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Seasonal and interannual variations of surface nutrients and hydrography data

obtained in period (1997-2010) by the Institute of Marine Research over three

transects: Fugløya-Bjørnøya, Gimsøy and Svinøy located in the Norwegian Sea

have been studied. The results over the Fugløya-Bjørnøya transect show good

signature of the seasonal cycle of nitrate and temperature reflecting both bloom

and post-bloom periods. The Gimsøy transect shows a weak seasonal cycle of

nitrate and temperature in the outer part because there is no enough data during

the bloom and post-bloom period. But the middle and inner part show good

seasonal cycle of nitrate and temperature during the two periods. Finally, the

Svinøy transect shows good seasonal cycle of nitrate and temperature during the

bloom and post-bloom. The results over the three transects do not reveal much

information on the interannual variations of temperature, salinity and nitrate.

This due to the changes in the timing of the cruise. Also the availability of

information is short over three transects.
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Chapter 1
Introduction

Marine primary production and its seasonal and interannual variations has been

the subject to extensive studies. This is because it is the foundation of the food

chain of the ocean, and plays an important role in the carbon dioxide cycle, thus the

climate change. Phytoplankton is the main manufacturer of pelagic marine waters,

an essential part of the marine food web, thus the entire ecosystem, affecting fishery

resources, nutrients cycling, trophic dynamics, and habitat conditions (Paerl et al.,

2003). Additionally, plankton show strong response to environmental variations,

making them good indicators of environmental disturbance (Hays et al., 2005).

The important ecosystems around the world are the coastal upwelling regions,

and the high latitude regions where the spring bloom is found (Mann and Lazier,

2006). The Nordic Seas are one of these important ecosystems (Mann and Lazier,

2006). The main work of my thesis concerns the Norwegian Sea, and specifically

the seasonal spring bloom and its interannual variations in the Norwegian Atlantic

Current (NAC) and Norwegian coastal current (NCC) along the Norwegian coast.

This done by evaluating hydrographic and nutrients, using data obtained at three

transects perpendicular to the Norwegian coast.

1.1 Physical Setting

The global ocean circulation is dominated by the thermohaline circulation (see

Figure 1.1), also known as the Great Conveyor Belt (Broecker, 1991). It is con-

sidered as large scale processing around the world. The Nordic Seas is one of the

few places where deep water is formed, is considered as key area for thermohaline

1
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circulation (Clark et al., 2002). The warm Atlantic current moves northward to

high latitude, losing heat to atmosphere and become dense enough to sink down as

deep cold water. In the Indian Ocean the cold water comes up through upwelling

to make balance with other cold water comes down. This also happens in the

Pacific Ocean. As the result these entire processing make the oceans ventilated

and bring up high nutrients for the biological processes (Dorritie, 2004).

Figure 1.1: The thermohaline circulation, red arrows show shallower and warm
water, blue arrows show deep and cold water (NESTA, 2012).

1.1.1 Bathymetry of the Nordic Seas

The bathymetry of the Nordic Seas is shown in Figure 1.2. Nordic Seas consist

of three seas named according to lands boarding the region, which are Norway,

Iceland, and Greenland (Blindheim and Osterhus, 2005). It connects with Arctic

Ocean to the north, through the Fram Strait with a sill depth of 2600 m. To

the south, the Greenland Scotland Ridge connects it to North Atlantic Ocean

(Blindheim and Osterhus, 2005). The Nordic Seas contain four basins two of them
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are to the north and west of the mid-ocean ridge; they are named Boreas basin

with depth of 3200 m and Greenland basin with depth 3400 to 3600 m in the

Greenland Sea (Blindheim and Osterhus, 2005). The two other basins are found

to the south in the Norwegian Sea they are named Norwegian basin with a depth

of more than 2200 m deep m and Lofoten basin, about 3200 m deep (Blindheim

and Osterhus, 2005).

Figure 1.2: Bathymetry maps of the Nordic Seas from (Blindheim and Oster-
hus, 2005).

The Mohn ridge separates the Lofoten basin from the Greenland basin. In addition

there are two plateaus, one of them is located off Greenland, to the east, and it is

called the Iceland plateau, the other is called the Vøring Plateau, located eastward

from the Norway, and bordered by the Lofoten basin to the north and Norwegian

basin to the south (Blindheim and Osterhus, 2005).
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1.1.2 Water Masses and Circulation of the Nordic Seas

In the Nordic Seas there are four main surface water masses: (i) the Atlantic

water (AW) to the east which flows northwards to the Arctic Ocean, (ii) the

Polar Water to the west that flows southwards from the Arctic Ocean, the mixing

product between these constitutes the (iii) water mass Arctic Water (ArW), and

all the way to the east, along the Norwegian Continental shelf we find (iv) Coastal

Water, flowing northwards in the Norwegian Coastal Current (NCC) (Blindheim

and Osterhus, 2005). In the Nordic Seas from the south to the north we have

warm water known as Atlantic water with high salinity around 35 and 35.26 and

temperature between 3◦C and 4◦C (Blindheim and Osterhus, 2005). On the other

hand from south to the east of Greenland we have cold water known as polar water

to the west coming from Arctic Water with salinity low than 34.2 (Blindheim and

Osterhus, 2005). Moreover and between these, and result of mixing the Norwegian

Sea Arctic Intermediate water is formed and flow from the south to the north

with salinity below 34.89 (Blindheim and Osterhus, 2005). The current circulation

track from the Atlantic Ocean northward to the Nordic Seas was dominated by the

weather change (Blindheim and Osterhus, 2005). There are three location of North

Atlantic Ocean inflow to the Nordic Seas (Blindheim and Osterhus, 2005). The

flow over the eastern Denmark Strait is known as North Icelandic Irminger Current.

The second flow across the Iceland-Faroe Ridge is known as the Faroe Current

(Blindheim and Osterhus, 2005). The last flow is over the Faroe Shetland Channel

Know as Atlantic Inflow (Blindheim and Osterhus, 2005). On the other hand most

of waters continue into Norwegian Basin which oncoming the Vøring Plateau, its

transition northwest toward Jan Mayen (Blindheim and Osterhus, 2005). Atlantic

Water from the West Spitsbergen may current deflect into the northern Greenland

Basin and Boreas Basin (Blindheim and Osterhus, 2005). Moreover the water

masses in the Nordic seas were resulted due to their contacting with many different

waters.

1.2 Biological Features

Phytoplankton is the first type of organism, a single cell in the marine food web.

