
 
 

                                                                     

 

Development of an extraction method for the 

analysis of pro-inflammatory prostaglandin-E2 and 

leukotriene-B4 in human plasma by liquid 

chromatography tandem mass spectrometry 
 

 

 

By 

 Zebasil T. Mengesha 

 

 

 

Thesis submitted to the fulfilment of the requirement for   

European Master in Quality in Analytical Laboratories 

(EMQAL) 

 

 

 

 

 

 

 

Bergen, Norway 

March 2013 
 

                                                                                                                         
Department of Chemistry                                                                                    National Institute of Nutrition  

  University of Bergen                                                                                             and Seafood Research  

      Bergen, Norway                                                                                                     Bergen, Norway 



 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 



 
 

Development of an extraction method for the 

analysis of pro-inflammatory prostaglandin-E2 and 

leukotriene-B4 in human plasma by liquid 

chromatography tandem mass spectrometry 
 

 

 

 

By 

 Zebasil T. Mengesha 

 

 

Thesis submitted to the fulfilment of the requirement for   

European Master in Quality in Analytical Laboratories 

(EMQAL) 

 

 

 

 

 

Supervisors 

 

Professor Pedro Arajuo, PhD 
National Institute of Nutrition and seafood Research 

 

 

Professor Bjørn Grung, PhD 
 Department of Chemistry, University of Bergen 

 

 

 
 

 

Bergen, Norway 
March 2013



i 
 

Acknowledgements 
 
This master thesis was carried out at the National Institute of Nutrition and Seafood 

Research (NIFES) and the Chemistry Department of the University of Bergen in Norway 

with finnancial support of the European Commission through the Erasmus mundus 

European Master in Quality in Analytical Laboratories (EMQAL) programme. Thus, I am 

grateful to all of them for their contribution in the sucsessful completion of my Master 

study.  

I extend my deepest gratitude to my project supervisors: Prof. Pedro Araujo for his sincere, 

friendly and inspiring approch constructive suggessions, comments and guidance throughout 

my research work and thesis writing; and Prof. Bjørn Grung for his support in organizing, 

following up and providing comments on my thesis, as well for his assistance on arranging  

every facilities and adminstrative issues during my stay in Bergen, Norway.  

I am also thankful to EMQAL programme coordinator Prof. Isabel Cavaco and the course 

director Prof. Jose Paulo Soares Pinheiro and other staffs of the Universiy of Algarve for 

facilitating acadamic matters and valuable assistance during my stay in Algarve University, 

Portugal. I also want to thank all EMQAL professors for sharing me their knowledge and 

experience through EMQAL courses to keep quality in analytical laboratories.   

My sincere thanks to all the staffs of NIFES who were friendly assisting me during my 

laboratory work, and for kindly donating the plasma samples.  

Finally, my heartfelt thank to my wife for her constant moral support during my study and to 

my mother who instilled me the value and importance of education. 

 

Zebasil T. Mengesha 

Bergen, March 2013. 



ii 
 

Table of Content 
 

Akcnowledgements ............................................................................................................. i 

List of Tables ..................................................................................................................... v 

List of Figures ................................................................................................................... vi 

Abbreviations .................................................................................................................. vii 

Abstract .......................................................................................................................... viii 

 

1   Introduction .................................................................................................................. 1 

1.1   Objective of the study  .......................................................................................... 5 

1.2   Significance of the study ...................................................................................... 5 

 

2   Theoretical background  ................................................................................................ 7 

2.1 Eicosanoids  ........................................................................................................... 7 

2.1.1 Biosynthesis of eicosanoids ........................................................................ 7 

2.1.2 Pro- and anti-eicosanoids (n-6 versus n-3 eicosanoid metabolites) .............. 9 

2.1.3 Historical highlight of prostaglandins and leukotrienes analysis  ................. 9 

2.1.4 Eicosanoids in blood plasma  .................................................................... 10 

2.2 Method of Extraction and analysis for PGE2 and LTB4  ...................................... 11 

2.2.1   Extraction methods of eicosanoids  ............................................................ 11 

2.2.2   Methods of analysis for eicosanoids  .......................................................... 13 

2.3 Chemical structure and mass fragments of PGE2 and LTB4  ................................ 14 

2.4 Doehlert design for optimization of response factor ............................................ 15 

2.4.1 Response factor (RF)  ............................................................................... 15 

2.4.2 Doehlert design  ........................................................................................ 17 



iii 
 

2.5 Method validation Parameters  ............................................................................ 18 

2.5.1 Selectivity and specificity  ........................................................................ 18 

2.5.2 Precision  .................................................................................................. 19 

2.5.3 Accuracy .................................................................................................. 20 

2.5.4 Limit of detection(LOD) and quantification (LOQ) ................................... 20  

2.5.5 Linearity and range  .................................................................................. 22 

 

3 Experimental  ............................................................................................................. 25 

3.1   Reagents  ............................................................................................................ 25 

3.2   Plasma samples preparation  ............................................................................... 25 

3.3   Selection of the extraction solvents using mixture diagrams................................ 25 

3.4   Optimization of the amount of internal standards ................................................ 27 

3.5   Extraction protocol ............................................................................................. 29 

3.6   Method validation............................................................................................... 30 

3.7   Liquid chromatography ion-trap mass spectrometry  ........................................... 30 

3.8   Quantification of PGE2 and LTB4 in human plasma  ........................................... 32 

3.9   Statistics  ............................................................................................................ 32 

 

4 Results and Discussion  .............................................................................................. 33 

4.1 Selection of the extraction solvent using mixture diagrams  ................................. 33 

4.2 Optimization of the amount of internal standards  ............................................... 34 

4.2.1 Modelling of the RF as a function of PGE2 and PGE2-d4  .......................... 35 

4.2.2 Modelling of the RF as a function of LTB4 and LTB4-d4  .......................... 37 



iv 

 

4.2.3 Modelling of the RF as a function of PGE2 vs LTB4-d4 or  LTB4 vs  

PGE2-d4  ................................................................................................... 37 

4.2.3.1 Modelling of the RF as a function of PGE2 and LTB4-d4  .................... 38 

4.2.3.2 Modelling of the RF as a function of LTB4 and PGE2-d4  .................... 38 

4.2.4 Optimal amounts of internal standards for the analysis human plasma....... 39 

4.3   Developed extraction protocol ............................................................................ 40 

4.4   Method validation............................................................................................... 43 

4.5   Method application on real plasma samples  ....................................................... 46 

 

5 Conclusions................................................................................................................ 48 

 

References  ...................................................................................................................... 49 

 

Appendices  ..................................................................................................................... 58 

I. Extraction procedure of eicosanoids from human plasma for LC-MS/MS 

analysis used in NIFES  .................................................................................. 58 

II. Model acceptability for PGE2 and PGE2-d4 ..................................................... 59 

III. Model acceptability for LTB4 and LTB4-d4 ..................................................... 59 

IV. Model acceptability for LTB4 and PGE2-d4 ..................................................... 60 

V. Model acceptability for PGE2 and LTB4-d4 ..................................................... 60  

VI. Acceptability of the linear regression model for PGE2  ................................... 61 

VII. Acceptability of the linear regression model for LTB4 .................................... 62 

 

 

 



v 

 

List of Tables 

 
Table 1    Reported extraction methods for eicosanoids from human blood ...................... 12 

Table 2    Concentration of PGE2, LTB4, PGE2-d4 and LTB4-d4 in blood plasma at each    

                experimental point of a two-variable Doehlert design ....................................... 28 

Table 3    Statistical validation summary for the developed RF models ............................ 35 

Table 4    Experimental data for constructing PGE2 and LTB4 calibration curves ............. 45 

Table 5    Levels of PGE2 and LTB4 in real human plasma samples .................................. 46 

Table 6.   Model acceptability for PGE2 and PGE2-d4  ..................................................... 59 

Table 7    Model acceptability for LTB4 and LTB4-d4 ....................................................... 59 

Table 8    Model acceptability for LTB4 and PGE2-d4 ....................................................... 60 

Table 9    Model acceptability for PGE2 and LTB4-d4 ....................................................... 60 

Table 10   Acceptability of the linear regression model for PGE2  .................................... 61 

Table 11   Acceptability of the linear regression model for LTB4 ..................................... 62 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

List of Figures 
 

Figure 1    Overview of eicosanoid biosynthesis from AA via enzymatic COX, LOX,  

                 CYP P450 and non-enzymatic pathways ............................................................ 2 

Figure 2    Overview of the metabolism of PUFAs into eicosanoids ................................... 8 

Figure 3    Chemical structures of PGE2, LTB4, PGE2-d4, and LTB4-d4 ............................ 15 

Figure 4    Doehlert design for optimizing two variables (A) and three variables (B) ........ 17 

Figure 5    Signal-to-noise examples for LOD and LOQ estimation .................................. 21 

Figure 6    Augmented simplex mixture design (A) and modified mixture designs (B&C) 26 

Figure 7    Preparation of different concentrations of PGE2 and LTB4 plasma solutions .... 27 

Figure 8    Coded  and natural levels of the analytical species over the domain of a two-

variable Doehlert design. ................................................................................ 28 

Figure 9    Contour plot of the response factor (RF) expressed as a function of:   

                  A) PGE2 vs. PGE2-d4 (Eq. 18) and   B) LTB4 vs. LTB4-d4 (Eq. 19). ................ 36 

Figure 10   Contour plot of the response factor (RF) expressed as a function of:   

                  A) PGE2 vs. LTB4-d4 (Eq. 20) and B) LTB4 vs. PGE2-d4 (Eq. 21) ................... 39 

Figure 11   Extracted ion chromatograms (EICs) of PGE2, PGE2-d4, LTB4 and LTB4-d4 

after extracted from spiked plasma sample  ..................................................... 41 

Figure 12   Mass spectra of PGE2, PGE2-d4, LTB4 and LTB4-d4 extracted from spiked 

                   human blank plasma  ..................................................................................... 42 

Figure 13   Extracted ion chromatograms (EICs) of PGE2 in acetonitrile without (A) and 

with (B) vacuum drying at room temperature .................................................. 43 

Figure 14   The linear regression graphs for PGE2 (A) and LTB4 (B). ............................... 45 

Figure 15   Linear regression graph for PGE2 using triplicate mean value and error bar .... 61  

Figure 16   Linear regression graph for LTB4 by triplicates mean value and error bar ....... 62 



vii 
 

              Abbreviations 

 
AA            Arachidonic acid (20:4n-6)  

COXs         Cyclooxygenases (COX-1 and COX-2) 

DHA          Docosahexaenoic acid (22:6n-3) 

DGLA        Dihomo-γ-linolenic acid (20:3n-6) 

DHET         Dihydroxyecosatrienoic acid 

ELISA        Enzyme-linked immunosorbent assay 

EPA             Eicosapentaenoic acid (20:5n-3)      

GCMS        Gas chromatography mass spectrometry 

GLA           γ-linolenic acid (18:3n-6)  

HETE          Hydroxyeicosatetraenoic acid 

HEPE          Hydroxyeicosapentaenoic acid  

HODE        Hydroxyoctadecadienoic acid  

HPETE       Hydroperoxyeicosatetraenoic acid  

HPEPE      Hydroperoxyeicosapentaenoic acid  

LA             Linoleic acid (18:2n-6) 

α-LNA        α -linolenic acid (18:3n-3) 

LC-MS/MS Liquid chromatography tandem mass spectrometry 

LOX           Lipoxygenase 

LT              Leukotriene  

LTB4          Leukotriene-B4 

LTB5                 Leukotriene- B5 

LTB4-d4      Leukotriene B4 deuterated 

PG               Prostaglandin 

PGE2            Prostaglandin E2 

PGE3            Prostaglandin E3 

PGE2-d4       Prostaglandin E2 deuterated 

PLA2               Phospholipase A2 

PUFA          Polyunsaturated fatty acid 

TX               Thromboxane 



viii 
 

 

Abstract 

A simple and rapid method for extracting PGE2 and LTB4 from human plasma and 

further determination by LC-MS/MS proposed and validated. Extracting solvents, 

formic acid (10 µL) and acetonitrile (140 µL) were added subsequently to 50 µL plasma 

sample. After vortex-mixing and centrifuging the obtained solution, the supernatant was 

submitted to LC-MS/MS. The quantitative analysis was carried out based on the internal 

standard method and the chromatographic separation using the LC column gradient 

mobile phase system. The analytical species were recorded by multiple reaction 

monitoring in negative mode. The method was validated using blank human plasma in 

the range of 1-50 ng/mL, and it exhibits good selectivity with LOD and LOQ of 0.4 

ng/mL and 1 ng/mL respectively for PGE2 and LTB4 analytes. The recovery ranges were 

from 80.54 - 104.96% for PGE2 and 72.34 - 105.61% for LTB4. The method was applied 

to 40 human plasma samples from patients participating in clinical nutritional 

intervention studies and suffering from inflammatory disorders. 
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1. Introduction 

 
 

Polyunsaturated fatty acids (PUFAs) are biological active fatty acid long carbon chain 

molecules with a carboxyl group in one end and a methyl group in another. Their long 

carbon chain and double bonds at different positions make them biologically active. 

