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Summary 

Research has proposed that the C-terminal truncated p53 isoforms β and γ enhance 

chemosensitivity in p53
null

 cancer cell lines. Their high expression in acute myeloid leukemia 

(AML) patients correlates positively with increased survival and response to chemotherapy as 

well as with the good prognostic marker Nucleophosmin isoform 1 (NPM1) mutation. However, 

it is ambiguous whether they have independent functions or act in concert with full-length p53 

(FLp53) in AML. Furthermore, the generation of reactive oxygen species (ROS) has been shown 

to play roles in p53 regulation but its mechanism is still elusive. Resazurin which acts through the 

generation of ROS has been demonstrated to have cytotoxic effects in leukemia cells. In this 

thesis, the functional roles of p53β and p53γ in response to chemotherapy and resazurin have 

been investigated in AML cell lines. Also, the effect of resazurin as well as wild-type and 

mutated NPM1 on the regulation of p53 isoforms expression has been examined. 

Stable expression of p53β and p53γ in p53
null

 HL-60 AML cell line was established to explore 

possible isoform-directed functions independent of FLp53. This thesis showed that p53β and 

p53γ do not affect proliferation and viability of p53
null

 AML cells in response to chemotherapy, 

but disclosed that p53β and p53γ may act in concert with FLp53 in a ratio-dependent manner. 

These are based on the facts that stable expression of p53β and p53γ can be established in p53
null 

HL-60 cell line, but a higher level of p53β and p53γ is unfavorable to wild-type TP53 MOLM-13 

AML cell line and a high level of p53γ is cytotoxic. Moreover, it has been revealed that p53β 

increases apoptosis of HL-60 cells in response to resazurin. Resazurin has been shown to cause 

p53-independent down-regulation of Mdm2 and increased apoptosis in HL-60 cells. In MOLM-

13 cells, it does not primarily affect the cells through induction of apoptosis. However, the up-

regulation of p21
CIP1/WAF1 

was observed in MOLM-13 cells after resazurin exposure. Resazurin 

exposure has distinct impacts on the level of Mdm2 in AML cell lines depending on the 

expression level of p53. A lower p53 level has more attenuation of Mdm2 in response to 

resazurin. In addition, although the expression of wild-type and mutated NPM1 has been 

generated in a wild-type TP53 cell line, p53 isoforms modulation was not determined. 

In conclusion, this thesis has shown the interaction of p53β and p53γ with FLp53 and the 

cytotoxic effect of p53γ which suggest a prospective therapeutic target of p53 isoforms. Also, it 

has partly elucidated the mechanism of resazurin sensitivity which may contribute to the 

development of a novel therapy in AML. 
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1. Introduction 

1.1. Acute Myeloid Leukemia 

Acute myeloid leukemia (AML) is a clonal, malignant disease of hematopoietic tissues which 

is represented by the accumulation of abnormal (leukemic) blast cells, primarily found in the 

bone marrow, and the impaired production of normal blood cells [1]. As a consequence, this 

deficiency results in anemia, mortal infection, hemorrhage, or organ infiltration of leukemic 

cells [2]. 

AML is the most common myeloid leukemia accounting for nearly 30% of all adult 

leukemias, and approximately 0.6% of all cancers [3]. The median age at the time of 

diagnosis is about 70 years, and the number of males acquiring AML is higher than of 

females [2]. Risk factors associated with the disease consist of exposure to ionizing radiation, 

benzene, and cytotoxic chemotherapy [2]. Whereas standard chemotherapy for patients being 

younger than 60 years might cure 20–75%, it yields such a result in less than 10% of elderly 

patients  by virtue of their reduced ability to tolerate the treatment in addition to 

disadvantageous cytogenetics regarding chromosomes 5 and 7 [2]. Therefore, the demand for 

novel targeted therapies with lower toxicity is imperative in this group of patients. 

1.1.1. Classification 

Two classification systems of AML were established based on the properties of the disease. 

The first system is the French-American-British (FAB) classification system (Table 1) which 

organized AML into different categories according to the morphology and differentiation of 

AML blasts [4, 5]. World Health Organization (WHO) has developed a more clarified system 

(Table 1) relying on the criteria of FAB system in addition to genetic, immunophenotypic, 

biological and clinical characteristics of myeloid neoplasms [6-8]. WHO classification has a 

clearer impact on prognosis of AML compared to the FAB classification [9], and includes 

previous cancer therapy, myelodysplasia, recurrent chromosomal aberrations and gene 

mutations that allow relapse risk stratification [7, 10]. 
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Table 1. FAB and WHO classification of AML. 

FAB WHO 

M0  AML with no differentiation               

M1  AML without maturation  

M2  AML with granulocytic maturation 

M3  Acute promyelocytic leukemia 

M4  Acute myelomonocytic leukemia 

M5  Acute monocytic leukemia 

M6  Acute erythroleukemia 

M7  Acute megakaryoblastic leukemia 

AML with recurrent genetic abnormalities 

  AML with t(8;21)(q22;q22), RUNX1-RUNX1T1 

  AML with inv(16)(p13.1q22) or t(16;16)(p13.1;p22); CBFB-MYH11 

  Acute promyelocytic leukaemia with t(15;17)(q22;q12);PML-RARA 

  AML with t(9;11)(p22;q23)MLLT3-MLL 

  AML with t(6:9)(p23;q34); DEK-NUP214 

  AML with inv(3)(q21q26.2) or t(3.3)(q21;q26.2); RPN1-EVl1 

  AML (megakaryoblastic) with t(1:22)(p13;q13); RBM15-MKL1 

  AML with mutated NPM1 

  AML with mutated CEBPA 

AML with myelodysplasia-related changes 

Therapy-related myeloid neoplasms 

Acute myeloid leukaemia, not otherwise specified 

  AML with minimal differentiation 

  AML without maturation 

  AML with maturation 

  Acute myelomonocytic leukaemia 

  Acute monoblastic and monocytic leukaemia 

  Acute erythroid leukaemia 

  Acute megakaryoblastic leukaemia 

  Acute basophilic leukaemia 

  Acute panmyelosis with myelofibrosis 

Myeloid sarcoma 

Myeloid proliferations related to Down syndrome 

  Transient abnormal myelopoiesis 

  Myeloid leukaemia associated with Down syndrome 

Blastic plasmacytoid dendritic cell neoplasm 

Table adapted from [5, 8]. 
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1.1.2. Molecular pathogenesis 

AML is the consequence of multiple somatic mutations in either a hematopoietic 

multipotential cell or a more differentiated, lineage-restricted progenitor cell. It has been 

recently revealed that nearly all AML cases have mutations in the cancer cells, but AML has 

fewer somatic mutations than other adult cancers and these mutations can be classified into 

nine categories of genes that are related to pathogenesis [11]. In many patients, the somatic 

mutation originates from a chromosomal translocation [12]. This translocation contributes to 

the rearrangement of a crucial area of a proto-oncogene leading to mutation. The protein 

product of the mutated gene, for example, core binding factor (CBF), retinoic acid receptor- 

(RAR-), HOX family or MLL, is usually a transcription factor or a constituent of the 

transcription pathway which may interrupt the differentiation and maturation of blood 

progenitor cells once it is expressed. Nonetheless, these primary mutations cannot evoke 

AML sufficiently if they work alone. The demand for additional activating mutations, for 

instance, in FLT3, c-KIT, N-RAS or K-RAS, is essential to result in an advantage in 

proliferation or survival of the affected cells [12-14]. A “two-hit” hypothesis has been 

proposed for the generation of AML in which two classes of gene mutations are required. 

While the class I leads to a proliferative and survivable advantage to the cells, the class II 

interacts with the class I and disturbs differentiation and maturation patterns on the mutated 

cells [14]. Recently, the detection of NPM1 mutations has revealed a third class of mutations 

affecting genes implicated in cell-cycle regulation or apoptosis [15, 16]. 

The receptor tyrosine kinase FLT3 has a role in normal myeloid and lymphoid progenitors. 

Internal tandem duplications of FLT3 on chromosome 13 have been shown to occur in 

approximately one-third of adult AML cases, but frequently in cases with normal 

cytogenetics, monocytic phenotype, and PML-RAR or DEK-CAN translocations [17]. Many 

studies have presented that FLT3-internal tandem duplication (ITD) mutation is associated 

with a poor prognosis if the ratio of mutant to wild-type expression is high [18, 19]. 

Chromosomal mutations like deletions of all or part of a chromosome (e.g., chromosome 5, 7, 

or 9) or additional chromosomes (such as trisomy 4, 8, or 13) are also common. In older 

patients and cases of AML following cytotoxic therapy, the frequency of deletions in 

chromosomes 5 and 7 is raised in comparison with de novo cases [20]. Since the mutation of 

genes remaining on the undeleted homologous segment of chromosome 5 is not detected, an 

epigenetic lesion like hypermethylation of a gene allelic to one on the deleted segment on 

chromosome 5 may induce the leukemogenesis. 
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1.1.3. Treatment 

1.1.3.1. Conventional therapy 

Standard treatment of AML consists of two phases, the induction and the consolidation 

phase. The objective of the induction phase is to attain complete remission (CR) determined 

as less than 5% of blasts present in both the bone marrow and normal peripheral blood counts 

[21]. The vital purpose of the consolidation phase after CR acquired is to prolong CR and 

avoid relapse [2]. In the induction phase, the combination of an anthracycline such as 

daunorubicin or idarubicine and cytarabine (AraC) is given to the patient targeting highly 

proliferative cells which also comprise the leukemic blasts. When CR is obtained, the 

treatment of the patient comes in the consolidation phase. This phase is fulfilled by applying 

high dose of AraC, allogeneic stem-cell transplantation (allo-SCT) or autologous SCT [22]. 

However, because allo-SCT has been related to fatality, it should only be utilized in young 

patients who are with a high risk of relapse or relapsed after the induction therapy [23]. 

For elderly patients, the available therapeutic options consist of standard treatment, 

investigational treatment and palliative care. The main aim of treatment is to avoid the 

progression of the disease, with focus on improving the quality of life of the patient [2]. 

1.1.3.2. Novel therapeutic strategies 

In spite of the fact that the advance in regime for acute promyelocytic leukemia (APL) is 

outstanding, with nearly 90% of patients may be cured in the long term [24], the therapeutic 

results of patients diagnosed with other types of AML are still not pleasing. Therefore, the 

need of more effective therapies is evident for the majority of AML patients. Furthermore, 

the incidence of AML is increased with the aging population, the preclusion of intensive 

chemotherapy as well as the development of less toxic regimens are imperative in patients 

with co-morbid conditions [25]. Enhanced knowledge in molecular pathogenesis of the 

heterogeneous disease “AML” has extended the prognostic factors of the disease and 

provided new targets in treatment for patients.  

Clinical trials with novel therapeutic agents in the treatment of AML are increasing. For 

example, some researchers have been interested in the utilization of c-kit inhibitors such as 

imatinib and dasatinib in AML treatment. However, the results of treatment with imatinib 

alone were disappointing [26], and could be foreseen based on the lack of efficiency of 

imatinib monotherapy in Ph+ CML blast crisis [27]. Recently, the combination of 

chemotherapy to either imatinib or dasatinib has been investigated and initial results indicate 
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a limited benefit of this combination [28]. Since FLT3-ITD is a poor prognostic element in 

AML, it has been considered as a therapeutic target which led to great attraction in the 

development of FLT3 inhibitors such as AC220 (quizartinib) and sorafenib for therapeutic 

application [29, 30]. In addition, the use of monoclonal antibodies as a molecularly targeted 

therapy has been demonstrated to be an effective treatment for either hematologic 

malignancies or solid tumors [26]. Recently, it has been presented that the NPM1-mutated 

AML cases have a significantly higher CD33 intensity compared with the non-mutated ones, 

which proposes a basal background for the utilization of anti-CD33 antibodies as a 

therapeutic agent in NPM1-mutated AML [31]. Generally, the employment of targeted 

therapies is currently limited to those ones conducted within a well-designed clinical trial. 

Nevertheless, by virtue of increasing acquirement in understanding molecular aspects of 

AML, the success of novel agents in the treatment of AML has not been probable so far [26]. 

1.1.3.3. Reactive oxygen species therapy through Resazurin - a potential new AML drug 

Reactive oxygen species (ROS) are a heterogeneous group of molecules and free radicals 

created from diatomic oxygen which have a broad range of reactivity [32]. Excessive ROS 

production can result in oxidative stress [33], a condition that has been detected in AML [34]  

which may represent a new potential therapeutic target through compounds promoting its 

generation [35]. 

Resazurin which is the principle component of Alamar Blue used for cell viability assay [36, 

37] has been shown to have cytotoxic effects on leukemic cells [38, 39]. This blue-colored 

compound is also utilized as an oxidation–reduction indicator for examination of sperm 

viability [40], cell proliferation [41], toxicity [42], and mitochondrial metabolism [43, 44]. In 

these assays, the conversion from the blue color of resazurin to the pink color of its 

fluorescent product, resorufin, which has an excitation maximum at 572nm and an emission 

maximum at 585nm [45] is detected [39]. This conversion, in living cells, is referred to the 

reduction of resazurin by various oxidoreductase enzyme systems employing NAD(P)H as 

the main electron donor [37, 46]. The biochemical reactions caused by resazurin exposure 

have been demonstrated to involve the production of reactive oxygen species (ROS) which is 

mainly generated by mitochondrial respiration [47]. Furthermore, resazurin has also been 

presented to have a connection with oxidation–reduction reactions in the cytosol and nucleus 

[48]. Taken together, it can be seen that the exposure of living cells with resazurin might 

influence cellular redox conditions and energy homeostasis [15]. Thus, there could be a case 

for saying that resazurin activates ROS generation through its robust cross-reactivity with the 
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constituents and metabolites of the cells, triggering a cellular stress response which is likely 

to provoke the dysfunction of mitochondria and the latter degradation of the cell [39]. 

