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Preface

In this master thesis we want to study the geometry of the Brill-Noether locus
M r

d,g. A typical problem is to find the gonality of a point [C] ∈M r
d,g. In gen-

eral, this is a very hard problem, because this scheme has many components,
some of them are reduced and may not be of expected dimension. Therefore
we restrict ourself to look at “nice”components of M r

g,d, i.e. a component
which is generically smooth, of the expected dimension and with point cor-
responding to a curve with a very ample grd. We will calculate the gonality
of “nice”points of the Brill-Noether locus M r

d,g, each point representing a
smooth curve C ⊆ Pr of degree d and genus g.

The thesis is divided into two parts; In the first part, we are interested
in the gonality of curves in Pr which can be realized as K3 sections. In the
second part, we will find out what curves on the three complete intersections
S4 ⊆ P3, S2,3 ⊆ P4 and S2,2,2 ⊆ P5 corresponds to smooth points in the
Hilbert scheme.

The motivation for this thesis is mainly from the work of G. Farkas
[Far01], where he gives explicit formulas for the gonality of curves in Pr
which can be seen as sections on K3 surfaces under some restrictions and he
shows what curves on the quartic K3 surface in P3, under almost the same
restrictions, that corresponds smooth points in the Hilbert scheme.

We will generalize Farkas’ result about gonality of K3 sections and we
will study K3 surfaces equipped with a Picard group of rank 3, which is
not studied before. In the main article, [Far01], Farkas assumes no rational
curves. The understanding of why he eliminates these curves, gives me good
reason to say that the rational curves are the “bad guys”in this field, as we
will see in Chapter 6. Even though I have been struggling to gain control
over these curves, I must say that it is fascinating how the simplest curves
are causing so much trouble.

This thesis is organized as follows:
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6

Chapter 1 gives a brief introduction to the history of K3 surfaces and we
will see how they arise in theoretical physics. In the end we give some basic
definitions and notations we will use in this thesis.

Chapter 2 gives an introduction to geometry of surfaces, and should be
understandable for anyone with some basic knowledge in algebraic geometry.
We will include some basic facts about the tools we will use frequently in
later chapters.

In Chapter 3 we limit ourself to the study of geometry on K3 surfaces,
which is the main topic of this thesis. We will give some of the basic properties
of this family of surfaces and as well as provide some well-known conjectures
which have been studied a lot on K3 surfaces. Finally we will see some
examples.

Chapter 4 is devoted to some result on K3 surfaces, which we will use
later. Corollary 4.9 is a new result about exceptional curves on K3 surfaces.

Chapter 5 is Brill-Noether theory, the study of nonspecial linear systems
on curves. We study the minimal degree of curves on rank 2 K3 surfaces
to the projective line. The main result is Theorem 5.1, where we generalize
Farkas’ result [Far01, Theorem 3] about gonality of K3 sections. From this
theorem follows Example 5.2 and Corollary 5.3.

In Chapter 6 we take one step further from Chapter 5. We add one more
generator to the Picard group, so that we have 3 generators instead of 2.
The main results are Proposition 6.3, Theorem 6.5 and Corollary 6.6. In
Proposition 6.1 we show existence of such a K3 surface, under some restric-
tions, and in Proposition 6.3 we show existence of a hyperelliptic curve and
a tetragonal curve. In Theorem 6.5 we calculate the gonality of curves in Pr
which has a base point free complete linear system, and in Corollary 6.6 we
generalize Proposition 6.3. The reason Proposition 6.3 is a part of the thesis
is because its proof is different from the generalized result and we will make
use of some parts of the proof in Chapter 7, when we need the parity of (d, g)
to eliminate −2-curves.

In Chapter 7 we study curves on the three complete intersections S4, S2,3

and S2,2,2, with Picard rank 2 and 3, and shows when the curves corresponds
to smooth points in the Hilbert scheme. The main results are Lemma 7.5,
Lemma 7.6 and Corollary 7.8. When we are in the Picard rank 2 case, Lemma
7.5 gives the numerical conditions for what curves on the three complete
intersections corresponds to smooth points in the Hilbert scheme. When
we are in Picard rank 3 case, Lemma 7.6 gives the numerical conditions for
when a line bundle, on the K3 surfaces studied in Chapter 6, is nonspecial.
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7

In Corollary 7.8 we study smooth points in the Hilbert scheme, where each
point representing a smooth curve on the two complete intersections, S4 and
S2,2,2, each with Picard group of rank 3.

Chapter 8 is devoted to unfinished work and some ideas of how to ap-
proach some of the results obtained, from a different angle.
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Chapter 1

Background

1.1 Motivation and Application

Euclidean geometry was developed by the greek mathematician Euclid around
300 B.C., in his famous book “Elements”. This way of looking at shapes and
the relations between them ruled for many centuries. In the 18th century,
mathematicians started to think of a generalization of the Euclidean space.
They noticed that it may not happen that the sum of the angles of a triangle
is 180◦ and that parallel lines could in fact cross each other, so the conclu-
sion was that the geometry of the shapes was completely dependent of the
curvature of the space they were living in. This idea was the motivational
building block of algebraic geometry and differential geometry.

In 1915, the german physicist Albert Einstein took this idea of curved
space to a completely new level and made it so important that he revolution-
ized the way we think of the universe. The theory is known as the General
Theory of Relativity. He showed that we do not live in a 3-dimensional Eu-
clidean space, but in a 4-dimensional curved space, which he called Spacetime.
The General Theory of Relativity is a beautiful application of non-Euclidean
geometry.

In the same period as Albert Einstein published the General Theory of
Relativity, interesting things started to happend on a much smaller scale.
Physicists made experiments which showed that strange things happend on
atomic level, and they couldn’t explain these results by using classical me-
chanics, so a new set of rules had to be established. This lead to a new
field called Quantum Mechanics. After the technology was getting more and
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12 Background

more advanced one could find that the atoms was not the smallest building
blocks in the universe, but elementary particles such as quarks and leptons.
The interesting thing is that Einstein’s explanation of how gravity works
cannot make any predictions in the quantum world. Physicists have tried to
reconsile quantum mechanics and general relativity for many years without
succeeding.

In the middle of the 19th century, a new theory was developed. Theoret-
ical physicists likes to call it String Theory. It says that elementary particles
are not made of 0-dimensional objects, but 1-dimensional strings oscillating
on a Calabi-Yau manifold. String Theory is considered as the best candidate
for the Theory of Everything (TOE). Physics is an experimental science, so
in order to verify a theory, it must be proven experimentally. No one has yet
been able to test String Theory against the Standard Model1. The problem
is that the strings are much smaller than any elementary particle2 and string
theory requires that spacetime have 11 dimensions [DLM95]3.

A K3 surface is a 2-dimensional Calabi-Yau manifold. Although it is the
3-dimensional Calabi-Yau manifolds that are in a direct link with string the-
ory, one can use K3 surfaces to study for example string duality4, see [Asp96].
In fact, when one studies string duality, K3 surfaces are one of the spaces
that always arise. Mathematicians have been studying the geometry of K3
surfaces for a long time. Physicists was not interested in K3 surfaces5 until
Yau proved the Calabi’s conjecture in 1977 [Yau77]. Since then K3 surfaces
have been a “model toy” for compactifications (see for example [DNP83]) as
it provides the second simplest example of a Ricci-flat compact manifold af-
ter the torus. Another reason for study K3 surfaces is that the mathematics
of heterotic string6 appears to be intrinsically bound by the geometry of the
K3 surface. When the heterotic string appears on one side of pair of dual

1The Standard Model is a theory describing the three fundamental forces, i.e. the weak
nuclear force, the strong nuclear force and the electromagnetic force and the subatomic
particles.

2A comparison with the size of an electron with approximately diameter 5, 63 ·10−15, a
string is a loop of diameter 10−35m, which is almost the Planck length of 1, 616199·10−35m.

3The number of dimensions comes from M -theory, which is a theory that unifies the 5
string theories into a superstring theory. For more information, see the work of Edward
Witten, the father of M -theory.

4The notion of duality is used in physics, when two theories explains the same physics.
5See for example [HP78] for an early paper.
6A heterotic string, in string theory, is a mixture of the bosonic string and the super-

string.
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1.2 History of K3 Surfaces 13

theories, the K3 surface is likely to occur.

1.2 History of K3 Surfaces

The history of K3 surfaces goes back to classical algebraic geometry. The
name “K3 surface” was coined by A. Weil in his famous “Final report on
research contract” [Wei80]. In his comments on this report Weil writes:

Dans la seconde partie de mon rapport, il s’agit des variétés
kählériennes dites K3, ainsi nommées en l’honneur de Kummer,

Kodaira, Kähler et de la belle montagne K2 au Cachmire.

In the very same report the following conjectures, due to Andreotti and Weil,
were stated:

i) K3 surfaces form one family;

ii) all K3 surfaces are Kähler;

iii) the period map is surjective;

iv) a form of global Torelli theorem holds.

Now all these questions have been answered positively. Conjecture i) was
proved by Kodaira [Kod64]. Conjecture ii) was first shown by Siu [Siu83,
Section 14]. The surjectivity of the period map was proved by general
Kähler K3 surfaces by Todorov [Tod89] and Looijenga [Loo81](Conjecture
iii)). Piatetskii-Šapiro and Šhafarevich proved the Strong Torelli theorem for
algebraic K3 surfaces in [Pvv71] and in general by Burns and Papoport in
[BR75], which proved the conjecture iv) for Kähler K3 surfaces, and hence
for all K3s.

1.3 Basic Definitions

A surface will mean a compact connected 2-dimensional manifold over C. A
curve C will be a reduced and irreducible complex analytic space of dimension
1. On a curve (resp. surface), a divisor will be a formal sum of points (resp.
curves) counted with multiplicities. A divisor D =

∑
nΓΓ on a variety X is

called effective if each nΓ ≥ 0, usually written D ≥ 0. A curve on a surface
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14 Background

will be any effective divisor (one component) on the surface. A point P will
mean a closed point, unless otherwise specified.

By a K3 surface7 we mean a nonsingular surface S such that H1(S,OS) =
0 and the canonical divisor KS on S is trivial, i.e. KS ∼ 0. Throughout this
thesis we will write S to be a K3 surface, and X will be a variety/scheme.

It should be noted, that Weil’s definition of a K3 surface was different
from the standard definition used nowadays. He defined it in the following
way: A surface is K3 if its underlying differentiable structure was that of
a quartic surface in P3. Seiberg-Witten theory shows that any compact
complex surface diffeomorphic to a quartic is a K3 surface. The set of K3
surfaces over a field with characteristic 0 is a 20-dimensional family8, all
diffeomorphic to one another.

The family of K3 surfaces having k or more divisors independent in
homology forms a dense countable union of subvarities of dimension 20− k

in the family of all K3s; in particular, on the generic algebraic K3
surface all divisors are homologous to multiples of the hyperplane class.

A singularK3 surface is an algebraicK3 surface whose Picard rank equals the
maximum possible number 20. The betti numbers of K3s are 1, 0, 22, 0 and
1. All complex K3 surfaces are diffeomorphic, so they have the same betti
numbers. We can define the Hodge numbers of a space X as the dimension
of the Dolbeault cohomology groups9

hp,q(X) = dimHp,q(X)

Using the properties of a K3 surface S, we can easily find all hp,q(S)s for
0 ≤ p, q ≤ 2 (see [Asp96, Section 2.1]). Hence it gives the characteristic
Hodge diamond,

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h2,1 h1,2

h2,2

=

1
0 0

1 20 1
0 0

1

7In this thesis we will be concerned with K3 surfaces in characteristic 0. For K3
surfaces in positive characteristic, see for example the work of M. Artin [Art74].

8In positive characteristic, the family of K3 surfaces are 22-dimensional. A K3 surfaces
with Picard rank 22 is called supersingular.

9Dolbeault cohomology is the analogue of de Rham cohomology for complex manifolds.
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1.3 Basic Definitions 15

Notice that we can read of the betti number, sum adding the numbers in
each row. In higher dimensions, K3 surfaces can be generalized in two ways;
namely as Calabi-Yau manifolds or irreducible symplectic manifolds (i.e. hy-
perkähler manifolds).
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Chapter 2

General Knowledge

We will concider this chapter and the next as an introduction to this thesis,
and should be understandable for anyone who has taken a course in commu-
tative algebra and basic algebraic geometry. The main references from this
chapter are from [Har77], [Per00] and [Mil96].

2.1 Geometry on a Surface

Let X be a surface containing the curves C,D. Then we define the intersec-
tion number C.D to be the following: For a point P ∈ C∩D the intersection
multiplicity (C.D)P of C and D at P is defined to be the length of the
OP -module OP/(f, g), where C = V (f) and D = V (g). Hence,

C.D =
∑

P∈C∩D

lengthOP/(f, g).

We say that C and D meet transversally at P if the ideal generated by the
local equations g, f = 0 is maximal in the local ring OP . For example, if
C,D are curves meeting transversally in s points, then clearly C.D = s.
Linear equivalence is an important concept when we work with divisors. C
is linearly equivalent to D, C ∼ D, if C −D is a principal divisor, which is
denoted as the zero divisor, see [Har77, p.131].

If D1, D2 ≥ 0 are effective divisors with no common components, then
each local contribution (D1.D2)P is the dimension of a vectorspace, therefore
D1.D2 ≥ 0. If equality occurs, D1.D2 = 0, they are disjoint.

The study of divisors on varieties is closely related to the study of sheaves
on varieties. If D is a divisor on a variety X, then we denote the sheaf

17



18 General Knowledge

associated to D as OX(D). These sheaves are also called divisorial sheaves.
They are defined in terms of discrete valuations. Let D =

∑
nΓΓ be a divisor

on X and let U ⊂ X, then we define

Γ(U,OX(±D)) = {f ∈ k(X)|vΓ(f) ≥ ∓nΓ for all Γ such that Γ ∩ U 6= ∅},

where k(X) is the field of rational functions on X. For example, the sheaf
OX(−D), means that the sections over an open set U in X is just rational
functions which are defined on U and which vanish at every point Γ with
multiplicity at least nΓ. Note that if the nΓ ≥ 0 this implies that f ∈
Γ(U,OX).

When we study curves we are very often dealing with an invariant called
the genus. There are two (different) kinds of genera, the arithmetic genus
and the geometric genus. The arithmetic genus of a curve C is defined as
pa(C) = h1(COC). The geometric genus is defined in the following way: If
C is an irreducible projective curve, let π : C ′ −→ C be its normalization or
desingularization1. Then the geometric genus of a curve C, denoted pg(C)
or g(C), is defined as the arithmetic genus of C ′. Their relation is given in
the following proposition.

Proposition 2.1. Let C be an irreducible curve, possibly singular, on a
surface S, and π : C ′ −→ C its normalization. Then

pa(C) = pg(C
′) +

∑
Pi∈Sing(C)

δ(Pi),

where δ(Pi) > 0 are numerical invariants of the singularities of C.

Proof. See [Mil96]

Remark 2.2. Note that if C is a nonsingular curve, then the arithmetic genus
and the geometric genus are the same, and the arithmetic genus is always
greater than or equal to the geometric genus.

In this thesis we work with smooth curves, so we will write g for the genus
of a curve, unless otherwise spesified.

1π : C ′ −→ C is a normalization of the irreducible projective curve C if C ′ is a smooth
projective curve and the morphism π is finite and birational.

18



2.2 Linear Systems and Very Ample Divisors 19

2.2 Linear Systems and Very Ample Divisors

Definition 2.3. Let D be a divisor on a projective variety X, with OX(D) 6=
0. A complete linear system |D| is the projective space P∗(OX(D)) that
parametrices effective divisors D′ ≥ 0 linearly equivalent to D.

For example, consider a special case, where the parameterspace is the
projective line, P1. We then call the complete linear system of divisors for
a pencil. A net ( resp.web) is a special case of a linear system of divisors
where the parameterspace is the projective plane (resp. the 3 dimensional
projective space).

Definition 2.4. A linear system on a projective variety X is a subset of a
complete linear system |D| which is a linear subspace for the projective space
structure of |D|.

This means that a linear system corresponds to the sub-vectorspace of
H0(X,OX(D)). More general, a pencil is a linear system of dimension 1. A
net and a web are a linear systems of dimension 2 and 3, respectively.

Remark 2.5. Let |D| is a linear system. We know (cf. [Har77]) that the
elements in this linear system is in one-to-one correspondence with the space
(H0(X,OX(D))−{0})/k∗, where k is as usual an algebraically closed field and
OX(D) is the invertible sheaf associated to D. Very often we are interested in
the dimension of a linear system. We see, by the one-to-one correspondance,
that

dimk|D| = dimk((H
0(X,OX(D))− {0})/k∗) = h0(X,OX(D))− 1.

