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Abstract
Shrestha, K. B. 2013. Treeline and vegetation dynamics in response to 
environmental changes in Nepal, the central Himalaya. Ph.D. Thesis, Faculty of 
Science, University of Bergen, Norway. 

Aims: To describe and evaluate patterns of vegetation response to ongoing 

environmental changes across climate-limited (alpine treeline ecotone) and human-

modified (temperate Himalayan oak forests) ecosystems in Nepal, central Himalaya. 

Methods: I used dendroclimatological techniques to examine spatial and temporal 

changes in tree growth responses (paper I) and recruitment patterns (paper II) to 

climatic variability across a dry Pinus wallichiana and a mesic Abies spectabilis

treeline ecotone. Trees from various ecological elevations (forest line, treeline and 

krummholz line) were cored, annual growth was measured and site chronology was 

developed for analysing climate-growth relationships. Transects were laid out between 

the forest line and tree species line, crossing the treeline. Seedlings, saplings and trees 

were sampled in each transect for age analysis.  

 Alpha, beta and gamma diversity were studied across a forest border from a 

forested to open landscape in a subalpine-alpine region (paper III) and an 

anthropogenic disturbance gradient (paper IV). Vascular plant species richness and 

environmental variables were recorded in each plot (10 m × 10 m). Alpha diversity 

was estimated as average species richness per plot. Beta diversity was based on 

gradient length estimated by Detrended Correspondense Analysis (DCA). Gamma 

diversity was estimated as total species number present in the landscape. 

Main results: At the dry locality, tree growth at the forest line responded positively to 

warm summers and after cold winters: possibly a response to early onset of growing 

season. At the mesic locality, growth at lower altitudes (forest line) showed signals of 

drought limitation, whereas at higher altitudes, decreased growth was associated with 

an early onset of the monsoon. Reduced growth at the treeline was related to the high 

winter snow fall and delayed onset of growing season.  

 The current treelines in both areas have remained stationary over the decades. 

Climate and land-use are both important factors for treeline structuring processes. 
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Number of trees and saplings in the dry area is higher compared to the mesic area 

suggesting that tree establishment rate is higher in the dry area giving a higher 

potential for treeline advance.  

 In a set of vertical transects sampled across the forest line, a positive correlation 

between canopy and temperature gradients was found. Detrended Correspondence 

Analysis revealed low species turnover and a continuum in species composition across 

the forest border ecotone. The low species turnover and minor differences in alpha 

diversity could be attributed to human influence. Furthermore, in differently disturbed 

Quercus semecarpifolia forest at Phulchoki and Ghorepani, alpha and gamma diversity 

show a unimodal response to disturbance gradient. Linear relationships were observed 

between beta diversities (ßSD and A) and disturbance gradient. 

Conclusion: Climate signals in the pattern of tree growth responses and recruitment 

are site-specific. Both growing season as well as non-growing season climate factors 

are important drivers for vegetation changes, but they vary between study areas, with 

altitude and with time scale (whole time-periods vs. decadal periods). Species diversity 

changes along environmental gradients with spatial as well as temporal scales. 

Further perspective: The Himalaya are under-represented in studies of vegetation-

climate relationships. The main reason is logistic challenges and lack of reliable 

climate data from desired locations. Future research of a similar nature to the present 

study should include more than one species sharing the same environment, and 

investigate these same species in various geographic regions and ecological settings. 

Impacts on the ecosystem level can be investigated by quantifying and examining 

species diversity and other ecosystem level responses (e.g. carbon sequestration). 

