

The development and evaluation of the SemanticGeoBrowser

- A Semantic Web application for browsing

the spatial dimension of the Web of Data

Master thesis

By: Lars Berg Hustveit

Supervisor: Csaba Veres

Department of Information Science and Media Studies

University of Bergen

June 1, 2013

 Lars Berg Hustveit

 2

Abstract

The Semantic Web is woven together into a Web of data by statements expressed

through the Resource Description Framework (RDF) syntax. This syntax only

accepts sentences that are shaped by a subject, predicate and object, which is

described as a RDF triple. The purpose of creating a RDF triple is to describe a

relation between two resources, the subject and object, through the use of a

predicate. The syntax enables computers to effectively process RDF data. Plain

RDF triples is however not easily read and understood by humans. A common

way for humans to browse the Web of data is nevertheless the general web

browser, originally designed for browsing the Web of interlinked hypertext

documents, created for human consumption. As semantic technologies are being

put into practice and the Web of data is growing, the issue of how to browse the

Semantic Web has raised on the agenda of the Semantic Web community. The

SemanticGeoBrowser is an effort to contribute to the spatial dimension of the

Semantic Web. The focus of this design-science research study has been to

identify and develop a user-friendly design for browsing geospatial things

described in the Web of data. An iterative search and development process has

resulted in a proof of concept artifact. This prototype demonstrates a possible

solution on how a Semantic Web browser can work. The design artifact was

evaluated through a descriptive evaluation method, selected from the design-

science knowledge base.

 Lars Berg Hustveit

 3

Acknowledgements

The greatest thanks goes to my supervisor Csaba Veres from University of

Bergen and colleague Terje Aaberge from Western Norway Research Institute

(WNRI). Csaba introduced me to the topic of the Semantic Web with enthusiasm,

which lead me to wanting learning more. This master thesis would not have been

completed without his many feedbacks. Terje gave me unique insight on the

topic through the view of logic and through the Semantic Web community by

inviting me to his ISO 15926 and Semantic Technology Conferences. I have

learned a lot from both Csaba and Terje, and the many discussions I have had

with them have been enlightening and inspiring, so thank you!

I would also like to thank my family and friends for being awesome, inspiring,

generous and supportive!

At last, my thanks go to all the other friendly people that have shared their

knowledge, experiences and wisdom with me!

 Lars Berg Hustveit

 4

Table of Contents

ABSTRACT ... 2

ACKNOWLEDGEMENTS ... 3

TABLE OF CONTENTS ... 4

LIST OF FIGURES ... 5

LISTINGS .. 6

1 INTRODUCTION ... 7
BACKGROUND.. 7
MOTIVATION .. 13
RESEARCH QUESTION ... 13
HYPOTHESIS ... 14
SYSTEM REQUIREMENTS ... 14

2 LITERATURE ... 16
TECHNOLOGY ... 16

Programming Languages, APIs and Frameworks .. 16
Sindice – The Semantic Web Index ... 16
OpenStreetMap and LinkedGeoData ... 17
The Norwegian Mapping Authority ... 17

3 METHOD ... 19
DESIGN-SCIENCE RESEARCH... 19

Research guidelines ... 20
LIMITATIONS .. 24

4 DEVELOPMENT... 25
FIRST ITERATION .. 25

Finding geospatial data sources.. 25
Finding appropriate technology ... 30
Evaluation .. 32

SECOND ITERATION .. 33
Lifting legacy data from BT.no Sprek ... 33
Supplementing geospatial data from the Norwegian Mapping Authority........................ 37
Add RDF data to Sindice .. 45
Evaluation .. 49

THIRD ITERATION ... 49
Designing an user interface that operates on the level of things ... 49
Selecting an area of interest.. 51
Knowledge about thing characterizations ... 51
Constructing a search query for Sindice .. 54
Requesting data from Sindice ... 56
Fetching data about each thing... 59
Handling data from Sindice ... 67
Evaluation .. 72

FOURTH ITERATION ... 74
Designing a more user friendly interface .. 74
Designing an user-friendly fact box ... 75
Reasoning with property facts ... 77
Evaluation .. 81

FIFTH ITERATION .. 82
Implementing a second data source .. 82

 Lars Berg Hustveit

 5

Evaluation .. 89
SIXTH ITERATION .. 89

Implementing categorization and heat map feature .. 90
Implementing text search feature .. 92
Evaluation .. 93

5 EVALUATION AND DISCUSSION ... 94
DESCRIPTIVE EVALUATION .. 94

Informed Arguments ... 95
Scenarios .. 97

DISCUSSION .. 99

6 CONCLUSION AND FUTURE WORK ... 103
CONCLUSION ... 103
FUTURE WORK ... 104

REFERENCES .. 105

APPENDICES .. 109

List of figures

Figure 1: Information Systems Research Framework ... 20

Figure 2: Generate/Test Cycle .. 23

Figure 3: A map feature showing the city of Bergen .. 29

Figure 4: A generated terrain profile of hike ... 43

Figure 5: A web page presenting information about a hike ... 47

Figure 6: How RDF triples from a web page looks like after being submitted to
the Sindice platform ... 48

Figure 7: The first layout of the SemanticGeoBrowser ... 50

Figure 8: A search in Sindice for all geospatial things in a popular area in the city
of Bergen.. 52

Figure 9: The concept of a list with relevant things to search for within the
domain of operation... 53

Figure 10: The concept of a list where the percentage of matching vocabulary
terms will display to determine the thing relevance to the user 54

Figure 11: Illustration of the artifact’s cross-domain communications 57

Figure 12: An object representing an index card with facts about a selected thing
 .. 71

Figure 13: The second layout of the SemanticGeoBrowser .. 74

Figure 14: A fact box presenting facts from recognized RDF triples that describes
a hike ... 76

Figure 15 – How the browser widget and reasoner server communicate 78

Figure 16: How the result of reasoning is presented to the user 81

Figure 17: A search criteria set in the control pane ... 84

Figure 18: How filtering geospatial things within a square shaped area is
happening through the LinkedGeoData SPARQL endpoint .. 85

Figure 19: A category list generated in a search for anything in the area of Bergen
 .. 87

Figure 20: After an option in the category list is selected ... 88

 Lars Berg Hustveit

 6

Figure 21: A fact box displaying information about a selected thing 89

Figure 22: The category feature ... 90

Figure 23: Categorization and heat map feature in use .. 91

Figure 24: The control pane of the heat map feature .. 92

Figure 25: The text search field in the control pane for the search 93

Listings

Listing 1: Property facts that are generated for hike ... 42

Listing 2: A search query constructed for the Sindice Search API 56

Listing 3: Dojo´s dojo.io.script module enables cross-domain communications
between client and server ... 58

Listing 4: Example figure of successful reply from Sindice Search API 60

Listing 5: Example of result from the Cache API .. 67

Listing 6: The Sindice platform conducts reasoning .. 68

Listing 7: Some of the RDF triple-patterns the system is looking for 69

Listing 8: An object that contains all the parameters that are required by the
reasoner server .. 78

Listing 9: How rules can be written to say something about the difficulty level of
a hike ... 80

Listing 10: A query generated for the LinkedGeoData SPARQL endpoint 85

 Lars Berg Hustveit

 7

Chapter 1

1 Introduction

Background

Ever since the official proposal for the World Wide Web was introduced in 1990

(Berners-Lee & Cailliau 1990) people have perceived the web browser as the

main tool for viewing information resources through the Internet. The web

browser was ultimately designed to display information from interlinked

hypertext documents, also known as web pages, which constitute the “Web of

documents”. The information in these documents is generally annotated with

HyperText Markup Language (HTML), a markup language that leaves the

publisher in full control over how the information is presented to the end-user.

As a result of HTML annotation, the World Wide Web (also referred to as “the

Web”) developed most rapidly into a medium of documents designed for human

consumption (Berners-Lee et al. 2001). While a HTML presentation can enforce

the understanding of data amongst humans, this method alone has little impact

when it comes to make machines understand the same data. Since machines are

not able to understand real meaning in human text on its own (Aaberge 2011),

machines must instead rely on humans to add additional machine-readable data

about the data content, also called metadata. This type of data may possess a

formal meaning in which machines are able to understand (Aaberge 2011).

The use of machine-readable data, combined with explicit semantics, has over

the years extended the World Wide Web with a “Web of data”, also referred to as

the “Semantic Web” (Berners-Lee et al. 2001), the “Web of machine-readable

data” or the “Web of data about things” (Heath 2008). Like the Web of

documents, the Web of data is constructed with documents on the Web. Unlike

the Web of documents, where links are used to connect hypertext documents

into a single global information space, the Web of data uses links to connect any

kind of object or concept into a single global data space (Berners-Lee 2006;

Heath & Bizer 2011, chap.2.1).

 Lars Berg Hustveit

 8

This global data space is based on “Linked Data”, which is the basic idea of

applying the general architecture of the Web to the task of sharing structured

data on a global scale (Heath & Bizer 2011, chap.2). In order to guide people

towards nesting a Web of linked data, a set of best practices for publishing and

interlinking structured data on the Web have been published (Berners-Lee 2006;

Heath & Bizer 2011, chap.2). The set of best practices, which has become known

as the “Linked Data principles” (Heath & Bizer 2011, chap.2), consists of four

rules that is to be viewed as expectations of behavior (Berners-Lee 2006).

The first Linked Data principle advocates the use of Uniform Resource Identifiers

(URIs), a globally unique identification mechanism, when naming things. An URI

comes in form of a compact string of characters and can be used to identify

anything from Web documents to real world objects or abstract concepts.

Examples of real world objects can be things like people, places or cars, whereas

abstract concepts can for example be used to refer to a color, a set of colors or a

type of relationship between something (Berners-Lee et al. 1998; Heath & Bizer

2011, chap.2.1; Berners-Lee 2006).

Even though URIs are widely used as identifiers, the Semantic Web community

have lately started to replace it with Internationalized Resource Identifiers

(IRIs). This change is however minor and is happening because IRIs is a

generalization of URIs that allows all characters beyond the US-ASCII charset1.

Every absolute URI is an IRI. Nevertheless, since the use of IRIs has merely

started to be applied by the community, and since most of the literature used in

this project refer to the term URI, I will continue to use the term URI throughout

this project (Cyganiak 2011; Cyganiak et al. 2012).

The second Linked Data principle advocates the use of HTTP URIs so that people

and machines can look up things by their name. Combining globally unique

identification with the Hypertext Transfer Protocol (HTTP), which is the Web’s

1 http://en.wikipedia.org/wiki/ASCII

 Lars Berg Hustveit

 9

universal access mechanism, enables identified objects or concepts to be looked

up for related data retrieval (Berners-Lee 2006; Heath & Bizer 2011, chap.2.1).

The third Linked Data principle advocates the use of a single data model when

publishing structured data on the Web. Publishing data in a standardized content

format will make it consumable by a wide range of different applications. While

the Web of documents is shaped through the dominant use of HTML, the Web of

data is shaped through another standardized format, named the Resource

Description Framework (RDF). The RDF data model is a World Wide Web

Consortium (W3C) specification for making statements about things in machine-

readable form (Berners-Lee 2006; Heath & Bizer 2011, chap.2.1; Heath 2008).

Each statement consists of a subject, predicate and object, and is referred to as a

RDF triple. A triple represents the structure of a simple sentence, for example:

“Tim Berners-Lee is creator of WorldWideWeb”

The subject, which is the first part in a triple, is usually the name of a described

resource. This name comes in form of an URI and will uniquely identify the

resource (as described in the first Linked Data principle) and refer to another

RDF dataset with statements that might be useful (like described in the second

Linked Data principle). Constructing an RDF triple of the sentence above should

therefore contain the person’s public URI as a subject, which is:

http://www.w3.org/People/Berners-Lee/card#i

The object, which is the third part in a triple, is often a literal value, like a string,

number or date; or the URI of another resource that is somehow related to the

subject (Heath & Bizer 2011, chap.2.4.1). Continuing the translation of the

example sentence, an URI should also be used as object in order to identify the

meaning of the resource. The first web browser ever created was in fact named

“WorldWideWeb”, typed with no spaces. This name is easily confused with the

abstract information space which spelled “World Wide Web” with spaces

 Lars Berg Hustveit

 10

(Berners-Lee n.d.). Even though the individual has participated in the creation of

both concepts (Berners-Lee & Cailliau 1990), using an URI will make the

meaning of the triple’s object clear. The following URI, which was already

describing the first web browser created, is suitable for reuse:

http://dbpedia.org/resource/WorldWideWeb

The predicate, which is the second part in a triple, indicates what type of

relationship exists between the subject and object. A relationship is expressed

through the use of an URI that comes from a vocabulary. Vocabularies in Linked

Data context are collections of URIs that can be used to represent information

about a certain domain (Heath & Bizer 2011, chap.2.4.1). In order to make RDF

statements recognizable by a wide range of different applications, reuse of

suitable terms from well-known vocabularies are advised (Heath & Bizer 2011,

chap.4.4.4). In order to complete the translation of the example sentence, the

RDF triple should contain a predicate that equals the meaning of the concept “is

creator of”. The following URI would be suitable for reuse:

http://purl.org/dc/elements/1.1/creator

This predicate comes from the well-known Dublin Core Metadata Initiative

(DCMI) Metadata Terms vocabulary and defines general metadata attributes

such as title and date (Heath & Bizer 2011, chap.4.4.4).

The fourth Linked Data principle advocates the practice of nesting a Web of

linked data by including URIs to other resources. This will allow explorers of

Linked Data to discover relevant resources when looking up HTTP URIs and

prevent published data from becoming hidden data islands, isolated from the

rest of the Web (Heath & Bizer 2011, chap.2.1; Heath 2008).

While breaking the rules presented by the Linked Data principles does not

destroy anything, ignoring them misses an opportunity to make data

interconnected (Berners-Lee 2006). The individuals that do follow them are the

 Lars Berg Hustveit

 11

ones nesting a Web of machine-readable data with open standards. By doing so,

they are participating in an Open Data Movement that are making it possible for

others to re-use structured data in unexpected ways (Berners-Lee 2006).

Even though a lot of RDF triples are published through publically available data-

stores, the Web of machine-readable data is not by any means separated from

the established Web of hypertext documents. The extension of the Web is rather

described as “another layer of cloth interwoven with the Web as we know it”

(Berners-Lee et al. 2001; Heath 2008). Through the use of RDFa (which stands

for Resource Description Framework – in – attributes), RDF triples can be

integrated into any hypertext document, making structured data understandable

to both human and machine (Heath 2008).

The Semantic Web has however created significant challenges and opportunities

for human-computer interaction (Heath 2008; Berners-Lee 2006). Where the

traditional web browser has proven to be an excellent tool for presenting HTML

content when interacting with the Web of documents, its general design does not

appear to be ideal when it comes to browsing the Web of data. Open linked data

has moved the Web into a seismic shift where data can be seen in new ways that

the original creators might not have anticipated in advance (Heath 2008).

Since the Web of data is based on standardized web architecture and on a single

data model, it has become possible to implement generic applications that

operate over the complete data space (Heath & Bizer 2011, chap.2.1). This has

for example leaded to the development of Linked Data browsers and -search

engines. Linked Data browsers are designed for enabling the user to view data

from one data source and then follow RDF links within the data to other data

sources. The purpose of Linked Data search engines is to crawl the Web of data

and index it in order to provide sophisticated query capabilities on top of the

complete data space (Heath & Bizer 2011, chap.2.1).

While it seems the development of Linked Data search engines like Sindice.com

have been moving on the right path from the start, Heath (2008) points out that

 Lars Berg Hustveit

 12

the earliest Semantic Web browsers rather misses the point. The one-page-at-a-

time style of browsing, which is well known from the Web of documents, does

not take advantage of the potential that lies within integrated views of data

assembled from numerous locations (Heath 2008). Karger & Schraefel (2006)

argue that simply echoing graphs containing RDF triples have limited value as

they are hard for humans to read and does not necessarily solve any of an user’s

tasks.

The question “How will we interact with the Web of data?” (Heath 2008) has been

buzzing within the Semantic Web community ever since it’s beginning. It first

started out as future predictions and visions, but has gradually climbed on the

researchers’ agenda as semantic web technologies are being put into practice.

While the community seems to agree on the Semantic Web browser as a concept,

the challenge has rather been to come up with good answers to questions like:

“What should a Semantic Web browser look like?” (Heath 2008)

“How do we elegantly support the range of possible interactions both in

predefined Semantic Web applications and in dynamic explorations of Semantic

Web resources?” (Karger & Schraefel 2006)

Heath (2008) predicts a shift in the Web’s user interaction paradigm where

browsers of the Web of data operate on the level of “things”, rather than the level

of documents. This is because each thing described in a document is of far

greater relevance than the documents and the lines of RDF triples themselves.

Heath (2008) further suggest this type of applications are named “thing

browsers” where things like people, places and other concepts are treated as

first-class citizens of the interface. It would be the machines’ job to assemble this

data into a coherent view (a view that includes all the data the user expects it to)

that is ready for human consumption (Heath 2008). Heath (2008) thinks the use

of look-up services such as Sindice is a success factor in the development of

Semantic Web browsers. This is because semantic web indexes are able to

provide quick and advanced query capabilities. A single query could result in

 Lars Berg Hustveit

 13

different RDF documents from several data sources mentioning a particular URI

of a thing (Heath 2008).

Web of data interaction is a general problem where much more innovative work

is possible and needs to be done (Heath 2008; Karger & Schraefel 2006). In this

project, the effort is focused on the construction of a proof of concept artifact

that aims to demonstrate possible solutions on how a Semantic Web browser can

be used as a tool for interacting with the Web of data. The construct will pursue

the concept of a “thing browser”, which will place the things in the center of the

user interface, rather than raw RDF triples from documents. The thing-oriented

artifact will be combined with a semantic web index, which will provide more

advanced query capabilities than single data sources can provide. In order to

limit the scope, the artifact will have a user-targeted interface that are focusing

on geospatial things and designed for users within a selected domain.

Motivation

My motivation for choosing to conduct research within the area of the Semantic

Web was firstly based on my own enthusiasm for the Web. Through a master

course at the University of Bergen, INFO310 - Advanced Topics in Information

Systems, I noticed an opportunistic enthusiasm from people within the Semantic

Web community. The introduction to this opportunistic vibe made me curious to

continue exploring this area further. At the same time, I was eager to develop my

skills in the art of web programming.

Research question

The following research question is the focus of this study:

How can we build a user-friendly Semantic Web browser that enables its

users to discover and explore geospatial things described in the Web of

data?