PUFAs have significant involvement in human health. There are two major naturally 

occurring PUFAs, omega-3 (ω-3 or n-3) and omega-6 (ω-6 or n-6) based on the position 

of their last double bond with respect to their methyl end. Arachidonic acid (20:4n-6, 

AA) from the n-6 series and eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic 

acid (22:6n-3, DHA) from the n-3 series are important active lipid mediators play vital 

roles in immune regulation and inflammation [1].  

 

The oxidation metabolites of Arachidonic acid (AA) comprising 20-carbon fatty acid 

are called eicosanoids according to the IUPAC terminology. The AA derived 

eicosanoids are the principal mediators and regulators of inflammation. They are often 

used as biomarkers for diseases and pathological conditions such as cancer, 

atherosclerosis, arthritis, cardiovascular or other immunological diseases [2-4]. 

Conversely EPA is among the most important omega-3 fatty acids which suppress 

inflammation. Accordingly, eicosanoids derived from n-6 PUFA in general are pro-

inflammatory while eicosanoids derived from n-3 PUFA are anti-inflammatory [5]. This 

implies that the optimum levels of n-3 and n-6 PUFA in the body require to be 

maintained by means of nutritional supplements or diet to relieve the body from 

inflammatory complications. 
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The eicosanoid biosynthesis is usually initiated by the activation of the phospholipase 

A2 and the release of AA from the bi-layer phospholipid membrane. Subsequently AA 

is transformed into several bioactive eicosanoids such as prostaglandins (PGs), 

leukotrienes (LTs) and others bioactive compounds through four different and well 

defined enzymatic pathways, namely cyclooxygenase (COX), lipoxygenase (LOX), 

cytochrome P450 (CYP) and non-enzymatic pathways as depicted in Fig. 1 [4,6]. 

 

                Prostaglandins(PG)                             Epoxyeicosatrienoic acids (EET)   

                 Thromboxanes (TXs)                           Hydroxyeicosatetraenoic acids (HETE)                   

 

 

 

 

 

  

 

                  Leukotrienes (LT)                            Isoprostanes (Iso) 

                  Hepoxilins (HX)                              Hydroxyeicosatetraenoic acids (HETE) 

                  Lioxins (LX) 

 

Figure 1. Overview of eicosanoid biosynthesis from AA via enzymatic COX, LOX,  

               CYP P450 and non-enzymatic pathways [4]. 

 

AA and its derivative eicosanoids are potent inflammatory mediators; the detection of 

them provides insight into the development of inflammatory conditions. For instance, 

the AA related PGs generated through the cyclooxygenase pathway and the AA related 

LTs generated by the lipoxygenase pathway are among the major groups of mediators 

which play a key role in sustaining homeostatic functions and mediating pathogenic 

mechanisms including inflammatory response. During acute inflammation prior to the 

 
 Arachidonic Acid 

COX CYP 

LOX Non-enzymatic 
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recruitment of leukocytes and the intrusion of immune cells, both the level and the 

profile of those mediators production change dramatically [7]. Consequently, they 

contribute to the development of cardinal signs like fever, redness, swelling, pain of 

acute inflammation, which is the good side of inflammation that helps to isolate 

damaged area and promote healing. Similarly, other eicosanoid precursors also play 

vital role in the body with slight difference on the physiological sights and effects. 

 

Therefore most researches are focused on the development of analytical methods for the 

analysis of those inflammation biomarkers. The detection and quantification of them are 

of great interest as they play vital roles in a range of inflammatory pathologies, and 

hence it helps to monitor appropriate pharmacological therapy. Several analytical 

methods have been reported for the analysis of eicosanoids with different detection and 

quantification principle. Among these methods enzyme immunoassay (EIA) and 

radioimmunoassay (RIA), capillary electrophoresis (CE), gas chromatography (GC) 

with flame ionization or mass spectrometry detectors and high performance liquid 

chromatography (HPLC) with ultraviolet, fluorescent or mass spectrometry detectors 

have been used [8, 9]. These methods differ in sensitivity and specificity for each 

individual eicosanoid. Recently, the development and application of liquid 

chromatography tandem mass spectrometry (LC-MS/MS) for eicosanoids’ analysis 

have been widely recognized due to its sensitivity, specificity, simultaneous analysis of 

a number of eicosanoids and short time analysis for different kind of samples [10-13]. 

 

The main problems found in LC-MS/MS for the analysis of eicosanoids are related to 

sample treatment. Indeed, the scientific literature revealed that the sample treatment is 
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the rate determining step for several analytical methods [14]. In addition, prolonged 

time consumption for sample preparation or instrumental analysis could have a direct 

impact on the quality of analytical results and often they are not advisable for clinical or 

routine analysis involving a great number of samples. NIFES has observed that its 

current method for the extraction of eicosanoids from plasma and further determination 

by LC-MS/MS does not yield the expected results in the context of its ability to be used 

as a routine clinical method, due to its multiple extraction steps and lengthy evaporation 

time under a stream of nitrogen [15]. Based on the above observations, the analysis of 

eicosanoids in biological fluids predominantly in plasma requires further investigation 

in order to get rapid and precise quantification of inflammatory signalling eicosanoids 

during occurrence of inflammation disorders.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 

 

1.1 Objective of the study 

 

The aim of the present master thesis is to develop a simple and rapid method for the 

extraction of the two most potent pro-inflammatory lipid mediators, namely PGE2 and 

LTB4 in human plasma and further quantification by LC-MS/MS.  

 

The main objectives of the intended research are:  

 To propose an extraction method for routine analysis of plasma samples collected 

from patients suffering from inflammatory disorders.  

 To optimize the sample extraction and other variables by applying experimental 

design. 

 To validate quantitatively the developed extraction protocol.  

 To analyse human plasma samples from clinical nutritional intervention studies. 

 

1.2 Significance of the study 

 

It has been acknowledge that the number of patients suffering from chronic 

inflammatory disorder is increasing worldwide. A survey conducted in 16 European 

countries confirms that around 20% of adult Europeans suffer from moderate to severe 

intensity chronic pain which is seriously affecting the quality of their social and 

working lives [16]. A recent report of the Norwegian Institute of Public Health 

(Nasjonalt folkehelseinstitutt) has also highlighted that “chronic pain affects about 30% 

of the adult of Norwegian population and it is the main cause of long term sick leave 

and disability” [17]. Accordingly health centres are in urgent need of simple and fast 

sample treatment methods and analytical techniques suitable for routine analysis in 
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clinical investigations of eicosanoid biomarkers. Moreover, NIFES dietary studies on 

the effect of omega-3 and omega-6 rich foods and oils, and also clinical intervention 

studies on the effect of specific fish oils on inflammatory conditions require a rapid and 

reliable extraction method for determining eicosanoids in plasma samples. LC-MS/MS 

has been acknowledged in several publications as a better alternative for the analysis of 

eicosanoids than the traditional enzyme linked immunosorbent assay (ELISA), due to 

its analytical specificity, absence of cross-reaction and most important accurate 

quantification provided that an appropriate sample treatment method is used. 

  

Therefore, the present study aims at developing a simple and rapid method for 

extracting the pro-inflammatory eicosanoids PGE2 and LTB4 from human plasma by 

using LC-MS/MS. The development of such methods will assist the analysis of 

eicosanoids in research or routine studies and also they could have the potential to 

become national or international benchmark references. Specifically, it is intended to 

provide assistance to the various projects of NIFES involving inflammation diagnosis in 

clinical and nutritional trials. In addition, the developed method will be incorporated in 

NIFES current series of nationally accredited methods.  
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2. Theoretical Background 
 

2.1 Eicosanoids 

 

Eicosanoids are oxidation metabolites of essential fatty acids, omega-3 or omega-6 

PUFAs. The term Eicosanoids comes from the word "eicosa" derived from the Greek 

"εικοσι" that means "twenty" to denote the number of carbon atoms in all of them. The 

eicosanoids are important cell signalling molecules since they have significance impact 

on many physiological and pathophysiological systems of the body. Eicosanoids are the 

principal oxidation products of an important large class of biologically active 

compounds, the arachidonic acid (20:4n-6, AA). There are a number of eicosanoids in 

the body which are potent inflammatory mediators; although in some cases they also 

have anti-inflammatory effects [18-20]. 

 

2.1.1 Biosynthesis of eicosanoids 

 

Eicosanoids are generated either directly from dietary linoleic acids or from already 

stored membrane phospholipids through the pathways in Fig 2 [21]. Arachidonic acid 

(AA; 20:4n-6) is the predominant substrate for eicosanoid biosynthesis. The 

inflammatory cells typically contain a high proportion of the n-6 PUFA and low 

proportions of other 20-carbon PUFAs [22]. AA is mobilized by phospholipase 

enzymes notably phospholipase A2 (PLA2) from the bi-layer phospholipid membrane. 

Although cellular free AA levels are controlled by two competing reactions; firstly the 

PLA2 mediated cleavage of the sn-2 position of phospholipids to yield the free AA and 

secondly the CoA-dependent acyltransferase-modulated acylation reactions that re-

incorporate the free AA into phospholipids [23-24]. The eicosanoid precursor AA is 
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consequently metabolized through several enzymatic pathways. The most common 

pathways are the cyclooxygenase (COX) pathway that converts AA into the series-2 of 

eicosanoids principally prostaglandins (PGD2, PGE2, PGF2α and PGI2) and 

thromboxanes (TXA2 and TXB2); and the 5-lipoxygenase (5-LOX) pathway that 

converts AA into the series-4 of leukotrienes (LTA4, LTB4, LTC4, LTD4 and LTE4). 

Similarly minor eicosanoids are derived from EPA and DHA via COX to produce the 

series-3 of prostaglandins (PGD3, PGE3, PGF3α and PGI3) and thromboxanes (TXA3 and 

TXB3); and through the 5-LOX pathways these n-3 compunds are metabolized into the 

series-5 leukotrienes (LTA5, LTB5, LTC5, LTD5 and LTE5) and other eicosanoids as 

shown in Fig 2. It must be mentioned that among the various described eicosanoids, 

PGE2 and LTB4 are the most studied and abundant pro-inflamatory eicosanoids. 

