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Abstract  

Decreased oxygen levels in coastal waters due to human activities are receiving increased 

attention as a potential threat to marine biodiversity and harvestable resources. Hydrographic 

measurements and hydroacoustic single fish detections were used to study the horizontal and 

vertical distribution of Atlantic cod (Gadus morhua) in relation to oxygen, temperature and 

salinity in the Tvedestrand fjord in south-eastern Norway. Sampling was conducted from 

September to November in 2012. Movement of cod was inferred from hydroacoustic single 

fish detections (telemetry) and related to ambient environmental conditions.  

 

Our data clearly showed that the Tvedestrand fjord experienced a long stagnation period. 

Oxygen concentrations decreased with depth and hypoxia occurred in the deepest water 

layers. Temperatures decreased with depth and stabilized at approximately 7 
o
C near 55 m 

depth. Salinity increased progressively from the surface and downwards. High-salinity water 

(> 34.5) was encountered close to the seafloor. Occurrence of cod was consistently highest in 

water depths between 2 and 14 m. The relative frequency of cod observations decreased with 

increasing depth and cod was nearly absent in water bodies under 35 m.  

 

Generalized additive models (GAMs) suggested that oxygen was a key parameter influencing 

the vertical distribution of cod in the Tvedestrand fjord, where cod generally avoided low 

oxygen levels. However, a small proportion of cod observations were detected in water with 

less than 1 mL L
-1 

oxygen. Cod also tended to avoid the coldest and most saline waters. 

Interpretation of the results from these statistical models was complicated by the fact that all 

three environmental variables were strongly correlated, but also somewhat aided by the fact 

that we had data from three different months and three fjord basins with variable 

hydrographic conditions. For instance, we found that there was an upward shift in the overall 

cod vertical distribution when the oxygen depleted layers expanded.  

 

The results presented in this thesis illustrated how movement of cod in the Tvedestrand fjord 

may be influenced by several hydrographical variables, including temperature and oxygen 

concentrations. This presents a worrying situation because cod, already challenged by 

intensive fishing, may lose favorable habitats and spawning sites as a result of anthropogenic 

influence.   
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1 Introduction 

In recent years, decreasing oxygen concentrations and oxygen depletion (i.e. hypoxia) have 

been reported in many marine coastal areas around the world (Nixon 1995; Paerl 1995; 

Johannessen & Dahl 1996). Hypoxic bottom waters have long been a recognizable problem in 

the freshwater environment, and eutrophication has become increasingly common also in the 

marine systems (Rosenberg 1985). Hypoxia can be caused naturally in response to vertical 

stratification, such as formation of haloclines and thermoclines (Rosenberg et al. 1991; Pihl et 

al. 1992). More often however, hypoxia is due to excessive anthropogenic input of organic 

matter and nutrient from intensive farming, application of fertilizers and discharge of 

domestic wastewaters into systems holding poor circulation (Pihl et al. 1992; Peckol & Rivers 

1995; Gamenick et al. 1996; Sandberg 1997; Wu & Lam 1997; Aarnio et al. 1998; Mason 

1998). Recent studies have reported that conditions with oxygen depleted waters are more 

extensive and long-lasting than previously thought, persisting up to several weeks to months 

(Gilbert et al. 2005).  

 

Hypoxia is a matter of concern because oxygen is essential for aerobic metabolic processes 

that most species rely on (Herbert et al. 2011) and its availability can potentially affect aquatic 

species on different levels (Wu 2002). Areas affected by hypoxia for a period of time are 

known to create inhospitable habitats, and result in mortality of fish and sedentary animals 

(Wu 2002). Some studies have reported that low oxygen concentrations can affect migration 

routes and distribution ranges of aquatic species (Murawski & Finn 1988; Perry & Smith 

1994). For example, Baden (1990) documented mass mortality of bivalves (Abra alba) below 

the halocline in southeastern Kattegat and suggested that hypoxia was the main factor 

controlling this benthic community. Baden (1990) also registered dead and dying Norway 

lobster (Nephrops norvegicus) (up to 50 % of the total catch) after a trawling survey. In the 

same period, a considerable decline in catch per unit effort (CPUE) of Norway lobster was 

recorded, probably due to hypoxia that induced the lobster to leave their burrows. 

 

The effects of low oxygen levels have also been well documented on certain fish species 

(Herbert et al. 2011). Hypoxic water bodies can induce stress (Herbert & Steffensen 2005), 

impair growth and reproduction (Thomas et al. 2007; Brandt et al. 2009) and there is a serious 

risk of death if hypoxic layers are not physically avoided (Plante et al. 1998). Avoidance is 

clearly an important survival mechanism, but accurate information on the degree of low 

oxygen avoidance differs between studies (Rose et al. 2009). For example, Schaber et al. 
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(2009) found that cod (Gadus morhua) avoided oxygen levels below 1.5 mL L
-1

. Neuenfeldt 

(2002) reported that while the predator, cod, tolerated oxygen saturation levels down to 16 %, 

the prey, herring (Clupea harengus), generally avoided saturation levels below 50 %. 

Claireaux et al. (1995) and Neuenfeldt et al. (2009) also documented an avoidance reaction in 

cod from depleted water bodies. However, fish in these studies tended to enter extreme 

hypoxic conditions over short-term periods if food was offered. Such “hypoxic diving” 

behavior related to feeding has also been showed for the anchovy (Anchoa spp.) and the 

yellow perch (Perca flavescens) (Taylor et al. 2007; Roberts et al. 2009). Understanding how 

hypoxia avoidance behavior is controlled and to achieve a general knowledge on how low 

oxygen concentrations limit individual dispersion is critical since populations differ in intra-

specific tolerance to hypoxic water volumes, meaning that populations are affected 

differentially across species ranges (Skjæraasen et al. 2008).  

 

The distribution of marine fish is also influenced by other environmental factors, such as 

temperature and salinity. Several studies have documented that these factors interact with 

oxygen, to determine the availability of preferred habitat for different fish species (Murawski 

& Finn 1988; Perry & Smith 1994). Atlantic cod, among several other species, is influenced 

by a number of hydrographical factors. This has been documented in the Gulf of St. Lawrence 

(D'Amours 1993) and in the Baltic Sea (Tomkiewicz et al. 1998; Neuenfeldt 2002). In the 

Gulf of St. Lawrence, cod were strongly influenced by low oxygen levels (< 2.5 mL L
-1

) and 

extreme temperatures (< 2
o
C). Both factors acted as barriers on cod movement, preventing 

them from entering the greatest depths. Studies from the Baltic Sea documented a highly 

stratified water column, consisting of a low salinity upper layer, and more saline deeper 

layers. The water column differed also in dissolved oxygen and temperature. Tomkiewicz et 

al. (1998) found that cod adapted to the intermediate layers were constrained by hypoxic 

bottom waters, and low salinity at the surface. It is interesting to note that other environmental 

factors, such as low temperatures in the deepest layers in the Gulf of St. Lawrence and low 

salinity upper layers, can truly prevent cod from entering preferable habitats with 100 % 

oxygen saturation. During certain times of the year, cod may be forced to stay in less 

saturated volumes of water because existing temperature- and salinity levels hinder access to 

full O2 refuge areas.  

