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Abstract 

Detailed fault zone and relay ramp characterization have only to some extent previously been done in carbonate 

rocks. This study aims to use field data to contribute a better understanding of the deformation related to normal 

faults and relay ramps in carbonate rocks. Specifically, the study focuses on characterization of damage zone 

deformation variations along normal faults, relay ramp complexity and implications for permeability and fluid 

flow in carbonate reservoirs. 

The study area is located within the Hammam Faraun Fault Block of the eastern flank of the Gulf of 

Suez. Here, a relay ramp, bounded by two overlapping N-S trending faults, comprising mainly Eocene pre-rift 

carbonate rocks, is presented. Structural data from outcrop studies form the basis of the field data. 

The field data display a damage zone deformation asymmetry along the studied faults, where the 

hanging wall is generally more deformed than the footwall, and show increased fracture frequencies in the 

proximity to the faults. However, occurrence of shale smear is observed to reduce hanging wall deformation. The 

asymmetric damage zone deformation pattern may be a result of upward propagation of the faults and because 

most of the fault movement is represented by downward movement of the hanging wall, while increased 

fracturing in the proximity of the faults is related to build up of frictional resistance in the fault core, during slip 

events. Decay of stress away from the faults then leads to decreased fracture frequencies. The deformation 

reducing effect on the hanging wall, observed by shale smear, is only a minor observation. It is therefore difficult 

to judge whether this is an isolated occurrence or a recurring pattern. However, the findings do agree well with 

other studies. The deformation along the studied faults also features mainly fault-parallel fractures with 

subordinate fault-perpendicular fractures. Fault-parallel fractures are a common feature along normal faults, 

while fault-perpendicular fractures may have formed as a result of the perturbation effect around growing faults. 

A fault tip zone and a branching point between two faults have also been studied. The tip zone is characterized 

by a splay of minor synthetic and antithetic faults which is well supported by other studies, while the branching 

point displays anomalously high fracture frequencies and may represent a point of single-tip fault interaction. 

Observations from the relay ramp show the fractures are oriented fault-parallel (N-S), fault-oblique (NE-SW and 

NW-SE) and fault-transverse (E-W), where cross-cutting relations reveal that the latter are the youngest. The 

fault-transverse fractures are therefore interpreted to reflect the latest stage of local stress field perturbation 

during fault propagation and overlap. At this point extreme local stress and rotation of the principal stress axes 

made it possible for fractures to grow at high angles to fault strike. Finally, the relay ramp is characterized by 

fracture frequencies only slightly elevated above background fracturing levels, indicating a lower complexity 

than what is expected in a relay zone based on previous studies. This is interpreted to be a result of: (1) large 

separation distance between the ramp-bounding faults compared to relay displacement and (2) large separation 

distance compared to overlapping distance. The relay ramp is therefore interpreted to be a soft-linked relay ramp, 

or, at the most, a soft-linked relay ramp with incipient breaching. 
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1. Introduction 

1.1 Background and rationale 

Areas undergoing crustal extension are characterized by fault blocks separated by normal 

faults, resulting in a decrease of fault angle with increasing extension (e.g. Jackson and 

McKenzie, 1983; McKenzie and Jackson, 1986; Jackson et al., 1988). Such faults evolve 

from propagation and eventual linkage of en echelon arranged fault segments (e.g. Anders and 

Schlische, 1994; Schlische and Anders, 1996). Eventual linkage can be accommodated by 

relay ramps, which are a common feature in normal fault systems. Relay ramps were first 

described in detail by Larsen (1988) as a zone connecting the footwall and the hanging wall of 

two faults, which transfers strain between them. A relay ramp consists of two parallel 

overlapping faults with an area of reoriented bedding, developed as a result of the decrease in 

displacement at the fault tips (Fig. 1.1; Peacock and Sanderson, 1994; Childs et al., 1995). 

 

Figure 1.1: Basic model of a relay ramp (Bense and Van Balen, 2004). 

 

 Peacock and Sanderson (1994) described the evolution of relay ramps into four stages: 

(1) the faults are isolated and do not interact, (2) the faults begin to overlap and form a relay 

ramp with reoriented bedding, (3) fractures connect and start to break the relay ramp, (4) the 

relay ramp is breached by the connection of the two faults to form a composite fault. 

It is important to study relay ramps since they may influence the process of 

hydrocarbon migration and trapping (Peacock and Sanderson, 1994). Individual faults 

generally form a barrier to fluid flow, as faults may juxtapose units of low permeability 
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towards units of high permeability or fault core itself that may act as a seal (Yielding et al., 

1997), whereas relay ramps can act as a cross-fault fluid conduit (Bense and Van Balen, 

2004). This is mainly a result of bed continuity through unbreached, folded relay beds 

(Rotevatn et al., 2009) or juxtaposition of several reservoir units at different stratigraphic 

levels because of high fault displacement gradients (Manzocchi et al., 2010). In the first 

stages of relay ramp evolution presented by Peacock and Sanderson (1994), the footwall and 

hanging wall are connected, offering connectivity across the ramp, while in the later stages 

fractures develop in the ramp, progressively connecting the fault segments making a barrier 

for cross-fault fluid flows (Morley et al., 1990). Fractures transferring displacement between 

the two fault segments are a common feature of relay ramps. The connecting fractures are 

generally oriented oblique to the segments they connect (Peacock and Sanderson, 1994) and 

affect the properties of a reservoir; increased orientation variability and fracture frequency of 

relay ramps lead to a higher permeability (Berkowitz, 1995), where fractures oriented at 

intermediate to high angles relative to fault strike, may increase the cross-fault permeability 

(Rotevatn and Bastesen, 2012). 

 

1.2 Aims and objectives 

This study forms part of the Hammam Faraun Dolomites project by the University of 

Manchester. 

The overall aim of this study is to attempt to improve the understanding of 

deformation systems along normal faults and in relay ramps, in carbonate rocks. Field data is 

used to characterize and quantify the deformation, which is important since internal fault zone 

and relay ramp characteristics are well below seismic resolution. Specifically, this study aims 

to establish damage zone deformation variations along normal faults and relay ramp 

complexity with emphasis on fracture systems complexity, and its implications for 

permeability and fluid flow in carbonate reservoirs. 

 

1.3 Study area 

The study area comprising the current study is located within the Hammam Faraun Fault 

Block (HFFB) of the eastern flank of the Gulf of Suez (Fig. 1.2). The fault block is bounded 

to the west by the NW-SE trending Hammam Faraun Fault that defines the coastline. The 

fault has a throw of c. 5 km, juxtaposing syn- and post-rift sediments with Eocene pre-rift 

carbonate rocks. The fault block is bounded to the east by the Thal Fault and to the south by 
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the Baba-Markha Fault, while the northern boundary lies close to a change in dip regime. The 

area is characterized by a desert climate and cross-cutting wadi systems (dry riverbeds) that 

exposure the studied rocks. 

 

  

 Figure 1.2: The study area. Redrawn from Armstrong (1997). 

 

 The study area features two overlapping N-S trending, antithetic faults that are located 

c. 5.5 km inland from the Hammam Faraun Fault (Fig. 1.2). Between the two faults, is a relay 

ramp featuring beds that are folded into a monocline (Fig. 1.3). The westernmost of the two 

faults bounding the relay ramp is referred to as the Wadi Wasit Fault (WWF) and has a 

maximum throw of c. 250 m (Armstrong, 1997; Sharp et al., 2000a), decreasing in a 

southward direction into the ramp. The northern segment of the WWF includes a splay 

forming an unnamed N-S trending antithetic fault, hereby referred to as the Little Wadi Wasit 
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Fault (LWWF), with a maximum throw of c. 150 m (Armstrong, 1997; Sharp et al., 2000a). 

The easternmost bounding fault is termed the Thal Ridge Fault (TRF), featuring a maximum 

throw of c. 450 m (Armstrong, 1997; Sharp et al., 2000a), decreasing northward into the 

ramp. This means that the WWF and the TRF increase in throw in opposite directions. 

Armstrong (1997) and Sharp et al. (2000a) suggest that the northern end of the TRF is 

connected with the WWF by an unexposed fault, and have interpreted it as a hanging wall 

breached relay zone (sensu Trudgill and Cartwright, 1994; Cartwright et al., 1996). This 

statement will be further addressed in the discussion. 

Figure 1.3: Conceptual figure illustrating the relay zone and the throw distribution along the faults. Modified 

from Sharp et al. (2000a). 

 

1.5 Methodology 

Data was collected during two field seasons in November 2011 and November 2012 in Sinai, 

Egypt. The field methods include fault mapping, recording of fracture frequencies and 

orientations as well as mapping of lithology. 

 Maps from Google Earth were used in the mapping of lithological boundaries and 

faults. Also maps with fault throw made by Armstrong (1997) and Sharp et al. (2000b) were 

studied to get an overview of the faults and later quality controlled in the field. 

Several locations along the faults and in the ramp were chosen to make fracture 

frequency profiles (scanlines) to assess the fracture distribution, where a scanline involves 

recording of fracture frequencies per meter. The scanlines along faults were done sub-

perpendicular to fault strike; most of them were collected in hanging wall because of bad 

exposures in footwall. Several scanlines were collected in the ramp, which together comprise 

a complete scanline transect from the WWF to the TRF. At all locations additional data, such 

as fracture, fault plane and bedding orientations were recorded. 
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The lithology was described and mapped in the entire field area with focus on 

characterizing the mechanical properties between different formations. 
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2. Geological setting 

2.1 Introduction 

The aim of this chapter is to give an overview of the regional geology in the studied area. Part 

2.2 deals with the temporal evolution of the Suez Rift from late Precambrian to present, while 

part 2.3 focuses on the structure of the rift with emphasis on the major fault populations. Parts 

2.4 and 2.5 outline the structural geology and a stratigraphic framework of Hammam Faraun. 

 

2.2 Temporal evolution of the Suez Rift 

The Suez Rift is representing the aborted NW - SE trending extension of the Red Sea Rift 

system which developed in the late Oligocene - Miocene times (c. 24 - 15.5 Ma), as a result of 

a change in relative plate motions between the African and Arabian plates (e.g. Robson, 1971; 

Patton et al., 1994; Khalil and McClay, 2001; Bosworth et al., 2005). The termination of the 

Suez rifting coincides with the initiation of the Dead Sea - Aquaba transform, which 

accommodated further extension in the Red Sea Rift (Cochran, 1983). The rift is up to c. 300 

km long and 80 km wide, and displays half-grabens and rotated normal fault blocks (Moustafa 

and Abdeen, 1992; Patton et al., 1994; Bosworth, 1995; Jackson et al., 2006).  

 

2.2.1 Rift phases 

In Oligocene, right-lateral wrenching in the northern part of the Gulf of Suez occurred, which 

led to deposition of continental sands and conglomerates (Patton et al., 1994). Continental 

rifting began in the southeastern part of the Red Sea area (Bayer et al., 1988) and propagated 

north during the period (Fig. 2.1a; Patton et al., 1994). In the Aquitanian - Burdigalian (23 - 

16 Ma), fluvial and shallow marine sediments were deposited in the rift (Patton et al., 1994) 

and the development of the rift-basin was dominated by slow rates of subsidence (Fig. 2.1b; 

Moretti and Colletta, 1987; Richardson and Arthur, 1988). In the Burdigalian (20,4 - 16 Ma), 

subsidence rates accelerated and remained high throughout the rest of the period (Moretti and 

Colletta, 1987; Richardson and Arthur, 1988), while deep-marine sediments were deposited 

(Patton et al., 1994). This was the time of maximum structural development and a large 

amount of extension of the basin, widening the rift to near present day width, occurred during 

this period (Patton et al., 1994). At the end of this phase the subsidence rates became variable 

and showed a general trend towards slowing (Moretti and Colletta, 1987; Richardson and 

Arthur, 1988). This happened roughly simultaneously with the increasing activity on the Dead 



Chapter 2  Geological setting 

7 

 

Sea Transform, and is thought to have replaced the Gulf of Suez as the site of rifting (Fig. 

2.1c; Patton et al., 1994). In the Langhian - Serravallian (16 - 11,6 Ma), the rift basement 

along the rift shoulders is recorded to be unroofed (Evans, 1990). As subsidence decreased, 

the basin began to fill and a large part of the deformation that the Gulf of Suez had 

experienced were accommodated by the Dead Sea Transform (Fig. 2.1d; Patton et al., 1994). 

In the Serravallian - Messinian (13,7 - 5,3 Ma), the Gulf of Suez and the Red Sea were 

isolated due to possible basin restrictions in the north, and the Dead Sea Transform 

experienced a relatively inactive period (Fig. 2.1d; Patton et al., 1994). In the Pliocene (5,3 - 

2,6 Ma), the activity along the Dead Sea Transform rose (Garfunkel, 1981). This happened at 

the same time as renewed subsidence occurred in the central and southern offshore parts of 

the gulf (Moretti and Colletta, 1987; Richardson and Arthur, 1988). Both this and the present 

day subsidence in the area are likely a response of continued motion of the Dead Sea 

Transform (Fig. 2.1d; Patton et al., 1994). 
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Figure 2.1: Sequential development of the Gulf of Suez from Oligocene to present. Redrawn from Armstrong 

(1997). 
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2.3 Rift structure 

Patton et al. (1994) grouped the faults that determine the shapes of the rotated fault blocks 

into four major populations on the basis of orientation: 

 

(1) The statistically most significant trend is the rift-parallel trend called the clysmic trend, 

with fault strike between 310 and 340° (NW-SE and NNW-SSE). The clysmic trend is found 

throughout the gulf and has been active during the entire phase of rift development (Lyberis, 

1988). The clysmic faults represents both dip-slip (Angelier, 1985) and oblique-slip (Lyberis, 

1988) motion. In the northern part of the Gulf, a subpopulation with strike between 310 and 

315° (NW-SE) is present (Robson, 1971; Moustafa and El Shaarawy, 1987); oriented parallel 

to the coastline at eastern Sinai, for example along the southwestern side of Gebel Hammam 

Faraun and the northeastern edge of the North Galala Plateau. These faults are also aligned 

with major basement lineaments, and may have exploited preexisting basement structures 

during the rifting (Moustafa and El Shaarawy, 1987). 

 

 (2) The second most significant trend, the North-oblique trend, is oblique to the clysmic trend 

with fault strike between 350 and 30° (N-S and NNE-SSW). These faults were active during 

the initial stages of rifting and do not occur uniformly throughout the gulf, but are mostly 

expressed on the surface at the terminations of major rift blocks (Montenat et al., 1988). The 

faults are dominated by dip-slip motion, but also frequently represented by sinistral, strike-

slip motion (Lyberis, 1988; Montenat et al., 1988; Moustafa and Abdeen, 1992) and 

infrequently by dextral, strike slip motion (Moustafa and Abdeen, 1992). 

 

(3) The third trend is the Northwest-oblique trend, with fault strike between 280 and 310° (E-

W and NW-SE). This trend is weakly expressed relative to the two previously described 

trends, and the faults show a preference for dextral strike-slip motion (Angelier, 1985; 

Lyberis, 1988; Montenat et al., 1988), like the Baba-Markha Fault that bounds the Hammam 

Faraun Fault block to the south. 

 

(4) The fourth trend is the cross trend, and is relatively infrequently observed with a 

distinctive fault strike between 50 and 75° (NE-SE and ENE-WSW). These faults are oriented 

near-orthogonal to the clysmic trend, and show significantly less throw relative to the other 

trends (Montenat et al., 1988). The cross trend lies parallel to the most defined preexisting 

basement fabrics. 
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 The interaction of the four fault populations defines the shapes of the rotated fault 

blocks in the Gulf of Suez. It is assumed that the principal direction of extension has been 

nearly perpendicular to the major axis of the rift (Angelier, 1985) or slightly oblique to this 

direction (Lyberis, 1988) throughout the rifting. 

 The rotated fault blocks have been divided into three dip provinces based on along-

strike change of dip of the block-bounding faults (Fig. 2.2; Colletta et al., 1988; Patton et al., 

1994): The northern and southern faults of the rift are predominantly dipping to the NE while 

the central is predominantly dipping to the SW. The dip provinces are thought to be a result of 

large transverse faults trending approximately perpendicular to the axis of the Gulf of Suez 

(Abdine, 1981). 

 

 

Figure 2.2: Cross sections of the Suez Rift displaying the three dip provinces. X being the northern, Y the 

central and Z the southern. The arrows represent the present coastlines. Modified from Sharp et al. (2000b). 

 

2.4 Hammam Faraun Fault Block 

The Hammam Faraun Fault Block (HFFB) (Fig. 2.3) is a rotated fault block (Moustafa and 

Abdeen, 1992), elongated in a NW-SE direction, c. 20 km wide and c. 40 km long, and is 

located within the central dip province (Moustafa, 1996; Jackson et al., 2006). The fault block 

is dipping moderately to the east (12 - 15°) and is controlled to the east and west by block-

bounding faults; the Thal and Hammam Faraun Fault, respectively (Moustafa and Abdeen, 

1992; Gawthorpe et al., 2003; Jackson et al., 2006). These two faults are more than 25 km 

long and dip steeply (60 - 80°) to the SW (Gawthorpe et al., 2003; Jackson et al., 2006). The 

Thal Fault and the Hammam Faraun Fault have up to c. 2 km and c. 5 km displacements, 

respectively (Moustafa, 1996; Young et al., 2003). The dominant strike for both faults is NW-

SE, with subordinate N-S, NNE-SSW and E-W trending segments, creating a zigzag pattern 

in map view (Gawthorpe et al., 2003). The southern margin of the HFFB is bounded by the E-
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W trending, south dipping, Baba - Markha Transfer Fault with a throw of c. 3.5 km, while the 

northern boundary lies close to the northern dip province and are bounded by a N-S trending 

fault system (Moustafa and Abdeen, 1992; Moustafa, 1996; Jackson et al., 2006). The HFFB 

is internally dissected by several short (4-10 km) faults, synthetic and antithetic to the east and 

west block-bounding faults, displaying an en echelon fault array with displacements less than 

1 km (Sharp et al., 2000a; Gawthorpe et al., 2003; Jackson et al., 2006). According to 

Gawthorpe et al. (2003) these faults started out as isolated segments and grew by linkage 

during the rift initiation phase. The relay ramp in focus for this study may likely be formed 

due to a similar growth process. 