Despite the fact that the biochemical properties of resazurin have been characterized, the 

information relating to the physiological outcomes of resazurin exposure in vivo is still scarce 

[39]. Because resazurin is ordinarily accepted to be low toxic within the timeframe of the 

assays [49, 50], in addition to the well tolerance of rats with the compound [51], the potential 

effects of resazurin as a treatment are regularly not assessed in cell culture applications. It has 

become clear that targeting the redox pathways is a practicable way to treat cancer [52, 53]. 

Many approved drugs for cancers’ treatment such as bleomycin, bortezomib, cisplantin and 

anthracyclines have been revealed to influence cells by generating ROS [52, 54]. In AML, 

increased levels of ROS are supposed to play an important role [55]. For instance, FLT3-ITD 

expressing cell lines have been shown to have elevated levels of endogenous ROS [56]. By 

virtue of this critical relation between AML and ROS, targeting ROS production has been 

presumed to be fruitful as treatment against AML [55, 57, 58]. Therefore, resazurin appears 

to be a promising substance which can be further developed as a treatment against AML with 

low toxicity. 

1.2. The tumor suppressor protein p53 

The TP53 gene, first described in 1979, encodes the tumor suppressor protein p53 which is a 

universal nuclear transcription factor in most of cell types [59, 60]. By virtue of being a 

transcription factor, p53 carries out its functions by binding specifically to response elements 

(REs) of target genes and increasing the transcription rate of these genes [61]. The protein has 

been considered as the “guardian of the genome” because of its essential roles in maintaining 

genetic stability, inducing cellular differentiation and delaying the development of cancer 

[60, 62]. The importance of p53 in genome protection was revealed by the fact that nearly 

50% of all cancers bear mutations in the TP53 gene [63, 64]. In the remaining cancers, 

disruption of the p53 pathway such as overexpression of Mdm2, the negative regulator of p53 

has been shown [65, 66]. AML is a typical example of these cancers. The incidence of TP53 

mutations in AML is less than 10% of all patients [67, 68], but Mdm2 has been found to be 

overexpressed frequently [69, 70]. Although TP53 mutations in AML are not common, they 

are strongly connected with a complex aberrant karyotype [71] and are a prognostic factor of 

poor survival [68, 72]. 
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1.2.1. Downstream responses to p53 activation 

The p53 protein is normally preserved in an inactive form [60]. It is activated and stabilized 

when cells are exposed to diverse stress signals endangering the genomic integrity of the 

cells. These kinds of cellular stress consist of DNA damage, oncogenic activation, ribosomal 

stress, loss of cell-cell contacts and hypoxia [73]. Once p53 is activated, it is able to regulate 

a complex transcriptional program which commences numerous biological responses 

comprising cell-cycle arrest, senescence, apoptosis, DNA repair, control of mitochondrial 

respiration and differentiation [73, 74] (Figure 1-1). 

 

Figure 1-1 p53 activation and downstream responses. p53 is activated by numerous cellular stress signals 

which can initiate various responses resulting in genomic stability. Figure adapted from [73]. 

One of the substantial effects of p53 is that it provokes the cyclin-dependent kinase (CDK) 

inhibitor p21
WAF1/CIP1

 expression [75]. CDKs, together with cyclin proteins, are fundamental 

in the regulation of cell-cycle progression. The binding of cyclin to CDK results in the 

activation of the enzyme which ensures the progression of cell cycle, for instance, from G1 

phase to S phase or from G2 phase to M phase. The negative effect of p21
WAF1/CIP1 

on CDKs’ 

activity has been shown that it causes an arrest in transition from G1 phase to S phase of cell-

division-cycle [76]. Not only does p21
WAF1/CIP1

 evoke cell-cycle arrest, but it also stimulates 

cellular senescence [77]. As a result, p53 can suppress the proliferation of stressed cells and 

prevent the propagation of mutations effectively. 
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Another significant response to p53 activation is the induction of apoptosis [73]. The binding 

of p53 to the regulatory region of BAX gene activates directly the transcription of the gene 

which leads to the overexpression of pro-apoptotic Bax protein [78]. Furthermore, some 

genes encoding pro-apoptotic BH3-only proteins such as Noxa and Puma are also activated 

by p53 [79, 80]. Once these proteins are overexpressed, they induce the release of 

cytochrome c and other proteins from the intermembrane space of the mitochondria into the 

cytosol and further activate the caspase cascade which leads to apoptosis [81]. Interestingly, 

it has also been presented that p53 can bind directly to the anti-apoptotic protein Bcl-2 or the 

pro-apoptotic protein Bax and induce apoptotic cell death [82, 83]. Taken together, it would 

indicate that p53 is significant in inducing apoptosis in both a transcriptional and non-

transcriptional manner [84]. 

Research has also demonstrated that p53 plays a direct role in DNA repair which helps to 

maintain genomic stability and prevent tumor development. When activated by genotoxic 

stress, the protein directly initiates the transcription of repair genes such as MSH2, DDB2 and 

stimulates removal of alkyl adducts by O
6
-methyl-guanine-DNA-methyl-transferase 

(MGMT), mismatch repair (MMR), and nucleotide excision repair (NER) respectively [85]. 

In addition, it has been revealed that activated p53 induces the expression of target genes 

diminishing the level of intracellular ROS which mainly cause DNA damage and genetic 

instability [86]. Also, the p53 protein promotes differentiation which does not result in the 

abolishment of damaged cells, but removes them from proliferation instead. Thus, it aids the 

organism in maintaining the stability of the genome. In human cancers, the presence of 

mutated p53 is usually correlated with a poor grade of differentiation [74]. 

These responses to the activation of p53 suggest that the severity of stress determines cell fate 

through the action of p53. Low levels of stress cause a temporary block in cell cycle which 

gives time for removing intracellular ROS and repairing DNA, whereas the severe ones 

initiate apoptotic cell death that eradicates irreparable damaged cells [87]. Both consequences 

result in the maintenance of genetic stability and the suppression of tumor formation. 

1.2.2. The regulation of p53 

1.2.2.1. Regulation of p53 functions 

Because the activation of p53 decides the cell fate, it is clear that p53 activities must be very 

strictly regulated to ensure normal development of the cells [59, 73]. The regulation of p53 

has been described to consist of numerous different forms which comprise post-translational 
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modifications (PTMs) of p53, regulation of p53 stability or direct inhibition of p53’s 

transcriptional activity [73]. While PTMs such as phosphorylation, acetylation, methylation, 

glycosylation and ribosylation [88, 89] have been shown to have merely modulatory 

functions in p53 regulation in vivo, stabilizing p53 or inhibiting directly p53 has revealed 

insightful roles in the regulation of p53’s functions [90]. 

The cellular quantity of p53 protein is principally controlled by the rate of degradation [60]. 

The degradation of p53 is primarily performed via the core 26S proteasomes by an ubiquitin-

dependent mechanism [91]. The E3 ubiquitin ligase Mdm2 which human homologue is 

Hdm2 has been presented as the key negative regulator of p53 [92]. Mdm2 is responsible for 

attaching ubiquitin groups to the C-terminal tail of p53 which targets the protein for 

subsequent proteasomal degradation [93]. In spite of the fact that Mdm2 is the main negative 

regulator of p53, the gene encoding it is also one of the transcriptional targets of p53 [94]. 

This creates a negative feedback loop in which p53 initiates the transcription of MDM2 gene 

which is later translated into Mdm2. Then, the protein promotes the degradation of p53 which 

helps to keep the low level of p53 in physiological condition [73]. In addition to Mdm2, other 

ubiquitin ligases, for example, Cop1, Pirh2, HectH9/MULE/ARF-BP1, E6AP and CHIP 

which also promote the degradation of p53 have been recognized [73]. Although Mdm2 is 

able to down-regulate p53 sufficiently, it does not necessarily follow that it works alone. 

Some proteins have been described to work in cooperation with Mdm2 for the regulation of 

p53 such as p300/CBP [95] and gankyrin [96, 97]. 

Not only is p53 degraded by the ubiquitin-dependent mechanism, but it can also be degraded 

via an ubiquitin-independent mechanism. This degradation is performed through the core 20S 

proteasomes and is regulated by the NAD(P)H quinone oxidoreductase 1 (NQO1) [98]. 

NQO1 is found mainly in the 20S proteasomes and it prevents the degradation of p53 from 

the 20S proteasomes by directly binding to p53 [99]. 

Research has revealed that MdmX (Mdm4), a structural relative of Mdm2, is another 

important negative regulator of the tumor suppressor protein p53 [100]. Nevertheless, while 

Mdm2 acts as an E3 ubiquitin ligase which promotes the degradation of p53, MdmX does not 

have the activity of E3 ligase and functions by binding directly to p53 and inhibiting its 

transcriptional activity [101, 102]. The fact that MdmX has a Mdm2-independent function in 

the regulation of p53 does not necessarily mean that it works distinctly. In contrast, these two 

proteins have been shown to interact mutually [102]. 
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1.2.2.2. Redox regulation of p53 

While it is the case that p53 plays a fundamental role in the control of mitochondrial 

respiration, a main cellular process generating ROS which is pivotal to redox signaling, it is 

also regulated by redox signals which decide the destinies of the cell through selective 

transcription of p53 target genes [103]. For instance, whereas nuclear oxidative stress 

stimulates DNA repair dependent on p53 activity [104], the excess production of ROS in 

mitochondria caused by chemotherapeutic agents results in apoptosis [105, 106]. This 

proposes that there are several pathways existing in redox and p53 signaling network which 

lead to many different types of response. The mechanism of how ROS regulates p53’s 

activities; however, is still elusive [103]. 

Besides the effects on p53 through the signaling networks, ROS may also directly affect the 

activities of p53 via PTMs. For example, the implication of ROS in the phosphorylation of 

p53 by protein kinases such as p38α MAPK (mitogen-activated protein kinase) [107], ATM 

(ataxia-telangiectasia mutated protein) [108], and ERK (extracellular signal-regulated 

kinases) [109] has been presented. Nonetheless, the activation of these enzymes is not 

necessarily specific to ROS. Moreover, how p53 stability is influenced by redox modification 

still remains mysterious [103, 110].  

1.3. The isoforms of p53 

1.3.1. Background 

The tumor suppressor protein p53 is the member of a family which also consists of p63 and 

p73, two transcription factors sharing homologies in structure, biochemistry and biology with 

p53 [111, 112]. Many protein isoforms have been shown to be expressed by TP63 and TP73 

genes [112]. Similarly, the human TP53 gene has also been described to encode 12 different 

p53 protein isoforms via various mechanisms [113, 114] (Figure 1-2). 

Some clinical cancer studies have revealed that the aberrant expression of some of the p53 

isoforms may induce the inactivation of p53 functions [115-117]. The documentation that 

p53 isoform expression is deregulated in human cancers is arising. The isoforms of p53 may 

have functions in all biological activities that are regulated by both p53-dependent and p53-

independent mechanisms. Therefore, it should not be thought that the p53 pathway is 

regulated by only p53 anymore, but by the interaction of p63, p73 and p53 isoforms [118]. 
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Figure 1-2 Human TP53 gene and p53 isoforms. (A) The human TP53 gene which contains 11 exons 

expresses numerous p53 isoforms due to the use of alternative promoters, splicing sites or translational initiation 

sites. (B) The full-length version of p53 (FLp53) consists of 393 amino acids and is composed of separate 

structural and functional domains such as transactivation domains (TADI and TADII), proline rich domain 

(PrD), DNA binding domain (DBD), nuclear localization signal (NLS) domain, oligomerization domain (OD) 

and basic region (BR) regulatory domain. Alternative splicing of intron-9 (exon 9b) produces 2 different C-

terminal truncated isoforms, p53β and p53γ, which replaced the OD of FLp53 with 10 or 15 additional amino 

acids, respectively [115, 119, 120]. Alternative splicing of intron-2 results in the N-terminal truncated isoforms 

Δ40p53, Δ40p53β, Δ40p53γ. The internal promoter (P2) in intron-4 regulates the expression of Δ133p53, 

Δ133p53β and Δ133p53γ isoforms [115]. The isoforms Δ160p53, Δ160p53β and Δ160p53γ are created by the 

usage of alternative translational initiation [114]. The C-terminal domains of p53β (DQTSFQKENC) and p53γ 

(MLLDLRWCYFLINSS) are demonstrated with a green and pink box, respectively. The molecular weight of 

each p53 isoform is indicated on the right. The red box points out p53 isoforms studied in this thesis. Illustration 

adapted from [118, 121]. 
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1.3.2. p53 isoforms β and γ 

1.3.2.1. The functions of p53β and p53γ 

It is unclear whether the C-terminal truncated p53 isoforms p53β and p53γ have their own 

functions or they function together with full-length p53 (FLp53). While Graupner and 

colleagues have reported that p53β and p53γ do not have any effect on senescence, apoptosis, 

and transcription [122], Bourdon and his fellows have found that they have transcriptional 

and direct protein interaction ability as well as specific intracellular localization [115, 118, 

121]. It has been revealed that p53β is mainly localized in the nucleus, while p53γ is either in 

the nucleus or in the cytoplasm, proposing that p53γ shuttles between these two cellular 

compartments [115]. The p53β isoform was shown to be able to bind to the BAX or p21 

promoter and enhance the transcriptional activity of FLp53 on the p21 promoter [115]. 