 

Since 1927, hydrographical and chemical measurements have been conducted on annual 

cruises along the Norwegian Skagerrak coast (Dahl et al. 1987; Johannessen & Dahl 1996). 
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These studies have revealed deoxygenated water masses below sill levels among three well 

defined basins within the Tvedestrands fjord, Aust-Agder (Johannessen & Dahl 1996). The 

oceanographic conditions in the fjord depend mainly on the frequency and intensity of inflow 

from the Atlantic Ocean. However, deep water layers rarely get input of oxygenized water 

because sills reduce the fjord circulation. Renewal of bottom water and, thus, improvement of 

hydrographical conditions require special transport processes achieved by major intrusions 

(Aure et al. 1996; Schaber et al. 2009). Advection exchange occurs when sufficiently cold and 

dense water appears outside a sill. If these conditions persist for an extended period, 

considerable exchange could take place where “old” basin water gets flushed out. Inflow of 

new seawater will increase the content of dissolved oxygen, and improve the salinity 

conditions. Unfortunately, these events happen rarely. Exchange of basin water may also 

involve smaller volumes, a mechanism called diffusive vertical exchange. This more 

continuous process occurs when intermediate water masses get vertically mixed with less 

dense water from higher layers, due to turbulence.   

 

In order to study the effects of hydrographical conditions on the distribution and movements 

of cod, a telemetry study was performed in co-operation with the Institute for Marine 

Research, Flødevigen, Arendal in the Tvedestrands fjord no-take marine reserve during a 3 

month period in the autumn of 2012. Observations of individual fish horizontal and vertical 

positions were obtained from acoustic transmitters in combination with a network of acoustic 

receivers. Further, the utilization of the water column by the cod was studied in relation to 

ambient environmental conditions. Acoustic telemetry using a network of listening stations 

has been found to be a useful method to collect detailed information on fish behavior and 

habitat use (Olsen & Moland 2011). The listening stations consist of hydrophones that receive 

and store signals when fish equipped with transmitters are within listening range.  
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1.1 Research question  

By using acoustic transmitters in combination with submerged receivers, this study aims to 

investigate whether oxygen, temperature and salinity influence the movement of Atlantic cod 

in the Tvedestrands fjord, in costal Skagerrak, south-eastern Norway. A working hypothesis is 

that cod avoid oxygen-depleted water. Furthermore, if tagged cod are observed to enter 

extreme hypoxic conditions, we expect that our individuals will only stay there for a short 

period of time since cod are known to require oxygen for metabolic processes (Herbert et al. 

2011). Our second hypothesis is that cod avoid water masses containing low temperatures and 

high salinities.  
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2 Materials and Methods  

2.1 Study species  

Atlantic cod (Gadus morhua) is one of the most important commercial fish species in the 

world (FAO 2000). It is widely geographically distributed along coastlines and continental 

shelf areas in the North Atlantic, extending northwards to Disco Bay and Spitsbergen, 

southwards to Cape Hatteras and the Bay of Biscay. To the east, the species also enters the 

Baltic Sea (Knutsen et al. 2003). Coastal cod may attain a body length of more than 130 cm, 

weight up to 30 kg and may reach an age of more than 20 year (Bigelow & Schroeder 1953; 

Hutchings 1999). However, such large and old specimens are rarely encountered partly due to 

overfishing (Hutchings & Myers 1994; Beamish et al. 2006). Coastal Atlantic cod reach 

maturity at an age of 2 to 4 years (Olsen et al. 2004). Typically, coastal cod are stationary and 

complete much of their lifecycle within a restricted home range. In contrast, cod belonging to 

oceanic populations may migrate several hundred kilometers between spawning grounds and 

feeding areas. Spawning usually takes place from January to April. Under good nutritional 

conditions, a mature female may produce and release more than one million eggs per 

kilogram of somatic body weight, distributed over multiple spawning events (Wroblewski et 

al. 1999).  

 

Genetic studies reveal that several distinct populations of Atlantic cod are present along the 

Norwegian coastline (Knutsen et al. 2003; Knutsen et al. 2004). Evidence suggests that the 

difference between the populations is small, but significant, where they inhabit areas only few 

tens of kilometers apart. Possibly, this fine-scale structure is maintained by the combined 

effect of spawning in sheltered inshore basins, protected against coastal currents, and site 

fidelity of older fish (Espeland et al. 2007; Ciannelli et al. 2010). Linked to this structure, 

there are evidence that the local populations have evolved different life history traits (Olsen et 

al. 2008).  

 

2.2 Study site  

The study was conducted in the central part of the Norwegian Skagerrak coast, near the town 

of Tvedestrand (Fig. 1). The Tvedestrand fjord is a semi-enclosed area with several sills and 

basins, extending 8 kilometers inland from the coastline (Ciannelli et al. 2010). The fjord 

system includes two main islands in the central part (Furøya and Hestøya), in addition to 

numerous skerries. Depth-wise the study area has shallower outer southern parts, while the 

inner northern sector is deeper (max 93 m, see Fig 1.1). Two river outlets along the northern 
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side of the fjord give a varying freshwater discharge, primarily to the surface layer. The 

Tvedestrand fjord has a great variation of habitats, such as eel grass beds, mud flats and kelp 

forest (Knutsen et al. 2010), which in turn contribute to several known inshore spawning and 

nursery sites for coastal cod (Knutsen et al. 2007).  

 

Importantly, this study area was subject to a zoning plan where specific areas of the fjord 

were proposed as either no-take marine reserves or marine protected areas (MPAs) with 

varying degree of protection. This zoning plan was approved and implemented in June 2012. 

No-take marine reserves do not permit hook and line fishing, or other standing gear like gill 

net, fish-pots and traps (Pettersen et al. 2009). In the Tvedestrand fjord, no-take regulations 

apply north of Furøya and Hestøya, while fishing with hook and line are permitted in the 

southern part of the fjord. The goal of the establishment of marine reserves is to understand 

how cod populations develop within a restricted area where fishing is not permitted, as well as 

to test to what degree a marine reserve function in cod management. A previous acoustic 

tagging project revealed that 50% of all tagged cod were captured by leisure fishing within the 

first year (Olsen & Moland 2011). Capture will in turn reduce the amount of available data on 

cod behavior. With the establishment of no-take zones, this problem will be significantly 

reduced.   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Study area: The Tvedestrand fjord at the Norwegian Skagerrak coast.  
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Basin 1 

Basin 3 

N 

2.2.1 Defining basins and sills 

As previously mentioned, the study system contains several sills and basins (Ciannelli et al. 