Example 2.6. let |OP2(1)| be the linear system of all curves of degree 1 in
the projective plane. Then the dimension of this linear system is

dimk|OP2(1)| = h0(P2,OP2(1))− 1 =

(
1 + 2

2

)
− 1 = 2,

so this linear system is a net.

The linear system |D| may have a subscheme contained in every member
of |D|. We call these subschemes base points, and the set of these base points
is called a base locus, denoted Bs|D|. A linear system is base point free if it has
no base points. For an irreducible curve C, C2 is called its selfintersection.

19



20 General Knowledge

If C moves in a linear system without fixed components, then C ∼ C ′, so we
define its selfintersection as C2 = C.C ′ ≥ 0. In many cases it happens that
the selfintersection is negative, C2 < 0.

Proposition 2.7. If D1, D2 ≥ 0 are effective divisors on a surface X and
D1.D2 < 0, then D1 and D2 have at least one common component C, with
C2 < 0.

Divisors on surfaces which provides embeddings and base point free linear
systems are fundamental in understanding the geometry on a surface.

Definition 2.8. A divisor D is nef on a surface X if D.Γ ≥ 0 for every
curve Γ ⊂ X. A divisor D on a K3 surface S is big if D2 > 0.

Linear systems are of special interest, when they provide embeddings into
a projective space.

Definition 2.9. A line bundle OX(D) on a variety X for some divisor D is
very ample if it is isomorphic to OX(1) for some closed immersion of X in
a projective space. It is ample if for any coherent sheaf F on X, the sheaf
F ⊗OX(D)⊗n is generated by global sections for n sufficiently large.

For divisors on curves we have the well-known result.

Proposition 2.10. ([Har77, Proposition 3.1]) Let D be a divisor on a curve
C. Then:

i) the linear system |D| has no base points if and only if for every point
P ∈ C,

dim |D − P | = dim |D| − 1,

ii) D is very ample if and only if for every two points P,Q ∈ C(including
the case P = Q),

dim |D − P −Q| = dim |D| − 2.

Combining this theorem with the Riemann-Roch formula for curves, it is
easy to see that any divisor on a curve of high degree is in fact very ample.

Corollary 2.11. If C is a smooth curve of genus g, any line bundle of degree
≥ 2g+1 on C is very ample. Moreover, for curves with genus g = 0 or g = 1,
the converse is also true.

20



2.3 Two Vanishing Theorems 21

Proof. See [Har77, Corollary 3.2].

Theorem 2.12. (Hodge Index Theorem). Let H be a divisor on the surface
X with H2 > 0, and suppose that D is a divisor, with D.H = 0 and D � 0,
then D2 ≤ 0.

Proof. See ([BPVdV84], IV, 2.15).

Remark 2.13. Why is the previous theorem called an index theorem? The
reason is as follows (cf. [Har77]):
Let Picn(X) be the subgroup of divisor classes which are numerically equiv-
alent to zero, and let Num(X) = Pic(X)/Picn(X). Then the intersection
pairing induces a nondegenerate bilinear mapping

Num(X)× Num(X)→ Z.

The Nèron-Severi Theorem says that the group of divisors modulo algebraic
equivalence is a finitely generated abelian group. Since Num(X) is a quotient
group of the Nèron-Severi group, it is finitely generated, and therefore free,
since it is torsion free. We can consider the vector space Num(X)⊗Z R over
R, and the induced bilinear form. In the paper of J. J. Sylvester [Syl89],
it is shown that such a bilinear form can be diagonalized with ±1’s on the
diagonal. Moreover, it is also shown that the number of +1’s and the number
of −1’s are invariant of the bilinear form. The difference of these to numbers
called signature or index of the bilinear form. So Theorem 2.12 is called an
index theorem, because the diagonalized intersection pairing has only one
+1, which correspond to a real multiple of H, and all the rest are −1’s.

There is a consequence (cf. [Mil96, Chapter 3]) of the Hodge Index the-
orem, which can be very useful in calculations. If D and C are divisors and
(λC + γD)2 > 0 for some real numbers λ, γ ∈ R, the determinant

det

∣∣∣∣ C2 D.C
C.D D2

∣∣∣∣ ≤ 0,

with equality if and only if nonzero rational linear combination is numerical
linear equivalent to zero, i.e. αC + βD ∼ 0, with α, β ∈ Q.

2.3 Two Vanishing Theorems

In this section we state two vanishing theorems, which we will use in Chapter
6 and Chapter 7.

21



22 General Knowledge

Theorem 2.14. (Kodaira Vanishing) Let H be an ample divisor on a nonsin-
gular n-fold X over a field of characteristic zero, then H i(X,OX(KX+H)) =
0 for all i > 0.

If the assumptions in the Kodaira Vanishing theorem are satisfied, then
one can observe that the dual Hj(X,OX(−H)) = 0 for all j < n. Another
vanishing theorem, is that of Kawamata-Viehweg.

Theorem 2.15. (Kawamata-Viehweg Vanishing) Let L be a big and nef line
bundle on a projective surface X with canonical divisor KX , then H i(X,OX(L+
KX)) = 0 for all i ≥ 1.

2.4 Important Exact Sequences

When we study geometry on varieties, sheaf cofomology is a very important
tool and in this section we will state some standard exact sequences we
will use frequently. Let X be a nonsingular n-fold and Y a codimension 1
subvariety Y ⊂ X. Then we have a natural short exact sequence

0 −→ IY/X −→ OX −→ OY −→ 0, (2.4.1)

where the ideal sheaf IY = IY/X = OX(−Y ), is a line bundle on X. The
restriction of this sheaf is called the conormal bundle (NY/X)∨ on Y , which
can be written in many ways:

(NY/X)∨ = IY /I2
Y = IY ⊗OX

OY = OY (−Y ).

If we tensor the exact sequence (2.4.1) with the sheaf OX(Y ) we obtain the
short exact sequence

0 −→ OX −→ OX(Y ) −→ NY/X −→ 0, (2.4.2)

where NY/X = OY (Y ) = OX(Y )⊗OY is the normal bundle, which is a vector
bundle of rank r = codim(Y,X). If we have the situation, Y ⊆ X ⊆ Pr, we
have the following normal bundle sequence

0 −→ NY/X −→ NY/Pr −→ NX/Pr ⊗OY −→ 0. (2.4.3)

The following theorem is due to P. Griffiths and J. Harris in [GH83, p. 252]
and will be used to prove Proposition 7.4 in Chapter 7;

22
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Theorem 2.16. If C is a smooth curve on a smooth surface X ⊆ P 3, then
the bundle sequence (2.4.3) splits if and only if C is a complete intersection
with X.

The third exact sequence is

0 −→ TY −→ TX ⊗OY −→ NY/X −→ 0, (2.4.4)

where TY = (ΩY/k)
∨ called the tangent bundle2. We also have a very impor-

tant formula, called the adjunction formula,

KY = (KX + Y )|Y .

Proposition 2.17. If C is a nonsingular curve of genus g on the surface X,
and if KX is the canonical divisor on X, then

2pa(C)− 2 = C.(C +KX). (2.4.5)

Proof. See [Har77, V, Proposition 1.5].

Remark 2.18. When C is an irreducible smooth curve on a K3 surface S, it
is very easy to calculate its selfintersection. It is just 2pa(C)− 2, since KS is
trivial.

Example 2.19. Let C be a twisted quartic curve in P3. We want to calculate
its genus. Then by the adjunction formula (2.4.5), we have

2g − 2 = d(d− 4).

Since C is a curve of degree 4, this gives that g = 1, which is an elliptic
curve.

Example 2.20. Let S be a K3 surface. If

i) C ⊂ S is a rational curve, then C2 = −2.

ii) C ⊂ S is an elliptic curve, then C2 = 0.

2Notice that this is the dual of the canonical bundle on Y .
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Chapter 3

Geometry on K3 Surfaces

In this chapter we will look at some basic properties on K3 surfaces and we
will look at three very important invariants of curves. These invariants will
be important for us in Chapter 5, when we study curves in Pr as K3 sections.
In the last section we will look at some examples. Some of these examples
will be studied more closely in Chapter 7.

3.1 Basic Properties

A variety X ⊂ Pr is linearly normal or embedded by a complete linear system
if H0(Pr,OPr(1)) −→ H0(X,OX(1)) is surjective. This means that X is not
the linear projection of a variety spanning a higher dimensional X ⊂ Pr+1.
The following theorem shows an interesting property of K3 surfaces, i.e. all
smooth hyperplane sections are canonical curves. K3 surfaces are the only
family of surfaces that satisfy this property. The following result can be
found in Section 3.3 in [Mil96].

Theorem 3.1. Let S ⊂ Pr be a nonsingular surface. Then S is a K3 surface
embedded by a complete linear system if and only if one (every) nonsingular
hyperplane section is a canonical curve.

The next classical theorem is known for all algebraic geometers, and you
can find it almost all books in algebraic geometry. There is a more generalized
version of this theorem, which is known as Hirzebruch-Riemann-Roch (see
for example in [Har77, Appendix A]).
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26 Geometry on K3 Surfaces

Theorem 3.2. (Riemann-Roch) If D is any divisor on a surface X, then

χ(OX(D)) =
1

2
D.(D −KX) + χ(OX). (3.1.1)

Proof. See for example [Mil96] or [Har77].

Using the vanishing theorem of Grothendieck ([Har77, Theorem 2.7]), the
criteria for K3 surfaces and Serre duality, the Riemann-Roch formula (3.1.1)
becomes very simple,

h0(OS(D))− h1(OS(D)) + h0(OS(−D)) =
1

2
D2 + 2 (3.1.2)

Corollary 3.3. ([Mil96, Corollary 3.7.1]) Let D be a divisor on a K3 surface
S. Then the following holds:

i) If D2 ≥ −2, then H0(OS(D)) 6= 0 or H0(OS(−D)) 6= 0.

ii) If D2 ≥ 0, then D ∼ 0, or h0(OS(D)) ≥ 2, or h0(OS(−D)) ≥ 2.

iii) If D is an effective divisor on S with h0(OS(D)) = 1, then D
′2 ≤ −2

for every divisor D′ with 0 < D′ ≤ D, and in particular D is a sum of
−2-curves with D2 ≤ −2.

Proposition 3.4. Let E1 and E2 be divisors on a K3 surface S, and suppose
E2

1 > 0. Then

E2
1 .E

2
2 ≤ (E1.E2)2 with equality if and only if (E1.E2)E1 ∼ E2

1E2

Proof. This follows from the Hodge Index Theorem above and [Fri98, Chap-
ter 1, Exercise 10] and using that numeric equivalence and linear equivalence
are the same for divisors on a K3 surface.

3.2 Three Important Invariants

In this section we will discuss three invariants of curves. These invariants
will give us information about the curves on K3 surfaces later on.

Let C be a smooth irreducible curve of genus g ≥ 2. We denote by grd a
linear system on C of dimension r and degree d.
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3.2 Three Important Invariants 27

First we will say something about the motivation for defining the Clifford
index and the gonality. It is natural to start with Clifford’s theorem. If D is
a nonspecial divisor on a curve, then we can find dim|C| exactly as a function
of the degree of D by the Riemann-Roch theorem for curves. But when D is
a special divisor, dim|D| does not depend only on the degree of D. Therefore
it is useful to have a bound on dim|D|, and Clifford’s theorem gives us the
answer.

Theorem 3.5. (Clifford’s theorem) Let D be an effective special divisor on
the curve C. Then

dim |D| ≤ 1

2
degD. (3.2.1)

Furthermore, equality occurs if and only if either D = 0 or D = KC or C is
hyperelliptic and D is multiple of the unique g1

2 on C.

Proof. See [Har77, Theorem 5.4] or [SD73, Theorem 1.4].

Using elementary algebraic manipulations of (3.2.1) and the fact that
dim |C| = h0(OC − 1), the formula for the Clifford index is clear.

Definition 3.6. Let C be a curve. Then we define the Clifford index of a
smooth irreducible curve C of genus g ≥ 4 as

Cliff(C) := min{Cliff(D)|D ∈ Div(C), h0(OC(D)) ≥ 2, h1(OC(D)) ≥ 2},

where for any divisor D on C, we have

Cliff(D) = deg(D)− 2(h0(OC(D))− 1) = g + 1− h0(OC(D))− h1(OC(D)).

Moreover, ifD is a divisor on C satisfying h0(OC(D) ≥ 2 and h1(OC(D)) ≥ 2,
then one says that D contributes to the Clifford index of C. In addition, one
says that D computes the Clifford index if Cliff(C) = Cliff(OC(D)).

Notice that the two formulas for the Clifford index for the divisor D are
related by the Riemann-Roch theorem.

Remark 3.7. If the genus of a curve is less than 4, then there are no line
bundles OC(D) with h0(OC(D)) ≥ 2 and h1(OC(D)) ≥ 2. In this situation
we say that a nonhyperelliptic curve of genus 3 has Clifford index 1, while
any hyperelliptic curve of genus ≤ 3 has Clifford index 0. Thus, by Clifford’s
theorem, Cliff(C) ≥ 0 and Cliff(C) = 0 if and only if C is hyperelliptic or
g ≤ 1.

27



28 Geometry on K3 Surfaces

It is known from Brill-Noether Theory that a general curve of genus g
possesses a line bundle L with h0(L) ≥ h0 and h1(L) > h1 if and only if
h0h1 ≤ g, [ACGH]. Then it follows that a general curve has Clifford index
b(g − 1)/2c. Geometrically, the Clifford index measures the expectation of
non-trivial divisors on a curve, in other words, it measures how far a curve
is from being hyperelliptic. The smaller Cliff(C) is, the better chance we
can find divisors which have many sections for their degree. By Clifford’s
theorem and the existence theorem of special divisors ([LK72], [Kem71] or
[GH80]), Cliff(C) is bounded by 0 ≤ Cliff(C) ≤ g−1

2
. By Serre duality, we

also see that
Cliff(OC(D)) = Cliff(OC(−D)⊗ ωC).

Example 3.8. Let D be divisor on a curve C such that the line bundle
OC(D) is nonspecial, that is, h1(OC(D)) = 0. Then

Cliff(D) = deg(D)− 2(h0(OC(D))− 1) = deg(D)− 2(deg(D) + 1− g − 1)

= 2g − deg(D).

We see that the Clifford index only depends on the degree of OC(D), as
we expected by our discussion of nonspecial divisors just before Clifford’s
Theorem above.

Definition 3.9. We define the gonality1 of a curve C as

gon(C) := min{k ∈ Z+|C has a g1
k, but no g1

k−1s}.

The gonality of a curve measures how rational a curve is, that is, the
minimum degree of the map φ : C → P1. An upper bound on the Clifford
index is

Cliff(C) = min{Cliff(D)}
= min{deg(D)− 2(h0(OC(D)− 1))}
≤ gon(C)− 2(h0(OC(D))− 1)

≤ gon(C)− 2,

since h0(OC(D)) ≥ 2, by the definition of Clifford index. On the other
hand, M. Coppens and G. Martens showed in the paper ([CM91]) that

1The name gonality, comes from the habit of calling a curve with a tree-to-one map to
P1 ”trigonal”.
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Cliff(C) ≥ gon(C) − 3. This means that there is a close relationship be-
tween these two invariants. This is not surprising, because rational curves
are not that different from hyperelliptic curves. Curves that satisfies the
equality, gon(C) = Cliff(C) + 3, are called exceptional curves.

It is known that for a fixed genus, curves of any possible gonality occur.
Ballico proved [Bal86] that this also holds for the Clifford index.

While the gonality tells us something about the minimal degree if a g1
k,

it is natural to define a measure of the minimal dimension of such a linear
system.

Definition 3.10. The third invariant of a curve is the Clifford dimension of
C defined as

Cliff-dim(C) := min{r ≥ 1|∃ grk on C with

k ≤ g − 1, such that k − 2r = Cliff(C)}.

From this definition ,it is easy to see that a curve C is (Cliff(C)+2)-gonal
if and only if its Clifford dimension is 1. Therefore, the exceptional curves
have Clifford dimension ≥ 2.