Through photosynthesis these organisms combine nutrients (nitrate, phosphate),

and carbon dioxide into organic compounds. Primary production sustains the

global marine ecosystem and its harvest-ability (Marine Odyssey, 2012). Primary
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production is also important for the oceans ability to store carbon dioxide. The

exchange of carbon dioxide between the atmosphere and ocean depends on the con-

centration of CO2 on the ocean surface (McKinley et al., 2011). Phytoplankton

consumes carbon dioxide which reduces the concentration of CO2 in the surface

waters, driving a flux of CO2 from the atmosphere and into the ocean to make

equilibrium between the air and water (McKinley et al., 2011). The most impor-

tant global patterns of marine primary production follow similar patterns as the

quantity and distribution of light and nutrients (Mann and Lazier, 2006). There

are three main types of regions, the tropical regions, the subtropical regions, and

the sub-polar regions (Mann and Lazier, 2006). The oligotrophic tropical regions

are where the exchange of nutrient is limited by pycnocline, which implies low

rate of production in the surface layer due to low nutrients (Mann and Lazier,

2006). The other source of nitrate is nitrogen regenerated by the grazers (Mann

and Lazier, 2006). The feature of oligotrophic is that appears little seasonal vari-

ability, and high stability of water column (Mann and Lazier, 2006). On the other

hand trade wind at equator is carrying to west and increase the flow in the mixed

layer alongside this direction (Vinogradov, 1981). In this area the Coriolis force

has important role that can cause deflection of westward currents to the north

whereas the westward currents in south turned to south (Mann and Lazier, 2006).

These processes are known as equatorial upwelling. The water from the deep ocean

is nutrients rich and phytoplankton poor (Mann and Lazier, 2006). The subtrop-

ical region appears between the sub-polar and tropical regions, and according to

Longhurst et al. (1995) there are many subtropical areas, covering approximately

half the area of the world ocean (Mann and Lazier, 2006). Moreover there is a

short period in winter when deep mixing refills the upper layer with nutrients.

The phytoplankton in the subtropical system is never light limited, is nutrients

limited most of year (Mann and Lazier, 2006). The sub-polar region lies between

50◦N and 70◦N. When we move to northwards, the downward mixing by convec-

tion cooled water at the surface of the ocean addition to wind-driven turbulence

to make deeper mixed layer in the winter season (Mann and Lazier, 2006). The

turbulence induces nutrients to the euphotic zone (Mann and Lazier, 2006). Also

the phytoplankton cells are sinking deeper and deeper and spend long time under

the euphotic zone, while the photosynthesis is surpassed by the respiration (Mann

and Lazier, 2006). Ultimately in the spring the mixed layer becomes shallower

and the phytoplankton cells is trapped over the pycnocline and spend more time

in the euphotic zone thus great blew up of phytoplankton that known as spring

bloom (Mann and Lazier, 2006).
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1.2.1 The Norwegian Sea Ecosystem

The Norwegian Sea is one of the richest and highly productive ecosystems of the

world oceans (see Figure 1.3). This high productivity is due to the spring bloom

which occurs through phytoplankton trapped in the shallower mixed layer rich

with nutrients obtained from the deep ocean where the nutrients accumulated in

the winter. In the Nordic Seas the hydrographic Features of the natural borders

(Arctic and Coastal fronts in the Norwegian Sea and the Polar Front in the Barents

Sea) are important matter when we going in the ecosystem composition (Fossheim

et al., 2006). Also the topography effects on the ecosystem composition (Loeng

and Drinkwater, 2007).

Figure 1.3: The global primary production include the Norwegian Sea pro-
ductivity (SeaWiFS Project, 2012).

The Norwegian Sea has a short food chain that contains phytoplankton, zooplank-

ton, and fish (Loeng and Drinkwater, 2007). The most important phytoplankton

types that exist in the Norwegian Sea are diatoms, dinoflagellates and coccolith-

phorids (Rey, 2004). Diatoms are starting the production in early March through

April (Rey, 2004). Diatoms controlls the spring bloom at the beginning of bloom.
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Later the flagellates like phaeocystispouchetii that controlled the phytoplank-

ton (Rey, 2004). The most important zooplankton group in the Norwegian Sea

ecosystem are called copepods (Melle et al., 2004). The main copepod is the

Calanusfinmarchicus and does grazing on the spring bloom (Niehoff et al., 2000).

The third element of the Norwegian food chain is represented by Atlantic herring,

capelin, Atlantic cod saithe and blue whiting (Rey, 2004).

1.2.2 Primary Production in the Nordic Seas

Oceans and seas on the earth contain in their interior, many of the biological sys-

tems and biodiversity, which are part of the overall system on the earth, where

they have active roles in the changes of climate. There are several factors that

control the process of primary productivity in the oceans, which varies with the

geographic location (Sarmiento and Gruber, 2006). In the Nordic Seas the factors

that dominate the primary productivity are light, temperature, and nutrients sup-

ply (Skogen et al., 2007). In addition grazing is considered one of the factors that

effect on primary productivity (Skogen et al., 2007). Sea ice melting also effects

primary productivity in the Nordic Seas (Skogen et al., 2007). Ryther (1956) ob-

served that the light becomes a limiting factor for phytoplankton development in

winter, thus low biomass of chlorophyll-a. The depth of the mixed layer is at its

maximum in February, deeper than 100 m, till the end of April (Mann and Lazier,

2006). Johannessen and Gade (1984) assumed that the phytoplankton population

was conserved low result to deep vertical mixing. There is no indication of ther-

mal stratification in April (Mann and Lazier, 2006). The wind induces the vertical

mixing (Skjoldal et al., 1993). The grazing may have a clear impact on the spring

bloom in areas with delayed thermal stratification (Dale et al., 1999).





Chapter 2
Data and Methods

2.1 Hydrographic Data

The hydrographic data that were used in this thesis are temperature, salinity, and

nitrate (NO−1
3 ). In this thesis data from the years 1997-2010 were used. The data

were obtained by the Norwegian Institute of Marine Research (IMR) on three of

their repeat hydrography transects: The Fugløya-Bjørnøya transect in the Bar-

ents Sea, the Gimsøy transect in the Lofoten Basin, and the Svinøy transect in

the Norwegian Basin. The three transects are shown on the map and perpen-

dicular along the Norway coast (see Figure 2.1). Water samples were collected

throughout the water column and then put in the polyethylene vials chloroform to

prevent samples from change (Olsen, 2002). The instrument used to analyze the

water samples is called Auto analyzer, and was set up to standard methods. And

it is designed to determination the nutrient salts in sea water (Folkard, 1978). The

basic concept of the nitrate, phosphate analysis includes reduction of the nutri-

ent targeted Cd-column and addition of known amount from reagents have ability

to produce complex compound with color that can be detected by spectropho-

tometer instrument at known wavelength (Grasshoff et al., 1999). The amount of

produced colored compounds is proportional to the nutrient salt analyte existing

in the solution (Hydes et al., 2010). As shown in (Figure 2.1) each of the three

transects cover the main paths of the Atlantic water (AW) shown with bold red

line beside the Norwegian Coastal Current with bold yellow line and their front

with dashed orange line. Also the Atlantic water and Arctic water with bold violet

line representing the Arctic front from the other side to the west. More further its

9
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shows the front of Arctic Water comes out to the west and in other time comes

in to the east. At each section the average values in the upper ten meters for

an outer, middle and inner part were determined. The limits between these were

based on general knowledge of the hydrography aiming to capture regions domi-

nated by Coastal and Atlantic waters for the inner and middle parts, respectively,

(see Figure 2.2). In the outer parts there may be additional influence of Arctic

surface waters in at the Svinøy and Gimsøy transects, and of Polar Water at the

Fugløya-Bjørnøya transect. From (Table 2.1), at the Fugløya-Bjørnøya transect

the outer part is north of 73◦N, the middle part between 72.0◦N and 73◦N, and

the inner part between 70.50◦N and 72.0◦N. On the Gimsøy transect, the outer

part is north of 70.00◦N, the middle part between 69.0◦N and 70.00◦N, and the

inner part between 68.40◦N and 69.0◦N. On the Svinøy transect the outer part is

north of 64.00◦N, the middle part between 63.00◦N and 64.00◦N, and the inner

part between 62.40◦N and 63.00◦N.