2010). Two basins are located north of the centered islands (Fig. 1.1). Basin 1 is found on the 

western side of the fjord, ranging south and all the way down to the defined sill. Basin 3 is 

situated on the eastern side of the fjord, delineated by a sill in the narrow channel opening 

north-east of Hestøya. Theoretically, these two basins may be viewed as one basin since a 

clear sill does not separate them. However, in this thesis we decided to divide the northern 

part of the fjord into two basins because the environmental conditions varied greatly between 

the western- and eastern side. Basin 2 is found south of the centered islands, towards the open 

ocean (Skagerrak).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1. Study area, showing the location of the present basins and sills within the Tvedestrand fjord. White 

arrows point in the direction of each basin. Black dotted lines indicate the boundary between the northern basins. 

Sills are marked by black solid lines. Depths are indicated by different colors; dark colors illustrate deeper 

depths and lighter colors illustrate shallow depths.  

 

2.3 Sampling of cod for acoustic telemetry  

During the spring of 2012 (April-May), 70 cod (Gadus morhua) were captured in the 

Tvedestrand fjord using traps (fyke-nets) (Fig. 2). Traps were set at different sites throughout 

the study area to ensure good spatial coverage, but at the same time set at known cod habitat 

locations to give a sufficient yield of individuals. The traps were left unchecked for a 

maximum duration of 2-5 days to ensure that minimal stress was exerted upon captured fish. 

This method of capture is thought to be relatively mild and causes no harm to the fish, if soak 

time is kept to a minimum (Olsen & Moland 2011). Captured individuals were measured to 

nearest cm (fork length). Catch position, trap depth and cod weight (g) was registered. Our 
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aim was to tag roughly the same number of fish throughout the available size-range (i.e., a flat 

length distribution). Other specimen caught in the traps were also identified and measured 

(cm) for further diversity studies (not included in this thesis). Individuals were then placed in 

a basin holding 40-50 l saltwater (present onboard the research vessel) between catch and the 

surgical procedure. To ensure optimal water temperature- and oxygen condition, the water 

was often replaced.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Fyke-net used to capture cod in the Tvedestrand fjord.                                  Photo: otterspecialistgroup.org 

 

2.4 Tagging cod with acoustic transmitters 

An “outdoor surgery theatre” was set up at the pier on Furøya. Candidates were transferred 

one at a time to a tank containing saltwater supplied with clove oil for approximately 2-3 min. 

Clove oil anesthetizes the fish and reduce harmful effect while in surgery (King et al. 2005). 

Tools and transmitters were disinfected with ethanol before use to prevent possible bacterial 

infection. In addition, the transmitters were activated and their functioning checked with an 

ultrasonic receiver before implantation. A small incision was made posterior to the pelvic fin 

with the use of a scalpel. The fish were then equipped with a V9P-L transmitter (9 x 38 mm, 

weight in seawater <3g, Vemco Division, Amirix System Inc., Halifax, Canada), implanted in 

their abdominal cavity. A pressure sensor is built within the transmitter (accuracy ± 2.5 m 

when deployed at max. 50 m depth). It functions by transmitting the actual depth along with 

an identity code for each tag. Tags are programmed to transmit signals every 110-250 s at 
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random intervals in order to reduce code collision (i.e., two or more tags transmitting 

simultaneously to one receiver). Projected battery life time for these transmitters is estimated 

to 660 days. After surgical implantation, the wound was closed using absorbable suture 

material (Fig. 3). In addition to the acoustic transmitter, all candidates were equipped with an 

external T-bar anchor tag (TBA1, 30 x 2 mm, Hallprint Pty. Ltd, Holden Hill, South 

Australia) parallel to their anterior dorsal fin (Fig. 3). These tags hold printed information 

posting a reward of 500 NOK which would be paid if returned to the Institute for Marine 

Research, Flødevigen. Total handling time was approximately 5-8 min per candidate.           

 

Individuals tagged with acoustic transmitters are most vulnerable during the first few days. 

Surgical intervention causes an unknown amount of stress upon the fish and may in the worst 

scenario cause mortality. However, Olsen & Moland (2011) reported that all fish survived 

after surgical procedure, and Espeland et al. (2007) found no indications that surgical 

procedure had any effect on cod behavior. To ensure full recovery, individuals were kept in a 

40-50 l tank at the pier for up to 1 hour after surgery. All fish were then released at their 

position of capture in shallow water. Typically, released cod would spend a few seconds in 

shallow waters before they swam towards deeper water. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Cod tagging and recovery. Left panel: Atlantic cod after surgical implantation of an acoustic transmitter 

(V9P-9 mm) in its abdominal cavity. The wound is being closed up using absorbable suture material. Right 

panel: after surgery, individuals were held in a 40-50 l basin to ensure full recovery. Note the pink external T-bar 

tag at the base of the anterior dorsal fin.                                                                Photo: Maren Duus Halvorsen        
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300 m

2.5 Monitoring cod movement  

To track cod movement, a network consisting of 33 ultrasonic receivers (VR2W, Vemco 

Division, Amirix Systems Inc., Halifax, Canada) was placed in the Tvedestrand fjord (Fig. 4). 

The receivers function by recording signals emitted from the ultrasonic transmitters. The fjord 

system has one main channel in which tagged fish may leave the study area. Multiple 

receivers are placed along both sides of the channel to ensure that possible emigration of cod 

would be registered. Overall, the receivers are positioned approximately 3-400 m apart 

throughout the study area to ensure maximum monitoring capacity (i.e., ensuring overlap 

between listening ranges of receivers). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Study area. The Tvedestrand fjord and the 33 ultrasonic receivers placed within it (red crosses). Grey 

lines denote the 5, 10, 15, 20, 30 and 50 m depth contours. 

 

The ultrasonic stations are anchored at a fixed position at the bottom of the fjord by a mooring 

(50 kg). Receivers are deployed at 3 m depth, attached to a floater that keeps the device 

upright in the water column (Fig. 5). A smaller weight (9 kg) and 5 m extra rope allows the 

receiver to be hauled to the surface for downloading without moving the large main anchor. 
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Fig. 5. One of the acoustic receivers during deployment in the Tvedestrand fjord, placed 3 m below the surface 

and held by a floater (at 2.5 m depth).                                                                                    Photo: Esben Moland Olsen 
 

Data from the acoustic transmitters were downloaded from the receivers every 2-3 month 

during June to November. A GPS (Global Positioning System) was used to locate all the 

receivers within the study area. Each hydrophone was brought up manually to the surface by 

snorkeling and set in transmission mode with a magnetic key. Emitted data were transferred 

via Bluetooth to a field computer (Fig. 6). Receiver’s logs (vrl files) were initially managed 

within a VUE data base (Vemco Division, Amirix Systems Inc., Halifax, Canada). Data were 

later imported into R software (version 2.15.2; R Development Core Team 2012) for 

statistical analysis. Receivers were reset and synchronized before they were put back in the 

water at the same position. In addition, ropes, hydrophones and buoys were rinsed for algae, 

barnacles and other fouling organisms. We also had to replace one missing receiver.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Downloading data from a receiver to a computer in field.                                                  Photo: Karin Rötgers                                                                                                                               



 

 14 

 2.6 Processing data on monitored cod movement 

Receiver logs within the VUE-database, containing data on fish behaviour, were initially 

managed for each candidate. The vrl files were first exported into Microsoft Excel (2010), as 

csv files. Transmitted signals registered prior to, and after the hydrographical surveys, were 

deleted since we did not know the oceanographic state of the fjord at that time (see 

hydrographic measurements below). The data were further sorted into separate VUE-files 

according to month, meaning that each file contained monthly individual data on fish 

behaviour.  