Example 3.11. It is difficult to construct examples of exceptional curves.
Here is an example of curves with Clifford dimension 2 and 3.

i) Smooth plane curves of degree d ≥ 5 are precisely the curves of Clifford
dimension 2. Moreover, any smooth plane curve has gonality d−1, and
since deg(OC(1)) = d and h0(C,OC(1)) = 3, we see that Cliff(C) =
d − 4 = gon(C) − 3. We only have to check wether h1(C,OC(1)) ≥ 2.
By the Riemann-Roch theorem and that the genus of plane curves are
given by

g =
(d− 1)(d− 2)

2
,

we get

h0(C,OC(1)) = 3 = d+ 1− g(C) + h1(C,OC(1))

= d+ 1− 1

2
(d− 1)(d− 2) + h1(C,OC(1)).

This implies that h1(C,OC(1)) = 1
2
d2 − 5

2
d + 3, which is exactly ≥

2 when d ≥ 5. The case d = 1 we disgard. The converse follows
from [ELMS89, Lemma 1.1], stating that any divisor A computing the
Clifford dimension is very ample if h0(C,OC(A)) ≥ 3.
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30 Geometry on K3 Surfaces

ii) Curves of Clifford dimension 3 occur only in genus 10 as complete
intersections of two cubic surfaces in P3.

It is conjectured [ELMS89] that curves of Clifford dimension ≥ 3 are
very rare. In fact, the statement says that there is only one pair (d, g) =
(4r − 3, 4r − 2) for any given Clifford dimension ≥ 3, where g = g(C) and
d = deg(A) where A computes Cliff(C).

In the next section we will look at some well-known conjectures concerning
exceptional curves, the Clifford index and gonality, and we will see how they
have been tested on K3 surfaces.

3.3 Conjectures

Let us recall the well-known conjecture in [ELMS89].

Conjecture 3.12. (Eisenbud, Lange, Martens and Shreyer) Let C
be a smooth curve of Clifford dimension r ≥ 3. Then:

(a) C has a unique genus g = 4r − 2 and Clifford index c = 2r − 3;

(b) C has a unique line bundle A computing c(and degA = g − 1);

(c) A2 ' ωC and A embeds C as an arithmetically Cohen-Macaulay curve
in Pr;

(d) C is 2r-gonal, and there is one-dimensional family of pencils of degree
2r, all of the form |A−B|, where B is a divisor of 2r − 3 point of C.

The conjecture above is known as the ELMS conjecture. In the paper
[ELMS89], the conjecture is proved for r ≤ 9, and in general it is proved that
if C satisfies (a), then it also satisfies (b)-(d). In the same paper ([ELMS89,
Theorem 4.3]) the authors constructed an infinte series of examples of excep-
tional curves lying on K3 surfaces, which are known as the ELMS examples.
The interesting thing is that the line bundles in these cases are not ample.
Knutsen [Knu09] made the following generalization of these examples.

Example 3.13. (The Generalized ELMS Examples) Let L be a line
bundle on a K3 surface S such that L ∼ 2D+Γ with D and Γ smooth curves
satifying D2 ≥ 2, Γ2 = −2 and Γ.D = 1. Assume furthermore that there is
no line bundle B on S satisfying 0 ≤ B2 ≤ D2 − 1 and 0 < B.L−B2 ≤ D2.
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Then |L| is base point free and all smooth curves in |L| are exceptional,
of genus g = 2D2 + 2 ≥ 6, Clifford index c = D2 − 1 = g−4

2
and Clifford

dimension r = 1
2
D2 +1. Moreover, for any smooth curve C ∈ |L| the Clifford

index is computed only by OC(D).

The curves in the generalized ELMS examples have dimW 1
k (C) = 1 and

ρ(g, k, 1) = 0, where k = gon(C), W 1
k (C) is the scheme which parametrices

line bundles D ∈ Pic1(C) with h0(C,OC(D)) ≥ 2 and ρ(g, k, 1) = g −
2(g − k + 1) is a number which occurs in Brill-Noether theory2 and in this
case (r = 1), the Brill-Noether Theorem (cf. [ACH85]) says that when this
number is negative, the general curve has no pencils.

For many years, mathematicians have tried to find out whether excep-
tional linear systems on a curve on certain surface propagate to the members
of |C|. For K3 surfaces, this have been a hot topic. Here is a short résumé:

Saint-Donat proved [SD74] that C posseses a g1
2 and a g1

3 if and only
if every smooth curve in |C| does. Miles Reid [Rei76] extended this result
to g1

ds. Harris and Mumford conjectured, which is unpublished, that the
gonality of linearly equivalent curves does not change. In 1989 this was
proven to be false, by Donagi and Morrison [DM89]. They constructed the
following famous counterexample.

Example 3.14. /The Morrison-Donagi example) Let π : S → P2 be
a K3 surface of genus 2 which is a double cover of P2 branched a long a
smooth sextic, and let L := π∗(OP2(3)). The arithmetic genus of the curve
in |L| is 10. The smooth curves in the codimension one linear subspace
|π∗(H0(P2,OP2(3)))| ⊂ |L| are bielliptic, whence with gonality 4. On the
other hand the general curve in |L| is isomorphic to a smooth plane sextic
and therefore has gonality 5.

Remark 3.15. Knutsen proved ([Knu09, Theorem 1.2]) that when C is an
exceptional curve on a K3 surface S, then C is either a smooth plane sextic
belonging to the Donagi-Morrison example or the line bundle OS(C) as in
the generalized ELMS examples (Example 3.13). In particular, C satisfies
Conjecture 3.12.

Few years earlier, the Harris-Mumford conjecture was modified by Green
[Gre84b]. Now the conjecture says that all smooth curves in the same linear
system have the same Clifford index. This was proved in the paper [GL87]

2We will say more about Brill-Noether theory in Section 5.1.
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32 Geometry on K3 Surfaces

by Green and Lazarsfeld. Later on, Ciliberto and Pareschi proved [CP95]
that this is the only counterexample when the line bundle OS(C) is ample.
For K3 surfaces, the story ends in the paper of Knutsen [Knu09], who proved
the following theorem:

Theorem 3.16. Let S be a K3 surface and L a globally generated line bundle
on S. If the gonality of the smooth curves in |L| is not constant, then S and
|L| are as in the Donagi-Morrison example.

Example 3.17. Here are some examples of curves with known gonality.

i) The gonality is 1 for curves with genus g = 0, i.e. the rational curves.

ii) Curves with gonality 2 are hyperelliptic curves, including elliptic curves.
Hyperelliptic curves are for example birational to y2 = f2g+2(x) (see
[Mil96, p.65]), or equivalently it has a divisor class D with degD = 2
and dim|D| = 1, therefore a g1

2.

iii) The gonality of a generic curve is the floor function
⌊
g+3

2

⌋
.

For curves with genus 0, 1 or 2, the gonality is completely determined
by the curve’s genus. For curves with higher genera (≥ 3), this is not the
case and one must come up with other techniques to find it. We know
how to compute the gonality of curves attaining the Castelnuovo bound (see
[ACH85]) and the gonality of complete intersections in P3 (cf. [Bas96]):

Example 3.18. If C ⊆ P3 is a smooth complete intersection of type (a, b),
then gon(C) = ab− l, where l is the degree of a maximal linear divisor on C.

Green and Lazarfeld [GL85] published a conjecture about the gonality of
curves which are embedded of sufficiently high degree.

Conjecture 3.19. (The Gonality Conjecture) For any smooth curve
C of gonality k, every nonspecial globally generated line bundle L on C of
sufficiently high degree satisfies

Kh0(L)−k,1(C,L) = 0,

where Kh0(L)−k,1(C,L) denotes the (h0(L)−k, 1)-th Koszul cohomology group
of the line bundle L.
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This conjecture is now proven by Aprodu and Voisin [AV03a] for generic
curves with of genus g and gonality k, if g/3 < k < [g/2] + 2, and in some
further cases by the same authors [AV03b].

Another interesting conjecture is Green’s Conjecture. It predicts that
one can read off special linear series on an algebraic curve, by looking at
the syzygies of its canonical embedding. Green formulated this conjecture in
[Gre84a].

Conjecture 3.20. (Green’s Conjecture) If C is a smooth algebraic curve
of genus g, Ki,j(C,KC) denotes the (i, j)-th Koszul cohomology group of the
canonical bundle KC, then

Kp,2(C,KC) = 0, for all p < Cliff(C).

Many attempts have been made to settle this question, and some nice
results have been obtained ([Voi88] and [Sch86]). For K3 surfaces, C. Voisin
([Voi02] and [Voi03]) achieved a major breakthrough by showing that Green’s
Conjecture holds for smooth curves C lying on K3 surfaces S with Pic(S) =
ZC. Using Voisin’s work, as well as a degenerate form of [HR98], it has been
proved [Apr05] that Green’s conjecture holds for any curve C of genus g and
gonality gon(C) = k ≤ g+2

2
, that satisfies the linear growth condition

dimW 1
k+n ≤ n, for 0 ≤ n ≤ g − 2k + 2.

In the paper of M. Aprodu and G. Farkas [AF11], we get a complete solution3

to the Green’s Conjecture for smooth curves on arbitrary K3 surfaces. They
proved the following result;

Theorem 3.21. Green’s Conjecture holds for every smooth curve C lying on
an arbitrary K3 surface S.

In general, both Green’s Conjecture and the Gonality Conjecture are still
open problems today.

3Completely indenpendent, Nils Henry Rasmussen proved the Green’s Conjecture on
K3 surfaces in his PhD thesis almost at same time as Farkas and Aprodu. The proof was
not published, because it is basically the same as in [AF11].
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3.4 Examples

Example 3.22. We want to find the canonical sheaf of Pr. From [Har77,
Chapter II, Theorem 8.13] we have an exact sequence

0 −→ ΩPr/k −→ OPr(−1)r+1 −→ OPr −→ 0. (3.4.1)

Applying the exterior power ∧rΩPr/k to the exact sequence (3.4.1). We get
ωPr ∼= OPr(−r − 1).

We have already seen an example of a K3 surface, namely, S2 → P2, the
double covering of P2 branched along a smooth plane sextic4.

The first examples of K3 surfaces are the ones which are complete inter-
sections. One can show (see [Har77, Exercises II,8.4 and III,5.5] or [Mil96,
Chapter 3, Exercises 5 and 6]) that there are exactly three types of K3
complete intersections. In the following examples we take a look at these.

Example 3.23. (A hyperquartic in P3) Let S = S4 ⊂ P3 be a nonsingu-
lar quartic surface. By using Exercise II, 8.4 (e) in [Har77], we have that
the canonical sheaf on S is ωS ∼= OS. This means that any trivial divisor
KS in linear equavalence class corresponding to the canonical sheaf is zero.
Moreover, consider the exact sequence (2.4.1)

0 −→ OP3(−4) −→ OP3 −→ OS −→ 0.

From the long exact sequence of cohomology we have

. . . −→ H1(OP3) −→ H1(OS) −→ H2(OP3(−4)) −→ . . .

Now H2(OP3(−4)) = 0 and H1(OP3) = 0, by [Har77, Theorem 5.1]. There-
fore S is a K3 surface.

Example 3.24. (Ci of a hyperquadric and a hypercubic in P4) If we look at
the complete intersection S = S2,3 ⊂ P4. We find that the canonical sheaf
ωS ∼= OS, again by Exercise II, 8.4 (e) in [Har77], hence KS = 0. By the
exact sequence

0 −→ OP4(−5) −→ OP4 −→ OS −→ 0,

we obtain that H1(S,OS) = 0. Therefore S is a K3 surface.

4See the Donagi-Morrison example on page 31.

34



3.4 Examples 35

The same argument can be used to show that the complete intersection
of three hyperquadrics in P5, S2,2,2 ⊂ P5, is a K3 surface.

Until now, we have only looked at K3 surfaces living in P2, P3, P4 and
P5. K3 surfaces which lives in P6 and P7 are of a much more complicated
structure. First we define:

i) For a vector space V d of dimension d, we write G(r, V d) for the Grass-
mann variety of r-dimensional subspaces of V .

ii) The variety
∑10

12 ⊆ P15 is a 10-dimensional spinor variety5 of degree 12.
In addition, if V 10 is a 10-dimensional vector space with a nondegener-
ate second symmetric tensor λ. The

∑10
12 is one of the two components

of the subset of G(5, V 10) consisting of 5-dimensional totally isotropic6

quotient spaces.

Then the surfaces (1, 1, 1, 2) ∩ G(2, V 5) ⊆ P6 and (18) ∩
∑10

12 ⊂ P7 are both
K3 surfaces. Shigeru Mukai classified projective models of polarized7 K3
surfaces of low genera8.

We also have an example of a K3 surface of degree 4, which is a product
of two elliptic curves. E. Kummer constructed these surfaces in the 1860s.

Example 3.25. (cf. [SI77]) Let A be an abelian surface which is the product
of two smooth elliptic curves C1 and C2. A Kummer surface S = Km(A)
is the minimal non-singular model of the quotient surface A/τA of A by the
inverse automorphism τA (τA(z) = −z), which has the 16 singular points
corresponding to the points of order 2 of A. Let ui ( or u′j) (1 ≤ i ≤ 4)
be the 4 points of order 2 on the elliptic curve C1 ( or C2), we denote by
Eij (1 ≤ i, j ≤ 4) the non-singular rational curve on S corresponding to the
point (ui, u

′
j) of A. Moreover, we let Fi (or Gi) be the non-singular rational

curve on S, which is the image of ui × C2 (or C1 × u′j) under the natural
rational map α : A→ S.

5A Spinor variety is a projective variety, which is the set of all maximal totally isotropic
vector subspaces to a 2r-dimensional vectorspace V , [Ang11].

6A quotient f : V → V ′ is totally isotropic with respect to λ if f ⊗ f(λ) is zero on
V ′ ⊗ V .

7A pair (S,L) of a K3 surface S and a base point free line bundle L with L2 = 2g − 2
is called a polarized K3 surface of genus g.

8See [Muk95] or [JK04] for more classification of K3 surfaces.
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The Kummer surface S has to elliptic pencils Ψn : S → P1, which are
induced by the projections A→ Cn(n = 1, 2). Each Ψn has 4 singular fibres:

2Fi +
4∑
j=1

Eij ∼ F (1 ≤ i ≤ 4),

2Gj +
4∑
i=1

Eij ∼ G (1 ≤ j ≤ 4),

where F (or G) is a general fiber of Ψ1 (or Ψ2). The intersection numbers
between these curves are given as follows:

FG = 2, FEij = GEij = FiGj = 0, FGj = GFi = 1,

E2
ij = F 2

i = G2
i = −2, FkEij = δki, GkEij = δkj.

The configuration formed by the rational curves Eij, Fi and Gj is called the
double Kummer pencil on S = Km(C1 × C2).
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Chapter 4

Useful Results on K3 Surfaces

In this chapter we have collected some results we will use in the next chapters,
only Corollary 4.9 is new.

4.1 Existence Results

We will need the following theorem in Section 6.1, where we will show exis-
tence of an algebraic K3 surface with Picard rank 3.

Proposition 4.1. If ρ ≤ 10, then every even lattice of signature (1, ρ − 1)
occurs as the Nèron-Severi group of some algebraic K3 surface.

Proof. See [Mor84, Theorem 2.9 i)] or [Nik80].

Remark 4.2. Another approach to show existence of a K3 surface is to deform
one with Picard group of high rank to another one with Picard group of low
rank, using deformation theory [MM83].

The next theorem shows completely under what conditions on d, g and
r there exists a projective K3 surface with a smooth curve C with degree d
and genus g on it.

Theorem 4.3. ([Knu02, Theorem 1.1]) Let r ≥ 3, d > 0 and g ≥ 0 be
integers. Then there exists a K3 surface S of degree 2r− 2 in Pr containing
a smooth curve C of degree d and genus g if and only if

i) g = d2/4(r−1)+1 and there exists integers k,m ≥ 1 and (k,m) 6= (2, 1)
such that r − 1 = k2m and 2r − 2 divides kd,
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ii) d2/4(r − 1) < g < d2/4(r − 1) + 1 except in the following cases,

a) d ≡ ±1,±2 (mod 2r − 2),

b) d2 − 4(r − 1)(g − 1) = 1 and d ≡ r − 1± 1 (mod 2r − 2),

c) d2 − 4(r − 1)(g − 1) = r − 1 and d ≡ r − 1 (mod 2r − 2),

d) d2 − 4(r − 1)(g − 1) = 1 and d− 1 or d+ 1 divides 2r − 2.

iii) g = d2/4(r − 1) and d is not divisible by 2r − 2,

iv) g < d2/4(r − 1) and (d, g) 6= (2r − 1, r).