 The rotation and faulting of the HFFB are not totally rigid and folding and flexuring 

are observed many places, including several synclines, anticlines and monoclines that are 

related to the rift tectonics. The monoclines are composed of footwall anticline and hanging 

wall syncline pairs, oriented parallel to the faults as a response to fault propagation folding 

and fault drag (Sharp et al., 2000b). Fault perpendicular folds are also observed close to faults 

as a result of displacement variations along strike (Gawthorpe et al., 2003; Jackson et al., 

2006).  
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Figure 2.3: Map of the Hammam Faraun Fault Block, showing the main structural features. From Young et al. 

(2003). 

 

2.5 Stratigraphic framework 

The stratigraphy of the study area can be subdivided into pre-rift (Cambrian to Eocene), syn-

rift (Oligocene to Miocene) and post-rift (Pliocene to Quaternary) deposits (Sharp et al., 

2000b) that overlie the Precambrian metamorphic and crystalline basement rocks (Fig. 2.4; 

Schütz, 1994). 
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Pre-rift 

The lower part of the pre-rift deposits comprises the continental Nubian sandstones of 

Cambrian to early Cretaceous age. The sandstones can further be subdivided into siliciclastic 

Cambrian to Permian age continental deposits and an overlying succession of aeolian and 

fluvial sandstones of the Malha Formation, of Cretaceous age (Bosworth, 1995; Gupta et al., 

1999). The depositional environment during the Cretaceous gradually changed to marine 

conditions and mixed siliciclastic and carbonate sediments of the Raha, Wata and Matulla 

formations were deposited (Moustafa, 2003). In late Cretaceous to Eocene, a succession of 

Figure 2.4: Stratigraphy of the Hammam Faraun Fault Block. Rocks of the field area are shaded grey. Modified 

from Bastesen and Rotevatn (2012). 
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deep to shallow marine carbonates, shales and siltstones were deposited as a result of a marine 

transgression (Abul-Nasr and Thunell, 1987; Kuss et al., 2000). This indicates the 

establishment of a carbonate platform and the succession includes the Sudr, Esna, Thebes, 

Darat, Khaboba and Tanka formations: 

 

 The Sudr Formation (upper Campanian - Maastrichtian) consists of uniform, massive 

white chalk beds, with a thickness of 100-130 m (Schütz, 1994). It contains abundant 

planctonic foraminifera and was deposited in a deep marine environment (Samuel et 

al., 2009). 

 The Esna Formation (Paleocene) is a relatively thin shale unit (15-50 m) with 

interbedded chalky limestone (Robson, 1971; Schütz, 1994). It decreases in thickness 

towards the north, explained by tectonic movement of the Syrian Arc deformation 

(Patton et al., 1994), which happened in the late Cretaceous (Moustafa, 1993). 

 The Thebes Formation (early Eocene) is a deep-water micritic deposit with abundant 

chert bands, deposited in a basin deepening towards the south (Kuss et al., 2000). 

Moustafa and Abdeen (1992) classified the Thebes Formation into three units: (1) a 

lower unit of limestone with chert bands, (2) a middle unit of hard chalky limestone 

and (3) an upper unit of chalky limestone with chert bands and a marly top. The 

formation was most likely partly exposed, eroded and redeposited, because of 

syndepositional slumping in north and phosphatic layers in the southern part of the 

HFFB (Abul-Nasr and Thunell, 1987; Kuss et al., 2000). 

 The Darat Formation (middle Eocene) consists of alternating layers of brown shales 

and white marls, and some limestone (Schütz, 1994). It is relatively rich in molluscs 

and the depositional environment is considered to be lower shelf (Abul-Nasr and 

Thunell, 1987). 

 The Khaboba Formation (upper middle Eocene) is made of shale and marls, 

interbedded with chalky limestone with some flint bands (Schütz, 1994). Some parts 

of the Khaboba Formation is also rich in molluscs and contains some coral heads, and 

a carbonate platform is considered to be the depositional environment (Abul-Nasr and 

Thunell, 1987). 

 The Tanka Formation (upper Eocene) consists of thin interbedded chalky limestone 

and claystone (Moustafa and Abdeen, 1992). The depositional environment is 

considered to be an intertidal carbonate platform (Abul-Nasr and Thunell, 1987). 
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Syn-rift 

The onset of rifting is marked by the presence of basaltic flows, dikes and sills of early 

Miocene age (Moustafa, 1993), restricted to the HFFB (Moustafa and Abdeen, 1992). The 

Miocene syn-rift sediments unconformably overlie the early Miocene rift volcanics 

(Moustafa, 1993). The syn-rift sediments include several units: the Abu Zenima Formation, 

the Nukhul Formation, the Rudeis Formation and the Kareem Formation: 

 The Abu Zenima Formation, of Oligo- Miocene age, consists of non-marine mud-, 

silt- and sandstones with some conglomerate beds (Moustafa and Abdeen, 1992; Sharp 

et al., 2000a), and has been interpreted to be deposited during the rift initiation (Patton 

et al., 1994). 

 The Nukhul Formation is a fluvial to shallow marine clastic deposit (Schütz, 1994) 

characterized by calcareous sandstones and marls (Scott and Govean, 1985). As the 

Abu Zenima formation, the Nukhul Formation has also been interpreted to be 

deposited during the rift initiation (Patton et al., 1994). 

 The Rudeis Formation consists of shales and marls from an open marine environment, 

and are the thickest (average of 500 m) and most widespread of the Miocene 

formations (Schütz, 1994). The sedimentation occurred as the basin were quickly 

subsiding, which made huge thickness variations (Schütz, 1994), and has been 

interpreted to be deposited during the rift climax (Patton et al., 1994). 

 The Kareem Formation (Langhian) is an up to 500 m thick marine succession of 

interbedded sandstones, shales and carbonates with some anhydrites in the lower part 

(Evans, 1988; Salah and Alsharhan, 1997). It was deposited in deltaic and submarine 

fans, while the anhydrites were precipitated in local lagoons (Salah and Alsharhan, 

1997). 

 

Post-rift 

The post-rift exposures are mainly Quaternary sediments, which include deposits in the wadi 

floors and gravel terraces in the troughs of the large synclines and other topographical low 

areas, as well as offshore (Moustafa, 1993). 
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3. Theoretical background 

3.1 Introduction 

The aim of this chapter is to give an overview of the theoretical background needed to 

understand the data, discussion and conclusions of the study. Part 3.2 deals with the current 

theories of faulting, part 3.3 on the damage zones related to fault, while part 3.4 and 3.5 focus 

on the development of fractures. Lastly, part 3.6 gives a basic overview of the effects of shale 

smear. 

3.2 Faulting and fault evolution 

3.2.1 Single faults 

It is important to understand the temporal and spatial evolution of single fault segments. By 

studying the geometry of the fault planes, coal mine studies of fault throw revealed that the 

fault planes are elliptical with maximum throw at the centre and decreasing towards the edges 

(Rippon, 1984). The outer limit of the ellipse is called the tip-line, where the shortest axis of 

the ellipse is parallel to the direction of displacement (Barnett et al., 1987). The displacement 

is greatest near the centre of the fault and decreases towards the tips (Fig. 3.1).  

 

Figure 3.1: Illustration of the displacement distribution of an idealized fault intersecting the surface. Dmax is the 

maximum displacement and L is the length of the fault, and X is distance. 

 

 A scale invariant power law of how the displacement (D) and length (L) of faults are 

related was developed: D=cL
n
, where c is a constant related to material properties of which 

shear modulus is the most important (e.g. Watterson, 1986; Walsh and Watterson, 1988; 

Cartwright et al., 1996). There is no exact value of the exponent n, but based on publications 

it varies from 1.0 (Cowie and Scholz, 1992b) to 2.0 (Watterson, 1986; Walsh and Watterson, 
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1988). This model is however only applicable to growing faults in which the entire fault 

surface is involved in each slip event (Watterson, 1986). Later studies of D and L data have 

been used to modify the power law which gives a linear relationship: D=cL, where c is critical 

shear strain (Cowie and Scholz, 1992a; Dawers et al., 1993; Scholz et al., 1993).  

 

3.2.2 Interacting faults 

There are postulated two general models of how normal faults grow: (Model 1) isolated faults 

growing by radial propagation (Fig. 3.2) and eventual linkage (e.g. Watterson, 1986; Walsh 

and Watterson, 1988; Cowie and Scholz, 1992a; Cartwright et al., 1995); known as the 

“isolated fault model” (sensu Walsh et al., 2003) or “fault growth by segment linkage” (sensu 

Cartwright et al., 1995); or (Model 2) the “alternative growth model” (sensu Walsh et al., 

2002) or the “coherent fault model” (sensu Walsh et al., 2003) where the fault segments 

appear isolated in map-view but, in three dimensions, are components of a single structure 

(Childs et al., 1995; Walsh et al., 2002; Walsh et al., 2003). The fundamental difference 

between the two models is that; (In model 1) each fault is initially isolated and is 

mechanically unrelated to the fault array it will be a component of, while (model 2) suggests 

that each fault segment initially is a part of a mechanically related array (Walsh et al., 2003). 

In the latter model fault lengths are rapidly established and further growth is ceased as faults 

interact, meaning that the faults have essentially constant lengths during most of the growth 

evolution (Walsh et al., 2002). The isolated fault segments observed in map-view of the 

coherent fault model is typically a result of upward or lateral splaying of a single fault 

(Jackson and Rotevatn, in press) and are most applicable where the faults have been 

reactivated (Walsh et al., 2002; Walsh et al., 2003). 
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Figure 3.2: Fault growth by radial propagation through three stages of growth are compared for both models in 

plane view, on a displacement (d) against distance (x) plot, and on a log displacement (D) vs. log length (L) plot. 

A fault growing by radial propagation follows a growth low, as shown earlier. If the material properties are 

assumed to be constant, the increase in length and displacement will follow a linear path in a log D vs. log L plot 

throughout the growth of the fault. Redrawn from Cartwright et al. (1995).  

 

Interacting faults create zones or relays where strain is transferred between the faults. 

Such relay structures where first described by Goguel (1965) and have since been described in 

several tectonic settings all over the world, but it was Larsen (1988) that began to study the 

structures in detail. Morley et al. (1990) were the first to make a classification of transfer 

zones (Fig. 3.3). The transfer zones are divided into pairs of faults that have a common 

footwall or hanging wall, called conjugate transfer zones, and pairs where the hanging wall of 

one fault is the footwall of the other, called synthetic transfer zones. The transfer zone studied 

in the current study is synthetic overlapping, and will hereinafter be described as a relay ramp.  

 

Figure 3.3: Classification of transfer zones after Morley et al. (1990). The transfer zone in the current study is 

synthetic overlapping. 
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A relay ramp is defined by Larsen (1988) as transfer zones that occur between normal 

fault having the same dip direction (Fig. 3.4). The bedding between the fault segments is 

reoriented, maintaining the continuity between the hanging wall and footwall of the fault zone  

(Peacock and Sanderson, 1994). Thus, the ramp dip is defined by the displacement gradient of 

the two overlapping faults. The ramp is often dissected by fractures that transfers 

displacement between the two fault segments (Peacock and Sanderson, 1994), and is also 

often breached by minor faults that connect the two fault segments, called oblique- or lateral-

transfer faults (Larsen, 1988). The ramp is i.e. eventually thought to be breached and create a 

single fault (Peacock and Sanderson, 1994). The closer the spacing between the two 

overlapping fault segments the higher the strain concentration in the ramp is, while with 

increased spacing the strain is distributed larger a greater area (Trudgill and Cartwright, 

1994). 

 

Figure 3.4: Block diagram showing the main features of a relay ramp. The bedding of the relay ramp is 

reoriented to accommodate strain between the two faults. The folding of the bedding leads to formation of faults 

and fractures. The ramp illustrated has been breached at both ends by connecting faults. Redrawn from Peacock 

and Sanderson (1994). 
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Peacock and Sanderson (1994) constructed a theoretical model to describe how a pair of 

normal faults evolve from two isolated faults to one single fault. The model describes the 

displacement evolution of the fault and the topographical changes: 

1. Isolated faults (Fig. 3.5a): The faults are isolated and do not overlap. The d-x profiles are 

normal. 

2. Early relay ramp development (Fig. 3.5b): The faults overlap and topographical changes 

induced by the interaction of the faults develop a relay ramp. The hanging wall of one fault is 

connected with the footwall of the other. The bedding of the ramp is rotated about an axis 

sub-perpendicular to the fault plane. The ramp has a tendency to rotate towards the hanging 

wall. The interaction of the faults change the scaling relationship of individual faults as the 

D/L increases (Cartwright et al., 1995). The d-x profile also changes, becoming steepened 

towards the fault tips related to the portion nearest the point of maximum displacement. This 

is because the displacement transfer between the two fault segments is accommodated by 

rotation of the relay ramp. The total fault displacement of the two overlapping segments if 

added is often at minima in the overlap zone. This is mainly a response caused by the hanging 

wall directed rotation of the relay ramp. Increased amount of overlap decreases the amount of 

dip towards the hanging wall. 
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Figure 3.5: Displacement development and corresponding d-x profiles for each stage of the model. (a) The 

faults are isolated and do not overlap. (b) Interaction of the two faults and a relay ramp begins to develop. The 

displacement is transferred between the faults by rotation. (c) A fully relay ramp is developed. (d) Breaching of 

the relay ramp, and further strain is accommodated by the fault. Redrawn from Peacock and Sanderson (1991). 

 

3. Late relay ramp development (Fig. 3.5c): The dip of the relay ramp continues to increase 

until the ramp has rotated to its limit and begins to break up. The limit is determined by the 

rheology and bed thickness. This stage is also characterized by fractures cutting across the 

ramp trying to connect the two faults. The highest stress concentrations and therefore also the 

amount of connecting fractures occur near the tips of the overlapping fault segments. These 

fractures connect the two fault segments and eventually break the ramp. The orientations of 

the fractures are strongly controlled by the rotational stress. This may be a result of the 

rotation of the ramp towards the hanging wall, from the closure of folds at the fault tips and 

from small-scale connecting faults accommodating displacement. 
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4. Breaching of the ramp (Fig. 3.5d): As the faults grow and displacement increases the relay 

ramp becomes gradually more deformed and rotated. Displacement is transferred between the 

faults until the ramp no longer can accommodate strain by further deformation (Childs et al., 

1995), and it becomes hard linked (Imber et al., 2004) to form a single composite fault. The 

linkage point is marked by a kink/jog in the fault trace. The ramp is now redundant and is 

preserved at approximately the same angle it was breached. If one of end of the ramp breach, 

the area around the other end will be preserved as normal drag. If the ramp breach at both 

ends, it will be preserved as a fault-bound horse. There are three ways of breaching the ramp 

(Fig. 3.6; Childs et al., 1995). The linkage zone is at this point the place of displacement 

minima along-strike of the segmented fault (Dawers and Anders, 1995), but as the composite 

fault grows and displacement accumulates, the displacement minima will eventually diminish 

as well as the kink/jog in the fault trace (Rotevatn and Bastesen, 2012).  

 

Figure 3.6: Three possible ways in which the relay ramp may be breached. (a) Propagation of either the hanging 

wall (shown) or the footwall fault. (b) Propagation of both the hanging wall and the footwall. (c) Secondary 

linking fault. Redrawn from Childs et al. (1995). 

 

Cartwright et al. (1995) made a model for fault linkage with emphasis on the variation of the 

D/L values throughout the linkage process. The model consists of three fault segments 

propagating towards each other (Fig. 3.7). When the segments propagate independently, the 

D/L ratio is constant and will follow the equilibrium line (Fig. 3.7a). Once the stress fields at 

the tips of the segments begin to interact, the faults begin to overlap. At this point the D/L 

value for each individual fault will increase and plot as a point over the equilibrium line. 
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Plotting all the faults together as one composite fault would make L the distance along all the 

faults and D the greatest value of throw on any of the faults. This value would plot as a point 

below the equilibrium line. As long as they propagate as individual segments the point of the 

D/L value will continue to move away from the equilibrium line (Fig. 3.7b). At the final stage 

the relay ramps breach and the three faults link up. This results in an increase of the D value, 

while the value of L remains nearly constant. The new point of the D/L plot will therefore 

move back on the equilibrium line as the scaling relationship is back to normal (Fig. 3.7c). 

 

Figure 3.7: Schematic evolution of three faults. They are compared for both models in plane view, on a 

displacement (d) against distance (x) plot, and on a log displacement (D) vs. log length (L) plot. Redrawn after 

Cartwright et al. (1995). 

 

3.3 Fault damage zones  

Architecturally faults are divided into a fault core and a damage zone (Caine et al., 1996). 

Both are surrounded by the host rock which has a background value of deformation frequency 

(Agosta and Aydin, 2006). The fault core is where the displacement is accommodated at most, 

characterized as a high-stain zone composed of slip surfaces and comminuted rock (Micarelli 

et al., 2003; Bastesen and Braathen, 2010), while a damage zone is defined as the volume of 

deformed rock surrounding the fault core (e.g. McGrath and Davison, 1995; Kim et al., 2004). 

The featured structures within this zone can provide information of fault propagation and 

growth (e.g. McGrath and Davison, 1995; Vermilye and Scholz, 1998, 1999) and fluid flow 

(e.g. Sibson, 1996; Martel and Boger, 1998). The permeability properties differ from fault 

core to damage zone; fault cores have generally low permeability and may therefore act as 

seals, but not always (Billi et al., 2003; Agosta and Aydin, 2006; Micarelli et al., 2006; 

Bastesen et al., 2009); while the damage zones generally have higher permeability featuring 

highly conducting fracture networks (Billi et al., 2003; Rotevatn and Bastesen, 2012). Kim et 
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al. (2004) categorized damage zones into: linking damage zone, tip damage zone and wall 

damage zone (Fig. 3.8). 

 

 

Figure 3.8: Damage zone terminology. The linking damage zone represents where the faults overlap; the wall 

damage zone, the footwall and hanging wall damage zone beyond the overlap zone; tip damage zone, the 

extension of the fault tip (Rotevatn and Bastesen, 2012). 

 

3.4 Fracture development  

A fracture is a surface where the material continuity has been lost (van der Pluijm and 

Marshak, 2004). Fractures can be divided into several types (Fossen, 2010): (1) A shear 

fracture is a slip surface with fracture-parallel movement, and is used for mm- to dm-scale 

displacements. (2) A joint is an extension fracture with extension perpendicular to the walls 

and very little displacement. (3) A fissure is an extension fracture filled with air or fluids. (4) 

A vein is an extension fracture filled with minerals. (5) A dike is an extension fracture filled 

with magma.  