 

2.7 Investigation of cod fate  

Horizontal activities were inferred from signals being transmitted from individual fish to 

multiple receivers over time, while vertical movements were inferred from obtained depth 

recordings (Olsen & Moland 2011). We expected that some of the tagged individuals would 

be lost after release. The fate of our candidate was determined on the percussion of movement 

- absent data, and tags received from local fishers. Fish was considered alive if data indicated 

a normal diel vertical migration pattern (DVM). Individuals were declared dead if they 

showed no sign of vertical or horizontal movement (i.e., when recorded signals were 

transmitted to the same receiver, at constant depths, over a longer period of time). Harvest 

mortality was inferred when the high-reward T-bar tag belonging to one of the individual was 

returned to the Flødevigen research station. Individuals were also considered harvested if fish 

were no longer transmitting to any of the telemetry receivers after a period of normal 

appearance. Dispersal out of the study area was inferred if the last recorded signal was 

received by a telemetry receiver situated at the outer edge of the channel opening, and no 

further recordings were done by any other receivers after that last registration.  

 

2.8 Extraction of relevant data 

It is important to note that each signal picked up by the receivers does not give the exact 

position of the fish, but simply tells that the fish were within the listening range of the 

receiver (Olsen & Moland 2011). Therefore, we used the method of position averaging (PAV) 

developed by Simpfendorfer et al. (2002) to estimate 30 min average horizontal positions for 

each fish through the study period. The more signals received by the more receivers, the more 

accurate is the position (Simpfendorfer et al. 2002). These average positions were then used 

when further analysing the data. For analyses on vertical position (depth use) we used the 

original detection data. Mean geographical position, min and max depth, including the 
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median, was extracted from all cod surviving in the system, from September through 

November. Relative frequency distribution were resolved to analyse utilized depth layers (1 m 

intervals). As the sampling period was shorter (i.e., fewer detections) for September and 

November compared with October, the total amount of detections was higher for October 

(n=412805) than for September (n=133997) and November (n=306422).  

 

2.9 Hydrography measurements  

To determine whether hydrographical conditions influenced the vertical distribution of cod, 

oxygen, temperature and salinity were measured at seven predetermined locations in the 

Tvedestrand fjord (Fig. 7). The measurements were carried out on monthly cruises during the 

latter half of September through November, which is usually the time of year when oxygen 

concentrations are at a minimum (Dahl & Danielssen 1992; Johannessen & Dahl 1996). The 

average starting date of the survey was the 19
th

 each month (ranging from 19-23
th

). Water 

samples were collected with Niskin bottles, at 10 m intervals. The measurements in the 

bottom layers were taken ~1-2 m above the seafloor in order to prevent disrobement of the 

stratum. Oxygen was analyzed by the standard Winkler procedure after each sampling period 

(see Strickland & Parsons 1968). Vertical profiles of temperature and salinity were obtained 

using a CTD (acronym for conductivity, temperature and depth: model SD204). The CTD 

was lowered at 1-2 m/sec through the water column. Downcast values were used for later 

analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Location of the seven hydrographic stations within the Tvedestrand fjord, marked with blue triangles. 
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2.10 Constructing horizontal maps 

In order to present individuals along transects, a line profile (horizontal map) was constructed 

throughout the fjord using qgis (Quantum GIS) and the “python” script (see appendix 1). 

Depth data points were made every 5 m, starting in the northern sector of the fjord, going 

south and around the centered islands. The line was in total 5500 m long. Individual mean 

geographical position was replaced horizontally towards the line. Each cod’s new 

geographical position was registered in m from start and positioned along the transect.  

 

2.11 Statistical analyses  

Data on the distribution of cod was analysed in relation to ambient hydrography (oxygen, 

temperature and salinity). Since oxygen measurements were only taken at selected depths (0, 

10, 20, 40, 50, 60, 70 and 80 m depth) once per month, Generalized Additive Models (GAM) 

was applied to the field observations of depth-specific oxygen concentration to predict oxygen 

concentrations at remaining depths for each month and fjord basin. This analysis was 

performed in the R software package mgcv. The smoothing parameter for calculation (k) was 

set to 3, 4 or 6, depending on the total number of samples taken at each hydrographical 

station. A new dataset with high resolution depths was constructed to obtain additional 

predicted oxygen values (interpolated within the depth range of observed oxygen 

measurements).  

 

When studying the effects of environmental factors on the distribution of cod, data were first 

checked for normality. We log transformed those variables that did not meet the normality 

assumption. We also estimated Pearson-type correlations among environmental variables 

(oxygen, temperature and salinity), using the R package corrplot. Finally, we used GAMs to 

explore the potential influences of the environmental variables on cod depth use (vertical 

distribution), also accounting for differences in the number of cod observations among basins 

and months. The continuous exploratory variables, x, w and z was entered into the model as 

non-parametric smoothed function s (x), s (w), s (z): 

 

y ~ s (x) + factor (w) + factor (z) 

 

where y is cod frequency and x is the abiotic factors (such as oxygen, temperature and 

salinity). The model also included the effect of basin (w) and month (z). GAM is a useful 

approach in cases where one has no a priori reason to choose one particular parametric form 
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over another for describing the relationship between the response variable and the explanatory 

variables (Crawley 2007). Note that the data on depth-specific observations of cod will 

involve some degree of pseudoreplication (Lazic 2010) since there are multiple observations 

of the same fish over a three month period (i.e. all observations are not statistically 

independent). 
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3 Results  

3.1 Cod fate inferred from acoustic monitoring  

In total, 70 cod were equipped with acoustic transmitters during the survey in 2012. However, 

tagged cod were harvested from the fjord system throughout the whole study period, with 

most cod being removed during May-September. Returned tags from individuals caught by 

fishers in combination with our telemetry data showed that 40 % of the cod disappeared from 

the fjord system throughout the study period (Fig. 8). Fifteen cod were registered harvested by 

local fishermen. Five candidates dispersed out of the study area without returning for as long 

as the study lasted. Three cod displayed a defect transmitter, while four individuals were 

declared dead based on a constant vertical and horizontal position for a long period of time.  