Furthermore, in case i) S can be chosen such that Pic(S) = Z2r−2
dk

C =
Z 1
k
H and in cases ii)-iv) such that Pic(S) = ZH ⊕ZC, where H is a hyper-

plane section of S.
If r ≥ 5, S can be chosen to be scheme- theoretically an intersection of

quadrics in cases i), iii) and iv), and also in case ii), except when d2− 4(r−
1)(g − 1) = 1 and 3d ≡ ±3(mod 2r − 2) or d2 − 4(r − 1)(g − 1) = 9 or
d ≡ ±3(mod 2r − 2), in which case S has to be a complete intersection of
both quadrics and cubics.

4.2 An Important Theorem from Saint-Donat

The second problem is that we will study K3 surfaces which are embedded
into a projective space. This means that we must show existence of a suitable
very ample divisor on S. The following lemma will be useful.

Lemma 4.4. ([SD74]) Let L be a nef line bundle on a K3 surface. Then

a) |L| is not base point free is and only if there exists curves E,Γ and an
integer k ≥ 2 such that

L ∼ kE + Γ, E2 = 0, , Γ2 = −2, , and E.Γ = 1.

In this case, every member of |L| is of the form E1 + . . .+Ek+Γ, where
Ei ∈ |E| for all i. Equivalently, L is not base point free if and only if
there is a divisor E satisfying E2 = 0 and E.L = 1.

b) L is very ample if and only if L2 ≥ 4 and

i) there is no divisor E such that E2 = 0, E.L = 1, 2,
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ii) there is no divisor E such that E2 = 2, L ∼ 2E, and

iii) there is no divisor E such that E2 = −2, E.L = 0,

Note that b) ii) is immediate if L is a part of a basis of Pic(S).

4.3 Numerical Conditions for Nonspecial

Linebundles on S

In this section we give numerical conditions for when a line bundle on a K3
surface is nonspecial. This will be used in Chapter 7, when we will study
smooth points in the Hilbert scheme.

Proposition 4.5. ([Knu02, Proposition 3.1]) Let l ≥ 1 be an integer. We
can find S and C as in Theorem 4.3 such that h1(C ′,OC′(l)) = 0 for all
C ′ ∈ |C| if and only if

d ≤ 2l(r − 1) or dl > (r − 1)l2 + g.

Remark 4.6. Note that this propsition only holds in the case where S has
the Picard group Pic(S) = ZH ⊕ZC. When we study K3 surfaces of Picard
rank 3 in Chapter 7 the proposition above does not hold, but we will make
some tricks so that it holds in some cases.

4.4 Results on the Three Invariants

Recall our discussion about constant Clifford index on page 31: M. Green
and R. Lazarsfeld [GL87] showed if L is a base point free line bundle on a
K3 surface S then Cliff(C) is constant for all smooth irreducible C ∈ |L| and
in addition they showed that if Cliff(C) < bg−1

2
c, then M on S such that

MC := M ⊗OC computes the Clifford index of C for all smooth irreducible
C ∈ |L|. Note also that since (L − M) ⊗ OC ∼= ωC ⊗ M−1

C , the result is
symmetric in M and L−M .

Lemma 4.7. ([Knu01, Lemma 8.3]) Let L be a base point free line bundle
on a K3 surface S with L2 = 2g − 2 ≥ 2, and let C be any smooth curve
C ∈ |L|. If Cliff(C) < bg−1

2
c, then there exists a smooth curve D on S

39



40 Useful Results on K3 Surfaces

satisfying 0 ≤ D2 ≤ Cliff(C) + 2, 2D2 ≤ D.L (either of the two inequalities
being an equality if and only if L ∼ 2D) and

Cliff(C) = Cliff(OS(D)⊗OC) = D.L−D2 − 2.

Lemma 4.8. Let L be a base point free line bundle on a K3 surface S with
L2 = 2g − 2 ≥ 2, and let C be any smooth curve C ∈ |L|. Define the family
of effective divisors on S by

A = {D ∈ Div(S)|D2 ≥ 0, 0 < C.D ≤ g − 1}.

If Cliff(C) < bg−1
2
c, then Cliff(C) = min{D.C − D2 − 2|D ∈ A } for all

C ∈ |L|. In particular, if C is not in the Donagi-Morrison example or the
generalized ELMS examples, then gon(C) = min{D.C −D2|D ∈ A }.

Proof. First, we must show that the smooth curve in Lemma 4.7 is an element
of the set A . D2 ≥ 0 is clearly satisfied. We are left to show thatD.C ≤ g−1.
By symmetry, we can assume M.L ≤ (L−M).L or equivalently 2M.L ≤ L2,
where M and L are the line bundles in [GL87] or see our discussion just before
Lemma 4.7. C and D are elements of |L| and |M |, respectively. Therefore,
2D.C ≤ C2 which is the same as D.C ≤ g − 1, so D is in A . Given an
effective divisor D ∈ A , then D must satisfy the three conditions D2 ≥ 0,
(C −D)2 ≥ 0 and C.D ≤ g − 1. We see that D2 ≥ 0, C.D ≤ g − 1 implies
(C −D)2 ≥ 0, i.e.

(C −D)2 = C2 − 2C.D +D2

≥ 2g − 2− 2(g − 1) = 0.

So the condition (C−D)2 ≥ 0 is not necessary. The Riemann-Roch theorem
gives that h0(OS(D)) ≥ 2 and h0(OS(C − D)) ≥ 2. Now Lemma 4.7 says
that Cliff(C) = D.C − D2 − 2 for some smooth curve D ∈ A , hence the
inequality

Cliff(C) ≥ min{D.C −D2 − 2|h0(OC(D)) ≥ 2, h1(OC(D)) ≥ 2}.

We want to show the other inequality. The standard exact sequence

0 −→ OS(D − C) −→ OS(D) −→ OS(D)⊗OC −→ 0. (4.4.1)

Since C ∈ |L| and D ∈ |M |, OS(L−M) ∼= OS(C −D). From the Riemann-
Roch theorem for curves, we have

h0(OS(D)⊗OC) = h1(OS(D)⊗OC) +D.C + 1− g, (4.4.2)
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and the long exact sequence of cohomology of (4.4.1) combined with the fact
that h1(OS(D − C)) = h1(OS(L−M)) = 0, by [Mar89, (2,3)], gives that

h0(OS(D)⊗OC) = h0(OS(D))

=
1

2
D2 + 2 + h1(OS(D))− h2(OC(D))

≥ 1

2
D2 + 2,

by Serre duality and that D is effective. Hence

Cliff(C) = Cliff(OS(D)⊗OC)

= deg(OS(D)⊗OC)− 2[h0(OS(D)⊗OC)− 1]

≤ C.D − 2(
1

2
D2 + 1)

= C.D −D2 − 2.

Since this is valid for all smooth curves C ∈ |L|, we get that Cliff(C) ≤
min{D.L−D2 − 2|h0(OC(D)) ≥ 2, h1(OC(D)) ≥ 2}, which means

Cliff(C) = min{D.C −D2 − 2|D ∈ A },

for any smooth curve C ∈ |L|. If C is not the Donagi-Morrison example or
the generalized ELMS examples, the gonality is constant within |L| and no
C ∈ |L| are exceptional, hence

gon(C) = Cliff(C) + 2 = min{D.C −D2|D ∈ A }.

In the next Corollary we wanted to express all exceptional curves satisfy-
ing Theorem 4.3 in terms of d, g and r. Due to the time limit of this thesis,
we was not able to classify all exceptional curves. But it can be useful if we
are working with K3s and want to eliminate the Donagi-Morrison example
and the generalized ELMS examples.

Corollary 4.9. If C is an exceptional curve of degree d and genus g satisfying
Theorem 4.3, then

d2 = (g − 1)(4r − 3),

with d odd and g even.
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42 Useful Results on K3 Surfaces

Proof. Suppose that C is an exceptional curve on a K3 surface, then C is
either the smooth plane sextic in the Donagi-Morrison example 3.14 or as in
the generalized ELMS example 3.13, by [Knu09, Theorem 1.2]. If C belongs
to the Donagi-Morrison example, it must be on the form C ∼ 3R, where
R ∈ |π∗OP2(1)|. But this cannot happen, because C is a basiselement of
Pic(S).

If C satisfies the generalized ELMS examples, then |C| is a base point free
linear system and all the smooth curves |C| are exceptional. The generalized
ELMS example says that C must be linear equivalent to a divisor on the
form 2D + Γ, where Γ is a rational curve satisfying D.Γ = 1, and D2 ≥ 0.
This implies that C.Γ = 2D.Γ + Γ2 = 0, hence

2g − 2 = C2 = C.(2D + Γ) = 2C.D,

so C.D = g − 1. Moreover, Γ ∈ Pic(S), we write Γ ∼ xH + yC. Γ2 =
Γ.(xH + yC) = xΓ.H = −2. H is very ample, so Γ.H > 0. This gives two
possibilities

i) x = −1 and Γ.H = 2,

ii) x = −2 and Γ.H = 1.

Consider the case i):
Γ ∼ −H + yC. To find y, we do the following:

2 = Γ.H = (−H + yC).H = −2n+ yd implies y =
2 + 2n

d
.

Hence Γ ∼ −H + 2n+2
d
C. Using that Γ.C = 0, we obtain that

Γ.C = (−H + yC).C

= −d+ (2g − 2)y

= 0,

which gives y = d
2g−2

. Equating the two expressions for y, we obtain

d2 = 4(g − 1)(n+ 1).

Consider case ii):
Γ ∼ −2H + yC, to find y, we do the same as above:

1 = Γ.H = (−2H + yC).H = −4n+ yd implies y =
1 + 4n

d
.
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Hence Γ ∼ −2H + 1+4n
d
C. On the other hand Γ.C = 0 implies that y = d

g−1
.

Equating and we obtain

d2 = (g − 1)(4n+ 1).

We will no show that we can eliminate the case where Γ ∼ −H + 2+2n
d
C.

We write D ∼ x′H + y′C for integers x′ and y′. D.Γ = (x′H + y′C).Γ =
x′H.Γ = 1, which implies that x′ = 1 and Γ.H = 1 is the only possibility.
Hence, the only divisor that can satisfy the generalized ELMS examples
is Γ ∼ −2H + 1+4n

d
C. To find the value of y′ we do the following: Let

D ∼ H + y′C, the C − Γ ∼ 2D ∼ 2H + 2y′C. Then on the one hand

C.2D = C.(C − Γ) = 2g − 2.

On the other hand

C.2D = C.(2H + 2y′C)

= 2d+ 4(g − 1)y′.

This implies that y′ = 1
2

(
1− d

g−1

)
. So D ∼ H + 1

2

(
1− d

g−1

)
C. One can

calculate very easliy that D.H = d+1
2

, using that d2 = (g − 1)(4n+ 1). This
means that d is odd and g even.

Remark 4.10. Notice that the exceptional curves occur, if any, only in situ-
ation iv) of Theorem 4.3.

4.5 Some Results From Kley

The last 4 results in this chapter can be found in the paper [Kle00]. We have
filled in some details in the proof the most important result of this section,
namely Lemma 4.14. It will be important for us in Chapter 7, when we study
smooth points in the Hilbert scheme. Let us look at the case S ↪→ Pr, where
S is a smooth K3 surface, C0 a smooth connected curve of genus g on S,
and OS(C0) is the divisorial sheaf of C0. Denote |OS(C0)| as the projective
space bundle P(Γ(S,OS(C0)).

Lemma 4.11. ([Kle00, Lemma 1.9]) For all C ∈ |OS(C0)| and m > 0:
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44 Useful Results on K3 Surfaces

i) h0(OC) = 1 and h1(OC) = g,

ii) h0(NC/S) = g and h1(NC/S) = 1, and

iii) If OC0(m) is nonspecial, then OC(m) is nonspecial.

Proposition 4.12. ([Kle00, Proposition 1.7]) Suppose S is projective: S ↪→
Pr. Then for all k

Hk−2(S,NS/Pr)
δ−→ Hk−1(S, TS)

c−→ Hk(S,OS)

is a complex, exact if Hk−1(S,OS(1)) = 0. The map δ is the connecting
homomorphism arising from

0 −→ TS −→ TPr ⊗OS −→ NS/Pr

and c is the Yoneda Pairing1 ×c1(OS(1)).

Let π : P −→ X be the associated projective space bundle to a line
bundle OS(C0) on X.

Proposition 4.13. ([Kle00, Proposition 1.8]) If X is a smooth projective
variety over C and D an effective divisor on X, then the square

Hk−1(X, TX)

Hk−1(µ)
��

×2πic1(L) // Hk(X,OX)

Hk−1(X,OS(C0)⊗OD)
δ // Hk(X,OX)

commutes for all k.

Lemma 4.14. ([Kle00, Lemma 1.10]). Let S be a K3 surface. Suppose that
OS(1) and OS(C0) are independent in Pic(S). Then for all C ∈ |OS(C0)|,
the composition

φ : H0(S,NS/Pr) −→ H0(C,NS/Pr ⊗OC) −→ H1(C,NC/S)

1Let F and G be OX -modules on a sheme X, then there is a δ-functorial pairing

Hr−i(X,F)× ExtiOX
(F ,G) −→ Hr(X,G),

called the Yoneda Pairing.
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of the restriction with the connecting homomorphism arising from the exact
sequence

0 −→ NC/S −→ NC/Pr −→ NS/Pr ⊗OC −→ 0, (4.5.1)

is surjective. Furthermore, the kernel kerφ is independent of C.

Proof. Combining the exact sequence (2.4.4) with (4.5.1), we obtain a com-
mutative diagram with exact rows,

0 // TS //

��

TPr ⊗OS //

��

NS/Pr //

��

0

0 // NC/S // NC/Pr // NS/Pr ⊗OC // 0

of OS-modules. This gives rise to a commutative diagram

H0(S,NS/Pr) δ′ //

��

H1(S, TS)
×c1(L) //

��

H2(S,OS)

H0(C,NC/Pr ⊗OC) // H1(C,NC/S) δ // H2(S,OS)

.

We see that the δ′ map is the connecting homomorphism of the sequence
(2.4.4) and δ is the connecting homomorphism of (4.5.1). The rightmost
square comes from Proposition 4.13. Now δ is an isomorphism, since

h2(S,OS) = h0(S,OS) = 1,

and h1(S,NC/S) = 1 by Lemma 4.11 ii). The top row is independent
of C, so is kerφ. To prove surjectivity, it is enough to show that the
composition (×c1(OS(C0))) ◦ δ′ is surjective. We do this by showing that
im(δ′) ( ker(×c1(OS(C0))). On K3 surfaces ωS ∼= OS and note that

Ext1
OS

(TS,OS) ∼= H1(S,OS ⊗ T ∨S ) ∼= H1(S,Ω1
S).

Serre duality on S states that the Yoneda pairing

H1(S, TS)×H1(S,Ω1
S) −→ H2(X,OS)

is non-degenerate. The maps ×c1(OS(C0)) and ×c1(OS(1)) are surjective
since OS(C0) and OS(1) are independent in Pic(S), hence

ker(×c1(OS(1))) 6= ker(×c1(OS(C0))).

The hyperplane section OS(1) is very ample, h1(S,OS(1)) = 0 by Kodaira
Vanishing theorem (Theorem 2.14). Hence, Proposition 4.12 gives
im(δ′) = ker(×c1(OS(1))).
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Chapter 5

The Gonality of Curves in Pr

5.1 Brill-Noether Theory and the Moduli Space

Mg

The most fundamental question of Brill-Noether theory is:

For which values of r and d does a
general curve of genus g possess a grd?

The answer to this question is the famous Brill-Noether Theorem1 which
asserts that when the Brill-Noether number

ρ(g, r, d) = g − (r + 1)(g − d+ r)

is negative, the general curve of genus g has no grd’s. If we think of the grd as
being given by an (r + 1)-dimensional subspace W of the space of sections
H0(C,L) of some degree d line bundle L on C, then the nonnegativity of
the Brill-Noether number says that the dimension of the codomain of the
cup-product map (or Petri map)

µ0,W : W ⊗H0(C, ωC ⊗ L∨) −→ H0(C, ωC)

is greater than or equal to its domain. This leads us to the following state-
ment: If a smooth curve C possesses a grd with negative Brill-Noether number,
then the curve is special in the sense of moduli.

1See Theorem 2.3, Chapter V in [ACH85].
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48 The Gonality of Curves in Pr

For genera g ≥ 3 we consider the stratification of the moduli space Mg

of smooth curves of the genus g given by gonality:

M 1
g,2 ⊆M 1

g,3 ⊆ . . .M 1
g,k ⊆ . . . ⊆Mg,

where

M 1
g,k := {|C| ∈Mg|C has a g1

k}.