Moreover, p53β may induce apoptosis independently of FLp53, though the efficiency is 

lower than FLp53 [121]. It was also revealed that p53β acts in concert with FLp53 to increase 

replicative cellular senescence of human normal fibroblasts [123]. The p53γ isoform can bind 

to the internal promoter of FLp53 and improve the transcriptional activity of FLp53 on the 

BAX promoter, but not on the p21 promoter [115]. Both p53β and p53γ were found to affect 

an optimized p53-responsive element [124]. In previous studies, difficulties in generating 

cells with functional p53γ led to the conclusion that p53γ is cytotoxic [121]. This finding has 

been recently supported by stable low-level expression of p53γ protein in p53
null

 NCI-H1299 

lung cancer cell line retrovirally transduced with p53γ construct [124]. 

1.3.2.2. Regulation of p53β and p53γ 

As mentioned before, p53β and p53γ proteins are generated by the alternative splicing of 

intron-9 of the human TP53 gene. However, how this alternative splicing is controlled has not 

been elucidated [118]. The RNA-binding protein SRSF3 (also named SRp20) is the smallest 

member of the highly conserved serine/arginine-rich splicing factor family which has been 

shown that its down-regulation will force the splicing of TP53 pre-mRNA towards the p53β 

isoform [125]. Recent studies have proposed that SRSF3 has pro-oncogenic activity based on 

its up-regulation in different kinds of human cancers [126, 127], and its capability in 

stimulating neoplastic alteration when overexpressed [126], signifying its importance in 

tumorigenesis. This evokes a question as whether a correlation between the expression of 

SRSF3 and the p53 isoforms expression exists. 
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The OD of p53 is the main site of PTMs which regulates p53 stability, for instance, the 

ubiquitination of lysine residues by Mdm2 [128]. By virtue of the presence of a stop codon in 

exon 9b, both p53β and p53γ isoforms lack the OD [121]. This absence led to the study as to 

whether Mdm2 regulates the stability of p53β and p53γ. It was shown that p53β appears to be 

regulated by Mdm2-mediated ubiquitination, whereas p53γ seems to be ubiqutinated by other 

E3 ligases and very unstable because of proteasomal degradation [124, 129]. In addition, the 

NAD(P)H quinone oxidoreductase (NQO1) enzyme was suggested to play roles in p53γ 

stability [124]. These findings have revealed that the stability of p53β and p53γ are 

differentially regulated [124]. Therefore, clarifying the mechanisms how p53β and p53γ are 

degraded may help to comprehend how these isoforms of p53 are deregulated in cancer. 

It has been shown that redox plays roles in the regulation of p53, but how it regulates p53 

functions as well as stability has not been well understood. Therefore, it will be interesting to 

investigate if redox modulates the expression of p53 isoforms as a mechanism for this 

regulation. 

1.3.2.3. p53β and p53γ in cancer 

Numerous clinical studies have reported that the expression of p53 isoforms is abnormal in 

various types of human cancers such as breast cancer, AML, head and neck cancers, 

melanoma, renal cell carcinoma, and colon, ovarian, and lung cancers, proposing that the 

aberrant expression of the p53 isoforms could contribute to the formation and progression of 

cancer [115, 116, 130-135]. The expression of p53β and p53γ was proved to be altered in 

cancers and had diverse roles. For example, in colon carcinomas, the expression of p53β was 

shown to be decreased [123]. In mutant p53 breast cancer patients, the expression of p53γ is 

connected with a prognosis as good as in wild-type p53 breast cancer patients [134]. 

Moreover, p53β expression in primary ovarian cancers was linked with worse recurrence-free 

survival in patients expressing wild-type p53 [135]. In AML patients, the expression of p53β 

and p53γ was correlated with increased chemotherapy-response and longer survival [136]. In 

addition, the ectopic expression of p53β and p53γ in p53
null  

osteosarcoma and lung cancer 

cell lines has been shown to augment chemosensitivity [124]. Therefore, it is interesting to 

investigate the functional roles of these isoforms in AML models. 
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1.4. Nucleophosmin (NPM1) 

1.4.1. Classification, function and regulation 

Nucleophosmin (NPM1), also called B23 or Numatrin, is a member of the nucleoplasmin 

family of nuclear chaperones and is expressed in all tissues [137]. In humans, it is encoded by 

the NPM1 gene located on chromosome 5q35 [138]. By virtue of alternative splicing, three 

different isoforms of NPM1 are created. The dominant isoform NPM1 (or B23.1) is a 

phosphoprotein of about 37 kDa comprising 294 amino acids [139]. Whereas NPM1 protein 

is only localized in the nucleolus, the second isoform NPM1.2 (B23.2) is principally limited 

in the nucleoplasm [139-142]. Despite nucleolar localization, NPM1 shuttles steadily 

between nucleus and cytoplasm [143] as well as between nucleoplasm and nucleolus [144]. 

NPM1 is a fundamental protein for embryonic development [145]. Additionally, it also plays 

an essential role in numerous critical cellular functions including regulation of ribosome 

biogenesis, stabilization of the oncosuppressor p14Arf protein in the nucleolus and control of 

centrosome duplication regarding its function in the establishment of many protein-protein 

interactions as a molecular chaperone [146]. The characteristics of a nuclear-cytoplasmic 

shuttling protein are crucial for most of its functions [146]. 

Trafficking of NPM1 inside the nucleus is primarily conducted by diffusion, a rapid, non-

directional process, which often happens via energy-independent mechanisms [147]. The 

transferring of NPM1 protein to the nucleolus is also assisted by its ability to form 

homodimers [148]. In addition, post-translational modifications of NPM1 consisting of 

phosphorylation, ubiquitination and sumoylation, are probable to give a contribution to the 

regulation of its cellular trafficking [149-154]. 

1.4.2. NPM1 mutations in AML 

Translocation or mutation of the NPM1 gene has been detected in numerous hematological 

malignancies [155], and these genetic transformations frequently disturb the normal traffic of 

NPM1 inside the cells. The aberrant expression of mutated NPM1 in leukemic cell cytoplasm 

is approximately 35% of adult AML [156], and this ectopic expression is usually seen in the 

entire leukemic cell population [144]. Cytoplasmic NPM1 is also the immunohistochemical 

hallmark of AML with mutated NPM1 [157], which is specific for recognition of AML cells 

with a NPM1 mutation [144]. 
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Despite the fact that around 50 variants of NPM1 mutation have been identified until now, all 

of them cause a shift of the reading frame creating common alterations at the C-terminal end 

of NPM1 leading to the abnormal localization of the mutated NPM1 in the cytoplasm of 

leukemic cells [158]. Approximately 80% of NPM1 mutations in AML are type A which is 

created by a duplication of a TCTG tetranucleotide at positions 956–959 in the NPM1 gene 

[159]. The extraordinary accumulation in the cytoplasm of mutated NPM1 is likely to play a 

critical role in the generation of AML, yet the mechanism is still unknown [144]. 

Leukemic NPM1 mutants induce the dislocation of their various protein partners into the 

cytoplasm. One of them is the tumor suppressor protein p14ARF which is a critical positive 

regulator of the p53 protein in response to oncogenic activation [160]. ARF binds to Mdm2 

and inhibits its activity, thereby increases the level of p53. Because the interaction of NPM1 

and ARF is mostly studied in murine cell lines, the focus is on its murine ortholog p19Arf. 

The protein p19Arf forms a complex with wild-type NPM1 which makes them localize 

together in the nucleolus [161]. Since this interaction helps p19Arf have a stable structure 

[162], it seems to protect p19Arf from the rapid proteasomal degradation. Mutated NPM1 

may contribute to the inactivation and dislocation of p19Arf and further cause AML 

development because the stability and subcellular distribution of p19Arf play crucial roles in 

maintaining its basal levels and functional activity [163]. Research has shown that when 

p19Arf makes a complex with the mutated NPM1, its stability is substantially prejudiced and 

the p53-dependent cell-cycle arrest becomes weaker [164]. 

Interestingly, many studies have found that AML with mutated NPM1 often bears normal 

karyotype and is associated with good prognosis when FLT3-ITD is not present [165-170]. 

Moreover, the presence of NPM1 mutation was connected with high expression of p53β and 

p53γ proteins in AML [136]. It appears to be the case that the alterations of NPM1 have an 

effect on p53β and p53γ expression. By virtue of the involvement of NPM1 in ribosomal 

biogenesis, it is probable that such implication contributes to the regulation of p53 isoform 

expression [146]. The actual mechanism, however, is still unknown. 
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2. Aims 

The main aims of this thesis have been to characterize the functional roles of p53 isoforms β 

and γ and to investigate the modulation of full-length p53 (FLp53), p53β and p53γ in acute 

myeloid leukemia (AML), with particular objectives as follows: 

1) Investigate functions of p53β and p53γ independent of FLp53 with respect to 

chemotherapeutic sensitivity in a p53
null

 AML cell line; 

2) Establish an increased expression of p53β or p53γ in wild-type TP53 AML cell line in 

order to study their functions in concert with FLp53 and endogenous p53β and p53γ; 

3) Examine the effect of p53β and p53γ on AML cell line and the modulation of p53 

isoforms in response to reactive oxygen species through treatment with resazurin; 

4) Examine the correlation between wild-type NPM1, mutated NPM1 and p53 isoforms 

modulation in a wild-type TP53 cell line. 
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3. Materials and Methods 

3.1. Cell culture 

3.1.1. Culturing cells 

The FAB class M2 p53
null

 HL-60 AML cell line [171] was purchased from DSMZ (Deutsche 

Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany) and the 

FAB class M5 wild-type TP53 MOLM-13 AML cell line [172] was bought from ATCC 

(American Type Culture Collection, Manassas, VA, USA). MOLM-13 cells transduced with 

vector control (shControl) and short hairpin RNA against p53 (shp53) were kindly provided 

by Dr. Gro Gausdal and Professor Stein Ove Døskeland (University of Bergen, Norway). HL-

60 cells transduced with p53β-tdTomato, p53γ-tdTomato and tdTomato alone (vector control) 

were generously supplied by Dr. Elisabeth Silden (University of Bergen, Norway). All cells 

were cultured in Roswell Park Memorial Institute (RPMI)-1640 medium (Sigma-Aldrich, 

Inc., St. Louis, MO, USA). Human Embryonic Kidney 293 (HEK293) cell line (ATCC) and 

HEK293T-based Phoenix Amphotropic packaging cell line (generous gift from Professor Jim 

Lorens, University of Bergen, Norway) were cultured in Dulbecco’s Modified Eagle Medium 

(Sigma-Aldrich). Cell culture media were supplemented with 10% heat-inactivated Fetal 

Bovine Serum (FBS) (PAA Laboratories GmbH, Pashing, Germany), 50 UI/mL Penicillin – 

50 μg/mL Streptomycin and 2 mM L-glutamine (all from Sigma-Aldrich). The cells were 

kept in humidified incubators at 37°C with 5% CO2 and observed under light microscope 

daily to ensure optimal proliferative and bacterial free conditions.  

All suspension cell lines were maintained at 0.2-1.0×10
6
 cells/mL for the duration of 

experiment and split at a ratio of 1:5 thrice weekly as required. The adherent cells were 

grown in 10 cm culture dishes and split at approximately 80% confluence by trypsinization 

twice weekly as required. Trypsinization was performed by the removal of medium, followed 

by washing two times with 5 mL of 0.9% NaCl (Fresenius Kabi, Bad Homburg, Germany). 1 

mL of 1X trypsin (Sigma-Aldrich) was added to the cells for 5 minutes at room temperature. 

The cells were then added 9 mL of medium for neutralization of the trypsin and three 

different volumes (1, 0.5 and 0.25 mL) of cells were separately added into medium with a 

total volume of 10 mL. 
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3.1.2. Thawing cells 

Cells were rapidly thawed by heating the vial containing approximately 5.0×10
6
 

cryopreserved cells in hands until it was almost defrosted. 1 mL of medium was added, and 

the vial was left at room temperature (RT) for 5 minutes. Then, the cells were transferred to a 

15 mL tube containing 10 mL of medium and centrifuged at 500g × 5 min. The supernatant 

was discarded to remove the cryoprotectant dimethyl sulfoxide (DMSO) and the pellet was 

resuspended in 10 mL of medium. Thereafter, the cell suspension was transferred to a 25 cm
2
 

flask. The cells were cultured under normal growth conditions and the medium was changed 

after 2-3 days. 

3.1.3. Cryopreserving cells 

Cells were counted and followed by centrifugation at 500g × 5 min. The supernatant was 

discarded and the pellet was dissolved in freezing medium (70% medium, 20% FBS and 10% 

DMSO (Scharlab S.L., Sentmenat, Spain)) at a concentration of 5.0×10
6
 cells/mL. Then, each 

1mL of cell suspension was transferred to a cryogenic vial (Sarstedt, Nümbrecht, Germany). 

The vials were stored at -80
o
C for at least 24 hours before transferring to a liquid nitrogen 

tank (-196
o
C) for long-term storage. 

Counting cells was achieved by using a hemocytometer. All cell work was carried out under 

sterile conditions through the utilization of a laminar flow bench with a high efficiency 

particulate air (HEPA) filter. 