In addition, one cod was lost after the field work was terminated (human error). After six 

months, 42 tagged cod were left alive, transmitting to the telemetry receivers within the fjord 

system.  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 8. Fates of lost tagged cod throughout the study period.   

 

 

3.2 Hydrography  

Oxygen concentrations decreased with depth and hypoxia occurred in the deepest water layers 

(Fig. 9, see appendix 2 for further results). Temperatures decreased near the surface during 

autumn, while an increase in salinity was observed at shallow depths (Fig. 9).  

 

In September, oxygen concentrations were up to 7 mL L
-1

 in the upper layer. Oxygen 

decreased with depth and the water turned more or less anoxic close to the seafloor. Water 

layers below 46 m (± 10 m) were characterized by oxygen depletion with ambient oxygen 

concentration < 1 mL L
-1

. Temperatures decreased from 13.5 
o
C at the surface to a minimum 

of 6.5 
o
C near 38 m. Below this layer, a slight increase in temperature occurred with depth 
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before it stabilized at approximately 7 
o
C near 55 m. Salinity increased progressively with 

depth down to 25 m with a slower increase to 55 m. At this depth, salinity stabilized and 

attained a salinity value of 34.75 close to seafloor.  

 

By October, oxygen depletion in the deepest parts had progressed in all three basins with 

layers below 44 m (± 18 m) showing ambient oxygen concentration less than 1 mL L
-1

. This 

was especially clear in the south-eastern basin where the hypoxic layer increased by 10.6 m 

(see appendix 2 and Fig. 11 for comparison). Temperatures decreased by a few degrees to 10 

o
C near the surface. There was an increase to 13 

o
C at 17 m, but deeper down, temperatures 

decreased progressively with depth and stabilized at 7 
o
C near 55 m. Salinity were close to 

26.5 at shallow depths and increased down to 23 m. A less steep increase in salinity was 

observed below this depth before it obtained a maximum value of 34.5 near 55 m. 

Additionally, average temperature and salinity levels varied on the horizontal plane this 

month. Our data revealed higher temperatures and lower salinities at intermediate depths in 

basin 2. It should be kept in mind, however, that bottom depth and sill heights vary between 

basins.  

 

An observation of particular interest was made in November. Here, a smaller volume of 

oxygen rich water seemed to have entered the fjord. This inflow was observed to replenish 

oxygen in shallow water layers. The intrusion was highly pronounced in basin 2 in connection 

with the open coast where “old” oxygen depleted water masses were replenished, but the 

oxygen conditions were only slightly improved in the innermost basins. Oxygen depleted 

layers (< 1 mL L
-1

) were defined at 46 m (± 20 m). Temperatures dropped further to 8.3 
o
C in 

the uppermost part of the water column. Below, temperatures increased before it decreased 

progressively and stabilized at a temperature of 7 
o
C near 55 m. Salinity increased from 24.9 

at the surface to 32.75 at 10 m this month. Below that, the salinity values were rather stable, 

reaching a maximum value of 34.5 at the bottom of the fjord.   
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Fig. 9. The vertical profiles of oxygen, temperature and salinity in basin 1 in September (a), October (b) and 

November (c) 2012. Field observations are marked with black circles (at 0, 10, 20, 40, 50, 60 and 80 m depth). 

Be aware of that the axis differs. Solid line illustrates measured oxygen concentration (mL L
-1

), dashed line 

salinity and dotted line temperature (
o
C). Data points represent 1 m depth intervals.  

 

All environmental variables were strongly correlated (Table 1). Oxygen was correlated 

negatively with salinity and positive with temperature. A negative correlation was also found 

between temperature and salinity. Based on this, the variables were tested separately for their 

potential influences on cod distribution.    

 

Table 1. The results from the Pearson-type correlation test.   

  

Variables Frequency Salinity Temperature Oxygen 

Frequency 1.00 -0.56 0.69 0.79 

Salinity -0.56  1.00 -0.45 -0.78 

Temperature 0.69 -0.45 1.00 0.74 

Oxygen 0.79 -0.78 0.74 1.00 
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3.3 Spatial distribution of cod 

Cod were almost exclusively found above 30 m depth (Fig. 10). The relative frequency 

decreased with increasing depth, and the abundance of cod was close to zero below 35 m. 

Occurrence of cod was consistently highest in water depths between 2 and 14 m. There was 

also an upward shift in median depths from September to October (Fig. 10) Cod was observed 

to aggregate in shallower depths in basin 3 compared to basin 1 (Fig.10). Data on fish 

movement in basin 2 was sparse and therefore not presented here (all fish were tagged in 

connection with either basin 1 or 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. The distribution of cod at different depth in September (a, solid line), October (dotted line) and 

November (dashed line), showing the change in median depth during the study period (b) and between basins 

(c). 

 

The statistical model applied (GAM) confirmed that there were significantly more signals 

received in October and November compared with September (Table 2). The model also 

confirmed that significantly more signals were recorded in basin 3 compared with basin 2. 

 

Table 2. Effects of study month and fjord basin on the frequency of cod observations. September and basin 1 

were set as reference levels. 

 

 Estimate Std. Error Pr(>|t|)     

(Intercept) 3.27 0.14 < 0.0001 

factor(mo) 2       1.17 0.16  < 0.0001 

factor(mo) 3       1.04   0.16   < 0.0001 

factor(basin) 2   -1.77   0.16 < 0.0001 

factor(basin) 3    0.49  0.18 < 0.001  
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3.4 Distribution of cod in relation to ambient oxygen concentration 

Comparisons of oxygen concentration and cod abundance strongly indicated that our 

individuals avoided low oxygen levels (Fig. 11). Fewer than 5 % of the cod were found 

associated with oxygen levels < 4 mL L
-1

. Still, a small proportion of cod was detected in 

oxygen concentration of less than 1 mL L
-1

.  

 

In September, more than 96 % of the cod observations were found in oxygen levels between 4 

and 7 mL L
-1

, with the highest occurrence between 4 and 6 mL L
-1

. Only one observed cod 

were associated with oxygen levels below 2 mL L
-1

. By October, the cod were found mostly 

in oxygen levels from 4 to 7 mL L
-1

 (73.2 %), with a clear peak at 6 and 7 mL L
-1 

oxygen, but 

a small proportion of cod observations were detected in oxygen concentrations < 1 mL L
-1

. 

Six cod was observed to enter hypoxic water masses and five of these belonged to basin 3. 