Table 2.1: limits of parts in degrees north.

Name of transect Outer part Middle Part Inner Part

Fugløya–Bjørnøya 73 – 74.26 72.0 – 73.0 70.5 – 72
Gimsøy 70 – 70.41 69.0 – 70.0 68.4 – 69
Svinøy 64 – 64.70 63.0 – 64.0 62.4 – 63

Figure 2.1: Map of the Nordic seas illustrating the Norwegian Sea with three
transects, the yellow line shows the Norwegian Coastal Current, the orange line
shows the Atlantic Water, the dashed red line shows the front between these,
and the dashed black line shows the front between the Atlantic Water and the

Arctic Water (Arc W).
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Figure 2.2: The Norwegian Sea including transects, Fugløya-Bjørnøya in the
North, Gimsøy in the Middle, Svinøy in the south of Norway respectively. Each
transect split into three boxes named from onshore to offshore, inner part, mid-

dle part, and outer part.

Figure 2.3 illustrates the spatial and temporal distribution of the data. The distri-

bution of the stations is different from one transect to another, and every transect

is divided to three parts as shown with horizontal red lines at Fugløya-Bjørnøya,

horizontal orange lines at Gimsøy, and horizontal green lines at Svinøy. In the

Fugløya-Bjørnøya transect the number of hydrographic measurements in the outer

part is large compared with the outer in the Gimsøy and Svinøy.
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Figure 2.3: Temporal and spatial distribution of the stations, (a) Fugløya-
Bjørnøya (b) Gimsøy and (c) Svinøy.



Chapter 3
Results and Discussion

3.1 Fugløya-Bjørnøya Transect

3.1.1 Seasonal Cycle at the Fugløya-Bjørnøya Transect

Outer Part

Definition of the phytoplankton bloom is a “high concentration of phytoplankton

in an area, caused by increased reproduction; [this] often produces discoloration of

the water” (Garrison, 2005). The seasonal development of temperature, salinity

and nitrate at the outer part of Fugløya-Bjørnøya transect located between70.5◦N

and 71.0◦N is shown in (Figure 3.1) where the average of hydrographic data have

been taken from the outer stations for different cruises for all years have been

combined on a single time axis. The data have been collected, covering for most

part the time periods from the bloom until the post bloom phase. Where the

bloom defined as a time of the nitrate has started to decrease in the early of

spring. And the post-bloom defined as the time period following the bloom period

when the nitrate is almost depleted during summer. The temperature and nutrient

concentration show a clear and high repeated seasonal cycle, (see Figure 3.1). Up

until day 100 low temperature indicate that winter situation prevails, with salinity

quite stable at values normally above 34.7 indicating the presence of polar water

and high nitrate concentrations (>9.6 µmol/kg). In the period between days

100 and 200, (see Table 3.1), the sea surface temperatures increases from 3◦C to

7◦C, while the waters become depleted in nitrate. During the bloom period the

13
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temperature increases, with the almost stable salinity, it indicates that the bloom

caused mainly by heating. It is evidence to be the same result obtained from

(Olsen et al., 2003). The lowest concentration of nitrate is found during period

between days 200 and 250 (see Table 3.1), this is the post-bloom period, because

most of the nutrients, including nitrate, have been consumed by phytoplankton

during the bloom period. After day 250, we move to the fall situation, which will

finally tend to the winter situation.

Figure 3.1: The average temperature, salinity and concentration of nitrate in
the upper 10 m in the outer part of the Fugløya-Bjørnøya transect versus the

year day.

The average value of salinity in the outer part during the bloom period is about 35

indicate that this water mass of Atlantic Water. Despite of during the post-bloom

period appears two water masses, Atlantic Water and Polar Water are dominant
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in this period. In one year we observe salinity as low as 32.6. This is may be due

to Polar Water.

Middle Part

The seasonal cycles of average temperature, salinity, and concentration of nitrate

in the middle part of Fugløya-Bjørnøya transect are shown in (Figure 3.2) where

the average of data from the middle stations for different cruises for all years have

been combined on a single time axis. The temperature and nutrient concentra-

tions in the middle part of Fugløya-Bjørnøya show obvious and higher repeated

seasonal cycle. Up till day 127, the winter situation prevails and the water col-

umn homogenous while salinity average around 35.0. In this part of the Fugløya-

Bjørnøya transect days 127 appears to demark the start of the spring bloom (see

Table 3.1), and until day 200 the surface waters warm from 2.6◦C to 7.0◦C, while

concentrations of nitrate drop from 10.0 to 4.7 µmol/kg. And through the bloom

period there appears to be an overall slight decline in salinity and quite low values,

down to 34.6 have been encountered in the post bloom phase, which we define as

occurring between day 200 and 250 (see Table 3.1). The salinity average in the

middle part is about 34.9 referred to Atlantic Water.

Inner Part

The seasonal cycle of average temperature, salinity, and concentration of nitrate

in the inner part of Fugløya-Bjørnøya transect are shown in (Figure 3.3) where the

average of data from the inner stations for different cruises for all years have been

combined on a single time axis. The temperature and nitrate show a clear seasonal

cycle as depicted in (Figure 3.3). Up until year day 140 the winter situation

prevails, also we can see high values of salinity around 34.5 and nitrate around

10 µmol/kg. Days 140 to 200 demark the spring bloom, and the temperature

increases, with quite stable in the salinity while nitrate increases (see Table 3.1).

The period between days 200 to 250 is recognized as post-bloom period, with

nitrate around 0.02 to 0.5 µmol/kg. We can see appreciably high temperatures

compare to the bloom period in the three parts. Also we can observe considerably

low concentration of nitrate in the post-bloom period is caused by phytoplankton

productivity. The salinity in the post-bloom period is relatively low. This is

perhaps due the high amounts of Coastal Water.
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Figure 3.2: The average temperature, salinity and concentration of nitrate in
the upper 10 m in the middle part of the Fugløya-Bjørnøya transect versus the

year day.

Shortly after days 250, the fall situation prevails, in this period we can see no-

ticeable decreases in temperature and increasing of nitrate concentration. We can

summarize sequences of seasonality of three parts in Fugløya Bjørnøya transect,

the bloom started in the outer part earlier than in middle part, and in the middle

part earlier than in inner part with a little bit different in the mean values of tem-

perature, salinity, and nitrate. The post-bloom sets in all parts almost at same

time period. From the salinity average about 34.5 (see Figure 3.3), we can infer

that water mass is referred to Norwegian Coastal Water.