 

 

Figure 2. Overview of the metabolism of PUFAs into eicosanoids [21]. 



9 

 

2.1.2 Pro- and anti-inflammatory eicosanoids (n-6 versus n-3 eicosanoids) 

Eicosanoids exert opposing actions in the human body. Some of them have been 

labelled as "bad eicosanoids" (those derived from the n-6 family) due to their capacity 

to promote inflammation, while other have been labelled as "good eicosanoids" (those 

derived from the n-3 family) due to their healing and capacity to decrease inflammation. 

A high content of n-6 fatty acid through dietary intake can produce a significant 

increase in the levels of AA of the cell membrane reservoir and when the immune 

system is triggered, this AA is released from the membrane and converted into pro-

inflammatory eicosanoids including PGE2 and LTB4 and as a results of these processes, 

a pro-inflammatory immune response will occur. On the other hand, high levels of n-3 

fatty acids in the cell membrane reservoir will produce anti-inflammatory eicosanoids 

derived from the release of EPA and consequently an anti-inflammatory immune 

response will occur [25]. Therefore, a balance of these opposing actions is responsible 

for good health and wellness whereas an imbalance brings inflammatory disorder. 

 

2.1.3 Historical highlight of prostaglandins and leukotrienes analysis 

 
 

In 1934, eicosanoids were first observed by Goldblatt and Ulf Von Euler in sheep 

vesicular gland extracts and human seminal plasma [26-27]. The discovery of the 20 

carbon metabolites paved the way for many researchers around the world to continue 

working on the physiological and pathological roles of these molecules and the 

development of strategies for their qualitative and quantitative analysis. In 1938, the 

slow reacting substance (SRS) of unknown eicosanoid compound was introduced by 

Feldberg and Kellaway for studying smooth muscle contracting factors. In 1960 
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Bergstrom and Sjovall isolated prostaglandin F (PGF) from sheep prostate glands for 

the first time and showed as it was a 20-carbon fatty acid [28]. In a similar way, other 

prostaglandins such as PGE1 [29], PGE2 and PGE3 [30] were isolated from human 

seminal plasma. Later in 1979 Samuelsson and co-workers demonstrated that the SRS 

was a mixture of leukotrienes (LTC4, LTD4 and LTE4) [31-32]. In addition, they 

elucidated their biosynthetic pathway. Following those pioneer reports numerous 

investigations focusing on various aspects of eicosanoids have been performed in many 

research centres around the world. Among the various aspects, the quantitative analysis 

of eicosanoids has been challenging, due to the complex nature of different biological 

matrices (e.g plasma, urine, etc.) and the very low abundance, similar chemical 

structures, instability of the eicosanoids and their metabolites.  

 

2.1.4 Eicosanoids in blood plasma 

Blood is a very complex sample; it is composed of a cellular component consisting of 

red and white blood cells and platelets, and a liquid carrier commonly known as plasma. 

Blood plasma consists of mainly water (above 90% water) and a variety of suspended or 

dissolved substances including proteins, peptides, nutrients (such as carbohydrates, 

lipids and amino acids), electrolytes, organic wastes and a variety of other small organic 

molecules [33]. Fatty acids are among those components of plasma which reflect the 

dietary fatty acid composition; in particular eicosanoids are components of plasma 

largely generated from bilayer cell membranes during inflammation and other 

physiological disorder [34-35]. Consequently, most of recent clinical tests are based on 

the analysis of blood plasma since tissue inflammations, organ dysfunctions and 

pathological states can alter the composition of blood plasma.  

http://en.wikipedia.org/wiki/LTC4
http://en.wikipedia.org/wiki/LTD4
http://en.wikipedia.org/wiki/LTE4
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2.2 Method of extraction and analysis for PGE2 and LTB4 

 

Numerous analytical methods of extraction and analyses have been reported for 

eicosanoids (including PGE2 and LTB4) from several biological sample matrices. In 

general, methods for the analyses of arachidonic acid metabolites in biological fluids 

require high sensitivity and specificity because of the very low concentrations, similar 

chemical structures and short half-lives of these metabolites [36].  

2.2.1 Extraction methods of eicosanoids  

Extraction and sample clean-up of eicosanoids including pro-inflammatory PGE2 and 

LTB4 from biological samples are vital steps for any of the reported eicosanoids' 

analytical methods.  These procedures especially for plasma are relatively complex due 

to low concentrations and instability and interferences of abundant contaminants in the 

sample matrix. For that reason, the development of efficient and rapid extraction 

methods for the analysis of eicosanoids is an on-going process that requires the 

assistance of very skilled practitioners and the state-of-the-art of instrumentation (e.g. 

LC-MS/MS) [37-38]. 

 

The most common methods of extraction prior to LC-MS/MS analysis are solid phase 

extraction (SPE), thin layer chromatography (TLC), and repeated liquid-liquid 

extraction followed by drying and reconstitution of the solvent for pre-concentration, 

chemical derivatization followed by GC analysis and liquid-liquid extraction followed 

by clean-up with one or more LC column [39-45]. These procedures are time 

consuming and they might bring about considerable loss of sample and poor recoveries. 

Most of the reported methods dealing with biological fluids such as plasma require 
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relatively large volumes of sample and cautious room temperature pre-concentrating 

step.  In an attempt to develop a method for extracting plasmatic eicosanoids, NIFES 

observed the total loss of spiked analytes in blank plasma upon pre-concentration of the 

supernatant with a stream of nitrogen or with vacuum drier at room temperature. Further 

observations revealed that to avert the loss of the analytes the preconcentration step 

should be carried out under very low nitrogen flow conditions which in turn demand 

very long periods of time. NIFES has estimated a total of 8 hours (a working day) to dry 

500 µL of supernatant containing eicosanoids for a reliable determination by using LC-

MS/MS. Consequently, neither reported methods nor NIFES current operational method 

[appendix I] for the analysis of eicosanoids extracted from plasma are suitable for 

research studies or routine analysis. There is a growing interest in developing novel, 

efficient and rapid extraction methods for eicosanoids in general due to worldwide 

increase of patients suffering from chronic inflammatory pathologies.  

 

Table 1. Reported extraction methods for eicosanoids from human blood   

Method of 

analysis 

Short description of Method of Extraction Plasma sample 

Volume used 

Reference 

GC-MS/MS Column filtration – derivatization (2 - times) - 

drying - solvent reconstitution.  

200 µL [39] 

LC-MS LLE washing (2-times) with drying and solvent 

reconstitution. 

1 mL * [40] 

LC-MS/MS SPE - drying and solvent reconstitution 4.5 mL blood [41] 

LC-MS/MS On-line SPE - with automatic valve switching 

and cartridge exchange. 

100 µL [42] 

LC-MS/MS Three solvents LLE - drying and solvent 

reconstitution. 

200 µL [43] 

LC-MS/MS SPE - drying and solvent reconstitution. 200 µL [44] 
2D- LC-MS/MS LLE - SPE -drying and solvent reconstitution 

(4-step extraction). 

3 mL [45] 

*Equine blood  
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2.2.2  Methods of analyses for eicosanoids 
 

The analysis of eicosanoids involved the application of numerous analytical methods. 

Enzyme immunoassay (EIA) and radioimmunoassay (RIA) methods are among the 

most commonly applied methods for analysis of eicosanoids. They are based on the 

principles of the competitive substrate binding assay. The main difference between EIA 

and RIA is the form of competing antigen which is binding to a specific enzyme in the 

former and radiolabeled in the latter [46]. These methods are highly sensitive however 

their main limitations are the detection of a single product at a time and the cross 

reactivity which can cause variability in sample quantification. Thus it is not suitable to 

analyse a number of different eicosanoids at a time [47-48]. 

Gas chromatography with mass spectrometry (GC-MS) can overcome the limitations of 

immunoassay methods. GC-MS offers increased selectivity for simultaneous detection 

of multiple eicosanoids. It is important to mention that for GC-MS analysis eicosanoids 

should be both volatile and thermally stable. For that reason this chromatographic 

technique requires the use of chemical derivatization for the majority of eicosanoids 

which makes the procedure tedious and time-consuming [49-50]. However, not all 

eicosanoids are readily amenable volatile (e.g LTC4) to be analysed by GC [51].  

Another technique that has been used for the analysis of eicosanoids is high-

performance liquid chromatography (HPLC) coupled with UV detection or fluorescence 

detection [52-53]. The main disadvantages of the technique are its lack of sensitivity 

and specificity which are the main drawback for the limited advancement and interest in 

the scientific community in general for the applicability of HPLC.  
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The introduction of electrospray ionization (ESI) MS analyzers coupled with HPLC 

[54] allowed the direct introduction of eicosanoids in aqueous solution without 

volatilization and with an improvement of sensitivity and specificity. The separation of 

the analytes in a chromatographic column prior to MS analysis reduces background 

noise, problems associated with ion suppression from co-eluting compounds, improved 

detection limits and overall quality of the MS data. Nowadays, LC-MS/MS is becoming 

the most powerful technique to quantify a large number of eicosanoids simultaneously 

in various biological matrices [37-38]. In addition, the stable isotope dilution LC-

MS/MS is the most specific and sensitive method for eicosanoids and maximal 

specificity has been achieved using multiple reactions monitoring (MRM) system [2].  

2.3 Chemical structure and mass fragments of PGE2 and LTB4   

PGE2 and LTB4 are among the most studied and abundant pro-inflammatory n-6 carbon-

20 metabolites of AA, which are potent mediators of inflammation and other 

physiopathological systems [55-56]. In LC-MS/MS analysis after the analytes are 

separated through the LC column they are allowed to pass through the mass analyzer 

compartment, in which the PGE2 and LTB4 molecules are converted to gas phase 

followed by ion production. The ions or mass fragments are separated in the mass 

analyzer based on their mass-to-charge ratio (m/z). By running the analysis with 

structural analogues deuterated internal standards to control variation in the responses 

system and applying the MRM mode for measurement of the target analytes, the 

quantitative analysis can be carried out successfully [57-58]. The chemical structures of 

PGE2 and LTB4 with their respective deuterated internal standard are shown in Figure 3. 

PGE2 and LTB4 contain two and four double bonds respectively which are indicated on 
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the subscripts of their abbreviated names (PGE2 and LTB4). The typical ion fragments 

for the PGE2 are [M-H] 
¯  

→ 351; [M-H2O-H] 
¯  

→ 333;  [M-2H2O-H] 
¯ 

→ 315; and  

[M- 2H2O-CO2-H]
 ¯ 

→ 271, whereas for the LTB4 also in negative mode are [M-H]
 ¯  

→ 

335; [M-H2O-H]
 ¯ 

→ 317; [M-2H2O-H]
 ¯ 

→ 299; [M-H2O-CO2-H]
 ¯ 

→ 273; and        

[M-C9H17O-H]
 ¯ 

→ 195 (cleaved at C-11) [59]. The internal standards PGE2-d4 (356 

Daltons) and LTB4-d4 (340 Daltons) are fragmented in a similar fashion.  
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OH OH       
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OH OH

COOH
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         Figure 3. Chemical structures of PGE2, LTB4, PGE2-d4, and LTB4-d4 

 

2.4 Doehlert design for optimization of Response Factor  

2.4.1 Response factor (RF) 

It is common to use internal standards with almost similar chemical structure and 

property to that of the compound of interest in order to assist the quantification process.  