Keywords: Alpha-diversity, beta-diversity, climate change, dendrochronology, 

dendroclimatology, disturbance, diversity, ecotone, environmental change, forest line, 

gamma-diversity, land-use, mass effect, species richness, tree-ring, treeline 
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Introduction 
A major concern of present-day vegetation ecology is to explore the impact of ongoing 

global environmental changes on various ecosystem structures and functions. Climate 

change and human land-use change are two important global change drivers, and there 

are feedbacks and links between these two forcings (Bonan 2002; Huntley & Baxter 

2005). A central aspect of climate change is the warming of Earth’s surface with a 

reported increase in global mean surface air temperature of 0.74°C over the 20th 

century. This trend is predicted to continue for the 21st century and one ecologically 

important aspect of this change is high inter-annual as well as inter-decadal variability 

(IPCC 2007). Societal, technological and economical changes of human civilization 

have influenced human activities over the millennia, and is now a major forcing of 

changes in the world’s biota (Bonan 2002; Körner et al. 2006).  

 Vegetation shows changes at all organizational levels (from individuals to 

ecosystems) in response to climate change; but responses vary according to spatial 

(local, regional, global) and temporal scale (decadal to millennial) (see Huntley & 

Baxter 2005). At the individual level, species respond through changes in growth and 

life-cycle characteristics, whereas at the population level they respond through 

recruitment and mortality patterns. The response at a community level is observed in 

changes in the density and distribution range of constituent species and also in species 

diversity (Pickett & White 1985). Depending upon the sensitivity and ability of species 

to respond to climate change, novel communities may evolve (Thomas et al. 2004; 

Araújo & Pearson 2005). 

 The main part of this Ph.D. is a study of an alpine treeline ecotone, 

characterized as a conspicuous and highly temperature-sensitive boundary between the 

subalpine forest and alpine vegetation zones (Körner 1998; Körner 2003; Körner & 

Paulsen 2004). Ecosystems in this zone are relatively natural, hence any recent or past 

changes in environment are reflected conspicuously in terms of vegetation responses 

(Germino et al. 2002; Dullinger et al. 2004; Holtmeier & Broll 2005; McDonald et al.

2006). The sensitivity of plant species to changes in temperature is high across this 

ecotone but species also respond to changes in other abiotic factors (e.g. radiation, 



2

moisture, wind, slope exposure, topography) (Holtmeier & Broll 2005; Wang et al.

2005; Wang et al. 2006; Li et al. 2008; Aune et al. 2011).  

 Long-lived tree species preserve records of past changes in their environment in 

the form of tree-rings, but different species may respond to different specific 

environmental cues, and the response of trees of the same species may vary among 

populations growing under different environmental settings (Bekker 2005; Carrer et al.

2007). Change in population structure in response to altered environmental conditions 

can also be observed, for example, in the upward shift of the treeline or forest 

encroachment into the open alpine area (Danby & Hik 2007; Batllori & Gutiérrez 

2008; Harsch et al. 2009). Increased seedling and sapling density with increased 

temperature gives potential ground for such vegetation changes (Luckman & 

Kavanagh 2000; Daniels & Veblen 2004; Hofgaard et al. 2009). However, the upward 

shift of the treeline is not a universal phenomenon, since stationary as well as 

recessing treelines have also been documented (Harsch et al. 2009). If the treeline 

shifts upward or forest expands towards open (alpine) area, it is often assumed that 

community composition is altered either by loss of habitat area or change of habitat 

location (Keller et al. 2000; Grace et al. 2002; Dirnböck et al. 2003; Kullman 2004; 

Walther et al. 2005). Scherrer & Körner (2010) point out that changes in some climate 

factors (e.g. precipitation regime) may influence plant species distribution, and certain 

habitat types may become reduced, although biodiversity as such may be less 

endangered by climate change in an alpine landscape. Thus, in general, it is uncertain 

whether an upward shift of the treeline ecotone will have negative impacts on plant 

species diversity.  

The Himalaya, climate and vegetation changes  
The monsoon-dominated climate of the greater Himalayan region shows great spatial 

and temporal variability due to the extreme topography and high folded mountains. In 

this region, mountains act as barriers against the atmospheric circulation of the 

summer monsoon, and the distribution of rainfall shows high variability with elevation 

and slope. Inner valleys receive much lower rainfall than the outer mountain slopes 

(Chalise & Khanal 2001). At high altitudes (>3000 m.a.s.l.) a major portion of annual 

precipitation falls as snow. In Nepal, the summer monsoon brings down-pours from 
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June to September (Chalise & Khanal 2001). The Himalaya are experiencing a 

noticeable warming this century and the rate is higher than the global average 

(Hingane et al. 1985; Shrestha et al. 1999; New et al. 2002; Gao et al. 2004; IPCC 

2007). The average temperature in Nepal has increased by 0.6°C from 1976 to 2005 

which corresponds to an annual average increase of 0.02°C (Practical Action 2009). 