Finally, in the outer part the bloom is supported by increasing up of temperature.

Also the bloom in the middle part is supported by increasing of temperature and
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Figure 3.3: The average temperature, salinity and concentration of nitrate in
the upper 10 m in the inner part of the Fugløya-Bjørnøya transect versus the

year day.

also is affected by decreasing of salinity due to amounts of coastal water. The

bloom in the inner part is supported by increasing of the temperature.

Table 3.1: Bloom and post-bloom periods at the three parts of Fugløya-
Bjørnøya transect.

Parts Bloom Post–bloom

Outer 100 – 200 200 – 250
Middle 127 – 200 200 – 250
Inner 140 – 200 200 – 250
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3.1.2 Interannual Variability at the Fugløya-Bjørnøya Tran-

sect

Outer Part

Hydrography and Nutrients Versus Year Day

We can see from (Figure 3.4a), in the outer part of Fugløya–Bjørnøya transect,

the concentration of nitrate versus year has decreases systematically with strong

correlation 0.73 during the bloom period. This indicates that the growing of

bloom has increased regularly along the year. From (Figure 3.4a), it can be seen

high correlation between the temperatures versus the year day is equal to 0.63

during the bloom period. This indicates that the temperature increases to create

conditions suitable for growth of the phytoplankton bloom, and the bloom depends

on heating. At the end, from (Figure 3.4a), the correlation of salinity versus the

year day does not show any relation; result of weak correlation is equal to 0.1

in the bloom period. In view of post-bloom period in (Figure 3.4b), we find

moderate correlation 0.4 of the salinity versus year day in the outer part. But the

temperature and the nitrate do not show correlation 0.06 and 0.01 respectively.

Temperature and Salinity Versus Nitrate

Figure 3.5 represents the correlation of nitrate versus the sea surface temperature

(SST), and the sea surface salinity (SSS) during the bloom (a) and post-bloom

(b) period. At the beginning, in the outer part, we can observe there is moderate

relation 0.41 between the (SST) and nitrate concentration. This makes sense that

temperature has caused the bloom at this time. Furthermore, the correlation

between (SSS) with nitrate concentration is non-exist, 0.0063, during the bloom

period (see Figure 3.5a). Afterwards in the post-bloom period (see Figure 3.5b)

the relationship is non-exist, 0.063, between the nitrate and (SSS), but straight

away with (SST) and the nitrate can be seen as poor correlation equal to 0.2.
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(a) (b)

Figure 3.4: The correlations of average temperature, salinity and nitrate re-
spectively during the (a) bloom and (b) post-bloom periods versus year day in

the outer part of Fugløya-Bjørnøya transect.

Middle Part

Hydrography and Nutrients Versus Year Day

In the middle part of Fugløya-Bjørnøya transect, there are strong correlations of

nitrate, and temperature versus year day, equal to 0.75 and 0.71, respectively,

in the bloom period as shown in (Figure 3.6a). This indicate that, blooming is

utilized nitrate and stimulate by temperature (phytoplankton bloom has caused

by heating). The salinity correlation versus year day, shown in (Figure 3.6a),

is weak, about 0.1 in the bloom period. The post-bloom of the middle part in

Fugløya-Bjørnøya transect (see Figure 3.6b) shows that, there are no correlations
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(a) (b)

Figure 3.5: Correlations of the concentration of nitrate versus the sea surface
temperature, and the concentration of nitrate versus the sea surface salinity in
the upper 10 meter as observed in the outer part of Fugløya-Bjørnøya transect,

at cruises carried out during the bloom (a) and post-bloom (b) periods.

between nitrate, temperature versus year day. while the salinity versus year day

(see Figure 3.6b) shows weak correlation.

Temperature and Salinity Versus Nitrate

Figure 3.7 shows correlation of nitrate versus sea surface temperature (SST), and

sea surface salinity (SSS) during the bloom (a) and the post-bloom (b) periods.

Firstly, from (Figure 3.7a), the correlation between nitrate and (SST) is reasonably

good during the bloom period, it reaches about 0.6, this indicate that the heating

have caused the bloom. The increased of the sea surface temperature (heating)

leads to increase the phytoplankton productivity. This situation result of nitrate

depleted by phytoplankton uptake. The correlation of (SSS) versus nitrate (see

Figure 3.7b) is poor 0.3, this maybe approve that the bloom is caused by heating

instead of freshening is the same as the outer part. The same scenario exactly,
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appeared between the (SST) and nitrate with correlation approximately 0.5 con-

siderably moderate, associated with heating domination during the post-bloom.

The correlation between nitrate and (SSS) were non-exist during the post-bloom

period. It is noticed from the results of middle part that heating caused the bloom

of phytoplankton.

(a) (b)

Figure 3.6: The correlations of average temperature, salinity and nitrate re-
spectively during the (a) bloom and (b) post-bloom periods versus year day in

the middle part of Fugløya-Bjørnøya transect.
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(a) (b)

Figure 3.7: Correlations of the concentration of nitrate versus the sea surface
temperature, and the concentration of nitrate versus the sea surface salinity in
the upper 10 meter as observed in the middle part of Fugløya-Bjørnøya transect,

at cruises carried out during the bloom (a) and post-bloom (b) periods.

Inner Part

Hydrography and Nutrients Versus Year Day

In order to show what happened in the inner part of Fugløya-Bjørnøya transect.

Figure 3.8a, nitrate and temperature show strong correlation versus year day,

equal to 0.81, 0.63, respectively. Considering salinity in the inner part of Fugløya-

Bjørnøya transect (see Figure 3.8a), its show non-existent correlation versus year

day. During the post-bloom period in the inner part of Fugløya-Bjørnøya tran-

sect, weak correlation of Nitrate 0.3, temperature 0.11, respectively versus year

day can be observed (see Figure 3.8b). The correlation between salinity and year

day (see Figure 3.8b) is non-existent. This is because in the post-bloom the tem-

perature in the highest values and then it is drop down, and nitrate at this time is

approximately depleted. It could be concluded that three of the parts in Fugløya-

Bjørnøya transect were plotted their hydrographic data versus year day. It should

be noted that when temperature have good correlation with days of year that is
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means the heating is increased through year and make good suitable condition for

phytoplankton bloom. Also it means bloom caused by heating. The same with

when the nitrate have good correlation with year day that means nitrate has been

utilized by phytoplankton bloom to show strong bloom.

Temperature and Salinity Versus Nitrate

The inner part show good correlations of sea surface temperature versus nitrate

concentration 0.6, and poor correlation of sea surface salinity versus nitrate con-

centration 0.23 as shown in (Figure 3.9a). This it can be considered appreciable

correlation for the nitrate versus temperature and evident that the heating caused

the bloom in this period. during the post-bloom period, (see Figure 3.9b), temper-

ature correlation coefficient with nitrate is poor 0.2, but it is significant. Moreover,

we can see very good correlation coefficient of salinity versus nitrate 0.7. This ob-

servations indicate that the bloom caused by heating during the bloom in the inner

part.