Also in November, cod tended to accumulate in oxygen concentrations between 4 and 7 mL 

L
-1

. Most of the cod was detected in layers with 4 mL L
-1 

oxygen. Fewer than 2 % of the cod 

were observed in water masses holding less than 3 mL L
-1

 with one observation in < 1 mL L
-1

 

oxygen. 
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Fig. 11. The vertical and horizontal distribution of cod a long a line transect (m) curved through the Tvedestrand 

fjord in September (a), October (b) and November (c). The vertical red lines represent individual cod and their 

depth distribution each month. The red rectangles marked in each line show each cod’s median position. 

Individuals are placed according to their mean geographical position along the constructed line profile through 

the fjord. Dotted line illustrates the oxygen 3 mL L
-1 

boundary, dashed line 2 mL L
-1

, while the area under the 

solid line indicates anoxic bottom water (hydrogen sulfide).     
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3.5 Distribution of cod in relation to temperature  

Cod were observed throughout most of the available temperatures. However, our data showed 

that low temperatures were avoided by our tagged individuals with less than 1 % of the cod 

found in temperatures below 8.5 
o
C (Fig. 12).  

 

In September, cod was observed in temperatures between 15.6 and 6.5 
o
C, with a clear peak 

between 14 and 15.5 
o
C (80 %). Cod observations decreased as temperature declined. Cod 

tended to aggregate at higher temperatures this month compared with the following two 

months. In October, over 90 % of the cod were found in water with temperatures between 10 

and 13.5 
o
C with dominating temperatures from 11.5 to 12 

o
C. Cod abundance sunk as 

temperatures decreased and only a small proportion (0.23 %) was detected in temperatures 

below 8.5 
o
C. By November, cod were mostly registered in water temperatures between 9.5 

and 11.5, accounting for nearly 90 % total time. A clear temperature preference was observed 

between 10.5 and 11 
o
C. No cod was present in water layers with less than 8.5 

o
C.   

 

3.6 Distribution of cod in relation to salinity  

Tagged cod did not utilize the whole available salinity range observed in the study area and 

were virtually absent from high-salinity bottom water with less than 1 % associated with 

salinities higher than 33 (Fig. 12).  

 

In September, almost 90 % of the cod were registered in salinities between 31 and 33, with 

the highest amount observed in salinities between 31.5 and 33. The abundance of cod 

decreased with increasing salinities. Individuals did not progress above salinities of 33.19 this 

month. In October, most of the cod were found in salinities between 29 and 30.5. Similarly, 

cod were absent from high salinity waters where none of the individuals were observed in 

salinities above 32.94. By November, water masses containing salinities between 30 and 33 

accounted for over 90 % of the observations with highest abundance between salinities of 31 

and 33. No cod were found above salinities of 33.40. 
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Fig.12. The distribution of cod in September (a, d), October (b, e) and November (c, f) in relation to ambient 

temperature 
o
C (pink) and salinity (purple).  

 

3.7 Environmental effects on cod spatial distribution  

Both oxygen, temperature and salinity had statistically significant effects on the spatial 

distribution of cod (Table 3). Model comparisons using the GCV-score indicated that cod 

distribution was better explained by oxygen, as compared to temperature and salinity (Table 
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3). The effect of oxygen was strongly negative for levels below 3 mL L
-1

 (Figure 13). Further, 

two separate models indicated a clear negative effect of low temperature and high salinity on 

cod distribution (Fig. 13). Salinity was the variable influencing cod distribution the least 

(GCV score = 4.51).  

 

Table 3. GAM modeling of cod distribution in relation to oxygen, temperature and salinity. The variables were 

tested in three separate models and compared using the GCV score. 

 

Variable R-sq.(adj) GCV score Pr(>|t|)     
Oxygen  0.82 2.44 < 0.0001 

Temperature 0.70 4.05 < 0.0001 

Salinity  0.67 4.51 < 0.0001 
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Fig. 13. Predicted (GAM) effects of oxygen (a), temperature (b) and salinity (c) levels on cod distribution, 

showing the mean prediction (solid line) and 95% confidence limits (dashed line). 
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4 Discussion  

This study investigated the influence of fjord environmental conditions on the habitat use 

(spatial distribution) of cod, specifically exploring the potential detrimental effects of oxygen 

depletion on habitat availability. Oxygen depletion in coastal waters may be a considerable 

issue in many parts of the world (Wu 2002, Herbert et al. 2011). 

 

The hydrographical conditions observed in the Tvedestrand fjord were typical for sill fjords 

along the Norwegian Skagerrak coast, with low levels of oxygen in the deep water layers 

(Aure et al.1996; Johannessen & Dahl 1996). The highly saline- and oxygen depleted water 

close to seafloor indicated that the Tvedestrand fjord experienced a long stagnation period 

prior to our survey in 2012. Atlantic cod was almost exclusively found above 30 m, with 

highest abundance in layers > 14 m depth, i.e. above low levels of oxygen. This study is the 

first to observe the movement of cod in the Tvedestrand fjord. 

 

We note that factors other than oxygen, temperature and salinity are likely to affect the 

movement of cod in this study area (indicated by unexplained variance in cod distribution in 

the GAM models). Possible explanations may include diel vertical migration which is a 

widespread phenomenon observed among many aquatic species (Sims et al. 2009) where 

individuals occupy deep bottom water during daytime and return to shallow water at night 

(Gliwicz 1986; Clark & Levy 1988; Loose & Dawidowicz 1994). This behavior has probably 

evolved as a tradeoff between food availability and predator risk. The influence of bottom 

depth on the distribution of cod have been shown where the abundance of cod significantly 

increased with shallow depths (Tomkiewicz et al. 1998). In addition, organisms have 

preferable habitats where the choice of habitat depend on what requirements is to be satisfied, 

i.e., habitat structure and availability, food supply, inter- and intraspecific competition 

(Gjøsæter 1987a; Menge & Sutherland 1987), shelter from predation and finding a mate 

(Adams 1976). Some studies have found a linkage between rich vegetation’s and the faunal 

community structure (Wheeler 1980; Carr 1989; Sogard & Able 1991), meaning that i.e., 

diverse sea grass meadows support more vertebrates and invertebrates compared with 

unvegetated habitats (Orth et al. 1984). For instance, cod are known to utilize such rich 

feeding grounds at very shallow depths (1-2 m) (Pihl 1982).  

 

We also note that, since all are variables were strongly correlated, it may be difficult to tease 

out their relative importance on cod distribution. However, the comparison across months and 
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basins somewhat reduces this problem, showing for instance that cod shifted to more shallow 

waters during a period of extending hypoxia and in the basin with the poorest oxygen 

concentration.  

 

4.1 Distribution of cod in relation to ambient oxygen concentration 

Accounting for significant month-basin effects, our models supported the hypothesis that 

oxygen concentration is an important environmental variable affecting the distribution of cod. 