It involves preparation of known concentration of analyte [A] spiked with known 

concentration of internal standard [IS], then determination of their signal ratio (SA/SIS) 

and their response factor (RF) computed by the expression [60].  
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                                                             Eq. (1) 

 

Therefore, once RF is determined at a given known concentration of spiked IS, the 

unknown concentration of the analyte can be calculated from their response signals by 

rearranging the expression Eq. 1, assuming that the two factors ([A] and [IS]) exhibited 

a linear relation towards the detector over studied range of concentrations. The 

determination of RF helps saving time and resources instead of repeated preparation of 

calibration curve for each analysis. However, sometimes the linear relation of the 

analytical species varies over the working range [60-62]. Thus it is necessary to estimate 

the amount of IS to be spiked for various concentration ranges of analyte. Experimental 

designs assist to optimization of the concentration level of IS to be spiked on different 

level of analyte in quantification experiments by modelling the RF. The behaviour of 

the RF can be modelled, and optimized by using different type of experimental designs. 

Potential models can be polynomial functions of first (Eq. 2) or second order (Eq. 3 and 

4) and their selection could be based on the RF models statistical acceptability and 

efficiency of prediction [60, 63]. 

 

                                                                                                        Eq. (2)                         

                                                                                        Eq. (3) 

                                                
           

                Eq. (4) 

 

The terms in the above equation represent the intercept      , the linear term 

coefficients (    and     ), the second order interaction effect coefficient         and 

the curvature effect coefficients    
  and    

  .  



17 

 

2.4.2   Doehlert design 
 

Doehlert designs proposed by David H. Doehlert (in 1970) can be used to study the RF 

behaviour as a function of the concentration of analyte [A] and internal standard [IS], 

and also to establish the optimal concentration of internal standard to be used in a 

determined quantitative analysis [61, 64]. The experimental points of a Doehlert design 

are evenly distributed in a hexagon for two variables (Fig. 4A) or a rhombic lattice for 

three variables (Fig. 4B) or the surface of a hyper-sphere for more than three variables. 

For a number of k factors, the total number of experiments to be carried out is given by 

k
2 

+ k + 1. Thus the total number of experiments for two factor and three factor designs 

are 7 and 13, respectively. 

 

 

  Figure 4. Doehlert design for optimizing two variables (A) and three variables (B). 

 

The two-factor Doehlert design (Fig. 4A), a hexagon with vertices 2 to 6 and centre 

point 1, define five levels for factor 1 (X1) and three levels of factor 2 (X2), that is the 

Doehlert matrix dimension is 5   3. In the design each point has equal distance to the 
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centre as well to its neighbour experimental points. According to the design the five 

experimental levels along X1 dimension have coded value -1.00, -0.50, 0.00, 0.50 and 

1.00 respectively. Similarly the three experimental levels along X2 dimension have 

coded value -0.866, 0.000 and 0.866 respectively. Accordingly Doehlert design was 

functional to model the RF behaviour by considering a simultaneous variation of the 

two variables; concentration of analyte and concentration of internal standard [60, 64]. 

 

2.5 Method validation parameters 
 

Method validation, according to the definitions given by the International 

Standardization (ISO/IEC 17025) and the International Conference on Harmonization 

(ICH) definition, is a process of proving or finding evidence that an analytical method 

for particular requirements of specified intended use is fulfilled. Its objective is to 

demonstrate that the procedure, when correctly applied, produces results that are fit for 

purpose [65-66]. It is an important feature of any analytical method since it is closely 

related to the quality of the results [67]. The validation guidelines recommend that an 

analytical method has to be validated before use. The main parameters recommended to 

be considered for validation purpose are: selectivity/specificity, limit of detection and 

quantification (LOD and LOQ), linearity, linear range, precision and accuracy.  

 

2.5.1 Selectivity and Specificity 

 

Selectivity can be defined as the ability of the analytical method to differentiate the 

analyte(s) or internal standard(s) from endogenous components in the sample matrix. To 

assess the selectivity of the method several approaches have been used, the most 

popular approaches are (i) comparison of chromatograms of the blank sample with and 
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without spiking known analytes; (ii) analysis of certified reference materials and (iii) 

comparison of the chromatographic response of the sample with and without all the 

possible interferences [68]. In some cases the term selectivity is used interchangeably 

with specificity, however they are different terms as specificity refers that 100 % 

selectivity or without any interference. The International Union of Pure and Applied 

Chemistry (IUPAC) and other guidelines mention that specificity is the ultimate of 

selectivity [69].  

 

2.5.2 Precision 

Precision is defined as the closeness of agreement between a series of replicate 

measurements obtained under the prescribed conditions [66]. It is expressed by the 

standard deviation (  ), variance (   ), relative standard variation (   ), or 

coefficient of variation (  ) of the replicate analytical measurement results. The 

estimation of the parameter helps to evaluate the level of random error of the 

measurements around the mean value. 

 

   √
∑       ̅   

   

   
                                                                                       Eq. (5)          

   
  

 ̅
                                                                                                 Eq. (6)    

  ̅   
∑   

 
   

 
                                                                                                    Eq. (7)   

 

where:    - standard deviation,    - coefficient of variation,  ̅ - mean value,                

n - number of measurments and n-1 degrees of freedom.  
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2.5.3 Accuracy 

 

Accuracy is the degree of agreement between the experimental value, obtained by 

replicate measurements, and the accepted reference value. Among the strategies to 

evaluate the accuracy of the analytical method the commonly used techniques are: i) 

comparing the measurement result of the analyte in a particular reference material with 

the certified value; ii) comparing the results of the method under investigation with that 

of already established reference method; iii) using standard addition method; and iv) 

calculating percentage of recovery [68]. The percentage recovery, basically for accuracy 

assessment of the effectiveness of sample preparation can be carried out by spiking a 

blank sample matrix with a known concentration of analyte. After extraction of the 

analyte from the matrix, its recovery can be determined by comparing the response of 

the extract with the response of the reference material dissolved in a pure solvent [70-

72]. Each spiked sample with known concentration (C) injected in triplicate and the 

recovery calculated by the expression:  

 

                                   
           

        
                                                          Eq. (8)  

 

 

2.5.4 Limit of detection(LOD) and quantification (LOQ) 

 

The LOD is the lowest concentration or amount of an analyte in a sample that can be 

detected, but not necessarily quantified whereas LOQ is the lowest concentration of an 

analyte in a sample that can be determined with acceptable level of confidence [72].  

Among several methods for estimation of these parameters, commonly applied methods 

[68, 72-73] are:  

http://www.cysonline.org/article.asp?issn=2229-5186;year=2011;volume=2;issue=1;spage=21;epage=25;aulast=Shrivastava#ref11
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 Visual determination, in which the analyte undergo successive dilution up to the 

lowest concentration level that cannot be detected. The concentration level detected 

with acceptable level of confidence is considered the LOD.  

 

 Calculating the signal-to-noise ratio (S/N), usually it is applied to analytical 

methods that exhibit baseline noise in which the peak-to-peak noise around the 

analyte retention time is measured. Subsequently the concentration of the analyte 

that would yield a signal equal to certain value of noise to signal ratio is estimated. 

The noise magnitude can be measured either manually on the chromatogram (Fig. 5) 

or by auto-integrator of the instrument. The signal-to-noise ratio for LOD and LOQ 

correspond to 3 and 10 times respectively.  

 

 

Figure 5. Signal-to-noise examples for LOD and LOQ estimation [70]. 

 

 Calculating from the standard deviation of the blank, it is normally used when the 

blank analysis provide a nonzero standard deviation. By using at least six blank 

analysis results, the LOD is expressed as the analyte concentration corresponding to 

the sample blank value plus three standard deviation and LOQ is the analyte 

concentration corresponding to the sample blank value plus ten standard deviations. 
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                                ̅                                                                       Eq. (9) 

                               ̅                                                                      Eq. (10) 

             where    ̅ - concentration (usually zero),         - blank standard deviation of 

the blank sample.  

However, Eq. (10) is usually applied if LOQ is not determined experimentally [74]. 

 

 Computing from the calibration line at low concentrations, in which at least three 

small concentrations near to the estimated LOQ taken and linear regression of the 

points applied to estimate the LOD and LOQ.  

            
      

 
                    Eq.(11)         

                                        
     

 
                                                       Eq.(12) 

          where:      - residual standard deviation; and   - slope of the calibration curve.  

 

2.5.5 Linearity and Range 

 

Linearity is the ability of an analytical method to provide an analytical response 

proportional to the concentration or the amount of analyte within a specified range. 

Whereas, the range of an analytical method is defined as the interval between the upper 

and lower concentration (amounts) of analyte in the sample (including these 

concentrations) for which it has been demonstrated that the analytical procedure has an 

acceptable level of precision, accuracy and linearity [66]. Mathematically, Linearity is 

expressed as: 

 

 



23 

 

                                                                                                                Eq. (13) 

 

             where:   - analytical response (dependent variable),   - amount of analyte 

(independent variable),   - slope (sensitivity) and   - intercept (error of   

measurement). 

 

The slope ( ), the intercept (   and the coefficient of determination   ) for linear 

regression (Eq. 13) based on least square method are expressed as: 

 

      
 ∑      ∑  ∑   

 ∑   
    ∑   

                                                                Eq. (14)        

    
∑   

  ∑   ∑   ∑       

 ∑  
   ∑   

                                                                       Eq. (15) 

  

  
 ∑      ∑   ∑  

√  ∑  
   ∑    

     ∑  
   ∑   

  

                                          Eq. (16) 

       

It is common practice explaining linearity by calculating the correlation coefficient   ), 

and   value close to unit considered as a sufficient evidence for linearity. However, the 

correlation coefficient close to one does not necessarily imply the linearity of the 

relation; conversely if the relation is linear, the correlation coefficient should be close to 

one [68, 76-78]. Furthermore, the literature recommends the Lack-of-fit or Mandel’s 

fitting test as more suitable tests for the validation of a linear calibration model [79].  

 

On the other hand, it is important to realize that the ordinary least square regression 

assumes that all the responses (y-values) have equal variances (homoscedasticity), but 

in some cases the variance of the responses rises proportionally to the concentration 

(heteroscedasticity). Therefore, the calibration data should be assessed for 
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homoscedasticity; In addition, to avoid the greater influence of the larger concentrations 

on the fitted regression line, the weighted linear regression is recommended [80]. 

   

The weighted linear regression can be obtained by using a weighting factor,    to any 

sum and changing the term n in to  ∑   on the formula of the slope ( ), the intercept 

(   and the coefficient of determination   ) (Eqn. 14 - 16) derived from the unweighted 

linear regression equation. Each data points weighting factor can be calculated by the 

expression:- 

     

 

     

∑
 

     

                                                                              Eq. (17)   

                      

where:        is variance of each point and    is the number of measurements. 

 

Therefore, the slope (  w), intercept (bw) and correlation coefficient (rw) of the weighted 

linear regression can be computed by the following relations respectively.   

 

                        
∑   ∑        ∑     ∑       

∑   ∑    
   ∑       

 
                                                Eq. (18) 
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                                             Eq. (19) 
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               Eq. (20) 
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3. Experimental  
 

3.1 Reagents  

Prostaglandin E2 (PGE2, 99%), deuterated prostaglandin E2 (PGE2d4, 99%), leukotriene 

B4 (LTB4, 97%), deuterated leukotriene B4 (LTB4-d4, 99%) were purchased from 

Cayman Chemical (Ann Arbor, MI, USA). Acetonitrile (liquid chromatographic grade, 

99.8%), formic acid (98%) were obtained from Sigma-Aldrich (St. Louis,MO, USA) 

and isopropanol (100%) obtained from Kemetyl Norge (Vestby, Norway). Water was 

produced using a Millipore Milli-Q water system (Millipore, Milford, USA). 

