
Ψ of the quadratic differential

Q(z) dz2 = − 1

4π2

z − c0

(z − a1)(z − a2)(z − a3)
dz2.

The closures of three trajectories γ0,k ∈ Ψ, k = 1, 2, 3 have a common point
c0 = c0(a1, a2, a3). Let us set an orientation of the curves γ0,k such that the
closure of γ0,k goes from the point ak to c0. We denote by −γ0,k a curve with
reverse orientation.

If the points a1, a2, a3 are collinear, one of the critical trajectories γ0,k de-
generates. The properties of the point c0 corresponding to the Chebotarev
continuum are studied by G. I. Kuz’mina in [Kuz82].

In the non-degenerate case (iii) the domain decomposition of Q consists of
a circular domain D∞ and a ring domain D.

We are interested in the first and the last cases, since we are concerned
with the parameter c, for which the quadratic differential is Jenkins-Strebel.
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Figure 3.1: The Chebotarev continuum.

It was proved in [Str84] that the set of Jenkins-Strebel quadratic differentials
in the space of quadratic differentials represented by a meromorphic function
with fixed poles. Therefore, the set C of c, such that Q is Jenkins-Strebel, is
dense in a parametric space C. The geometric structure of C has a particular
interest. In this chapter we show that the set C consists of countably many
disjoint Jordan curves, starting at c0 and ending at∞ in the parametric space.

There is one-to-one correspondence between curves in the parametric space
and homotopy classes of closed Jordan curves on C \ {a1, a2, a3}. In order to
see the connection, we define first these classes in few steps.

Suppose that the points a1, a2, a3 do not lie on one line. We define the
winding number of a curve γ with respect to the point a3 as

inda3γ =

[
1

2π
∆ arg

z − a3

a1 − a3

]
, (3.4)

where ∆ arg f(z) stands for the change of argument of f(z) while z ∈ γ. We
define G

′

k = G
′

k[a1, a2; a3] to be a homotopy class of Jordan curves γ
′

on the
punctured plane C\{a3} connecting the points a1 and a2, such that the winding
number inda3γ

′
= k. In order to consider non-Jordan curves as well, we extend

the defined class as follows. Let Gk = Gk[a1, a2; a3] be a homotopy class of
continuous curves connecting the points a1 and a2 on C, such that for any
curve γ ∈ Gk there is a curve γ

′ ∈ G′

k homotopic γ on C \ {a1, a2, a3}.
Later on, we use a similar extension process. Let us call it extension by

homotopy.
Note that for any k the class Gk[a1, a2; a3] has one representative of the

form:

γk =


γ0

1 ∪ (−γ0
3) ∪ γ0

3 ∪ (−γ0
1)︸ ︷︷ ︸

k times

∪γ0
1 ∪ (−γ0

2) k ≥ 0,

γ0
1 ∪ (−γ0

3) ∪ γ0
3 ∪ (−γ0

1)︸ ︷︷ ︸
|k| − 1 times

∪γ0
1 ∪ (−γ0

3) ∪ γ0
3 ∪ (−γ0

2) k < 0. (3.5)
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Figure 3.2: Representatives of the homotopy classes G0[a1, a2; a3],
Γ0[a1, a2; a3], G−1[a1, a2; a3], Γ−1[a2, a1; a3].

In the next step we associate to G
′

k[a1, a2; a3] a class Γ
′

k[a1, a2; a3] of closed

Jordan curves γ̃′ , which separate a1, a2 from a3 and ∞. More precisely, the
class Γ

′

k consists of curves γ̃′ , such that there is a curve γ
′ ∈ G′

separated by

γ̃′ from the points a3, ∞. Let Γk[a1, a2; a3] be extension by homotopy of the
class Γ

′

k[a1, a2; a3].
Finally we define Γ[a1, a2; a3] as the union {Γk[a1, a2; a3]}k∈Z.

Remark 3.3. Note that in the families Γ[a1, a2; a3] and Γ[a2, a1; a3] there are two
pairs of homotopy classes, which have the same curves up to orientation. So
we identify the pairs of classes Γ−1[a1, a2; a3], Γ0[a2, a1; a3], and Γ−1[a2, a1; a3],
Γ0[a1, a2; a3]. From now on, we consider the families Γ[ai1 , ai2 ; ai3 ], where
(ai1 , ai2 , ai3) denotes the permutations of the triple (a1, a2, a3), to be differ-
ent up to this identification.