3.2. Plasmid production 

3.2.1. Plasmid construction 

In order to study the correlation between NPM1 and p53 isoforms modulation, the utilization 

of recombinant plasmid containing NPM1 DNA as well as an empty vector control is 

required. Because of the lack of vector control, we created it from the recombinant plasmid. 

Approximately 3 μg of pCDNA3
+
-NPM1-ECGFP plasmids (generously provided by Dr. 

Marikki Laiho, Johns Hopkins, USA) containing wild-type NPM1 gene were digested by 2 

μL Fermentas FastDigest EcoRI (Thermo Scientific, Wilmington, DE, USA) at 37
o
C for 1 

hour. After digestion, 1% agarose gel electrophoresis was performed to separate the NPM1 

gene from the digested plasmid. The remaining part of the digested plasmid was collected by 

cutting the gel under a UV light and purified by QIAquick® Gel Extraction Kit (Quiagen 
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Inc., Valencia, CA, USA) according to the protocol of the manufacturer. Thereafter, the 

vector control was created by ligation reaction using USB Ligate-IT
TM

 Ligation Kit 

(Affymetrix Inc., Santa Clara, CA, USA) following the producer’s instructions. 

3.2.2. Transformation of E.coli cells 

The ligation mixture was chemically transformed into EO-Top10 competent Escherichia coli 

cells (kindly provided by Dr. Line Wergeland, University of Bergen, Norway) using the heat 

shock method [173]. The transformed E. coli cells were grown on Luria-Bertani (LB) 

(Sigma-Aldrich) plates with 50 μg/mL Ampicillin (Sigma-Aldrich) at 37
o
C overnight. Three 

random single colonies of E. coli were scraped off the selective LB plates the following day 

and grown in LB medium with 50 μg/mL Ampicillin at 37
o
C overnight. 

3.2.3. Purification and digestion of plasmids 

Bacteria were harvested by centrifuging at 10,000g × 5 min. Then, they were lysed and the 

plasmid was purified by using QIAprep® Spin Miniprep Kit (Quiagen) following the 

manufacturer’s protocol. The concentration of the plasmid was measured by NanoDrop UV-

Vis spectrophotometer (Thermo Scientific). The plasmids from three chosen colonies and the 

mother vector (control) were digested by restriction enzymes BamHI (New England Biolabs 

Inc., Beverly, MA, USA) or EcoRI according to producers’ instructions. Agarose gel 

electrophoresis was performed after digestion in order to examine the successful construction 

of vector control. 1Kb Plus DNA Ladder (Invitrogen) was used. Wild-type NPM1-ECGFP 

vector, mutated NPM1-ECGFP vector and the successfully generated vector control were 

exaggerated and purified by QIAfilter
TM

 Plasmid Maxi Kit (Quiagen) using the protocol of 

the vendor. 

3.2.4. DNA sequencing 

The vector control, wild-type NPM1-ECGFP construct and mutated NPM1-ECGFP construct 

(kind gift from Dr. Randi Hovland, University of Bergen, Norway) were sequenced prior to 

transfection into HEK293 cells to confirm correct NPM1 sequence. Sequencing PCR was 

performed by using BigDye Terminator v3.1 Cycle sequencing kit (Applied Biosystems, 

Foster City, CA, USA) with a forward primer for T7 (5’-TAATACGACTCACTATAGGG-

3’) which is subsequently followed by NPM1 sequence and a forward primer towards the 

middle of NPM1 sequence (5’-CATCAACACCAAGATCAAAA-3’) (Sigma-Aldrich) to 

guarantee that the sequencing reaction detects the whole segment. PCR was carried out as 

follows: an initial denaturing step at 96
o
C for 10 min, then 30 cycles of 96

o
C for 10s, 50

o
C 
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for 5s, 60
o
C for 4 min, and a final extension at 72

o
C for 7 min. PCR products were sequenced 

at Sequencing Facility, MBI, University of Bergen, Norway. DNA sequences were translated 

into amino acid sequences by using http://web.expasy.org/translate/ and then aligned with 

known protein sequences (downloaded from http://www.ncbi.nlm.nih.gov/pubmed) by using 

http://www.ebi.ac.uk/Tools/msa/clustalw2/. 

3.3. Transduction and transfection of cells 

3.3.1. Retroviral transduction of cells 

3×10
6
 HEK293T-based Phoenix Amphotropic packaging cells were seeded in each 10 cm 

culture dish with 6 mL of growth medium and grown at 37°C with 5% CO2 for 24 hours. 

Thereafter, the cells were transfected with vector control (L335, kindly supplied by D.R. 

Micklem, University of Bergen, Norway), p53β-tdTomato vector or p53γ-tdTomato vector 

(generously provided by Dr. Elisabeth Silden) using 50 μM Chloroquin (Sigma-Aldrich) and 

2 mL of a transfection mixture consisting of 128 mM CaCl2 (Sigma-Aldrich), 4 μg of the 

retroviral vectors and 1X HBS (0.75 mM Na2HPO4, 8 g/L NaCl, 6.5 g/L HEPES sodium salt, 

pH 7.0) for 8 hours. They were then grown in 7 mL of fresh growth medium for 40 hours to 

produce retroviral particles. After 48 hours of transfection, the media containing retroviral 

particles were collected.  

100×10
3 

MOLM-13 cells were plated in each well of 6-well plates. 1 mL of medium 

containing viral particles and 50 μg/mL Protamine Sulfate (Sigma-Aldrich) was added into 

each well. The infection of cells was performed by centrifuging at 1200g × 90 min. The 

medium was changed after 24 hours of infection and the cells were grown up to prepare for 

assessing tdTomato expression by flow cytometry (see section 3.4.2). 

3.3.2. Transient transfection of cells 

3×10
6
 HEK293 cells were seeded in each 10 cm culture dish and grown at 37°C with 5% CO2 

for 24 hours. Thereafter, the cells were transiently transfected with 6 μg of vector control, 

wild-type NPM1-ECGFP or mutated NPM1-ECGFP construct using XtremeGENE 9 DNA 

Transfection Reagent (Roche Diagnostics GmbH, Mannheim, Germany) according to the 

manufacturer’s instructions. After 48 hours of transfection, transfected cells were examined 

by flow cytometry (see section 3.4.2) and Leica DM IRB fluorescence microscope (Leica, 

Bensheim, Germany). 

http://web.expasy.org/translate/
http://www.ncbi.nlm.nih.gov/pubmed
http://www.ebi.ac.uk/Tools/msa/clustalw2/
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3.4. Flow cytometry 

Flow cytometry permits the examination of both morphological and fluorescent properties of 

individual cells in suspension. Therefore, it can be exerted for evaluating fluorescent protein 

expression, sorting cells as well as analyzing cell viability. 

3.4.1. Fluorescence Activated Cell Sorting (FACS) 

10×10
6
 transduced HL-60 cells or 30×10

6
 transduced MOLM-13 cells were collected, 

washed once with sterile 0.9% NaCl and resuspended in sterile 0.9% NaCl at a concentration 

of 5×10
6
 cells/mL. Cells expressing tdTomato were isolated by BD FACSAria

TM 
Cell Sorter 

(BD Biosciences, San Jose, CA, USA) using a 532 nm laser. Transduced HL-60 cells were 

re-sorted prior to each experiment to guarantee that the population of cells mostly contains 

tdTomato
+
 cells. 

3.4.2. Assessment of tdTomato or ECGFP expression 

The expression of tdTomato in transduced MOLM-13 cells was evaluated by BD 

LSRFortessa
TM

 cell analyzer (BD Biosciences) using a 561 nm laser. Red fluorescence was 

discovered through a 585/42 nm bandpass filter. The percentage of tdTomato
+
 cells was 

analyzed by FlowJo software (Tree Star Inc., Ashland, OR, USA).  

The expression of tdTomato in transduced HL-60 cells and the expression of ECGFP in 

transfected HEK293 cells were assessed by Guava® EasyCyte
TM

 flow cytometer (Millipore 

Corp., Hayward, CA, USA) using a 488 nm laser. The detection of tdTomato was achieved 

via a 583/26 nm bandpass filter whereas ECGFP expression was exposed through a 525/30 

nm bandpass filter. Data were analyzed by InCyte
TM

 software (Millipore). 

3.4.3. Annexin V – To-pro-3 flow cytometric analysis 

Cells stained with both Annexin V – Alexa Fluor 488 and To-pro-3 (see section 3.6.3) were 

analyzed by the Guava® EasyCyte
TM

 flow cytometer using both 488 nm and 640 nm lasers. 

Green fluorescence (Alexa Fluor 488) was detected through a 525/30 nm bandpass filter 

while far-red fluorescence (To-pro-3) was revealed via a 661/19 nm bandpass filter. The 

assay works in the following manner: Viable cells are both Annexin V-Alexa 488 and To-

pro-3 negative, while cells which are in early apoptosis are Annexin V-Alexa 488 positive 

and To-pro-3 negative, and cells which are in late apoptosis or already dead are both Annexin 

V-Alexa 488 and To-pro-3 positive (Figure 3-1). A minimum of 5,000 events were analyzed 

to acquire the percentage of viable, apoptotic and dead cells using the InCyte
TM

 software. 



29 

 

 

 

Figure 3-1 Example of Annexin V – To-pro-3 

flow cytometric analysis. MOLM-13 cells were 

stained with Annexin V-Alexa Fluor 488 and To-

pro-3. Quadrant gates divide the sample into groups 

of interest: Viable cells (Annexin-V -, To-pro-3 -), 

early apoptotic cells (Annexin-V +, To-pro-3 -) and 

late apoptotic cells (Annexin-V +, To-pro-3 +). 

 

 

3.5. Colony formation assay 

HL-60 cells and MOLM-13 cells were plated in triplicate at a density of 1×10
3
 cells in 0.4 

mL methylcellulose-based H4433 Methocult® medium (StemCell Technologies Inc., 

Vancouver, Canada) per well on a 24-well plate. Six wells of the plate were used while the 

remaining wells were filled with 0.4 mL sterile 0.9% NaCl to prevent the Methocult medium 

from drying out. The cells were grown in a humidified incubator at 37°C with 5% CO2. After 

7 days, the number of colonies which contain at least 40 cells was counted and images were 

taken by using Nikon TE2000 fluorescence microscope (Nikon Corp., Tokyo, Japan). 

3.6. Cell proliferation and cell viability analysis 

3.6.1. WST-1 based cell proliferation assay 

Proliferation of cells was assessed by using the tetrazolium salt WST-1 which is cleaved to 

chromogenic formazan dye by mitochondrial dehydrogenases in viable cells. HL-60 cells 

were seeded in triplicate at a density of 20×10
3 

cells in 100 μL of medium per well on 96-

well plates, treated with 0.5 μM Doxorubicin (Pfizer Inc., NY, USA) or 0.5 μM 

Camptothecin (Sigma-Aldrich) or DMSO (vehicle) for 8 or 24 hours, and WST-1 (Roche 

Ltd, Basel, Switzeland) was added into each well with the dilution 1:11 at the last 4 hours of 

treatment period. The absorbance of the samples was measured by Spectramax Plus 384 

Spectrophotometer (Molecular Devices Corp., Sunnyvale, CA, USA) and the percentage of 



30 

 

proliferation was calculated by using the following formula: (Arbitrary units (AU) of treated 

sample - AU of background control)/(AU of untreated sample – AU of background control). 

3.6.2. Nuclear morphology cell death assay 

Cells were seeded in triplicate on 96-well plates. The cells were treated before they were 

fixed and stained with 4% formaldehyde (Sigma-Aldrich) and 10 μg/mL Hoechst 33342 

(Enzo LifE Sciences AG, Lausen, Switzerland). Hoechst 33342 is a cell-permeable 

fluorescent dye which specifically binds and stains DNA at adenine-thymidine residues. After 

fixing and staining for at least 24 hours, the nuclear morphology of cells was examined and 

taken pictures by using the Leica DM IRB fluorescence microscope. Abnormal nuclei were 

discriminated from normal ones by their hypercondensed chromatin and fragmented nucleus 

[174] (Figure 3-2). 200-300 cells were counted in each well to calculate the percentage of 

normal nuclei. 

 

 

Figure 3-2 Hoechst 33342 staining. Fluorescence microscopy 

image of HL-60 cells treated with 0.5 μM Camptothecin for 8 

hours and then stained with Hoechst 33342. Yellow arrow 

indicates a normal nucleus. White and green arrows indicate 

fragmented and hypercondensed nuclei respectively. 

 

3.6.3. Annexin V – To-pro-3 cell death assay 

When a cell begins to undergo apoptosis, phosphatidyl serine (PS) is translocated from the 

cytoplasmic surface of the cell membrane to the outer extracellular facing layer. This specific 

marker can be utilized to recognize apoptotic cells by conjugating the PS binding protein, 

Annexin V, to a fluorophore. Additionally, by simultaneously staining cells with To-pro-3, a 

fluorescent dye, selectively binding to the DNA of dead cells, a comprehensive assessment of 

apoptosis and cell death can be obtained by flow cytometry.  

Approximately 100×10
3
 cells from each sample were directly transferred to a flow tube and 

pelleted by centrifugation at 500g for 5 min at 4°C. The cells were then washed twice with 

cold 0.9% NaCl and resuspended in 50 μL 1X Annexin Binding Buffer (Invitrogen, 

Carlsbard, CA, USA) containing 1.25 μL Annexin V- Alexa Fluor 488 (Invitrogen). Samples 
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were left on ice and incubated in complete darkness for 15 min. Thereafter, 200 μL 1X 

Annexin Binding Buffer containing 1.5 μL of 5 μM To-pro-3 (Invitrogen) was added to each 

tube. The samples were then analyzed by flow cytometry (see section 3.4.3). 