3.2 Gimsøy Transect

3.2.1 Seasonal Cycle at the Gimsøy Transect

Outer Part

The seasonal development of temperature, salinity and nitrate at the outer part of

the Gimsøy transect shown in (Figure 3.10). Only few data have been collected,

(see Figure 2.3b), covering for the most part the time periods until the post bloom

phase. This is because the Gimsøy transect is normally cut short at 70.41◦N,

whereas we start this part at 68.4◦N. Until day 120 a winter situation prevails,

with salinity quite stable at values normally above 35.1 are high, indicating the

presence of Atlantic Water. Nitrate concentrations 10 µmol/kg. Over the time

period from day 120 to 185, (see Table 3.2) the surface temperatures increase by

almost 6 degrees, from 6◦C to 12◦C, while the waters become depleted in nitrate.

From the few data that exits in this region, the post-bloom period appears to

be limited to within days 185 and 250, (see Table 3.2). The surface waters are

depleted of nitrate in this time period, and in some years, lower salinities are
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(a) (b)

Figure 3.8: The correlations of average nitrate, temperature, and salinity
respectively during the (a) bloom and (b) post-bloom periods versus year day

in the inner part of Fugløya-Bjørnøya transect.

observed, indicating the presence of lower salinity Arctic Water. The bloom has

induced by the heating over the outer part. The average value of salinity of 35.0

indicate that this water mass is Atlantic Water.

Middle

The seasonal development of average temperature, salinity and concentration of

nitrate in the middle part of Gimsøy transect are shown in (Figure 3.11). Also in

this part of the Gimsøy transect, day 120 appears to demark the start of the spring
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(a) (b)

Figure 3.9: Correlations of the concentration of nitrate versus the sea surface
temperature, and the concentration of nitrate versus the sea surface salinity in
the upper 10 meter as observed in the inner part of Fugløya-Bjørnøya transect,

at cruises carried out during the bloom (a) and post-bloom (b) periods.

bloom, and until day 180, (see Table 3.2) the surface waters warms from about

6.4◦C to 9.3◦C, while concentrations of nitrate drops from about 8.8 µmol/kg to

1.1 µmol/kg. In one year salinity drops below 35 in winter, maybe due to the

coastal water, and through the bloom period there appears to be an overall slight

decline in salinity and quite low values, down to 34.5 have been encountered in

the post bloom period, which we define as occurring between day 180 and 250,

(see Table 3.2).

In one year we observe salinity as low as 33.2. This is maybe due the coastal water.

Nutrients are not typically depleted in the post-bloom phase, nitrate concentra-

tions seem to lie between 0 and almost 2 µmol/kg (see Figure 3.11), there is no

any consequence between the salinity and temperature versus the nitrate during

the post-bloom period. These explain that bloom has caused by heating also in

this part. The average salinity value about 34.9 is referred as the Atlantic Water

but in some years is below 34.7 might be due to the coastal water.
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Figure 3.10: The average temperature, salinity and concentration of nitrate
in the upper 10 m in the outer part of the Gimsøy transect versus the year day.

Inner Part

The seasonal development of average temperature, salinity and concentration of

nitrate in the inner part of Gimsøy transect are showon in (Figure 3.12), where the

average of hydrographic data have been taken from the inner stations for different

cruises for all years and been combined on a single time axis. The temperature and

nitrate show a clear seasonal cycle, illustrated in (Figure 3.12). Up until day 120

the winter state prevails with low temperature and high nutrients concentration.

This is followed the spring bloom period between days 120 and 190, (see Table

3.2), when temperature rise and the nutrient concentrations begin to decrease.

The rising temperatures and the stable salinity reveal that heating is the main
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mechanism causing the stratification of the water column that triggers the bloom

(Sverdrup, 1953). As depicted in (Table 3.2), between days 190 and 250, there is

a post-bloom period when the nitrate concentrations are very low. After day 250,

temperatures again begin to decrease and the nutrient concentrations increase,

because in this time might be there is a high amount of run-off water come from

fjord and at the same time nutrient comes from vertical mixing as it moves into

the fall and winter situation. Early in the fall the salinities are lower than during

the rest of the year. This is explaining by high runoff water from fjords. From

the salinity average about 34.0, (see Figure 3.12), we can infer that water mass is

Norwegian Coastal Water.

Figure 3.11: The average temperature, salinity and concentration of nitrate
in the upper 10 m in the middle part of the Gimsøy transect versus the year

day.
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Figure 3.12: The average of temperature, salinity and concentration of nitrate
in the upper 10 m in the inner part of the Gimsøy transect versus the year day.

Table 3.2: Bloom and post-bloom periods at the three parts of Gimsøy tran-
sect.

Parts Bloom Post–bloom

Outer 120 – 185 185 – 250
Middle 120 – 180 180 – 250
Inner 120 – 190 190 – 250
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3.2.2 Interannual Variability at the Gimsøy Transect

Outer Part

Hydrography and Nutrients Versus Year Day

Figure 3.13 shows the hydrographic and nutrients data versus year day. during

the bloom period (a) there is no obvious relationship between the hydrographic

data and year day, also during the post-bloom (b) is similar. This is may be due

to many factors, including eddies effect on the distribution of the nutrients and

temperature at the sea surface (Andersson et al., 2011). This is explain why we got

unsystematically changes between year day with temperature, nitrate and salinity

respectively during the bloom (see Figure 3.13a) and post-bloom (see Figure 3.13b)

periods. Also there is no enough data to make complete analysis.

Temperature and Salinity Versus Nitrate

Figure 3.14, do not show correlation of temperature versus nitrate during the

bloom period while salinity versus nitrate show reasonably correlation about 0.5

(see Figure 3.14a). During the post-bloom period the temperature versus nitrate

show strong correlation compared with salinity do not show correlation (see Figure

3.14b). At the end, it is difficult to conclude that bloom caused by freshening,

whereas the further development into the post-bloom phase appears controlled by

heating. Also there is no enough data to make complete analysis.

Middle Part

Hydrography and Nutrients Versus Year Day

In the middle part of Gimsøy transect is shown in (Figure 3.15a), we can see good

correlation between the temperatures versus year day during the bloom period,

indicate that it is increasing progressively from spring into summer due to solar

heating of the sea surface. However the salinity do not show any relationship with

year day in the middle part of Gimsøy transect during the bloom. And the nitrate

shows weak correlation during the bloom. During the post-bloom period in the

middle part nitrate, salinity and temperature also do not show any correlation
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(a) (b)

Figure 3.13: The correlations of average temperature, salinity and nitrate
respectively during the (a) bloom and (b) post-bloom periods versus year day

in the outer part of Gimsøy transect.

with year day. this reveals two regimes with high and low values of nitrate during

the post-bloom . This might be result of nutrient consumed during the bloom

period, and also may be due to high grazing.