3.2 Plasma samples preparation 

Blank human plasma sample (approx. 10 mL) from an anonymous donor was used for 

the analysis carried out in the development of an extraction method. From the blank 

plasma 3 mL was spiked with 500 ng/mL of each eicosanoid (PGE2 and LTB4) and kept 

at -80 °C until further experiments. 

 3.3 Selection of the extraction solvents using mixture diagrams 

Liquid-liquid extraction was proposed as the simplest and most rapid method of 

extraction with a selective LC-MS/MS method of analysis. For the development of an 

extraction method the first task was the selection of suitable solvent(s) and their mixture 

composition to extract the PGE2 and LTB4 from the plasma sample.  

The initial selection of potential solvents for extraction was based on published reports. 

Most frequently applied solvents were acetonitrile, methanol, water, formic acid and 

their mixtures. To determine the best solvent or solvent mixture composition for 
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extraction, a simple augmented mixture design (Fig. 6A) and the modified form designs 

like shown on Fig. 6B and 6C with further volume adjustments were used.  

 

Figure 6. Augmented simplex mixture design (A) and modified mixture designs (B and C) 
 

The preliminary experiments for selection of extraction solvent were carried out using 

blank plasma samples spiked with equal amounts of PGE2 and LTB4 (100 ng/mL). The 

general procedure applied was as follows: Based on the selected mixture designs at each 

experimental point triplicate test tubes containing 100 µL plasma samples were treated 

by extracting solvents acetonitrile, methanol, water, formic acid and their (two or three 

component) mixtures. At each individual solvent addition the test tubes were vortex 

mixed for 1 min then centrifuged for 10 min. The obtained solution was visually 

evaluated for its supernatant clearness. From test tubes that provide clear supernatant, 

extract was taken and introduced to LC-MS/MS. The remaining solution was dried in a 

vacuum drier and its residue weighted.  During the experiments the concentration and 

the volume of spiked blank plasma sample were adjusted based on the volume of added 

extracting solvent.  
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The experimental responses from the designs applied for selection of suitable extraction 

solvent and their optimal mixture composition were the visual observation of clearness 

of supernatant after centrifugation, the weight of the precipitate left after extraction, 

and/or the strength of signals or highest recovery after introducing to the LC-MS/MS. 

However, based on the obtained result the mixture of extracting solvent yielding 

relatively clear supernatant and highest peak areas of extracted ion chromatogram in ion 

count per seconds (icps) was selected as the optimal system for extracting PGE2 and 

LTB4 from human plasma. Moreover, during the development of an extraction method, 

to gain maximal signal response and improved detection limit the extracts were exposed 

to passed through a vacuum drier pre-concentration step. 

3.4 Optimization of the amount of internal standards  

The initial blank plasma sample containing PGE2 and LTB4 (500 ng/mL of each 

analyte) was diluted with blank plasma to 1.00, 13.50, 25.00, 37.50 and 50.00 ng/mL as 

described in Fig 7. Moreover; 3.35, 25.00 and 47.50 ng/mL internal standards (PGE2-d4 

and LTB4-d4) in acetonitrile were prepared for optimizing the response factor applying 

Doehlert uniform shell design.  

 

    Figure 7. Preparation of different concentrations of PGE2 and LTB4 plasma solutions 
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The response factor (RF) behaviour was studied and modelled by using Doehlert 

uniform shell design when the concentrations of the PGE2 and LTB4 with their 

respective deuterated internal standards (natural level) were varied simultaneously 

(Table 2). In the Doehlert design as shown on Fig. 8, the LC-MSMS analysis response 

data from samples of seven experimental points were used to develop the models.  

Table 2: Concentration of PGE2, LTB4, PGE2-d4 and LTB4-d4 in blood plasma at each 

experimental point of a two-variable Doehlert design. 

Experiment no. Coded level  Natural levels (ng/mL)   

X1 X2  X1  X2 

 PGE2 LTB4  PGE2 - d4 LTB4 - d4 

1 0.000 0.000  25.00 25.00  25.00 25.00 
2 0. 500 -0.866  37.50 37.50  13.50 13.50 
3 -0.500 0.866  13.50 13.50  47.50 47.50 
4 -0.500 -0.866  13.50 13.50  13.50 13.50 
5 0.500 0.866  37.50 37.50  47.50 47.50 
6 -1.000 0.000  1.00 1.00  25.00 25.00 
7 1.000 0.000  50.00 50.00  25.00 25.00 

 

 

Figure 8. Coded and natural levels of the analytical species over the domain of a two 

variable Doehlert design. 
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At those Doehlert design experimental points based on the obtained signal (peak area) 

of analyte and internal standard, the RF was determined according to the expression 

shown at equation 1 (Eq. 1). Then the RF is explained or modeled based on the second 

order polynomial model (Eq. 4). The adequacy of the developed models from the 

obtained data was evaluated by statistical approach that describes the variation of the 

obtained values to that of the predicted model. In which the variances of the lack-of-fit 

and pure error are estimated by dividing their summation with respective degrees of 

freedom. The variance ratio of the lack-of-fit error to that of pure error known as 

experimental F-value (Fexp.) is used to conclude the model fits of the data by comparing 

with the theoretical F-value (Ftheo.). 

 

3.5 Extraction protocol 

After selecting an optimal solvent system from the applied mixture design (section 3.3), 

the following protocol for the extraction of PGE2 and LTB4 from human plasma was 

proposed: the plasma sample (50 µL) in a micro-vial was treated with 10 µL of formic 

acid (98%). Subsequently 140 µL of acetonitrile (99.8%) containing the internal 

standards (PGE2-d4 at 15 ng/mL and LTB4-d4 at 50 ng/mL) were added to the plasma 

solution and vortex-mixed for 2 minutes, followed by centrifugation at 3500 rpm for 10 

min. The supernatant collected in a conical micro-vial was submitted to LC-MS/MS. It 

is important to highlight that the mentioned levels of internal standards (15 ng/ml PGE2-

d4  and 50 ng/mL LTB4-d4) were selected after optimizing their amounts by the strategy 

describe in section 3.4 and discussed in detail in section 4.2 .  
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3.6 Method validation  

The selectivity of the method was evaluated by extracting the ion chromatogram of the 

analytes and internal standards (PGE2, LTB4, PGE2-d4 and LTB4-d4) in the blank 

sample spiked with and without those compounds.  

The calibration curve using blank plasma samples spiked with PGE2 and LTB4 in the 

concentration range of 1 - 50 ng/mL was studied. Five equally spaced concentration 

levels (1, 12.5, 25, 37.5 and 50.00 ng/mL) in triplicates (as explained in Fig. 7) were 

extracted according to the protocol described in section 3.5 using 15 ng/mL of PGE2-d4 

and 50 ng/mL of LTB4-d4. Weighted regression was also performed for both PGE2 and 

LTB4. The LOD was estimated by            from the standard deviation of six 

injection results of blank samples as well as visually by using consecutive dilution of 

the spiked analyte in plasma and the LOQ was estimated by            experimentally 

[74]. The recovery was determined by comparison of the nominal (spiked blank plasma) 

and calculated concentrations based on the constructed calibration curve models. The 

repeatability of the measurements in the analysis was also evaluated by calculating the 

coefficient of variance (CV) values of the signal ratio of the analyte to that of internal 

standards data for calibration curves.  

 

3.7 Liquid chromatography iontrap mass spectrometry 

The LC-MS used was an Agilent 1100 series LC/MSD trap, SL model equipped with an 

electrospray interface (ESI), a quaternary pump, degasser, autosampler, thermostatted 

column compartment and a variablewavelength UV detector. The column, a Zorbax 
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EclipseC8 RP 150 mm × 4.6 mm, 5 µm (Agilent Technologies, Palo Alto, CA, USA) 

was kept in the column compartment at 40 
o
C. The injection volume was 25 µL with a 

flow rate of 0.5 mL/min for a 25 min analysis time operated in gradient mode solvent 

system. 

 

 

The LC mobile phase system was studied in advance by analyzing the resolution and 

signal responses (peak areas) of PGE2 and LTB4 under isocratic and gradient mode. The 

mobile phase and their proportions used in these experiments were selected based on 

reported articles. The highest resolution and signal response was obtained with the 

following system: Solvent A: acetonitrile/water 63/37 (v/v) containing 0.02% formic 

acid, and solvent B: acetonitrile/isopropanol 50/50 (v/v), run with 100% of solvent A in 

between 0 - 5 min; solvent B was increased to 90% from 5 - 13 min and held until 15 

min; then dropped to 0% by 20 min then held constant to 25 min. The UV detector was 

set at 254 nm. Nitrogen was used as nebulizing (50 psi) and drying gas (8 L/min) at 350 

o
C. The ESI source was operated in negative ion mode and the ion optics responsible for 

getting the ions in the iontrap such as capillary exit, skimmer, lens and octapoles 

voltages were controlled by using the Smart view option with a resolution of 13,000 

m/z/s (FWHM/m/z = 0.6 - 0.7). Complete system control, data acquisition and 

processing were done using the ChemStation for LC/MSD trap software 5.3 from 

Agilent. The monitored fragmentation patterns, recorded in ion counts per second 

(icps), were m/z 351 → 333, 315, 271 for PGE2, m/z 355 → 337, 319, 275 for PGE2d4, 

m/z 335 → 317, 299, 273, 195 for LTB4 and m/z 339 → 321, 303, 277, 197 for LTB4d4. 
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3.8   Quantification of PGE2 and LTB4 in human plasma 

Forty plasma samples kindly donated from different projects of NIFES were analysed 

for their levels of PGE2 and LTB4 by the developed method. The first thirty plasma 

samples were collected in 2009 from a nutritional intervention study involving salmon 

fish and vitamin D. The remaining plasma samples were part of another project at 

NIFES involving patients with inflammatory problems. The forty samples were spiked 

with internal standards and the analytes were extracted by applying the developed 

extraction procedure. The obtained each sample extract was submitted to LC-MS/MS.  

 

3.9    Statistics 

The data is reported as mean and standard deviation. The acceptability of the RF models 

and linear regressions were performed by testing their Fisher ratio at a 95% confidence 

levels. The numbers of replicates used throughout the thesis were mostly triplicates, but 

in some instances it was dictated by the available amount of plasma. 
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4. Results and Discussion 

 

4.1 Selection of the extraction solvents using mixture diagrams 

Several reported methods of extraction were assessed during the development of an 

extraction method for PGE2 and LTB4 in human plasma. The most frequently applied 

extraction techniques prior to LC-MS/MS analysis are solid phase extraction (SPE) and 

repeated liquid-liquid extraction and some uses two or more column separation [39-45]. 

Accordingly, in this work the simple and rapid extraction method that could be applied 

in routine clinical analysis for a very small blood sample was selected to be liquid-

liquid extraction. Its extraction efficiency was maximized by selecting a suitable 

solvent, the optimal composition of solvent mixture and developing proper extraction 

procedure. 

 

From previously reported extraction methods [41-45, 82] and from the current NIFES 

extraction method (Appendix I) the following solvents for the extraction of PGE2 and 

LTB4 from human plasma were selected: acetonitrile, water, methanol, formic acid and 

their mixtures.   

 

The ideal solvent or solvent mixture composition for best extraction was studied by 

applying augmented simplex mixture design (Fig. 6A). From the experiments most of 

the obtained solutions could not provide clear supernatant even after centrifugation, 

because the plasma components (mainly protein) were precipitated immediately and 

form colloidal mixture when acetonitrile added. Consequently the precipitation 

produced before addition of other solvents made further extraction procedures very 
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difficult. Therefore, by modifying the mixture design as shown in Fig. 6B, 400 µL (4   

100 µL gradually) acetonitrile was added after adding other solvents (formic acid with 

water, formic acid with methanol and formic acid with methanol:water (3:1)) to 

precipitate out those precipitating components of the plasma solution and produce clear 

supernatant.  