In order to answer this research question, a demonstrator will be constructed as

a proof of concept artifact. The development process will be conducted through

an iterative process. The progress and level of success will be measured

 Lars Berg Hustveit

 14

throughout the project by conducting an evaluation at the end of each iteration.

These evaluations will include a measurement against the artifact’s system

requirements.

Hypothesis

As pointed out by the Semantic Web community, there is a need for Semantic

Web browsers that will make it easier for humans to interact with the things

described in the Web of data. In order to support the research question, I would

like to propose the following hypothesis:

A thing browser, like the SemanticGeoBrowser, will make it easier for

humans to discover and explore geospatial things described in the Web of

data.

System requirements

In the planning of the SemanticGeoBrowser, a set of system requirements was

formulated. These requirements represent my opinion on what is to be expected

of the proof of concept artifact. My points of view have been formed through the

reading of literature from the Semantic Web community, my many discussions

with supervisor Csaba Veres, and colleague Terje Aaberge. These are my

proposals for the system requirements:

The SemanticGeoBrowser should

1. operate at the level of “things” (instead of at the level of documents)

and treat them as first-class citizens in an user-friendly interface.

This requirement is based on Heath (2008).

2. contain an interactive map of the planet Earth, which enables the user to

a. explore the Web of data by selecting an area of interest.

b. interact with the “things” discovered on the Web of data.

3. be knowledge-based in order to

a. help the user search for relevant things.

b. help the user recognize things that are relevant to the domain of

operation.

c. present facts about relevant things in a user-friendly way.

 Lars Berg Hustveit

 15

4. make use of a semantic web index look-up service that provide

a. access to a large amount of RDF datasets from the Web of data.

b. advanced geospatial query capabilities to be made within a

selected area of interest.

This requirement is based on Heath (2008).

5. avoid solutions that would trigger the web browser to reload a lot.

6. be able to assemble and handle RDF data seamlessly behind the scenes.

This requirement is based on Heath (2008).

7. be able to draw conclusions from facts described in the properties of

things.

This requirement is based on Heath (2008).

8. support different data sources and apply knowledge from an external

ontology.

9. help the user to discover patterns shaped by the coordinates of geospatial

things.

10. allow users to conduct text searches when available thing

characterizations aren’t enough.

These system requirements will be addressed in the construction phase of the

artifact, which starts in the third iteration and described in chapter 4.

 Lars Berg Hustveit

 16

Chapter 2

2 Literature

This chapter will present technologies and data sources that have been used in

this project. The literature used in this study is listed in the reference list.

Technology

This sub-chapter will present technologies and data sources that have been used

in this project.

Programming Languages, APIs and Frameworks

The proof of concept artifact has been constructed through the use of the

following technologies: Dojo Toolkit 1.5 and 1.6, Google Maps JavaScript API v3,

EyeServer, Sindice APIs, HTML, CSS, JavaScript, jQuery, PHP, SPARQL, Lucene

Query Syntax, RDF, and RDFa.

Sindice – The Semantic Web Index

The Sindice platform, available at Sindice.com, present itself as “The Semantic

Web Index” and is a lookup service over resources crawled on the Semantic Web

(Tummarello et al. 2007). While a lot of the semantic data is collected from web

documents, their crawlers also support SPARQL endpoints. Their crawlers

support formats like RDF, RDFa, Microformats and Microdata, and it is possible

to add data to their index by notifying the service where to find new data to

crawl. By offering advanced search and querying services, through their web

pages and specialized APIs, they are encouraging software developers to build

applications on top of their collected data (Anon 2013a). Sindice offer by this a

counterbalance to the decentered publication model of the Semantic Web and

make it possible for developers to build rich Semantic Web applications with

little effort (Tummarello et al. 2007; Hausenblas 2009).

The infrastructure of Sindice is based on Lucene2, a free and open source

information retrieval software library. Lucene is however not built to handle

2 http://lucene.apache.org/

 Lars Berg Hustveit

 17

large semi-structured document collections. Sindice have therefore built SIREn3

(Semantic Information Retrieval Engine), a Lucene plugin developed to

efficiently index and query RDF. SIREn is released under the GNU Affero General

Public License, version 3 open source license and encourage by this people to

implement their solution when approaching the Web of Data (Anon 2013f).

OpenStreetMap and LinkedGeoData

OpenStreetMap presents itself as “an effort to add a spatial dimension to the Web

of Data / Semantic Web. LinkedGeoData uses the information collected by the

OpenStreetMap project and makes it available as an RDF knowledge base

according to the Linked Data principles” (Stadler 2012).

The Norwegian Mapping Authority

The Norwegian Mapping Authority (NMA), in Norwegian also known as “Statens

Kartverk” or “Kartverket”, is a public agency under the Ministry of the

Environment and describes themselves as “the national provider and

administrator of geodesy, geographical and cadastre information covering

Norwegian land, coastal and territorial waters” (Andersen 2009). The public

agency was founded in 1773 and have since then been working on the many

tasks of building and maintaining the Norwegian Spatial Data Infrastructure.

This makes Statens Kartverk the most important data source when it comes to

geographical information about Norway.

Even though the Norwegian government is financing a large amount of the public

agency´s yearly budget, Statens Kartverk has a long tradition of keeping their

information silos closed to Norwegian taxpayers and other businesses. As the

government does not cover all the expenses, the agency argues they have to

cover their expenses by other means. Statens Kartverk is therefore practicing the

selling of geospatial data through map products and other services (Engeland

2012). The income generated by this practice was in 2011 on 138 million

Norwegian kroner and is covering approximately 14 percentage of the public

agency’s budget (Brombach 2012).

3 http://siren.sindice.com/

 Lars Berg Hustveit

 18

As of 2009, Statens Kartverk started to offer public access to their map data, free

of charge. The new service was made available through their own API, allowing

web applications to communicate with their servers. With this, Statens Kartverk

states that developers should come up with creative solutions on how to use

their map data. However, the data is still being kept on a short leach as their user

agreement restricts the usage to individual people, associations, applications

that are not generating any form of income, and the number of daily requests is

heavily limited (Amundsen 2009b).

Since 2009, Statens Kartverk has continued to release map data, free of charge

(Engeland 2012). Critics have argued that their service usage policy and API

limitations are restricting innovation. Statens Kartverk is also criticized for

giving microscopic releases of open data compared to the large amount of raw

data the public agency are sitting on (Amundsen 2009a; Brombach 2012).

 Lars Berg Hustveit

 19

Chapter 3

3 Method

This chapter will introduce the literature of the research method that has been

used to execute this project. It will also describe how the methods presented in

the literature have been used to conduct the research.

Design-science research

This project has been executed as a “design-science research”. In order to

conduct a successful design-science research, this project has been using

elements from the framework and following the guidelines proposed in the

research essay “Design Science in Information Systems Research” by Hevner et

al. (2004). Because of the authors primary goal to “inform the community of IS

researchers and practitioners of how to conduct, evaluate, and present design-

science research”, and how they do this by “describing the boundaries of design

science within the IS discipline via a conceptual framework for understanding

information systems research and by developing a set of guidelines for conducting

and evaluating good design-science research”, the research essay has proven to be

a good guide to understand the process of the selected research method. Figure 1

shows how Hevner et al. (2004, p.80) illustrates the conceptual framework of

design-science.

 Lars Berg Hustveit

 20

Figure 1: Information Systems Research Framework

Research guidelines

This section will introduce the seven guidelines that (Hevner et al. 2004) has

established to assist researchers and others to “understand the requirements for

effective design-science research”.

Guideline 1: Design as an Artifact

“Design-science research must produce a viable artifact in the form of a construct,

a model, a method, or an instantiation.”

In the first guideline Hevner et al. (2004, p.82) points out that the process of

design-science research must result in a purposeful IT artifact within an

appropriate domain. Instantiations, constructs, models and methods, can all be

defined as IT artifacts, and their capabilities are all equally crucial in the

development and use of information systems. Hevner et al. (2004, p.83) also

points out that “artifacts constructed in design-science research are rarely full-

grown information systems that are used in practice”. Instead, artifacts should be

 Lars Berg Hustveit

 21

innovative by defining new ideas, practices, or technical capabilities (Denning

1997; Tsichritzis & Metcalfe 1998) cited by Hevner et al. (2004, p.83).

Guideline 2: Problem Relevance

“The objective of design-science research is to develop technology-based solutions

to important and relevant business problems.”

In the second guideline, Hevner et al. (2004, p.85) explains that efforts to solve

problems in design-science research should be done with respect to a

constituent community. The problem should therefore be real and relevant to

the community. A good indication on this is when people within the community

have addressed the problem.

Guideline 3: Design Evaluation

“The utility, quality, and efficacy of a design artifact must be rigorously

demonstrated via well-executed evaluation methods.“

In the third guideline, Hevner et al. (2004, p.85) emphasize the importance of

evaluation as a crucial component of the research process. “Because design is

inherently an iterative and incremental activity, the evaluation phase provides

essential feedback to the construction phase as to the quality of the design process

and the design product under development. A design artifact is complete and

effective when it satisfies the requirements and constraints of the problem it was

meant to solve”.

Guideline 4: Research Contributions

“Effective design-science research must provide clear and verifiable contributions

in the areas of the design artifact, design foundations, and/or design

methodologies.”

In the fourth guideline, Hevner et al. (2004, p.87) introduce three types of

research contributions and explains that any design-research project must

contain one or more of these contributions. The first type of contribution, “The

 Lars Berg Hustveit

 22

Design Artifact”, is the artifact itself and “must enable the solution of heretofore

unsolved problems” or “apply existing knowledge in new and innovative ways”. The

artifact may also “extend the knowledge base” in the conceptual framework of

design-science. This knowledge base is illustrated in Figure 1. The second type of

contribution, “Foundations”, is the “the creative development of novel,

appropriately evaluated constructs, models, methods, or instantiations that extend

and improve the existing foundations in the design-science knowledge base”. The

third type of contribution, “Methodologies”, is any creative development and/or

use of evaluation methods that can be applied by others in design-science

research.

Guideline 5: Research Rigor

“Design-science research relies upon the application of rigorous methods in both

the construction and evaluation of the design artifact.”

In the fifth guideline, Hevner et al. (2004, p.87) argue that methods used in

design-science research must be both rigorous and relevant. Researchers should

therefore be extremely thorough by using the theoretical foundations and

research methodologies that are found in the knowledge base of design-science.

“Success is predicated on the researcher’s skilled selection of appropriate

techniques to develop or construct a theory or artifact and the selection of

appropriate means to justify the theory or evaluate the artifact”.

Guideline 6: Design as a Search Process

“The search for an effective artifact requires utilizing available means to reach

desired ends while satisfying laws in the problem environment.”

In the sixth guideline, Hevner et al. (2004, p.88) argue that it is often hard to find

the best, or optimal, design for realistic information systems problems. Because

creation of design essentially is “a search process to discover an effective solution

to a problem”, the design process should be iterative. The iterations can be

conducted by repeating the process presented in the “Generate/Test Cycle”,

 Lars Berg Hustveit

 23

which is illustrated in Figure 2 by Simon (1996) and cited by Hevner et al. (2004,

p.88).

Figure 2: Generate/Test Cycle

In order to find an effective solution to a problem, Hevner et al. (2004, p.88)

introduces three factors of problem solving by Simon (1996). The factors should

be repeated in the Generate/Test Cycle and are cited and explained by Hevner et

al. (2004, p.88) like this: “Means are the set of actions and resources available to

construct a solution. Ends represent goals and constraints on the solution. Laws are

uncontrollable forces in the environment.” By repeating relevant means, ends and

laws iteratively, progress will be made as the scope of the design problem is

expanding. The factors will be refined for each repetition in the process, while

the design artifact itself will become more relevant and valuable.

Guideline 7: Communication of Research

“Design-science research must be presented effectively both to technology-oriented

as well as management-oriented audiences.”

In the seventh guideline, Hevner et al. (2004, p.90) suggest that technology-

oriented audiences are provided with “sufficient detail to enable the described

artifact to be constructed (implemented) and used within an appropriate

organizational context”. This should enable “practitioners to take advantage of

the benefits offered by the artifact” and allow “researchers to build a cumulative

 Lars Berg Hustveit

 24

knowledge base for further extension and evaluation”. Management-oriented

audiences should also be provided with sufficient details to understand the

problem and the benefits acquired by constructing or using the artifact within an

organizational context.

Limitations

In order to limit the scope, the concept artifact will be designed for browsing

geospatial things described in RDF data.

 Lars Berg Hustveit

 25

Chapter 4

4 Development

This chapter will describe the process of developing the SemanticGeoBrowser,

by presenting the work done in each of the project’s six iterations. Each iteration

is represented by a subchapter and is evaluated in the end.

First Iteration

The first iteration consisted of the following tasks that would get the research

project started:

1. Find datasets containing data about geospatial things, preferably data in

the form of RDF and in the local area of Hordaland, the county of

University of Bergen.

2. Identify and get familiar with technologies that would be good choices for

the development of the proof of concept artifact.

Finding geospatial data sources

Task one: Find datasets containing data about geospatial things, preferably

data in the form of RDF and in the local area of Hordaland, the county of

University of Bergen.

The purpose of this task is to find and explore RDF data that can be used as data

source for the Semantic Web Browser.

The search was conducted in the Web of documents, using one of the many

search engines available. A lot of different web pages were found which provided

RDF datasets by linking to data files for download, but also by providing access

to data stores through SPARQL endpoints, which gives people and machines

querying capabilities.

 Lars Berg Hustveit

 26

At first the plan was to add interesting findings to a data store and make the RDF

datasets accessible to the proof of concept application through an SPARQL

endpoint. A lot of time in the beginning of this iteration was therefore used on

downloading RDF datasets. However, this process was stopped when it came to

my attention what opportunities the Sindice platform was providing.

The Sindice APIs

The Sindice platform was selected as the first data source for the

SemanticGeoBrowser. One of the reasons is because of their enormous collection

of geospatial data, accessible through one platform, free of charge. By

continuously indexing this growing data collection, the Sindice platform provides

an overview representing the Semantic Web. It is this overview that opens up the

possibility for the SemanticGeoBrowser to query the entire Web of data.

Even though a large amount of the distributed and machine-readable data on the

Web of data, are linked together, searching the Semantic Web without the

support of an index platform, like Sindice, would not be feasible. The platform

also provides access to information islands; resources that are not linked

together with other discovered datasets. Without the support of a search index

the SemanticGeoBrowser would only be able to view selected information

resources.

For an application to conduct a search in the semantic web index of Sindice, a

search query, containing a query object, is sent through their “Search API

Version 3” as a HTTP request. The Search API has a wide aspect of supported

parameters that can be used to construct the query object. An overview over

these parameters is listed in their Search API documentation4.

The simplest form of search query can be made using the q parameter. Queries

containing the q parameter are called a “keyword query”. According to the

Sindice documentation this parameter allows the user to find “all the relevant

4 http://sindice.com/developers/searchapiv3

 Lars Berg Hustveit

 27

documents that contain either a keyword or a URI using full-text search syntax”.

Here is an example of a search query using the q parameter:

http://api.sindice.com/v3/search?q=hotel

This search query asks for all documents containing the word “hotel” in the

semantic web index of Sindice.

The Search API supports the result formats JSON, RDF/XML and ATOM. While

the search query in the previous example would return the result in ATOM,

including a preferred format in the format parameter will override this default

setting, like this:

http://api.sindice.com/v3/search?q=hotel&format=json

In the time of writing, searching the web page version of Sindice for all

documents containing the word “hotel” gave a result of 7,865,288 documents.

However, querying the Sindice Search API for the same word will not return the

same amount since the result is limited into 100 result pages. Each result page

will contain up to ten documents. Which result page returned is controlled by the

page parameter. The proof of concept artifact will therefore have to send up to

100 HTTP requests in order to fetch as many items as possible. The next example

shows how one of the many search queries will look like when an application

fetches items from a large search result:

http://api.sindice.com/v3/search?q=hotel&page=38&format=json

Querying for patterns in RDF triples is done by using the nq parameter. The

Search API documentation (Anon 2013e) explains that any query containing the

nq parameter is called an “Ntriple query”, and are used to “produce precise

search results using simple, but powerful triple patterns to represent partial or

complete triples”. A triple pattern is a complete or partial representation of a

triple, which consists of a subject, predicate and object. In order to create a

http://api.sindice.com/v3/search?q=hotel
http://api.sindice.com/v3/search?q=hotel&format=json
http://api.sindice.com/v3/search?q=hotel&page=38&format=json

 Lars Berg Hustveit

 28

partial representation of a triple, the wildcard symbol * is included to substitute

any part of the triple. The nq parameter will allow the SemanticGeoBrowser to

search for things described with specific properties.

An Ntriple query, requesting things, described as a type of hotel, using the URI

http://schema.org/Hotel, could be constructed like this:

1. http://api.sindice.com/v3/search?nq=

2. * (Subject)

3. (White space)

4. http://www.w3.org/1999/02/22-rdf-syntax-ns#type (Predicate)

5. (White space)

6. http://schema.org/Hotel (Object)

7. &format=json

Several triple patterns can be included in one Ntriple query by combining the

patterns with the boolean operators AND, OR and NOT.

Another reason for selecting Sindice as a data source is because of the Search

API´s support for limiting a search by the use of geographic coordinates. This

makes it possible to generate queries that will only look for “things” within a

selected area of interest. In order to generate such a query, two geographical

coordinates, each described with latitude and longitude, are needed as input. By

requesting the south west and north east coordinates from a map feature, an area

of interest could be defined to be within the rectangle view of a map. Figure 3

illustrates how an area of interest can be selected in a map feature through the

use of Google Maps JavaScript API v3.

 Lars Berg Hustveit

 29

Figure 3: A map feature showing the city of Bergen

As an example, the geographical coordinates from Figure 3 is as follows:

 SOUTH WEST (60.38216815444581, 5.2740525357666)

 NORTH EAST (60.4013357170463, 5.35945407080078)

These coordinates is used in the next example, which is a query asking for all

documents containing geospatial data within a square border defined by the two

geo locations:

1. http://api.sindice.com/v3/search?q=

2. (geo:lat [60.38216815444581 TO 60.4013357170463])

3. (White space) AND (White space)

4. (geo:long [5.2740525357666 TO 5.35945407080078])

5. &format=json

6. &page=1

Line two first requires the latitude value from the south west corner of the map,

and then the same from the north east corner. Line four requires the same, but

using the longitude values.

Since the infrastructure of Sindice is based on Lucene, the queries used in the

Sindice APIs can be considered as Lucene queries.