 In fracture mechanics is common to classify fractures into three modes based on the 

displacement field (Fig. 3.9): Mode I is extension with displacement perpendicular to the 

walls of the fracture. Mode II is represented by shear movement parallel to the fracture. Mode 

III is tearing that involves slip parallel to the edge of the fracture (Fossen, 2010).  
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Figure 3.9: Modes of fracture. Mode I: opening, Mode II: sliding, Mode III: tearing. 

 

Peacock and Mann (2005) described the factors controlling the geometry, frequency and 

distribution of fractures in reservoir rocks. They divided the factors into three main parts: 

 

(1) Rock characteristics and diagenetic factors 

Rock characteristics and diagenetic factors are the primary controls on fracturing. Lithology is 

an important factor, where brittle beds tend to be more fractured compared to more ductile 

beds (Ladeira and Price, 1981). Sedimentary structures such as bedding-plane irregularities 

and fossils can initiate fractures (McConaughy and Engelder, 1999). The bed thickness is 

commonly proportional to the mean spacing of joints that from a joint set (Narr and Suppe, 

1991; Gross et al., 1995; Shaocheng et al., 1998). The joint frequencies also tend to be higher 

in thinner beds (Ladeira and Price, 1981). Mechanical stratigraphy is another important 

control. Joints can be inhibited to connect between two brittle beds if the beds are relatively 

thick and less brittle (Helgeson and Aydin, 1991). Fractures can also develop throughout two 

beds, by acting as a single mechanical unit (Finn et al., 2003). Fracture propagation can be 

controlled by the mechanical behavior of the bedding planes (Renshaw and Pollard, 1995). 

Fractures tend, for example, to terminate at bedding-planes that are boundaries between beds 

of very different competence. 

(2) Structural factors  

The style and geometry of fractures can be controlled by the tectonic setting, where the 

fracture orientations are controlled by the stress regime. Extension fractures tend to form 
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perpendicular to the least compressive stress (σ3) (Pollard and Aydin, 1988). The geometry of 

fracture networks is controlled by the palaeostress history, which control the sequence of 

fracture development (Rawnsley et al., 1998; Eyal et al., 2001). An important aspect of the 

palaeostress history is subsidence and uplift (Bahat, 1999). Fractures close to the earth’s 

surface are commonly caused by stress relief induced by uplift (Rawnsley et al., 1998). The 

fractures formed by tectonics are by Rawnsley et al. (1998) thought to be more systematic and 

form distinct sets, while the fractures formed by uplift are nonsystematic. Today it is well 

known that the fracture frequency is increasing in the proximity to faults (Pohn, 1981), and 

that the fracture orientation can change towards a fault because of perturbation of stresses 

(Rives et al., 1992; Petit and Mattauer, 1995; Kattenhorn et al., 2000). By analyzing fracture 

frequencies and orientations one can determine the relationship between the faults and 

fractures, which is an important part of this study. It is also assumed that the fracture 

frequency and complexity are related to curvature and strain in folds (Casey and Butler, 

2004). The timing of structural events is an important control on the fracture distribution. 

Peacock (2001) showed that pre- and post-fault fracture frequencies don’t tend to increase 

towards the fault zone, while syn-fault fracture frequency tend to increase significantly near 

the fault. He also stated that the pre-fault fractures in the fault zone could be opened to form 

veins. Mineralization and diagenesis influence fractures (Laubach, 1988). Pre- and syn-

mineralized fractures are closed or partly closed veins, while post mineralized fractures tend 

to be open. The angle between bedding and fractures are commonly approximately 90° 

(Helgeson and Aydin, 1991), and therefore the dip of the bedding often control the dip of the 

fractures. 

(3) Present-day factors  

The orientations of in situ stresses commonly influence the apertures of open fractures. 

Fractures that are perpendicular to the maximum compressive stress (σ1) tend to be closed, 

while fractures that are perpendicular to σ3 tend to be open. Fluid pressure and in situ stresses 

varies with depth (Sepúlvda and Zack, 1991) and can control the initiation of fractures, and 

which that are open (Secor, 1965). 

These three factors show how geometries, orientations and distributions of fractures 

are controlled. This is important to understand in order to improve predictions and modeling 

(Peacock and Mann, 2005). 

 



Chapter 3  Theoretical background 

27 

 

3.5 Fractures around normal faults and in relay ramps  

Fracture orientations around normal faults were studied by Anderson (1951) who indicates 

that mode I, opening fractures (Fig. 3.9) generally forms perpendicular to the least 

compressive stress (i.e. parallel to the fault strike) (Fig. 3.10a). This theory is based on 

predictions in an extensional regime, but does not consider fracture growth related to stress 

perturbation induced by growing faults (Fig. 3.10b; Kattenhorn et al., 2000). The perturbation 

effect of propagating faults has been documented (e.g. Barton and Zoback, 1994; Maerten et 

al., 2002) to affect orientations of secondary structures such as minor faults and fractures. 

Kattenhorn et al. (2000) argue that fractures propagating across a relay ramp, under 

conditions of remote tectonic tension and lithostatic stress, may be oriented with an oblique 

angle relative to fault strike, but not larger than 30°. They further argue that the relationship 

between fault-parallel and fault-perpendicular remote stresses affect the fracture orientations 

in relay ramps; as the remote fault-parallel stress increases relative to the fault-perpendicular 

stress the relative angle between fractures and faults also increases. 

 

 

Figure 3.10: Prediction of fracture orientations in proximity to normal faults. (a) Fractures oriented parallel to 

the fault strike of normal faults (Anderson, 1951). (b) Fractures oriented at high angles to the fault strike of 

normal faults (Kattenhorn et al., 2000). 
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3.6 Shale smear  

Shale smear if defined as a more or less continuous shale membrane entrained in the fault 

core during fault movement (Fig. 3.11), and was originally used for sandstone-shale 

sequences by (Lindsay et al., 1993), but can be applied in other scenarios like a carbonate-

shale sequence. Core data has shown that continuous shale smear may act as a barrier to fluid 

flow (e.g. Gibson, 1994; Færseth, 2006), and it is therefore important to be able to predict the 

smearing in fault zones. 

 

Figure 3.11: Conceptual model of the evolution of shale smear in a fault zone, modified from (Færseth, 2006). 

As the fault grow the shale smear gets more and more thinned out until it eventually gets discontinuous. 
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4. Field data 

4.1 Introduction 

The purpose of this chapter is to give a detailed description of the studied localities with 

emphasis on fracture frequencies, orientations, lithologies and throw. This was done in order 

to get an overview of the deformation along the faults and in the ramp. Part 4.2 and 4.3 

describe the localities along the faults and in the ramp, while part 4.4 describes hanging wall 

maximum and mean fracture frequency vs. fault throw along WWF and TRF. All localities 

can be seen in Figure 4.1. 

 



Chapter 4  Field data 

30 

 

 

 

 

Figure 4.1: Geological map and cross-sections of the study area based on field work, supplemented by 

Armstrong (1997). (a) Map showing the studied localities. Cross-section markers can be seen on this map (b) 

NE-SW cross-section in the northern part of the study area. (c) NW-SE cross-section through the relay ramp. (d) 

N-S cross-section through the ramp.  

 

4.2 Description of studied localities along faults 

The localities chosen for this study are located along the LWWF, WWF, TRF and in the relay 

ramp. A total of 58 localities were studied (APPENDIX). Each locality involved measurement 

of fracture frequencies and orientations and description of lithology and fault core. All throw 
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values are based on previous work done by Armstrong (1997) and Sharp et al. (2000), and has 

been quality controlled in the field. 

 The inner damage zone is in this thesis defined as the first meters of the scanline with 

fracture frequencies above c. 30 fractures per meter (fpm), while the outer damage zone 

represents the remaining frequencies below c. 30 fpm (i.e. the rest of the scanline). However, 

some places the mean outer damage zone frequency is above 30, which is a result of local 

high fracture frequencies in the outer part of the scanlines. 

 

4.2.1 Background fracturing 

Background fracturing levels in the Thebes Fm. was assessed in Wadi Dolly and Wadi 

Tayeba, at areas that are unaffected by faults (Fig. 4.2). These frequencies were assed in order 

to compare with the frequencies along the LWWF, WWF, TRF and in the relay ramp. 

 In Wadi Dolly both of the grainstones have the lowest fracture frequencies with a 

mean of 4.4 and 4.1 fpm. The packstone and mudstone have higher frequencies with a 

mean of 7.6 and 8.7, respectively. In Wadi Tayeba the grainstone has the lowest 

frequencies with an even distribution of fractures and a mean of 3.4 fpm, while the 

mudstone has higher frequencies with a more irregular distribution and a mean of 8.2 

fpm. 

 At both localities grainstone is observed to have the lowest fracture frequencies, while 

mudstone has the highest. Packstone has values slightly lower than the mudstone. 
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Figure 4.2: Background fracture frequencies from Wadi Dolly (a) and Wadi Tayeba (b).  

 

Table 4.1: Key data from background fractures. 

Locality Mean fracture 

frequency 

Formation 

Wadi Dolly grainstone 1 4,4 Thebes 

Wadi Dolly mudstone 8,7 Thebes 

Wadi Dolly grainstone 2 4,1 Thebes 

Wadi Dolly packstone 7,6 Thebes 

Wadi Tayeba grainstone 3,4 Thebes 

Wadi Tayeba mudstone 8,2 Thebes 

All background localities 6,1 

  

Table 4.1 shows that the mean background fracture frequency for the Thebes Fm. is 6.1 fpm. 

Since the rest of the thesis does not differentiate the lithology of the Thebes Fm., this value 

will be used for comparison. Background fracturing in the Darat Fm. were not assed in the 

current study but work by Bosworth et al. (2012) show a mean background fracturing of 3.5 

fpm. The overall background fracture frequency is therefore assumed to be 3-9 fpm. 

 

4.2.2 Little Wadi Wasit Fault 

The LWWF is a fault splay of the WWF in the northwestern part of the study area. Three 

localities were chosen along the fault: LWWF 1, 2 and 3 (Fig. 4.3a). Both the footwall and the 

hanging wall of the fault consist of the Thebes Fm. and the throw is increasing southwards. 

 LWWF 1 has an even distribution of fractures with a mean of 16 fpm for both the 

footwall and the hanging wall (Fig. 4.3b). LWWF 2 (Fig. 4.4a) has a similar trend for 
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the footwall, but increased fracture frequency close to the fault (Fig. 4.3c). The first 

meters of the scanline involve frequencies up to 69 fpm that decrease away from the 

fault. The first 30 meters of LWWF 3 (Fig. 4.4d) were not assessed due to bad 

exposure. The remaining part of the scanline displays an uneven fracture distribution 

with a peak of 78 fpm, 44 meters away from the fault (Fig. 4.3d). This area is 

characterized as stockwork fractures (4.4b). 

 The main fracture orientation for the LWWF localities is sub-parallel to the fault, with 

subordinate N-S trending and fault sub-perpendicular fractures (Fig. 4.4c). 

 The fractures are mainly characterized as hairline fractures (sub-mm wide) and calcite-

filled fractures (< 1 cm wide), and the fault sub-parallel fractures are generally long (> 

10 m). No shale smear or fault rock lenses are observed and the fault core is 

characterized as a relatively discrete slip surface. 
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Figure 4.3: (a) Map showing the localities. Legend is shown in Fig. 4.1a. Fracture frequencies for localities 

LWWF 1 (b), LWWF 2 (c) and LWWF 3 (d). Fracture orientations are shown as equal area lower hemisphere 

stereonets, showing both the fault plane and fractures along the scanlines. The distance is displayed as negative 

values for the footwall in the graphs, which had to be done in order to put the footwall and hanging wall in the 

same graph. 
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Figure 4.4: (a) Picture of the LWWF at LWWF 2. The most prominent fractures are drawn as red lines. (b) 

Example of stockwork fractures at LWWF 3. See camera cover for scale (c) Three main fracture orientations at 

LWWF 3: fault sub-parallel (red), N-S (black) and fault sub-perpendicular (blue). Note the number of fault sub-

parallel fractures. (d) Picture of LWWF at LWWF 3. The localities of LWWF 1 and 2 can be seen in the 

background. 

Table 4.2: Key data from LWWF. 

Locality Throw Max 

fracture 

frequency 

Mean 

fracture 

frequency 

Inner damage 

zone, mean 

fracture 

frequency 

Outer 

damage zone, 

mean 

fracture 

frequency 

Formation Fault 

plane 

N → S 

LWWF 1 fw c. 40 m 24 17,7 - 17,7 Thebes 340/87 

LWWF 1 hw  31 14,9 - 14,9 Thebes  

LWWF 2 fw  25 19,2 - 19,2 Thebes 330/80 

LWWF 2 hw  69 24,4 40,4 18,2 Thebes  

LWWF 3 hw c. 60 m 78 33,1 - 18,6 (33,1) Thebes 320/75 

 

Table 4.2 shows that both max and mean fracture frequency is increasing southwards as the 

throw also is increasing, and that the fracture frequencies are higher in the hanging wall than 

in the footwall. The fault is slightly turning from N-S to NW-SE, while there are no 
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prominent changes in the outer damage zone value along the fault. The high mean fracture 

frequency (33.1) of the outer damage zone at LWWF 3 hanging wall is the frequency if the 

fracture peak in Figure 4.3d is added to the mean value. 

Summary of the Little Wadi Wasit Fault 

 Higher fracture frequencies in the hanging wall than in the footwall 

 Higher fracture frequencies in the proximity to the fault 

 Fracture frequency is increasing as fault throw is increasing 

 Three fracture orientations (ranged after frequency): fault sub-parallel, N-S trending 

and fault sub-perpendicular 

 Fault core is characterized as a relatively discrete slip surface 

 

4.2.3 Wadi Wasit Fault (north) 

The WWF is the western ramp-bounding fault, and has been divided into four sub-areas based 

on hanging wall lithology, in order to best present along-strike variations. The northern part of 

the WWF comprises two localities: WWF 1 and 2 (Fig. 4.5). The footwall of WWF 1 and 2 is 

of the Thebes Fm., while the hanging wall of both localities is of the Tanka Fm. (Fig. 4.6). 

Only the footwall is exposed at WWF 2. The throw is c. 250 at WWF 1 and slightly 

decreasing towards WWF 2. 

 The highest number of fractures is observed close to the fault for both localities, 

except for the first meter that have relatively low fpm values. The first ten meters of 

the WWF 1 footwall have fracture frequencies in excess of 100 fpm that decrease to c. 

20 fpm 50 meters away from the fault. The first ten meters of the hanging wall of 

WWF 1 have values up to 60 fpm that decrease to c. 20 fpm 20 meters away from the 

fault (Fig. 4.5b). The footwall of WWF 2 has a trend where the first 5 meters have fpm 

values up to 80 fpm that rapidly even out at c. 20 fpm for the rest of the scanline (Fig. 

4.5c). 

 The main fracture orientation for both localities is sub-parallel to the fault, with a 

minor trend sub-perpendicular to the fault. There are in addition small fractures 

oriented in all various directions. 

 The fractures in the hanging wall, of the Tanka Fm., are characterized as hairline 

fractures and hematite- and calcite-filled fractures. The hematite-filled fractures are 

mainly located close to the fault, while calcite-filled fractures occur throughout the 
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scanline. The thickness of the Tanka-beds varies from 90-35 cm and consists mostly 

of bed-bound fractures. The non-bed-bound fractures are generally vertical, fault sub-

parallel oriented. In the footwall of WWF 1 and 2, the fractures are mainly 

characterized as hairline fractures and calcite-filled fractures. Here the fault sub-

perpendicular fractures are the most thoroughgoing (Fig. 4.6b), longer than 10 meters. 

 Shale smear occurs at both localities represented by the Khaboba Fm. shales in the 

fault core (Fig. 4.6a). The Khaboba Fm. is observed to be thinnest at WWF 1 and 

widening out both north and south of the locality (Fig. 4.6d). These were the only two 

localities along the WWF with shale smear. 
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Figure 4.5: (a) Map showing the localities. Legend is shown in Fig. 4.1a. Fracture frequencies for localities 

WWF 1 (b) and WWF 2 (c). Fracture orientations are shown as equal area lower hemisphere stereonets, showing 

both the fault plane and fractures along both scanlines. 

 

 

Figure 4.6: (a) Locality WWF 1, showing the fault core with Tanka Fm. in the hanging wall and Thebes Fm. in 

the footwall and the Khaboba Fm. as shale smear. The Tanka-beds are sub-horizontal close to the core while 

dipping c. 20-40° further away. The Thebes-beds are steeply dipping close to the fault and evens out at c. 20° 

away from the fault. (b) Thoroughgoing fractures, sub-perpendicular to the fault (red) and fractures sub-parallel 

to the fault (blue) in the Thebes Fm. at WWF 1 footwall. (c) Tanka-beds at WWF 1 hanging wall. (d) The 

Khaboba Fm. shale smear is thinning out at WWF 1. Note that there are two scales because of the perspective of 

the picture.  
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Table 4.3: Key data from WWF (north). 

Locality Throw Max 

fracture 

frequency 

Mean 

fracture 

frequency 

Inner 

damage zone, 

mean 

fracture 

frequency 

Outer 

damage zone, 

mean 

fracture 

frequency 

Formation Fault 

plane N → S 

WWF 1 fw  131 45,8 59,1 23,4 Thebes   

WWF 1 hw c. 250 m 64 22,4 46,7 18,7 Tanka 

WWF 2 fw < c. 250 m 89 29,8 38,8 23,3 Thebes 313/77 

 

Table 4.3 shows that there are higher max fracture and damage zone frequencies in the 

footwall than in the hanging wall. Both max and mean fracture frequency are decreasing 

towards south as the throw also is decreasing. 