 

Based on the analysis results from mixture designs (Fig. 6A and Fig. 6B) a qualitative 

result was investigated. That is samples with formic acid, water and acetonitrile 

provided relatively clear solutions, easily separable supernatant from their residue and 

relatively better signal after introduced to LC-MS/MS, provided that the acetonitrile 

was added after adding other solvents. Further studies like as shown in Fig. 6C and 

other trials led to reduce the volume of extracting solvents (formic acid  to 10 µL  and 

acetonitrile to 140 µL) and complete exclusion of water in order to get concentrated 

solution of analytes from a reduced volume (50 µL) of plasma sample. 

 

4.2 Optimization of the amount of internal standards  

When the concentration of analyte and internal standard varied simultaneously, the RF 

behavior was studied by applying Doehlert uniform shell design. Based on the design 

five increasing coded levels of PGE2 and LTB4 (-1.00, -0.50, 0.00, 0.50, 1.00) along the 

x-axis and three increasing coded levels of PGE2-d4 and LTB4-d4 (-0.866, 0.000, 0.866) 

along the y-axis, a total of seven different concentration but with the same concentration 

of PGE2 and LTB4 as well as PGE2-d4 and LTB4-d4 solutions were analyzed in a 

hexagonal design experimental points as shown in Fig. 8.  
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The behaviour of RF of PGE2 with PGE2-d4 and LTB4 with LTB4-d4 was modelled with 

the full-second order polynomial function with six coefficients (Eq. 4), but later some 

models were reduced to lesser coefficients by omitting less contributing coefficients. 

This was done when the adequacy and prediction capacity of the reduced model was not 

significantly affected as compared with the unreduced six coefficients model. The 

adequacy of the developed models was shown by comparing the ratio of experimental 

lack-of-fit to pure error variance at the determined degrees of freedom (Fexp) with Fcrit, 

the summery table is shown in table 3.  

Table 3. Statistical validation summary for the developed RF models. 

Models  Eq.(21) Eq.(22) Eq.(23) Eq.(24) 

Residual variance 1.24x10-2  (4) 1.60 x10-1   (4) 1.05 x10-1  (3) 9.66x10-3   (5) 

Pure error variance 9.17x10-3   (2) 4.43 x10-2   (2) 2.87x10-2   (2) 3.64x10
-3 

  (2) 

Lack-of-fit variance 3.23x10-3  (2) 1.16 x10-1   (2) 7.60x10-2   (1) 6.02x10-3   (3) 

Fexperimental  0.71 2.62 3.31 1.10 

Ftheoretical 18.51 19.00 18.51 19.16 

Ftheoretical is at 95% confidence level and degree of freedom in brackets  

 

4.2.1 Modelling of the RF as a function of PGE2 and PGE2-d4 

Experimentally obtained RF data at the various levels of concentrations of PGE2 and 

PGE2-d4, modelled with six parameters expression (Eq. 4) using regression function. 

The statistical validity of the full-second order polynomial equation for describing the 

RF as a function of PGE2 and PGE2-d4 concentrations was evaluated. However, the six 

parameters can be reduced to five parameters model (Eq. 21) without any significance 

difference of prediction capacity, its statistical acceptability checked by F-test (table 3). 

RF = 1.01 - 8.23 x 10-3 [PGE2] - 9.98 x 10-3 [PGE2-d4] + 2.30 x 10-4 [PGE2][PGE2-d4]     

- 1.09 x 10-4 [PGE2-d4]2                                                                        Eq.(21) 

 



36 

 

The pridiction capacity of Eq. 21 was evaluated statistically. 94.5% of the RF variability 

was explained by the reduced model while by the full six parameters model was 95.5%. 

The RF variation as a simultaneous change of concentration (0 - 50 ng/mL) of PGE2 and 

PGE2-d4 is presented by the graphical representation or contour plot as shown on 

Fig.9A.  

 

          Figure 9 . Contour plot of the response factor (RF) expressed as a function of:             

A) PGE2-d4 vs. PGE2 (Eq. 21) and B) LTB4-d4 vs. LTB4 (Eq. 22). 

As observed from the contour plot almost all of the PGE2-d4 concentration regions are 

suitable to find a constant RF, but it is clearly observed that there is a variation of RF 

below 2.5 ng/mL and slightly around 37.5 ng/mL of PGE2-d4. This constant RF 

consents to select the optimal concentration of the internal standard to be spiked for 

quantitative analysis of PGE2 in plasma. Moreover, from the diagram it is clearly 

noticed that the RF is decreased as the concentration of PGE2-d4 increased, which 

confirms that the sensitivity of the analysis is also declining as the concentration of 

spiked PGE2-d4. 
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 4.2.2 Modelling of the RF as a function of LTB4 and LTB4-d4 

The LTB4 versus LTB4-d4 model evaluation was carried out in the same way as 

described above for PGE2 versus PGE2-d4. The experimental RF value was described by 

the reduced five-coefficient model (Eq. 22). The model expresses 69.6% of the 

experimental variability. 

 

RF = 0.78 + 2.93 x 10-3 [LTB4] - 1.18 x 10-2 [LTB4-d4] + 2.30 x 10-4 [LTB4][LTB4-d4] 

-  2.60 x 10-4 [LTB4]2                                                                                        Eq.(22) 

 

The RF variation due to a simultaneous change of concentration (0 - 50 ng/mL) of LTB4 

and LTB4-d4 is shown by the contour plot (Fig. 9B). In which it is clearly seen that only 

the concentration region of LTB4-d4 above 46 ng/mL is parallel with the LTB4 axis in 

the range of 0 - 50 ng/mL concentration, although the region has relatively less 

sensitivity of the analysis due to its relatively smaller mean of RF (0.35 ± 0.06) as 

compared with lower concentration LTB4-d4 regions. The observed curvature out of the 

stated range can be justified due to the quadratic contribution of LTB4 term. 

On the other hand, in the analysis of eicosanoids or other compounds it is usual to use a 

common internal standard for two or more analytes when there is scarcity of respective 

deuterated internal standards. Accordingly, it is possible to analyse both PGE2 and 

LTB4 using either of PGE2-d4 or LTB4-d4 based on the RF modelled below. 

 

4.2.3  Modelling of the RF as PGE2 vs LTB4-d4 or as LTB4 vs PGE2-d4  

The following two models were modelled to analyse PGE2 using LTB4-d4 and to 

analyse LTB4 using PGE2-d4 to assess the possibility to use one deuterated internal 

standard for two different analytes.  
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4.2.3.1  Modelling of the RF as a function of PGE2 and LTB4-d4 

Different possible polynomial models were evaluated for modelling the RF-behaviour 

of PGE2 with LTB4-d4, finally the four parameter model showing a clear dependence of 

concentration of PGE2, LTB4-d4 and their interaction explain RF behaviour adequately. 

 

RF =1.49 - 2.29 x 10-2 [PGE2] - 2.22 x 10-2 [LTB4-d4] + 4.97 x 10-4 [PGE2][LTB4-d4]               

                                                                                                                                             Eq.(23) 

 

The model expresses 97.8% of the experimental variability and the graphical 

representation (Fig. 10A) of Eq.(23) shows only the concentration region of LTB4-d4 

45-50 ng/mL is parallel with the PGE2 axis in the range of 0 - 50 ng/mL concentration. 

However for samples expected to contain below 40 ng/mL of PGE2, it is possible to 

suggest that in the concentration range 22.5 - 50 ng/mL of LTB4-d4. The adequacy of 

the model was evaluated by the F-test (Table 3) and the model expressed by Eq.(23) is 

well enough to predict the RF over the range of experimental domain of the study. 

  

4.2.3.2  Modelling of the RF as a function of LTB4 and PGE2-d4 

Although the RF behaviour of LTB4 with PGE2-d4 was evaluated for reduced second 

order polynomial models, the full six term second order polynomial model expressed by 

Eq.(24) was best to describe the RF behaviour of LTB4 and PGE2-d4.  

 

RF = 0.54 + 5.84 x 10-3 [LTB4] - 6.57 x 10-3 [PGE2-d4] + 8.44 x 10-5 [LTB4][PGE2-d4] 

- 1.31 x 10-4 [LTB4]2 - 3.75 x 10-5 [PGE2-d4]2                                               Eq.(24) 

 

The graphical representation (Fig. 10B) of Eq.(24) shows the concentration region of 

LTB4-d4 from 5 - 20 ng/mL (RF = 0.49 ± 0.05) and 37.5 - 42.5 ng/mL (RF = 0.36 ± 
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0.05) is parallel with the LTB4 axis in other words RF remain constant in the range of 0 

- 50 ng/mL concentration. It is obvious that the observed curvature out of the stated 

range is due to the quadratic contribution of LTB4 and PGE2-d4.   

 

 

Figure 10. Contour plot of the response factor (RF) expressed as a function of:            

A) LTB4-d4 vs. PGE2 (Eq. 23) and B) PGE2-d4 vs. LTB4 (Eq. 24). 

 

4.2.4 Optimal amount of internal standards for the analysis  

The purpose of optimizing the RF behaviour of PGE2 and LTB4 with internal standards 

in this research was to select the optimal concentration of internal standards to be spiked 

in the plasma samples, in order to determine the concentration of PGE2 and LTB4 in 

plasma applying Eq.(1) or linear caliberation curve. Thus, based on the above four 

models the optimal concentrations of internal standards to be used were selected. 

 

The optimal concentrations of PGE2-d4 to be used in order to analyse PGE2 can be from 

3 - 30 ng/mL or 38 - 50 ng/mL according to (Fig. 9A), as a result 15 ng/mL is chosen as 

optimal concentration of PGE2-d4 to be used for every analysis. The average RF value at 
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the region of this level of concentration is 0.67 ± 0.11. Similarly, the optimal 

concentration of LTB4-d4 to be spiked in the plasma sample in order to analyse LTB4 is 

in the range of 46 - 50 ng/mL based on Fig.9B. Accordingly the concentration 50 ng/mL 

of LTB4-d4 was decided to be used for analysis of LTB4. The average RF value at the 

region of this level of concentration is also 0.35 ± 0.06.  

 

Spiking a plasma sample with 15 ng/mL PGE2-d4 can also serve to quantify the LTB4 

simultaneous with PGE2, since as observed in Fig.10B the RF values change for LTB4 

is not significant around this concentration range. Moreover, 15 ng/mL is relatively 

small quantity of internal standard as compared with using in the concentration range of 

38 - 50 ng/mL, it saves the expense of internal standard. Therefore; for simultaneous 

analysis of PGE2 and LTB4 in a plasma sample, 15 ng/mL PGE2-d4 is chosen. At which 

the average RF-value for LTB4 is 0.49 ± 0.05. Similarly, the optimal concentration of 

LTB4-d4 to be spiked in the plasma sample in order to analyse PGE2 is in the range of 44 

- 50 ng/mL as shown in Fig.10A. Accordingly the concentration 50 ng/mL of LTB4-d4 

was decided to be used for simultaneous analysis of both LTB4 and PGE2 and the 

average RF-value of PGE2 is 0.47 ± 0.27.  

 

4.3 Developed extraction protocol 

Based on the previous sections the selected solvents for the quantitative extraction of 

PGE2 and LTB4 from human plasma were formic acid and acetonitrile (section 4.1) and 

the optimal concentrations of internal standards PGE2-d4 and LTB4-d4 (section 4.2) were 

15 ng/mL and 50 ng/mL respectively. The protocol description was given in detail in 

the experimental section 3.5. Briefly, formic acid (10 µL) and acetonitrile (140 µL 
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containing optimal amounts of internal standards) were added to plasma (50 µL), 

vortex-mixed, centrifuged and supernatant submitted to LC-MS/MS. 