 Lars Berg Hustveit

 30

Finding appropriate technology

Task two: Identify and get familiar with technologies that would be good

choices for the development of the proof of concept artifact.

The SemanticGeoBrowser has been planned as a web application from the early

stages of this research project. It was therefore already decided that the front-

end part of the demonstrator should be developed in HTML 5 and CSS, in

combination with map features from Google Maps JavaScript API v35. While

these front-end technologies were easy to choose because of my experiences

from other projects, it was in the start not so obvious to me what back-end

technologies that were the best choose for requesting and handling data from

third party services. In order to identify what back-end technologies to use, three

technologies were considered.

The first technology considered was to write most of the code in PHP 5, a server-

side scripting language that is common to use when developing dynamic Web

pages. Even though I have much experience with this language and have earlier

used it in scripts that request and handle data from SPARQL endpoints, PHP was

not considered as the best choice for this project. The conclusion was made on

the fact that PHP is a server-side language, and I assumed this would trigger the

web browser to reload the web application a lot. Avoiding the one-page-at-a-

time style of browsing, triggered by reloading the web browser a lot, is one of the

requirements created for the demonstrator.

Even though the next technology considered is running on the server-side as

well, the programming language Java was also considered because of its ability to

run on different platforms without having to recompile the source code. The

code produced could in this way have been reused in an Android application on a

later date. The server-side framework, Play Framework 1.2, was also considered

because of its attempt on making Java web application development easier. This

solution was considered and tested for a week, but was for similar reasons as

PHP not selected as a solution. Using complex server-side solutions for a proof of

5 https://developers.google.com/maps/documentation/javascript/

 Lars Berg Hustveit

 31

concept application with mostly client-side tasks was at this stage considered as

unnecessary time consuming.

After reviewing possible solutions in PHP and Java, in combination with the map

solution from Google Maps JavaScript API v3, I learned that most of the

functionality could be done on the client-side, using the scripting language

JavaScript. Since JavaScript runs on the client-side it will allow tasks to be done

without triggering the browser to reload. JavaScript is also the perfect match for

integrating map functionality into the web application because Google Maps

JavaScript API v3 is based on the language.

Dojo Toolkit 1.5 was selected as the main framework to support the

development in JavaScript. There were several reasons that this framework was

selected. Firstly, the framework has features for sending and handling HTTP

requests cross-domain. Communicating with servers that comes from other

domains than the original host in JavaScript presents a high security risk. This is

because JavaScript execute code on the client-side, leaving the client vulnerable.

Web browsers have therefor implemented different security measures to secure

the use of JavaScript. Because the demonstrator need to communicate with the

API’s of Sindice, supporting functionality for cross-domain communication is

therefore necessary. Secondly, the framework has its own data store. Storing and

retrieving data fast on the client-side will be necessary when handling results

from the Sindice APIs. Thirdly, the framework has features for creating a user

interface. Since the demonstrator will need a user-friendly user interface,

features that could improve the user experience are considered as useful.

Fourthly, a web application provided by the consulting firm Computas

demonstrated some techniques on how to use the framework to send and handle

request from a SPARQL endpoint. The ability to study their source code gave me

a good idea on how the SemanticGeoBrowser could be constructed.

 Lars Berg Hustveit

 32

Evaluation

The first iteration was a long and educational process for me. Even though I was

confident about the research question and its relevancy to the Semantic Web

community, I had some concerns when it came to approaching and solving the

problem. Since I did not have a clear idea about what RDF datasets I was going to

base the proof of concept artifact upon, nor what technology I was going to use

to handle it with behind the scenes, I started out by researching these aspects. At

the same time I was also reading scientific literature on the topic. Using the idea

of the SemanticGeoBrowser as a vision, different pieces of relevant information

gradually were discovered and became apparent.

While the first task started out by gathering relevant RDF datasets that would be

interesting to browse in a Semantic Web browser, this approach suddenly

became irrelevant upon the discovery of the Sindice platform. When I saw what

kind of features and number of gathered RDF triples the lookup service could

provide, it became clear that the SemanticGeoBrowser should be based on this

platform. After reviewing geospatial things in the semantic web index I was

however disappointed over the lack of additional properties that would

characterize the individuals with facts. This lead to the decision of adding richer

data to the semantic web index in the next iteration. Even though the

downloaded RDF datasets became irrelevant to this project, the process of

finding them lead me to discover a suitable data source for supplementing with

the Sindice data.

The second task of finding suitable technology to include in the

SemanticGeoBrowser also started a bit of course by looking into Java technology.

But after reviewing a demonstrator constructed by Computas, it became

apparent that JavaScript technology was the best and fastest choice. Since I did

not have much experience with this scripting language, learning JavaScript by

studying their source code was extremely helpful. It also gave me the

 Lars Berg Hustveit

 33

opportunity to discover and learn techniques provided by the Dojo Toolkit

framework6.

In summary, this iteration got off to a bumpy start, but turned out to be a

successful one. Building more knowledge and discovering suitable technologies

were necessary for the project to move forward. Even though I am disappointed

over the data quality of the scraped data in Sindice, it does not matter as suitable

data can be added to the semantic web index later. The important thing is that it

seems that the technology discovered is significant to construct the proof of

concept artifact envisioned.

Second Iteration

In the second iteration, the focus is on finding richer data about geospatial things

that could be supplemented to the data source of Sindice. After reviewing Sindice

data in the first iteration, it became clear that just a few triples in each RDF

dataset were property facts about things. The rest were mostly data about other

data, for example metadata about the web page where the RDF data were

fetched from. Because there is only so much that can be done with a geospatial

thing without having interesting property facts, it became clear that the planned

web application would need more interesting data to work with. I therefor

started looking for data about things with more property facts.

Lifting legacy data from BT.no Sprek

In the search for geospatial data that would be interesting to browse in the

SemanticGeoBrowser, the web service BT.no Sprek7, was discovered. The service

enables their users to share information about foot hikes in the local county of

Hordaland, Norway. Data about foot hikes would be interesting to browse

because it would contain a lot of different property facts. Foot hikes are also

popular within the tourist domain and has the potential of providing some good

user scenarios with examples of how a semantic geo browser could be used. The

organization behind Sprek was therefore contacted and they agreed to provide

hike data for this project.

6 http://dojotoolkit.org/
7 http://tur.bt.no/

 Lars Berg Hustveit

 34

The data from Sprek were provided in form of an Extensible Markup Language

(XML)8 file, dumped from their MySQL database. XML is a markup language that

makes it easy to share structured data between information systems over the

Internet (Anon 2013g). It is a good format to receive legacy data in because it can

easily be converted with Extensible Stylesheet Language Transformations

(XSLT)9. XSLT is a language for transforming XML documents into any other type

of documents (Anon 2013h).

The legacy data from Sprek was lifted in a two-step process. The reason for this

was my participation in another research project, Semantic Sognefjord10, led by

Western Norway Research Institute (WNRI). The aim of the Semantic Sognefjord

project was to explore what benefits the local tourism industry could gain by

combining semantic- and other open technologies (Aaberge 2012b, p.3). Since

both projects were in need of the same type of data, it was decided that the lifting

process could benefit both projects. The Semantic Sognefjord project was

however experimenting with a new modeling methodology to structure things in

RDF with. The first step therefore resulted in an alternative data structure that

was more complex than needed for this master thesis project. While the first step

captured all the relevant data needed from the XML source, the second step

restructured Sprek data from the RDF triples produced in the first step. The

lifting process, in both steps, is described below.

The first step in the lifting process consisted of lifting XML data, by writing XSLT

code. This code constitutes a XSLT style sheet and describes a set of template

rules on how the XML data is going to be used to construct a result document. In

order to generate several output documents, it was necessary to write the code

using XSLT 2.0. The selection of a XSLT processor fell on Saxon11 (Home Edition)

Version 9.3 because of its support of XSLT 2.0. The outcome documents

generated were in form of RDF/TURTLE. The RDF triples described in these

8 http://www.w3.org/TR/REC-xml/
9 http://www.w3.org/standards/xml/transformation
10 http://www.vestforsk.no/rapport/semantisk-sognefjord.no
11 http://saxon.sourceforge.net/

 Lars Berg Hustveit

 35

documents were added to a data store with a SPARQL endpoint. This enables

anyone to access the newly lifted data through the use of SPARQL queries.

Lifting legacy data into RDF statements requires the use of vocabulary terms.

This is decided by the RDF syntax. The syntax decides what are to be accepted as

well formed sentences. In RDF, the syntax only accept sentences in which are

shaped by a subject, predicate and object. The purpose of this is to ensure that

RDF triples can carry meaning. The semantics is a theory on how meaning of

words is tied to external objects and activities. In order to get a formal meaning

into every RDF triple, vocabulary terms is used as predicate to describe the

relationship between the subject and object. Vocabularies are collections of

terms, identified by HTTP URIs, which can be used to represent information

about a certain domain (Heath & Bizer 2011, chap.2.4.1). Since the meaning of a

sentence is determined by the meaning of the words composing it, it is important

to be thoughtful in the process of select terms in the construction of new RDF

triples. Sentences that are not well formed are meaningless.

A vocabulary term is however not meaningful in itself. The formal meaning of

vocabulary terms is defined by ontologies. An ontology is an explicit specification

of a conceptualization (Gruber 1993). A conceptualization is an abstract,

simplified view of the world (Gruber 1993). Its purpose is to represent objects,

concepts, and other entities that are presumed to exist in some area of interest

and the relationships that hold them (Genesereth & Nilsson 1987) cited by

(Gruber 1993). Every knowledge base is committed to some conceptualization,

explicitly or implicitly (Gruber 1993).

In the process of creating RDF triples, reuse of suitable terms from well-known

vocabularies are advised. In this way, existing terms do not have to be

reinvented and it rises the probability that data can be consumed by applications

that may be tuned to well-known vocabularies, without requiring further pre-

processing of the data or modification of the application (Heath & Bizer 2011,

chap.4.4.4). Similar terms from different vocabularies may however have

 Lars Berg Hustveit

 36

different meanings. It is therefore important to select terms intended for the

domain of operation.

If there is no suitable term to use within the domain of operation, one must

create it in a new ontology. Since I could not find any ontologies created within

the domain of hiking, I decided to create one. An ontology for an object language

is in addition of a non-logical vocabulary supplemented by a set of extensional

and intensional definitions, and axioms (Aaberge 2011).

An extensional definition of a predicate is essentially a list of the names (or pairs

of names) of the individuals that constitute its extension. When the names are

denoting identifiable individuals of the domain, the extension of the predicate

representing its meaning is given (Aaberge 2012a). All predicates thus possess

extensional definitions.

An intensional definition states the properties an individual must possess for the

predicate to apply (Aaberge 2012a). While it is possible to describe the

properties of for example a hotel, it is not possible to describe what a color is or

ten kilos through intensional definitions.

An axiom is an implicit definition that relates the primary terms of the

vocabulary (Aaberge 2011). When axioms are defined through logical statements

they are assumed to be true. The truth presented can thereby be used as a fact to

support other (theory and domain dependent) truths. This makes axioms the

foundational ingredient for reasoning to take place (Anon 2013b). A common

example on axioms is to describe family relations. For example a father’s brother

is an uncle.

In the process of creating a new ontology, I decided to accomplish the following

tasks, which are described as an ideal method for ontology construction by

Aaberge (2011):

1. delimit the domain of discourse

 Lars Berg Hustveit

 37

2. identify a primary vocabulary

3. establish the axioms

4. introduce secondary terms by intensional definitions

5. introduce further secondary terms by extensional definitions

The second step in the lifting process consisted of lifting data for this project. In

order to change the structure of the lifted hike data from step one and at the

same time supplement it with geospatial data from the Norwegian Mapping

Authority, I decided to run the lifting process through a series of five scripts

based on the scripting languages PHP and JavaScript. This process is described in

the next subchapter.

Supplementing geospatial data from the Norwegian Mapping Authority

Even though the Sprek data source provided hike paths and geo locations, which

can easily be illustrated on a map, this type of property facts contains a greater

potential when it comes to finding more characterizations of foot hikes. Since the

hike paths and geo locations are located within the borders of Norway, the

existing hike data can be supplemented with data from Statens Kartverk. This

will extend the amount of property facts about each foot hike, which will result

in more detailed RDF data to use in the SemanticGeoBrowser.

The Norwegian Mapping Authority provides four types of services through their

Web Processing Service (WPS). These are named “elevation”, “elevation Chart”,

“elevation JSON” and “elevation XML”. The services are based on open standards

supported by the international voluntary consensus standards organization

Open Geospatial Consortium (OGC) (Hirsch 2011).

The way in which these services work is by sending a HTTP request to the

Mapping Authority’s WPS server. The HTTP request must contain the path to the

WPS server, the selected service, and required parameters.

 Lars Berg Hustveit

 38

The “elevation” service requires a single geographical coordinate as input and

returns XML data about the height, terrain information and place name for the

geo point (Hirsch 2011).

The “elevation Chart” service requires a URL to the path of a GPX file as input.

GPX stands for “GPS eXchange Format” and must contain the geographical path

of a single hike. A successful request to this service will result in a link to a

generated PNG picture. The picture should contain the terrain profile of the hike

as a chart (Hirsch 2011).

The “elevation JSON” and “elevation XML” services requires the same input as

the “elevation Chart” service. The difference between these three services is the

output. Whereas the “elevation Chart” service illustrate the data as a profile in a

picture, the “elevation JSON” and “elevation XML” services returns the same data

as text, formatted in JSON and XML (Hirsch 2011).

After exploring the possibilities of the Norwegian Mapping Authority’s WPS

services, these two tasks were planned:

 Task one: Generate extra property facts about the hikes.

 Task two: Generate a visual profile about each hike.

In order to conduct these two tasks, a series of scripts were made to request and

fetch data, thereafter processing it into usable RDF triples. The process is

explained below.

The outcome of task one should be to have more property facts about the

existing hikes then we got from tur.bt.no. These facts should say something more

about a path than the current length and approximately duration property does.

Here are some questions that will provide informative property facts if they are

based on data from the Mapping Authority:

 What is the hike’s lowest and highest elevation point above sea level?

 Lars Berg Hustveit

 39

 What is the difference between the hike’s lowest and highest elevation

point?

 From the start to the end of a hike, how many meters of the path is uphill,

and how many are downhill?

The scripts constructed for task one were written with these questions in mind.

Here is a presentation of the five scripts that were made to solve both tasks:

Script 1 (Written in JavaScript and PHP)

The purpose of the first script written is to download data about all the geo

points in a hike path. These data is going to be used in the script 2, which is going

to find the answers to the questions that are raised in task one.

The reason for not requesting data directly from the external server in script 2 is

because the WPS services limit the number of requests accepted by each Internet

Protocol address (IP address) in a time period. This made it difficult to use the

WPS services directly from the artifact since the number of requests is likely to

extend the limit.

Here is a short presentation over what happens when script 1 is executed. Script

1 starts by gathering a list over all hike paths in the SPARQL endpoint. This is

done by querying the SPARQL endpoint containing the hike data from step one in

the lifting process.

Next, script 1 decodes the encoded hike paths. The hike paths were originally

encoded with the “Encoded Polyline Algorithm Format” in the tur.bt.no dataset.

The format is convenient to use because it encodes a list of geo points into a

single string, which is easy to handle and decode again. The encoding scheme is

also a part of the Google Maps API (Anon 2012a), which makes it the obvious

choice when displaying paths on Google Maps. Based on this, the format was

therefore kept in the lifting process of the hike data. The WPS services of the

Norwegian Mapping Authority do however not support this encoding scheme.

 Lars Berg Hustveit

 40

Their WPS “elevation” service can only accept one single geo point in a request,

so the hike paths must be decoded and feed to the service point by point.

The next task is to fetch and save data about each geo point from the NMA’s

“elevation” service. Since this script has to be executed several times, this

process starts by checking if the current geo point in the list is downloaded

before. If it is not downloaded, a HTTP request with the geo point’s latitude and

longitude will be generated and sent to the “elevation” service.

If the reply from the service is successful, the XML data will be saved to the hard

drive of the local server in which the request was sent from. Because JavaScript

does not have the ability to save files from where it is running, saving the data is

done through PHP. This can be done because script 1 is constructed to execute in

a local server environment. A work around solution was implemented to let the

JavaScript code save XML files using a proxy server solution constructed in PHP.

After having executed script 1 until all the geospatial data about each point in the

hike paths were downloaded from the NMA server, the output folder contained

XML data about 3468 geo points.

Script 2

The second script is going to use the XML data downloaded in the first script to

find the answers to the questions that are raised in task one.

Script 2 starts in the same way as script 1. It fetches data about all hikes from the

data store. This is done in JavaScript and SPARQL. Script 2 then starts the

process of generating new RDF triples about each hike. This is done in PHP. The

process starts by decoding the selected hike path. A ported version of the

“Encoded Polyline Algorithm Format” decoder from JavaScript to PHP was used

(Chng 2008). If XML data about all the geo points in a hike path is found in the

output folder from script 1, script 2 will have all the required data to generate

the extra property facts.

 Lars Berg Hustveit

 41

When all the new property facts are generated for each hike, the RDF triples are

created in the RDF/TURTLE format and stored locally in an output folder. Listing

1 is an example of an output .ttl file.

@prefix sf_ont: <http://data.sognefjord.vestforsk.no/resource/ontology#> .

@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .

@prefix ucum: <http://purl.oclc.org/NET/muo/ucum/> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix owl-time: <http://www.w3.org/2001/sw/BestPractices/OEP/Time-Ontology#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

sf_ont:hike104

 a owl:Individual ;

 a geo:SpatialThing ;

 owl-time:duration [

 owl-time:minute """480""" ;

] ;

 sf_ont:Length [

 sf_ont:Kilometer """33.4""" ;

] ;

 sf_ont:minimumElevation [

 ucum:meter """6.69576822445""" ;

] ;

 sf_ont:maximumElevation [

 ucum:meter """605.0""" ;

] ;

 sf_ont:differenceInElevation [

 ucum:meter """598.30423177555""" ;

] ;

 sf_ont:heightIncrease [

 ucum:meter """2629.548002548""" ;

] ;

 sf_ont:heightDecrease [

 ucum:meter """2627.2345240311""" ;

] ;

 sf_ont:StartOf [

 geo:lat """60.39233""" ;

 geo:long """5.25482""" ;

 geo:altitude """26.8681751755""" ;

] ;

 Lars Berg Hustveit

 42

 sf_ont:EndOf [

 geo:lat """60.39201""" ;

 geo:long """5.3307""" ;

 geo:altitude """29.1816536925""" ;

] ;

 sf_ont:Path [

 sf_ont:GoogleEncodedPath """…""" ;

] ;

 sf_ont:Profile

 <http://sognefjord.vestforsk.no/resource/route-graph/hike104.png> ;

 foaf:isPrimaryTopicOf

 <http://sognefjord.vestforsk.no/page/hike/104> ;

 owl:sameAs

 <http://tur.bt.no/tur/104> .