3.7. Western blot analysis 

Cells were harvested by centrifugation. Then, they were washed twice in cold 0.9% NaCl and 

lysed in Lysis Buffer (10 mM Tris pH 7.5, 1 mM EDTA, 400 mM NaCl, 10% glycerol, 0.5% 

NP40, 5 mM NaF, 0.5 mM sodium orthovanadate, 1 mM dithiothreitol (DTT), and 0.1 mM 

phenylmethylsulfonyl fluoride (PMSF)). Following the addition of the lysis buffer, the cell 

lysate samples were homogenized in 1.5 mL tubes by pipetting and then centrifuged for 

10,000g × 15 min at 4°C. Lysates were then maintained on ice for measuring protein 

concentration or stored at -80°C until required. Protein concentrations were determined by 

the Bradford method [175]. Lysate for each sample was diluted in loading buffer (final 

concentration 1% SDS, 10% Glycerol, 12 mM Tris-HCl pH 6.8, 50 mM DTT, and 0.1% 

Bromophenol Blue) to create a total protein amount of 50 μg per sample. Samples were 

boiled for 15 min and then briefly spun down prior to loading onto gel. 

Proteins were separated by sodium dodecyl suphate polyacrylamide gel electrophoresis 

(SDS-PAGE) using 12.5% SDS-polyacrylamide gels and 1X TGS running buffer (25 mM 

Tris-base, 192 mM Glycine, 0.1% (w/v) SDS, pH 8.3) for approximately 2.5 hours at 100V. 

The standard used was Precision Plus Protein™ All Blue standards (Bio-Rad Laboratories, 

Hercules, CA, USA). Thereafter, electroblotting was carried out on Polyvinylidene fluoride 

(PVDF) membranes (HybondP, Amersham Biosciences, Oslo, Norway) using blotting buffer 

(10% methanol, 10% 10X TG, 80% H2O) for 1 hour at 100V. The membranes were blocked 

with WBII blocking solution (2 g Tropix
®
 I-Block (Applied Biosystems) dissolved in 1L 1X 

TBS (150 mM NaCl, 50 mM Tris-HCl pH 7.5); the solution was warmed up to 70ºC and 

cooled down to 20ºC before the addition of 1 mL Tween
®
 20 (Sigma-Aldrich) and 2.18 g 

MgCl2x6H2O (VWR International AS)) for 1 hour at RT to prevent unspecific binding of the 

primary antibody. They were then placed in sealed plastic bags containing the primary 

antibody diluted in WBII blocking solution with a final volume of about 3 mL. The bags 

were placed under moderate agitation overnight at 4°C. The p53 antibody Bp53-12, the 

Mdm2 antibody SMP-14, the Bax antibody 2D2, the β-actin antibody C4, the Caspase-3 

antibody H-277 and the SRSF3 antibody 7B4 were purchased from Santa Cruz 

Biotechnology, CA, USA. The p21 antibody EA10 and the COX IV antibody (ab16056) were 
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bought from Abcam plc, Cambridge, UK. The NPM1 antibody (32-5200) was from 

Invitrogen. The Mdm2 antibody SMP-14, the Caspase-3 antibody H-277 and the p21 

antibody EA10 were diluted 1:500. The COX IV antibody (ab16056) was diluted 1:2000. 

Other antibodies were diluted 1:1000. 

After washing 4 times × 10 min in TBS-T (1L 1X TBS with 1mL Tween
®
 20), the secondary 

antibodies conjugated to horse radish peroxidase (Jackson ImmunoResearch Laboratories, 

West Grove, PA, USA) were diluted 1:1000 in 5% fat-free dry milk (Bio-Rad Laboratories) 

in TBS-T and subsequently added to the membranes and incubated for 1 hour under agitation 

at RT. The membranes were again washed 4 times × 10 min in TBS-T. Thereafter, they were 

visualized by using Supersignal® West Pico or Femto Stable peroxide solution and 

luminal/enhancer solution (Thermo scientific) with the ratio 1:1. Protein bands were detected 

by the Kodak Image Station 2000R (Eastman Kodak Company, Lake Avenue, Rochester, 

NY, USA) and quantified by using Carestream MI analysis software (Carestream Molecular 

Imaging, Woodbridge, CT, USA). Data were exported to Excel spreadsheet and fold 

induction was calculated as follows: the value of protein of interest/the value of loading 

control (β-actin or COX IV). 

3.8. Statistical analysis 

Statistical analysis was performed by using the GraphPad PRISM® (version 5.0, GraphPad 

Software, Inc., La Jolla, CA, USA) software. Data were expressed as mean ± standard error 

of the mean (SEM). Difference in averages between two groups was determined by using a 

two-tailed Student’s t-test with results considered statistically significant when p < 0.05. The 

software was also used to generate graphs. Asterisks were used to illustrate the strength of the 

significance as follows *: p < 0.05, **: p < 0.01, ***: p < 0.001. 
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4. Results 

4.1. Functional characterization of p53β and p53γ in p53
null

 HL-60 AML cell line 

4.1.1. Stable expression of p53β and p53γ in p53
null

 HL-60 cells 

In order to investigate if the functions of p53β and p53γ are independent of FLp53, the p53
null

 

AML HL-60 cells which were already transduced retrovirally with p53β-tdTomato construct, 

p53γ-tdTomato construct or tdTomato alone (vector control) were used. Because of the 

expression of tdTomato, cells successfully transduced can be isolated by FACS. Figure 4-1A 

shows the percentage of tdTomato
+
 cells 3 and 15 days after FACS respectively. Not only did 

p53γ
+
 HL-60 cells reveal a lower fluorescence intensity of tdTomato compared to p53β

+
 cells 

and vector control cells, but they also displayed a faster decline of tdTomato
+
 cells after 

sorting. Western blot analysis verified the expression of p53β and p53γ in HL-60 cells and 

presented the considerably lower expression level of p53γ in comparison with p53β     

(Figure 4-1B). Besides, the basal expression level of p21
WAF1/CIP1

, Bax and Mdm2 proteins in 

wild-type, vector control, p53β
+
 and p53γ

+
 HL-60 cells was also examined by Western blot. 

The wild-type and p53γ
+
 HL-60 cells had a slightly higher level of p21

WAF1/CIP1
 and 

significantly elevated level of Mdm2 and Bax in comparison with vector control and p53β
+
 

cells. Also, the p53β
+
 cells expressed a higher level of Mdm2 than vector control cells   

(Figure 4-1C). 

4.1.2. Colony formation of p53β
+
 and p53γ

+
 HL-60 cells 

Colony formation assay was performed to investigate the influence of stable expression of 

p53β and p53γ on the clonogenicity of HL-60 cells. This can point out the effect of these 

proteins on the differentiation status of the cells. Results revealed that there is no significant 

difference in the number of colonies between vector control and p53β
+
 and p53γ

+
 HL-60 cells 

(Figure 4-2A). The phase contrast images showed no modification in the size of colonies. 

They also revealed that the colonies of p53β
+
 cells carry similar features of morphology as 

vector control cells. However, while the morphology of vector control and p53β
+
 cells’ 

colonies was delineated, the morphology of p53γ
+
 and wild-type cells’ ones was not. Wild-

type and p53γ
+
 cells’ colonies were surrounded by scattered cells much more than vector 

control and p53β
+
 cells’ ones. The morphology of p53γ

+ 
cells’ colonies included the 

characteristics of both wild-type and vector control cells. Moreover, the fluorescence images 
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showed that the colonies of p53γ
+ 

cells have lower fluorescence intensity of tdTomato than of 

vector control or p53β
+
 cells (Figure 4-2B). 

A 

 
 

B 

 
C 

 

Figure 4-1 Basic characteristics of wild-type, vector control, p53β
+
 and p53γ

+
 HL-60 cells. (A) Flow 

cytometric analysis of cells 3 and 15 days after FACS. Red rectangles present tdTomato
+
 cells. The percentage 

of tdTomato
+
 cells is indicated in the upper right corner of each plot. (B) Western blot analysis to examine the 

presence of p53β and p53γ in HL-60 cells. The wild-type TP53 AML cell line MOLM-13 was used as a positive 

control. (C) Immunoblot of Mdm2, Bax and p21 of wild-type, vector control, p53β
+
 and p53γ

+
 HL-60 cells. 

Proteins investigated are shown in bold letters to the left and molecular weight is indicated to the right of the 

figure. Quantified values were normalized to β-actin as loading control. 
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Figure 4-2 Colony formation of wild-type, vector control, p53β
+
 and p53γ

+
 HL-60 cells. (A) The numbers of 

colonies after culturing in MethoCult for 7 days. Results are presented as the mean ± SEM of three independent 

experiments (ns: not significant). (B) Fluorescence microscopy of colonies. First and third rows show phase 

contrast images, second and fourth rows display fluorescence images. Size bars are indicated at the right bottom 

of each image. 
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4.1.3. The effects of p53β and p53γ on proliferation and viability of HL-60 cells following 

chemotherapy 

In order to examine the impacts of p53β and p53γ on the proliferation and viability of HL-60 

cells in response to chemotherapy, the cells were treated by the cytotoxic anthracycline 

antibiotic topoisomerase II inhibitor Doxorubicin and topoisomerase I inhibitor 

Camptothecin. The WST-1 based cell proliferation assay was carried out to evaluate the rate 

of proliferation. Significant changes in the rate of proliferation following chemotherapeutic 

treatment were not perceived between vector control, p53β
+
 and p53γ

+
 cells (Figure 4-3A). 

DNA staining with Hoechst 33342 differentiates between normal and apoptotic cells’ nuclear 

morphology allowing a calculation of the percentage of viability. The assay was utilized to 

assess the viability of the cells in response to Doxorubicin and Camptothecin. Nevertheless, 

the nuclear morphologies of p53β
+
 and p53γ

+
 cells did not show further abnormality in 

comparison with vector control cells (Figure 4-3B,C). These results suggest that p53β and 

p53γ do not affect the proliferation and apoptosis of HL-60 cells following chemotherapy. 

4.2. Production of wild-type TP53 MOLM-13 AML cell line with increased 

expression of p53β and p53γ 

4.2.1. Retroviral transduction of MOLM-13 cells 

The wild-type TP53 MOLM-13 AML cells express FLp53, p53β and p53γ. Individually 

retroviral transduction of p53β-tdTomato, p53γ-tdTomato and tdTomato alone (vector 

control) into MOLM-13 cells was performed to generate clones having higher expression 

level of p53β and p53γ which can be exerted to elucidate whether or not these isoforms 

function together with FLp53. The strategy used for the creation of these cell clones is 

illustrated in Figure 4-4A. The cells were transduced four times and checked for the ratio of 

tdTomato
+
 cells by flow cytometry after each transduction. After the fourth transduction, the 

fraction of tdTomato
+
 cells for vector control was 4.54% while p53β and p53γ were 0.81% 

and 0.66% respectively (Figure 4-4B). The successfully transduced cells were sorted by 

FACS (Figure 4-4C). 
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A  WST-based cell proliferation assay 

 
 

 
B  Nuclear morphology cell death assay 

 
C 

 

Figure 4-3 Proliferation and viability of wild-type, vector control, p53β
+
 and p53γ

+
 HL-60 cells following 

chemotherapy. (A) Proliferation of cells after treatment with 0.5 μM Doxorubicin or 0.5 μM Camptothecin for 

8 and 24 hours respectively, with WST-1 added to assess oxidoreductase activity at the last 4 hours. Results 

were compared with untreated controls and presented as the mean ± SEM of three independent experiments (ns: 

not significant). (B) Viability of cells after treatment with 0.5 μM Doxorubicin or 0.5 μM Camptothecin for 8 

hours. The percentage of normal nuclei was calculated and compared with untreated controls. Results are 

displayed as the mean ± SEM of three separate experiments (ns: not significant). (C) Nuclear staining of cells 

treated with 0.5 μM Camptothecin for 8 hours. Yellow and white arrows indicate normal and abnormal nuclei 

respectively. 
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B 

 

C 

 

Figure 4-4 Retroviral transduction of MOLM-13 cells. (A) Schematic representation of transduction of 

MOLM-13 cells. The cells were transduced with p53β/p53γ-tdTomato construct or vector control. Cells 

successfully transduced were isolated by FACS based on the expression of tdTomato. (B) Flow cytometric 

analysis of MOLM-13 cells transduced with p53β/p53γ-tdTomato or vector control after the fourth transduction. 

(C) Flow cytometric analysis of MOLM-13 cells transduced with p53β/p53γ-tdTomato or vector control after 

FACS. The gates present tdTomato
+
 cells. The percentage of tdTomato

+
 cells is indicated in each plot. 

4.2.2. The increase of p53γ is toxic to MOLM-13 cells 

After FACS, the MOLM-13 cells transduced with the p53γ construct were selectively lost 

when analyzing these cells by Annexin V-Alexa 488 – To-pro-3 cell death assay at day seven 
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(Figure 4-5A). As clearly indicated, the majority of p53γ transduced MOLM-13 cells were 

positively stained with both Annexin V and To-pro-3, indicating that they are already dead. 