On the left part of the Figure 3.2 the representatives of homotopy class
G0[a1, a2; a3] = G−1[a2, a1; a3] and homotopy class Γ0[a1, a2; a3] = Γ−1[a2, a1; a3]
are illustrated with regular and dotted line correspondingly. On the right part
of the figure we can see the representatives of G−1[a1, a2; a3] = G0[a2, a1; a3]
(regular line) and Γ−1[a2, a1; a3] = Γ0[a1, a2; a3] (dotted line).

Let Γ0 be the homotopy class of the closed curves on C separating∞ from
the points a1, a2 and a3.

Later on, we consider moduli of domains with respect to the classes Γ0 and
Γk.

We call domainsDk, Dk,∞ are admissible for the homotopy classes Γk[a1, a2; a3]
and Γ0 if

1. Dk, Dk,∞ do not intersect,

2. Dk,∞ 3 ∞ is simply connected,
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3. D is a doubly connected domain on C\{a1, a2, a3}, such that its boundary
components are separated by the curves from the class Γk[a1, a2; a3].

Consider the Jenkins modulus problem for the homotopy classes Γk[a1, a2; a3]
and Γ0 and a positive weight α. Denote by M(Dk) the modulus of Dk with
respect to the family of curves separating its boundary components, and by
Dk,∞ the reduced modulus of Dk,∞ at the point ∞. Then the problem is to
find the maximum

max{αM(Dk) +M(Dk,∞)} (3.6)

for a fixed α > 0.
It follows from [Jen58, Jen57] that for any classes Γk, Γ0 and any α > 0

there exists a unique pair of extremal domains D∗k = D∗k(α; a1, a2; a3) and
D∗k,∞ = D∗k,∞(α; a1, a2; a3). Moreover, these domains belong to the domain
configuration of the quadratic differential (3.3).

The zero
c = ck(α; a1, a2; a3) (3.7)

of this quadratic differential defines the extremal domains. So the solution of
the problem of finding the maximum (3.6) depends only on this parameter.

By remark 3.3, the homotopy class Γ−1[ai1 , ai2 ; ai3 ] is identical to Γ0[ai2 , ai1 ; ai3 ],
and Γ−1[ai2 , ai1 ; ai3 ] is identical to Γ0[ai1 , ai2 ; ai3 ]. Thus the corresponding zeros
ck coincide. More precisely,

c−1(α; ai1 , ai2 ; ai3) = c0(α; ai2 , ai1 ; ai3),
c0(α; ai1 , ai2 ; ai3) = c−1(α; ai2 , ai1 ; ai3).

(3.8)

It is known that for any Γk[a1, a2; a3] there exists a transition value α∗k =
α∗k(a1, a2, a3) such that

i. If the weight α ≤ α∗k then the doubly connected extremal domain degen-
erates.

ii. If α > α∗k then D∗k is non-empty.

In the case (i) the domain decomposition of the quadratic differential
providing maximum (3.6) consists of one simply connected domain D∗k,∞ =

Ĉ \ E(a1, a2, a3), where E(a1, a2, a3) is the Chebotarev continuum.
Therefore, the transition value α∗k can be found from the equation

α∗k = 2

∫
γk

|Q0(z)| 12 |dz|, (3.9)

whereQ0(z) dz2 is the quadratic differential of the form (3.3) for c = c0(a1, a2, a3).
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The residue of
√
Q0(z) at z = ∞ is 1

2πi
and

√
Q0(z) dz is positive along

trajectories. Therefore, it follows that

2

∫
E(a1,a2,a3)

√
Q0(z) dz = 2

∫
E(a1,a2,a3)

√
|Q0(z)| |dz| = 1. (3.10)

We conclude from (3.9) and (3.10) that 0 < α∗0 ≤ 1. For k 6= 0 we obtain
α∗k > 1.

Using linear transformation, we rewrite (3.3) in the form:

Q(z) dz2 = − 1

4π2

z − c
(z2 − 1)(z − a)

dz2. (3.11)

Since the trajectory structure of a quadratic differential is invariant under
conformal mapping, we may assume that =a ≥ 0,<a ≥ 0.

Consider now the limit cases of the problem (3.6).
The first limit case corresponds to the transition value α = α∗0. G.V.

Kuz’mina gave transcendental equations describing the zero parameter c0, see
theorem 1.6 [Kuz82]. She showed as well that c0 lies in the interior of the
triangle with vertices at −1, 1, a and <c0 > 0.