In particular, oxygen levels below 3 mL L
-1

 showed a marked negative effect on the 

occurrence of cod. Similar results were found by D'Amours (1993) in the Gulf of St Lawrence 

where cod avoided oxygen levels below 3.4 mg L
-1

 (equivalent to 2.4 mL L
-1

). Furthermore, a 

study in the Bornholm basin (Baltic Sea) found that cod mainly occupied water layers with  

oxygen levels above 2.5 mL L
-1 

(Tomkiewicz et al. 1998). Since populations are thought to 

differ in intra-specific tolerance to hypoxia (Skjæraasen et al. 2008), this may explain why 

slightly different results were found in my study.  

 

Further findings supporting our hypothesis that cod avoid low levels of oxygen were found 

when comparing vertical movement of cod among months and basins. In October, oxygen 

depletion in the deepest parts progressed throughout the whole system with layers below 44 

(± 18 m) showing ambient oxygen levels < 1 mL L
-1

. The overall median distribution of cod 

was shallower than in the other months. Additionally, cod was found to aggregate at 

shallower depths in the south-eastern basin compared with other parts of the fjord where the 

water body was more oxygenized. Similar findings have been observed in the Baltic Sea 

(Schaber et al. 2012) where progressive oxygen depleted water induced an upward shift in cod 

depth use.  

 

In captivity, cod are known to exhibit physiological reactions to low oxygen concentrations. 

Sundnes (1957) reported that oxygen levels below 3.5 mL L
-1

 led to rapid decline in the 

normal metabolic rate of fish. Saunders (1963) performed further analysis on cod respiration 

and suggested that oxygen levels below 3 mg L
-1 

induced stress since the oxygen consumption 

rate would not keep pace with the increasing metabolic cost of irrigating the gills. More 

recently, cod was observed to hyperventilate in mild hypoxic conditions with oxygen 

conditions below 4 mg L
-1

 (Claireaux & Dutil 1992). These publications elucidate 

mechanisms behind field observations of cod avoiding low levels of oxygen.  
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In October and November, however, a minor fraction of cod was detected in water bodies 

with < 1 mL L
-1

 oxygen. This behavior have been observed under laboratory experiments 

where cod in general avoided low oxygen levels (< 16 % saturation), but voluntarily entered 

hypoxic water if food was offered (Claireaux et al. 1995). Cod could also swim into hypoxic 

water to reduce osmotic stress (Neuenfeldt et al. 2009), or to display courtship and mating 

behavior (Rose 1993; Lawson & Rose 2000).  

 

Fish exhibit a well-developed sensing capacity to the external environment (Burleson 1995; 

Perry & Gilmour 2002). Both internal and external oxygen receptors on their gills play an 

important role to modulate cardiorespiratory reflexes during hypoxia. It would therefore 

appear that cod not necessarily avoid dangerous regions, but rather intentionally perform 

“hypoxic diving” to access for instance rich feeding areas.  

 

Moreover, cod possess excellent survival strategies under the influence of hypoxia. In order to 

increase duration during visits to hypoxic waters, cod may reduce its swimming speed 

(Schurmann & Steffensen 1994; Herbert & Steffensen 2005) or increase gill ventilation 

(Randall 1982). However, Herbert et al. (2011) reported that cod actually swam faster on the 

more hypoxic side of an experimental chamber and suggested that this behavior represented 

an escape reaction. Previous studies have actually not presented fish with the choice or 

opportunity to escape under progressive hypoxia. Short-term forays would probably only 

occur if cod had access to full O2 refuge areas. This appears reasonable since O2 refuge areas 

would ultimately allow cod to regulate their total time under hypoxia within safe 

physiological limits.  

 

4.2 Distribution of cod in relation to temperature  

In this study, cod was found to avoid low temperatures. Specifically, less than 1 % of the cod 

observations were associated with temperatures below 8.5 
o
C.  

 

Temperature effects on cod habitat use have been reported for a number of stocks 

(Tomkiewicz et al. 1998). For example, in the Gulf of St Lawrence, cod avoided temperatures 

below 2 
o
C (D’Amours 1993). More recent studies from in the Gulf of St Lawrence found that 

cod selected temperatures in relation to age (Swain & Kramer 1995). Smith & Page (1996) 

reported highest abundance of cod in the intermediate cold-water layers. They also found age- 

and area-specific associations with temperature and salinity. Lastly, Tomkiewicz et al. (1998) 
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found that adult cod tended to aggregate in warmer water than immature cod. This behavior 

might be a pattern of selection, related to changes in temperature preference during spawning 

(Rose 1993).  

 

The effects of temperature have also been studied in relation to incubation of cod egg 

(Alderdice & Forrester 2011). In the natural environment, temperature was suggested as the 

major factor to controlling successful egg development. Cod egg in temperature ranges of 3-5 

o
C was shown to tolerate a wide variety of salinities and dissolved oxygen. The development 

of egg was found to decrease below 3
o
C.  

 

High temperatures function by increasing the metabolic rate in fish which further enhance 

oxygen consumption (Schurmann & Steffensen 1997). Increasing temperatures also reduce 

available oxygen by decreasing its solubility (Benson & Krause 1984). Thus, if the severity 

and frequency of hypoxic events increase, areas affected by eutrophication might become 

exacerbated as temperatures around the world increases by global warming (Grottoli et al. 

2006; Schiermeier 2006). This may place additional pressure on the marine stocks already at 

historical lows, like the Atlantic cod population in the North Atlantic (Hutchings & Baum 

2005).  

 

4.3 Distribution of cod in relation to salinity  

In our study, cod tended to avoid water masses with high salinity, and were virtually absent 

from high-salinity bottom water. In the other end of the scale, cod in the Borholm basin 

avoided salinities < 11 (Tomkiewicz et al. 1998). The authors suggested that salinity 

functioned as an upper boundary, preventing cod from entering shallow waters. Since cod 

tended to aggregate near the surface, no restricted upper boundary was evident in this study. 

This might be explained by the fact that our salinity values did not range by the extreme from 

shallow- to deeper depths; as an effect of limited freshwater discharge along the northern 

sector of the fjord. 

 

Claireaux et al. (1995) studied the behavior of free-swimming cod in the laboratory under the 

impact of fluctuating salinities. Cod were observed to select low-salinity upper layers if given 

choice was provided and were reluctant to leave this layer. When fully strength sea water was 

added to the tank, an escape reaction towards the approaching high-salinity water was 

observed. However, when food was introduced to the high-salinity layers in the tank, fish did 
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not hesitate to dive inn and feed. The individuals remained there for as long as food could be 

found. When no more food was available, cod immediately returned to low salinity layers. 

These findings support our hypothesis that in general cod avoid high-salinity levels.  

 

Few studies have actually investigated the impact of acute salinity on the metabolic rate of 

cod (Claireaux et al. 1995). However, Dutil et al. (1992) studied the effect of osmoregulation 

on cod and found no severe disturbance in low salinities (7) during the first 24 hours in 

diluted seawater. Furthermore, Claireaux et al. (1995) found no changes in cod behavior 

during acclimation in salinities from 28 to 7.  