It is well-known that the k-gonal locus M 1
g,k is an irreducible variety of di-

mension 2g+2k−5 when k ≤ g+2
2

and when k ≥ g+3
2

one has that Mg,k = M

(see [AC81]). As we have seen earlier, the number bg+3
2
c is the gonality of a

generic curve of genus g.
M 1

g,d can easily be generalized. For positive integers g, d and r we define
M r

g,d in the obvious way

M r
g,d = {|C| ∈Mg|C carries a grd},

which is known as the Brill-Noether locus. When

ρ(g, r, d) = g − (r + 1)(g − d+ r)

is negative, the Brill-Noether locus M r
g,d is a proper subvariety of Mg. We

want to know the gonality of a point [C] ∈ M r
g,d, which is equivalent to

knowing the gonality of a general smooth curve C ⊆ Pr of genus g and degree
d. The geometry of the loci M r

g,d is not easy to work with, because there are
many components and some of them are nonreduced and/or not of expected
dimension. In this section we will calculate the gonality of components of
M r

g,d which are generically smooth.

5.2 The Expected Gonality

From Lemma 4.8 we saw that the gonality of a smooth curve C ⊆ Pr, where
C is a K3 section, can be calculated using the formula

gon(C) = min
{
D.C −D2|D2 ≥ 0, 0 ≤ D.C ≤ g − 1

}
,

for D ∈ Pic(S), unless we are in the Donagi-Morrison example or in the
generalized ELMS examples. If Pic(S) = ZH ⊕ ZC, note that D can be
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written as mH + nC, therefore the gonality can be calculated numerically,
by finding the minimum

min{f(m,n) := −(2r − 2)m2 −m(d− 2nd) + (n− n2)(2g − 2)}, (5.2.1)

bounded by D2 ≥ 0 and C.D ≤ g − 1. Quoting G. Martens in [Mar06, p.
125]:

In general, one expects that |H|C | computes Cliff(C) for C ⊂ S
in Lemma 3.1; it seems, however, difficult to make this precise.

This means that he expects that it is the hyperplane section which gives the
gonality in general. G. Farkas shows [Far01, Theorem 3] that it is indeed so,
under the assumptions that the K3 surface does not contain −2-curves and
curves with genus 1. That is, saying that 0 and −1 cannot be represented
by the quadratic form

D2

2
= (r − 1)m2 +mnd+ n2(g − 1), for integers m,n ∈ Z.

We see that D2

2
6= −1 when for instance r is odd, d is even and g is odd. A

necessary condition for D2 to represent 0 is that
√
d2 − 4(r − 1)(g − 1) is an

integer, which can easily been seen by solving the quadratic form above with
respect to m. Farkas call the number

min

{
d− 2r + 2,

⌊
g + 3

2

⌋}
(5.2.2)

the expected gonality, with good reasons, of a smooth nondegenerate curve
C ⊆ Pr of degree d and genus g. Notice that D ∼ H and D ∼ C − H,
gives the number d − 2r + 2, because if we insert m = 1, n = 0 and m =
−1, n = 1 respectively into formula for f(m,n) (5.2.1) obtain d − 2r + 2.
The last possibility can be dismissed, because it is not compatible with the
assumptions in [Far01, Theorem 3].

In the next section will show, in Example 5.2 below, that the formula for
the expected gonality does not hold in general. We will generalize Farkas’
result by simplifying an inequality and allow −2-curves and genus 1 curves.
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5.3 The Gonality of K3 Sections in Pr

This section is devoted to a generalization of Theorem 3 in [Far01]. We will
calculate the gonality of curves C ⊆ Pr of degree d and genus g when we
look the curves as sections of K3 surfaces.

Theorem 5.1. Let r ≥ 3, d ≥ r2 + r and g ≥ 0 be integers such that
ρ(g, r, d) < 0 and with d2 > 4(r − 1)g. Then there exists a smooth curve
C ⊆ Pr of degree d and genus g with (d, g) 6= (2r − 1, r) such that

gon(C) = min{Nr, d− 2r − 2, b(g + 3)/2c},

where

Nr = min{f(m,n)|n ∈ Z, 0 < |n| < r − 1

and md+ (2n− 1)(g − 1) ≤ 0},

and

m =

⌈
d2|n|

√
r − 1e+ ε− nd
2r − 2

⌉
,

ε is defined as

ε =

{
1 , if

√
r − 1 ∈ Z

0 , if
√
r − 1 /∈ Z

and f is given by the formula

f(m,n) = −(2r − 2)m2 +m(d− 2nd) + (n− n2)(2g − 2). (5.3.1)

Proof. By Theorem 4.3 there exists a smooth K3 surface S ⊆ Pr with
deg(S) = 2r − 2 and C ⊆ S a smooth curve of degree d and genus g with
d2 > 4(r − 1)g, unless (d, g) = (2r − 1, r), such that

Pic(S) = ZH ⊕ ZC,

where H is a hyperplane section. The Brill-Noether number ρ(g, r, d) < 0
together with the assumption d ≥ r2 + r gives

ρ(g, r, d) = g − (r + 1)(g − d+ r)

= −rg + (r + 1)d− (r2 + r)

≥ r(d− g),
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hence the boundary d ≤ g − 1. We will use this boundary only once in the
proof. Now we want to show that if gon(C) < b(g + 3)/2c, then gon(C) =
min{Nr, d− 2r + 2}. Define

α := min{D.C −D2|D ∈ A },

Note that the line bundle OC(1) contributes to the Clifford index, because
the assumption d ≤ g − 1 together with the Riemann-Roch theorem gives
h0(OC(1)) ≥ 2 and h1(OC(1)) ≥ 2. Now we want to prove that

α ≥ d− 2r − 2 or α ≥ Nr. (5.3.2)

We will derive three boundary conditions, which we will use to show (5.3.2).

Take D ∈ A such that D ∼ mH + nC, with m,n ∈ Z. The conditions
D2 ≥ 0, D.C ≤ g − 1, can be expressed as (r− 1)m2 +mnd+ n2(g − 1) ≥ 0
and md+ (2n− 1)(g − 1) ≤ 0, respectively.

Moreover, we know H is very ample and D is effective, thus D.H > 0.
We know that D2 ≥ 0, so if D2 = 0 we have that D.H cannot be equal to
1 and 2 by Lemma 4.4 b) (i), so D.H > 2 in this case. If D2 > 0, which
is an even number, thus (D.H)2 ≥ 4 by the Hodge Index theorem. Suppose
we have equality, (D.H)2 = H2.D2 = 4, then Proposition 3.4 tells us that
(D.H)H ∼ H2D. This gives that H ∼ 2D, which is impossible, by Lemma
4.4 b) (ii)2. We conclude that D.H > 2. On the other hand we have that
H.(C − D) < d − 2, which gives the inequality 2 < D.H < d − 2, using a
symmetry argument. We summarize the boundary conditions we will use to
show (5.3.2):

i) (r − 1)m2 +mnd+ n2(g − 1) ≥ 0,

ii) 2 < (2r − 2)m+ nd < d− 2

iii) md+ (2n− 1)(g − 1) ≤ 0.

The gonality of a canonical curve C lying on a K3 surface can be calculated
by using the equation we get from Lemma 4.8,

f(m,n) = D.C −D2 = −(2r − 2)m2 +m(d− 2nd) + (n− n2)(2g − 2).

2We could also see this directly, because H is a generator of Pic(S).
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We must show that for all D ∈ A , we have the following inequality

f(m,n) = D.C −D2 = −(2r − 2)m2 +m(d− 2nd) + (n− n2)(2g − 2)

≥ d− 2r + 2 or Nr. (5.3.3)

From i) we solve h(m) = (r − 1)m2 +mnd+ n2(g − 1) = 0 to obtain the
factorization

h(m) = (r − 1)(m+ an)(m+ bn), (5.3.4)

where

a =
d+

√
d2 − 4(r − 1)(g − 1)

2r − 2
and b =

d−
√
d2 − 4(r − 1)(g − 1)

2r − 2
.

We solve the problem numerically. To analyze the behavior of f(m,n), it
is natural to study the partial derivatives of f . Consider f(m,n) as a real
valued function of two variables. The partial derivative with respect to m
and n gives

∂f(m,n)

∂m
= −4(r − 1)m+ d(1− 2n) (5.3.5)

and
∂f(m,n)

∂n
= −2dm+ (1− 2n)(2g − 2). (5.3.6)

Now we can start to show the inequality (5.3.13). We will consider the cases
where n > 0 and n < 0, separately.

Case 1: n < 0. From (5.3.4) it follows that either m ≤ −bn or m ≥ −an.
If: m ≤ −bn. From ii), we obtain

2 < n(d− (2r − 2)b) < 0,

because n < 0 and

d− (2r − 2)b =
√
d2 − 4(r − 1)(g − 1) > 0,

thus a contradiction.
If: m ≥ −an. From iii), we have

m ≤ (g − 1)(1− 2n)

d
.
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If −an > (g − 1)(1 − 2n)/d we are done, because there are no m,n ∈ Z
satisfying i) ,ii) and iii), while in the other case, i.e., where

−an ≤ m ≤ (g − 1)(1− 2n)

d

one has the inequality

f(m,n) ≥ f(−an, n) =
d2 − 4(r − 1)(g − 1) + d

√
d2 − 4(r − 1)(g − 1)

2r − 2
(−n).

If
√
d2 − 4(g − 1)(r − 1) ≥ 2r − 2, we get that

f(m,n) ≥ f(−an, n) =
d2 − 4(r − 1)(g − 1) + d

√
d2 − 4(r − 1)(g − 1)

2r − 2
(−n)

≥ (2r − 2)2 + (2r − 2)d

2r − 2
(−n)

= (2r − 2 + d)(−n)

≥ d− 2r + 2.

From now on we consider the situation where√
d2 − 4(r − 1)(g − 1) < 2r − 2. (5.3.7)

Now we must look for what values of n we get f(m,n) ≥ d − 2r + 2 or Nr.
We see that if n ≤ −(r − 1) then

f(m,n) ≥ f(−an, n) =
d2 − 4(r − 1)(g − 1) + d

√
d2 − 4(r − 1)(g − 1)

2r − 2
(−n)

≥
d2 − 4(r − 1)(g − 1) + d

√
d2 − 4(r − 1)(g − 1)

2r − 2
(r − 1)

>
4(r − 1) + 2

√
(r − 1)d

2

= 2(r − 1) +
√

(r − 1)d > d− 2r + 2.

Here we have only used that d2 > 4(r − 1)g. We obtain from the inequality
m ≥ −an that

m ≥


(−n)d+

⌈
2(−n)

√
r−1
⌉

2r−2
, if
√
r − 1 /∈ Z

(−n)d+
⌈

2(−n)
√
r−1
⌉

+1

2r−2
, if
√
r − 1 ∈ Z.

53



54 The Gonality of Curves in Pr

To find the minimum, we must find how the function behave for different
values of m and n. Using iii), we obtain

m ≤ −(2n− 1)(g − 1)

d
. (5.3.8)

Insert (5.3.8) into the partial derivative of f with respect m (5.3.5) we get

∂f

∂m
≥ 4(r − 1)

[
−(2n− 1)(g − 1)

d

]
+ d(1− 2n)

=
−4(r − 1)(g − 1)(2n− 1) + d2(1− 2n)

d

=
(d2 + 4(r − 1)(g − 1))(1− 2n)

d
> 0,

since n < 0.
For fixed m we use (5.3.8) again,

∂f

∂n
≥ 2(2n− 1)(g − 1) + (1− 2n)(2g − 2)

= 0,

with equality if and only if D.C = g − 1. This means that the minimum in
the case n < 0 will be

min

{
f

(⌈
(−n)d+ 2(−n)

√
r − 1 + ε

2r − 2

⌉
, n

)
| − (r − 1) < n < 0

}
,

where ε = 0 if
√
r − 1 is not an integer and ε = 1 otherwise.

Case 2: n > 0. This situation we can treat in a similar manner. From
(5.3.4) we get that either m ≤ −an or m ≥ −bn.

If: m ≤ −an. From ii) we get that

2 < n(d− (2r − 2)a) < 0,

because n > 0 and

d− (2r − 2)a = −
√
d2 − 4(r − 1)(g − 1) < 0,
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so we have a contradiction.

If: m ≥ −bn. Let us first examine the behavior of f(m,n) when n > 0.
We must look at the partial derivatives (5.3.5) and (5.3.6). For the partial
derivative of f with respect m on the interval from ii) and iii)

max

{
2− nd
2r − 2

,−bn
}
< m < min

{
−(2n− 1)(g − 1)

d
,
(1− n)d− 2

2r − 2

}
,

(5.3.9)
the function f(m,n) is concave down. The maximum of this function when
n is fixed is at point where

m =
d(1− 2n)

4(r − 1)
. (5.3.10)

This means that the minimum value of f(m,n) are at the end points of the
interval (5.3.9). We can easily calculate the number

min

{
−(2n− 1)(g − 1)

d
,
(1− n)d− 2

2r − 2

}
. (5.3.11)

Both points are greater that m = d(1−2n)
4(r−1)

, i.e

d(1− 2n)

4(r − 1)
< −(2n− 1)(g − 1)

d
⇒ d2 − 4(r − 1)(g − 1) > 0,

which is of course true, by assumption and

d(1− 2n)

4(r − 1)
<

(1− n)d− 2

2r − 2
⇒ 4 < d,

which is also true by assumption. Now we just compare these to endpoints,
by using the fact that f is decreasing.

f

(
−(2n− 1)(g − 1)

d
, n

)
> f

(
(1− n)d− 2

2r − 2
, n

)
⇒ −(2n− 1)(g − 1)

d
<

(1− n)d− 2

2r − 2
.
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We calculate3:

f

(
−(2n− 1)(g − 1)

d
, n

)
− f

(
(1− n)d− 2

2r − 2
, n

)
=
g − 1

2

[
(2n− 1)2d

2 − 4(r − 1)(g − 1)

d2
+ 1

]
−
[
(n2 − n)

(
d2 − 4(r − 1)(g − 1)

2r − 2

)
+

2(1− n)d

2r − 2
− 4

2r − 2

]
≥ 1

2

[
(4(n2 − n) + 1)

d2 − 4(r − 1)(g − 1)

d
+ d

]
−
[
(n2 − n)

(
d2 − 4(r − 1)(g − 1)

2r − 2

)
+

2(1− n)d

2r − 2
− 4

2r − 2

]
= (n2 − n)

[
d2 − 4(r − 1)(g − 1)

2r − 2

]
+
d2 − 4(r − 1)(g − 1)

2d

+
d

2
− 2

2r − 2
+

2nd

2r − 2
+

4

2r − 2
> 0.

Notice that we used that d ≤ g − 1 and that f is decreasing. We use that
for any D ∈ A with D ∼ mH + nC,

f(m,n) ≥ min

{
f

(⌊
−(g − 1)(2n− 1)

d

⌋
, n

)
,max

{
f(d−bne, n), f

(⌈
2− nd
2r − 2

⌉
, n

)}}
.

(5.3.12)
Using that d ≤ g − 1 and d2 > 4(r − 1)g, we obtain

f

(⌊
−(g − 1)(2n− 1)

d

⌋
, n

)
≥f
(
−(g − 1)(2n− 1)

d
, n

)
=
g − 1

2

[
(2n− 1)2d

2 − 4(r − 1)(g − 1)

d2
+ 1

]
≥ d− 2r + 2.

Note that we have equality if and only if n = 1, m = −1 and d = g − 1.
Therefore this element can be dismissed from (5.3.12). Now we want to show
that if n ≥ r− 1 then f(m,n) ≥ d− 2r+ 2. In other words to show that the
set

C :=

{
f(d−bne, n), f

(⌈
2− nd
2r − 2

⌉
, n

)}
(5.3.13)

3One could calculate the difference of the left endpoints (5.3.11) directly, but we found
it easier this way.
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where f(m,n) could have elements smaller than d− 2r+ 2 is finite and have
r − 2 elements. We divide the problem into two cases:

a) when
√
d2 − 4(r − 1)(g − 1) > 2r − 2 and n ≥ r − 1,

b) when
√
d2 − 4(r − 1)(g − 1) ≤ 2r − 2 and n ≥ r − 1.

Consider the situation in a); First observe that

f(−bn, n) = n(2g − 2− bd) ≥ 2g − 2− bd

and

2g − 2− bd > d− 2r + 2⇔ 2r − 2 <
√
d2 − 4(r − 1)(g − 1) < d− 2r + 2.