Furthermore, p53γ transduced cells were unable to form colonies at the seventh day of colony 

formation assay (Figure 4-5B,C). Taken together, these results demonstrate that up-

regulation of p53γ in MOLM-13 cells is cytotoxic. This is in contrast to p53γ transduced HL-

60 cells (Figure 4-2), a cell line with deleted TP53. 

A 

 
 

B                                                     C 

 
 

Figure 4-5 Cell viability and colony formation of wild-type MOLM-13 cells and MOLM-13 cells 

transduced with vector control, p53β or p53γ constructs. (A) Annexin V-Alexa 488 – To-pro-3 cell death 

assay of cells at day 7. The lower left rectangle of each plot indicates viable cells, the lower right one presents 

cells in early apoptosis and the upper right one displays late apoptotic or dead cells. The percentage of cells is 

indicated. (B) Colony formation of cells. The numbers of colonies are presented as the mean ± SEM of three 

independent experiments (ns: not significant). (C) Fluorescence microscopy of colonies. First and third rows 

show phase contrast images, second row displays fluorescence images. Size bars are indicated at the right 

bottom of each image. 
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The MOLM-13 cells were transduced with p53γ construct again. After five times of 

transduction, they were sorted and visualized daily by a bright field microscope. A difference 

in morphology between p53γ transduced cells and wild-type MOLM-13 cells as well as a 

gradual loss of p53γ transduced cells was observed (Figure 4-6). As can be seen, the p53γ 

transduced cells contained much more vacuoles in the cytoplasm compared to wild-type cells 

and the amount and size of these vacuoles increased progressively when the cells lost 

gradually. 

A                           Wild-type                                B                           p53γ : Day 2 

       
 

C                          p53γ : Day 11                            D                        p53γ : Day 21                                     

      

Figure 4-6 Bright field microscopy of wild-type MOLM-13 cells and MOLM-13 cells transduced with 

p53γ construct. (A) Image of wild-type MOLM-13 cells. (B, C, D) Images of p53γ transduced MOLM-13 cells 

after 2, 11, 21 days of FACS. Green arrows indicate vacuoles. Size bars are indicated at the right bottom of each 

image.  
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4.2.3. Increased expression of p53β in wild-type TP53 MOLM-13 cells and the formation 

of colonies 

The increased expression of p53β in MOLM-13 cells was investigated by Western blot 

analysis of cell extracts utilizing specific antibody against the N-terminus of p53 (Bp53-12). 

The result revealed a considerable up-regulation of p53β protein in the MOLM-13 cells 

transduced with p53β construct in comparison with wild-type and vector control cells. 

Nonetheless, the basal expression level of Bax and p21 did not change significantly in these 

cells (Figure 4-7). 

 

Figure 4-7 Western blot analysis of wild-type MOLM-13 cells and the MOLM-13 cells transduced with 

vector control or p53β construct. Proteins investigated are shown in bold letters to the left and molecular 

weight is indicated to the right of the figure. Quantified values were normalized to β-actin as loading control and 

compared to the vector control cells’ values set to 1.00. 

Besides, the ectopic expression of p53β was examined for effect on the clonogenicity of 

MOLM-13 cells. Both morphology and number of colonies were equal between wild-type, 

vector control and p53β-tdTomato transduced MOLM-13 cells, but the p53β
 
transduced cell 

colonies showed a lower fluorescence intensity of tdTomato in comparison with the vector 

control (Figure 4-5B,C). Screening for altered monocytic and granulocytic differentiation by 

immunophenotyping did not reveal any significant change between wild-type and p53β-

tdTomato transduced cells (data not shown). Therefore, we conclude that the increased 

expression of p53β do not affect the differentiation status of MOLM-13 cells. 
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4.3. Oxidative stress by resazurin treatment: impact of p53β and p53γ expression, 

modulation of p53 isoforms and Mdm2 

4.3.1. p53β increases the apoptosis of HL-60 cells in response to resazurin 

In order to explore the relation of p53β or p53γ and resazurin’s impingement, the wild-type, 

vector control, p53β
+
 and p53γ

+
 HL-60 cells were exposed to resazurin in two different 

concentrations for two distinct periods and examined for viability by nuclear morphology cell 

death assay. For the 24 hours exposure, significant differences in the ratio of normal nuclei 

between p53β
+
 and p53γ

+
 cells, p53β

+
 and vector control cells were found, even at the low 

concentration of resazurin (20 μM). Interestingly, a significant difference between wild-type 

and vector control cells was also displayed when the cells were treated with 40 μM resazurin. 

Furthermore, when the cells were exposed for 48 hours, an expressive difference between 

p53β
+
 and p53γ

+
 cells was still observed (Figure 4-8A). Further investigation by Western 

blot for Caspase-3 cleavage, a marker for apoptosis, of vector control, p53β
+
 and p53γ

+
 cells 

treated with 40 μM resazurin for 48 hours also indicated an increase of cleaved Caspase-3 in 

p53β
+
 cells compared to the vector control and p53γ

+
 cells (Figure 4-8B). Taken together, it 

can be seen that the presence of p53β promotes the sensitivity of HL-60 cells for apoptosis in 

response to resazurin. 

4.3.2. Examining the modulation of p53 isoforms and related proteins following resazurin 

exposure 

In order to answer the question whether resazurin exposure causes a modulation of FLp53, 

p53β and p53γ expression, the p53β
+
 and p53γ

+
 HL-60 cells exposed to 40 μM resazurin for 

48 hours were inspected by Western blot analysis for the expression level of p53 isoforms. 

Nonetheless, an alteration of p53 isoforms’ expression level was not revealed (Figure 4-9A). 

In addition, the shControl and shp53 (control) MOLM-13 cells treated with 40 μM resazurin 

for 24 hours did not show a regulation in the expression level of these p53 isoforms     

(Figure 4-9B), indicating that resazurin affects neither the level of FLp53 nor the level of 

p53β and p53γ. 
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A 

 
B 

 

Figure 4-8 Cell viability of wild-type, vector control, p53β
+
 and p53γ

+
 HL-60 cells following resazurin 

exposure. (A) Viability of cells after treatment with 20 μM or 40 μM resazurin for 24 or 48 hours respectively. 

The percentage of normal nuclei was calculated and compared to untreated controls. Results are displayed as the 

mean ± SEM of three separate experiments (ns: not significant, *: p < 0.05, **: p < 0.01, ***: p < 0.001). (B) 

Western blot analysis of vector control, p53β
+
 and p53γ

+
 HL-60 cells treated with 40 μM resazurin for 48 hours. 

Proteins investigated are shown in bold letters to the left and molecular weight is indicated to the right of the 

figure. Quantified values were normalized to β-actin as loading control and compared to the untreated vector 

control cells’ value set to 1.00. The result represents a typical experiment. 
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A                                                                                    

 
 

 

B 

Figure 4-9 Western blot analysis of p53 in HL-60 and MOLM-13 cells following resazurin exposure. (A) 

Immunoblot analysis of p53β
+
 and p53γ

+
 HL-60 cells exposed to 40 μM resazurin for 48 hours. The wild-type 

MOLM-13 cells’ lysate was used as a positive control. (B) Immunoblot analysis of MOLM-13 cells transduced 

with vector control (shControl) and short hairpin RNA against p53 (shp53) subjected to treatment with 40 μM 

resazurin for 24 hours. Proteins investigated are shown in bold letters to the left and molecular weight is 

indicated to the right of the figure. Quantified values were normalized to β-actin as loading control and 

compared to the untreated control cells’ value was set to 1.00. Bar graphs present the mean of quantified values 

of three separate experiments. Error bars show SEM (ns: not significant). 
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Further investigation of Bax expression level by Western blot analysis in both shControl and 

shp53 MOLM-13 cells did not reveal a modification. However, the shControl cells showed an 

up-regulation of p21
CIP1/WAF1

, whereas the shp53 cells which have the lower level of p53 did 

not. In contrast, the Mdm2 level of the shp53 cells was down-regulated slightly while of the 

shControl cells remained unchanged (Figure 4-10A). Additionally, all wild-type, vector 

control, p53β
+
 and p53γ

+
 HL-60 cells presented a substantial down-regulation of Mdm2 

expression level following resazurin treatment while the modulation of Bax in these cells was 

not perceived (Figure 4-10B). 

A 

 
B 

 
 

Figure 4-10 Western blot analysis of HL-60 and MOLM-13 cells following resazurin exposure. (A) 

Immunoblot analysis of shControl and shp53 MOLM-13 cells after treated with 40 μM resazurin for 24 hours. 

(B) Immunoblot analysis of wild-type, vector control, p53β
+
 and p53γ

+
 HL-60 cells exposed to 40 μM resazurin 

for 48 hours. Proteins investigated are shown in bold letters to the left and molecular weight is indicated to the 

right of the figure. Quantified values were normalized to β-actin as loading control and compared to the 

untreated control cells’ value set to 1.00. The result represents three different experiments. 
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4.3.3. p53-independent down-regulation of Mdm2 and increased apoptosis in HL-60 cells 

by resazurin 

The finding that resazurin causes an increased apoptosis and an attenuation of Mdm2 in all 

wild-type, vector control, p53β+ and p53γ+ HL-60 cells led to an inquiry whether a p53-

independent attenuation of Mdm2 by resazurin exists. Western blot analysis of Mdm2 and 

Caspase-3 and nuclear morphology cell death assay were performed in wild-type HL-60 cells 

exposed to resazurin in a dose-response manner to clarify this. The cells were incubated with 

0 (control), 10, 20, 40, 80 and 160 μM of resazurin for 24 hours. Figure 4-11A reveals that 

the expression level of Mdm2 declined progressively when the concentration of resazurin rose 

gradually. Similarly, a progressive decrease of normal nuclei was observed with Hoechst 

33342 staining (Figure 4-11B). However, the stepwise decreasing of Procaspase-3 and the 

increasing of cleaved Caspase-3 were only detected at the concentration of 40 μM resazurin 

(Figure 4-11A). In summary, these data confirm that resazurin evokes a p53-independent 

down-regulation of Mdm2 in HL-60 cells. 

4.3.4. Further investigation of resazurin response in MOLM-13 cells 

Based on the finding that resazurin induces the up-regulation of p21
CIP1/WAF1

 in shControl 

MOLM-13 cells and the slight down-regulation of Mdm2 in shp53 MOLM-13 cells, we 

examined if a difference in p53 level of the cells influences their response to resazurin. Both 

shControl and shp53 MOLM-13 cells were incubated with 40 μM resazurin for 24 hours and 

the viability of the cells was examined simultaneously by nuclear morphology cell death 

assay and Annexin V-Alexa 488 – To-pro-3 cell death assay as a comparison. Nevertheless, 

data showed that the exposure to resazurin does not effectively decrease the viability of the 

cells. Moreover, no significant difference in the percentage of viable cells between shControl 

and shp53 cells was detected in either of the assays (Figure 4-12). These results propose that 

resazurin does not primarily affect the MOLM-13 cells through the induction of apoptosis. 

 

 

 

 

 



47 

 

A                                                                                                        

 
 

 

B 

 

Figure 4-11 Down-regulation of Mdm2 and increased apoptosis in HL-60 cells following resazurin 

exposure. (A) Western blot analysis of HL-60 cells treated with resazurin (0-160 μM) for 24 hours. Proteins 

investigated are shown in bold letters to the left and molecular weight is indicated to the right of the figure. 

Quantified values were normalized to β-actin as loading control and compared to the untreated control cells’ 

value set to 1.00. The result represents three different experiments. (B) Viability of cells after treatment with 

resazurin (0-160 μM) for 24 hours. The percentage of normal nuclei was calculated and compared with 

untreated control. Results are displayed as the mean ± SEM of three separate experiments. 
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C 

 

Figure 4-12 Cell viability of shControl and shp53 MOLM-13 cells following resazurin treatment. (A) 

Nuclear morphology cell death assay of cells after treatment with 40 μM resazurin for 24 hours. The percentage 

of normal nuclei was calculated and compared with untreated controls. Results are displayed as the mean ± 

SEM of three separate experiments (ns: not significant). (B) Annexin V-Alexa 488 – To-pro-3 cell death assay 

of cells following exposure to 40 μM resazurin for 24 hours.  The percentage of viable cells was calculated and 

compared with untreated controls. Results are shown as the mean ± SEM of three distinct experiments (ns: not 

significant). (C) Flow cytometric analysis of a typical Annexin V-Alexa 488 – To-pro-3 cell death assay. The 

lower left rectangle of each plot indicates viable cells, the lower right one presents cells in early apoptosis and 

the upper right one displays late apoptotic or dead cells. The percentage of cells is indicated. The first row 

shows unstained cells and the second one reveals cells stained with both Annexin V-Alexa Fluor 488 and To-

pro-3. 
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4.4. The investigation of p53 isoforms modulation by wild-type NPM1 and 

mutated NPM1 

4.4.1. Production of vector control 

Since mutation of NPM1 was correlated with high expression of p53β and p53γ proteins in 

AML, we investigated if wild-type NPM1 or mutated NPM1 plays roles in the modulation of 

these p53 isoforms’ expression. For this investigation, recombinant plasmids containing wild-

type NPM1 and NPM1 mutant type A DNA were utilized. Nevertheless, because of the lack 

of vector control, we generated the vector control from the recombinant plasmid.          

Figure 4-13A illustrates the structure of the recombinant plasmid pCDNA3
+
-NPM1-ECGFP. 