Summary of the Wadi Wasit Fault (north) 

 Higher fracture frequencies in the footwall than in the hanging wall 

 Higher fracture frequencies in the proximity to the fault 

 Fractures are oriented in all various directions but mainly fault sub-parallel with 

subordinate fault sub-perpendicular fractures 

 Fault core is characterized by shale smear 

 

4.2.4 Wadi Wasit Fault (upper central) 

The upper central part of the Wadi Wasit Fault includes the localities: WWF 3, 4, 5 and 6 

(Fig. 4.7). The footwall is of Thebes Fm., while the hanging wall is of Darat Fm. for all 

localities. The Darat Fm. is characterized as alternating layers of mudstone and 

wacke/packstone, while the Thebes Fm. is mainly packstone. Only the hanging wall had 

exposures that were measurable in this part. The throw is less than c. 250 m at WWF 3 and 

decreasing to less than c. 200 m towards WWF 6. 

 WWF 3 and 4 show high fracture frequencies close to the fault, while the first meters 

of WWF 5 and 6 were not measured. The fracture frequency stabilizes around 20 fpm 

at WWF 4 and 6, while it is more varied at WWF 3 and 5. Both latter localities have 

small peaks around 13 meter away from the fault of respectiviely 53 and 54 fpm. 

These are characterized as stockwork fractures. 

 The fracture orientation at WWF 3 is mainly fault sub-parallel, while at WWF 4, 5 and 

6 the main orientation is fault sub-perpendicular. 

 The most thoroughgoing/longest fractures are oriented N-S. WWF 3 is just below 

where LWWF and WWF connect. All the fractures are mainly characterized as 
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hairline fractures and calcite-filled fractures, and the fault core is observed as a 

relatively discrete slip surface. 
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Figure 4.7: (a) Map showing the localities. Legend is shown in Fig. 4.1a. Fracture frequencies for localities 

WWF 3 (b), WWF 4 (c), WWF 5 (d) and WWF 6 (e). Fracture orientations are shown as equal area lower 

hemisphere stereonets, showing both the fault plane and fractures along the scanlines. 

 

Table 4.4: Key data from WWF (upper central). 

Locality Throw Max 

fracture 

frequency 

Mean 

fracture 

frequency 

Inner 

damage zone, 

mean 

fracture 

frequency 

Outer 

damage zone, 

mean 

fracture 

frequency 

Formation Fault 

plane 
N → S 

WWF 3 hw < c. 250 m 111 42,1 58,8 32,0 Darat 350/60 

WWF 4 hw < c. 250 m 52 20,9 45,8 12,7 Darat 336/62 

WWF 5 hw c. 200 m 49 35,6 - 34,1 Darat 011/66 

WWF 6 hw < c. 200 m 44 25,3 - 24,0 Darat 004/65 

 

Table 4.4 shows that WWF 3 has the highest fracture frequency and most fractured damage 

zone. The max and mean fracture frequency at WWF 4 and 5 are naturally lower because of 
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no data from the closest meters to the fault. As the throw is decreasing southwards, the max 

fracture frequency is also decreasing. 

Summary of the Wadi Wasit Fault (upper central) 

 Higher fracture frequencies in the proximity of the fault 

 Max and mean fracture frequency is decreasing as the fault throw is decreasing 

 Fractures are mainly oriented sub-perpendicular to the fault with subordinate fault sub-

parallel fractures 

 Fault core is characterized as a relatively discrete slip surface 

 

4.2.5 Wadi Wasit Fault (lower central): 

The lower central part of the Wadi Wasit Fault includes the localities: WWF 7, 8, 9 and 10 

(Fig. 4.8). Both the footwall and hanging wall of all localities are of the Thebes Fm. WWF 7, 

8 and 9 comprise scanline of the hanging wall, while WWF 10 comprises scanline of both the 

footwall and the hanging wall. The throw is between c. 200-150 m at WWF 7 and is 

decreasing below 75 m at WWF 10. 

 The fracture frequency at WWF 7 and 8 stabilizes at c. 20 fpm ten meter away from 

the fault, while it is higher and more varied at WWF 9 and 10. At WWF 8, 9 and 10 

higher fracture frequencies close to the fault are observed, where the first meters of 

WWF 9 have frequencies over 100 fpm (Fig. 4.9a). The hanging wall of WWF 10 

(Fig. 4.9b) has a higher fracture frequency than the footwall.  

 At all localities the fractures are mainly oriented sub-parallel to the fault and are 

generally characterized as hairline fractures and calcite-filled fractures. The fault core 

is characterized as both a relatively discrete slip surface (Fig. 4.9a) and fault rock 

lenses (Fig. 4.9b). 
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Figure 4.8: (a) Map showing the localities. Legend is shown in Fig. 4.1a. Fracture frequencies for WWF 7 (b), 

WWF 8 (c), WWF 9 (d) and WWF 10 (e). Fracture orientations are shown as equal area lower hemisphere 

stereonets, showing both the fault plane and fractures along the scanlines. 
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Figure 4.9: (a) WWF 9 showing the fault plane (relatively discrete slip surface) and the highly fractured Thebes 

Fm. hanging wall. Note the hammer for scale. (b) WWF 10 footwall to the left and hanging wall to the right. The 

fault core is characterized as a fault rock lense. 
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Table 4.5: Key data from WWF (lower central) 

Locality Throw Max 

fracture 

frequency 

Mean 

fracture 

frequency 

Inner 

damage zone, 

mean 

fracture 

frequency 

Outer 

damage zone, 

mean 

fracture 

frequency 

Formation Fault 

plane N → S 

WWF 7 hw c. 200 - 75 m 21 11,7 - 11,7 Thebes  

WWF 8 hw c. 200 - 75 m 46 24,2 38,4 17,1 Thebes  

WWF 9 hw c. 75 m 100+ 48,5 72,0 38,6 Thebes 354/53 

WWF 10 fw  72 34,9 53,5 33,5 Thebes  

WWF 10 hw < c. 75 m 85 44,1 65,0 40,9 Thebes 

 

Table 4.5 shows that both max and mean fracture frequency at WWF 7 (no data from the 

eleven closest meters to the fault) and 8 are relatively low, while the frequencies are increased 

at WWF 9 and 10. The mean fracture frequency for both the inner and outer damage zone at 

WWF 9 and 10 hanging wall are quite similar, while the footwall of WWF 10 has slightly 

lower values. In this part of the fault the fracture frequency is increasing southwards as the 

fault throw is decreasing, in contrast to the rest of the localities along the WWF. 

Summary of the Wadi Wasit Fault (lower central) 

 Higher fracture frequency in the hanging wall than in the footwall 

 Higher fracture frequency in the proximity of the fault 

 Max and mean fracture frequency is increasing as the fault throw is decreasing 

 Fractures are oriented both fault sub-parallel and sub-perpendicular 

 Fault core is characterized as both a relatively discrete slip surface and fault rock 

lenses 

 

4.2.6 Wadi Wasit Fault (south) 

The southern part of the Wadi Wasit Fault includes the localities: WWF 11-14 (Fig. 4.10). 

Both the footwall and hanging wall of all localities are of the Thebes Fm. WWF 14 includes 

scanline of the footwall and hanging wall, while the rest only comprise the hanging wall. 

WWF 14 is the southernmost locality where the Wadi Wasit Fault is observed (4.11b). At 

WWF 11 the throw is c. 75 m, decreasing to less than c. 65 m at WWF 14. 

 WWF 11 has no data from the first 27 meters of the scanline and does only measure 

fractures from the outer damage zone. WWF 12 and 13 show high fracture frequencies 

close to the fault that even out around 20 fpm, respectively 3 and 10 m away from the 

fault (Fig. 4.11a). At the footwall of WWF 14 the fracture frequency is slightly higher 
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close to the fault and even out below 20 fpm, except for a peak of 44 fpm 14 meters 

away from the fault where the scanline interfere with a minor fault or a fracture 

corridor. The hanging wall of WWF 14 has also a slightly higher fracture frequency 

close to the fault that even out below 20 fpm 8 meters away from the fault. 

 At WWF 11 the fault is oriented approximately N-S, based on observations from map. 

This means that the main fracture orientation at WWF 11, 12, 13 and 14 is fault sub-

parallel, while there also is a minor trend of fault sub-perpendicular fractures at the 

three latter localities. 

 All fractures are generally characterized as hairline fractures and calcite-filled 

fractures. At WWF 14 no main fault is observed, but rather a splay of minor faults as 

the locality is in the southern tip area of the WWF (Fig. 4.11b). The fault core is 

characterized as a relatively discrete slip surface (Fig. 4.11a). 
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Figure 4.10: (a) Map showing the localities. Legend is shown in Fig. 4.1a. Fracture frequencies for localities 

WWF 11 (b), WWF 12 (c), WWF 13 (d) and WWF 14 (e). Fracture orientations are shown as equal area lower 

hemisphere stereonets, showing both the fault plane and fractures along the scanlines. 
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Figure 4.11: (a) WWF 13 displaying a relatively discrete slip surface. (b) WWF 14 with several small synthetic 

and possibly antithetic faults. The one in the middle has been used as the main fault in the scanline. The fault to 

the right interferes with the peak in WWF 14 footwall scanline. 

 

Table 4.6: Key data from WWF (south). 

Locality Throw Max 

fracture 

frequency 

Mean 

fracture 

frequency 

Inner 

damage zone, 

mean 

fracture 

frequency 

Outer 

damage zone, 

mean 

fracture 

frequency 

Formation Fault 

plane 
N → S 

WWF 11 hw < c. 75 m 25 15,8 - 15,8 Thebes  

WWF 12 hw c. 65 m 49 16,3 34,7 12,8 Thebes 307/60 

WWF 13 hw c. 65 m 92 35,4 52,2 21,0 Thebes 322/70 

WWF 14 fw  44 13,9 24,5 13,3 Thebes  

WWF 14 hw < c. 65m 39 17,7 28,6 13,9 Thebes 328/65 

 

Table 4.6 shows that the max, mean and mean damage zone frequencies are increasing from 

WWF 11-13, but decreasing from WWF 13-14. The footwall and hanging wall of WWF 14 

have quite similar fracture frequencies. 
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Summary of the Wadi Wasit Fault (south) 

 Higher fracture frequency in the proximity to the fault 

 Fractures are mainly oriented both fault sub-parallel and sub-perpendicular 

 Fault core is characterized as a relatively discrete slip surface 

 Fault tip zone is characterized as a splay of small faults and fractures oriented fault 

sub-parallel, sub-perpendicular and N-S 

 

Summary of the entire Wadi Wasit Fault  

As a general trend along the Wadi Wasit Fault the fracture frequencies are decreasing towards 

south as the fault throw is decreasing, and higher fracture frequencies are observed in the 

hanging wall than in the footwall, except for localities where shale smear is present. The 

fractures are mainly oriented sub-parallel to the fault, but a fault sub-perpendicular trend 

becomes stronger in the overlapping part of the fault. The fault core is characterized as shale 

smear in the northern part of the fault, while as relatively discrete slip surfaces and fault rock 

lenses from WWF 3 and southwards. 

 

4.2.7 Thal Ridge Fault (north)  

The Thal Ridge Fault is the eastern ramp-bounding fault. The localities along the fault have 

been divided into two sub-areas in order to best present along-strike variations. All localities 

along the TRF have a footwall of the Thebes Fm. and a hanging wall of the Darat Fm. The 

northern part of the Thal Ridge Fault includes the localities TRF 1, 2 and 3 (Fig. 4.12). TRF 2 

includes scanline of the footwall and hanging wall, while the rest only comprise the hanging 

wall. The throw at TRF 1 is c. 250 and is increasing towards TRF 3 where it is more than c. 

455 m. 

 TRF 1 and 2 have a higher fracture frequency close to the fault, while TRF 3 has a 

more even fracture distribution. The hanging wall of TRF 2 is a very complex locality 

a will be given a further description (Fig. 4.13): The first 17 meter of the scanline 

comprises the upper part of the Darat Fm. Then there is a 13 meter thick sequence of 

clay with gypsum-filled stockwork fractures and a thin layer of glauconitic sand that 

marks the boundary between the upper and lower Darat Fm. This sequence also 

contains a minor fault about 30 meters away from the main fault. The rest of the 

scanline consists of the lower Darat Fm. 
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 The fractures at all localities are mainly oriented sub-parallel to the fault, while at TRF 

2 there is a minor trend oriented sub-perpendicular to the fault. There are in addition 

small fractures oriented in all various directions. 

 The fractures are generally characterized as anastomosing hairline fractures and 

calcite- and some gypsum-filled fractures located in the muddier units. The fault core 

is characterized by fault rock lenses. At TRF 3 the surface is very weathered which 

add an uncertainty to the measured frequency. The exact number of fractures may 

therefore be higher than observed. 
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Figure 4.12: (a) Map showing the localities. Legend is shown in Fig. 4.1a. Fracture frequencies for localities 

TRF 1 (b), TRF 2 (c) and TRF 3 (d). Fracture orientations are shown as equal area lower hemisphere stereonets, 

showing both the fault plane and fractures along the scanlines. 

 

 

Figure 4.13: TRF 2 hanging wall where the grey area to the right is the fault plane. The figure is composed of 

several pictures where the black line marks a change in profile orientation. The black unit is the glauconitic sand 

that marks the boundary between upper and lower Darat Fm. 
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Table 4.7: Key data from TRF (north). 

Locality Throw Max 

fracture 

frequency 

Mean 

fracture 

frequency 

Inner 

damage zone, 

mean 

fracture 

frequency 

Outer 

damage zone, 

mean 

fracture 

frequency 

Formation Fault 

plane N → S 

TRF 1 hw c. 410 m 100+ 58,9 58,9 - Darat 346/85 

TRF 2 fw  51 18,7 29,2 12,3 Thebes  

TRF 2 hw c. 455 m 106 37,4 53,1 25,4 Darat 002/58 

TRF 3 hw > c. 455 m 34 30,6 30,6 - Darat 006/83 

 

Table 4.7 shows that the hanging wall of TRF 1 and 2 has similar values both for max fracture 

frequency and for the damage zone frequencies, while TRF 3 has relatively very low fracture 

frequencies. The fracture frequencies therefore decrease to the south as the throw is 

increasing. 

Summary of the Thal Ridge Fault (north) 

 Higher fracture frequencies in the hanging wall than in the footwall 

 Higher fracture frequencies in the proximity to the fault 

 Fractures are mainly oriented fault sub-parallel, but are oriented in all various 

directions 

 Fault core is characterized by fault rock lenses 

 

4.2.8 Thal Ridge Fault (south)  

The southern part of the Thal Ridge Fault includes the localities: TRF 4, 5 and 6 (Fig. 4.14, 

4.15). TRF 6 includes scanline of the footwall and hanging wall, while the rest only comprise 

the hanging wall. The throw is relatively stable and is expected to be above 400 m. 

 TRF 4, 5 and 6 footwall have fracture frequencies slightly higher close to the fault and 

stabilize around 20 fpm away from the fault. TRF 6 hanging wall has a very high 

fracture frequency (100+ fpm) close to the fault that is decreasing away from the fault. 

 The main fracture orientation at all localities are fault sub-parallel, with a minor trend 

of fault sub-perpendicular fractures. 

 The fractures close to the fault are commonly anastomosing hairline fractures, while 

the rest is characterized as distributed calcite-filled fractures. It is uncertain whether 

the start of the TRF 4 scanline is adjacent to the fault, and may therefore instead start 

some meters away from the fault. At TRF 5 the surface is very weathered as at TRF 3 

and there may therefore be more fractures than what was observed. 
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Figure 4.14: (a) Map showing the localities. Legend is shown in Fig. 4.1a. Fracture frequencies for localities 

TRF 4 (b), TRF 5 (c) and TRF 6 (d). Fracture orientations are shown as equal area lower hemisphere stereonets, 

showing both the fault plane and fractures along the scanlines.  

 

 

Figure 4.15: Locality TRF 6. Thebes Fm. in the footwall and the Darat Fm. in the hanging wall. The fault core is 

characterized as a fault rock lense. 
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Table 4.8: Key data from TRF (south). 

Locality Throw Max 

fracture 

frequency 

Mean 

fracture 

frequency 

Inner 

damage zone, 

mean 

fracture 

frequency 

Outer 

damage zone, 

mean 

fracture 

frequency 

Formation Fault 

plane N → S 

TRF 4 hw > c. 400 m 30 16,4 24,5 14,4 Darat  

TRF 5 hw > c. 400 m 36 20,7 29,0 17,1 Darat 340/82 

TRF 6 fw  42 22,2 34,0 19,0 Thebes  

TRF 6 hw > c. 400 m 100+ 69,0 69,0 - Darat 358/68 

 

Table 4.8 shows that the fracture frequencies are increasing towards the south from TRF 4-6, 

as the fault throw is increasing. A higher fracture frequency is also observed in the hanging 

wall than in the footwall of locality TRF 6. 

Summary of the Thal Ridge Fault (south) 

 Higher fracture frequencies in the hanging wall than in the footwall 

 Higher fracture frequencies in the proximity to the fault 

 Max fracture frequency is increasing as the fault throw is increasing 

 Fractures are mainly oriented sub-parallel to the fault with subordinate fault sub-

perpendicular fractures 

 

Summary of the entire Thal Ridge Fault  

The general trend along the Thal Ridge Fault is a high fracture frequency, except for locality 

3, 4 and 5 were low frequencies may be a result of measurement errors. This will be further 

addressed in the discussion. The fractures are generally oriented sub-parallel to the fault with 

subordinate sub-perpendicular fractures. Rock lenses and relatively discrete slip surfaces 

characterize the fault core. 

 

4.3 Description of the ramp  

The ramp (Fig. 4.16) is constrained by the Wadi Wasit Fault to the west and the Thal Ridge 

Fault to the east and consists mainly of the Thebes and Darat Fm., depending on the northern 

extent of the Thal Ridge Fault. The spacing between the two faults is 1.2 km in the ramp and 

the overlapping distance is maximum 2.4 km and minimum 1.2. The overlapping distance is 

uncertain because of bad exposures of the northern part of the TRF. To the south the ramp 

starts as the top of a monocline, in the Thebes Fm., with beds dipping c. 10° to the north. In 

this area the ramp is cut by a minor fault (c. 30 m throw) trending NW-SE. Further north the 
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monocline dips steeply to the north (up to 60°) until it evens out to around 20° to the north 

where the Darat Fm. is present. In the easternmost part of the ramp the beds are slightly 

turning, dipping 30-50° to the NE. 

 

Figure 4.16: Overview of the ramp, looking down the ramp, towards north (a) and looking obliquely up the 

ramp, towards southeast (b). 