The rate of warming in Nepal is progressively greater with elevation (New et al.

2002).  

This climatic complexity provides opportunities for studying variability in the 

relationships between the processes of climate and vegetation changes in climatically 

contrasting treeline ecotones within the same geographical region. Tests of hypotheses 

explicitly linking vegetation response to climatic variability are underrepresented in 

studies from the high elevation areas of the Himalaya (but see; Sano et al. 2005; 

Bhattacharyya et al. 2006; Singh et al. 2006; Shah et al. 2009; Tenca & Carrer 2010; 

Borgaonkar et al. 2011). Practices such as summer grazing in subalpine pastures of 

this region may also influence the original treeline ecotone (Beug & Miehe 1999; 

Schickhoff 2005). Furthermore, a typical pattern of agriculture in the Middle Hills area 

of Nepal Himalaya is the extensive use of forests for timber, fodder, and litter, which 

can largely modify the forest ecosystem (Singh & Singh 1987; Måren & Vetaas 2007). 

Given this context, a study focusing on vegetation response to climate and land-use 

change will contribute to our understanding of how species and biological systems 

respond to ongoing environmental changes in these areas.  

Objectives 
This research aims to contribute to our understanding of vegetation responses to a 

changing environment across two ecosystems; one from a climate-sensitive semi-

natural ecosystem across two alpine treeline ecotones representing a dry and a mesic 

environment, and another from a human-modified ecosystem across disturbed oak 

forests in the Middle Hills area of Nepal, central Himalaya. The broad topic underlies 

the specific questions raised in papers I-IV. 
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(a) Climatic variability over the past decades as a driving force for vegetation changes 

across space and time 

Paper I: Growth dynamics 

 Evaluate response patterns of tree growth to climatic variability along the elevation 

gradient across an alpine treeline ecotone, and between climatically different areas 

(dry vs. mesic environments). 

 Understand patterns of variation in tree growth responses over time (e.g., between 

decadal periods), and evaluate driving forces for such variability.  

Paper II: Population dynamics 

 Assess establishment time of the current treeline in two study areas, and examine 

area-specific treeline development processes.  

 Evaluate recruitment patterns, age structures, and height growth as indicators of 

treeline advance as predicted for the region.  

(b) Environment and human land-use as a driving force of community changes in 
space and time 

Paper III: Community dynamics 

 Test if species richness declines with increasing elevation across a treeline ecotone 

as predicted from coarse-scale data.  

 Evaluate if species richness is enhanced in the middle of the ecotone as an ecotone 

effect.  

Paper IV: Community dynamics along a disturbance gradient 

 Assess the effect of anthropogenic disturbance on different measures of plant species 

diversity.  

 Evaluate variations in relationships between disturbance gradient and different 

diversity measures.  
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Treeline: pattern, processes and terminologies 
The treeline is generally considered to be the highest elevation at which a single 

upright tree with height greater than 2 m can be found within a landscape (Hofgaard 

1997; Körner 2003), although there is no one conventional definition available. The 

causal factors for treeline formation are also uncertain although various theories and 

explanations have been proposed. Generally, the treeline is believed to be set by heat 

deficiency (Körner 2003). Insufficient air and soil temperatures during the growing 

season adversely affect growth, regeneration, and survival and thus limit the 

establishment of trees. Several thermal indicators have been proposed as a global 

driver of treeline elevation: the 10°C isotherm of mean monthly temperature of the 

warmest month (see Daubenmire 1954; Troll 1973), growing season length of 

approximately 100 days (Ellenberg 1963), and mean growing season temperature of 

5.5–7.5°C (Körner & Paulsen 2004). On a regional scale, aspect and topography along 

with other climatic and biotic factors (altitudinal temperature gradient, climate 

variability, diseases, insect infestations etc.) act as treeline determinants (Holtmeier & 