Temperature and Salinity Versus Nitrate

Figure 3.16 temperature and nitrate are not correlated during the bloom period.

And the nitrate versus the salinity show weak correlation coefficient about 0.44,
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(a) (b)

Figure 3.14: Correlations of the concentration of nitrate versus the sea surface
temperature, and the concentration of nitrate versus the sea surface salinity in
the upper 10 meter as observed in the outer part of Gimsøy transect, at cruises

carried out during the bloom (a) and post-bloom (b) periods.

(see Figure 3.16a). but during the post-bloom period (see Figure 3.16b) temper-

ature and salinity do not show any correlation. Also there are two regimes of

different nitrate concentration might be caused by high grazing.

Inner Part

Hydrography and Nutrients Versus Year Day

In the inner part of Gimsøy transect shown in (Figure 3.17), illustrates the temper-

ature, salinity and nitrate versus year day during the bloom period. The tempera-

ture and nitrate versus year day show weak correlation 0.44 and 0.25 respectively

during the bloom period (see Figure 3.17a). But the salinity do not show any

correlation. Also from (Figure 3.17b) we can see similar scenario of temperature,

nitrate and salinity do not display correlation with year day during the post-bloom
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(a) (b)

Figure 3.15: The correlations of average temperature, salinity and nitrate
concentration respectively during the (a) bloom and (b) post-bloom periods

versus year day in the middle part of Gimsøy transect.

period. I believe all these observations are results to the presence of eddies (An-

dersson et al., 2011), which can have an effect on the distribution of nutrient and

the temperature along the year and also might be due to grazing.

Temperature and Salinity Versus Nitrate

There is no correlation between temperature, versus nitrate (see Figure 3.18a)

during the bloom. And the nitrate versus temperature during post-bloom show
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(a) (b)

Figure 3.16: Correlations of the concentration of nitrate versus the sea surface
temperature, and the concentration of nitrate versus the sea surface salinity in
the upper 10 meter as observed in the middle part of Gimsøy transect, at cruises

carried out during the bloom (a) and post-bloom (b) periods.

weak correlation 0.25 (see Figure 3.18b). But during the bloom the salinity ver-

sus nitrate show weak correlation 0.3. And the nitrate versus salinity during the

post-bloom period do not show any correlation. There are some years during the

post-bloom display low concentrations of nitrate. This is because almost all the

nutrients have been consumed during the bloom period. Finally there is interan-

nual variations but not obvious.

3.3 Svinøy Transect

3.3.1 Seasonal Cycle at the Svinøy Transect

Outer Part

The seasonal development of the temperature, salinity and nitrate shown in (Fig-

ure 3.19) at the outer part of the Svinøy transect is located between 64.0◦N and



Chapter 3. Results and Discussion 34

(a) (b)

Figure 3.17: The correlations of average temperature, salinity and nitrate
respectively during the (a) bloom and (b) post-bloom periods versus year day

in the inner part of Gimsøy transect.

64.7◦N. The nutrients and temperature show clear seasonal cycle as depicted in

(Figure 3.19). Up until day 100 the winter situation prevails with low temper-

atures around 5.8◦C and high nitrate concentrations around 11.9 µmol/kg (see

Figure 3.19). This is followed by the spring bloom period (see Table 3.3) between

day 100 and day 150 when temperatures rise from 5.4◦C to 7.8◦C and the nitrate

concentrations start to decrease from 11.9 µmol/kg to 5.2 µmol/kg. The rising

temperatures and the stable salinity suggest that heating is the main mechanism

causing the stratification of the water column that triggers the bloom (Sverdrup,

1953). After day 216, the nitrate concentration was zero. After day 250, the



Chapter 3. Results and Discussion 35

(a) (b)

Figure 3.18: Correlations of the concentration of nitrate versus the sea surface
temperature, and the concentration of nitrate versus the sea surface salinity in
the upper 10 meter as observed in the inner part of Gimsøy transect, at cruises

carried out during the bloom (a) and post-bloom (b) periods.

temperatures again begin to decrease and the nutrient concentrations increase as

we move into the fall and winter state. The salinity average value of about 35.1

dominated by Atlantic Water.

Middle Part

The seasonal cycle development of average temperature, salinity and concentra-

tion of nitrate in the middle part of Svinøy transect are shown in (Figure 3.20).

The temperature and nutrients show a clear seasonal cycle (see Figure 3.20). Up

till day 100 the winter state prevails with low temperature around 6.8◦C and nu-

trient concentrations around 11.5 µmol/kg. This followed the spring bloom period

between days 100 to 150 when temperature rise from 7.2◦C to 15.0◦C and nutrient

concentration begin to decrease from 9.9 µmol/kg to 2.2 µmol/kg. The rising of

temperature and slow dropping of salinity suggest that the heating are main mech-

anism caused the stratification of water column that triggers the bloom. Between
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days 150 to 220 (see Table 3.3), there is a post-bloom when the nutrient concen-

trations are near zero. there is a clear dropping of salinity during the post-bloom

perid. this indicates there is water masses advection from the coastal water with

average salinity about 34. After day 220 the temperatures again begin to decrease

from 13.6◦C to 8.2◦C and the nutrient concentrations increase from 2.6 µmol/kg

to 10.8 µmol/kg. The salinity average over the middle part as depicted in (Figure

3.20) appears that two water masses found are the Atlantic Water and Coastal

Water.

Inner Part

The seasonal cycle of average temperature, salinity and concentration of nitrate

in the inner part of Svinøy transect are shown in (Figure 3.21), where the av-

erage of data has taken from the inner stations. The temperature and nutrient

concentrations show a clear seasonal cycle (see Figure 3.21). Up until day 90 the

winter situation has prevailed with low temperatures and high nutrient concentra-

tions. This is followed the spring bloom period between days 90 to 150 (see Table

3.3) when temperature rise and nutrient concentrations begin to decrease. The

rising temperatures and the stable salinity suggest that the heating is the main

mechanism caused the stratification of the water column that triggers the bloom

(Sverdrup, 1953). Between days 150 to 220 there is a post-bloom period when the

nutrient concentrations are near to zero. After day 220 the temperatures again

begin to decrease and the nutrient concentrations increase as we move into the

fall and winter state. Early in the fall the salinities are lower than during the rest

of the year. The salinity average value of the seasonal cycle is about 33.5 clearly

marking this as Norwegian Coastal Water.

Table 3.3: Bloom and post-bloom periods at the three parts of Svinøy transect.

Parts Bloom Post–bloom

Outer 100 – 200 200 – 250
Middle 120 – 150 150 – 220
Inner 90 – 150 150 – 220
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Figure 3.19: The average temperature, salinity and concentration of nitrate
in the upper 10 m at in the outer part of the Svinøy transect versus the year

day.