We are left with the case where
√
d2 − 4(r − 1)(g − 1) ≥ d− 2r + 2.

f

(⌈
2− nd
2r − 2

⌉
, n

)
≥ f

(
2− nd
2r − 2

, n

)
=

(n2 − n)(d2 − 4(r − 1)(g − 1)) + 2d− 4

2r − 2

≥ r − 2

2
(d2 − 4(r − 1)(g − 1))2 +

d− 2

r − 1

≥ r − 2

2
(d− 2r + 2)2 +

d− 2

r − 1

> d− 2r + 2.

This is obvious when r ≥ 4. But when r = 3 get

1

2
(d− 4)2 +

d− 2

2
=

(d− 4)2 + d− 4

2
+ 1

= (d− 4)

[
d− 4

2
+

1

2

]
+ 1

≥ d− 4,

because d ≥ 12, so that d−4
2

+ 1
2
> 1. This shows case a).

Consider situation b);

max(C ) = f(d−bne, n),
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58 The Gonality of Curves in Pr

since
2− nd
2r − 2

<
n
√
d2 − 4(r − 1)(g − 1)− nd

2r − 2

and f(m,n) is increasing on
(

2−nd
2r−2

, d(1−2n)
4(r−1)

]
.

Now we will show that if n ≥ r − 1, then

f(d−bne, n) ≥f(−bn, n) =
d
√
d2 − 4(r − 1)(g − 1)− (d2 − 4(r − 1)(g − 1))

2r − 2
n

≥ d− 2r + 2.

A small calculation gives that

f(−bn, n) =
d
√
d2 − 4(r − 1)(g − 1)− (d2 − 4(r − 1)(g − 1))

2r − 2
n

≥
d
√
d2 − 4(r − 1)(g − 1)− (d2 − 4(r − 1)(g − 1))

2

=
1

2

[
d−

√
d2 − 4(r − 1)(g − 1)

]√
d2 − 4(r − 1)(g − 1)

(5.3.14)

Using that
2r − 2 >

√
d2 − 4(r − 1)(g − 1) > 2

√
r − 1,

we see that formula (5.3.14) is bigger than d− 2r + 2, i.e.,

f(−bn, n) ≥ 1

2
[d−

√
d2 − 4(r − 1)(g − 1)]

√
d2 − 4(r − 1)(g − 1)

>
1

2
[d− (2r − 2)] 2

√
r − 1

> d− 2r + 2,

since r ≥ 3. Now we have showed that the set (5.3.13) for which f(m,n) can
be less that d − 2r + 2 is finite and have r − 2 elements. We are now left
with the interval 0 < n < r − 1. We treat this case in the same way as we
did with n < 0-case. From the inequality m ≥ −bn we obtain

m ≥


⌈

2n
√
r−1
⌉
−nd

2r−2
, if
√
r − 1 /∈ Z⌈

2n
√
r−1
⌉

+1−nd
2r−2

, if
√
r − 1 ∈ Z.
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5.3 The Gonality of K3 Sections in Pr 59

As done before put ε = 0 if
√
r − 1 /∈ Z and ε = 1 if not.

The only case left is where n = 0, and since f(m, 0) = −(2r − 2)m2 + md.
Clearly f(m, 0) ≥ f(1, 0) = d − 2r + 2 for all m complying with i), ii) and
iii).

Now we must show that the candidates we have which can give lower
gonality than the expected gonality is in fact inside the boundaries i), ii), iii)
on p. 51.

i) is always fulfilled.
We show that ii) is fulfilled simultaneously for positive n and negative n.

We are done of we can show that

2|n|
√
r − 1 + ε− nd
2r + 2

+ 1,

satisfies ii). Insert the expression above into ii), we then get

2 < 2|n|
√
r − 1 + ε+ 2r − 2 < d− 2.

The first inequalty is obvious. To show the second inequality, we use
√
r − 1 <

r−1
2

, |n| < r − 1, ε is either 0 or 1 and the assumption d ≥ r2 + r, so

2|n|
√
r − 1 + ε+ 2r − 2 < (r − 1)2 + ε+ 2r − 2

≤ r2

< r2 + r − 2

≤ d− 2.

The third boundary condition may not be fulfilled for some d, g and r,
therefore we have to take this into account.

We will now see an example of a divisor on a K3 surface satisfying the
assumptions in the theorem above, which induces lower gonality than the
expected one.

Example 5.2. Let r = 3, d ≥ 12 and g ≥ 0 be integers and let C be the
smooth curve on a quartic K3 surface in P3. We allow rational and elliptic
curves. For example we look at the divisor D ∼ 8H − C, which lies on S.
This divisor must lie in the family of effective divisors given in Lemma 4.8.
From Theorem 5.1, we get⌈

d+ 3

4

⌉
= m implies 4m− 7 < d ≤ 4m− 3.
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Since m = 8, d can take the values 26, 27, 28 and 29. We must4 choose
d = 29. When r = 3, the inequality D2 ≥ 0 is

D2 = 2m2 +mnd+ n2(g − 1)

= −105 + g

≥ 0,

so we must have g ≥ 105. But the relation d2 > 8g gives

d2 = 841 > 8g ≥ 840,

So the only possibility is g = 105. Now we clearly see that D2 = 0 and

D.C = 8H.C − C2 = 8 · 29− 2 · 104 = 24 ≤ 104.

So D ∈ A . We have found that d = 29, g = 105. Now we use the standard
formula (5.3.1) for calculating gonality,

f(8,−1) = −4 · 82 + 8(29− 2(−1)29) + (−1− (−1)2)(2 · 105− 2)

= 24.

Comparing this number with the expected gonality (7.1.1), min{25, 54} = 25.
It is important to notice that this divisor is inside the boundary on page 51.
Thus, we have found a curve on a K3 surface which gives a number less than
the expected gonality.

There are many curves on a K3 surface, satisfying the assumptions in
theorem above, which gives that the number f(m,n) is less than the expected
gonality. Let us still be in P3 and with n = −1, as we did in the example
above. The following table shows development when m increases:

D ∼ mH − C d g f(m,−1) d− 4 bg+3
2
c

8H − C 29 105 24 25 54
9H − C 33 136 27 29 69
10H − C 37 171 30 33 87
11H − C 41 210 33 37 106

Note that the first divisor is the divisor in Example 5.2 and an easy calcula-
tion shows that the values of d, g and r satisfies the boundary conditions on
p. 51.

4An easy calculation shows that if d = 26, 27 or 28, then f(8,−1) > d− 4.
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Corollary 5.3. Let r = 3, 4, 5, d, g and f(m,n) be as in Theorem 5.1 and
let C be a smooth curve on a K3 surface S ⊆ Pr. Then

gon(C) = min

{
f

(⌈
d+ r

2r − 2

⌉
,−1

)
, f

(⌈
r − d
2r − 2

⌉
, 1

)
, d− 2r + 2,

⌊
g + 3

2

⌋}
,

and m :=
⌈
d+r
2r−2

⌉
must satisfy md− 3(g − 1) ≤ 0.

Proof. The proof is just some easy calculations.

r = 3: This case follows directly from Theorem 5.1.

r = 4: From Theorem 5.1 we have

N4 = min

{
f

(⌈
d+ 4

6

⌉
,−1

)
, f

(⌈
4− d

6

⌉
, 1

)
, f

(⌈
2d+ 7

6

⌉
,−2

)
, f

(⌈
7− 2d

6

⌉
, 2

)}
.

So we need only to look at the last 2 elements.

f

(⌈
2d+ 7

6

⌉
,−2

)
≥ f

(
2d+ 7

6
, 2

)
=

6(d2 − 6g)

6
+

7d

6
+

23

6
> d− 6

and

f

(⌈
7− 2d

6

⌉
, 2

)
≥ f

(
7− 2d

6
, 2

)
=

2(d2 − 12g)

6
+

7d

6
− 25

6
> d− 6

r = 5: Using Theorem 5.1 again, we obtain

N5 = min
{
f

(⌈
d+ 5

8

⌉
,−1

)
, f

(⌈
5− d

8

⌉
, 1

)
, f

(⌈
2d+ 9

8

⌉
,−2

)
, f

(⌈
3d+ 13

8

⌉
,−3

)
,

f

(⌈
9− 2d

8

⌉
, 2

)
, f

(⌈
13− 3d

8

⌉
, 3

)}
.
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The last 4 elements gives:

f

(⌈
2d+ 9

8

⌉
,−2

)
≥ f

(
2d+ 9

8
,−2

)
=

6(d2 − 16g)

8
+

9d

8
+

15

8
> d− 8.

f

(⌈
9− 2d

8

⌉
, 2

)
≥ f

(
9− 2d

8
, 2

)
=

2(d2 − 16g)

8
+

9d

8
− 49

8

>
9d

8
− 49

8
≥ d− 8.

This inequality holds for all d ≥ 1.

f

(⌈
3d+ 13

8

⌉
,−3

)
≥ f

(
3d+ 13

8
,−3

)
=

12(d2 − 16g)

8
+

13d

8
+

23

8
> d− 8,

For the last element, we get

f

(⌈
13− 3d

8

⌉
, 3

)
≥ f

(
13− 3d

8
, 3

)
=

2(d2 − 16g)

8
+

13d

8
− 73

8

≥ 13d

8
− 71

8
≥ d− 8,

if 5d ≥ 7. But d ≥ 30, so this is also true.
When n = 1, we want to show that m =

⌈
r−d
2r−2

⌉
satisfies the boundary

condition md+ g − 1 ≤ 0. Inserting,

d

⌈
r − d
2r − 2

⌉
+ g − 1 ≤ 0 implies g − 1 ≤ d

⌊
d− r
2r − 2

⌋
,
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Using d ≤ g − 1, d2 > 4(r − 1)g and a straightforward calculation

d

⌊
d− r
2r − 2

⌋
≥ d(d− r)

2r − 2

>
4(r − 1)g − dr

2r − 2
= 2g − dr

2r − 2

≥ 2g − (g − 1)r

2(r − 1)

≥ 2g − (g − 1) = g + 1.

This is of course greater than g−1, so
⌈
r−d
2r−2

⌉
satisfies the boundary condition.

There are two things we will discuss, the first thing are the numbers N3,
N4 and N5 and the second is the boundary condition md−(2n−1)(g−1) ≤ 0.
We need only to look at the case where r = 3.

Below we will show that when d and g are not fixed, N3 is equal to the
first element if d+3

4
is an integer and equal to the second if 3−d

4
is an integer

and we will see that the integer m := d+3
4

does satisfy the boundary condition
md− 3(g − 1) ≤ 0.

By Corollary 5.3

N3 = min

{
f

(⌈
d+ 3

4

⌉
,−1

)
, f

(⌈
3− d

4

⌉
, 1

)}
, (5.3.15)

where m :=
⌈
d+3

4

⌉
must satisfy the boundary condition md − 3(g − 1) ≤ 0.

Write ⌈
d+ 3

4

⌉
= x⇒ d+ 3

4
+ t = x

and ⌈
3− d

4

⌉
= y ⇒ 3− d

4
+ s = y,

for t, s ∈ [0, 1). It is easy to see that t and s can only take the values
{0, 1

4
, 1

2
, 3

4
}, with the relations

t = 0⇔ s =
1

2
, t =

1

4
⇔ s =

3

4
, t =

1

2
⇔ s = 0 and t =

3

4
⇔ s =

1

4

Now we write out the formulas

f

(⌈
d+ 3

4

⌉
,−1

)
=

2(d2 − 8g)

4
+

(3 + 4t)d

4
− 6t− 4t2 +

7

4
(5.3.16)
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and

f

(⌈
3− d

4

⌉
, 1

)
=

(3 + 4s)d

4
− 6s− 4s2 − 9

4
. (5.3.17)

An easy calculation shows that for s, t-values {1
4
, 1

2
, 3

4
}, formulas (5.3.16) and

(5.3.17) gives

f

(⌈
d+ 3

4

⌉
,−1

)
≥ d− 4 and f

(⌈
3− d

4

⌉
, 1

)
≥ d− 4,

since d ≥ 12. We are only left with s, t = 0, that is, when d+3
4
∈ Z and

3−d
4
∈ Z.

When t = 0 the formula (5.3.16) gives

f

(
d+ 3

4
,−1

)
=

2(d2 − 8g)

4
+

3d

4
+

7

4
.

One can show that d2− 8g = 1. The boundary condition i) on page 51 gives

g ≥ d2

8
− 1

8

so that
1 ≤ d2 − 8g ≤ 1,

hence the equality. f
(
d+3

4
,−1

)
= 3d

4
+ 9

4
< d− 4 if d ≥ 26.

Similarly when s = 0, the formula (5.3.17) gives

f

(
3− d

4
, 1

)
=

3d

4
− 9

4
< d− 4

when d ≥ 8. Finally we will that d+3
4

satisfies md− 3(g − 1) ≤ 0.

3 + d

4
d− 3(g − 1) =

3d− 4(g − 1) + 9

4

≤ 10− g
4
≤ 0,

if g ≤ 10, but d ≥ 12 and d ≤ g − 1, so m = d+3
4

satisfy md− 3(g − 1) ≤ 0.
This shows that N3 (5.3.15) can be both, when d and g varies in the domain
i), ii) and iii) on p. 51. We can do the same in the cases where r = 4 or 5, it
it the same calculations, but with different numbers, so we end our discussion
here.
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Chapter 6

The Picard Group of Rank 3

In the last section we calculated gonality of curves on K3 surfaces with
Picard group of rank 2. Now we will take one step further, and add one
more generator to the Picard group. We found out that it would have been
very difficult calculate the gonality in general by using the same numerical
techniques, as we did in Theorem 5.1. This led to some restrictions, so that
the results became a bit weaker than we hoped for.

6.1 Existence of an Algebraic K3 Surface

We need to show under what circumstances there exists an algebraic K3 sur-
face with Picard group of rank 3. The existence is showed by using Proposi-
tion 4.1.

Proposition 6.1. Let r ≥ 3, d > 0 and g ≥ 0 be integers. Then there exists
an algebraic K3 surface S with Picard group Pic(S) = ZH ⊕ ZC ⊕ ZE with
H nef and with the following intersection numbers H2 = 2r−2, C2 = 2g−2,
E2 = 2β, H.C = d, H.E = α and C.E = k if and only if the following
conditions are satisfied

i) C := d2 − 4(r − 1)(g − 1) + k2 − 4β(r − 1)− 4β(g − 1)− α2 > 0,

ii) D := 4β(r − 1)(g − 1)− k2(r − 1)− βd2 + dkα− (g − 1)α2 > 0,

iii) x− := 2B−
√

2B2+3C
3

and B := g + β + r − 2 gives that the third degree
polynomial, −x3 + 2Bx2 + Cx+ 2D, valuated at x− is less than 0.
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66 The Picard Group of Rank 3

Proof. First we show existence of a K3 surface S whith Picard group given
by Pic(S) = ZH ⊕ZC ⊕ZE. We do this by showing that this lattice is even
with signature (1, 2). Consider the intersection matrix,

L =

 H2 H.C H.E
C.H C2 C.E
E.H E.C E2

 =

2r − 2 d α
d 2g − 2 k
α k 2β

 (6.1.1)

We must show that the determinant is even and has one positive eigenvalue
and two negative eigenvalues, by Theorem 4.1. Elementary linear algebra
shows that

f(x) = det(L− xI) = −x3 + 2[g + β + r − 2]x2

+ [d2 − 4(r − 1)(g − 1) + k2 − 4β(r − 1)− 4β(g − 1)− α2]x

+ 2[4β(r − 1)(g − 1)− k2(r − 1)− βd2 + dkα− (g − 1)α2].

Notice that the last summand is just detL = disc(H,C,E) and is clearly
even. To make it simple we let the polynomial above be expressed as

f(x) = −x3 + 2Bx2 + Cx+ 2D,

where the constants are

B = g + β + r − 2, (6.1.2)

C = d2 − 4(r − 1)(g − 1) + k2 − 4β(r − 1)− 4β(g − 1)− α2, (6.1.3)

D = 4β(r − 1)(g − 1)− k2(r − 1)− βd2 + dkα− (g − 1)α2. (6.1.4)

We are only interested in the sign of the eigenvalues of the intersection matrix
L. We need to put some requirements on the constants. But first look at the
derivative of f(x),

f ′(x) = −3x2 + 4Bx+ C.

We find the extremal points

x =
2B ∓

√
4B2 + 3C

3
= x∓.