 

 In order to assess the fracture systems in the relay ramp, a transect across the ramp, 

from WWF to TRF was made (Fig. 4.17). The transect consists of several scanlines measured 

in both the Thebes Fm. (Fig. 4.18a and b). and the Darat Fm. (Fig. 4.18c) across the ramp: 15 

from the Thebes Fm., where two of them were taken in a N-S direction and eight from the 

Darat Fm., where three were taken in a N-S direction. The N-S scanlines are not included in 

the transect but were taken to assess the variability of fracture orientations in the ramp. 

 The fracture frequencies in the Thebes Fm. are relatively stable, ranging from 1 to 30 

fpm over a distance of 600 m. The same range is seen in the Darat Fm. over a distance 

of 350 m, with a peak of 46 fpm at the centre of the ramp. The mean fracture 

frequency ranges from 7,0 - 9,4 fpm and is therefore not notably elevated above the 

background fracturing levels. 

 The fracture orientations in the western part of the Thebes Fm. show three trends: 

NW-SE (fault oblique), N-S (fault-parallel) and NE-SW (fault-oblique) (Fig. 4.17a), 

while the fractures in the central part of the Thebes Fm. are mainly oriented N-S (Fig. 

4.17b). In the eastern part of the Thebes Fm. the fractures are mainly oriented E-W 

(fault-transverse) and N-S (Fig. 4.17c). The fractures in the western part of the Darat 
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Fm. are mainly oriented N-S with minor trends oriented NE-SW and NW-SE (Fig. 

4.17d), while the fractures in the eastern part of the Darat Fm. are mainly oriented N-S 

with a minor trend oriented E-W (Fig. 4.17e). 

 The fractures are in both formations characterized as hairline fractures and calcite-

filled fractures. Cross-cutting relations of the studied factures in the ramp reveal that 

the N-S, NE-SW and NW-SE trending fractures are mutually cross-cutting, while the 

E-W trending fractures cross-cut and truncate all other fractures. 

 

4.3.1 Ramp geometry calculations 

Geometry parameters of the relay ramp can be used to calculate a linkage criterion (Soliva 

and Benedicto, 2004) and a preferred geometry value (Hus et al., 2005). The parameters used 

are relay displacement (total displacement for the bounding faults), fault separation (distance 

between the bounding faults) and fault overlap (overlapping distance along the bounding 

faults). 

 

Table 4.9: Geometry parameters of the studied relay ramp 

Relay displacement 250 m 

 Fault separation 1200 m 

 Fault overlap 1000/2000 m (min/max)   

 

Based on the data from Table 4.9 a linkage criterion can be calculated by dividing the 

relay displacement by the fault separation: 
     

      
     , and a preferred geometry value by 

dividing the fault overlap by the fault separation: maximum 
      

      
      or minimum 

      

      
    . These values will be further addressed in the discussion. 
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Figure 4.17: Fracture frequencies across the ramp bounded by the WWF to the west and TRF to the east. 

Fracture orientations are shown as equal area lower hemisphere stereonets. (a) The western part of Thebes, (b) 

the central part, (c) the eastern part, (d) the western part of Darat and (e) the eastern part. 
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Figure 4.18: (a) and (b) Close-up of the Thebes Fm. showing fractures oriented mainly E-W and some N-S. 

Both represent the stereonet in Figure 4.16c. (c) Photo of one of the measured walls in the Darat Fm. 

 
Table 4.10: Key data from the ramp. 

Locality Max 

fracture 

frequency 

Min 

fracture 

frequency 

Mean 

fracture 

frequency 
  

Thebes, west 30 1 8,1 

Thebes, central 23 1 8,1 

Thebes, east 20 2 6,3 

Darat, west 46 4 9,4 

Darat, east 16 3 7,0 

 

Table 4.10 shows that there are an even distribution of fractures along the ramp, both for the 

Thebes and Darat Fm.  

 

Summary of the ramp  

The ramp possesses a variety of fracture orientations where the fault-parallel trend is the most 

prominent, with subordinate fault-oblique and fault-transverse fractures. The fault-parallel and 

fault-oblique fractures are mutually cross-cutting, while the transverse-fractures cross-cut and 
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truncate all other fractures. Cross-cutting relationships will be further addressed in the 

discussion. There are no prominent differences in fracture frequencies for the Thebes Fm. and 

the Darat Fm, and the frequencies are also only slightly higher than the measured background 

fracturing levels. 

 

4.4 Fault throw vs. fracture frequency  

In Figure 4.19 fault throw is plotted against max number of fractures per locality for LWWF, 

WWF and TRF. All measurements are from the hanging wall. 

 The fracture distribution along the Little Wadi Wasit Fault (Fig. 4.19a) shows a 

decrease towards north that corresponds with a decrease in fault throw. All localities are in the 

Thebes Fm. At the southernmost locality the max fracture frequency is 78 fpm with a throw 

around 60 m. Further north at the next locality, the max fracture frequency is slightly 

decreased to 69 fpm as the throw has decreased to c. 40 m. The northernmost locality shows a 

further decrease in max fracture frequency (31 fpm) with a throw value of c. 30 m that is 

thought to lie close to the northern tip of the fault. The mean fracture frequencies follow the 

same pattern as the max fracture frequencies. 

 The Wadi Wasit Fault (Fig. 4.19b) shows a more complex fracture distribution. The 

northernmost locality is in the Tanka Fm. and has a relatively high max number of fractures 

(64 fpm) with a high throw (c. 250 m). Continuing southwards the throw is slightly 

decreasing and the hanging wall goes into the Darat Fm. The northernmost locality in the 

Darat Fm. has a very high max fracture frequency (> 100 fpm) and then drops rapidly 

southwards through three localities with max fracture frequencies below 60 fpm, as the throw 

value decreases below c. 200 m. Further south lays the Thebes Fm. where the northernmost 

locality has a relatively low fracture frequency (46 fpm) and the throw is still estimated to be 

just above 200 m. Further south the max fracture frequency rises rapidly for the two next 

localities (100 and 85 fpm). In this area the throw continues to decrease and is estimated to be 

below 150 m. The next locality to the south has a very max low fracture frequency (25 fpm), 

and further south the max fracture frequency is increasing to 49 fpm and 92 fpm as the throw 

is slightly decreasing below 20 m. The southernmost locality has a max fracture frequency of 

39 fpm and is thought to be around the southern tip of the Wadi Wasit Fault. The mean 

fracture frequencies are more or less following the same pattern as the max fracture 

frequencies. 
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 The Thal Ridge Fault (Fig. 4.19c) also shows an uneven distribution of fractures. At 

the southernmost locality the max fracture frequency is above 100 fpm with a mean of 70 fpm 

and the throw is assumed to be above 400 m, but there are no exact values from this part of 

the fault. Moving northwards the max fracture frequencies are decreasing rapidly over three 

localities with 36, 30 and 34 fpm, respectively. The mean fracture frequencies for these 

localities are ranging from 20-30 fpm. There are no throw values at this part as well, but it is 

assumed to be above 400 m. Further north the max fracture frequency is increasing to above 

100 fpm over the two northernmost localities, while the mean fracture frequencies show a 

more even distribution of 40-60 fpm. At this part the throw begins to decrease and is 

estimated to be around 250 m at the northernmost locality. 
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Figure 4.19: Max and mean fractures per locality plotted against fault throw for LWWF (a), WWF (b) and TRF 

(c). The red stars on the overview map show the localities and correspond with the stars on the graph. (a) 

Distance 0 m represents where the LWWF and WWF connect, (b) distance 0 m represents the approximate 

southern tip of WWF and (c) distance 4000 m represents a possible tip for TRF. 
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5. Discussion 

5.1 Introduction 

The aim of this chapter is to discuss the observed structural features along the studied faults 

and in the relay ramp. Part 5.2 discusses the variability of fracture systems along the 

individual faults with, with focus on single-tip fault interaction or bifurcation, double-tip fault 

interaction and tip zone processes. Part 5.3 deals with the fracture systems variability across 

the studied relay ramp with emphasis on the structural complexity. Part 5.4 discusses the 

potential effects of shale smear along the studied faults, while parts 5.5 and 5.6 deal with 

predictions of relative damage zone geometry, complexity in subsurface reservoirs, 

permeability structure and implications for fluid flow. 

 

5.2 Fracture systems variability along the main faults 

It is well known that faults are more complex, three-dimensional structures comprising zones 

of deformed rock (e.g. Caine et al., 1996; Childs et al., 2009). As presented herein (Chapter 

4.2), the damage zone architecture varies along the studied faults. This part will begin with a 

discussion of damage zones related to individual faults, and then continue on the damage zone 

on single-fault tip interaction or bifurcation and lastly fault tips. 

 

5.2.1 Damage zone width and geometry of the individual faults 

The localities along the Thal Ridge Fault are all located south of the overlapping zone and the 

data presented can therefore be considered, in this context, to represent an isolated fault 

(although it is, sensu stricto, part of the larger overall large-scale relay structure studied 

herein). According to typical Andersonian fault theory Anderson (1951), fractures around 

normal faults should form perpendicular to the least compressive stress; i.e. form parallel to 

fault strike. Fault-parallel fractures are the main trend along the TRF and support this 

assumption (Fig. 5.1e). However, in addition to fault sub-parallel fractures, fault sub-

perpendicular fractures are observed along the TRF. This is in accordance to Kattenhorn et al. 

(2000) who argue that stress perturbation induced by growing fault tips may form a more 

complex fracture pattern. The perturbation effect of propagating faults has also been 

documented (e.g. Barton and Zoback, 1994; Maerten et al., 2002) to affect orientations of 

secondary structures such as minor faults and fractures. Kattenhorn et al. (2000) suggest that 
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fractures oriented at high angles to fault strike may have formed along laterally propagating 

fault tips, representing a halt in growth period before the fault tip propagated further. 

 Increased fracturing in the proximity of faults has been noted by several studies (e.g. 

Knott et al., 1996; Beach et al., 1999; Berg and Skar, 2005; Mitchell and Faulkner, 2009) and 

is related to the frictional resistance in the fault core as slip builds up (Kim et al., 2004). 

Fracture mechanics models have shown that the decrease of fractures away from faults is 

linked to the decay of stress (Faulkner et al., 2010). de Joussineau and Aydin (2007) describe 

the fault core as a highly fractured zone that develops through progressive slip. This trend is 

also observed along the LWWF, WWF and TRF which shows an overall high fracture 

frequency in the proximity to the principal slip surface. Localities with low frequencies close 

to the faults are most likely a result of measurement errors (see explanation in Chapter 4) and 

the overall trend is therefore interpreted to be higher. 

An asymmetric deformation pattern along faults has been studied at a range of scales 

and in many different geological settings (e.g. Koestler and Ehrmann, 1991; Aarland and 

Skjerven, 1998; Berg and Skar, 2005; Ferrill et al., 2011). Koestler and Ehrmann (1991), 

Aarland and Skjerven (1998) and Berg and Skar (2005) documented a wider hanging wall 

damage zone compared to the footwall, while Doughty (2003) and Ferrill et al. (2011) 

observed the opposite. Schueller et al. (in press) documented a wider hanging wall damage 

zone but similar fracture frequencies on both sides. Along the LWWF, WWF and TRF, the 

hanging wall is consistently more deformed than the footwall. Ferrill et al. (2011) studied 

damage zones in carbonates and argue that the width of damage zones is early established. 

Internal deformation is likely to continue within the established damage zone during 

accumulation of displacement. They further argue that a wide hanging wall damage zone may 

develop above an upward growing upper fault tip, while a more deformed footwall may 

develop below a downward growing lower fault tip. This argument is based on the concept of 

trishear deformation, which is a triangular zone of distributed shear stress concentration 

around vertically propagating fault tips (Pollard and Segall, 1987; Allmendinger, 1998). A 

highly deformed hanging wall, as observed in the present study, may therefore be associated 

with an upward propagating fault. Furthermore, on the contrary, Berg and Skar (2005) argue 

that a wider hanging wall is related to the asymmetric strain that develops during folding of 

the hanging wall, and that more deformation is therefore expected in the hanging wall 

contrary the footwall. 

 One factor that is not considered in these publications is the effects of mechanical 

contrasts in the faulted lithologies. Could the asymmetric damage zone deformation be a 
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result of lithological differences? Observations from the southern part of the WWF, where 

both the footwall and the hanging wall is comprised of the Thebes Fm., show an asymmetric 

damage zone deformation across the fault. In this area the fault throw is relatively low, 

assuming that internal lithological variations are no likely explanation of the variations. This 

is supported by the background fracturing levels which also show modest variations between 

the formations. There is therefore no obvious links between lithology and damage zone 

deformation. 

 Damage zones may also be affected by the magnitude of throw along faults. Several 

studies have shown that there is a positive correlation between damage zone deformation and 

fault throw (e.g. Knott et al., 1996; Beach et al., 1999; Fossen and Hesthammer, 2000; 

Shipton and Cowie, 2001). Shipton and Cowie (2003) and Schueller et al. (in press) suggest a 

model of fault evolution where the damage zone is progressively widened through time. 

Based on the data from this thesis, high deformation is observed both at high and low throw 

values. There are though some trends indicating a positive relationship (e.g. along the 

LWWF), but no obvious correlation between damage zone deformation and fault throw can 

be made. This may be a result of the different lithologies comprising the hanging wall; the 

fracture frequency in the Darat Fm. is expected to be a little lower than in the Thebes Fm. 

because it consists of more ductile beds, which tend to be less fractured (Ferrill and Morris, 

2008), the Tanka Fm. is even more brittle than the Thebes Fm., but consists of thinner beds 

which tend to display more fractures (Ladeira and Price, 1981). It is no doubt that damage 

zones are affected by fault throw, but in this case it is difficult to discern any correlation when 

they comprise several different lithologies. 
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Figure 5.1: Model of fracture variability, represented by (main fracture orientation for each of the fracture boxes 

related to the main fault orientation) (a) fractures in single-tip fault interaction or bifurcation; fault-parallel, N-S 

and E-W oriented fractures, (b) double-tip fault interaction; fault-perpendicular and fault-parallel fractures, (c) 

tip zone; fault-parallel, fault-perpendicular and a variety of orientation fractures, (d) the ramp; low frequency 

fault-oblique, fault-parallel and fault-perpendicular fractures and (e) individual fault; fault-parallel and fault 

perpendicular fractures. 

 

5.2.2 Single-tip fault interaction or bifurcation of the LWWF and the WWF 

The LWWF connects with the WWF in a branch point, which may represent a point of fault 

segment bifurcation or the location of single-tip fault interaction (sensu Fossen et al., 2005). 

Fossen et al. (2005) argue that single-tip fault interaction points may induce an anomalously 

high fracture frequency. Two localities (LWWF 3 and WWF 3) are located close to the 

branching point. However, both localities display an anomalously high fracture frequency and 

complexity compared to the other localities in the same formation and a wide range of 

fracture orientations (Fig. 5.1a). Could the LWWF have initiated as an individual fault and 

later propagated in the WWF? Or is it formed as a tip line bifurcation of the WWF? 
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 Bifurcation is another possible explanation, and is generally observed near the end of 

long faults and is a result of propagation of a single fault that splays into different segments 

(Marchal et al., 2003; Walsh et al., 2003). Bifurcation can result from even small tip-line 

irregularities and form two sub-parallel slip surfaces (Huggins et al., 1995), and eventually re-

join to form a full lens of more or less deformed rock (Childs et al., 1996). Martel et al. 

(1988) argue that bifurcation may form due to tensile stress concentrations at fault tips, while 

Cooke (1997) suggests that points of variable frictional properties along faults also may result 

in bifurcation. 

 Based on this information, it is still difficult to judge whether the LWWF may have 

initiated as an individual fault and later propagated into the WWF, or if the LWWF is a result 

of bifurcation of the WWF. The result is, however, anomalously high fracture frequencies and 

a high variability of fracture orientations. 

 

5.2.3 Tip zone processes 

Fault terminations are the transition from slip surfaces to unbroken rock in front of fault tips. 

Terminations are generally associated with zones of structural complexity (e.g. Shipton and 

Cowie, 2001; Kim and Sanderson, 2006) and can be classified as tip damage zones (sensu 

Kim et al., 2004). Cowie and Scholz (1992) suggest that most stress is situated in the 

proximity of fault tips, and that this damage can be more severe than from slip on fault planes 

(Vermilye and Scholz, 1999). On the contrary, Martel (1997) postulate that the damage does 

not need to be high in the proximity of fault tips. Kim and Sanderson (2006) classified five 

types of tip damage zone structures: (1) wing cracks/normal faults, (2) horsetail splay 

fractures/faults, (3) synthetic branch faults, (4) antithetic faults and (5) solution surfaces/thrust 

faults. The tip damage zone observed at the southern extent of the WWF is characterized as a 

splay of both synthetic and antithetic normal faults (Fig. 5.1c). Similar, but larger, fault splay 

geometry at the tip of faults has been documented by Kirkpatrick et al. (2008). 

 

5.3 Fracture systems variability across the relay ramp 

Fault overlap zones or relay zones such as the one studied herein are known to have an 

anomalously wide linking damage zone (sensu Kim et al., 2004). Overlapping and linking 

damage zones often feature elevated fracture frequencies and a wide range of fracture 

orientations. These features are induced by accumulated strain transferred between the ramp-

bounding faults, which produce a zone of local stress as well as strain anomalies (Kattenhorn 
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et al., 2000). Linking damage zones in carbonate rocks have only been studied to some extent 

(e.g. Sharp et al., 2000; Bonson et al., 2007; Rotevatn and Bastesen, 2012). In siliciclastic 

rocks linking damage zones are well documented (e.g. Çiftçi and Bozkurt, 2007; Rotevatn et 

al., 2007) and are shown to display temporal and spatial variations. The complexity of relay 

ramps is a result of spatially heterogeneous strain that occur in relay ramps (e.g. Soliva et al., 

2008). Other authors specify and argue that fault interaction overlap produce: (1) increased 

local shear stress in the relay ramp (Crider and Pollard, 1998) and (2) rotation of  local stress 

field in the relay ramp as a function of the σ1/ σ2 principal stress ratio (Kattenhorn et al., 

2000). Trudgill and Cartwright (1994) and Dawers and Anders (1995) argue that fault linkage 

is more likely to happen if the separation between the ramp bounding faults is small compared 

to the length of the faults. Gupta and Scholz (2000) suggest that when a fault tip grows into a 

stress drop region produced by an interacting fault, a higher displacement anomaly near the 

growing tip will balance the stress drop. They further argue that once a fault tip grows into a 

region of critical stress, the fault tip will stop propagating or begin to link. In the case of the 

studied ramp-bounding faults it is unknown which fault that grew first and produced a stress 

drop region that affected the other fault. 