The plasmid contains the coding sequences of antibiotic resistance (Ampicillin and 

Neomycin), Enhanced Cyan Green Fluorescent Protein (ECGFP) gene and NPM1 gene 

inserted at the N-terminus of ECGFP which expresses a fusion protein with ECGFP attached 

to the C-terminus of NPM1. The restriction sites of BamHI, XhoI and EcoRI restriction 

enzymes are also revealed. It can be seen that NPM1 can be cut by EcoRI while NPM1-

ECGFP can be cleaved by BamHI and XhoI. As shown in Figure 4-13B, the recombinant 

plasmids holding wild-type NPM1 or mutated NPM1 showed DNA bands at different sizes 

when they were digested by BamHI and XhoI or EcoRI only. The result of a DNA band at 1.4 

kb or 0.7 kb size indicated clearly NPM1-ECGFP or NPM1 respectively. Figure 4-13C 

presents the strategy exerted for the generation of vector control. After digestion with EcoRI, 

NPM1 gene was split by running agarose gel and the cleaved plasmid was cut out from the 

gel, purified and ligated to form the vector control which contains ECGFP without the 

attachment of NPM1. The ligation product was transformed into competent E.coli cells and 

then three bacterial colonies were randomly chosen from selective LB plates for plasmid 

purification. The successful production of vector control was verified by cutting these 

plasmids with BamHI or EcoRI. Figure 4-14A shows that the plasmids from the bacterial 

colonies have a smaller DNA band size in comparison with pCDNA3
+
-NPM1-ECGFP 

(control) when they were digested by BamHI. In contrast, when they were cut by EcoRI, the 

control revealed a smaller DNA band size and the presence of NPM1 at an expected size of 

0.7 kb (Figure 4-14B). Additionally, the lack of NPM1 and the presence of ECGFP in the 

vector control as well as the existence of wild-type NPM1 or mutated NPM1 in the 

recombinant DNA construct were confirmed by DNA sequencing (data not shown). 
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Figure 4-13 Production of pCDNA3
+
-ECGFP (vector control). (A) Illustration of the structure of pCDNA3

+
-

NPM1-ECGFP. (B) Agarose gel of pCDNA3
+
-NPM1-ECGFP cut with BamHI and XhoI (lane 2 and 3) or EcoRI 

only (lane 4 and 5). Both recombinant plasmids containing wild-type NPM1 (lane 2 and 4) and mutated NPM1 

(lane 3 and 5) were used. Molecular weight standards (lane 1) are shown in kb on the left of the figure. DNA 

bands at about 1.4 kb or 0.7 kb size indicate NPM1-ECGFP or NPM1 respectively. (C) Schematic delineation of 

production of pCDNA3
+
-ECGFP. The pCDNA3

+
-NPM1-ECGFP recombinant plasmid was digested by EcoRI 

to separate NPM1 gene. The cleaved plasmid was ligated by T4 DNA ligase resulting in pCDNA3
+
-ECGFP 

(vector control). 
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Figure 4-14 Agarose gels of ligated vectors after bacterial transformation and plasmid purification. (A) 

The vectors were digested by BamHI. (B) The vectors were digested by EcoRI. Three colonies (lane 3 to lane 5) 

were randomly selected after bacterial transformation for plasmid purification. pCDNA3
+
-NPM1-ECGFP  (lane 

2) was used as a control. Molecular weight standards (lane 1) are shown in kb on the left of the figure. The 

yellow arrow indicates NPM1. 

4.4.2. Expression of wild-type NPM1-ECGFP and mutated NPM1-ECGFP in HEK293 

cells 

In order to examine the modulation of p53 isoforms by wild-type NPM1 and mutated NPM1, 

wild-type TP53 human embryonic kidney (HEK293) cells were transiently transfected by 

wild-type NPM1-ECGFP, mutated NPM1-ECGFP or ECGFP alone (vector control). The 

expression of wild-type NPM1-ECGFP (NPM1wt) and mutated NPM1-ECGFP (NPM1mut) 

in HEK293 cells was indirectly demonstrated by the presence of ECGFP
+
 cells through flow 

cytometric analysis. Also, the results revealed that the percentage of ECGFP
+
 cells is low for 

all vector control, NPM1wt and NPM1mut (Figure 4-15A). Fluorescence microscopy did not 

only verify the expression of ECGFP in HEK293 cells, but it also signified the expression of 

NPM1wt and NPM1mut via the intracellular localization of the proteins: NPM1wt was 

localized in nucleolus, while NPM1mut was in cytoplasm (Figure 4-15B). Western blot 

analysis of cell extracts from wild-type (not transfected), vector control, NPM1wt and 

NPM1mut HEK293 cells utilizing specific NPM1 antibody confirmed that NPM1wt and 

NPM1mut cells express the fusion proteins while wild-type and vector control cells do not. 

Furthermore, the result exposed that the expression level of fusion proteins is profoundly low 

in comparison with the expression level of wild-type NPM1 of the cells (Figure 4-15C). 
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Figure 4-15 The expression of wild-type NPM1-ECGFP (NPM1wt) and mutated NPM1-ECGFP 

(NPM1mut) in HEK293 cells. (A) Flow cytometric analysis of cells after transfection. From the left: The plot 

of wild-type (not transfected), vector control, NPM1wt and NPM1mut HEK293 cells. Red rectangles present 

ECGFP
+
 cells. The percentage of ECGFP

+
 cells is indicated in the upper right corner of each plot. (B) 

Fluorescence microscopy of vector control, NPM1wt and NPM1mut HEK293 cells after transfection. Red and 

yellow arrows indicate nucleolus and cytoplasm respectively. (C) Western blot analysis of NPM1 in wild-type, 

vector control, NPM1wt and NPM1mut HEK293 cells. The expression of NPM1-ECGFP fusion proteins was 

verified by a protein band at an expected size of 65 kD (lane 3 and 4). The wild-type and vector control 

HEK293 cells did not express the fusion proteins (lane 1 and 2). Molecular weight is indicated on the left; the 

ratio of quantified values of fusion protein and wild-type NPM1 of the cells is shown at the bottom of the figure. 
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4.4.3. Assessing the modulation of p53 isoforms and related proteins following transfection 

of wild-type NPM1 and mutated NPM1 

The modulation of p53 and related proteins such as Mdm2 and SRSF3 was investigated by 

Western blot analysis of wild-type, vector control, NPM1wt and NPM1mut HEK293 cells 

after 48 hours of transfection. Nonetheless, a significant change in the expression level of 

p53, Mdm2 and SRSF3 in NPM1wt and NPM1mut cells was not observed (Figure 4-16). 

 

Figure 4-16 Western blot analysis of wild-type, vector control, NPM1wt and NPM1mut HEK293 cells. 

Proteins investigated are shown in bold letters to the left and molecular weight is indicated to the right of the 

figure. Quantified values were normalized to COX IV as loading control and compared to the Vector control 

cells’ value set to 1.00. The result represents two different experiments. 
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5. Discussion 

This thesis consists of three different parts mostly concerned in the function and modulation 

of p53β and p53γ isoforms in AML. The first part focused on the functional characterization 

of p53β and p53γ in AML cell lines to clarify if p53β and p53γ have individual roles or they 

interact with FLp53 to function. In the second one, the effect of p53β and p53γ on AML cells 

and the modulation of p53 isoforms and Mdm2 in response to oxidative stress by resazurin 

were evaluated. Assessing the correlation between wild-type or mutated NPM1 and p53 

isoforms modulation was the target of the last part. At the end of the thesis, future 

perspectives will be discussed. 

5.1. Functional characterization of p53β and p53γ in AML cell lines 

Given that high expression of p53β and p53γ is associated with increased response to 

chemotherapy and longer survival in AML patients [136] and their single expression 

enhances chemosensitivity in p53
null

 cancer cell lines [124], we hypothesized that p53β and 

p53γ may have individual functions independently of FLp53 in AML. Proposing that stable 

expression of these p53 isoforms in a p53
null

 AML cell line may indicate their distinct 

functions, the TP53 deleted (p53
null

) HL-60 AML cell line [171] was selected after validation 

of TP53 deletion (E. Silden, unpublished data). HL-60 cells were transduced with p53β or 

p53γ construct to establish singly stable expression of p53β or p53γ protein. The stable 

expression of these isoforms in HL-60 cells was successfully created. This is shown by the 

result of Western blot analysis of p53 in wild-type, vector control, p53β
+
 and p53γ

+
 HL-60 

cells (Figure 4-1B). The expression level of p53γ protein, as can be seen, is considerably 

lower than of p53β. The p53γ
+
 HL-60 cells also reveal lower fluorescence intensity of 

tdTomato and less stability in comparison with p53β
+
 cells and vector control cells      

(Figure 4-1A). Moreover, the basal level of Bax and p21
CIP1/WAF1

 proteins in these cells is 

higher than in vector control and p53β
+
 cells (Figure 4-1C). These data propose that a higher 

expression level of p53γ protein can be toxic to the cells. Furthermore, p53β
+
 HL-60 cells 

showed a higher expression level of Mdm2 than vector control cells did and the level of this 

protein in p53γ
+
 cells is substantially higher than in vector control as well as in p53β

+
 cells          

(Figure 4-1C). This suggests that the presence of p53β or p53γ in HL-60 cells clearly 

modulates the expression of Mdm2 and proposes a possible role of Mdm2 in the regulation of 

these p53 isoforms. Interestingly, a difference in the basal level of Bax and Mdm2 between 
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vector control and wild-type HL-60 cells was observed (Figure 4-1C). The vector control 

transduced cells have a substantially lower level of Bax and Mdm2 proteins compared to 

wild-type cells. A possible explanation is that retroviral transduction through viral insertion 

of DNA has changed the phenotype of the cells. Studies showed that the viral insertion of 

transgenes into chromosomal DNA in hematopoietic cells may result in the insertional 

activation of proto-oncogenes leading to a proliferative advantage and possible 

leukemogenesis [176, 177]. 

Colony formation assay did not display any significant difference in the number as well as 

the size of colonies between wild-type, vector control, p53β
+
 and p53γ

+
 HL-60 cells. 

Nonetheless, while vector control and p53β
+
 cells exposed similarity in the morphology of 

colonies, a variation was seen between them and p53γ
+
 cells (Figure 4-2). This finding 

suggests that p53γ may have roles in the differentiation of the cells. Furthermore, the colonies 

of wild-type and vector control cells showed a difference in morphology, indicating one more 

time different properties between wild-type and vector control cells. 

In some previous studies, both p53β and p53γ were demonstrated to increase 

chemosensitivity of cancer cells [124, 136]. Therefore, we investigated the response of wild-

type, vector control, p53β
+
 and p53γ

+
 HL-60 cells to chemotherapy by examining the 

proliferation and viability of the cells after treatment with the cytotoxic drugs Doxorubicin 

and Camptothecin. However, no significant changes in cell proliferation and apoptosis were 

found (Figure 4-3). This observation does not support the finding that p53β or p53γ enhances 

Doxorubicin and Camptothecin sensitivity in cancer cell lines [124]. Our finding that p53β 

and p53γ do not affect the proliferation and apoptosis of HL-60 cells following Doxorubicin 

and Camptothecin treatment does not necessarily mean that the isoforms do not affect the 

response of HL-60 cells to chemotherapy. In the context of this study, we only inspected the 

growth and survival of the cells in response to two genotoxic drugs at one concentration (0.5 

μM) and at two different time points (8 and 24 hours). Thus, it is unclear whether these 

isoforms cause distinct responses to different doses, timeframes or types of chemotherapeutic 

agents. Furthermore, because we only utilized the WST-1 based cell proliferation assay 

which indirectly evaluates the proliferation of cells through measuring metabolic activity to 

examine chemotherapeutic response of the cells, it cannot be concluded firmly that p53β and 

p53γ do not inhibit cell proliferation. More investigations are required. 

In a previous study, it has been proposed that the high expression of p53β and p53γ combined 

with the low expression of FLp53 in AML correlates with longer patient survival and 
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chemosensitizing enhancement [136]. This has elicited a question if p53β and p53γ interact 

with FLp53 in a ratio-dependent manner in AML. In order to elucidate this query, the 

generation of AML cells having low FLp53 protein level and high p53β and p53γ protein 

level is a prerequisite. The FAB class M5 wild-type TP53 MOLM-13 AML cell line [172] 

expressing FLp53, p53β and p53γ was transduced with retroviral vector containing p53β-

tdTomato or p53γ-tdTomato to establish higher expression of p53β or p53γ. Nonetheless, the 

fact that only 0.81% or 0.66% of cells were successfully transduced with p53β-tdTomato or 

p53γ-tdTomato construct respectively after four times of transduction (Figure 4-4B) suggests 

that a greater expression level of p53β or p53γ may be unfavorable to the cells. This is 

confirmed by the fact that cells successfully transduced with p53γ-tdTomato construct died 

gradually after FACS (Figure 4-5, 4-6), signifying that p53γ up-regulation is toxic to the 

MOLM-13 cells. This finding corresponds with prior reports that p53γ may be cytotoxic 

[121, 124] and strengthens the observations of p53γ’s toxic effect on HL-60 cells. 

Furthermore, the p53γ transduced MOLM-13 cells showed a morphological change 

compared to wild-type MOLM-13 cells (Figure 4-6), indicating that the increase of p53γ 

may affect differentiation status of the cells. We were successful in producing MOLM-13 

cells with a higher expression of p53β. This is demonstrated by Western blot analysis of p53 

in the MOLM-13 cells transduced with p53β construct in comparison with wild-type and 

vector control cells (Figure 4-7). Although the colonies of these cells did not show a 

significant difference in quantity, size or morphology, they displayed a much lower 

fluorescence intensity of tdTomato than vector control transduced cells’ colonies did   

(Figure 4-5B,C). This reinforces the suggestion that the higher expression of p53β in 

MOLM-13 cells may be unfavorable.  