Broll 2005). However, determining the exact location of, and the factors that 

determine, the treeline on  a local scale is rather difficult since various micro-climatic 

factors entangle with regional and global drivers (Körner 1998; Körner 2003). Various 

types of treelines have been proposed, such as climatic (temperature), orographic and 

edaphic (soil), and anthropogenic (human) (Holtmeier & Broll 2005).  

 Various bioclimatic border zones can be defined (not an exact ‘line’; see Körner 

2003) in a forest alpine transition zone of the Nepal Himalaya. I use the term ‘forest 

line’ as a synonym for timberline (Körner 2003) for the border zone between closed 

forest and open landscape beyond the uppermost elevations of closed stands of trees (> 

2 m height; Hofgaard 1997). In paper III, I refer to this border zone as a ‘forest 

ecotone’ or ‘forest line ecotone’. In this study, the forest patch of 0.1 ha with > 50 % 

canopy cover was considered as forest (Shrestha & Vetaas 2009). 
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Figure 1. Schematic representation of the study design (after Körner & Paulsen 2004). 

Approximate elevational positions from the study area at Ngawal (dry area) are shown 

for the different eco-regions across the treeline ecotone.  
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As mentioned above (also see Fig. 1), the elevation of the uppermost occurring tree 

individual (>2 m; Daubenmire 1954; Hofgaard 1997); was set as the treeline in this 

study. Above the treeline, is a zone where tree species individuals do exist but they do 

not reach upright stature and are present in a stunted and twisted form less than 2 m in 

height. These forms of trees are known as krummholz and their structure is considered 

to be an adaptive feature under the harsh weather and severe winds of an alpine 

environment (Körner 2003). The uppermost individual of a tree species, regardless of 

its growth form (normally it is a seedling), defines the tree species line (Körner & 

Paulsen 2004). This is the border line beyond which alpine area starts. Thus, the 

treeline ecotone covers a whole transition zone from closed forest to alpine areas; this 

is a well known temperature limited ecotone (Gosz & Sharpe 1989).  

Alpine treeline in Nepal Himalaya 
The Himalayas, the highest mountain chain of the world, passes through Nepal. The 

vast chain extends from north-west to south-east in a massive arc for about 2500 km 

covering an area of 612,021 km2 (Singh & Singh 1992) along the northern fringes of 

the Indian sub-continent bracketed by the Indus River in the west and the Brahmaputra 

River in the east. The Tibetan plateau lies north of this mountain belt. As well as 

Nepal, the Himalaya cover parts of Bhutan and the Indian states of Sikkim, Himachal 

Pradesh, and Jammu–Kashmir.  

 Nepal has a bioclimatic elevation ranging between the tropical zone at lowland 

Terai (60 m) and the alpine zone above 4500 m. It is one of the longest bioclimatic 

elevation gradients in the world (see also; Vetaas & Grytnes 2002). The subalpine 

vegetation zone in Nepal generally starts at elevations around 3000 m and extends up 

to around 4500 m.a.s.l., depending upon aspect and geographic regions. Treeline 

elevations in the Nepal Himalaya vary between ~3600 m and ~4500 m and increase by 

130 m per degree decrease of latitude (Körner 2003; Schickhoff 2005). Increase of 

treeline elevation with the decrease of latitude is a global phenomenon (Salisbury & 

Ross 1992; Körner 2003) but variations in treeline elevations within Nepal follow 

particular Himalayan patterns (Schickhoff 2005). Many drivers that cause variations in 

the treeline such as aspect, prevailing winds, and soil quality (Daubenmire 1954) vary 

extremely over short geographical distances in the Himalayan mountain system. 
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Furthermore, treeline elevations in the Himalayas are likely be affected by the increase 

in continentality and large mountain mass effect (Daubenmire 1954; Schickhoff 2005; 