The second limit case corresponds to the Teichmüller problem of finding
the maximal modulus of a doubly connected domain D with respect to the
family of curves separating the points −1 and 1 from a and ∞. The curves
γ separating the boundary components of D belong to the class Γm[−1, 1; a],
m ∈ Z.

The extremal domain is given by a ring domain of the domain decomposi-
tion of the quadratic differential

QT
m(z;−1, 1, a) dz2 = e2iϕm

dz2

(z2 − 1)(z − a)
, (3.12)

where ϕm = ϕm(−1, 1; a) is uniquely determined by the points −1, 1, a.
In order to describe extremal domain D∗, we will use an auxiliary complex

plane of a variable u, following G.V. Kuz’mina in [Kuz82], such that

z = 2k2sn2(u, k)− 1, (3.13)

with

k2 = k2(a) =
a+ 1

2
, (3.14)

Let P be fundamental parallelogram of the function (3.13). Then the ver-
tices of P can be chosen to be at the points

u−1 = 0, u1 = K(k) + iK
′
(k), ua = K(k), u∞ = iK

′
(k). (3.15)
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Here uz denotes u(z). Let Λ be the lattice with the initial point at u = 0.
Then

Λ = {uw + 2lK(k) + 2inK
′
(k)}, n, l = ±1,±2, . . . ; w = −1, 1, a,∞.

The function

τ(k2) =
iK

′
(k)

K(k)

takes values in the region

T =

{
τ

∣∣∣∣τ ± 1

2

∣∣∣∣ ≥ 1

2
,−1 ≤ <τ ≤ 1,<τ ≥ 0,=τ ≥ 0

}
.

The function τ(k2) is called the modular function, see [Ahl78]. Functions
K

′
(k), K(k) are positive for k2 ∈ (0, 1). If =k2 > 0, we extend these function

analytically along any curve γ, such that intγ lies in the half-plane {=k2 > 0}.
We denote by γ−1,1 and γa,∞ the bounded and unbounded boundary com-

ponents the domain D correspondingly.
Quadratic differential (3.12) can be written in terms of variable u as

Q(z) dz2 = 2eiϕm du2. (3.16)

Consider now the images of the boundary components γ−1,1 and γa,∞ by
the mapping u(z).

First we suppose that the curves separating the boundary components of D
belong to the class Γ0[−1, 1; a]. Then the image of the curve γ−1,1 corresponds
to a family of parallel lines, which is obtained from a line L1 connecting the
points u = 0 and u = K(k)− iK′

(k), by a transformation of the form

f(u) = u+ n(K(k) + iK
′
(k)), n = ±1,±2, ... (3.17)

The corresponding image of γa,∞ is generated by all transformations (3.17) of
a line L2 connecting the points K(k), iK

′
(k) in the u−plane.

Then the angle ϕ0 can be expressed as

ϕ0 = −2 arg(K(k)− iK′
(k)).

Suppose
u(−1) = 0.

For the ring domain D, there exists a conformal mapping ξ = g(z) of domain
D onto the ring {1 < |ξ| < R}, R > 0. Then

1

2π
logR = M(D).
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Figure 3.3: The rectangle Π.

Let γ be an orthogonal critical trajectory of the quadratic differential Q(z),
such that the point z = 1 belongs to its closure. We set D

′
= D \ γ. Then D

′

is mapped by g(z) onto a domain g(D
′
), which is equal to a ring {1 < |ξ| < R}

with a slit along the interval [1, R]. On the other hand, the image u(D
′
) of D

′

by the function u(z) is the interior of one of rectangles ±Π, which are described
as follows. One side of Π connects the points −K(k) + iK

′
(k), K(k)− iK′

(k),
and the opposite side lies on the line L2. Denote by 2a the length of the longer
side, and by b the length of the shorter side. Then the modulus of Π with
respect to family of trajectories is equal to b/(2a). The Figure 3.3 shows the
rectangle Π.

In order to obtain a formula for the modulus of the extremal domain, we
use calculations different to that suggested Kuz’mina.

By the property of conformal invariance, the moduli of D
′
, u(D

′
) and g(D

′
)

with respect to corresponding families of curves coincide. On the other hand,
the moduli of the ring {1 < |ξ| < R} and the ring with the slit coincide (see,
for example, Chapter 2.2 in [Vas02]). More precisely,

1

2π
logR = M(Π) =

b

2a
. (3.18)

Therefore, it is sufficient to calculate a/b in order to find the modulus of
the extremal domain D. To do so, we use some basic geometry.