The central part of the WWF comprises fracture orientations mainly oriented sub-

perpendicular to the fault (Fig. 5.1b). This may be an effect of entering the overlap zone 

between WWF and TRF, where strain is transferred between fault strands by folding of relay 

beds and the formation of fault-perpendicular fractures. An overlap zone like this, where two 

faults with similar strike interact through the formation of a relay ramp, can be classified as 

double-tip fault interaction (sensu Fossen et al., 2005). 

 How complex is the studied relay ramp really? To answer this question one need to 

look at the fracture frequency and orientation data. One could suspect that the fracture 

frequencies across the ramp are controlled by lithology. Observations indicate and as 

discussed above that there are no prominent differences in fracture frequencies in the Thebes 

Fm. and the Darat Fm. across the ramp. There are though some fracture frequency peaks, 

which most likely are a feature of local high strain accumulation and may represent fracture 

corridors (Ogata et al., 2012; Rotevatn and Bastesen, 2012). The fracture frequencies are also 

only slightly elevated above the background fracturing levels, in contrast to other relay ramps 

studied in carbonates (e.g. Rotevatn and Bastesen, 2012). This may indicate that the 

deformation of the relay ramp is rather low. 

A question arising from this is “Why is the relay ramp not more deformed?” A 

possible explanation can be found by looking at the geometry of the ramp. Fault separation, 
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which is the distance between two overlapping faults, is an important geometrical factor, 

related to stress reduction (Cowie and Roberts, 2001). Gupta and Scholz (2000) suggest that 

fault growth and propagation is retarded within the area of stress reduction around faults. 

Therefore, fault separation between two normal faults is an important parameter when 

evaluating fault interaction through their stress fields (e.g. Gupta and Scholz, 2000; Cowie 

and Roberts, 2001). Soliva and Benedicto (2004) made a linkage criterion based on three 

types of relay geometry: open, linked and fully breached. Calculations for the studied ramp 

indicate that it is, according to Soliva and Benedicto (2004), an open ramp, considerably far 

away from values indicating a breached ramp. This prediction is a result of the large spacing 

between the WWF and the TRF compared to the relay displacement. In addition to compare 

the fault separation with relay displacement, it is possible to compare it with the overlapping 

distance. Hus et al. (2005) studied relay ramp geometries including overlap/separation 

analysis, and suggested that relay ramps have a certain preferred geometry. They found a 

mean overlap/separation value of 3.12, while the overlap/separation value for the studied 

relay ramp is maximum 1.2 and minimum 0.8, depending on the northern extent of the TRF. 

However, compared, the studied relay ramp has a low overlap/separation value, which means 

that the separation distance between the WWF and TRF is large compared to the overlapping 

distance. 

Based on the calculations from models from both Soliva and Benedicto (2004) and 

Hus et al. (2005); the separation between the WWF and TRF is too big compared to both the 

relay displacement and the overlapping distance. This is therefore a plausible explanation of 

why the deformation in the relay ramp is so low. 

 The cross-cutting relationships of the fractures in the relay ramp (Fig. 5.1d) reveal that 

the fault-parallel (N-S) and fault-oblique (NE-SW and NW-SE) fractures predate the fault-

transverse (E-W) fractures. Kattenhorn et al. (2000) argue that oblique fractures (< 30° to 

fault strike) in relay ramps can be explained by rotation of the local stress field and interaction 

of remote fault-perpendicular stress. Rotevatn and Bastesen (2012) argue that in order to 

explain growth of fractures at great distances away from faults and at high angles to fault 

strike, an increase of the locally rotated fault-parallel stress and/or a relative relaxation of 

remote stresses perpendicular to the main fault trend must occur. They further state that there 

are no published evidence suggesting a relaxation or a rotation of remote stress during fault 

growth in the Suez Rift, but the fact that the Suez area where affected by continual and stable 

extension until c. 5 Ma (e.g. Lyberis, 1988; Patton et al., 1994) is widely agreed. The studied 

faults are as a result of the extension likely to have been affected by stable remote stresses 
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during growth. The fault-transverse fractures may therefore reflect the latest stage of local 

stress field perturbation during fault propagation and overlap. At this point extreme local 

stress and rotation of the principal stress axes made it possible for fractures to grow at high 

angles to fault strike. 

 Armstrong (1997) and Sharp et al. (2000) have as mentioned earlier interpreted the 

studied ramp as a hanging wall breached relay ramp (sensu Trudgill and Cartwright, 1994; 

Cartwright et al., 1996). Field observations from this thesis do, however, not support their 

interpretation. Firstly, there are no indications of any significant linking fault segment that 

cuts through the entire ramp and connects the overlapping faults. There are, however, some 

small cross-cutting faults in the southern part of the ramp, but they are too small to represent a 

relay ramp breaching. Rather, they are minor faults that locally accommodate strain enforced 

by the folding of the relay beds. Secondly, the fracture frequencies across the ramp are only 

slightly elevated above the background fracturing levels, which is an unlikely feature of a 

breached relay ramp. Thirdly, the aforementioned separation distance between WWF and 

TRF is too big compared to the total relay ramp displacement. The calculated value by 

following the linkage criterion from Soliva and Benedicto (2004) suggests, as mentioned, an 

open relay ramp geometry with a value considerably far away from values indicating a 

breached ramp. Fourthly, the separation distance is too big compared to the overlapping 

distance. Calculated separation/overlap value is, as mentioned, much lower than the preferred 

value for relay ramp geometry predicted by Hus et al. (2005). 

The configuration of the studied relay ramp can therefore be interpreted to represent a 

transition between stage 2 and 3 in the relay ramp evolution scheme by Peacock and 

Sanderson (1994); a soft-linked relay ramp or, at the most, a soft-linked relay ramp with 

incipient breaching and folding of relay beds. Additional growth of the fault could have 

initiated progressive fracturing and faulting and eventually formed a connecting fault, 

breaching the relay ramp. 

 

5.4 Potential effects of shale smear on fault damage zone 

In carbonate-shale sequences, shale smear is an important feature of fault zones (e.g. Elvik, 

2012). Shaly units does not tend to undergo brittle deformation, to a similar extent, as 

carbonate units when involved in faulting, but are rather smeared along the fault as a 

membrane of clay (Sperrevik et al., 2000). One of the mechanisms that control the 

development of shale smear is the low shear strength of clay and the high fluid pressure, due 
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to low permeability, that allow the shale units to be ductile deformed (Lehner and Pilaar, 

1997). It can also be related to the competency contrast between the shale units and 

surrounding mechanical stronger material; shale units have a lower competency than the 

surrounding rock, and will therefore fold/bend along a fault and develop as shale smear along 

the fault (Færseth, 2006). 

 In this study, shale smear is only observed in the northern part of the WWF (locality 

WWF 1 and 2), where the Khaboba Fm., consisting of ductile shale, are smeared along the 

fault (Fig. 5.2). Along the LWWF, TRF and the southern part of WWF the fault core is 

observed as relatively discrete slip surfaces and at some localities as fault rock lenses. Shale 

smear is not observed, because there are no shale present in the stratigraphy that are faulted. 

Aydin and Eyal (2002) have studied the effects of shale smear and argue that the 

occurrence of shale smear can reduce the deformation in the hanging wall. The fracture 

frequencies in the hanging wall along the WWF are generally higher than the footwall, except 

for locality WWF 1 where shale smear is present. This is opposite to what other works 

suggest, which conclude that hanging wall should have more deformation (e.g. Aarland and 

Skjerven, 1998; Berg and Skar, 2005). An explanation of this feature may be that the hanging 

wall Tanka Fm. lies above the Khaboba Fm. and is protected by the shale smear against the 

fault. Elvik (2012) argues that shale smear may act as a “cushion”, accommodating strain 

ductile. In contrast, the footwall will, during faulting, not be protected because the Thebes 

Fm. has been faulted against itself and the overlying Darat Fm, creating a high frictional 

deformation zone. In addition, the Tanka Fm. consists of thin beds and a low fracture 

frequency is therefore not expected (Ladeira and Price, 1981). Where shale smear is not 

present, slip between competent carbonate rocks will increase the friction and hence 

deformation may be increased in both footwall and hanging wall. One can therefore assume 

that shale smear may reduce the hanging wall deformation, but since there is only one studied 

locality where this was possible to observe, it is difficult to judge whether this is an isolated 

occurrence or a recurring pattern. However, the findings do agree well with other studies (e.g. 

Aydin and Eyal, 2002; Elvik, 2012). 
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Figure 5.2: Conceptual model of shale smear where the Khaboba Fm. becomes entrained into the fault. Note a 

lower deformation in hanging wall Tanka Fm. Red ring indicates area of interest. 

 

5.5 Subsurface carbonate reservoir predictions of damage zone geometry 

and complexity along normal faults and in relay ramps  

Subsurface studies are limited to seismic resolution, outcrop studies are therefore of great 

importance in order to obtain details of subseismic scale features like faults and fractures.  

Some information, but very minimal and highly spatially restricted, may be achieved by 

wellbore data (e.g. Wu and Pollard, 2002) and from seismic anisotropy maps. Fracture 

characterization in the subsurface is therefore reliant on analogue models based on outcrop 

studies in order to understand the nature of subseismic structures. 

 The present study may elucidate some of the features related to fault linkage zones, 

and help determining damage zone geometries and fracture characteristics along normal faults 

and in relay ramp in carbonate reservoirs. Exact damage zone geometry may not be 

predictable but linkage zones are generally assumed to comprise a wider and more complex 

damage zone than individual faults. By studying geometrical parameters, if obtainable, like 
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fault separation, relay displacement and overlap distance one can make a prediction of the 

complexity of the linkage zone; it might not be as complex as first assumed, such as the 

example studied herein. However, some generic predictions of damage zones and fracture 

characteristics in subsurface linkage zones and faults can be made: 

 

 Individual faults may feature an asymmetric deformation pattern. As presented in the 

current study, the hanging wall is generally more deformed than the footwall, except 

where shale smear is present; this is also, supported by previous work (e.g. Koestler 

and Ehrmann, 1991; Aarland and Skjerven, 1998; Berg and Skar, 2005). However, 

fractures along individual faults are suggested to be oriented mainly fault-parallel 

(Anderson, 1951) with subordinate fault-perpendicular fractures (Kattenhorn et al., 

2000). 

 

 Single-tip fault interaction or bifurcation are associated with increased structural 

complexity that may induce an anomalously high fracture frequency (Fossen et al., 

2005) and a high variability of fracture orientations. 

 

 Fault terminations and tip damage zones are generally associated with increased 

structural complexity (e.g. Shipton and Cowie, 2001; Kim and Sanderson, 2006). The 

studied tip damage zone features minor synthetic and antithetic faults, which also has 

been documented by other work (e.g. Kirkpatrick et al., 2008). 

 

 Damage zones geometry is variable and dependent on several factors, such as 

mechanical stratigraphy, fault throw and fault core morphology (e.g. Faulkner et al., 

2010). Studies (e.g. Knott et al., 1996; Beach et al., 1999; Fossen and Hesthammer, 

2000; Shipton and Cowie, 2001) have shown a positive correlation between damage 

zone deformation and fault throw. 

 

 Linkage zones are generally associated with a wider and more complex damage zone 

than along individual faults (e.g. Kim et al., 2004; Çiftçi and Bozkurt, 2007; Rotevatn 

and Bastesen, 2012). However, the width of damage zones may not be as large as first 

expected. As presented in the current study, and supported by Soliva and Benedicto 

(2004) and Hus et al. (2005) the linking damage zone deformation is dependent on 
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geometrical parameters which control the stress field interaction; separation vs. relay 

displacement and separation vs. overlapping distance. 

 

5.6 Permeability structure and implications for fluid flow in relay ramps 

The permeability of naturally fractured, low permeable reservoirs, such as carbonates, is 

strongly controlled by fractures. Particularly, fracture frequency is important in the 

understanding of fluid flow, but is difficult to measure in the subsurface (Ortega et al., 2010). 

Highly fractured zones are shown to induce increased permeability which consecutively 

induces local conduits for fluid flow (Matthäi and Belayneh, 2004). Fault linkage and fluid 

flow have been studied in siliciclastic rocks (e.g. Bense and Van Balen, 2004; Manzocchi et 

al., 2008) with emphasis on cross-fault fluid conduits in soft-linked relay ramps. Bed 

continuity in folded relay ramp beds (Rotevatn et al., 2009) is the main conduit, while 

juxtaposition of reservoir units at different stratigraphic levels (Manzocchi et al., 2010) also is 

important. An unbreached ramp is therefore a possible pathway for fluids and is in an 

otherwise tight carbonate reservoir influenced by flow-inducing fractures. 

 Implications of the damage zone variability, studied herein, are important in order to 

predict permeability distribution of subsurface reservoirs. Individual faults generally feature 

fault-parallel fractures that induce fault-parallel flow, while fault-perpendicular fractures are 

not as common, limiting the cross-fault permeability. Relay ramps are, however, generally 

more complex and some permeability and fluid flow predictions, based on the current study, 

can be made: 

 

 Relay ramps comprise an increased variability of fracture orientations, as presented 

herein, and normally increased fracture frequencies, compared to damage zones along 

individual faults. This leads to an increased matrix ratio and connectivity, which in 

turn lead to a higher permeability (e.g. Berkowitz, 1995). 

 

 Lateral fault-parallel permeability in the linking damage zone is likely to increase. The 

effect is, however, limited since the lateral fault-parallel permeability already is 

enhanced by fault-parallel fractures outside the relay ramp. 
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 Vertical fault-parallel permeability is also assumed to increase. Sealing units may be 

breached by local stress field modification in the relay ramp (Gartrell et al., 2004), 

increasing the permeability. 

 

 Relay ramps are typically comprised of fractures oriented at high angles to fault strike, 

cross-cutting the ramp. These fractures are likely to increase the cross-fault 

permeability, which is usually low along individual faults. Breached or near-breached 

relay ramps may form transverse fractures dissecting the entire ramp (Rotevatn and 

Bastesen, 2012), which probably will significantly increase the cross-fault 

permeability. The increased permeability may, in a reservoir, connect two otherwise 

separate reservoir units. 
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6. Conclusions 

The current study presents fracture systems variability along normal faults and across a relay 

ramp, with emphasis on damage zone geometry and fracture characterization. In addition, 

potential effects of shale smear, predictions of damage zone geometry and complexity in 

subsurface reservoirs, and permeability structure and implications for fluid flow have been 

addressed. The following conclusions are drawn: 

 

 The studied faults display an asymmetric damage zone deformation pattern, where the 

hanging wall is generally more deformed than the footwall. This may be a result of 

upward propagation of the faults and/or because most of the fault movement is 

represented by downward movement of the hanging wall. It is also concluded that 

there are no obvious links between lithology and the observed deformation pattern. 

 

 The studied faults also display increased fracture frequencies in the proximity to the 

fault core. This is related to build up of frictional resistance in the fault core, during 

slip events. Decay of stress away from the faults then leads to decreased fracture 

frequencies. 

 

 Single-tip fault interaction or bifurcation point proved to feature an anomalously high 

fracture frequency. This may be a result of the perturbed stress fields (c.f. Kattenhorn 

et al., 2000) and enhanced normal stresses (c.f. Crider and Pollard, 1998) between the 

faults involved. 

 

 The tip zone of one of the studied faults is featured by a variety of fracture orientations 

and is characterized as a splay of both synthetic and antithetic normal faults. 

 

 Occurrence of shale smear is observed to reduce hanging wall deformation, but it is 

difficult to judge whether this is an isolated occurrence or a recurring pattern. As shale 

smear was only present at one locality. However, the findings do agree well with other 

studies (e.g. Aydin and Eyal, 2002; Elvik, 2012). 
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 Cross-cutting relations of fractures in the relay ramp reveal that the fault-parallel and 

fault-oblique fractures predate the fault-transverse fractures. The fault-transverse 

fractures are interpreted to reflect the latest stage of local stress field perturbation 

during fault propagation and overlap. At this point extreme local stress and rotation of 

the principal stress axes made it possible for fractures to grow at high angles to fault 

strike. These fractures are also likely to increase the cross-fault permeability, which is 

usually low along individual faults. 

 

 The linking damage zone enveloping the relay ramp studied herein is characterized by 

a relatively low complexity, with fracture frequencies only slightly elevated above 

background fracturing levels, compared to other studies of relay ramps in carbonates 

(e.g. Rotevatn and Bastesen, 2012). The low complexity is interpreted to be a result of: 

(1) large separation distance between the Wadi Wasit Fault and the Thal Ridge Fault 

compared to relay displacement and (2) large separation distance compared to 

overlapping distance. The studied relay ramp is therefore interpreted to represent a 

transition between stage 2 and 3 in the relay ramp evolution scheme by Peacock and 

Sanderson (1994): a soft-linked relay ramp or, at the most, a soft-linked relay ramp 

with incipient breaching. 
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APPENDIX: Scanlines

Distance (m) Fractures Orientation Lithology Comments

1 5 220/89, 164/70, 

182/85

Grainstone ↓

2 2 191/85

3 8 200/86

4 3 200/70

5 6 215/80

6 4 214/84, 196/89

7 4 213/87

8 4

9 4

10 15 Mudstone ↓

11 11

12 7

13 11 280/85

14 9 242/87

15 3 204/78

16 13 220/88, 288/87

17 7

18 7

19 8 215/72, 260/88

20 10

21 11 160/40, 210/89

22 13 218/85

23 8

24 10 226/85, 230/90, 

191/69

25 14 180/82

26 12

27 7

28 11

29 7 243/60

30 8 226/85

31 6

32 7

33 10

34 8

35 7

36 6

37 7

38 4

Background fractures Wadi Dolly 1

Thebes Fm.