Clearly B ≥ 0. Moreover, we have that f ′′(x) > 0 when x < 2B
3

and non-
positive otherwise. We must have two zeros of f(x) when x < 0. Therefore,
we must require that C > 0, D > 0 and that f(x−) < 0. Now Theo-
rem 4.1 says that there exists an algebraic K3 surface with Picard group
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6.1 Existence of an Algebraic K3 Surface 67

Pic(S) = ZH ⊕ZC ⊕ZE. It remains to show that H can be chosen nef. We
will follow [BPVdV84], p. 238-243.

∆ := {Γ ∈ Pic(S)|Γ2 = −2}
and consider the Picard-Lefschetz reflection

πΓ :Pic(S) −→ Pic(S) (6.1.5)

D 7−→ D + (D.Γ)Γ, (6.1.6)

which clearly preserves intersections between divisors, i.e.

πΓ(D).πΓ(E) = [D + (D.Γ)Γ].[E + (E.Γ)Γ]

= D.E + 2(D.Γ)(E.Γ) + Γ2(D.Γ)(E.Γ)

= D.E

Let
CS = {D ∈ Pic(S)|D is effective and D2 > 0}

be the positive cone of S and

C+
S = {D ∈ CS|Γ.D > 0 for all Γ ∈ ∆}

be the Kähler cone, with

C+
S = {D ∈ CS|Γ.D ≥ 0 for all Γ ∈ ∆}

its closure, which is the big and nef cone of S, since it consists of all divisors
in S that are nef and big.

Proposition VIII, 3.9 in [BPVdV84] states that the Picard-Lefschetz re-
flections of S, the set {πΓ}Γ∈∆, leave invariant CS and any orbit in CS of the

group generated by {πΓ}Γ∈∆ meets C+
S in exactly one point.

Since H ∈ CS (H2 > 0, either |H| or |−H| contains an effective member.If
it is | −H| we can change H with −H, C with −C and E with −E), we can
make Picard-Lefschetz reflections on Pic(S) until we get new divisors H ′, C ′

and E ′ with the same intersection matrix as H, C and E, such that H ′ is
nef. We only have to show that ZH ′ ⊕ ZC ′ ⊕ ZE ′ = ZH ⊕ ZC ⊕ ZE.

For each reflection πΓ, we have

H 7→ H + (H.Γ)Γ := HΓ

C 7→ C + (C.Γ)Γ := CΓ

E 7→ E + (E.Γ)Γ := EΓ.

67



68 The Picard Group of Rank 3

This means that ZHΓ ⊕ ZCΓ ⊕ ZEΓ ⊆ ZH ⊕ ZC ⊕ ZE, since Γ ∈ Pic(S) =
ZH ⊕ ZC ⊕ ZE. An easy calculation shows that π2

Γ is the identity map on
Pic(S), so we get the other inequality. This is true for all Γ ∈ Pic(S), so we
have proved that ZH ′ ⊕ ZC ′ ⊕ ZE ′ = ZH ⊕ ZC ⊕ ZE and we can assume
that H is nef.

Remark 6.2. From now on, we will restrict ourself to the case where β = 0,
i.e. E2 = 0. This will make the calculations a lot easier. Another note, is
that α cannot be chosen arbtrary. We can see this from the formulas for C
and D, when we let β = 0, in the theorem above. We can choose it arbitrary
within the interval where there exist an algebraic K3 surface.

6.2 Existence of Hyperelliptic and Tetrago-

nal Curves on S

The next thing we need to show is the very ampleness of H, such that we get
an embedding into a projective space, and the nefness of the generators C
and E. This can be shown using Lemma 4.4. In general, this turned out be
a hard numerical problem. Therefore we made some restrictions on (d, g, r),
which eliminated the rational curves on these K3 surfaces.

In the proposition below, we will show that under a certain parity of (d, g)
we can find a hyperelliptic curve and a tetragonal curve on S. In the next
section we will look at a more general result. Even though the proposition
below is generalized in the next section, we decided to keep it in the thesis,
because it shows the very ampleness of H and the proof is different from that
in the next section.

Proposition 6.3. Let r ≥ 3, d > 0 and g > 0 are integers such that r
and g are odd and d is divisible by 4. Then there exist a K3 surface S of
degree 2r − 2 in Pr with Picard group Pic(S) = ZH ⊕ ZC ⊕ ZE containing
a nondegenerate hyperelliptic curve (resp. tetragonal curve) of degree d and
genus g. The intersection numbers between the generators in the Picard group
are H2 = 2r − 2, C2 = 2g − 2, E2 = 0, H.C = d, H.E = α, where α is
divisible by 4 and C.E = 2 (resp. 4).

Proof. By Proposition 6.1 there exist a K3 surface S with Picard group
Pic(S) = ZH ⊕ ZC ⊕ ZE, the intersection numbers are H2 = 2r − 2, C2 =
2g − 2, E2 = 0, H.C = d, H.E = α and C.E = 2 (resp. 4). Let D ∈ Pic(S)
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6.2 Existence of Hyperelliptic and Tetragonal Curves on S 69

be a divisor on S, then D can be written as xH + yC + zE. We need to
embed S in a projective space. We will make use of Lemma 4.4 b) i) and iii).
We get that H2 = 2r − 2 ≥ 4 and we have

D2

2
= (r−1)x2 +dxy+αxz+(g−1)y2 +kyz and D.H = (2r−2)x+dy+αz,

where k is either 2 or 4. Let us recall i) and iii) in Lemma 4.4

Claim 1 : There is no divisor D ∈ Pic(S) such that D2 = 0 and D.H = 1, 2.

Proof We have to show that D.H = (2r−2)x+dy+αz 6= 1, 2. Since r is odd
and d is even by assumption, we can choose α to be even. This means
that D.H can never be equal to 1. For the case where D.H = 2, we
obtain

D.H

2
= (r − 1)x+

d

2
y +

α

2
z. (6.2.1)

Since d is divisible by 4, and we have chosen α to be even. Since α can
be chosen arbitrary, in some sense, we choose it to be divisible by 4.
This means that D.H 6= 2.

Claim 2 : There is no divisor D ∈ Pic(S) such that D2 = −2 and D.H = 0.

Proof We see immediately that D2 6= −2, since

D2

2
= (r − 1)x2 + (g − 1)y2 + dxy + αxz + kyz 6= −1

for r, g odd integers, d and α even integers and k is either 2 or 4.

These two situations never occurs, so we conclude that the hyperplane section
H is very ample, according to Lemma 4.4. Note also that C is nef and |C|
is base-point free, this follows immediately from the assumption that S does
not contain −2-curves, by Lemma 4.4 a). As in the rank 2 case, we have the
family of effective divisors given in Lemma 4.8.

The situation in the Donagi-Morrison example and the generalized ELMS
examples cannot occur, thus we get that the gonality can be calculated using
gon(C) = min{D.C −D2|D ∈ A }, by Lemma 4.8. D ∈ Pic(S), so we write
D ∼ xH + yC + zE. D.C = (xH + yC + zE).C = dx + 2(g − 1)y + kz, we
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70 The Picard Group of Rank 3

express D.C −D2 in terms of D.C,

D.C −D2 = D.C − (xH + yC + zE).(xH + yC + zE)

= D.C − [2(r − 1)x2 + 2xyd+ 2αxz + 2(g − 1)y2 + 2kyz]

= D.C − 2(r − 1)x2 − 2y[xd+ 2(g − 1)y + kz] + 2(g − 1)y2 − 2αxz

= D.C − 2(r − 1)x2 − 2yD.C + 2(g − 1)y2 − 2αxz

= −2(r − 1)x2 + 2(g − 1)y2 − 2αxz + (1− 2y)D.C.

The case gon(C) = 1 does not occur, since D.C − D2 is always an even
integer by the assumption of r, d and g. By the Hodge Index theorem, we
have ∣∣∣∣ C2 D.C

C.D D2

∣∣∣∣ = C2D2 − (D.C)2 ≤ 0

which implies

2(g − 1) ≤ (D.C)2

D2

if D2 > 0. For curves with low gonality, we may assume D2 = 0, since we
don’t want small upper boundary on g.

i) In the case k = 2, we have d divisible by 4 and g odd. Hence,

gon(C) = min{D.C}
= min{dx+ 2(g − 1)y + 2z}
= 2.

This shows that C is hyperelliptic if k = 2.

ii) In the case k = 4, we d divisible by 4 and g odd. We need to eliminate
the case where D.C = 2.

D.C

2
=
d

2
x+ (g − 1)y + 2z 6= 1.

Therefore gon(C) = 4 and C is tetragonal.
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6.3 Existence of k-gonal Curves on S 71

6.3 Existence of k-gonal Curves on S

In this section we will study the gonality of curves in Pr with a base point
free complete linear system, g1

k. We will try to answer the question: What
condition can we put on a curve C, such that C contains g1

k, but no g1
l for

l < k, equivalently, what conditions can we put on a curve C such that
gon(C) = k?

In the next example will be considered as a motivation for Theorem 6.5
below.

Example 6.4. Let C be a curve of genus g ≥ 3 which has a 3-to-1 map to
P1 and has a 2-to-1 map to P1. We will show that this is impossible. Let

f : C
3:1→ P1 be the 3-to-1 map and g : C

2:1→ P1 be the 2-to-1 map. Let the
arithmetic genus pa(C) = g. The map

(f, g) :C −→ P1 × P1

C 7−→ C0.

is birational. Pic(P1×P1) = Zl1⊕Zl2, where l1|C and l2|C are the fibers in the
pencils g1

2 and g1
3 at a given point in P1, respectively. Notice that g1

2 and g1
3

are not composed, since 2 and 3 are relatively prime. Since C0 = αl1|C+βl2|C
for some α, β ∈ Z. Let us find the value of these integers. Since l1|C is a fiber
in g1

2, we have that l1|C .C0 = 2. Hence

2 = l1|C .C0 = l1|C .(αl1|C + βl2|C) = 0 + β,

which implies that β = 2. The same reasoning gives that α = 3, so our
divisor can be written as C0 = 3l1|C + 2l2|C . The canonical divisor on P1×P1

is KP1×P1 = −2l1|C − 2l2|C . Applying the adjunction formula (2.4.5),

2pa(C0)− 2 = C0.(C0 +KP1×P1) = (3l1|C + 2l2|C).(3l1|C + 2l2|C − 2l1|C − 2l2|C)

= (3l1|C + 2l2|C).l1|C

= 2,

thus pa(C0) = 2. Moreover, by Proposition 2.1 we have the following inequal-
ity

pg(C) = pa(C) ≤ pa(C0) = 2,

which is a contradiction since pa(C) = g ≥ 3.
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72 The Picard Group of Rank 3

Theorem 6.5. Let C be a curve with a complete base point free linear system
g1
k. If the genus of C is g > (k − 1)(k − 2), then gon(C) = k.

Proof. Define maps f : C
a:1−→ P1 and g : C

k:1−→ P1. Assume gon(C) = a < k.
Let C be a curve with pa(C) = g. Since the pencil g1

k is not a multiple of
g1
a, that is, g1

k 6= lg1
a for some a ∈ Z, because g1

k is a complete base point free
linear system, the map (f, g) : C −→ P1 × P1 is birational. We know that
the canonical divisor on P1× P1 is equal to −2l1− 2l2 for fibers l1 = f−1(m)
and l2 = g−1(n). By the adjunction formula, we obtain

2pa(C0)− 2 = C0.(C0 +KP1×P1) = (kl1 + al2).(kl1 + al2 − 2l1 − 2l2)

= 2((a− 1)k − a).

We know that the geometric genus is always less than or equal to the arith-
metic genus, this gives the following relation

pg(C0) = pa(C) ≤ pa(C0) = (a− 1)k − a+ 1.

Since a ≤ k − 1 implies that (a − 1)k − a + 1 ≤ (k − 1)k − (k − 1) + 1 =
(k − 1)(k − 2), but g > (k − 1)(k − 2) and thus a contradiction.

Corollary 6.6. Let r, g be odd integers and d divisible by 4. Then there
exists a K3 surface S of degree 2r − 2 in Pr with Picard group Pic(S) =
ZH ⊕ ZC ⊕ ZE, where H = OS(1), containing a nondegenerate k-gonal
curve of degree d and genus g > (k − 1)(k − 2). The intersection numbers
between the generators in the Picard group are H2 = 2r − 2, C2 = 2g − 2,
E2 = 0 H.E = α, where α is divisible by 4, C.E = k.

Proof. The existence part of S is taken care of by Theorem 6.1. Note that
under conditions on the triplet (d, g, r), S does not contain −2-curves (see
the proof of Proposition 6.3). The embedding of S into Pr, is taken care of
in the proof of Proposition 6.3. Let |E||C be a linear system on C. This
linear system is a g1

k, since degOC(E) = E.C = k, and we want to show it
is complete and base point free. We look at the standard exact sequence

0 −→ OS(E − C) −→ OS(E) −→ OC(E) −→ 0.

By assumption, S does not contain −2-curves, thus C−E will be nef. More-
over, (C −E)2 = 2(g− (k+ 1)) > 0, which means that C −E is big and nef.
By Kawamata-Viehweg Vanishing (Theorem 2.15), we have

H1(OS(E − C)) ∼= H1(OS(C − E))∨ = 0.
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6.3 Existence of k-gonal Curves on S 73

This gives the exact sequence of global sections

0 −→ H0(OS(E − C)) −→ H0(OS(E)) −→ H0(OC(E)) −→ 0.

H0(OS(E − C)) = 0, since C − E is effective. Therefore h0(OC(E)) =
h0(OS(E)) = 2 by Riemann-Roch. This shows that g1

k is complete. It remains
to show that g1

k is base point free.
Assume that g1

k contain a base point P . Then dim|E|C − P | = dim|E|C |,
by Lemma 2.10, which means that h0(OC(E|C−P )) = h0(OC(E|C)) = 2. We
use the exact sequence

0 −→ OC(−P ) −→ OC −→ OP −→ 0,

where OP is just the skyscraper sheaf at the point P . Tensor the exact
sequence above with OC(E), so that

0 −→ OC(E|C − P ) −→ OC(E|C) −→ OP −→ 0,

Notice that tensoring with OC(E|C) does not affect OP , since OC(E|C) is
locally free of rank 1. From the exact sequences above, we obtain the com-
mutative diagram

H0(OC(E))

α

��

β

''OOOOOOOOOOOO

H0(OC(E|C))
γ // H0(OP ).

α is clearly surjective by Kawamata-Viehweg Vanishing. β is also surjective,
because H0(OC(E|C)⊗ IP ) ( H0(OC(E)). This implies that γ is surjective.
On the other hand, H0(OC(E|C −P )) ∼= H0(OC(E|C)), which implies that γ
cannot be surjective, so we get a contradiction. This shows that g1

k is base
point free. Applying Theorem 6.5, we conclude that gon(C) = k.
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Chapter 7

Regular Points in Hilbd,g,r.

7.1 Expected Dimension and the Hilbert Scheme,

Hilbd,g,r

Scheme theory was introduced by Alexander Grothendieck in the very famous
papers EGA(Éléments de géométrie algébrique) in the period 1960-1967, and
are definitely concidered as one of the most important contribution to modern
mathematics. The idea with scheme theory is to broaden the concept of a
variety, which makes scheme theory to an extremely important tool.

Roughly speaking, the Hilbert scheme parametrizes subschemes of a fixed
projective space with a prescribed Hilbert polynomial. Our motivation for
discussing the Hilbert scheme is that in the next sections we will look at
curves on complete intersection K3 surfaces that corresponds to smooth
points in the Hilbert scheme. But first some notions and a short introduction.

We will denote the Hilbert scheme of curves C ⊆ Pr with pa(C) = g and
deg(C) = d as Hilbd,g,r. A component of Hilbd,g,r is said to be regular if its
general point corresponds to a smooth irreducible curve C ⊆ Pr such that
H1(C,NC/Pr) = 0. We will show that a regular component of Hilbd,g,r is
generically smooth of the expected dimension

χ(C,NC/Pr) = (r + 1)d− (r − 3)(g − 1), (7.1.1)

but first two important results about the lower bound and the upper bound
of the dimension of Hilbd,g,r at a point. The next two results can be found
in [ACG11, p. 33].
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76 Regular Points in Hilbd,g,r.

Corollary 7.1. The tangent space to Hilbd,g,r at a point h is given by

Th(Hilbd,g,r) = H0(X,NX/Pr),

where X is a subscheme of Pr of degree d and genus g.

Notice that this result shows that h0(X,NC/Pr) is an upper bound for the
dimension of Hilbd,g,r. The lower bound is given in the following result.