Richardson & Friedland 2009). The high mountain chains often act as topographic 

barriers against moist air masses causing decrease of annual precipitation and 

cloudiness which is coupled with more sunshine leading to higher summer 

temperatures. This phenomenon causes the treeline to be found at higher elevations 

and is known as Massenerhebungseffect (Körner 2003; Schickhoff 2005). The 

monsoon-dominated climate creates an east to west precipitation gradient maintaining 

a drier environment in the west. The monsoon brings moisture-laden southerly winds 

and causes heavy precipitation between May/June and September across the country.  

However, mountain barriers create high local variation in precipitation patterns over a 

short geographical range with the rain-shadow effect causing limited rainfall in many 

places of the country (viz, dry Ngawal). 

 Generally, the treeline ecotone on moist northern slopes is dominated by shade-

tolerant tree species such as Abies spectabilis, Betula utilis, and Rhododendron 

campanulatum but on dry southern slopes, light-demanding species such as Pinus 

wallichiana and Juniperus spp. are dominant (Vetaas & Grytnes 2002; Schickhoff 

2005). The treeline on southern slopes reaches higher elevations compared to that on 

northern slopes indicating a higher climatic limit as well as higher snowline elevations 

on the southern slopes. Above the treeline, a harsh alpine climate allows only scrub 

vegetation. This zone, however, has been used as summer pasture land in Nepal which 

might modify the treeline elevations (Miehe 1997; Beug & Miehe 1999; Schickhoff 

2005). 

Anthropogenic disturbance and effect on plant species diversity  
Just below the subalpine area of the Himalayas, we find the Middle Hills ranging 

between 2000 m and 3000 m.a.s.l. Quercus semecarpifolia trees from this belt are 

heavily lopped for green fodder during the dry season (November-March). This 

practice severely affects the morphology, health, and regeneration ability of trees and 

alters the forest ecosystem (Mahat et al. 1986; Thadani & Ashton 1995; Måren & 

Vetaas 2007). In this human-modified ecosystem, I examined impacts of land-use on 

plant species diversity by evaluating different measures of diversity. Species richness 
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was estimated in terms of alpha ( ; within habitat) and gamma ( ; total number of 

species in the landscape) diversity. Species turnover in the changing landscape 

(different levels of disturbance) was estimated in terms of beta ( ; between habitat) 

diversity.  

The study areas and their climate  
The four study areas included in this thesis are from central Nepal (Fig. 2). Ngawal 

(DRY, paper I & II) is a part of the trans-Himalayan arid zone and is located in the 

upper part of the U-shaped Manang valley (28°41’N and 84°00’E) in north-central 

Nepal (Stainton 1972). The valley is situated south of the Tibetan plateau and is 

surrounded by many mountain ridges and steep slopes. The climate is characterized by 

warm dry summers with frequent strong winds, which produce xeric conditions. The 

annual mean temperature and annual precipitation of Chame (2680 m.a.s.l.; ~17 km 

from Ngawal) averaged for 1985-2005 are 10.7°C and 934.4 mm, respectively. 

 Lauribinayak (MES, paper I & II) is situated in the Langtang valley in Rasuwa 

district (28°07’N, 85°21’E), near the Tibetan border (Ono & Sadakane 1986). This is a 

valley drained by Langtang Khola river (a tributary of Bhotekoshi-Trishuli Gandaki 

river). Climate data available from Dhunche (1982 m.a.s.l.; ~ 5 km from 

Lauribinayak) show that the annual mean temperature and annual precipitation are 

15.4°C (1995-2005) and 1491 mm (1985-2005), respectively. Lauribinayak is more 

mesic than Ngawal with greater precipitation and cooler temperatures. Snow is 

common in the winter and lasts for about five months (November-March) in both 

study areas.  