Listing 1: Property facts that are generated for hike

After the RDF/TURTLE files are generated, they are uploaded to the SPARQL

endpoint so they are available for querying.

Script 3

The purpose of the third script is to prepare the download of terrain profiles

about every hike path. A terrain profile is a picture that illustrates the hike path

in a chart, which provides a visual overview over the hike’s variation of

elevation, terrain and place names. Figure 4 is an example of a terrain profile

that have been generated by the “elevation Chart” service and fetched by the

fourth script. The example can be found on the web page about this hike:

http://sognefjord.vestforsk.no/page/hike/104

http://sognefjord.vestforsk.no/page/hike/104

 Lars Berg Hustveit

 43

Figure 4: A generated terrain profile of hike

In order to fetch the terrain profiles, the third script will have to generate a GPX

file of each hike path. This is because the process that calculates charts in the

“elevation Chart” service requires the URL of a GPX file as an input parameter

(Hirsch 2011). Each GPX file will contain all the geo points of a selected hike

path. They will be stored in a local output folder during creation and thereafter

uploaded manually to a server where they will be accessible through URLs. The

process in the third script therefore consists of requesting all the hike paths from

a SPARQL endpoint, decode the paths into a list of geo points and create a GPX

file for each of them.

Script 4

The purpose of the fourth script is to download a terrain profile about every hike

path, using the GPX files generated in the third script. The terrain profiles will

firstly be downloaded to a local output folder and thereafter uploaded manually

to a server where they will be accessible through URLs.

 Lars Berg Hustveit

 44

The reason for not designing the artifact to fetch terrain profiles directly from

the “elevation Chart” service, are because of the limitations, speed and capacity

factors of NMA’s WPS-services. Interacting with the “elevation Chart” service in

the fourth script revealed issues with all these factors. The service uses more

than 30 seconds to calculate a single chart, which is a long time for a user to wait

while interacting with a web application. The “elevation Chart” service also had a

30 second limitation on how long a calculating process could last before

canceling the request. As a result of this, every request sent to the service would

be canceled after 30 seconds. The solution was to contact the NMA which was

kind enough to raise the timeout limitation. Script 4 managed to download 105

terrain profiles generated by the “elevation Chart” service.

Script 5

The purpose of the fifth script written is to generate the RDF triples that will link

each terrain profile to the correct URI of a hike. The RDF triples will firstly be

stored locally in a RDF/TURTLE file and thereafter manually loaded into the data

store.

In order to generate the RDF triples, the script goes through the folder with the

terrain profiles and reads the name of each picture file. The script thereby has all

the names of hikes with available terrain profile and uses this to create the

correct URI of each hike. The RDF triples in which the hike data are modeled

require the script to get hold of a blank node from the data store. This blank

node is going to be used as a subject in the RDF triple. The script therefore uses

the hike URIs to query the SPARQL endpoint for the correct blank node of each

hike. When the script has all the blank nodes it generates the new RDF triples.

These RDF triples were uploaded manually through the data store

administration panel.

As a result of the lifting process, we now have newly lifted RDF data that were

uploaded to a data store and made accessible through an SPARQL endpoint. The

 Lars Berg Hustveit

 45

data store in use is the Virtuoso Open-Source Edition12 by OpenLink Software.

The SPARQL endpoint is accessible here:

 http://sognefjord.vestforsk.no:8890/sparql

Add RDF data to Sindice

In order to add data to the semantic web index of Sindice, the data in question

must be detected by the crawlers of the web service. Unless the crawlers have

detected the RDF triples of interest by themselves, the service will have to be

notified on where to find it. Sindice offers a Ping Submission API13 for this

purpose, which can be used to automate the submission process of RDF data by a

system. They also offers a submit form14 on their web site where datasets can be

added manually. RDF data is not submitted to the web service directly, but

accepts URLs to semantically enabled pages containing triple statements in form

of RDF, RDFa or Microformats.

Since Sindice is designed to fetch data from web pages with semantic content, a

web document layout was constructed to present the lifted hike facts from the

SPARQL endpoint. The layout was constructed through the use of HTML, CSS,

JavaScript, PHP, Dojo Toolkit, SPARQL and Google Maps JavaScript API v3. The

web page layout was then marked up with RDFa. The hikes were in this way

made accessible through both the Web of documents and the Web of data. Figure

5 illustrates the web page of a selected hike. Here are the URLs to a few example

of the result:

 http://sognefjord.vestforsk.no/page/hike/101

 http://sognefjord.vestforsk.no/page/hike/102

 http://sognefjord.vestforsk.no/page/hike/104

 http://sognefjord.vestforsk.no/page/hike/105

 http://sognefjord.vestforsk.no/page/hike/109

12 http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/
13 http://sindice.com/developers/pingApi
14 http://sindice.com/main/submit

http://sognefjord.vestforsk.no:8890/sparql
http://sognefjord.vestforsk.no/page/hike/101
http://sognefjord.vestforsk.no/page/hike/102
http://sognefjord.vestforsk.no/page/hike/104
http://sognefjord.vestforsk.no/page/hike/105
http://sognefjord.vestforsk.no/page/hike/109

 Lars Berg Hustveit

 46

In order to submit the RDFa data to the semantic web index, the URLs of the

example pages were added through Sindice’s submit form. Sindice then crawled

and analyzed the submitted web pages for RDF data before indexing the

discovered statements. The result of this submission is illustrated in Figure 6 and

can be found here:

 http://sindice.com/search/page?url=http%3A%2F%2Fsognefjord.vestfo

rsk.no%2Fpage%2Fhike%2F101

 http://sindice.com/search/page?url=http%3A%2F%2Fsognefjord.vestfo

rsk.no%2Fpage%2Fhike%2F102

 http://sindice.com/search/page?url=http%3A%2F%2Fsognefjord.vestfo

rsk.no%2Fpage%2Fhike%2F104

 http://sindice.com/search/page?url=http%3A%2F%2Fsognefjord.vestfo

rsk.no%2Fpage%2Fhike%2F105

 http://sindice.com/search/page?url=http%3A%2F%2Fsognefjord.vestfo

rsk.no%2Fpage%2Fhike%2F109

http://sindice.com/search/page?url=http%3A%2F%2Fsognefjord.vestforsk.no%2Fpage%2Fhike%2F101
http://sindice.com/search/page?url=http%3A%2F%2Fsognefjord.vestforsk.no%2Fpage%2Fhike%2F101
http://sindice.com/search/page?url=http%3A%2F%2Fsognefjord.vestforsk.no%2Fpage%2Fhike%2F102
http://sindice.com/search/page?url=http%3A%2F%2Fsognefjord.vestforsk.no%2Fpage%2Fhike%2F102
http://sindice.com/search/page?url=http%3A%2F%2Fsognefjord.vestforsk.no%2Fpage%2Fhike%2F104
http://sindice.com/search/page?url=http%3A%2F%2Fsognefjord.vestforsk.no%2Fpage%2Fhike%2F104
http://sindice.com/search/page?url=http%3A%2F%2Fsognefjord.vestforsk.no%2Fpage%2Fhike%2F105
http://sindice.com/search/page?url=http%3A%2F%2Fsognefjord.vestforsk.no%2Fpage%2Fhike%2F105
http://sindice.com/search/page?url=http%3A%2F%2Fsognefjord.vestforsk.no%2Fpage%2Fhike%2F109
http://sindice.com/search/page?url=http%3A%2F%2Fsognefjord.vestforsk.no%2Fpage%2Fhike%2F109

 Lars Berg Hustveit

 47

Figure 5: A web page presenting information about a hike

 Lars Berg Hustveit

 48

Figure 6: How RDF triples from a web page looks like after being submitted to the Sindice platform

 Lars Berg Hustveit

 49

Evaluation

The second iteration, was like the first iteration, also a long and educational

process.

The first task of finding a geospatial dataset containing relevant property facts

became a much more time consuming process than expected. The Sprek data

source did not contain all the property facts itself, but had potential of becoming

the dataset that I was looking for. The process of lifting the legacy data for two

different projects and use it to pull more data out from other data sources was an

interesting experience that demonstrates much of the potential that lies within a

Web of data. Combining data from different data sources can become more

useful and valuable.

Regarding the lifting process itself, lifting the XML file from Sprek, using XSLT,

was conducted as expected. Requesting data from the Norwegian Mapping

Authority were more challenging as of the service limitations.

In summary, the second iteration was time consuming and required a lot of

research in theory and practice. The outcome of the process resulted in a great

learning experience and a new data source with geospatial things, rich on

property facts, which could be indexed by Sindice. The second iteration therefor

provided what is needed to move forward with this project.

Third Iteration

After two long iterations with preparations, it was finally time to focus on

constructing the SemanticGeoBrowser. Starting on the construction phase, the

tasks set for this iteration is based on the system requirements, which is a result

of the previous iterations.

Designing an user interface that operates on the level of things

System requirement #1: The SemanticGeoBrowser should operate at the

level of “things” (instead of at the level of documents) and treat them as

first-class citizens in a user-friendly interface.

 Lars Berg Hustveit

 50

The first draft constructed of the user interface is based on the web page layout

used in the Semantic Sognefjord project, but also on the web page layout that

was used to add hikes to the Sindice platform. This layout type was designed to

make the user focus on the things presented on the page. The decision to

implement this layout was firstly made because it was a quick solution to

employ, but I also wanted to see if the layout could work when operating on the

level of things. I was also eager to start developing on the Sindice functionality so

I decided to first test out this quick layout solution and rather change it in a later

iteration if needed. An example of the first layout used is illustrated in Figure 7.

Figure 7: The first layout of the SemanticGeoBrowser

The layout has a common web page setup and is divided into two sections. The

first section displays a map pane. The second section is divided in tabs. The first

tab, named “Search for thing”, displays the control pane. This is where the search

criteria are set before conducting a search. Other tabs display search results. A

new tab pops up when a new search is executed and lists the things discovered

for user review.

 Lars Berg Hustveit

 51

Selecting an area of interest

System requirement #2: The SemanticGeoBrowser should contain an

interactive map of the planet Earth, which enables the user to

a. explore the Web of data by selecting an area of interest.

b. interact with the “things” discovered on the Web of data.

The map feature is essential to the SemanticGeoBrowser. In order to make the

SemanticGeoBrowser operate on the level of things, it is important to place the

map pane in the center of the layout. This is because most of the user’s focus and

interaction is expected to be directed towards the map and the things illustrated

on it. The intention is also that this will lead the artifact to become more user-

friendly. The map pane is illustrated in Figure 7. The map enables the artifact to

work as a lens over the semantic web by magnifying geospatial things that is

described in a selected area. Although the map feature is great for visualizing

geospatial things, it is also useful in the process of conducting a search. The idea

is to implement the map usage in both the process of conducting the search and

the process of exploring the search result.

Knowledge about thing characterizations

System requirement #3: The SemanticGeoBrowser should be knowledge-

based in order to

a. help the user search for relevant things.

b. help the user recognize things that are relevant to the domain of

operation.

c. present facts about relevant things in a user-friendly way.

The SemanticGeoBrowser should contain knowledge about different types of

things within the domain it is operating. The reason for this is to help the user in

the process of searching and exploring relevant things described in RDF data.

Searching things in a central area can be like looking for a needle in a haystack.

Especially if the user is uncertain on what characterizes the things of interest. If

the user conducts an open search for all geospatial things in an area of interest

 Lars Berg Hustveit

 52

that happens to be a popular area in the world, the result can be hundreds or

thousands of different things. Figure 8 illustrates how a search in Sindice, for all

geospatial things, will look like if it is not limited when exploring the area of

Bergen.

Figure 8: A search in Sindice for all geospatial things in a popular area in the city of Bergen

The task of examining just a few geospatial things for relevant facts in RDF data

would be time-consuming and tiresome for a human user. Since machine

artifacts can do an excellent job of reading RDF data, they have the potential of

becoming important tools for RDF interpretation. In order for an artifact to

become useful in this, it will have to know what to do with the RDF data. The

SemanticGeoBrowser will therefore have to contain knowledge about what

vocabulary terms is used in RDF to describe relevant things. The artifact’s

knowledge can then be applied to look for, recognize and present relevant things

to the user in different ways.

In order to meet the system requirements described in this section, the artifact

must gain the knowledge from someone. System requirement #3 (a) and (b) can

in my view be solved in two different ways. The knowledge can either be added

by the user, which requires the user to have advanced knowledge about the

domain, or it can be pre-implemented by the creator of the artifact. System

requirement #3 (c) can in my view only be solved by a system developer. This is

because it would take a system developer to program the artifact to perform

different tasks that would be triggered when the system recognize the

 Lars Berg Hustveit

 53

knowledge it is being feed. This includes programming it to present facts about

relevant things in a user-friendly way. Since the SemanticGeoBrowser aims to be

user-friendly, a set of vocabulary terms is added as knowledge by the developer.

In order to fulfill system requirement #3 (a), to “help the user search for relevant

things”, a pre-defined list over relevant things will be implemented in the control

pane of the artifact. These relevant things should reflect the type of things the

artifact knows about. The idea is that this knowledge should be used as a

blueprint when searching for things. This can be done by implementing the

characterization of a relevant thing in the search query as a RDF triple pattern.

This should result in the exclusion of things with no matching vocabulary terms

from the search result. The user will in this way end up with things that are in

some ways relevant to the thing blueprint. Figure 9 shows the concept of a list

where the user is presented with relevant things to search for within the domain

of operation.

Figure 9: The concept of a list with relevant things to search for within the domain of operation

In order to fulfill system requirement #3 (b), to “help the user recognize things

that are relevant to the domain of operation”, the artifact should calculate the

percentage of how many matching vocabulary terms each thing in the search

result have compared to the blueprint of the type of thing that was used to

recognize the things of interest. The more percentage a thing has the more

matching RDF triples the thing will have. For example, if a type of thing contains

four different RDF triple patterns and a thing are described with two of those

RDF triples, the relevance will be calculated to a 50% match. Figure 10 shows the

 Lars Berg Hustveit

 54

concept of a list that display the percentage of matching vocabulary terms will

display to determine the thing relevance to the user.

Figure 10: The concept of a list where the percentage of matching vocabulary terms will display to
determine the thing relevance to the user

System requirement #3 (c), to “present facts about relevant things in a user-

friendly way”, was focused upon in the fourth iteration.

Constructing a search query for Sindice

System requirement #4: The SemanticGeoBrowser should make use of a

semantic web index look-up service that provide

a. access to a large amount of RDF datasets from the Web of data.

b. advanced geospatial query capabilities to be made within a selected

area of interest.

As discovered in iteration one, the semantic web index of Sindice seems like the

perfect match for the SemanticGeoBrowser. Their service will provide the

artifact with advanced query capabilities over a large amount of geospatial data

from the semantic web. In order for the artifact to use this service, it will have to

be able to generate search queries using their query language. Here is an

example over how a search query for Sindice is constructed in the artifact.

In the scenario of a user conducting a search, the focus starts at the map pane.

The user navigates the map to an area of interest. The focus continues to the

 Lars Berg Hustveit

 55

control pane. The user, which is operating within the domain of tourism, then

selects foot hike as the thing of interest. Since the artifact only support one data

source at this point, the user does not have to select one. The user initiates a

search by clicking on the search button in the control pane.

The artifact starts the search process by constructing a search query for the data

source, which in this case is the Sindice Search API. The search query is divided

into three parts. All parts are merged together in an URL and sent as an HTTP

request.

The first part contains the resource path, which is the address to the server in

which the HTTP request is sent to. The other parts of the request contain the

query parameters, specifying the search requirements.

The second part is where the area of interest is defined, which equals the

rectangular shape of the map pane. The query parameters are defined by the

current position of the map like described in the first iteration. Since this part is

included in every query sent to the Sindice Search API, all searches constructed

by the SemanticGeoBrowser are dependent on data from Literal Triples. This is

because the location of things is described with this type of RDF triples.

The third part of the search query is where the thing of interest is defined. A

search query constructed for Sindice Search API is designed to request one

selected type of thing. This part is however not included in the query if the use

have selected to search for “Everything”. By using the known URIs in which the

selected type of thing are described, this part of the query is requesting

documents with matching RDF triple patterns. This is archived by using the

Ntriple Query notation in the Sindice Query language.

When the search query is constructed, the artifact continues by sending it as an

HTTP request to Sindice. Listing 2 illustrate an example of a constructed search

query, where “Hike” is selected as the type of thing of interest. The example is

URL decoded in order to make it more human readable.

 Lars Berg Hustveit

 56

http://api.sindice.com/v3/search?q=

(geo:lat [60.38209922415584 TO 60.39855351612633]) AND

(geo:long [5.278172408813475 TO 5.3644322507324205])&nq=(

(* <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.w3.org/2002/07/owl#Individual>) AND

(* <http://data.sognefjord.vestforsk.no/resource/ontology#Path> *)

)&field=predicate&format=json&page=1

Listing 2: A search query constructed for the Sindice Search API

Requesting data from Sindice

System requirement #5: The SemanticGeoBrowser should avoid solutions

that would trigger the web browser to reload a lot.

Requesting data from third party web services can be tricky. Especially when the

request must be sent from code running on the client-side. The term “client-side”

is used to describe the local computer used by an individual user. The

SemanticGeoBrowser aims to be a web application that runs from a web browser

on the client-side. In this way some of the processing load will be unloaded from

the web server hosting the web application and over on the client-side of the

user. Figure 11 illustrates the difference between the server-side and client-side.

 Lars Berg Hustveit

 57

Figure 11: Illustration of the artifact’s cross-domain communications

In order to prevent malicious web sites from requesting personalized data and

perform other security threats, web browsers have implemented security

features to limit the risk of browsing web sites with hidden agendas. The web

browsers can however not completely block features like HTTP requests because

it enables a lot of the dynamic behaviors seen in a major part of web sites and

web applications today. Instead, web browsers have implemented security

features like the “same-origin policy“, which is made to prevent unrelated web

sites to access each other’s user sessions (Anon 2012b). The same-origin policy

contains a mechanism for “XMLHttpRequest”. The XMLHttpRequest specification

defines a JavaScript API for client-side scripts to make HTTP requests to the

same server in which the web page originated (Anon 2009). This will enable

HTTP requests to be sent to a server that is under the website owner’s control.