3.3.2 Interannual Variability at the Svinøy Transect

Outer Part

Hydrography and Nutrients Versus Year Day

Firstly, (Figure 3.22a) shows the temperature, salinity, and nitrate versus year

day in the bloom and post-bloom periods. During the bloom the temperature

and nitrate show good correlation versus year day. This is consequence with

phytoplankton bloom production, indicate that heating has caused the mechanism
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Figure 3.20: The average temperature, salinity and concentration of nitrate
in the upper 10 m in the middle part of the Svinøy transect versus the year day.

of water stratification. The salinity shows very weak correlation with year day

(see Figure 3.22a). This is suggested that there is no mixing between the Atlantic

Water and Arctic Water. Moreover in the post-bloom (see Figure 3.22b) the

temperature, salinity, and nitrate do not show any relation and this is might be

due to low concentration of nutrient.

Temperature and Salinity Versus Nitrate

There is a clear Interannual variation in the nutrient data. The temperature

versus nitrate (see Figure 3.23a) shows reasonably good correlation. This suggest

that the heating is the main mechanism causing the stratification of water column
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Figure 3.21: The average temperature, salinity and concentration of nitrate
in the upper 10 m in the inner part of the Svinøy transect versus the year day.

that triggers the bloom. This is followed the post-bloom (see Figure 3.23b) where

temperature also shows good correlation established the similar mechanism in the

bloom period.

Middle Part

Hydrography and Nutrients Versus Year Day

During the bloom the temperature shows a reasonably good correlation versus

year day (see Figure 3.24a) compared with salinity and nitrate do not show any

correlation. In addition, the temperature shows also reasonably good correlation
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(a) (b)

Figure 3.22: The correlations of average temperature, salinity and nitrate
respectively in the (a) bloom period and (b) post-bloom periods versus year

day in the outer part of Svinøy transect.

in the post-bloom (see Figure 3.24b) compared with salinity and nitrate do not

show any correlation. This suggest that heating is main the mechanism causing

stratification of the water column that triggers the bloom.

Temperature and Salinity Versus Nitrate

From (Figure 3.25) in the bloom period temperature and salinity show poor cor-

relation versus nitrate (see Figure 3.25a). This indicates that bloom causing by
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(a) (b)

Figure 3.23: Correlations of the concentration of nitrate versus the sea surface
temperature, and the concentration of nitrate versus the sea surface salinity in
the upper 10 meter as observed in the outer part of Svinøy transect transects,

at cruises carried out during the bloom (a) and post-bloom (b) periods.

another factor. In the post-bloom period temperature shows good correlation

versus nitrate indicates that the bloom inducing by heating (see Figure 3.25b).

Inner Part

Hydrography and Nutrients Versus Year Day

Straight forward as we can be seen from (Figure 3.26a) temperature shows good

correlation versus year day, suggest that heating is the main mechanism causing the

stratification of water column in the bloom period. This is followed by the post-

bloom period (see Figure 3.26b), where the temperature also shows reasonably

good correlation versus year day with same mechanism in the bloom period.
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(a) (b)

Figure 3.24: The correlations of average temperature, salinity and nitrate
respectively in the (a) bloom and (b) post-bloom periods versus year day in the

middle part of Svinøy transect.

Temperature and Salinity Versus Nitrate

The nitrate versus temperature do not show correlation almost zero in the bloom ,

but the nitrate with salinity show weak correlation, 0.25 (see Figure 3.27a). During

the post-bloom period the nitrate with temperature show weak correlation 0.4, but

significant. The nitrate versus salinity do not show any relation (see Figure 3.27b).
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(a) (b)

Figure 3.25: Correlations of the concentration of nitrate versus the sea surface
temperature, and the concentration of nitrate versus the sea surface salinity in
the upper 10 meter as observed in the middle part of Svinøy transect, at cruises

carried out during the bloom (a) and post-bloom (b) periods.

3.4 Comparison of the Three Transects

The bloom over the Svinøy transect started before the bloom in the Gimsøy

transect. While the bloom in the Gimsøy transect started before the Fugløya-

Bjørnøya transect. This is because the cooling increases northward. And this

is corresponded with changes of the temperature over the three transects during

the bloom period. Along the Fugløya-Bjørnøya transect the bloom begins first

in the outer part early and from there to the middle part to the inner part as

depicted in (Table 3.4). The early beginning of the bloom in the outer part is

due to the shallow mixed layer formed by the Polar Water. This is confirmed by

the low temperature value over the outer part during the bloom period. In winter

the high value of the sea surface temperature observes at the Svinøy transect and

from there decreases to the Gimsøy transect to the Fugløya-Bjørnøya transect as

illustrated in (Table 3.4). The nitrate over the three transects show low nitrate

concentration in the inner part compared with the outer and middle parts dur-

ing the winter. This because the inner part is dominated by the coastal water
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(a) (b)

Figure 3.26: The correlations of average temperature, salinity and nitrate
respectively in the (a) bloom and (b) post-bloom periods versus year day in the

inner part of Svinøy transect.

while the middle and outer parts are dominated by Atlantic Water. The temper-

ature, salinity, and nitrate over all transects show reasonably good seasonal cycle

as showed in (Table 3.4). The mean value of the nitrate depletion over the Svinøy

transect is higher than the Fugløya-Bjørnøya transect, and the Gimsøy transect

during the post-bloom period (see Table 3.4). The data revealed weakness in the

spatial and temporal covering of the three transects, because reflect of the clear

seasonal cycle of the nutrients and temperature depend on the timing of the cruise

when was carried out.
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(a) (b)

Figure 3.27: Correlations of the concentration of nitrate versus the sea surface
temperature, and the concentration of nitrate versus the sea surface salinity in
the upper 10 meter as observed in the inner part of Svinøy transect, at cruises

carried out during the bloom (a) and post-bloom (b) periods.

Table 3.5 represents the correlation coefficients of the temperature, nitrate, salin-

ity, and year day of the Fugløya-Bjørnøya transect during the bloom period. Dur-

ing the bloom period at the Fugløya-Bjørnøya, Gimsøy, and Svinøy the nitrate and

temperature are not entirely independent of year day but show slight signature of

the seasonal cycle (see Tables 3.5, 3.7 and 3.9) and not much information on the

interannual variations. Also the differences between the correlation coefficients of

the three transects are mostly a result of changes in the timing of the cruise. From

(Table 3.5) as expected nitrate is closely correlated with sea surface temperature

during the bloom period at Fugløya-Bjørnøya transect, as shown during the outer

part in (Section 3.1.1), the evolution of the bloom depend on the heating. And

these data reflect the evolution of the bloom. In contrast the nitrate is not closely

correlated with salinity and temperature at the Gimsøy transect during the bloom

period (see Table 3.7), because the data in this transect is not sufficient to reflect

fact relationship. In the Svinøy transect the nitrate is not showed closely corre-

lated with temperature at the inner part and weak correlation with salinity at the

outer part (see Table 3.9). During the post-bloom period over the three transects
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when the temperature is high, there is no any response nitrate because it has been

finished during bloom, this is explain the weak correlation (see Tables 3.6, 3.8, and

3.10). And also not much information on the interannual variations. The nitrate

versus sea surface temperature and salinity during the bloom period over the three

transects do not show high correlation coefficients, except of the middle and the

outer parts of Svinøy transect, and the middle part of Fugløya-Bjørnøya transect

(see Tables 3.6 and 3.10).
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Table 3.4: Represents the average of temperature, salinity, and nitrate during the winter, bloom and post-bloom periods over the three
transects,in addition start and end of bloom. SB is start of bloom, EB is the end of bloom, SF is the start fall, WSST is the winter sea
surface temperature, WN is the winter nitrate, BSST is the bloom sea surface temperature, BSSS is the bloom sea surface salinity, PB is

the post-bloom.