 Phulchoki (27˚35’N, 85˚24’E) and Ghorepani (28˚25’N, 83˚45’E) (paper IV) 

represent the Middle Hills region in Nepal and are situated in the temperate monsoonal 

climatic zone of the Indian subcontinent. In these areas, a major part of the annual 

precipitation falls during the monsoon period. Phulchoki is warmer (summer; 26.3°C) 

than Ghorepani (summer; 20.5°C), whereas Ghorepani receives much higher rainfall 

than Phulchoki (2860 vs. 1870 mm; Shakya 1985; Practical Action 2009). 
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Figure 2. Maps showing the study locations and climate stations used in this thesis in 

Nepal: Ngawal (DRY; papers I, II & III) in the Manang district; Lauribinayak (MES; 

papers I & II) in the Rasuwa district; Phulchoki and Ghorepani in Kathmandu and 

Myagdi districts, respectively (paper IV).  indicates sampling areas, and  indicates 

climate stations.  
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Methodology  

Theoretical settings and scale 
This thesis includes four scientific papers (I-IV) based on research carried out in 

alpine, subalpine, and temperate zones of the Himalayan landscape. Alpine and 

subalpine ecosystems are generally characterized as semi-natural as well as climate 

(temperature) sensitive. The ecosystems in the forests of the Middle Hills temperate 

zone are more heavily modified by anthropogenic disturbance. The first three studies 

(papers I-III) encompass elevational gradients parallel to climatic (temperature) and 

other environmental gradients (viz. area). In this thesis, the treeline ecotone studies 

(papers I and II) cover an elevation range of 3930-4180 m.a.s.l. (252 m) in dry areas 

and 3770-3950 m.a.s.l. (180 m) in mesic areas. In the dry area, species diversity 

pattern was studied across the forest line in the elevation range of 3850-4040 m.a.s.l. 

(190 m). Paper IV examines community changes along a disturbance (canopy) 

gradient in temperate Himalayan forests and covers a total elevation range of 2275-

2800 m.a.s.l.  

In papers I & II, two coniferous tree species (Pinus wallichiana and Abies 

spectabilis) representing dry and mesic environments, respectively, were selected to 

assess individualistic responses to spatial (forest line, treeline, and krummholz) and 

temporal (annual and decadal) variations of climatic factors (temperature and 

precipitation). The relationships were analyzed over a spatial extent of 252 m in the 

dry and 180 m in the mesic areas. The temporal extent covered 21 years (1985-2005). 

Climate-growth relationships were explored over the whole analytical period, and in 

two decadal windows (1985-1994; 1995-2005). The species’ responses were also 

analyzed at the population level through age structure analyses. The temporal window 

of age analyses was 28 years (1978-2005). Age analysis provides a picture of response 

in mortality and recruitment patterns. Paper II is based on sample sizes of 195 (181 

included for age analysis) at Ngawal and 163 at Lauribinayak, in areas of 3.2 and 4 ha, 

respectively. The small area of the transects are indicative of short spatial distances 

between transect end points due to the steep mountain slopes and rugged topography 

of the Himalayan region, whereas the short time-scale reflects a relatively newly-
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established treeline forest, and methodological constraints of common-window 

analysis across the space. 

In papers III & IV, community-level responses to the changing environment are 

examined on a local spatial scale (sensu Lomolino 2001). Various ecological attributes 

of scales (sample unit, grain, focus, extent) were considered during the study, since 

scale (spatial and temporal) drives the changing pattern of species diversity 

(Rosenzweig 1995; Scheiner et al. 2000). In both papers (III & IV), a same-sized 

quadrat (10 m x 10 m = 100 m2) was used as a sampling unit. The grain size for alpha 

diversity (100 m2) is also the same in both studies, since alpha diversity is measured as 

average species richness per plot. However, the grain size for gamma diversity is 

different in the two studies, as gamma diversity is defined as the total number of 

species present in the designated landscape (Lomolino 2001). Detrended 

Correspondence Analysis (DCA) was used to estimate beta diversity, which indicates 

compositional change of species across the landscape (Hill & Gauch 1980). Thus, 

alpha, gamma, and beta diversity are based on the ‘focus’ or designated landscape. For 

example, in paper III, the ‘focus’ is the forested or open landscape, each of which 

includes 66 quadrats and hence encompasses a total sample area of 6600 m2 (66 x 10 x 