The mechanism was originally envisioned to transfer XML data between a client

and a server, but is today also used to transfer other data formats, like JSON, and

“serves as the foundation for much of the web 2.0 behavior of rapid UI updates not

dependent on full-page transitions” (Zalewski 2009).

 Lars Berg Hustveit

 58

In order to make the artifact avoid the behavior of a general web document,

which would trigger the web browser to reload every time new data is

requested, some security features in the web browser has to be broken. There

are several ways to work around a web browser’s security features, allowing the

SemanticGeoBrowser to perform client-side cross-domain communications. The

solution chosen for requesting data from the Sindice Search API is a feature

provided by the Dojo Toolkit framework.

The framework has a module named “dojo.io.script” which provides access to

JSONP resources. JSON with Padding (JSONP) was first introduced by Bob

Ippolito in December 2005 (Ippolito 2005) and is a method for conducting cross-

domain data fetching.

Listing 3 shows how the dojo.io.script module is used in order to request data

from the Sindice Search API. The module requires a Uniform Resource Locator

(URL), which in addition to the resource path must also contain the query

parameters like described in the first iteration. According to Machi (2012) the

server response is a “JSON message wrapped in a callback function”. In the

example shown in Listing 3, the callback function is handled by a custom

function if the request is conducted successfully.

dojo.io.script.get({

 callbackParamName: "callback",

 url: url,

 handleAs: "json",

 load: function(sindice_reply){

 //...

 }

});

Listing 3: Dojo´s dojo.io.script module enables cross-domain communications between client and

server

Because of this module, the SemanticGeoBrowser will be able to send the query

constructed in the previous sub chapter.

 Lars Berg Hustveit

 59

Fetching data about each thing

System requirement #6: The SemanticGeoBrowser should be able to

assemble and handle RDF data seamlessly behind the scenes.

After a search query has been sent to the Sindice Search API, the service will

process the request and send a reply in return. If the query was processed

successfully, the reply will contain an object with a lot of parameters. This object

is described as a “result page” by the platform and contains metadata about the

search result. An example of a result page is illustrated in Listing 4.

{

"totalResults":7879186,

"author":"Sindice.com",

"title":"Sindice search: hotel",

"itemsPerPage":10,

"startIndex":0,

"updated":"2013/02/01/ 19:33:18 +0000",

"search":"http://www.sindice.com/opensearch.xml",

"base":"http://api.sindice.com/v3/search?q=hotel&format=json",

"link":"http://api.sindice.com/v3/search?q=hotel&format=json&page=1",

"alternate":"http://sindice.com/search?q=hotel&page=1",

"first":"http://api.sindice.com/v3/search?q=hotel&format=json&page=1",

"last":"http://api.sindice.com/v3/search?q=hotel&format=json&page=787918",

"previous":"http://api.sindice.com/v3/search?q=hotel&format=json&page=1",

"self":"http://api.sindice.com/v3/search?q=hotel&format=json&page=1",

"next":"http://api.sindice.com/v3/search?q=hotel&format=json&page=2",

"cache_batch":"http://api.sindice.com/v3/cache?field=explicit_cont....Hotel-Services",

"entries":[

 {

 "link":"http://www.suburbanhotels.com/es/hotel-woodstock-georgia-

GA558",

 "cache":"http://api.sindice.com/v3/cache?field=explicit_content

&output=json....georgia-GA558",

 "updated":"2011/09/25",

 "formats":["MICRODATA","RDFA"],

 "title":[{

 "type":"literal",

 "value":"\"choicehotels.com/hotel/GA558\""

 }],

 "rank":1,

 "explicit_content_size":"16",

 "explicit_content_length":"2160"

 },

 {

 "link":"http://www.suburbanhotels.com/fr/hotel-woodstock-georgia-

 Lars Berg Hustveit

 60

GA558",

 "cache":"http://api.sindice.com/v3/cache?field=explicit_content

&output=json....georgia-GA558",

 "updated":"2011/09/25",

 "formats":["MICRODATA","RDFA"],

 "title":[{

 "type":"literal",

 "value":"\"choicehotels.com/hotel/GA558\""

 }],

 "rank":2,

 "explicit_content_size":"16",

 "explicit_content_length":"2174"

 },

],

"query":{

 "startIndex":0,

 "role":"request",

 "searchTerms":"hotel",

 "responseTime":1721

}

}

Listing 4: Example figure of successful reply from Sindice Search API

As discovered in iteration one, the search result from the Sindice Search API is

divided into several result pages. Each result page contains metadata about

maximum ten documents. These data source documents contain RDF triples

about geospatial things that match the search query. The service has limited the

number of results by only allowing access to the first 100 result pages.

In order for the SemanticGeoBrowser to fetch data about each thing, it first has

to fetch a complete list over all the data source documents in the result pages.

Each result page contains metadata about the search itself and the other result

pages. The artifact uses this metadata to navigate through all the result pages.

The metadata about the data source documents can be seen in the parameter

“entries”, at page 59, in Listing 4. The most important information about each

document is the URL stored in the parameter “link”.

When the web application has fetched all the URL’s made available from the

Search API, the artifact uses each of them in a HTTP request to the Sindice Cache

 Lars Berg Hustveit

 61

API15. This API provides read-only access to the Sindice Data Store (Anon

2013d). When providing the API with a URL of a data source document in which

the Sindice platform has indexed, the artifact get access to that document’s latest

data, which is cached by the Sindice crawlers. Here is an example on a query to

the Cache API:

http://api.sindice.com/v3/cache?pretty=true&url=http%3A%2F%2Fsognefjord.

vestforsk.no%2Fpage%2Fhike%2F101&output=json

Listing 5 illustrates the Cache API’s JSON reply from the example query.

15 http://sindice.com/developers/cacheapi

 Lars Berg Hustveit

 62

{"http://sognefjord.vestforsk.no/page/hike/101": {

 "explicit_content": [

 "<http://sognefjord.vestforsk.no/page/hike/101>

<http://purl.org/dc/terms/title>

\"Mellingen-Rimmaskaret-Veten\" .\n",

 "<http://sognefjord.vestforsk.no/page/hike/101>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.w3.org/2002/07/owl#Individual> .\n",

 "<http://sognefjord.vestforsk.no/page/hike/101>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing> .\n",

 "<http://sognefjord.vestforsk.no/page/hike/101>

<http://www.w3.org/2001/sw/BestPractices/OEP/Time-Ontology#duration>

_:node16tto9idqx41007 .\n",

 "_:node16tto9idqx41007

<http://www.w3.org/2001/sw/BestPractices/OEP/Time-Ontology#minute>

\"60\" .\n",

 "<http://sognefjord.vestforsk.no/page/hike/101>

<http://data.sognefjord.vestforsk.no/resource/ontology#Length>

_:node16tto9idqx41008 .\n",

 "_:node16tto9idqx41008

<http://data.sognefjord.vestforsk.no/resource/ontology#Kilometer>

\"2.5\" .\n",

 "<http://sognefjord.vestforsk.no/page/hike/101>

<http://data.sognefjord.vestforsk.no/resource/ontology#Profile>

<http://sognefjord.vestforsk.no/resource/route-graph/hike101.png> .\n",

 "<http://sognefjord.vestforsk.no/page/hike/101>

<http://data.sognefjord.vestforsk.no/resource/ontology#minimumElevation>

_:node16tto9idqx41009 .\n",

 "_:node16tto9idqx41009

<http://purl.oclc.org/NET/muo/ucum/meter>

\"94.7445042805\" .\n",

 "<http://sognefjord.vestforsk.no/page/hike/101>

<http://data.sognefjord.vestforsk.no/resource/ontology#maximumElevation>

_:node16tto9idqx41010 .\n",

 "_:node16tto9idqx41010

<http://purl.oclc.org/NET/muo/ucum/meter>

\"484.149341852\" .\n",

 Lars Berg Hustveit

 63

 "<http://sognefjord.vestforsk.no/page/hike/101>

<http://data.sognefjord.vestforsk.no/resource/ontology#differenceInElevation>

_:node16tto9idqx41011 .\n",

 "_:node16tto9idqx41011

<http://purl.oclc.org/NET/muo/ucum/meter>

\"389.4048375715\" .\n",

 "<http://sognefjord.vestforsk.no/page/hike/101>

<http://data.sognefjord.vestforsk.no/resource/ontology#heightIncrease>

_:node16tto9idqx41012 .\n",

 "_:node16tto9idqx41012

<http://purl.oclc.org/NET/muo/ucum/meter>

\"414.2001581891\" .\n",

 "<http://sognefjord.vestforsk.no/page/hike/101>

<http://data.sognefjord.vestforsk.no/resource/ontology#heightDecrease>

_:node16tto9idqx41013 .\n",

 "_:node16tto9idqx41013

<http://purl.oclc.org/NET/muo/ucum/meter>

\"25.7197524276\" .\n",

 "<http://sognefjord.vestforsk.no/page/hike/101>

<http://www.w3.org/2002/07/owl#sameAs>

<http://tur.bt.no/tur/101> .\n",

 "<http://sognefjord.vestforsk.no/page/hike/101>

<http://data.sognefjord.vestforsk.no/resource/ontology#StartOf>

_:node16tto9idqx41014 .\n",

 "_:node16tto9idqx41014

<http://www.w3.org/2003/01/geo/wgs84_pos#lat>

\"60.48739\" .\n",

 "_:node16tto9idqx41014

<http://www.w3.org/2003/01/geo/wgs84_pos#long>

\"5.32971\" .\n",

 "_:node16tto9idqx41014

<http://www.w3.org/2003/01/geo/wgs84_pos#altitude>

\"94.7445042805\" .\n",

 "<http://sognefjord.vestforsk.no/page/hike/101>

<http://data.sognefjord.vestforsk.no/resource/ontology#EndOf>

_:node16tto9idqx41015 .\n",

 "_:node16tto9idqx41015

<http://www.w3.org/2003/01/geo/wgs84_pos#lat>

 Lars Berg Hustveit

 64

\"60.5017\" .\n",

 "_:node16tto9idqx41015

<http://www.w3.org/2003/01/geo/wgs84_pos#long>

\"5.32088\" .\n",

 "_:node16tto9idqx41015

<http://www.w3.org/2003/01/geo/wgs84_pos#altitude>

\"483.224910042\" .\n",

 "<http://sognefjord.vestforsk.no/page/hike/101>

<http://data.sognefjord.vestforsk.no/resource/ontology#Path>

_:node16tto9idqx41016 .\n",

 "_:node16tto9idqx41016

<http://data.sognefjord.vestforsk.no/resource/ontology#GoogleEncodedPath>

\"e}dpJu}o_@OTOZBd@NXLZNJNVJZLVH`@H`@F`@J^LXJ\\\\LXNTNPLXSCSCSBQ@QIUCQAQGSAQDQDQHQNOPQ

LOVM\\\\I`@KXMXOXQLQLMTSNOLORMXQLOJOXMTMVOPOXOPOROTMXMTOTMVQROVMVOVMZMXMTK\\\\K`@Ib@UH

Il@OXOXMb@MXOTORQNMVORQTORMXMXOZMVMZKZMTOPORQLM\\\\K\\\\I\\\\MVMZM\\\\KZIb@Af@I`@QRQJQ

NOPK\\\\Gj@K\\\\ONOTQPM\\\\G`@KZGb@M^QLOXMZOROJS@SBUBSFWTSNQJONOXQMQPMTQIOPOROTMVQGSEQ

AS?QKM[SAIa@Be@Ae@MYSBQ@QJOJS@SLK^O`@QH?e@G_@Gc@Ce@Ka@QMNQ?g@Cc@MYH_@Ek@@c@Ae@Ga@Cc@?e

@Ec@Bg@?e@OQOSQKEg@OQQ?KXSDM[KYK]MQK[M[QISFS?QAOUQMQKI_@Ga@KYEg@Cc@OWQMQEQCS?QBQ?QKMVO

NQDQCQMK]Ea@SFMROVMVOXSKQKMVQFQOAH\" .\n"

],

 "implicit_content_length": "2705",

 "implicit_content_size": "22",

 "data_source": "SIGMA",

 "predicate": [

 "http://purl.org/dc/terms/title",

 "http://www.w3.org/1999/02/22-rdf-syntax-ns#type",

 "http://www.w3.org/2001/sw/BestPractices/OEP/Time-Ontology#duration",

 "http://www.w3.org/2001/sw/BestPractices/OEP/Time-Ontology#minute",

 "http://data.sognefjord.vestforsk.no/resource/ontology#Length",

 "http://data.sognefjord.vestforsk.no/resource/ontology#Kilometer",

 "http://data.sognefjord.vestforsk.no/resource/ontology#Profile",

 "http://data.sognefjord.vestforsk.no/resource/ontology#minimumElevation",

 "http://purl.oclc.org/NET/muo/ucum/meter",

 "http://data.sognefjord.vestforsk.no/resource/ontology#maximumElevation",

 "http://data.sognefjord.vestforsk.no/resource/ontology#differenceInElevation",

 "http://data.sognefjord.vestforsk.no/resource/ontology#heightIncrease",

 "http://data.sognefjord.vestforsk.no/resource/ontology#heightDecrease",

 "http://www.w3.org/2002/07/owl#sameAs",

 "http://data.sognefjord.vestforsk.no/resource/ontology#StartOf",

 "http://www.w3.org/2003/01/geo/wgs84_pos#lat",

 "http://www.w3.org/2003/01/geo/wgs84_pos#long",

 "http://www.w3.org/2003/01/geo/wgs84_pos#altitude",

 "http://data.sognefjord.vestforsk.no/resource/ontology#EndOf",

 "http://data.sognefjord.vestforsk.no/resource/ontology#Path",

 "http://data.sognefjord.vestforsk.no/resource/ontology#GoogleEncodedPath"

],

 Lars Berg Hustveit

 65

 "label": ["\"Mellingen-Rimmaskaret-Veten\""],

 "checksum": "92487ed420195df5022ade11e27f807bd23d083e",

 "format": [

 "TITLE",

 "RDFA"

],

 "ontology": [

 "http://dublincore.org/2010/10/11/dcterms.rdf",

 "http://www.w3.org/1999/02/22-rdf-syntax-ns",

 "http://www.w3.org/2002/07/owl",

 "http://www.w3.org/2003/01/geo/wgs84_pos",

 "http://dublincore.org/2010/10/11/dcam.rdf",

 "http://dublincore.org/2010/10/11/dcelements.rdf",

 "http://dublincore.org/2010/10/11/dctype.rdf",

 "http://www.w3.org/2000/01/rdf-schema",

 "http://www.w3.org/2003/g/data-view",

 "http://www.w3.org/TR/skos-reference/skos.html",

 "http://xmlns.com/foaf/0.1/accountProfilePage",

 "http://usefulinc.com/ns/doap",

 "http://www.rddl.org/purposes/",

 "http://www.w3.org/2000/10/swap/pim/contact",

 "http://www.w3.org/2003/06/sw-vocab-status/ns"

],

 "url": "http://sognefjord.vestforsk.no/page/hike/101",

 "size": "29",

 "timestamp": "2012-05-23T20:38:16.000",

 "length": "3835",

 "domain": "sognefjord.vestforsk.no",

 "implicit_content": [

 "_:node16tto9idqx41014

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing> .\n",

 "_:node16tto9idqx41015

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing> .\n",

 "<http://sognefjord.vestforsk.no/page/hike/101>

<http://purl.org/dc/elements/1.1/title>

\"Mellingen-Rimmaskaret-Veten\" .\n",

 "<http://www.w3.org/2002/07/owl#Individual>

<http://www.w3.org/2000/01/rdf-schema#subClassOf>

<http://www.w3.org/2000/01/rdf-schema#Resource> .\n",

 "<http://tur.bt.no/tur/101>

<http://www.w3.org/2002/07/owl#sameAs>

<http://sognefjord.vestforsk.no/page/hike/101> .\n",

 "<http://tur.bt.no/tur/101>

 Lars Berg Hustveit

 66

<http://purl.org/dc/terms/title>

\"Mellingen-Rimmaskaret-Veten\" .\n",

 "<http://tur.bt.no/tur/101>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.w3.org/2002/07/owl#Individual> .\n",

 "<http://tur.bt.no/tur/101>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing> .\n",

 "<http://tur.bt.no/tur/101>

<http://www.w3.org/2001/sw/BestPractices/OEP/Time-Ontology#duration>

_:node16tto9idqx41007 .\n",

 "<http://tur.bt.no/tur/101>

<http://data.sognefjord.vestforsk.no/resource/ontology#Length>

_:node16tto9idqx41008 .\n",

 "<http://tur.bt.no/tur/101>

<http://data.sognefjord.vestforsk.no/resource/ontology#Profile>

<http://sognefjord.vestforsk.no/resource/route-graph/hike101.png> .\n",

 "<http://tur.bt.no/tur/101>

<http://data.sognefjord.vestforsk.no/resource/ontology#minimumElevation>

_:node16tto9idqx41009 .\n",

 "<http://tur.bt.no/tur/101>

<http://data.sognefjord.vestforsk.no/resource/ontology#maximumElevation>

_:node16tto9idqx41010 .\n",

 "<http://tur.bt.no/tur/101>

<http://data.sognefjord.vestforsk.no/resource/ontology#differenceInElevation>

_:node16tto9idqx41011 .\n",

 "<http://tur.bt.no/tur/101>

<http://data.sognefjord.vestforsk.no/resource/ontology#heightIncrease>

_:node16tto9idqx41012 .\n",

 "<http://tur.bt.no/tur/101>

<http://data.sognefjord.vestforsk.no/resource/ontology#heightDecrease>

_:node16tto9idqx41013 .\n",

 "<http://tur.bt.no/tur/101>

<http://data.sognefjord.vestforsk.no/resource/ontology#StartOf>

_:node16tto9idqx41014 .\n",

 "<http://tur.bt.no/tur/101>

<http://data.sognefjord.vestforsk.no/resource/ontology#EndOf>

_:node16tto9idqx41015 .\n",

 Lars Berg Hustveit

 67

 "<http://tur.bt.no/tur/101>

<http://data.sognefjord.vestforsk.no/resource/ontology#Path>

_:node16tto9idqx41016 .\n",

 "<http://tur.bt.no/tur/101>

<http://purl.org/dc/elements/1.1/title>

\"Mellingen-Rimmaskaret-Veten\" .\n",

 "<http://www.w3.org/2002/07/owl#Individual>

<http://www.w3.org/2002/07/owl#equivalentClass>

<http://www.w3.org/2002/07/owl#Individual> .\n",

 "<http://www.w3.org/2002/07/owl#Individual>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.w3.org/2002/07/owl#Class> .\n"

]

}}

Listing 5: Example of result from the Cache API

Each result page from the Cache API is stored in the artifact for further

processing. For this, the artifact makes use of “Dojo Store”, a feature included in

the Dojo Toolkit framework with the purpose of making it easier to store data

and query it afterwards.