 

The ability for cod eggs to maintain neutral buoyancy and thereby survive varies between 

years, spawning area and prevailing conditions (Nissling et al. 1994). Between 1976 and 

1977, the Bornholm basin experienced a major inflow from the North Sea (Fonselius 1988). 

Favorable conditions resulted in successful spawning amongst the local cod population where 

nearly all egg batches observed managed to maintain neutral buoyancy. In the following years 

(after a long stagnation period) deep water bodies were dominated by low levels of oxygen 

and high salinities. The spawning success was then low with only a few egg batches able to 

maintain neutral buoyancy. Fonselius (1988) concluded that egg survival depended on inflow 

of oxygenated saline water.  

 

The growth of cod has also been observed under the impact of various environmental 

salinities. Lambert et al. (2011) found higher growth rate among cod present in low salinity 

water and suggested that cod increase their food conversion efficiency when within preferable 

salinity levels.  

 

Conversely, Claireaux & Dutil (1992) found in a laboratory experiment that salinity had little 

influence on the tolerance of cod towards low oxygen levels.  
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5 Conclusion  

This study found that the distribution of Atlantic cod (Gadus morhua) within a small fjord is 

likely strongly influenced by prevailing hydrographical conditions. Most notably, telemetry-

tagged individuals avoided deep waters with low oxygen concentration. I put this forward as 

an important topic for future research, because severe hypoxia is becoming increasingly 

common in coastal areas all around the world (Diaz & Rosenberg 2008; Kidwell et al. 2009). 

This presents a worrying situation because cod is already facing additional threats from 

intensive fishing pressure and climate change (Claireaux et al. 1995). As a result, the overall 

vertical range of favorable habitats may diminish, which can further lead to reduction in 

successful spawning and feeding opportunities (Schaber et al. 2012). In the future, we should 

continue to monitor cod distribution in relation to environmental variables and work together 

as a nation to reduce total anthropogenic impact on the environment.  
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7 Appendix 1  

Line profile constructed through the Tvedestrand fjord. Depth data points were made every 5 

m, staring in the northern sector of the fjord, going south and around the centered islands. The 

line was in total 5500 m long. Individual mean geographical position was replaced 

horizontally towards the line. Each individual’s new geographical position was registered in 

m from start and position along transects (Result section, Fig. 11).  
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8 Appendix 2  

The vertical profiles of oxygen, temperature and salinity in basin 2 (September (a), October 

(b) and November (c)) and basin 3 (September (d), October (e) and November (f)). Data from 

September is shown in text (see the Hydrography section). Field observation are marked with 

black circles (at 0, 10, 20, 40, 50 and 60 m depth). Be aware of that the axes differ. Solid line 

illustrates measured oxygen concentration (mL L
-1

), dashed line salinity and dotted line 

temperature (
o
C). Data points represent 1 m depth intervals. Further, vertical profiles 

comparing the environmental factors between basins in September through November (g-o). 

In the oxygen graphs (September (g), October (h) and November (i)) the black line illustrates 

basin 1, purple line basin 2 and the grey line indicates the oxygen levels in basin 3. The 

temperature graphs (September (j), October (k) and November (l)), blue line illustrates basin 

1, light grey line basin 2 and the dark grey line shows the temperature profile in basin 3. 

Lastly, in the salinity graphs (September (m), October (n) and November (o)), grey line 

indicates basin 1, turquoise line basin 2 and the orange line basin 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dissolved oxygen (mL L-1) 

           (mL L
-1

) 

(
o

C) 

Salinity 

Temperature (oC) 

• 

• 

• 

• 

• 

• 

a 



 

 48 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dissolved oxygen (mL L-1) 

Salinity 

Temperature (oC) 

           (mL L
-1

) 

(
o

C) 

• 

• 

• 

• 

• 

• 

b 

Dissolved oxygen (mL L-1) 

           (mL L
-1

) 

(
o

C) 

Salinity 

Temperature (oC) 

• 

• 

• 

• 

• 

• 

c 



 

 49 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dissolved oxygen (mL L-1) 

Salinity 

Temperature (oC) 

           (mL L
-1

) 

(
o

C) 

• 

• 

• 

• 

d 

• 

• 

• 

• 

• 

           (mL L
-1

) 

(
o

C) 

Dissolved oxygen (mL L-1) 

Salinity 

Temperature (oC) 

e 



 

 50 

Dissolved oxygen (mL L-1) Dissolved oxygen (mL L-1) 

f 

Salinity 

Temperature (oC) 

• 

• 

• 

• 

           (mL L
-1

) 

(
o

C) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Dissolved oxygen (mL L-1) 

g 

80

75

70

65

60

55

50

45

40

35

30

25

20

15

10

5

0

D
e

p
th

 (
m

)

0 1 2 3 4 5 6 7 8

Basin 1

Basin 2

Basin 3

Dissolved oxygen (mL L-1) 

h 

80

75

70

65

60

55

50

45

40

35

30

25

20

15

10

5

0

D
e

p
th

 (
m

)

0 1 2 3 4 5 6 7 8 9 10

Basin 1

Basin 2

Basin 3

Dissolved oxygen (mL L-1) 

i 

80

75

70

65

60

55

50

45

40

35

30

25

20

15

10

5

0

D
e

p
th

 (
m

)

0 1 2 3 4 5 6 7

Basin 1

Basin 2

Basin 3



 

 52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80

70

60

50

40

30

20

10

0

D
e
p
th

 (
m

)

6 7 8 9 10 11 12 13 14 15 16

Temperature

Basin 1

Basin 2

Basin 3

Basin 1

Basin 2

Basin 3

j 

(
o

C) 

80

70

60

50

40

30

20

10

0

D
e
p
th

 (
m

)

6 7 8 9 10 11 12 13 14 15 16

Temperature

Basin 1

Basin 2

Basin 3

k 

(
o

C) 

80

70

60

50

40

30

20

10

0

D
e
p
th

 (
m

)

6 7 8 9 10 11 12 13 14 15 16

Temperature

Basin 1

Basin 2

Basin 3

l 

(
o

C) 

80

70

60

50

40

30

20

10

0
D

e
p
th

 (
m

)

28 29 30 31 32 33 34 35 36

Salinity

Basin 1

Basin 2

Basin 3

m 

80

70

60

50

40

30

20

10

0

D
e
p
th

 (
m

)

25 26 27 28 29 30 31 32 33 34 35 36

Salinity

Basin 1

Basin 2

Basin 3

n 

80

70

60

50

40

30

20

10

0

D
e
p
th

 (
m

)

28 29 30 31 32 33 34 35 36

Salinity

Basin 1

Basin 2

Basin 3

o 



 

 53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