Profile: 160°

Start: 36R 0498679 3229915

250/70, 240/90, 

200/90

200/87, 130/86
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APPENDIX: Scanlines

Distance (m) Fractures Orientation Lithology Comments

1 5 039/75, 238/82 Grainstone ↓

2 10

3 6

4 7 201/83

5 7 200/89

6 4

7 4

8 3 204/80

9 3

10 5

11 5 190/87

12 6

13 3

14 4

15 3

16 3 291/89

17 4

18 3

19 2

20 3 262/50

21 2

22 4

23 2

24 6 134/80

25 6

26 3

27 6

28 8

29 2 200/84

30 3

31 3

32 5 190/72

33 2

34 3

35 3

36 2

37 3

38 2

Background fractures Wadi Dolly 2

Thebes Fm.

Profile: 160°

Start: 36R 0498679 3229915
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APPENDIX: Scanlines

Distance (m) Fractures Orientation Lithology Comments

1 3 330/50 Packstone ↓

2 6

3 6

4 5 358/80

5 5

6 4 110/78

7 8

8 6

9 6

10 14

11 12 190/82

12 x

13 x

14 9 154/79

15 12 230/78

16 8

17 7 145/85

18 6 213/88

19 11 205/90

20 8

21 8

22 5 206/30

23 6

24 7 209/63

25 8

26 12

Background fractures Wadi Dolly 3

Thebes Fm.

Profile (240° (10m) -> 300°)

36R 0498640 3229781

10-15 m: fracture corridor
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Distance (m) Fractures Fractures Orientations

grainstone mudstone

1 3 10 356/80

2 4 6 346/78

3 4 8 350/89

4 6 8 328/84

5 3 3

6 4 10 184/78

7 4 6

8 4 6 112/88

9 2 5 010/85

10 3 6

11 4 10

12 5 11 198/75

13 4 14

14 3 10 356/87

15 2 10 178/85

16 2 10 356/89

17 3 5

18 3 7 308/80

19 3 7

20 1 9

21 3 12

22 3 10

23 4 14 170/71

24 4 4

25 5 4 002/90

26 x 6 014/89

27 x 7

28 x 10

29 x 10

30 x 8

LWWF 1 fw

Distance (m) Fractures Orientations Comments

1 19 338/86

2 16 336/90

3 24 342/80

4 16 152/88

5 16 150/88

6 17

7 16

Background fractures Wadi Tayeba

Thebes Fm.

Profile: 80°

Start: 36R 0497322 03233056

Footwall

Thebes Fm. Wacke/packstone

Start: 36R 499808 3232083
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LWWF 1 hw

Distance (m) Fractures Orientations Comments

0-7 x 325/79 Hairlines

8 16 332/74

9 19 202/70

10 15 340/80

11 14 342/86

12 9 350/86

13 11 332/85

14 13

15 19

16 16

17 18

18 17

19 18

20 14

21 12

22 8

23 10

24 25

25 31

26 18

27 12

28 10

29 10

30 11

31 12

LWWF 2 fw

Distance (m) Fractures Orientations Comments

1 25 146/88 Hairlines

2 26 142/89

3 10 162/90

4 15 150/90

5 20 150/90

Thebes Fm. Wacke/packstone

Start: 36R 499808 3232083

Start: 36R 499839 3231958

Thebes Fm. Wacke/packstone

Footwall

One fracture: 1 cm wide with calcite fill

Hanging wall
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LWWF 2 hw

Distance (m) Fractures Orientations Comments

1 40 338/74 Hairlines

2 69 329/82

3 34 332/90

4 27 328/89

5 32

6 36

7 45

8 23

9 31

10 31

11 20

12 26

13 32

13-18 x

19 33

20 24

21 20

22 14

23 7

24 12

25 8

26 13

27 10

28 7

29 13

30 3

Start: 36R 499839 3231958

Thebes Fm. Wacke/packstone

Hanging wall

Sub-parallel fractures to the fault are 

more than 10 meters long.

Two fractures (1 cm width) with calcite 

fill.

95



APPENDIX: Scanlines

LWWF 3 hw

Distance (m) Fractures Orientations Comments

0-30 x 348/60 Generally hairlines

31 46 316/85

32 36 320/80

33 13 318/76 One calcite fracture, 1 cm width

34 22 330/80

35 21 340/88

36 18 338/77

37 19 335/80

38 18 333/77

39 11 001/86

40 7 010/80

41 8 008/78

42 6 005/88

43 17 358/90

44 78 090/80 44-50 meter = stockwork fractures

45 69 275/88

46 46

47 48

48 57

49 63

50 59

Hanging wall

Start: 36R 500144 3231458

Thebes Fm. Wacke/packstone
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WWF 1 fw

Distance (m) Fractures Orientation Comments

1 44 045/23

2 58 325/09

3 86 338/06 Bedding: 335/50

4 99

5 131

6 62

7 94 244/50

8 108 167/00

9 136

10 51 124/54

11 31 170/30 Fe minerals.

12 60 315/69

13 39 125/88

14 52 122/68

15 36 147/57

16 23

17 21 140/70

18 40 291/88 Chert lenses, two calcite fractures (10 

and 55 mm)

19 45 108/87

20 36 138/65

21 48 152/72

22 49 305/60

23 44 307/70 Fe minerals

24 36 141/68

25 58

26 55 151/58

27 54 143/70

28 x

29 x

30 x

31 x

32 x

33 x

34 x

35 x

36 22

37 24 160/80

38 26 160/80

39 38 160/78 Bedding: 290/29

40 31 150/71

41 32

42 x

43 x

44 x

45 x

46 15 340/80

47 17

48 23

Horizontal fracture: 40 mm gap

Start: 36R 0500312 3231404

Thebes Fm. Wacke/packstone

Footwall

Stop: 36R 0500277 3231387

Vertical fractures, fracture with 10 mm 

calcite cement
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APPENDIX: Scanlines

49 21 225/80

50 14

51 20

52 20

53 24

54 21

55 27

Generally:  Hairlines, calcite cement. 

Biggest fractures are horizontal when 

counting on the top, while the biggest 

are vertical when counting on the side.
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WWF 1 hw

Distance (m) Fractures Orientation Comments

1 34 160/90

2 30 120/85

3 60 140/90

4 42 310/60

5 64

6 33 120/80

7 52

8 59 340/85

9 26 095/70, 090/80

10 22

11 41

12 23 120/80, 140/70

13 16 135/70, 210/85

14 36 155/67

15 23 021/52, 325/61

16 24 124/82, 012/83

17 18 143/76, 124/79

18 22 073/87, 131/79

19 17 151/74

20 19 058/53

21 24 104/71, 124/69

22 15 062/82, 132/87

23 17 067/78, 324/82

24 17 142/87, 192/89

25 10 316/85, 165/88

26 17 340/87

27 18 122/88

28 14 074/86

29 19

30 16

31 19

32 23

33 16 041/88, 082/84

34 23 148/81

35 15 180/80, 070/90

36 15 090/69, 080/65 2 fractures with 10 mm gap

37 21 140/70, 120/70 1 fracture with 70 mm gap, calcite

38 20 060/75, 080/70 1 fracture with 10 mm gap

39 20 075/70, 135/70 Calcite

40 24 120/75, 095/75 1 fracture with 60 mm gap

41 18 180/70

42 14 000/20

43 11 050/90

44 8 265/70

45 21 108/82

46 24 100/88

47 14 165/76

48 18 152/83, 090/84

49 19 160/67, 005/70

Hanging wall

Tanka Fm.

Start: 36R 0500324 3231408

Stop: 36R 0500353 3231450
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50 18 253/88

51 15 162/82

52 15 077/88

53 10 061/88

54 22 074/83

55 17 240/85

56 11 130/75

57 9 145/80

58 14 14/80

Generally: Bigger fractures and more 

hematite near the fault core. Most of the 

fractures were bed bound, only some of 

the biggest crossed other beds. The 

biggest fractures were vertical and had 

an N/S orientation.
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WWF 2 fw

Distance (m) Fractures Orientation Comments

1 12

2 32

3 29

4 89 Stockwork fractures

5 39 160/67

6 39

7 x

8 41

9 29 131/73

10 18 302/88

11 24

12 17

13 14

14 29 One fracture: 16 mm gap

15 31

16 20

17 21

18 27

19 37

20 18

Distance (m) Fractures Orientations Comments

1 111

2 65

3 54

4 42

5 46

6 35

7 34

8 36

9 x

10 x

11 29

12 29

13 22

14 53 Stockwork fractures

15 33

16 31

17 30

18 23

Start: 36R 0500315 3231368

Stop: 36R 0500296 3231350

Thebes Fm. Wacke/packstone

Footwall

Generally: Hairlines and calcite cement.

WWF 3 hw

Hanging wall

Darat Fm. Wacke/mudstone

Start: 36R 0500485 3230990

Stop: 36R 0500494 3230982

Fault: 350/60
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WWF 4 hw

Distance (m) Fractures Orientations Comments

1 52

2 48 158/68

3 45

4 38

5-13 x

14 23 245/58, 252/60

15 11 242/45

16 14 238/43

17 10 044/32

18 11

19 10

20 13 227/66

21 11

22 9 235/62

23 13

24 15

25 12 230/74

WWF 5 hw

Distance (m) Fractures Orientations Comments

0-6 x

7 49

8 38

9 30

10 33

11 29

12 54 220/68

13 43 080/90, 260/72, 

255/68

14 35 262/80

15 24

16 21 184/75

Fault: 011/66

Hanging wall

Darat Fm. Wacke/mudstone

Start: 36R 0500556 3230645

Stop: 36R 0500570 3230629

Weathered surface, making it difficult to 

measure. May be more fractures

Hanging wall

Fault: 336/62

Profile 080° (14 m) -> 124°

Darat Fm. Wacke/mudstone

Start: 36R 0500512 3230755

Stop: 36R 0500527 3230748
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WWF 6 hw

Distance (m) Fractures Orientations Comments

0-4 x

5 44

6 29

7 28

8 26 190/70

9 24 210/81

10 29

11 21 263/88

12 31 020/90, 023/89

13 16 036/80

14 25

15 30 202/70

16 20 047/78, 041/85

17 14

18 17 018/78

19 26 038/80

WWF 7 hw

Hanging wall

Distance (m) Fractures Orientations Comments

0-11 x

12 20

13 14 012/90, 003/90

14 16 009/85

15 18

16 21

17 13 069/70

18 14

19 11 114/70, 310/73

20 17 152/69

21 9 311/82

22 7 348/82

23 6 162/90

24 7

25 9 120/70

26 7 140/70

27 10 319/79

28 11 024/68

29 7 154/90

30 9 139/78

31 7 014/58

Hanging wall

Darat Fm. Wacke/mudstone

Start: 36R 0500555 3230556

Stop: 36R 0500568 3230533

Thebes Fm. Wacke/packstone

Start: 36R 0500520 3230458

Stop: 36R 0500545 3230453

Fault: 004/65
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WWF 8 hw

Distance (m) Fractures Orientation Comments

1 33

2 44

3 43

4 46

5 38

6 32 151/62

7 33

8 24

9 22

10 23 339/82

11 14

12 18

13 19 032/58 – 133/72

14 20 027/82

15 18 016/59

16 16 023/63

17 13

18 15 020/60

19 13

20 17

21 8

Generally: Hairlines and calcite cement.

Hanging wall

Thebes Fm. Wacke/packstone

Profile: 093°

Start: 36R 0500531 3230455

Stop: 36R 0500553 3230459
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WWF 9 hw

Distance (m) Fractures Orientation Comments

1 100+ 006/60

2 100+

3 100+

4 55 000/82

5 50 028/83

6 61 176/82

7 47

8 63

9 x

10 54

11 44

12 36

13 53

14 41 048/79

15 46 032/87

16 57 223/76

17 49 223/89

18 40 320/67

19 49 228/73

20 31 050/64

21 29 228/85

22 30 032/83

23 41

24 32

25 24 259/79

26 22

27 27

28 29

Generally: Hairlines and calcite cement.

Stop: 36R 0500503 3230352

Hanging wall

Thebes Fm. Wacke/packstone

Profile: 035°

Start: 36R 0500484 3230353
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WWF 10 fw

Distance (m) Fractures Orientation Comments

1 72

2 35

3 32

4 44 Weathered

5 45 Weathered

6 47 Weathered

7 44

8 37

9 44

10 43

11 31

12 34

13 37

14 35 Weathered

15 x

16 31

17 36

18 35

19 38 130/69

20 36

21 25

22 42

23 33 152/62

24 29

25 26

26 21

27 22

28 20

29 20 090/67

30 19

Thebes Fm. Wacke/packstone

Profile: 214°

Start: 36R 0500489 3230304

Stop: 36R 0500467 3230292

Generally: Hairlines and calcite cement.

Footwall
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WWF 10 hw

Distance (m) Fractures Orientation Comments

1 85

2 68

3 63

4 44 Weathered

5 49

6 58

7 58

8 51

9 39

10 36

11 46

12 45

13 57

14 36

15 38

16 42

17 35

18 38

19 34 214/81

20 37

21 42

22 43

23 37

24 33

25 45

26 36

27 38

28 24

29 34

30 33

Hanging wall

Thebes Fm. Wacke/packstone

Profile: 214°

Start: 36R 0500489 3230304

Generally: Hairlines and calcite cement. 

Chert nodules.

Stop: 36R 0500520 3230320 (+- 13 m)
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WWF 11 hw

Distance (m) Fractures Orientations Comments

0-27 x

28 18 204/80, 180/82

29 13 191/68

30 15

31 13 351/87

32 14

33 17

34 17 176/78, 183/72

35 13 172/78

36 14 342/77

37 13 170/88

38 15 016/90

39 19 147/87

40 25 190/88

WWF 12 hw

Distance (m) Fractures Orientations Comments

1 49 188/79, 194/84

2 31 158/85

3 24 301/80

4 12 010/90, 050/80

5 10 122/82

6 10 126/60

7 7 020/71

8 8 043/86

9 13 108/82, 037/80

10 11

11 13 041/89, 125/70

12 23 028/82, 024/84

13 16 298/71, 010/79

14 19 010/80, 126/76

15 14 306/72

16 16 292/66

17 13 292/75, 294/75

18 14 304/74, 306/72

19 6 186/90, 196/90

Profile 050°

Stop: 36R 0500448 3230093

Profile 070° (12 m) -> 090°

Thebes Fm. Wacke/packstone

Start: 36R 0500438 3229734

Stop: 36R 0500464 3229725

Fault: 307/60

Thebes Fm. Wacke/packstone

Start: 36R 0500448 3230065 (3230088)
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WWF 13 hw

Profile 040°

Distance (m) Fractures Orientations Comments

1 x

2 x

3 x

4 92 291/82, 190/85, 

304/81

5 63 137/90, 142/90

6 34 307/84, 320/63, 

215/84, 039/80

7

8 46 037/78, 038/80, 

059/80

9 47 040/72, 240/90, 

045/88

10 31 042/71, 148/90

11 18 196/82, 165/72

12 32 170/75

13 23

14 19 182/82, 029/89

15 24

16 15 180/90, 190/90

17 16 345/84

Thebes Fm. Wacke/packstone

Start: 36R 0500501 3229622

Stop: 36R 0500512 3229633

Fault: 322/70
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WWF 14 fw

Distance (m) Fractures Orientations Comments

1 35

2 14 131/71, 129/73, 

182/81

3 22 290/85

4 20 123/80, 178/79

5 9

6 8 114/60

7 15 320/72, 130/70

8 10

9 8 344/62

10 19

11 9 038/80

12 22 319/89

13 34 300/75

14 44

15 14

16 18 198/78

17 16

18 20

19 17 298/80

20 15 178/86

21 11 151/62

22 17

23 10 052/87

24 22 118/79

25 14 213/76

26 5 052/80

27 13

28 10 218/78

29 7 234/62

30 2

31 9 184/70

32 8

33 7

34 7 238/65

35 11

36 6 184/63

37 7

38 6 185/62

39 7

40 6 143/86

Profile 257° (10 m) -> 300°

Thebes Fm. Grainstone

Start: 36R 0500672 3229333

Stop: 36R 0500641 3229351

Fault: 328/65

Fault or fracture corridor oriented 

228/80
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Distance (m) Fractures Orientations Comments

1 39 121/68

2 24

3 19 308/60

4 29 141/21

5 32

6 x Fault?