Transect Part SB EB SF WSST WSSS WN BSST BSSS PBSST PBSSS PBN

Fugløya
Outer 100 200 250 3.3±0.9 34.90±0.4 10.9±0.7 4.9±1.3 34.96±0.09 6.5±1.1 34.71±0.2 0.6±0.5
Middle 127 200 250 5.7±0.5 35.08±0.03 10.8±0.6 6.9±1.5 35.00±0.1 9.4±1.0 34.80±0.1 0.7±0.6
Inner 140 200 250 5.5±0.5 34.6±0.2 9.4±1.1 7.7±1.2 34.46±0.3 10.5±1.1 34.40±0.2 0.4±0.5

Gimsøy
Outer 120 185 250 5.8±0.8 35.16±0.04 11.5±0.6 7.4±1.3 35.13±0.05 10.4±0.8 35.03±0.1 0.3±0.3
Middle 120 180 250 6.5±0.5 35.09±0.1 10.0±2.0 7.4±0.8 35.08±0.1 11.1±1.1 34.76±0.4 0.4±0.6
Inner 120 190 250 5.4±1.0 34.08±0.4 7.6±1.5 7.3±1.3 34.21±0.2 11.6±1.2 33.84±0.3 0.4±0.9

Svinøy
Outer 100 200 240 6.2±0.6 35.09±0.08 11.8±0.6 8.1±1.6 35.09±0.1 12.1±1.1 35.04±0.1 1.3±1.3
Middle 100 150 240 7.7±0.5 35.17±0.2 10.7±1.6 8.2±0.7 35.16±0.2 12.4±1.6 34.36±0.5 0.8±1.6
Inner 90 150 240 7.3±0.9 34.27±0.4 7.9±1.4 7.1±1.1 33.68±0.6 12.6±1.3 32.89±0.8 0.6±0.8
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Table 3.5: Correlation coefficients of the nutrients at the Fugløya-Bjørnøya
transect during the bloom. SSS is the sea surface salinity and SST is the sea

surface temperature.

Part SSS SST NITRATE

YEAR DAY
Outer 0.63 0.10 0.72
Middle 0.70 0.20 0.74
Inner 0.63 0.00 0.80

SST
Outer – – 0.41
Middle – – 0.60
Inner – – 0.60

SSS
Outer – – 0.00
Middle – – 0.30
Inner – – 0.22

Table 3.6: Correlation coefficients of the nutrients at the Fugløya–Bjørnøya
transect during the post-bloom. SSS is the sea surface salinity and SST is the

sea surface temperature.

Part SSS SST NITRATE

YEAR DAY
Outer 0.06 0.40 0.02
Middle 0.03 0.10 0.01
Inner 0.10 0.00 0.08

SST
Outer – – 0.20
Middle – – 0.50
Inner – – 0.20

SSS
Outer – – 0.06
Middle – – 0.00
Inner – – 0.07
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Table 3.7: Correlation coefficients of the nutrients at the Gimsøy transect
during the bloom. SSS is the sea surface salinity and SST is the sea surface

temperature.

Part SSS SST NITRATE

YEAR DAY
Outer 0.40 0.02 0.40
Middle 0.52 0.08 0.30
Inner 0.40 0.08 0.20

SST
Outer – – 0.05
Middle – – 0.00
Inner – – 0.00

SSS
Outer – – 0.50
Middle – – 0.44
Inner – – 0.30

Table 3.8: Correlation coefficients of the nutrients at the Gimsøy transect
during the post-bloom. SSS is the sea surface salinity and SST is the sea surface

temperature.

Part SSS SST NITRATE

YEAR DAY
Outer 0.07 0.05 0.06
Middle 0.25 0.09 0.03
Inner 0.24 0.03 0.00

SST
Outer – – 0.99
Middle – – 0.00
Inner – – 0.25

SSS
Outer – – 0.50
Middle – – 0.10
Inner – – 0.00

Table 3.9: Correlation coefficients of the nutrients at the Svinøy transect
during the bloom. SSS is the sea surface salinity and SST is the sea surface

temperature.

Part SSS SST NITRATE

YEAR DAY
Outer 0.63 0.17 0.70
Middle 0.74 0.00 0.03
Inner 0.65 0.13 0.00

SST
Outer – – 0.60
Middle – – 0.30
Inner – – 0.007

SSS
Outer – – 0.01
Middle – – 0.32
Inner – – 0.25
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Table 3.10: Correlation coefficients of the nutrients at the Svinøy transect
during the post-bloom. SSS is the sea surface salinity and SST is the sea surface

temperature.

Part SSS SST NITRATE

YEAR DAY
Outer 0.20 0.21 0.32
Middle 0.63 0.00 0.40
Inner 0.24 0.03 0.30

SST
Outer – – 0.6
Middle – – 0.51
Inner – – 0.40

SSS
Outer – – 0.10
Middle – – 0.00
Inner – – 0.00



Chapter 4
Conclusion and

Recommendations

4.1 Conclusion and Recommendations

The results over the three transects indicate that the data covering and the time

of the cruise have significant effect on the seasonal and interannual variation,

and there is not much information on the interannual variations. The Fugløya-

Bjørnøya transect showed good signature of the seasonal cycle over the three parts

during the bloom and post-bloom periods. The operational definition of the bloom

and post-bloom done in this work depends on when nitrate drop down during the

bloom period until almost depleted during the post-bloom. The bloom evolution

of the outer, middle, and inner parts of the Fugløya-Bjørnøya transect are trig-

gered by the heating mainly. Also at the outer part the evolution is affected by the

shallow mixed layer created by the Polar Water corresponded with the values of

temperature and salinity in Table 3.4. The Gimsøy transect showed good seasonal

cycle over the middle and inner parts during the bloom and post-bloom periods,

but the outer part did not show seasonal cycle during the two periods. The evo-

lution of the bloom at the outer, middle, and inner parts of the Gimsøy transect

is caused mainly by the heating. The Svinøy transect showed good seasonal cycle

over the three parts during the bloom and post-bloom periods. The bloom evolu-

tion over the three parts of the Svinøy transect is triggered by the heating. The

bloom was started from the south to the north as illustrated in Table 3.4. This is

because the cooling increases northward (Blindheim and Osterhus, 2005; Hansen

51
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and Østerhus, 2000). In order to obtain good results we recommend imporving

the data coverage and the timing of the cruises over the three transects. Also we

recommend to make study of all factors that effect on the phytoplankton primary

productivity in the Norwegian Sea.
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