 

According to the analysis procedure, a spiked blank plasma with optimal amount of 

internal standards using the developed extraction protocol submitted to LC-MS/MS 

analysis. The extracted ion chromatograms (EICs) were used for quantitative analysis. 

The EICs of PGE2 and LTB4 with respective deuterated internal standards (Fig. 11) 

provide their respective characteristic fragments in the mass spectra of each compound 

as shown on Fig. 12. The elution time for PGE2 and PGE2-d4 was around 11.2 min 

while for LTB4 and LTB4-d4 around 15.3 min by the conditions set, the total analysis 

time was 25 min.   

 

 

Figure 11.  Extracted ion chromatograms (EICs) of PGE2, PGE2-d4, LTB4 and LTB4-d4 

extracted from spiked human blank plasma.  
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Figure 12. Mass spectra of PGE2, PGE2-d4, LTB4 and LTB4-d4 extracted from spiked 

human blank plasma. 

 

Furthermore, pre-concentrating with vacuum drier as well nitrogen gas drier at room 

temperature was carried out in order to enhance the response signal and the detection 

limit. The result show that signals of eicosanoids has been negligible, even sometimes 

disappeared. This confirms that pre-concentration of eicosanoids with nitrogen gas or 

vacuum drier requires great attention. Especially when analytes are in large proportion 

of acetonitrile the analyte loss was high (Fig. 13), since it is clearly observed in the 

experiments that when acetonitrile mixed with other solvents the analyte loss was 

reduced. 
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 Figure 13. Extracted ion chromatograms (EICs) of PGE2 in acetonitrile without (A) and 

with (B) vacuum drying at room temperature. 

 

4.4   Method validation  

The selectivity of the method was evaluated by extracting the ion chromatogram of the 

analytes and internal standards (PGE2, LTB4, PGE2-d4 and LTB4-d4) in the blank 

sample spiked with and without those analytes. The analysis was highly selective 

towards those eicosanoids showing well resolved ion chromatogram as observed in Fig. 

11. To determine LOD six times blank plasma sample was injected and the standard 

deviation was estimated by applying Eq.(9), (     ̅       ) and again it was visually 

approved by successive dilution of spiked analytes in plasma up to the lowest 

concentration level that cannot be detected. Finally, the LOD was determined to be 0.4 

ng/mL for both PGE2 and LTB4. The LOQ also determined experimentally to be 1 

ng/mL approximating with modified Eq.(10), almost seven times the standard deviation 

(     ̅       ). However, compared with the reported less than two order of 

magnitude pico-level (pg/mL) LOD and LOQ reported by other related methods (eg. 

on-line two-dimensional reversed-phase LC-MS/MS [45, 82] ), the obtained LOD and 

LOQ value for the method is not appreciable to detect concentrations near to the normal 

endogenous levels. However it can serve for the intended purpose of PGE2 and LTB4 

routine analysis in human plasma samples from patients suffering from inflammatory 



44 

 

pain, since the level of these pro-inflammatory biomarkers is expected relatively to be 

high in those patients.  

The linearity of the system was already shown by the Doehlert design in the selected 

range of concentration. The acceptability of the models is also evaluated by statistical F-

test as shown in table 3 or the detail in Appendix II-V. Although getting coefficient of 

determination close to one necessarily do not confirm the linearity of the system, the 

coefficient of determination was determined by the usual way of simple linear 

regression curve in the specified concentration range of analyte (1 to 50 ng/mL) against 

the ratio of signal (peak area) of analyte to that of internal standard (Table 4). That is 

(signal of PGE2/PGE2-d4) = 0.0257[PGE2] – 0.0029 for PGE2 analysis (Fig. 14A) and 

(signal of LTB4/LTB4-d4) = 0.0094[PGE2] + 0.0037 for LTB4 analysis (Fig. 14B), the 

closed bracket in the expressions represent concentration. Their coefficients of 

determination (r
2
) were 0.9605 and 0.9629, respectively. The linearity of the data was 

statistically evaluated using F-test (Appendix VI and VII). The Fexperimental value for 

PGE2 and LTB4 were 0.99 and 0.26 at 95% confidence limit (degree of freedom 3, 10), 

respectively. While the Fcritical is 3.71 at stated confidence limit and degree of freedom 

for both analytes, which confirms that linearity is statistically accepted at 95% 

confidence limit and 3, 10 degree of freedom.  

On the other hand, when the triplicate data points visually observed on the calibration 

line, their distribution seems like dependent of concentration. Thus the weighted 

regression based on Eq. 17-20 was determined assuming the data as heteroscedastic. 

The weighted regression equation were (signal of PGE2/PGE2-d4) = 0.0265[PGE2] – 

0.0087 for PGE2 and (signal of LTB4/LTB4-d4) = 0.0094[PGE2] + 0.0012 for LTB4 
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analysis which have almost comparable slope and intercept values to that of unweighted 

curves, and also the coefficient of determination (r
2
) was relatively low (around 0.66) 

and the acceptability of its linearity was not statistically supported at 95% confidence 

limit for both analytes. Therefore, the linearity was evaluated by unweighted linear 

regression equation.  

  

 

      Figure 14. Linear regression graphsfor PGE2 (A) and LTB4 (B). 

 

Accuracy was also determined by recalculating each sample based on the calibration 

curve equation applying the recovery calculation equation, Eq.(12). The obtained result 

was the recovery of PGE2 falls within 80.54% - 104.96 %, whereas for LTB4 72.34% - 

105.61%. The other parameter precision that is the repeatability of the method was 

evaluated by calculating the coefficient of variation (CV) based on Eq.(6) for all 

Table 4. Experimental data for constructing  PGE2 and LTB4 calibration curves  

Conc. (ng/mL) 

    Signal of     

PGE2/PGE2-d4 

CV 

 (%) 

   Signal of   

 LTB4/LTB4-d4 

CV  

(%) 

1 0.0178±0.0035 19.66 0.0105±0.0018 17.14 

12.5 0.3038±0.0615 20.24 0.1131±0.0236 20.86 

25 0.6444±0.1382 21.44 0.2519±0.0496 19.69 

37.5 1.0087±0.0673 6.67 0.3589±0.0361 10.05 

50 1.2433±0.1674 13.46 0.4632±0.0503 10.85 
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injections at each concentration analysed for calibration curve, thus the CV for both 

analytes was shown in table 4.  

 

4.5 Method application on real plasma samples  

Human plasma samples (40 in number) from different on-going projects at NIFES were 

examined for their levels of PGE2 and LTB4 by the developed extraction method. Based 

on the quantitative analyses (Table 5) the levels of the PGE2 and LTB4 in the majority 

of the first thirty samples were below the quantification level (LOQ) except three 

samples for PGE2 and one sample for LTB4 were above LOQ.  

 

Table 5. Levels of PGE2 and LTB4 in real human plasma samples  

Sample  Concentration (ng/mL)  Sample           Concentration (ng/mL) 

No Name PGE2  LTB4   No Name PGE2  LTB4  

1 ID001 d nd  21 ID030 nd nd 

2 ID002 d nd  22 ID032 d nd 

3 ID003 d nd  23 ID034 nd nd 

4 ID004 1.32±0.22 d  24 ID036 d nd 

5 ID005 d nd  25 ID038 nd nd 

6 ID006 nd nd  26 ID040 nd nd 

7 ID007 nd nd  27 ID041 nd nd 

8 ID008 d nd  28 ID043 d d 

9 ID009 1.21±0.35 nd  29 ID045 nd nd 

10 ID010 d nd  30 ID047 nd nd 

11 ID012 nd nd  31 P-13 B 505.0±56.1 631.6±49.9 

12 ID014 d nd  32 P-21 B 644.67±5.68 741.8±79.1 

13 ID016 nd nd  33 P-25 B 562.82±3.86 769.5±41.1 

14 ID018 d d  34 P-28
 A 36.80±6.54 72.35±4.69 

15 ID020 d nd  35 P-33 C 546.49±6.73 1375.4±96.9 

16 ID021 nd nd  36 P-44 B 45.74±3.94 958.3±85.7 

17 ID023 1.48±0.28 d  37 P-55 D 1031±211 2107 ±357 

18 ID025 d nd  38 P-58
 B 333.1±41.1 756.2±29.1 

19 ID027 nd 1.77±0.41  39 P-102 C 552.1±16.3 939.7±84.2 

20 ID029 nd nd  40 P-312 B 1132.1±27.7 158.0±13.0 

 nd     LOD         

 Superscripts on the sample name A, B, C & D are dilution factors used 2, 24, 30 & 50 respectively. 

 Results are expressed as: mean                       
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Several justifications can be forwarded for the low levels of analytes from the expected 

in the first thirty samples. The main reasons may be the degradation of analytes through 

time as it is kept for more than three years. For instance PGE2 may be degraded to a 

very stable PGA2 as it is reported in the literature [83-86]. However, the levels of 

eicosanoids in the last 10 samples were relatively high when compared to reported [15, 

82] normal endogenous levels of this eicosanoids (< 12 pg/ml). 

 

Therefore, according to the obtained analyses result the proposed method can 

effectively serve as a simple and rapid method for extraction and further analysis using 

LC-MS/MS to estimate the level of PGE2 and LTB4 in blood plasma samples of patents 

suffering from inflammatory pain.   

 

 

 

 

 

 

 

 

 

 



48 

 

5. Conclusions  

The study proposed a simple and most rapid method for the extraction of PGE2 and 

LTB4 from human plasma and subsequent quantification by LC-MS/MS. In the 

experiment simple mixture design has been applied to assist the selection and evaluation 

of extracting solvent by changing the proportions of components of a mixture. The 

design was basic to distinguish the best proportion of extracting solvents. The two-

factor Doehlert uniform shell design was also used to assess the effect of four 

parameters (PGE2, LTB4, PGE2-d4 and LTB4-d4) in modelling of the experimental 

response and selection of the optimal concentration of internal standards to be applied in 

further analysis.  

 

The developed method has considerable significance of reducing analysis time. When it 

is compared with the method of eicosanoids extraction from human plasma and further 

LC-MS/MS analysis that has been used in NIFES (requires total time of analysis 6-8 

hours), the developed method (requires about 50-60 minutes) was many times faster. 

The method was also validated based on the usual validation parameters and evaluated 

for the real plasma samples, works appropriately. Therefore, it can serve as a simple and 

rapid method of extraction in routine clinical analysis to detect and quantify PGE2 and 

LTB4 found in plasma samples collected from patients who are affected by chronic 

inflammation.  
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 APPENDICES 

I. Extraction procedure for PGE2 (Eicosanoids) from human plasma for LC-

MS/MS analysis used in NIFES [43]. 
 

 Plasma sample collected and store at - 80 
o
C until analysis. 

 The 200 µL of 30 ng/mL deuterated internal standard (PGE2-d4) in acetonitrile 

dispensed in to test tube and allowed to be dried under a stream of nitrogen at 

room temperature in a test tube very slowly. 

 Aliquot of human plasma (200 µL) is added to the test tubes containing dried 

internal standard and vortex mixed for 2 min. 

 Then 400 µL methanol:water (3:1) solvent mixture added and vortex-mixed for 30 

s, again 400 µL acetonitrile is added and vortex-mixed for 30 s. 

 The solution centrifuged at 3000 rpm for 10min at room temperature.  

 The supernatant is collected and evaporated to dryness under a stream of nitrogen 

at room temperature. 