Handling data from Sindice

When all result pages from the Cache API are stored in the artifact, the next step

is to analyze the fetched data. The artifact will conduct the analysis by looking for

patterns that are programmed into the web application. The outcome of this

process will decide what the artifact can do with the fetched data. The more data

the artifact recognizes, the more abilities the artifact will have to do something

interesting with it.

The analysis process starts by decoding the part of the fetched data that are in

the form of RDF triples. These are the RDF triples fetched by the Sindice crawlers

in addition to some extra RDF triples added by Sindice. Additional RDF triples is

a result of reasoning conducted by the Sindice platform. Listing 6 illustrates this

by displaying a RDF triple that have been added by the platform after detecting

geospatial triples in the crawled RDF data.

 Lars Berg Hustveit

 68

<http://sognefjord.vestforsk.no/page/hike/101>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing> .

Listing 6: The Sindice platform conducts reasoning

Additional statements can for example make it easier to query the Search API for

things that are geospatial. The RDF triples in the Cache API is however encoded

in the form of N-Triples. Since the artifact’s implemented Dojo Store is not able to

query RDF triples encoded in N-Triples, each RDF triple is decoded by extracting

the statement’s subject, predicate and object. These are stored in the artifact’s

Dojo Store in a way that makes it possible for the system to query the RDF

triples.

The artifact starts to analyze the decoded RDF triples by detecting geospatial

things described in each result document. This is done so the

SemanticGeoBrowser can operate on the level of things. Some documents

contain descriptions of multiple things, but every individual detected is treated

as an independent thing. Each thing might contain multiple geo locations, in

which the artifact supports.

As a result of this process, all the geospatial things in the search result are

detected. Moreover, an index card is being created for each of the detected things

in the artifact’s Dojo Store. The index cards are used to store the results of the

analysis, which are further used to quickly look up and present data in the

system.

The first data stored in an index card is the URI of an identified individual. Same

as in RDF data, the URI is used as a unique identifier for the detected individuals

throughout the system and is further used in the analysis process. When the

artifact recognizes a set of properties that can be used by the system, the URIs of

the property owners are used to find back to each of the individual’s index card

where the property facts are stored. Since the geo points are the criteria that

identify the geospatial things, they are stored in the same process as the URIs.

The geo points come in form of a longitude and latitude.

 Lars Berg Hustveit

 69

In order to identify individuals with property facts, the system query the

decoded RDF triples using a set of RDF triple patterns. These patterns are

programmed into the system. Listing 7 shows an example of some of the RDF

triple patterns the system is looking for.

var find_profile_property = {

 predicate:

 "http://data.sognefjord.vestforsk.no/resource/ontology#Profile",

 attribute_name: "hike_profile"

};

var find_duration_property = {

 predicate: "http://www.w3.org/2001/sw/BestPractices/OEP/Time-

Ontology#duration",

 find_sub_property: [

 {

 predicate:

 "http://www.w3.org/2001/sw/BestPractices/OEP/Time-Ontology#minute",

 attribute_name: "hike_duration_in_minutes"

 }

]

};

var find_start_of_property = {

 predicate:

 "http://data.sognefjord.vestforsk.no/resource/ontology#StartOf",

 find_sub_property: [

 {

 predicate:

 "http://www.w3.org/2003/01/geo/wgs84_pos#lat",

 attribute_name: "hike_start_of_lat"

 },

 {

 predicate:

 "http://www.w3.org/2003/01/geo/wgs84_pos#long",

 attribute_name: "hike_start_of_long"

 },

 {

 predicate:

 "http://www.w3.org/2003/01/geo/wgs84_pos#altitude",

 attribute_name: "hike_start_of_altitude"

 }

]

};

Listing 7: Some of the RDF triple-patterns the system is looking for

Listing 7 illustrates three examples of property facts that the system looks for.

The list, which is written in JavaScript, defines the RDF triple patterns through

objects. Each object contains the parameter predicate that contains the URI of the

 Lars Berg Hustveit

 70

predicate that describes the desired property fact. Every object also contains the

parameter attribute_name, which contains the name of the parameter used to

describe the attribute when storing the discovery in an individual’s index card. In

order to describe patterns of RDF statements that consist of multiple triples,

which are possible by linking triples together using blank nodes, the parameter

find_sub_property is used to describe triples that use a blank node as subject.

Figure 12 shows an example of an index card that describes the

SemanticGeoBrowser’s knowledge of an individual after the analysis process is

conducted.

 Lars Berg Hustveit

 71

Figure 12: An object representing an index card with facts about a selected thing

After the artifact has analyzed the fetched data, the system calculates how many

percentages each individual matched the search that was made. This is already

presented as the solution of system requirement #3 (b) earlier in this iteration.

The searching process ends by displaying the geospatial things from the search

result on the map. A list of the result, illustrated in Figure 10, is also generated.

The data is now ready to be explored by the user.

 Lars Berg Hustveit

 72

Evaluation

While the two first iterations consisted of foundational preparations, the third

iteration started the development phase of designing the artifact itself. Moving

into this development phase, the evaluation phase that will end each of the next

iterations will be focused on the fulfillment of the system requirements. This is

because the result from an evaluation phase is intended to provide essential

feedback to the following construction phase in the next iteration (Hevner et al.

2004, p.85). The iterations will continue until the system requirements are

fulfilled. As mentioned by Hevner et al. (2004, p.85) in guideline three, a design

artifact is complete and effective when it satisfies the requirements and

constraints of the problem it was meant to solve.

In order to fulfill system requirement #1, the artifact will have to operate at the

level of “things” (instead of at the level of documents) and treat them as first-

class citizens in a user-friendly interface. The user interface that was

implemented in the third iteration did however not work as intended. Even

though the layout manages to put things in the center of the user interface, it still

had the look and feel of a web document in use. The main reason for this, in my

experience, is that the map disappears from the screen when scrolling the page

to see the list of search results. In order to fulfill this requirement, the user

interface will have to be redesigned in the next iteration. The new interface

should have a map that does not disappear from the screen when exploring the

search result.

System requirement #2, of implementing a map into the artifact, is considered

fulfilled. The Google Maps API was easy to work with and contained all the

necessary features for completing the job. For example, the API made it easy to

select an area of interest by seamlessly returning the required coordinates when

interacting with the map and it was just as feasible to handle the things on the

map through the use of JavaScript. The result of the implemented map is an

artifact that is easier to interact with.

 Lars Berg Hustveit

 73

System requirement #3, of making the artifact knowledge-based, is in this

iteration considered partly fulfilled. Point (a), to “help the user search for relevant

things”, is considered fulfilled through the implementation of a list of things that

is relevant to the domain of operation. The list represents the knowledge over

things the artifact knows about, which helps the user with alternatives over

things to search for. Point (b), to “help the user recognize things that are relevant

to the domain of operation”, is also considered fulfilled through the

implementation of a list that indicates the relevance of the search result to the

user. Point (c) is not considered fulfilled as it is postponed to the fourth iteration.

System requirement #4, to “make use of a semantic web index look-up service”, is

considered fulfilled. Through the use of the web services of Sindice, their APIs

provide “access to a large amount of RDF datasets from the Web of data” and

“advanced geospatial query capabilities to be made within a selected area of

interest”, which fulfills point (a) and (b).

System requirement #5, to “avoid solutions that would trigger the web browser to

reload a lot”, has been archived in the start of the construction phase and is

therefore at this time considered fulfilled.

System requirement #6, to “assemble and handle RDF data seamlessly behind the

scenes”, has been somewhat archived and is at this time considered fulfilled. The

reason for calling it somewhat archived is because requesting data from third

party services is conducted synchronous in the SemanticGeoBrowser.

Requesting data from third party services is archived through the use of AJAX.

According to Chapman (2012), one of the biggest advantages of using AJAX in

web pages is that it can be used to access data from a server without having to

reload the web page. There is two ways that AJAX can communicate with a

server. The first way is running the request synchronous, which stops the

JavaScript until the server has replied to the request. This solution has a big

down side because it can make the web page appear frozen while it is awaiting

the reply, which is negative for the user experience. The second way is running

the requests asynchronous, which lets multiple functions be processed at the

 Lars Berg Hustveit

 74

same time. In the time of coding I decided to run the requests synchronously

because I thought it was easier to structure and build up the script on code that

runs synchronously. Because the artifact appears frozen while waiting on the

search result, I would have chosen to code the browser to run asynchronous if I

were to recode the artifact.

Fourth Iteration

In this fourth iteration, the goal is to redesigning the artifact’s interface,

implement user-friendly fact box, and make the artifact conduct reasoning.

Designing a more user friendly interface

In order to improve the user interface from iteration three, the layout has been

redesigned so the map does not disappear from the screen when the user is

scrolling the interface to explore the list of search results. By designing a fixed

user interface where the map is in the center at all times, the

SemanticGeoBrowser aims for a look and feel of a web application, instead of a

web document. Figure 13 illustrates the improved user interface.

Figure 13: The second layout of the SemanticGeoBrowser

 Lars Berg Hustveit

 75

The artifact´s improved user interface is divided into three panes with different

purpose. The map pane is located in the upper left corner and gives users the

ability to navigate and zoom in on any location on the earth in order to select the

area of interest. When a search is completed, the map is used to visualize and

able interaction with the geospatial results. The control pane is located in the

lower left corner and divided into tabs at the bottom of the pane. The first tab is

the control panel for the search and is where the search criteria can be changed.

Other tabs are visible when searches are made where each tab represents the

control panel for an individual search. The focus pane that is located on the right

side provides information about things that are selected.

Designing an user-friendly fact box

In order to fulfill system requirement #3 (c), to “present facts about relevant

things in a user-friendly way”, the artifact is designed to look up the index card of

a thing that is selected on the map or in the result list and display the facts found

on the card in a fact box. This is done by considering how each type of fact should

be presented to the user and designing an individual layout for it. By this, the

artifact is able to display facts from all vocabulary terms that are recognized in

the analysis process of RDF statements. Figure 14 shows an example of how the

artifact presents facts about one of the hikes added to Sindice.

 Lars Berg Hustveit

 76

Figure 14: A fact box presenting facts from recognized RDF triples that describes a hike

 Lars Berg Hustveit

 77

Reasoning with property facts

System requirement #7: The SemanticGeoBrowser should be able to draw

conclusions from facts described in the properties of things.

Knowledge about data within the domain of operation opens up the possibility of

conducting reasoning on the discovered property facts. The term “reasoning” is

used to describe the powerful mechanism to draw conclusions from facts

(Verborgh 2012a). Another term that is commonly used to describe reasoning is

“inference”, which is the act or process of deriving logical conclusions from

premises known or assumed to be true, hence the act of reasoning (Anon 2013c).

A good reason for implementing reasoning into the artifact is to let the machine

assist the human to draw conclusions from recognizable facts identified in

machine-readable data. By creating rules, the machine can conduct reasoning.

In order to enable a reasoning feature into the artifact, I have chosen to

implement an open source version of the EYE (Euler YAP Engine)16, which is an

inference engine that is built to supports logic based proofs.

EYE was selected as the artifact’s reasoning engine because of the initiative aim

to “provide a user-friendly reasoning experience in current Web browsers and

applications” (Verborgh 2012a). In order to bring reasoning to the Web, the EYE

reasoner consists of two parts, a reasoner server and a browser widget. Figure

15, which is created by Verborgh (2012a), is an illustration on how the server

and browser communicates. The reasoner server part is the EYE reasoning

server itself, made accessible to anyone on the Internet through an API. This part

has a public API, but can also be downloaded from Ruben Verborgh’s

“EyeServer” project page17 at Github and installed on a private server. The

browser widget part is a demonstrator that exemplifies how a web application

can communicate with the EYE reasoner server. The demonstrator can be

downloaded from Ruben Verborgh’s “EyeClient” project page18 at Github.

16 http://eulersharp.sourceforge.net/
17 https://github.com/RubenVerborgh/EyeServer
18 https://github.com/RubenVerborgh/EyeClient

 Lars Berg Hustveit

 78

Figure 15 – How the browser widget and reasoner server communicate

In order to implement EYE into the artifact, I chose to use the publicly available

reasoner server because it was the fastest solution. When it came to

implementing the EYE reasoner on the client side, I studied the source code of

the browser widget in order to see how it worked. The same technique used to

communicate with the reasoner server was then applied to the artifact.

The SemanticGeoBrowser demonstrates how reasoning can be used when it

recognize the properties of things in which the user is browsing. Each time a user

selects a thing, the browser checks if the thing has all the properties that would

qualify for reasoning. If the properties of a selected thing provide all the facts

that are required for a set of rules, supported by the artifact, the reasoning

process starts.

The reasoning process starts by building an object that contains all the

parameters that are required by the reasoner server. Listing 8 shows how this

object is built.

var options = {}; //object

 options.data = [];

 options.data.push(n3_data_input);

 options.data.push(rules_input);

 options.path = "http://eye.restdesc.org/";

 options.query = "{ ?a ?b ?c. } => { ?a ?b ?c. }.";

Listing 8: An object that contains all the parameters that are required by the reasoner server

The EYE reasoner server requires three inputs, which is facts, rules and a query

(Verborgh 2012b). The facts include all the RDF triples found about the selected

 Lars Berg Hustveit

 79

thing. The array “explicit_content”, in Listing 5, shows an example of RDF triples

that would be sent as facts to the reasoner server. The RDF triples must be added

in the N3 syntax.

The rules included are custom made for the things that contains the right facts.

Listing 9 shows an example of how rules can be written to say something about

the difficulty level of a hike. This example includes the difficult levels of

“Medium” and “Hard”. The first rule conclude that if the thing has a duration, in

minutes, greater than 15 minutes and less than 60 minutes, then the difficulty

level must be “Medium”. The second rule is made to capture the gap that occurs

between less than 60 minutes and more than 60 minutes. The third rule captures

all the hikes that have a duration greater than 60 minutes, which is concluded to

be “Hard”. Even though the process of setting the difficult level on hikes would

require a lot more properties to be justifiable, this example demonstrate how

rules can help the concept of an SemanticGeoBrowser to draw conclusion from

facts appearing in the search result.

@prefix sf_ont: <http://data.sognefjord.vestforsk.no/resource/ontology#> .

@prefix owl-time: <http://www.w3.org/2001/sw/BestPractices/OEP/Time-Ontology#> .

@prefix math: <http://www.w3.org/2000/10/swap/math#> .

{

 ?a owl-time:duration ?x .

 ?x owl-time:minute ?y .

 ?y math:greaterThan 15 .

 ?y math:lessThan 60 .

}

=>

{

 ?a sf_ont:Difficulty """Medium""" .

}.

{

 ?a owl-time:duration ?x .

 ?x owl-time:minute ?y .

 ?y math:equalTo 60 .

}

=>

{

 ?a sf_ont:Difficulty """Medium""" .

}.

 Lars Berg Hustveit

 80

{

 ?a owl-time:duration ?x .

 ?x owl-time:minute ?y .

 ?y math:greaterThan 60 .

}

=>

{

 ?a sf_ont:Difficulty """Hard""" .

}.

Listing 9: How rules can be written to say something about the difficulty level of a hike

The query included in the Listing 8 says what the EYE reasoner server should do.

In this example, the server is told to conduct deductive reasoning.

“Deductive reasoning, also called deductive logic, is the process of reasoning from

one or more general statements regarding what is known to reach a logically

certain conclusion” (Sternberg 2009) cited by (Wikipedia 2012).

“Deductive reasoning involves using given true premises to reach a conclusion that

is also true” (Wikipedia 2012).

“An example of a deductive argument:

1. All men are mortal.

2. John is a man.

3. Therefore, John is mortal.”

(Wikipedia 2012)

The object also contains a fourth parameter, which is the path to the public

reasoning server. This is used by the function that is sending the object from the

client to the server. The object is sent as a HTTP request.

The SemanticGeoBrowser now conducts reasoning each time it recognizes all the

required facts that are needed by a rule to draw a conclusion. In order to avoid

sending a lot of requests to the EYE reasoner at the same time, the artifact will

check a thing for required facts when the user selects it in the user interface. The

 Lars Berg Hustveit

 81

system will store the result of the reasoning and only conduct reasoning the first

time the thing is selected. At this time, the artifact will recognize some facts in

the hikes that were added to Sindice. When one of those hikes is selected, the

recognized facts will be sent to the EYE reasoner and its conclusion will be

presented in the selected thing’s fact box in a user-friendly way. Figure 16

illustrates an example of how the result of reasoning is presented to the user.

Figure 16: How the result of reasoning is presented to the user

Evaluation

The fourth iteration starts with redesigning the artifact to fulfill system

requirement #1. The new layout has a setup where it is not possible to scroll the

map out of the screen, which I think is a more user-friendly solution. The artifact

does now have the look and feel of a web application that operates on the level of

things, contrary to a general web document. System requirement #1 is therefor

considered as fulfilled.

System requirement #3 (c), which was postponed in iteration three, is in this

fourth iteration considered fulfilled.

System requirement #7, of enabling the artifact to “draw conclusions from facts

described in the properties of things” was accomplished in this iteration and is

therefore considered fulfilled. Even though the implemented example of a

reasoner was simple and small, it is a concrete example of how reasoning can be

implemented and how works in a semantic web application.

 Lars Berg Hustveit

 82

Fifth Iteration

The fifth iteration is about the implementation of a second data source into the

SemanticGeoBrowser. The second data source is not a semantic web index like

Sindice, but instead a set of datasets that are controlled by the data provider.

These datasets are accessible through a single SPARQL endpoint and are based

on open data from the OpenStreetMap project19. The RDF triples is not provided

or generated by OpenStreetMap themselves, but rather a result of the

LinkedGeoData project20. As explained in chapter 2, the LinkedGeoData project

“uses the information collected by the OpenStreetMap project and makes it

available as an RDF knowledge base according to the Linked Data principles”

(Stadler 2012).