10 m2). On the other hand, in paper IV, the ‘focus’ refers to the disturbance class, 

which is characterized by lopping intensity. The total area sampled in each disturbance 

class varies from 1000 m2 (10 quadrats) to 1500 m2 (15 quadrats). In total, 63 and 65 

quadrats were sampled in Phulchoki and Ghorepani, respectively, which lie within an 

extent of 200 km.  

In papers III & IV, the same sampling procedures were applied (see Methods in 

paper IV for details). Paper III compares alpha diversity between forested and open 

landscapes, and explores whether temperature or land-use show an overriding 

influence on species richness. Paper IV examines how alpha, gamma, and beta 

diversity are affected at different levels of anthropogenic disturbance in the forests. 
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Focal species and their distribution  

Pinus wallichiana, Ngawal (DRY; in papers I, II & III) 
Himalayan blue pine (P. wallichiana) dominates the subalpine area of dry south-facing 

slopes at Ngawal. This western Himalayan element is native to species in Afghanistan, 

India, Pakistan, and Bhutan, and grows between 1800 m and 4300 m a.s.l. (Ohsawa et 

al. 1986). It is a light-demanding evergreen tree that grows on well-drained sandy soil 

and can tolerate drought as well as frost. Tree height of this species ranges from 10 to 

15 m. Juniperus indica is the main associated component of this forest. At high 

elevations, Juniperus species appear in Krummholz form.  

Abies spectabilis, Lauribinayak (MES; paper I & II)
Himalayan fir (A. spectabilis) is native of an area extending from Afghanistan through 

Kashmir and the Himalaya, east to Bhutan and south-eastern Tibet, and grows between 

2700 m and 3900 m a.s.l. (Stainton 1972). This evergreen tree species normally grows 

on acidic clay soil on shady slopes and is susceptible to late spring frost. Growth rate 

of this tree species is relatively slow and tree height ranges from 20 to 30 m. Betula 

utilis and Rhododendron campanulatum are the main associated species. A shrub 

species, Rhododendron anthopogan, largely occupies the understorey layer.   

 Quercus semecarpifolia (Phulchoki, Ghorepani, paper IV) 
Quercus semecarpifolia belongs to the western Himalayan element and is distributed 

from Afghanistan to south-west China within an altitudinal range of 2100 to 3800 m 

a.s.l. (Polunin & Stainton 1984). It is predominantly found in the dry western part of 

Nepal, but also in the eastern part on dry south-facing slopes (Ohsawa et al. 1986). 

The species has high variation in morphology depending upon the degree of human 

impact, climatic variability, and tree age. Tree height generally ranges from 25 to 30 

m. An aggregated leaf drop normally occurs during late spring (May) and new leaves 

emerge within a couple of weeks (June). Trees are nearly evergreen because old leaves 

do not entirely fall until the new leaves appear (see paper IV). This oak species is 

dominant in the forests at Phulchoki and Ghorepani between the elevations of 2300 to 

2850 m.a.s.l. These forests are characteristic of the Middle Hills in the central 

Himalaya (Dobremez 1976).   
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Climate complexity, temperature loggers and verification of station data  
Regional and local characteristics of climate are affected by topography, movement of 

air masses and latitude (Barry 1992; Pepin 2001). Temperature decreases with 

increasing elevation with characteristic environmental lapse rates (Huntley et al. 1989; 

Ohsawa 1990). Lapse rates are not constant, however, and may vary between sites, 

regions, and different times of year (Dodson & Marks 1997; Rolland 2003). In rugged 

terrains like the Himalayan mountain system, temperature and precipitation can vary 

remarkably over short geographic distances due to the effect of topography. Hence, the 

regional distribution of temperature and precipitation is very complex. The lack of 

precise climate data for desired locations and for desired time periods is a common 

problem in the high elevation mountain areas of Nepal (Shrestha et al. 1999; Friedland

et al. 2003). One way to circumvent such problem is to extrapolate data from nearby 

climate stations, often situated at lower elevations by using regional lapse rates. 