Let us prove that

a

b
= π= iK

′
(k)

K(k)− iK′(k)
. (3.19)
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Figure 3.4:

Let iK
′
(k) = y + ix, K(k) = s+ it, where x, y, s, t > 0. Then we get

= iK
′
(k)

K(k)− iK′(k)
=

xs− yt
(s− y)2 + (t− x)2

. (3.20)

We denote by O, A, B, C the vertices of parallelogram P of the lattice
Λ corresponding to the points 0, iK

′
(k), K(k), K(k) + iK

′
(k). Let h be an

altitude of the triangle OAB through the vertex O. Then b/a = h/a. The
denotations are visualized on the Figure 3.4.

Obviously,
a = AB =

√
(s− y)2 + (x− t)2. (3.21)

Denote by θ an angle between the side OA and the imaginary axis. Let us
rotate the triangle OAB by θ. The resulting triangle is denoted by OA

′
B

′
.

Then, by the triangle area formula, we obtain

h =
|OA| ·B′

1

a
, (3.22)

where B
′
1 stands for the real part of the point B

′
and |OA| denotes the length

of the side OA. In order to get the value of B
′
1, we use a rotation matrix.

Obviously,

sin θ =
y√

x2 + y2
, cos θ =

x√
x2 + y2

. (3.23)

Then the B
′
1 has form

B
′

1 =
xs√
x2 + y2

− yt√
x2 + y2

. (3.24)
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Then we obtain for h

h =
xs− yt√

(s− y)2 + (x− t)2
,

which together with (3.21) concludes the proof. We can rewrite (3.19) and
(3.18) as

logR = π= τ(k2)

1− τ(k2)
. (3.25)

The angle parameter has the form

ϕ0 = −2arg(K(k)− iK′
(k)).

Suppose that D is a doubly connected domain, such that curves separating
the boundary components γa,∞ and γ−1,1 belong to the class Γ1[−1, 1; a]. Then
the corresponding domain D

′
is mapped by u(z) onto a rectangle Π1 with one

side connecting points iK
′
(k) − 3K(k), −iK′

(k) + 3K(k) and the opposite
side lying on the line going through the points K(k), iK

′
(k) − 2K(k). The

corresponding modulus of Π1 is evidently smaller than the modulus of a domain
with respect to curves from the class Γ0[−1, 1; a].

So the modulus of a doubly connected domain with respect to curves of class
Γm[−1, 1; a] separating its boundary components decreases as |m| increases. It
is defined by equalities

logR = π= τ(k2)

1− (2|m|+ 1)τ(k2)
, m = 0, 1, ... (3.26)

The angle parameter ϕm has the form

ϕm = 2 sign(m) arg{−iK′
(k) + (2|m|+ 1)K(k)}. (3.27)

Therefore, the maximal modulus is provided by curves belonging to Γ0[−1, 1; a].
Let us change the parameter k to 1/k. Then

K

(
1

k

)
= k{K(k) + iK

′
(k)},

K
′
(

1

k

)
= kK

′
(k).

We put k := 1/k and rewrite (3.25) as

logR = π=τ(k2), k2 =
2

a+ 1
. (3.28)
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Therefore, for the new k2 = 2/(a+ 1) we get

ϕ0 = −arg(k2K2(k)), k2 =
2

a+ 1
. (3.29)

We proved a theorem

Theorem 3.4. Consider the points

a1 = −1, a2 = 1, a3 = a; =a ≥ 0,<a ≥ 0.

Let Dm be a family of doubly connected domains, such that the curves sepa-
rating its boundary components belong to the homotopy class Γm. Then the
maximum of a modulus of Dm is attained for m = 0 and is given by equality
(3.28). The extremal domain is a ring domain of the quadratic differential
(3.12) with the angle parameter defined by (3.29).

When m 6= 0, the modulus of the domain Dm is described by equality (3.26),
where k = (a+ 1)/2. Dm is a ring domain of the quadratic differential (3.12),
where ϕk is given by (3.27).

For k with =k > 0 we understand K(k), K
′
(k) as analytic continuation

of K(k), K
′
(k) for 0 < k < 1 along any path, which does not intersect the

imaginary axis.
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