The decision to implement a second data source was based on the idea that thing

browsers should be able to help users in the task of finding specific types of

things, within a selected domain, on the Web of data, that in the starting point

are unknown to the system. Since the task of finding something specific requires

the knowledge of what characterizations to look for, a thing browser without this

knowledge would not be able to find anything specific, unless it was able to

acquire this knowledge from somewhere. While search engines operating on the

Web of documents are based on their users entering words from a language and

vocabulary they master, users of the Web of data should not be required to feed

thing browsers with RDF triple patterns in which only advanced users would

know the meaning of. Instead, thing browsers should focus on providing its users

with user-friendly options. In iteration three, knowledge was coded in to the

artifact by the developer. In this iteration, the SemanticGeoBrowser should try to

fetch and apply external knowledge by coding where and how to acquire it.

Implementing a second data source

System requirement #8: The SemanticGeoBrowser should support

different data sources and apply knowledge from an external ontology.

19 http://www.openstreetmap.org/
20 http://linkedgeodata.org/About

 Lars Berg Hustveit

 83

In order for the artifact to implement knowledge from an external data source, it

must be accessible. By accessible, I mean in a standard place where it is easy to

find and use. In addition to provide geospatial RDF data generated through the

use of OpenStreetMap data, the LinkedGeoData project have derived a

lightweight ontology from the same lifting process (Stadler et al. 2012). The

LinkedGeoData ontology is accessible through the same SPARQL endpoint as

their RDF data. This makes it possible for the SemanticGeoBrowser to fetch both

knowledge and RDF data through the use of SPARQL queries.

When a user is going to search for something in the second data source, the

search process starts in the control pane where the user selects the

OpenStreetMap data source. This selection triggers the artifact to query the

LinkedGeoData ontology for all its knowledge about types of things. By this, the

browser fetches the ontology’s knowledge about characterizations that can be

used to find specific types of things in the SPARQL endpoint. The acquired

knowledge is presented to the user in form of a list where a thing of interest can

be selected. Instead of presenting the characterizations in form of RDF triple

patterns to the user, the browser uses the Norwegian labels that were found in

the ontology. At the time of coding there were no English labels to be found.

The user continues the search process by selecting a type of thing from the

generated list. If the user does not select anything, the search will query for all

geospatial things in the area of interest. If the user do select a type of thing, it is

also possible to add an extra filter for the search by selecting another type of

thing and a radius area in kilometers. The search will then only search for things

that is within the radius of the second type of thing. When the search criteria are

set, the search is started by a click on the search button. Figure 17 shows an

example of a search criteria set in the control pane.

 Lars Berg Hustveit

 84

Figure 17: A search criteria set in the control pane

The artifact starts the search by generating a SPARQL query with inputs from the

control pane and the map pane. While the selected RDF triple pattern from the

control pane can be inserted directly into the search query, the coordinates from

the southwest and northeast corners of the map must be processed in order to

get a square area of interest that equals the rectangular shape of the map pane.

The reason for this is the software powering the SPARQL endpoint. Because the

version of Virtuoso in the time of coding did not contain a query function for

filtering geospatial things within a square shaped area, the browser would have

to calculate the coordinates for the area of interest itself. The solution was found

in a forum post written by Claus Stadler, which presented a formula in JavaScript

code21. This code was implemented in the browser. Listing 10 shows an example

of a SPARQL query that is generated with input from the implemented algorithm.

PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>

SELECT count(?thing_uri) as ?thing_count

FROM <http://linkedgeodata.org>

WHERE {

 ?thing_uri geo:geometry ?geo .

 Filter(

 bif:st_intersects(

 ?geo,

 bif:st_point(5.313792144531249, 60.3919271497259),

 2.544099138178441

)

21 https://groups.google.com/forum/?fromgroups=#!topic/linked-geo-
data/BXuH45-IXdU

 Lars Berg Hustveit

 85

) .

 Filter(

 bif:st_x(?geo) > 5.270833884948729 &&

 bif:st_x(?geo) < 5.356750404113768 &&

 bif:st_y(?geo) > 60.38338236409244 &&

 bif:st_y(?geo) < 60.40047193535936

) .

}

Listing 10: A query generated for the LinkedGeoData SPARQL endpoint

This example is used to count all geospatial things in a square shaped area of

interest, which in this case is the city of Bergen. It shows how a square shaped

area of interest is shaped in a SPARQL query by using two filter clauses. In order

to illustrate how a SPARQL query like this works, Figure 18 was constructed. The

first filter clause filters away all geospatial things that are found outside a radius-

selected area. This is illustrated in Figure 18 and would result in all the markers

inside the black circle. The second filter clause shapes the square selected area

by filtering away all things from the radius selected area that falls outside the

square area. This is also illustrated in Figure 18, where all the blue markers will

be filtered away, leaving the red markers left as the query result. It is the

coordinates used in these two filter clauses that are calculated by the functions

from Claus Stadler.

Figure 18: How filtering geospatial things within a square shaped area is happening through the
LinkedGeoData SPARQL endpoint

 Lars Berg Hustveit

 86

Even though removing the first filter clause from the SPARQL query would result

in the same search result, it is not redundant. The reason for this is that the first

filter clause represents an outer circle, of the rectangular area, that would likely

optimize the query’s performance (Stadler & Knibbe 2011). Since it is believed

that the second filter clause will take more time to process than the first filter

clause, the first filter is applied to make a fast and rough trim down of possible

result items. The second filter clause is however the filter that is defining the

square shape of interest.

After the search query is generated, it is sent to the SPARQL endpoint as a HTTP

GET request. The querying process is divided into two steps. The first step

consists of gathering a complete list of all URI’s to the things in the search result.

Then, the second step consists of requesting data about each thing using the

URI’s from the first step. The number of queries sent to the SPARQL endpoint

will therefore depend on the number of thing in the search result. This must be

done because of a default setting in the SPARQL endpoint that limits the

maximum number of one thousand RDF triples for each reply on a request. The

artifact must therefore start the first step by requesting a count of RDF triples in

the search result. If the number is under or equals one thousand RDF triples, a

single SPARQL query will be enough to fetch a complete list of URI’s. Otherwise, a

count larger than one thousand RDF triples requires a separate SPARQL query to

be sent for each thousand RDF triples in the count.

When the search result is fetched from the SPARQL endpoint, it is stored in the

artifact’s data store, powered by Dojo Toolkit. This makes it possible for the

artifact to query the fetched data in an analysis process.

The analysis process consists of querying the gathered data for RDF triple

patterns. When a RDF triple is recognized, the thing described with that triple

will be indexed in order for the system to use the acquired knowledge after the

analysis process is completed.

 Lars Berg Hustveit

 87

After the analysis process is conducted, the artifact presents the discovered

things on the map and result pane. At this time, the result presented in the result

pane will not display each discovered thing in a list, but rather display a category

list with type of things discovered. This list enables the user to toggle what group

of things that are displayed on the map. This feature should help the user to

focus on one type of things at a time when exploring a result with many different

types of things. Figure 19 illustrates a category list generated in a search for

anything in the area of Bergen.

Figure 19: A category list generated in a search for anything in the area of Bergen

As can be seen in Figure 19, exploring a popular area of interest can be difficult if

there are too many things to explore on the map at once. Figure 20 illustrates the

same example as Figure 19, but with the exception that the user has selected the

category “Minibank (10)” from the category list.

 Lars Berg Hustveit

 88

Figure 20: After an option in the category list is selected

The word “minibank” is Norwegian and stands for automated teller machine

(ATM). Because the labels in the dataset were not available in English at the time

of coding, the artifact is displaying the Norwegian labels that were available. The

number behind the labels in the category list indicates the number of things in

the category.

When selecting a thing from the OpenStreetMap / LinkedGeoData data source,

the fact box will display the categories the selected individual is a member of.

Figure 21 illustrates a fact box displaying information about a selected thing.

 Lars Berg Hustveit

 89

Figure 21: A fact box displaying information about a selected thing

As seen in Figure 21, a label will display “N/A” if there is no label available to

display.

Evaluation

The fifth iteration focused on one system requirement alone. System

requirement #8, to “support different data sources and apply knowledge from an

external ontology”, was in this iteration archived and is therefore considered as

fulfilled.

Sixth Iteration

In the sixth iteration, the goal is to make it easier to discover and see new

patterns in geospatial data loaded in the SemanticGeoBrowser. Also, if the user

experience a scenario where relevant thing characterizations are not available, it

should be possible to conduct a free text search.

 Lars Berg Hustveit

 90

Implementing categorization and heat map feature

System requirement #9: The SemanticGeoBrowser should help the user to

discover patterns shaped by the coordinates of geospatial things.

In the process of letting the user find and explore geospatial things in the

SemanticGeoBrowser, the artifact should contain features to distinguish things

that are relevant to the user. In order to solve this task, a categorization and heat

map feature was implemented.

The categorization feature is designed to make it easy for the user to sort the

geospatial things in the exploration process. Since the desired outcome of this

process is for the user to get an overview and discover interesting things in an

area of interest, the categorization feature should provide the user with a

method to sort things after the user’s perception of the individual. Figure 22

illustrates the category feature.

Figure 22: The category feature

The categories are predefined by colors. In this way the user will not have to

create any categories on his/her own and brainstorm creative group names. The

 Lars Berg Hustveit

 91

meaning of a category is created by the user’s perception of the things that is

added to the category, which is remembered by the category color.

When a thing is added to a category, its map icon is changed to the color of the

category. If the user uses the categorization feature to mark all things that have

been explored, including the things that are not of interest, the things on the map

will start to show a pattern. Things that have yet to be explored will also be

revealed by the pattern. Figure 23 illustrates the categorization and heat map

feature in use.

Figure 23: Categorization and heat map feature in use

The heat map feature extends the categorization feature by highlighting the

things that are categorized on the map. The highlighting reflects the color of a

thing’s category and fills the area around the thing in a radius. The icon and heat

map pattern should make it easier to discover relations between things and it

works across dataset from different sources.

The heat map feature has its own control panel that appears by clicking on the

“Heatmap” tab. In this control panel the user can adjust the radius, color strength

and toggle the heat map on / off. Figure 24 illustrates the control pane of the heat

map feature.

 Lars Berg Hustveit

 92

Figure 24: The control pane of the heat map feature

When the heat map radius of things from the same category overlaps on the map,

the overlapping area merges. The heat map functionality is provided by Google

Maps API22.

Implementing text search feature

System requirement #10: The SemanticGeoBrowser should allow users to

conduct text searches when available thing characterizations aren’t

enough.

Querying for things in RDF data can be hard if the URIs describing the things are

unknown. Since the Sindice Search API supports search by words used in URIs

and literal values in RDF triples, an extra search feature has been implemented

in this last iteration. The SemanticGeoBrowser now supports search by human

text input in the Sindice data source. Figure 25 illustrates the text search field in

the control pane for the search.

22 https://developers.google.com/maps/documentation/javascript/layers#JSHeatMaps

 Lars Berg Hustveit

 93

Figure 25: The text search field in the control pane for the search

Evaluation

In the sixth iteration, the two last system requirements were fulfilled.

System requirement #9, to “help the users to discover patterns shaped by the

coordinates of geospatial things”, was achieved through the categorization and

heat map feature, and is thereby considered fulfilled.

System requirement #10, to “allow users to conduct text searches when available

thing characterizations aren’t enough”, was in this iteration implemented to

support the Sindice platform and it by this considered fulfilled.

 Lars Berg Hustveit

 94

Chapter 5

5 Evaluation and Discussion

This chapter will present an evaluation made by the completed artifact, followed

by a discussion of this study’s result.

Descriptive Evaluation

In order to evaluate the designed artifact, Hevner et al. (2004, p.86) advice the

use of methodologies from the knowledge base. The evaluation methods that are

presented in the knowledge base of design-science are well executed and

strengthen the rigorousness of the research, which Hevner et al. (2004, p.87)

emphasize through guideline five.

The selected evaluation method for the SemanticGeoBrowser is in this project

going to be “descriptive”. Hevner et al. (2004, p.86) points out that the selection

of evaluation methods must be matched appropriately with the designed artifact

and the selected evaluation metrics. It is also pointed out that descriptive

methods of evaluation should only be used for especially innovative artifacts for

which other forms of evaluation may not be feasible. After having reviewed the

different methodologies presented by Hevner et al. (2004, p.86), I have

concluded that the descriptive evaluation method is the best choice at the time of

writing. I also consider the designed artifact to be innovative enough for the

descriptive evaluation method.

Hevner et al. (2004, p.86) describes these two types of descriptive evaluation:

 Informed Argument: Use information from the knowledge base (e.g.,

relevant research) to build a convincing argument for the artifact’s utility.

 Scenarios: Construct detailed scenarios around the artifact to

demonstrate its utility.

In this project, the designed artifact is going to be evaluated both by informed

arguments and scenarios.

 Lars Berg Hustveit

 95

Informed Arguments

This section will present informed arguments to demonstrate the proof of

concept artifact’s utility. The arguments are cited from the article “How Will We

Interact with the Web of Data?” by Heath (2008), which presents arguments that

this study is based upon. The focus of his article is to “discuss some ways in which

our interaction with the Web of data might differ from how we interact with the

established Web of documents”.

The following arguments discussed by Heath (2008) can be used to justify the

utility of the SemanticGeoBrowser:

 Discussing the Web of machine-readable data: …“without a human

somewhere in this process to reap the rewards of these new

capabilities, the endeavour is meaningless.”

 “If we’re to fully exploit the challenges and opportunities of a Web of data,

we need to move beyond the initial phase and work to understand how this

changes the Web’s user interaction paradigm.”

 “In the Semantic Web, you can’t assume you have control over how the

information you publish will be presented — it’s just data.”

 …“concentrate first on publishing relevant, high-quality data, and let others

build the views they want rather than those that someone else assumes they

need.”

 …“in the Web of data, no one can control with any degree of certainty the

sources with which their data is integrated — enabling serendipitous

reuse is exactly the point!”

 …“data published in the Web in a reusable form enables new views that

have value beyond the sum of the parts and that the original creators

might not have anticipated in advance.”

 …“The machines’ job is then to assemble this data into a coherent view,

ready for human consumption.”

 “Of far greater relevance than the documents themselves are the things

described in those documents — the people, places, and concepts.”

 “It’s at the level of “things” that browsers for the Web of data should

operate. Providing simple browsers for RDF triples, and the documents

 Lars Berg Hustveit

 96

in which they’re published, is one option for enabling people to

interact with this information space.”

 Discussing the earliest Semantic Web browsers: ”it rather misses the point.

The one-page-at-a-time style of browsing, which we know well from the

Web of documents, would make nothing of the potential we now have for

integrated views of data assembled from numerous locations.”

 “Semantic Web browsers must not simply echo the underlying

representation of the data. Instead, they must treat “things,” in the

broadest sense, as first-class citizens of the interface. A particular thing of

interest should take center stage, with the browser assembling relevant

information seamlessly behind the scenes.”

 …“the thing of interest is of greater importance, and specific documents

simply supply fragments of data that together make up a broader

picture.”

 “Conventional browsers have largely failed to deliver on the original

vision of the Web as a read/write medium.”

 “Browsers for the Semantic Web, which I suggest we call “thing browsers,”

have an opportunity to enable a far greater degree of direct

manipulation in their interfaces. Different types of objects afford different

types of actions, and knowing the type of object on which the user is

focused should let browsers provide a menu of actions specialized for this

object type, and perhaps even adapt these according to the context.”

 Discussing a Semantic Web browser’s ability to conduct action: …"without

any of these functions having been explicitly listed as actions that can be

invoked on these individuals. Instead, the Semantic Web at large can

provide the necessary knowledge and services on which to offer such

functionalit…"

 “Clearly, a Web of data can’t offer direct manipulation of real-world

things, such as cars and dogs, which are not, and never will be, online.

However, in a Web where we can explicitly reference anything, not just

documents, there’s great potential to reduce the degree of indirection in

Web interfaces. We no longer have to refer to Web pages about things but

can refer to the things themselves.”

 Lars Berg Hustveit

 97

 “In case there was any doubt, this is no overnight endeavor but a trend

that will take years to be realized and could take many different forms.”

 “Accepting the shift from document to thing, and from predefined views to

those assembled dynamically, won’t just require completely new

interfaces but also several changes to the interaction widgets in interfaces

with which we’re already familiar. “

 “All the data available on the Web about London can’t feasibly be

presented in one interface; users will need to decide which sources to add

in depending on their current task or context, or will need the browser to

make this decision intelligently for them...”

 “… This functionality becomes even more critical if automated reasoning

is carried out on Semantic Web data, creating knowledge that wasn’t

previously explicit in any of the individual data sources. How to manage

the assembly of these data sources becomes a critical issue.“

 “Key to developing Web of data browsers will be look-up services such as

Sindice, which provide a means to find other RDF documents on the

Semantic Web that mention a particular thing. This kind of service might

help ensure that the user experience is coherent — that is, that it includes

all data the user expects it to. However, ensuring that a particular view of

data is useful is another issue. “

 “Any system aiming to integrate heterogeneous data on an ad hoc basis

and present this to users will need to adopt sophisticated models of

relevance, quality, and trust that are sensitive to the user’s current task

and its context. How that might be achieved is a question for another day.”

Scenarios

This section presents two scenarios to demonstrate the artifact’s utility.

Scenario one

A tourist is traveling around the world on a cruise ship. In ten minutes time the

cruise will arrive to the city of Bergen in Norway. The ship is after its schedule

with an entire day so the captain decides to make some last minutes changes.

 Lars Berg Hustveit

 98

The passengers are informed that they will only have three hours to spend in the

city. Our tourist knows that he does not have one minute to waste ashore. He

decides to drop his plans about sightseeing in random city streets and only focus

on reaching a nearby mountain top to get an overview over the location. To

reach his goal, there will be no time to stand in line at a local tourist information

office. He decides to find a suitable hiking route superfast on his personal

internet device. Instead of searching the Web of documents for web pages with

different presentations of hikes, he recently discovered a web application that

lets him browse the Semantic Web for tourist information in any area of his

choice. The application was already bookmarked because of its support of

recognizing things within the tourist domain. He recognizes the user interface as

the SemanticGeoBrowser appears on the screen. The map is navigated to the

area of interest and the predefined option “Hikes” is selected as the type of thing

to look for. A search is conducted and a result is presented. He examines the

visual result on the map and taps on some hikes to study their details in the

informative fact box. The suggested degree of difficulty is helpful and makes him

take a quick decision. A suitable hike is selected and the ship hasn’t even docked

yet.