In summary, based on the observations of stable expression and function of p53β and p53γ in 

HL-60 cells as well as the impact of higher p53β and p53γ expression level on MOLM-13 

cells, we propose that p53β and p53γ may act in concert with FLp53 in a ratio-dependent 

manner. The fact that the stable expression of p53γ can be established in p53
null

 HL-60 cells 

but its greater expression level cannot be created in wild-type TP53 MOLM-13 cells verifies 

this conclusion. Also, this is strengthened by the fact that the p53β construct was readily 

transduced into HL-60 cells (E. Silden, unpublished data) but was not in MOLM-13 cells. In 

this thesis, our goals were to investigate if the functional roles of p53β and p53γ are 

independent of FLp53 in a p53
null

 AML cell line and to establish a higher expression of p53β 

or p53γ in a wild-type TP53 AML cell line in order to study their functions in concert with 
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FLp53 and endogenous p53β and p53γ. We basically examined individual functions of p53β 

and p53γ in clonogenicity, cell proliferation and apoptosis in response to chemotherapy. 

Additionally, we partly clarified the interaction of p53β and p53γ with FLp53 in performing 

their functions when we tried to establish the up-regulation of p53β and p53γ in wild-type 

TP53 MOLM-13 cells. Although our efforts to up-regulate p53γ expression level in MOLM-

13 cells were unsuccessful, the up-regulation of p53β in these cells was established. 

5.2. Modulation of p53 isoforms and Mdm2 in response to resazurin 

Resazurin, a redox indicator, has been demonstrated to have cytotoxic effects in leukemic 

cells [38]. It has been proposed to act through the activation of ROS generation, leading to a 

cellular stress response which probably initiates mitochondrial dysfunction followed by 

degradation of the cell [39]. In addition, the generation of ROS which is critical to redox 

signaling has been shown to play roles in p53 regulation [103]. Based on these data, we 

investigated if resazurin exposure regulates p53 through the modulation of p53 isoforms full-

length, β and γ as the mechanism of its action and if the single expression of p53β and p53γ 

affects resazurin’s cytotoxic effects in AML cell lines. We found that the stable expression of 

p53β in HL-60 cells significantly increases cell apoptosis in comparison with p53γ
+
 HL-60 

cells following resazurin exposure. A considerable difference in the ratio of apoptotic cells 

between p53β
+
 cells and vector control cells was also observed after 24 hours of resazurin 

exposure (Figure 4-8A). Interestingly, wild-type HL-60 cells were more sensitive than vector 

control cells to an exposure of 40 μM resazurin for 24 hours, strengthening the observation 

that vector control cells bear distinct characteristics from wild-type cells. Western blot 

analysis of Caspase-3 cleavage, an important marker for apotosis, in vector control, p53β
+
 

and p53γ
+
 cells exposed to 40 μM resazurin for 48 hours also confirm that p53β increases 

apoptosis of HL-60 cells in response to resazurin (Figure 4-8B). However, it is not clear 

whether this effect of p53β on the cells depends on dose or time of resazurin exposure. In 

addition, p53β and p53γ may influence the cells by other mechanisms than apoptosis in 

response to resazurin. Further studies are needed to elucidate these inquiries. 

The modulation of p53 isoforms by resazurin exposure was examined in p53β
+
 and p53γ

+
 

HL-60 cells as well as MOLM-13 cells. However, Western blot analysis of p53 in these cells 

showed that resazurin exposure does not affect FLp53 as well as p53β and p53γ level  

(Figure 4-9), suggesting that the modulation of p53 isoforms full-length, β and γ is not the 

mechanism of resazurin activity. Interestingly, Western blot analysis of other proteins in the 
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p53 pathway such as Mdm2, Bax and p21
CIP1/WAF1

 in shControl and shp53 MOLM-13 cells 

treated with resazurin revealed significant changes. The shControl MOLM-13 cells which 

contain a normal expression level of p53 presented an up-regulation of p21
CIP1/WAF1

 protein 

and unchanged Mdm2 protein level, whereas the shp53 MOLM-13 cells which bear a much 

lower level of p53 showed a nearly unalterable p21
CIP1/WAF1

 level and slight down-regulation 

of Mdm2 (Figure 4-10A), proposing that the exposure to resazurin clearly affects the 

MOLM-13 cells and these effects may depend on the expression level of p53. Nonetheless, 

examining the viability of the these cells simultaneously by nuclear morphology cell death 

assay and Annexin V-Alexa 488 – To-pro-3 cell death assay showed that resazurin does not 

primarily affect the MOLM-13 cells through the induction of apoptosis (Figure 4-12). This 

corresponds with the observation that the expression level of Bax protein in both shControl 

and shp53 MOLM-13 cells remained the same after resazurin exposure (Figure 4-10A). The 

discovery that resazurin exposure enhances p21
CIP1/WAF1

 level in shControl MOLM-13 cells 

proposes that resazurin may affect the cells through other mechanisms such as cell cycle 

arrest or cell senescence but it is not clear if this up-regulation of p21
CIP1/WAF1

 is dependent or 

independent of p53. Despite the fact that resazurin exposure did not change the expression 

level of p53 in these cells, it does not necessarily mean that this p21
CIP1/WAF1

 enhancement is 

p53-independent. In this case, resazurin may activate p53 through other mechanisms, for 

instance, post translational modifications (PTMs). The activated p53 may cause transcription 

of the gene encoding p21
CIP1/WAF1

 protein resulting in the up-regulation of p21
CIP1/WAF1

. 

Western blot analysis of Mdm2 protein in all wild-type, vector control, p53β
+
 and p53γ

+
 HL-

60 cells following resazurin exposure revealed a substantial attenuation of this protein 

(Figure 4-10B), suggesting a p53-independent down-regulation of Mdm2 by resazurin. 

Moreover, Western blot analysis and cell viability evaluation of wild-type HL-60 cells 

exposed to resazurin in a dose-response manner showed a progressive attenuation of Mdm2 

corresponding to a stepwise increase of apoptosis (Figure 4-11) consolidating the conclusion 

that resazurin can induce down-regulation of Mdm2 via a p53-independent pathway. 

However, it is still ambiguous whether or not resazurin induces the apoptosis of HL-60 cells 

through this p53-independent attenuation of Mdm2. Many researchers have demonstrated that 

Mdm2 may regulate proliferation and survival of cancer cells via p53-independent pathways 

[178-180]. On the other hand, the increase of Caspase-3 has been shown to cause the down-

regulation of Mdm2 [181]. Therefore, making this query clear is essential. 
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To summarize, resazurin exposure has been revealed to have distinct impacts on Mdm2 level 

in AML cell lines depending on the expression level of p53 in these cells. In this study, we 

found that shControl MOLM-13 cells holding a normal p53 level have the same Mdm2 level 

while the level of Mdm2 in the shp53 MOLM-13 cells which carry a low level of p53 is 

slightly down-regulated following resazurin exposure. When the p53-defective HL-60 cells 

were exposed to resazurin, they presented a substantial attenuation of Mdm2, suggesting a 

p53-independent down-regulation of Mdm2 by resazurin. Furthermore, we discovered that 

the stable expression of p53β in HL-60 cells augments cell apoptosis after resazurin 

exposure, proposing that p53β may have functional roles in response to resazurin. 

5.3. Correlation between wild-type or mutated NPM1 and p53 isoforms 

modulation 

The finding that NPM1 mutation, a good prognostic marker in AML, was associated with 

high expression of p53β and p53γ proteins [136] has led to an enquiry if wild-type and 

mutated NPM1 play roles in the modulation of p53 isoforms expression. We transiently 

established the expression of wild-type and mutated NPM1 in a wild-type TP53 cell line and 

investigated the modulation of p53 isoforms full-length, β and γ in these cells in comparison 

with control cells. In order to perform this study, the utilization of recombinant plasmids 

containing wild-type or mutated NPM1 DNA as well as vector control is required. The 

recombinant DNA constructs bearing wild-type or mutated NPM1 DNA which express 

NPM1 tagged ECGFP was already constructed. However, since the vector control was 

lacking, we generated it from the recombinant plasmid with NPM1. We were successful in 

creating the vector control pCDNA3
+
-ECGFP which expresses only ECGFP. This was shown 

by the result of agarose gel electrophoresis of ligated vectors after removing NPM1 gene 

(Figure 4-14) and confirmed by DNA sequencing. 

The expression of ECGFP tagged wild-type or mutated NPM1 was established in wild-type 

TP53 HEK293 cells by transient transfection. It was revealed by the presence of ECGFP
+
 

cells via flow cytometric analysis and fluorescence microscopy (Figure 4-15A,B). 

Fluorescence microscopy also confirmed the presence of wild-type NPM1-ECGFP in the 

nucleolus and mutated NPM1-ECGFP in the cytoplasm (Figure 4-15B). Furthermore, the 

expression of wild-type NPM1-ECGFP or mutated NPM1-ECGFP in these cells was verified 

by Western blot analysis of NPM1 using specific anti-NPM1 as the primary antibody. The 
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expression of these fusion proteins, however, was much lower than the wild-type NPM1 

protein of the cells (Figure 4-15C). 

In this study, our primary aim has been to investigate the role of wild-type and mutated 

NPM1 in p53 isoforms modulation in human wild-type TP53 cells. The modulation of p53 

and related proteins consisting of Mdm2 and SRSF3 in HEK293 cells transfected with wild-

type NPM1 or mutated NPM1 construct was examined by Western blot analysis in 

comparison with the cells transfected with vector control. A significant difference in the 

modulation of these proteins was not observed (Figure 4-16). This does not support the 

previous finding that NPM1 mutation was associated with high expression of p53β and p53γ. 

Moreover, mutated NPM1 was supposed to contribute to the inactivation and dislocation of 

ARF which lead to the increase of Mdm2 further resulting in the decrease of p53 level [163]. 

Our observation showed that there is no significant difference in the expression level of p53 

between the cells transfected with mutated NPM1 construct and the cells transfected with 

vector control. However, we could not conclude that wild-type and mutated NPM1 do not 

affect the modulation of p53 based on this observation because of the facts that the efficacy 

of transfection was low (Figure 4-15A) and the expression level of wild-type NPM1-ECGFP 

or mutated NPM1-ECGFP in HEK293 cells was much lower than the wild-type NPM1 

protein of the cells. Otherwise, the dominant expression of FLp53 in HEK293 cells may be 

an obstacle. Additional studies are clearly needed to illuminate the correlation between wild-

type or mutated NPM1 and p53 isoforms modulation. 

5.4. Future perspectives 

The achieved results of this thesis have partially uncovered the individually functional roles 

of p53 isoforms β and γ as well as their functional interaction with FLp53 in AML. However, 

they have also proposed several inquiries requiring additional investigations to elucidate such 

as the influence of p53β and p53γ on AML cells in response to chemotherapy as well as 

differentiation. More specific methods should be considered, for example, 
3
H-Thymidin 

incorporation assay to evaluate cell proliferation and immunophenotyping to examine cell 

differentiation status. Besides, the dose-response as well as time-course to different types of 

chemotherapeutic agents should be clarified. The functions of p53β and p53γ in controlling 

cell cycle progression and cell senescence will also have to be investigated.  
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The finding that the up-regulation of p53γ in wild-type TP53 MOLM-13 cells is cytotoxic 

represents that it may be a new therapeutic target in AML. Moreover, a further 

characterization of MOLM-13 cells with increased p53β is needed to better understand its 

functions. Future studies are needed to interpret the mechanism why p53γ is cytotoxic as well 

as to inspect whether or not the ratio-dependent interplay between FLp53, p53β and p53γ 

exists. Knocking down p53β and p53γ by shRNA to inactivate their functions in addition to 

viral transduction of p53 isoforms full-length, β and γ construct into cells to alter the ratio of 

these isoforms will make p53 isoform-specific functions clearer. 

The discovery that the presence of p53β makes HL-60 cells more sensitive in response to 

resazurin requires further investigation. The effects of p53β and p53γ on cell proliferation, 

cell cycle progression and senescence following resazurin exposure will have to be explored. 

Moreover, the mechanisms how resazurin up-regulates p21
CIP1/WAF1

 in wild-type TP53 

MOLM-13 cells as well as how it down-regulates Mdm2 in a p53-independent pathway need 

to be clarified. The cause and effect relationship between Mdm2 and Caspase-3 in addition to 

the relationship between Mdm2 and other proteins than p53 which regulate their activity will 

also have to be investigated. 

As discussed, the impact of wild-type and mutated NPM1 on the modulation of p53 isoforms 

expression was inconclusive by virtue of the low efficacy of transfection, very high 

expression level of wild-type NPM1 protein and the prevalent expression of FLp53 in 

HEK293 cells. In order to avoid this problem, optimization of transfection should be 

considered and another mammalian cell line should be used for transfection. 

It has been mentioned that the down-regulation of SRSF3 will force the splicing of TP53 pre-

mRNA towards the p53β [125]. Hence, it will be exciting to examine the correlation between 

SRSF3 expression and p53 isoforms expression. Furthermore, FLT3-ITD, an important 

prognostic factor for short survival in AML, was correlated with the expression of FLp53 

[136]. This correlation should also be clarified. 
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