Proposition 7.2. Let X be a closed local complete intersection subscheme
of Pr, and let h be the corresponding point of Hilbd,g,r. Then the dimension
of every irreducible component of Hilbd,g,r at h is at least

h0(X,NX/Pr)− h1(X,NX/Pr).

Proof. See [Kol96] or [Ser06].

Notice that ifX is a curve, then the lower bound is just the Euler-Poincaré
characteristic of the normal bundle on X. We are now ready to show the
expected dimension (7.1.1) of a regular component of Hilbd,g,r.

Consider a smooth complete nondegenerate curve C ⊆ Pr of degree d and
genus g. The curve C corresponds to a point [C] in Hilbd,g,r. By Corollary
7.1 and Proposition 7.2, we have

χ(C,NC,Pr) ≤ dim[C] Hilbd,g,r ≤ h0(C,NC,Pr).

The Euler-Poincaré characteristic of NC/Pr can be found by using the exact
sequence (2.4.4)

0 −→ TC −→ TPr ⊗OC −→ NC/Pr −→ 0.

Using that the fact that the tangent sheaf on a variety is equal to the dual
of the canonical sheaf and that

deg TPr ⊗OC = deg TC + degNC/Pr ,

deg TC = 2− 2g and deg TPr ⊗OC = (r + 1)d

gives
degNC/Pr = (r + 1)d+ 2g − 2.

Now by Riemann-Roch, we have

χ(C,NC/Pr) = degNC/Pr − (r − 1)(g − 1)

= (r + 1)d− (r − 3)(g − 1).
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Remark 7.3. An interesting obsevation about χ(C,NC/Pr), when we look at
it as a function of g, is that for r = 2 it increases with g; when r = 3, it is
equal to 4d and is independent of g, while for r ≥ 4 it decreases with g.

We will end our discussion about Hilbert scheme1. In the next sections
we will look at cases when dim Hilbd,g,r is exactly χ(C,NC/Pr).

7.2 K3 Surfaces With Picard Rank 2

In this section we will study smooth curves of degree d and genus g on a K3
surface S ⊆ Pr, that corresponds to smooth points in the Hilbert scheme,
Hilbd,g,r.

The next proposition is a generalization of Proposition 4.1 in [Far01],
which says that a curve sitting on a quartic K3 surface in P3 corresponds to
smooth points in Hilbd,g,3 if and only if d ≤ 18 or g < 4d− 31, when the K3
surface does not contain −2-curves. We have generalized this result by just
refering to Proposition 4.5 and we have filled in some details in the proof.

Proposition 7.4. Let C ⊆ S ⊆ P3 be a smooth curve sitting on a quartic
surface such that Pic(S) = ZH ⊕ ZC with H being a hyperplane section.
Then H1(C,NC/P3) = 0 if and only if d ≤ 16 or g < 4d− 32.

Proof. We have the following exact sequence

0 −→ NC/S −→ NC/P3 −→ NS/P3 ⊗OC −→ 0, (7.2.1)

where NS/P3 ⊗ OC ∼= OC(4) and NC/S ∼= KC . We claim that there is an
isomorphism H1(C,NC/P3) ∼= H1(C,OC(4)). Suppose the contrary. Since
H0(C,OC(4)) = 0, we get the injective map H1(C,KC) → H1(C,NC/P3).
We will show that this provides a section σ ∈ H om(NC/P3 , KC). Using the
isomorphisms

H1(C,KC) ∼= H0(C,OC)∨ and H1(C,NC/P3) ∼= H0(C,N ∨C/P3 ⊗KC)∨.

The dual of the sequence

0 −→ H0(C,OC)∨ −→ H0(C,N ∨C/P3 ⊗KC)∨ −→ H1(C,OC(4)) −→ 0,

1For more information about the Hilbert scheme, see Chapter IX in [Ser06] and/or
Chapter VI.2.2 in [EH01].
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gives
0 −→ H1(C,OC(4)) −→H om(NC/P3 , KC) −→ C.

This gives a section σ ∈ H om(NC/P3 , KC). On the other hand, if we take
the dual of the exact sequence (7.2.1), we get

0 −→H om(OC(4),OC) −→H om(NC/P3 ,OC) −→H om(KC ,OC)

−→ E xt1(OC(4),OC) −→ . . .

We now that E xt1(OC(4),OC) = 0, since OC(4) is locally free by [Har77,
Chapter III, Exercise 6.5 (a)]. We have a section

σ′ ∈H om(KC ,NC/P3).

The composition of σ and σ′ gives the splitting of the dual sequence above.
Dualizing again provides a splitting of the bundle sequence (7.2.1). Now
Theorem 2.16 implies that C is a complete intersection with S. This is
a contradiction. Therefore we have H1(C,NC/P3) ∼= H1(C,OC(4)). Using
Proposition 4.5, we find that H1(C,OC(4)) is nonspecial if and only if d ≤ 16
or g < 4d− 32.

In general, it can be shown that if S is a complete intersection K3 surface
of one of the three types (4), (2, 3) or (2, 2, 2) with Picard group of rank 2 and
where H|C is nonspecial, then Hilbd,g,r is smooth at all points representing
curves C ′ ∈ |C|. In the next lemma we show under what circumstances
smooth curves on the three types of complete intersection K3s corresponds
to smooth points in the Hilbert scheme.

Lemma 7.5. Let S be a complete intersection K3 surface, with Pic(S) =
ZOS(1)⊕ZC, in Pr and C0 a smooth genus g curve of degree d on S. Then
if

i) d ≤ 4(r − 1) and 2d > 4(r − 1) + g;

ii) d ≤ 8(r − 1) and 4d > 16(r − 1) + g, then

Hilbd,g,r is smooth at all points representing curves C ∈ |OS(C0)| where S is
either S2,3 or S2,2,2 in i) and S4 in ii).

Proof. Let S be a K3 surface which is a complete intersection of type
(a1, a2, . . . , ar−2) in Pr and thatOC0(min{ai}) is nonspecial. ThenOC(min{ai})
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for C ∈ |OS(C0)|, by Lemma 4.11. We know that when S is a complete in-
tersection the normal bundle NS/Pr splits [Har77, Chapter II, Exercise 8.4],

so NS/Pr ∼=
⊕r−2

i=1 OS(ai). Restricting the normal bundle on S to the smooth
curve C gives

NS/Pr ⊗OC ∼=

[
r−2⊕
i=1

OS(ai)

]
⊗OC

∼=
r−2⊕
i=1

OS(ai)⊗OC

∼=
r−2⊕
i=1

OC(ai).

Direct sum commutes with cohomology, so

H1(C,NS/Pr ⊗OC) ∼=
r−2⊕
i=1

H1(C,OC(ai)).

Since OC(min{ai}) is nonspecial, we have that H1(C,OC(min{ai})) = 0.
Hence

H1(C,NS/Pr ⊗OC) = 0. (7.2.2)

The exact sequence (7.2.1) in Pr becomes,

0 −→ NC/S −→ NC/Pr −→
r−2⊕
i=1

OC(ai) −→ 0.

Using (7.2.2) and the long exact sequence of cohomology, we get

. . . −→
⊕

H0(C,OC(ai)) −→ H1(C,NC/S) −→ H1(C,NC/Pr) −→ 0.

Since the composition of

H0(S,NS/Pr) −→ H0(C,NS/Pr ⊗OC) −→ H1(C,NC/S)

is surjective by Theorem 4.14, we get H1(C,NC/Pr) = 0. The necessary
numerical conditions for OC0(2) and OC0(4) to be nonspecial are given in
Proposition 4.5.
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7.3 K3 Surfaces With Picard Rank 3

The first result is the analogue of Proposition 4.5 when S is equipped with
a Picard group of rank 3, with some restrictions on the triplet (d, g, r). The
proof is the same as the first part proof of [Knu02, Proposition 1.3]. Because
of our restrictions on (d, g, r), S contains no rational curves and the problem
becomes very easy.

Lemma 7.6. Let l ≥ 1 be an integer, d is divisible by 4 and g, r odd. We can
find S ⊆ Pr with a Picard group Pic(S) = ZH⊕ZC⊕ZE, which contains no
−2-curves, and C such that h1(C ′,OC′(l)) = 0 for all C ′ ∈ |C| if and only if

d ≤ 2(r − 1)l or dl > nl2 + g.

Proof. The existence of S with Pic(S) = ZH ⊕ZC ⊕ZE is given by Propo-
sition 6.1 and the embedding into Pr is given by Proposition 6.3, hence the
numerical conditions on the triplet (d, g, r). Let C ′ ∈ |C|. By the exact
sequence

0 −→ OS(lH − C) −→ OS(lH) −→ OC′(lH) −→ 0,

and since H is ample, we get that

H1(S,O(lH)) = H2(S,O(lH)) = 0,

by using Kodaira vanishing theorem (Theorem 2.14). Furthermore, using
Serre duality

H1(C ′,OC′(lH)) ∼= H2(S,OS(lH − C)) ∼= H0(S,OS(C − lH))∨,

hence h1(S,OC′(lH)) = h0(S,OS(C − lH)).
If d ≤ 2nl, the (C− lH).H = d−2nl ≤ 0. This implies that h0(S,OS(C−

lH)) = 0, since H is ample.
If d > 2nl and dl ≤ nl2 +g, we have (C− lH)2 ≤ −2 and (C− lH).H > 0.

By Riemann-Roch (3.1.2), C − lH > 0. Let d > 2nl and dl > nl2 + g and
assume that there is an element D ∈ |C − lH|. Then D2 < −2, so D has to
contain an irreducible curve Γ such that D.Γ < 0 and Γ2 = −2. But since S
does not contain rational curves, we are done.

Remark 7.7. It is important to notice that this theorem only holds for curves
with degree divisible by 4 and odd genus lying on K3 surfaces in a projective
space with odd dimension. A consequence of this, is that we cannot find the
numerical conditions for when a line bundle on S2,3 is nonspecial.
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In the next corollary we find the numerical conditions for when a smooth
curve on the complete intersections S4 ⊆ P3 and S2,2,2 ⊆ P5 with Pic(S) =
ZH ⊕ ZC ⊕ ZE corresponds to a smooth point in the Hilbert scheme. The
proof is the same as in Lemma 7.5.

Corollary 7.8. Let S4 ⊆ P3 and S2,2,2 ⊆ P5 be the standard complete in-
tersections, both equipped with the Picard group Pic(S) = ZH ⊕ ZC ⊕ ZE.
Morover, assume that S contains no −2-curves. If

i) C ⊆ S4 with d disible by 4, g odd and d ≤ 16 or 4d > 32 + g, then
[C] ∈ Hilbd,g,3 is a regular point.

ii) C ⊆ S2,2,2 with d divisible by 4, g odd and d ≤ 8 or 2d > 8 + g, then
[C] ∈ Hilbd,g,5 is a regular point.

Proof. Let S be the quartic hypersurface in P3. The normal bundle splits, so

NS/Pr ∼= OS(4). (7.3.1)

Using the same standard exact sequence (7.2.1) as in the rank 2 case and the
isomorphism (7.3.1) one has

0 −→ NC/S −→ NC/P3 −→ OC(4) −→ 0.

If d ≤ 16 or 4d > 32 + g with d even and g odd, then the line bundle OC(4)
is nonspecial, by Corollary 7.6. The long exact sequence gives

. . . −→ H0(C,OC(4)) −→ H1(C,NC/S) −→ H1(C,NC/P3) −→ 0.

Using Lemma 4.11, we get that H1(C,NC/P3) = 0. For the complete intersec-
tion of three quadric hypersurfaces in P5, we use exactly the same procedure
as in the previous case. Now NS/P5 ∼= OS(2)⊕3. If d ≤ 8 or 2d > 16 + g with
d even and g odd, then H1(C,OC(2)) = 0, again by Corollay 7.6. Hence

. . . −→ H0(C,OC(2))⊕3 −→ H1(C,NC/S) −→ H1(C,NC/P5) −→ 0.

We get H1(C,NC/P5) = 0, again by Lemma 4.11.
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Chapter 8

Further Work

Finally, we will suggest some ideas and other possible approaches to new
results and generalizations of what has been done in this thesis.

8.1 Unfinished/Unsolved Problems

In this section we will look at some problems I have been working on and
not been able to finish in time.

Exceptional curves on K3 surfaces of Picard rank 2: If C is a smooth
curve of degree d and genus g satisfying Theorem 4.3, we have shown, in
Corollary 4.9, that exceptional curves occurs only in situation iv). I tried to
find all exceptional curves, but the problem was to show the nonexistence of
the line bundle B in the generalized ELMS examples (Example 3.13).

Theorem 5.1: This theorem would have been optimal if we could get rid
of d ≥ r2 + r, i.e. assume d > 0 instead. If we had done this, we must
used Corollary 4.9 which eliminates the generalized ELMS examples and the
Donagi-Morrison example. In the proof, I show that the assumption d ≥ r2 +
r together with the Brill-Noether number ρ(d, g, r) = g−(r+1)(g−d+r) < 0
implies d ≤ g − 1. I have just used that d ≤ g − 1 only once in the proof
(see p. 56). The consequence of assuming d > 0, is that we would have had
more candidates for the gonality, i.e. the endpoints (5.3.11) in addition to
Nr, which would also lead to a lot more calculations in the proof of Corollary
5.3.

The very ampleness of H in the rank 3 case: The first problem I had to
take care of, was the existence of a very ample hyperplane section. Using

83



84 Further Work

Lemma 4.4 and that D ∈ Pic(S) = ZH ⊕ ZC ⊕ ZE, we get D2 = 0,−2
is a ternary quadratic equation and D.H = 0, 1, 2 is a linear equation in
three variables. According to Lemma 4.4 we must eliminate the cases where
D2 = 0, D.H = 1, 2 and D2 = −2, D.H = 0. This is a hard problem
numerically, so we made some restrictions on the triplet (d, g, r). Another
approach, was to search for articles about solutions of ternary quadratic
forms, i.e. find canditates (other than the restrictions already made) of d, g
and r such that D2

2
6= 0,−1.

The nefness of C and E in the rank 3 case: The second problem concern-
ing the rank 3 case, was to show that both C and E are nef. Again I tried
to solve this numerically. One approach, which I tried, is assuming that
there exists irreducible rational curves Γ and Γ′ on S such that C.Γ < 0
and E.Γ′ < 0, and derive a contradiction. I spend a lot of time working on
this, and I made a lot of progress in the end, but because the time limit we
had to make priorities. I used the Picard-Lefschetz reflections, described on
page 67, on C and E. That is, C 7→ C ′ and E 7→ E ′, and from there try
to show that |disc(H,C ′, E)| < |disc(H,C,E)|, and the same with E. If one
can do this, we are done, because H,C and E generates the Picard group,
thus disc(H,C,E) divides disc(H,C ′, E) which gives a contradiction.

The complete intersection S2,3 in P4: Since I had to make restrictions on

d, g and r, we couldn’t embed this surface into P4 and therefore not study
the curves on this surface.

8.2 Some Ideas

Deform the Kummer surface: Recall Example 3.25, where we looked at the
Kummer surface S0 = Km(C1 × C2), where C1 and C2 are smooth elliptic
curves. The idea is to find three divisors H, C and E on S0 where all three
are nef and base point free with the intersection properties: H2 = 2r − 2,
C2 = 2g − 2, E2 = 0, H.C = d, H.E = α and E.C = k. Now we could
deform S0 with Picard rank 18 to a K3 surface with St with Picard group
Pic(St) = ZH⊕ZC⊕ZE, where base point freeness and nefness is preserved.
If the procedure above is done correctly, the next step is to show that gon(C)
is equal to k.

Other parities of (d, g): This idea comes the proof of [Far01, Theorem 1],
where the parity problem in the rank 2 case, is taken care of. Theorem 6.3
holds when d is divisible by or 4 and r, g are odd. To make the idea clear,
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we look at the quartic S4 in P3. By Theorem 6.3 and Corollary 7.8 there
exists a nondegenerate curve C ⊆ P3 of degree d divisible by 4 and odd genus
g > (k−1)(k−2), with gon(C) = k and H1(C,NC/P3) = 0, where C is on the
quartic S4 and Pic(S4) = ZH ⊕ ZC ⊕ ZE. If we attach a 2 or 3-secant line
or a 4-secant conic, we may be able to show that it works for other parities
of (d, g) as well.

Rational curves in the rank 3 case: If we can show that H is very ample,
C and E are nef we can create powerful generalizations of all results con-
cerning K3 surfaces of rank 3. Maybe we have to come up with other ideas,
but I believe that one can solve this problem numerically and perhaps with
the help of computer, just to avoid a lot of time consuming calculations.
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