Scenario two

Our tourist from scenario one has reached his goal and has now taken a short

break on a view point on his way back down to the city of Bergen. While he rests,

he figures he has time to visit a café before getting back on the cruise ship. He

flips out his internet devise and enters the SemanticGeoBrowser once again. This

time, he selects a specific data source that is known for its updated tourist

information. A list is presented to him with types of things to search for. He

selects “Café”, but remembers at the same time that he should send a post card to

each of his sisters while still in Bergen. The web application supports the option

of finding things that is close to other types of things, which enables him to

search for all cafés that is nearby a post office. A search is made and a result is

presented. A category feature is used to mark the relevant options with colors.

Cafés are marked with the color red and the post offices are marked with blue.

He hides the items from the first search result and conducts a new one. How

 Lars Berg Hustveit

 99

many pubs area there in the Bergen area? He is just curious. A result is

presented. “That many…” he thinks before starting to walk again. Maybe he has

time to visit one of them as well.

As described through the two scenarios above, the tourist draws logical

conclusions from premises presented on the map like can be archived through

the design of the SemanticGeoBrowser. The tourist would have struggled to

draw the same conclusion by reviewing the same content presented as plain RDF

triples.

Discussion

In this design-science research study, I have made an effort to answer the

research question “how can we build a user-friendly Semantic Web browser that

enables its users to discover and explore geospatial things described in the Web of

data?” by constructing a proof of concept artifact. In order to support this

research question, a hypothesis was formed, which claims that “a thing browser,

like the SemanticGeoBrowser, will make it easier for humans to discover and

explore geospatial things described in the Web of data”. In the scope of the

research question and the hypothesis, a set of system requirements was

formulated to estimate what it would take for the proof of concept artifact to

solve the problem.

In order to determine this study’s and the artifact’s level of success, I would like

to review the results in the light of the requirements for effective design-science

research. These was introduced through the seven guidelines by Hevner et al.

(2004) in chapter 3, named “Method”.

In the light of guideline number one, “Design as an Artifact”, the outcome of this

design-science research has resulted in viable artifact. Like pointed out in this

guideline, the outcome of the conducted research has not resulted in a full-grown

information system that are ready for use in practice, but rather a proof of

concept artifact that is capable of doing what it is intended to do. The

SemanticGeoBrowser was designed with the purpose of presenting an innovative

 Lars Berg Hustveit

 100

solution to the problem addressed by the research question of this study. All

though the idea of a Semantic Web browser, or a thing browser, is a well-known

idea within the Semantic Web community, I have attempted to design an

innovative artifact by putting existing technologies and ideas into practice in

order to present my own contribution on the matter.

In the light of guideline number two, “Problem Relevance”, the problem

addressed by the research question of this study is a real problem. It is both

theoretically and practically addressed by other researchers and is therefore to

be considered as relevant to the Semantic Web community. As expressed in

chapter 1, named “Introduction”, in subchapter “Background”, the problem of

making it easy for humans to interact with the Semantic Web, is a wide problem.

The focus of this study has however been influenced by questions like the one

raised by Heath (2008), “What should a Semantic Web browser look like?”, which

narrows the scope of a foundational problem. The research question and

hypothesis has been defined with the goal of contributing to the Semantic Web

community’s ongoing search process of finding solutions to a difficult problem.

While the research question represents the before state of this study, the

hypothesis represents the goal state of the search process.

In the light of guideline number three, “Design Evaluation”, the

SemanticGeoBrowser was evaluated in terms of functionality in which it was

able to demonstrate. The functionality is represented by a set of system

requirements, which was proposed by me in chapter 1. During the iterative

development process of the artifact, the evaluation phase (in each iteration) was

based on the fulfillment of the proposed system requirements. The iterations

continued until all the system requirements were fulfilled. According to Hevner

et al. (2004, p.85), “a design artifact is complete and effective when it satisfies the

requirements and constraints of the problem it was meant to solve.” The proof of

concept artifact was then evaluated by one of the methodologies proposed by

Hevner et al. (2004, p.86), which is available in the design-science knowledge

base. The designed artifact was evaluated after the “descriptive” evaluation

method. This is firstly because I consider the SemanticGeoBrowser to be

 Lars Berg Hustveit

 101

innovative enough to justify this selection, but this research project was also

limited on time at the point of the conducting the evaluation. The descriptive

evaluation method is considered to be sufficient when it comes to demonstrate

the SemanticGeoBrowser’s utility.

In the light of guideline number four, “Research Contributions”, the outcome of

this study has resulted in one clear and verifiable research contribution, namely

the design artifact. The SemanticGeoBrowser, which applies existing knowledge

in a new and innovative way, represents a contribution to the Semantic Web

community, which has a wide heretofore unsolved problem on its agenda.

In the light of guideline number five, “Research Rigor”, the theoretical

foundations, research methodologies, and technology has during this study been

selected at the best of my ability. The selected scientific literature has been

relevant to the topic of this thesis and the methods applied to this design-science

research is believed to be rigorous and relevant as they have been suggested by

Hevner et al. (2004). When it comes to the construction of the artifact, the

selected technology and the code written has proven to be sufficient for solving

the tasks represented by the system requirements.

 In the light of guideline number six, “Design as a Search Process”, the

SemanticGeoBrowser was created through the use of the Generate/Test Cycle,

described in this guideline. Even though there were too many system

requirements in this project to make it feasible to focus on each of them through

several iterations, the repetition of measuring the artifact against the system

requirements gave a sense of progress.

In the light of guideline number seven, “Communication of Research”, the

outcome of this design-science research study will be made available to use by

anyone with access to the Web. This master thesis document will make the

results available to non-technical audiences, while the source code of the proof of

concept artifact will be made available for audiences with more technical skills.

The result of this study will therefore be available for practitioners to take

 Lars Berg Hustveit

 102

advantage of the benefits offered by the SemanticGeoBrowser, and researchers

will have the opportunity to use this work for further extension and evaluation.

 Lars Berg Hustveit

 103

Chapter 6

6 Conclusion and future work

This chapter will present a short summarization and a conclusion of this design-

science research study.

Conclusion

This design-science research study has demonstrated a concept of a design

artifact which addresses a problem recognized by the Semantic Web community.

The problem is that it is difficult for humans to browse the Semantic Web with a

general purposed web browser, which was originally designed for browsing a

Web of interlinked hypertext documents. Because the Web of data is woven

together with RDF triple statements that are designed for computer processing,

there is a need for Semantic Web browser tools that can help humans to explore

and make sense of the data.

The SemanticGeoBrowser is an effort to join the Semantic Web community in a

search for effective designs that can contribute to solving this issue. In order to

narrow the scope, the design artifact focuses on browsing RDF statements that

describe things as geospatial data.

The artifact was developed and evaluated through an iterative design-search

process, following the requirements for effective design-science research,

presented by Hevner et al. (2004). When it fulfilled a set of proposed system

requirements, the iterative search process ended, and the designed artifact was

evaluated after a “descriptive” evaluation method from the design-science

knowledge base.

In order to determine this study’s and the artifact’s level of success, the outcome

of the research was reviewed against the seven requirements for effective

design-science research, presented by Hevner et al. (2004). In regards to this

review, I have concluded that the conducted research meets these seven

 Lars Berg Hustveit

 104

requirements, and this study is therefore considered as a valid design-science

research.

In regards to the designed artifact’s level of success, the SemanticGeoBrowser

meets the proposed system requirements that were created in order to answer

the research question. As the two descriptive evaluations made suggest that the

proof of concept artifact demonstrates its utility design, which also align with the

supporting hypothesis made in this study, the research question is hereby

considered answered. The SemanticGeoBrowser demonstrates a prototype

solution on how to build a user-friendly Semantic Web browser that enables its

users to discover and explore geospatial things described in the Web of data.

Future work

This section will present some points on future work or research:

 The Semantic Web community will need more proof of concept artifacts

in order make progress on this issue.

 While the SemanticGeoBrowser is a working prototype, it is in need of

optimization and further development. The source code is open for

anyone to use and made publically available through GitHub.com.

 The SemanticGeoBrowser can also be subject for further evaluation by

other evaluation methods from the knowledge base from design-science

research.

 The Web of data is in need of more quality data, which describe things

with property facts.

 Lars Berg Hustveit

 105

References

Aaberge, T., 2012a. Interpretations of Formal Languages. Western Norway
Research Institute (WNRI).

Aaberge, T., 2011. Ontology Construction: Background and Practices. Western
Norway Research Institute (WNRI).

Aaberge, T., 2012b. Semantisk Sognefjord.no, Sogndal. Available at:
http://www.vestforsk.no/rapport/semantisk-sognefjord.no.

Amundsen, G., 2009a. Kritisk til kartverkets frislipp. Aftenposten. Available at:
http://www.aftenposten.no/digital/Kritisk-til-kartverkets-frislipp-
5590538.html [Accessed November 16, 2012].

Amundsen, G., 2009b. Statens kartverk frigir kartene sine. Aftenposten. Available
at: http://www.aftenposten.no/digital/nyheter/Statens-kartverk-frigir-
kartene-sine-6623090.html [Accessed November 16, 2012].

Andersen, R., 2009. About us. Norwegian Mapping Authority. Available at:
http://www.statkart.no/eng/Norwegian_Mapping_Authority/ [Accessed
November 15, 2012].

Anon, 2013a. About Sindice. Sindice.com. Available at:
http://sindice.com/main/about [Accessed January 14, 2013].

Anon, 2013b. Axiom. Wikipedia, the free encyclopedia. Available at:
http://en.wikipedia.org/wiki/Axiom [Accessed January 25, 2013].

Anon, 2012a. Encoded Polyline Algorithm Format. Google Developers. Available
at:
https://developers.google.com/maps/documentation/utilities/polylinealgo
rithm [Accessed November 21, 2012].

Anon, 2013c. Inference. The Free Dictionary. Available at:
http://www.thefreedictionary.com/inference [Accessed February 4, 2013].

Anon, 2012b. Same Origin Policy. World Wide Web Consortium. Available at:
http://www.w3.org/Security/wiki/Same_Origin_Policy [Accessed October
29, 2012].

Anon, 2013d. Sindice Cache API. Sindice.com. Available at:
http://sindice.com/developers/cacheapi [Accessed February 1, 2013].

Anon, 2013e. Sindice Search API. Sindice.com. Available at:
http://sindice.com/developers/searchapiv3 [Accessed February 1, 2013].

 Lars Berg Hustveit

 106

Anon, 2013f. SIREn: Efficient semi-structured Information Retrieval for Lucene.
Sindice.com. Available at: http://siren.sindice.com/ [Accessed March 4,
2013].

Anon, 2013g. XML. Wikipedia, the free encyclopedia. Available at:
http://no.wikipedia.org/wiki/XML [Accessed January 20, 2013].

Anon, 2009. XMLHttpRequest. World Wide Web Consortium. Available at:
http://www.w3.org/Security/wiki/XMLHttpRequest [Accessed October 29,
2012].

Anon, 2013h. XSLT. Wikipedia, the free encyclopedia. Available at:
http://en.wikipedia.org/wiki/XSLT [Accessed January 20, 2013].

Berners-Lee, T., 2006. Linked Data. World Wide Web Consortium. Available at:
http://www.w3.org/DesignIssues/LinkedData.html [Accessed December 7,
2012].

Berners-Lee, T. et al., 1998. RFC 2396 - Uniform Resource Identifiers (URI):
Generic Syntax. The Internet Society. Available at:
http://www.ietf.org/rfc/rfc2396.txt [Accessed December 17, 2012].

Berners-Lee, T., The WorldWideWeb browser. World Wide Web Consortium.
Available at: http://www.w3.org/People/Berners-
Lee/WorldWideWeb.html [Accessed January 2, 2013].

Berners-Lee, T. & Cailliau, R., 1990. WorldWideWeb: Proposal for a HyperText
Project. World Wide Web Consortium. Available at:
http://www.w3.org/Proposal.html [Accessed December 2, 2012].

Berners-Lee, T., Hendler, J. & Lassila, O., 2001. The Semantic Web K. Aberer et al.,
eds. Scientific American, 284(5), pp.34–43. Available at:
http://www.nature.com/doifinder/10.1038/scientificamerican0501-34.

Brombach, H., 2012. Frigitte kartdata bare egnet for papirkart. Aller Media AS.
Available at: http://www.digi.no/894644/frigitte-kartdata-bare-egnet-for-
papirkart [Accessed November 16, 2012].

Chapman, S., 2012. Ajax - Asynchronous or Synchronous. About.com. Available at:
http://javascript.about.com/od/ajax/a/ajaxasyn.htm [Accessed November
9, 2012].

Chng, P., 2008. Decoding Google Maps Encoded Polylines using PHP. Unitstep.net.
Available at: http://unitstep.net/blog/2008/08/02/decoding-google-maps-
encoded-polylines-using-php/ [Accessed November 23, 2012].

Cyganiak, R. et al., 2012. RDF 1.1 Concepts and Abstract Syntax. World Wide Web
Consortium. Available at: http://www.w3.org/TR/2012/WD-rdf11-
concepts-20120605/ [Accessed December 29, 2012].

 Lars Berg Hustveit

 107

Cyganiak, R., 2011. URIs vs. IRIs in Semantic Web standards and tools.
Semanticweb.com. Available at:
http://answers.semanticweb.com/questions/13076/uris-vs-iris-in-
semantic-web-standards-and-tools [Accessed December 29, 2012].

Denning, P.J., 1997. A New Social Contract for Research. Communications of the
ACM, 40(2), pp.132–134. Available at:
http://dl.acm.org/citation.cfm?id=253755.

Engeland, S., 2012. Kartverket frigir mer kartdata. Norwegian Mapping Authority.
Available at:
http://www.kartverket.no/Kartverket+frigir+mer+kartdata.d25-
SwZHQ0x.ips [Accessed November 15, 2012].

Genesereth, M.R. & Nilsson, N.J., 1987. Logical Foundations of Artificial
Intelligence, San Mateo, CA: Morgan Kaufmann Publishers.

Gruber, T.R., 1993. A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition, 5(2), pp.199–220.

Hausenblas, M., 2009. Exploiting Linked Data to Build Web Applications. IEEE
Internet Computing, 13(4), pp.68–73. Available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=516727
0.

Heath, T., 2008. How Will We Interact with the Web of Data?, IEEE. Available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=462009
9.

Heath, T. & Bizer, C., 2011. Linked Data: Evolving the Web into a Global Data
Space 1st ed. J. Hendler & F. Van Harmelen, eds., Morgan & Claypool.
Available at: http://linkeddatabook.com/editions/1.0/.

Hevner, A.R. et al., 2004. Design Science in Information Systems Research. MIS Q.,
28(1), pp.75–105. Available at:
http://dl.acm.org/citation.cfm?id=2017212.2017217.

Hirsch, T., 2011. WPS-services at Statens kartverk. Norwegian Mapping Authority,
p.5. Available at:
http://www.statkart.no/filestore/Landdivisjonen_ny/Kart_og_produkter/tv
isningstjenester/WPS_en_EN.pdf.

Ippolito, B., 2005. Remote JSON - JSONP. bob.ippoli.to. Available at:
http://bob.ippoli.to/archives/2005/12/05/remote-json-jsonp/ [Accessed
October 29, 2012].

Karger, D. & Schraefel, M.C., 2006. The Pathetic Fallacy of RDF. Semantic Web
User Interaction Workshop (SWUI 06). Available at:

 Lars Berg Hustveit

 108

http://swui.semanticweb.org/swui06/papers/Karger/Pathetic_Fallacy.htm
l [Accessed January 7, 2013].

Machi, D., 2012. Getting Jiggy with JSONP. Dojo Toolkit. Available at:
https://dojotoolkit.org/documentation/tutorials/1.6/jsonp/ [Accessed
October 29, 2012].

Simon, H.A., 1996. The Sciences of the Artificial, MIT Press. Available at:
http://books.google.com/books?id=k5Sr0nFw7psC.

Stadler, C., 2012. About. Agile Knowledge Engineering and Semantic Web (AKSW).
Available at: http://linkedgeodata.org/About [Accessed October 29, 2012].

Stadler, C. et al., 2012. LinkedGeoData: A Core for a Web of Spatial Open Data.
Semantic Web Journal. Available at: http://linkedgeodata.org/Publications.

Stadler, C. & Knibbe, F., 2011. Bounding Box geographical filter. Available at:
https://groups.google.com/forum/?fromgroups=#!topic/linked-geo-
data/BXuH45-IXdU [Accessed May 5, 2012].

Sternberg, R.J., 2009. Cognitive Psychology, Wadsworth.

Tsichritzis, D. & Metcalfe, R.M., 1998. “The Dynamics of Innovation” in Beyond
Calculation: The Next Fifty Years of Computing, New York: Copernicus Books.

Tummarello, G., Delbru, R. & Oren, E., 2007. Sindice.com: Weaving the open
linked data K Aberer et al., eds. Lecture Notes in Computer Science The
Semantic Web, 4825(4825), pp.552–565. Available at:
http://iswc2007.semanticweb.org/papers/547.pdf.

Verborgh, R., 2012a. Bringing reasoning to the Web. Multimedia Lab, Ghent
University. Available at: http://reasoning.restdesc.org/ [Accessed October
29, 2012].

Verborgh, R., 2012b. Semantic Web Reasoning With EYE, Executing rules.
Multimedia Lab, Ghent University. Available at:
http://n3.restdesc.org/rules/executing-rules/ [Accessed October 29, 2012].

Wikipedia, 2012. Deductive reasoning. Wikipedia, the free encyclopedia. Available
at: http://en.wikipedia.org/wiki/Deductive_reasoning [Accessed November
13, 2012].

Zalewski, M., 2009. Same-origin policy for XMLHttpRequest. Google. Available at:
http://code.google.com/p/browsersec/wiki/Part2#Same-
origin_policy_for_XMLHttpRequest [Accessed October 29, 2012].

 Lars Berg Hustveit

 109

Appendices

The source code of the SemanticGeoBrowser has been made publically available

for anyone to use through GitHub.com, a web-based hosting service for open

source projects. This code can be found and reviewed at the following URL:

https://github.com/hustveit/SemanticGeoBrowser

A live test version of the SemanticGeoBrowser can be found at the following URL:

http://SemanticGeoBrowser.com

The code of the scripts programmed for lifting data in this master thesis project,

and the lifted data, is also available for review through GitHub.com, by following

this URL:

https://github.com/hustveit/SemanticGeoBrowser.Data

The lifted data is also available through this SPARQL endpoint:

http://sognefjord.vestforsk.no:8890/sparql

https://github.com/hustveit/SemanticGeoBrowser
http://semanticgeobrowser.com/
https://github.com/hustveit/SemanticGeoBrowser.Data
http://sognefjord.vestforsk.no:8890/sparql