7 18 134/80, 138/80, 

138/69

8 12 130/80

9 19 115/88

10 9 128/82

11 12

12 14

13 16

14 13

15 18

16 10 108/78

17 15

18 11

19 15 120/82

20 12

Distance (m) Fractures Orientations Comments

1 100+

2 82

3 67 105/80, 310/80

4 48 140/73

5 65 142/70

6 49

7 35

8 38 332/80

9 46 154/82

WWF 14 hw

Profile 060°

Thebes Fm. Grainstone

Start: 36R 0500672 3229333

Stop: 36R 0500686 3229348

Fault: 328/65

Stop: 36R 0501737 3229267

Fault: 346/85

TRF 1 hw

Hanging wall

Profile 040°

Darat Fm. Wacke/packstone

Start: 36R 0501734 3229260

Anastomosing fractures

Weathered surface
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Distance (m) Fractures Orientations Comments

1 45 030/87 Anastomosing fractures ↓

2 51 200/75

3 45 352/79

4 29 230/80 Conjugate fracture network ↓

5 23 239/89

6 20 214/75

7 22 315/60

8 24 022/70

9 15 200/58

10 22 159/55

11 25 191/60

12 x 359/56

13 12 348/66

14 11

15 13 140/75

16 x 156/82

17 x

18 19 058/85

19 13

20 7

21 10 016/80

22 10 260/85

23 13 040/85

24 12 042/88

25 15 390/75 Distributed fracture network ↓

26 22

27 12 140/55

28 12

29 13

30 9

31 6

32 13

Stop: 36R 0501815 03228577

Thebes Fm. Wackestone

Profile 266°

Footwall

TRF 2 fw

Start: 36R 0501843 3228576
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TRF 2 hw

Hanging wall

Distance (m) Fractures Orientations Comments Lithology

1 x Fault: 002/58

2 x Fault rock lenses

3 106 218/78, 204/71, 

088/75, 054/86

Wacke/packstone↓

4 61

5 55

6 54

7 51 247/62, 021/69

8 x

9 x

10 x

11 42 Mudstone ↓

12 73

13 45 203/68

14 59

15 48 204/19

16 54

17 46 205/60

18 x

19 x

20 x

21 x

22 x

23 x

24 x

25 x

26 x

27 x Fault: 001/60

28 x

29 x

30 x

31 77 Stockwork network Mud/wackestone ↓

32 46 282/70

33 50 287/89

34 33 025/52, 042/78

35 30 033/62, 022/70

36 47

37 31

38 x

39 x

40 x

41 x

42 x

43 x

44 x

45 x

46 x

47 x

48 x

49 x

Profile (108° (24m) -> 020° (51m) -> 070°)

Start: 36R 0501758 3228609
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50 x

51 42 Pack/wackestone ↓

52 38

53 45

54 38

55 28

56 25

57 25 216/70

58 16 222/78, 250/60

59 20

60 20 204/70

61 36

62 32 190/70, 196/70

63 23

64 26 220/69

65 18

66 25 090/90, 192/82

67 29 220/70, 200/78, 

118/90, 210/73

68 28

69 30

70 26

71 11

72 11

73 10

74 18

75 16

Distance (m) Fractures Orientations Comments

1 34 208/75, 212/58

2 33 049/38, 209/58

3 31 175/78, 185/90 Anastomosing fractures

4 29 158/90, 024/79

5 26 030/55

Weathered surface, may be more 

fractures than measured

Fracture corridor: 40 cm wide with 

calcite cement

Large fracture or fault: 004/90

Thebes Fm. Wacke/packstone

Start: 36R 0501662 3228078

Fault: 006/83

TRF 3 hw

Hanging wall

Profile 130°
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Distance (m) Fractures Orientations Comments

1 30 178/70, 178/80, 

160/82

Scanline may not start at the fault core

2 19 124/62

3 13 168/82

4 19 158/76, 163/72

5 12 290/76

6 13 290/78

7 12 280/85

8 9 194/82

9 22 294/85

10 15 332/42

Distance (m) Fractures Orientations Comments

1 36 154/78, 095/56 Anastomosing fractures

2 34 338/80, 158/90, 

158/80

3 17 156/63

4 21 333/82, 060/84

5 9 156/78

6 18 086/78, 075/88

7 28 155/80

8 15 156/76

9 18 252/70, 150/90

10 11 272/59, 260/88, 

067/89

Thebes Fm. Wacke/packstone

Start: 36R 0501675 3227721

Stop: 36R 0501679 3227719

TRF 4 hw

Stop: 36R 0501701 3227692

Fault: 340/82

TRF 5 hw

Hanging wall

Profile 110°

Thebes Fm. Wacke/packstone

Start: 36R 0501676 3227694

Hanging wall

Profile 060°
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Distance (m) Fractures Orientations Comments

1 42

2 30

3 30 190/63

4 21 210/78

5 26 109/80

6 24

7 22 199/66, 200/71

8 20

9 20 202/76

10 18 090/90, 227/80

11 13

12 15 217/85

13 17

14 13 192/82

Distance (m) Fractures Orientations Comments

1 x Lineation: 70 -> 270

2 100+ 158/72, 196/80 Anastomosing fractures

3 100+ 317/87

4 77 095/90

5 63

6 63 212/78, 201/80

7 42 132/80

8 38

Weathered surface, difficult to measure

Thebes Fm. Wacke/packstone

Fault: 358/68

Stop: 36R 0501762 3227450

Start: 36R 0501755 3227449

Profile 040°

TRF 6 hw

Anastomosing fractures

Fault: 358/68

TRF 6 fw

Profile 260°

Start: 36R 0501755 3227449

Stop: 36R 0501747 3227448

Thebes Fm. Wacke/packstone
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Distance (m) Fractures Orientations Comments

1 19 202/82

2 15

3 15 181/86, 200/80

4 13

5 16 195/83

6 23

7 18 015/90

8 33 311/82

9 46 185/84, 300/80, 

099/79

10 16 007/86, 010/90

11 19 005/71

12 11 016/82, 018/89

Distance (m) Fractures Orientations Comments

1 11 036/86

2 11 039/87

3 8

4 17 052/84

5 13

6 11

7 7

8 8

9 10

10 6

11 7

12 6 186/75

13 4 048/90

14 8

15 7

16 5 180/78

17 6 181/84

18 5

19 5

20 4

21 4 038/82, 186/82

22 7

23 6

24 4 185/79

25 7

26 8 195/85

27 4

28 4 180/80, 191/81

29 5 180/79

The ramp, Darat transect 2

Profile 270°

Darat Fm. Mud/wackestone

Start: 36R 0501250 3230258

Stop: 36R 0501211 3230261

The ramp, Darat transect 1

Profile 260°

Darat Fm. Mud/wackestone

Start: 36R 0501185 3230398

Stop: 36R 0501175 3230399
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30 4

31 3 184/81, 171/82

32 8

33 8 205/80

34 5

35 4 192/75

36 5
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Distance (m) Fractures Orientations Comments

1 13

2 7

3 4

4 6

5 8

6 14

7 9 138/82

8 11

9 14

10 9 066/90

11 7

12 8

13 6 063/82

14 5

15 6

16 4

17 7

18 8

19 10

20 11 060/83

21 6 061/71, 054/81

22 7

23 9

24 4

25 8

26 8

27 8

28 12 135/75

29 14 133/90

30 11 128/76

31 8 037/90, 120/80

32 8

33 4

34 7

35 9 131/85, 138/82, 

001/65

The ramp, Darat transect 3

Profile 270°

Darat Fm. Mud/wackestone

Start: 36R 0501332 3230310

Stop: 36R 0501297 3230313
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Distance (m) Fractures Orientations Comments

1 3 194/88 Bedding: 298/20

2 6 204/86, 204/87

3 4 203/84

4 3

5 7 204/87

6 6 046/87

7 7 032/80, 024/82

8 8 204/89

9 7 176/80, 198/85

10 9 031/79

11 7 063/72

12 5 035/74

13 7 196/87

14 8 193/82

15 5

16 5 135/88

17 7 190/89

18 13 029/82

19 6 199/87, 020/87

20 9

21 6 025/90

22 x

23 x

24 x

25 x

26 8 179/81

27 10 192/83

28 16 190/84

29 11

30 11 029/70

31 6

32 5 190/87

33 4 023/78

The ramp, Darat transect 4

Profile 280°

Darat Fm. Mud/wackestone

Start: 36R 0501351 3230420

Stop: 36R 0501323 3230427
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Distance (m) Fractures Orientations Comments

1 7 110/60

2 10 180/79

3 10 170/90

4 7 180/90

5 8

6 7 178/90

7 8

8 5 092/73

9 6

10 5

11 9

12 3 002/60

13 8 184/79

14 8

15 14

The ramp, Darat transect 5

Profile 264°

Darat Fm. Mud/wackestone

Start: 36R 0501359 3230315

Stop: 36R 0501344 3230317
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Distance (m) Fractures Orientations Comments

1 11 180/70

2 14 177/70

3 14 178/68

4 13 009/89

5 14

6 10 180/72

7 11 184/80

8 4 186/70

9 8

10 10 186/82

11 13

12 6

13 6 183/72

14 8 188/80

15 5 178/72

16 10 188/90

17 7 190/85

18 7 198/70

19 8

20 7

21 6 187/78

22 6

23 7 178/77

24 12

25 8

26 4

27 5

28 6

29 8

30 7 193/82

31 7

32 3

33 5 172/76

34 5

35 3

36 5 023/90

37 4

38 5 185/69

39 7 200/70

40 6

41 5

42 3 183/86

43 6

44 4

45 3 042/78

46 5 039/73

47 7

48 6 020/90

49 14

The ramp, Darat transect 6

Profile 270°

Darat Fm. Mud/wackestone

Start: 36R 0501436 3230337

Stop: 36R 0501373 3230352
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50 6

51 5

52 3

53 5

54 6 180/88

55 5 192/70

56 4

57 3

58 5

59 8

60 8

61 5 194/83

62 4

63 7

64 7

65 7
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Distance (m) Fractures Orientations Comments

1 10 Fault: 148/62

2 12 199/63 1,5 m displacement

3 12

4 7

5 11 180/86

6 5

7 10

8 8

9 10 200/83

10 7

11 10 182/82

12 12 182/79

13 7

14 10

15 17

16 13 213/88

17 10

18 19

19 9 042/85

20 16

21 5 289/85, 179/80

22 13 040/90, 200/82

23 12 042/87

Distance (m) Fractures Orientations Comments

1 13 102/73, 099/70, 

096/16

2 10

3 12 098/80

4 15 092/12, 008/90

5 9 114/62, 188/80

6 15 104/65

7 14 103/62, 191/88

8 13 009/90

9 14 100/80

10 12 115/66, 188/82

The ramp, Darat N-S 1

Profile 210°

Darat Fm. Mud/wackestone

Start: 36R 0501263 3230273

Stop: 36R 0501250 3230258

The ramp, Darat N-S 2

Profile 340°

Darat Fm. Mud/wackestone

Start: 36R 0501342 3230365

Stop: 36R 0501339 3230378

Picture: 2804
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Distance (m) Fractures Orientations Comments

1 12 126/70

2 11 108/70

3 10 104/68

4 8

5 7

6 11 098/65

7 13

8 8

9 10 088/63

10 8

11 8 110/68

12 7

13 6 116/70

14 4

15 12 180/76

16 9

17 8

18 9

19 12 111/66

20 5 178/80

21 9 108/63

22 8

23 8 118/68

24 9

Distance (m) Fractures Orientations Comments

1 4 018/72, 129/89

2 4 040/84, 125/89

3 6 041/78, 127/88

4 3 034/85, 028/82

5 4 026/80, 344/82

6 4 035/60

7 4 028/77, 123/86

8 6 225/78

9 6 024/50

10 9 130/78

11 11 023/72

12 6

Fractures oriented 90-100° are most 

thoroughgoing

The ramp, Darat N-S 3

Profile 180°

Darat Fm. Mud/wackestone

Start: 36R 0501372 3230342

Stop: 36R 0501360 3230323

The ramp, Thebes transect 1

Profile 110°

Thebes Fm. Wacke/packstone

Start: 36R 0500660 3230344

Stop: 36R 0500672 3230334

Picture: 2895

Fractures oriented 080-100° are most 

thoroughgoing
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Distance (m) Fractures Orientations Comments

1 1 023/72

2 4

3 5 021/80

4 3 037/75

5 7 021/63, 146/68

6 7 138/72, 142/80

7 7 150/86, 142/83

8 8 148/78, 026/60

9 6

10 9

11 5

12 6

13 8 021/86, 136/83

14 10

15 9 136/70

16 6 136/74

17 8

18 5

19 12 328/64, 026/82

20 21

21 10 138/90

The ramp, Thebes transect 2

Profile 130°

Stop: 36R 0500707 3230361

Start: 36R 0500690 3230337

Thebes Fm. Wacke/packstone

Thoroughgoing fractures oriented 270-

285°

126



APPENDIX: Scanlines

Distance (m) Fractures Orientations Comments

1 10 001/76

2 6

3 6

4 9

5 8 184/82

6 6

7 5

8 7 000/82

9 10 176/90

10 10 006/89, 346/88

11 2

12 6 034/90

13 4

14 4 346/85

15 9 152/89

16 4

17 4

18 9

19 10 358/75

20 6

21 6

Distance (m) Fractures Orientations Comments

1 11 182/90

2 8 188/90, 004/84

3 7 092/90

4 13 006/65

5 7 001/80

6 8

7 10

8 12

9 6 022/90

10 7

11 4 003/86

12 8

13 4 115/76

14 5

15 12

The ramp, Thebes transect 3

Thebes Fm. Wacke/packstone

Profile 130°

Start: 36R 0500745 3230414

Stop: 36R 0500765 3230402

Thebes Fm. Wacke/packstone

The ramp, Thebes transect 4

Profile 110°

Start: 36R 0500781 3230402

Stop: 36R 0500795 3230399
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Distance (m) Fractures Orientations Comments

1 13

2 10 055/84

3 30 186/60, 173/60

4 14 048/90, 004/80

5 26 162/70, 157/75

6 11 150/72

7 10

8 12

9 12 016/87, 008/90

10 11

11 14 002/88

12 8

13 6

14 11 018/82, 012/84

15 6

16 8 010/82

17 9

Thebes Fm. Wacke/packstone

Fractures trending 80-90° are most 

thoroughgoing

The ramp, Thebes transect 5

Profile 110°

Start: 36R 0500825 3230304

Stop: 36R 0500818 3230298
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Distance (m) Fractures Orientations Comments

1 11 Bedding: 296/19

2 3 210/80, 248/76

3 13 226/70, 214/75

4 5 217/82

5 4

6 5 042/76

7 4 180/90

8 5

9 5

10 8 007/80

11 7 001/74

12 3

13 4 001/86

14 3

15 4 001/82

16 4 179/88

17 4

18 5 187/89

19 5

20 3 191/84

21 7 188/82

22 2 006/87

23 5 001/88

24 3

25 4

26 4

27 5 348/78

28 5 180/80

29 6

30 13 120/90, 118/90

31 5

32 3

33 4

34 5

Thebes Fm. Wacke/packstone

The ramp, Thebes transect 6

Profile 110°

Start: 36R 0500915 3230330

Stop: 36R 0500947 3230323
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Distance (m) Fractures Orientations Comments

1 3 186/80, 185/82

2 8 358/72, 357/88

3 6

4 9 178/82

5 8 356/78

6 6

7 8

8 5 154/88

9 1

10 5

11 6 162/85

12 6 359/88

13 4

14 4

15 6

16 5 168/78

17 4 338/80

18 9

19 9

20 6 172/72

Thebes Fm. Wacke/packstone

The ramp, Thebes transect 7

Profile 110°

Start: 36R 0500962 3230327

Stop: 36R 0500978 3230315
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Distance (m) Fractures Orientations Comments

1 11 192/80

2 3

3 7 171/76

4 3

5 11 164/81, 004/89

6 5

7 5 176/82

8 3

9 4

10 7 024/70

11 6 033/65

12 3

13 4

14 3

15 4 000/86

16 5 183/83

17 4

18 3 180/84

19 3

20 8 053/82, 032/81, 

003/78

21 1

22 1

Distance (m) Fractures Orientations Comments

1 20 006/90

2 19 009/88

3 18 003/89

4 23 012/89

5 19 004/90

6 17 010/84

7 19 018/90

8 21 022/89

9 23 312/90

10 12

11 8 008/87, 012/81

12 8 300/80

13 13 108/70

14 15

15 20 190/88

16 9 184/87

17 22 163/78

Start: 36R 0501023 3230166

Thebes Fm. Wacke/packstone

Profile 080°

The ramp, Thebes transect 9

Thebes Fm. Wacke/packstone

The ramp, Thebes transect 8

Profile 110°

Start: 36R 0501005 3230282

Stop: 36R 0501021 3230264

Stop: 36R 0501041 3230166

Picture: 2924
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Distance (m) Fractures Orientations Comments

1 7 212/78

2 14 190/66

3 10 058/74

4 10 002/85, 004/88

5 4 000/90

6 5 060/70

7 11

8 7 062/76

9 8

10 13 330/87

11 19 170/90

12 9 014/68

13 7 035/55

14 14

15 12

16 16 064/62

17 16 058/60, 065/58

18 12 001/90, 059/60, 

007/90

19 15 055/62

20 11 063/71

Distance (m) Fractures Orientations Comments

1 5 022/84

2 7

3 6 030/55

4 11 108/62, 100/68

5 13 111/66, 113/68

6 8

7 11

8 10 203/60

9 9

10 7

11 4

12 10 100/62

13 9 100/70

14 7

15 8

16 6

17 9

18 15 174/72

19 10

20 14 068/62

Profile 120°

The ramp, Thebes transect 11

Thebes Fm. Wacke/packstone

The ramp, Thebes transect 10

Profile 110°

Stop: 36R 0501083 3230173

Start: 36R 0501054 3230185

Thebes Fm. Wacke/packstone

Stop: 36R 0501113 3230161

Start: 36R 0501099 3230170
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Distance (m) Fractures Orientations Comments

1 20 009/82 Zaiem took notes

2 12

3 14

4 18 048/80

5 9

6 6 078/70

7 4

8 8

9 11 080/80

10 19

11 7

12 6

13 3 001/63

14 6

15 8

16 10 079/72

17 3

18 2

19 2

20 3 074/80

21 4

22 10

23 14 050/80

24 5 059/62

25 7

26 7 169/85

27 4 078/50

28 3

29 6

30 7

31 13

32 7

33 2

34 4

35 6

36 5

37 4 042/58

38 3

39 6

40 3

41 2

42 5 062/58

43 2

44 4

45 2

46 4 041/87

47 2

48 4 035/81

49 3 047/52

The ramp, Thebes transect 12

Thebes Fm. Wacke/packstone

Stop: 36R 0501181 3230134

Start: 36R 0501159 3230156

Profile 120°
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50 4

Distance (m) Fractures Orientations Comments

1 8 050/81

2 4

3 3

4 6

5 5 030/74

6 6 027/83

7 7

8 4

9 4 046/82

10 4

11 8 007/80

12 5

13 7

14 2 326/63

15 2

16 7 118/57

17 10

18 6 094/73

19 5

20 7

21 5

22 4

23 5

24 3

25 7

26 5

27 12 092/78, 090/74

28 11 097/64

29 10

30 7 110/60, 007/90

Thebes Fm. Wacke/packstone

The ramp, Thebes transect 13

Profile 120°

Start: 36R 0501181 3230134

Stop: 36R 0501206 3230119
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Distance (m) Fractures Orientations Comments

1 10 116/82, 125/82 Bedding: 288/18

2 11 042/85, 040/82

3 12 304/89

4 8 312/83

5 7

6 9

7 11

8 8 099/82

9 6

10 4 022/48

11 6

12 3

13 3

14 7

15 5

16 3 147/70

Distance (m) Fractures Orientations Comments

1 16 094/62

2 15 107/70

3 18

4 14 114/62

5 8 005/88

6 10 160/38

7 17 149/45, 140/74

8 13

9 19 130/38

10 23

11 24 121/58

12 8 088/70

13 14

14 8 092/60, 090/67

15 14

16 16

17 8

18 7 128/63

19 10 082/63, 078/78

20 22

21 6

22 6

23 8

24 5

25 3

The ramp, Thebes N-S 2

Thebes Fm. Wacke/packstone

Profile 030°

Start: 36R 0501233 3230097

Stop: 36R 0501243 3230119

Thebes Fm. Wacke/packstone

The ramp, Thebes N-S 1

Profile 040°

Start: 36R 0500661 3230350

Stop: 36R 0500670 3230357
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