 Finally the dried sample reconstituted by 30 µL of acetonitrile; sonicated for 30 s 

and transfered to micro-volume vial for LC-MS/MS analysis 

 

Reported Limitation of the method by the analysts 

 When the stream of nitrogen is applied to evaporate the solvent, the analytes often 

disappear or the amount could be collected is very small, because the solvent 

evaporation step requires strict follow up and lengthy time of evaporation.  

 The overall extraction procedure is relatively time-consuming (not more than 20 

samples/day can be analyzed) to be applied in a routine clinical use. 
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II. Model acceptability for PGE2 and PGE2-d4  
 

RF = 1.01 - 8.23 x 10-3 [PGE2] - 9.98 x 10-3 [PGE2-d4] + 2.30 x 10-4 [PGE2][PGE2-d4] - 1.09 x 

10-4 [PGE2-d4]2    

 

Table 6. Model acceptability for PGE2 and PGE2-d4 

   Peak area  Error Decomposition 

Exp. no  [PGE2] [PGE2-d4] PGE2 PGE2-d4 RFexp. (Residual E)
 2

 (Pure E) 
2

 (L.O.F) 
2

 

1 25.00 25.00 32941 55604 0.59 1.62x10
-3

 3.31x10
-3

 3.00x10
-4

 
1 25.00 25.00 36796 50784 0.73 8.45x10-3 5.57x10-3 3.00x10-4 
1 25.00 25.00 26258 41492 0.63 4.83x10

-8
 2.92x10

-4
 3.00x10

-4
 

2 37.50 3.35 51484 6470 0.71 1.77x10
-4

 0 1.77x10
-4

 
3 13.50 47.50 16001 177931 0.32 1.64x10

-4
 0 1.64x10

-4
 

4 13.50 3.35 23919 6875 0.86 1.77x10
-4

 0 1.77x10
-4

 
5 37.50 47.50 51322 159793 0.41 1.64x10-4 0 1.64x10-4 
6 1.00 25.00 2193 80814 0.68 1.88x10-4 0 1.88x10-4 
7 50.00 25.00 51579 48439 0.53 1.46x10

-3
 0 1.46x10

-3
 

     Sum= 1.24x10-2 9.17x10-3 3.23x10-3 
     DF= 4 2 2 
     Fcrit.= 18.51   

     Fexp.= 0.71 at 95% Confidence limit and 
degree of freedom 2, 2. 

    

 

III. Model acceptability for LTB4 and LTB4-d4  

 

RF = 0.78 + 2.93 x 10-3 [LTB4] - 1.18 x 10-2 [LTB4-d4] + 2.30 x 10-4 [LTB4][LTB4-d4] -2.60 x 

10-4 [LTB4]2 

 

Table 7. Model acceptability for LTB4 and LTB4-d4  

   Peak area  Error Decomposition 

Exp. no  [LTB4] [LTB4-d4] LTB4 LTB4-d4 RFexp. (Residual E)
 2

 (Pure E) 
2

 (L.O.F) 
2

 

1 25.00 25.00 33193 50625 0.66 1.45x10-2 1.97x10-2 3.98x10-4 
1 25.00 25.00 18177 50586 0.36 3.10x10

-2
 2.43x10

-2
 3.98x10

-4
 

1 25.00 25.00 19328 36403 0.53 1.87x10-5 2.44x10-2 3.98x10-4 
2 37.50 3.35 33708 7753 0.39 1.46x10-2 0 1.46x10-2 
3 13.50 47.50 17940 123677 0.51 2.40x10-2 0 2.40x10-2 
4 13.50 3.35 18912 5218 0.89 2.59x10

-2
 0 2.59x10

-2
 

5 37.50 47.50 29609 148085 0.25 1.35x10
-2

 0 1.35x10
-2

 
6 1.00 25.00 863 62565 0.34 2.08x10

-2
 0 2.08x10

-2
 

7 50.00 25.00 50755 64930 0.39 1.58x10
-2

 0 1.58x10
-2

 
     Sum= 1.60 x10

-1
 4.43 x10

-2
 1.16 x10

-1
 

     DF= 4 2 2 
     Fcrit.= 19.00   

     Fexp.= 2.62 at 95% Confidence limit and 
degree of freedom 2, 2. 
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IV.    Model acceptability for LTB4 and PGE2-d4  

 

 RF = 0.54 + 5.84 x 10-3 [LTB4] - 6.57 x 10-3 [PGE2-d4] + 8.44 x 10-5 [LTB4][PGE2-d4] - 1.31 

x 10-4 [LTB4]2-  3.75 x 10-5 [PGE2-d4]2 

 

Table 8. Model acceptability for LTB4 and PGE2-d4
 

   Peak area  Error Decomposition 

Exp. no  [LTB4] [PGE2-d4] LTB4 PGE2-d4 RFexp. (Residual E)
 2

 (Pure E) 
2

 (L.O.F) 
2

 

1 25.00 25.00 33193 55604 0.60 9.99x10
-3

 1.52x10
-2

 5.49x10
-4

 
1 25.00 25.00 18177 50784 0.36 1.93x10-2 1.34x10-2 5.49x10-4 
1 25.00 25.00 19328 41492 0.47 9.72x10-4 5.99x10-5 5.49x10-4 
2 37.50 3.35 33708 6470 0.47 1.04x10-2 0 1.04x10-2 
3 13.50 47.50 17940 177931 0.35 1.76x10-4 0 1.76x10-4 
4 13.50 3.35 18912 6875 0.68 1.03x10

-2
 0 1.03x10

-2
 

5 37.50 47.50 29609 159793 0.23 3.33x10-2 0 3.33x10-2 
6 1.00 25.00 863 80814 0.27 1.47x10-2 0 1.47x10-2 
7 50.00 25.00 50755 48439 0.52 5.52x10-3 0 5.52x10-3 

     Sum= 1.05 x10-1 2.87x10-2 7.60x10-2 
     DF= 3 2 1 
     Fcrit.= 18.51   

     Fexp.= 3.31 at 95% Confidence limit and 
degree of freedom 1, 2. 

 

 

V. Model acceptability for PGE2 and LTB4-d4  

 

RF =1.49 - 2.29 x 10-2 [PGE2] - 2.22 x 10-2 [LTB4-d4] + 4.97 x 10-4 [PGE2][LTB4-d4] 

 

Table 9. Model acceptability for PGE2 and LTB4-d4 

   Peak area  Error Decomposition 

Exp. no  [PGE2] [LTB4-d4] PGE2 LTB4-d4 RFexp. (Residual E)
 2

 (Pure E) 
2

 (L.O.F) 
2

 

1 25.00 25.00 32941 50625 0.65 4.42x10-4 0.002412 7.89x10-4 
1 25.00 25.00 36796 50586 0.73 3.10x10-3 7.62x10-4 7.89x10-4 
1 25.00 25.00 26258 36403 0.72 2.46x10-3 4.63x10-4 7.89x10-4 
2 37.50 3.35 51484 7753 0.59 5.51x10-4 0 5.51x10-4 
3 13.50 47.50 16001 123677 0.46 1.09x10-4 0 1.09x10-4 
4 13.50 3.35 23919 5218 1.14 1.17x10-4 0 1.17x10-4 
5 37.50 47.50 51322 148085 0.44 5.11x10-4 0 5.11x10-4 
6 1.00 25.00 2193 62565 0.88 2.22x10-3 0 2.22x10-3 
7 50.00 25.00 51579 64930 0.40 1.53x10-4 0 1.53x10-4 

     Sum= 9.66x10
-3

 3.64x10
-3

 6.02x10
-3

 
     DF= 5 2 3 
     Fcrit.= 19.16   

     Fexp.= 1.10 at 95% Confidence limit and 
degree of freedom 3, 2. 
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VI. Acceptability of the linear regression model for PGE2 

 

Table 10.  Acceptability of the linear regression model for PGE2 

Concentration  Yexperimental. 
     

(mg/mL) (SA/SIS) Yestimated. Yaverage. (Resid E)^2 (Pure E)^2 (L.O.F)^2 

1 0.01949 0.0228 0.01783 1.097E-05 2.75E-06 2.47E-05 

1 0.01377 0.0228 0.01783 8.159E-05 1.65E-05 2.47E-05 
1 0.02023 0.0228 0.01783 6.585E-06 5.78E-06 2.47E-05 

12.5 0.36699 0.3184 0.303772 0.0023662 0.003997 0.000213 

12.5 0.30008 0.3184 0.306639 0.0003338 4.3E-05 0.000137 

12.5 0.24424 0.3184 0.306639 0.0054918 0.003893 0.000137 

25 0.53647 0.6396 0.644423 0.0106363 0.011654 2.33E-05 

25 0.75833 0.6396 0.640521 0.0257834 0.025489 8.48E-07 

25 0.59663 0.6396 0.640521 0.0018464 0.001926 8.48E-07 

37.5 1.05806 0.9609 1.008747 0.0094505 0.002432 0.002294 

37.5 0.93206 0.9609 1.002339 0.0008291 0.00494 0.001721 

37.5 1.03612 0.9609 1.002339 0.0056655 0.001141 0.001721 

50 1.17639 1.2821 1.243336 0.0111748 0.004482 0.001503 

50 1.11980 1.2821 1.150776 0.0263416 0.00096 0.017246 
50 1.43382 1.2821 1.150776 0.0230189 0.080113 0.017246 

   Sum= 0.1230375 0.141096 0.042317 

   DF= 13 10 3 

   

Fexp.= 0.99 at 95% Confidence limit and 
degree of freedom 3, 10. 

   Fcrit.=         3.71   

 

 

Fig 15. Linear regression graphs for PGE2 using triplicate mean value and error bar. 
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VII. Acceptability of the linear regression model for PGE2 

 

Table 10.  Acceptability of the linear regression model for PGE2 

Concentration  Yexperimental. 
     

(mg/mL) (SA/SIS) Yestimated. Yaverage. (Resid E)^2 (Pure E)^2 (L.O.F)^2 

1 0.01949 0.00977 0.0131 0.01053 1.11E-05 5.83E-07 

1 0.01377 0.01258 0.0131 0.01053 2.73E-07 4.19E-06 
1 0.02023 0.00925 0.0131 0.01053 1.49E-05 1.65E-06 

12.5 0.36699 0.11505 0.1212 0.113074 3.78E-05 3.9E-06 

12.5 0.30008 0.14063 0.1212 0.113074 0.000378 0.000759 

12.5 0.24424 0.08354 0.1212 0.113074 0.001418 0.000872 

25 0.53647 0.30636 0.2387 0.251926 0.004578 0.002963 

25 0.75833 0.2092 0.2387 0.251926 0.000871 0.001826 

25 0.59663 0.24022 0.2387 0.251926 2.32E-06 0.000137 

37.5 1.05806 0.39816 0.3562 0.358911 0.001761 0.001541 

37.5 0.93206 0.35151 0.3562 0.358911 2.2E-05 5.48E-05 

37.5 1.03612 0.32706 0.3562 0.358911 0.000849 0.001015 

50 1.17639 0.51651 0.4737 0.46316 0.001833 0.002846 

50 1.1198 0.41671 0.4737 0.46316 0.003248 0.002158 
50 1.43382 0.45627 0.4737 0.46316 0.000304 4.75E-05 

   Sum= 0.015328 0.01423 0.001098 

   DF= 13 10 3 

   

Fexp.= 0.26 at 95% Confidence limit and 
degree of freedom 3, 10. 

   Fcrit.= 3.71   

 

 

 

Fig 16. Linear regression graphs for LTB4 using triplicate mean value and error bar. 

 