However, it is currently an open question as to what extent these extrapolated data 

really represent the climate of the areas of interest?  

 The closest climate station to one of my study areas (viz, Dhunche; see method, 

paper I for details) had insufficient data points and many missing records. I used 

estimated temperature data based on Kathmandu data (having longest and the most 

reliable data) for the study’s temperature-growth analyses. During estimation, using 

global lapse rate could be problematic, since lapse rate shows significant spatial 

variability (Dodson & Marks 1997; Pepin 2001; Rolland 2003). Thus, the precision of 

estimated temperature data was optimised by first using monthly lapse rates calculated 

on basis climate stations from high-elevation areas within central Nepal. The 

applicability of the estimated temperature data was then tested by correlating the 

estimated temperatures with temperature data recorded by loggers installed locally in 

the study areas during this study. The applicability of using precipitation data available 

from Kathmandu was also tested by correlating with the data available from Dhunche 

(nearest station to Lauribinayak). This was done because a positive correlation over 

time between precipitation data from these two locations would indicate that the 

Kathmandu station captures the temporal variability in precipitation over years in the 

surrounding areas even if the exact precipitation levels may not be identical.   
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Climate loggers (Gemini Data loggers version 2.3; Type Tiny tag +12; -

40/85°C; reading capacity; 16238) were set up in different elevational locations 

(forest, forest line, treeline, tree species line) across the whole range of treeline 

ecotones (both southern and northern slopes of Lauribinayak, Rasuwa and southern 

slope of Ngawal). They were installed at 2 m above the ground and at ground surface. 

Care was taken to avoid placing the loggers in direct sunlight. The loggers are 

waterproof, have high reading accuracy, large memories, and designed for use in harsh 

outdoor conditions. The logger data are available for 4 years (2008-2012) for 

Lauribinayak, and for 3 years (2009-2012) for Ngawal (see Appendix 1). Data were 

checked obviously erroneous recordings (unrealistically high or low recordings in one 

single logger; not paralleled by other loggers at the site) and trustable data only were 

used for testing within- and between-year correlations with the climate-station data 

(see Methods, paper I for details). Here, I present a brief overview of air temperature 

variation across two treeline ecotone areas is presented based on the data available 

from the temperature loggers installed at 2 m above the ground (see Appendix I).  

Lapse rate, annual mean and diurnal variation of temperature 
Annual mean air temperature (AMT) for the treeline areas in central Nepal based on 

the logger data is around 5°C (4.64 ± 0.28) with Lauribinayak in the north having the 

lowest (4.25°C) and Ngawal to the south having the highest (5.19°C) values (Fig. 3, 

Appendix I). The mean temperature change along our treeline ecotones is similar to 

the lapse rate value calculated based on climatic stations for central Nepal (0.57°C/100 

m). The lapse rates were calculated as 0.37°C, 0.53°C and 0.58°C for Ngawal south, 

Lauribinayak south and Lauribinayak north, respectively, although we note that 

estimating and testing lapse rate values for individual slopes based on the limited 

available logger points (average 3 per slope) is not statistically valid.  

 Temperature is a very important aspect of climate elsewhere and acts as a main 

driving force of many environmental processes. Diurnal and seasonal variations in 

temperatures were estimated for the different ecological elevations (forest line and tree 

species line) for both slopes at Lauribinayak and the south slope only at Ngawal. The 

diurnal temperature range (hereafter DTR) is the difference between the maximum and 

minimum temperatures in a 24-hour period.  
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Figure 3. Mean daily temperature for three slopes (a) and diurnal temperature ranges at 

the forest line (solid green line) and tree species line (dotted blue line) for the North 

and South slopes of Lauribinayak, Rasuwa (b and c) and the South slope of Ngawal, 

Manang (d). The bottom right panel (e) shows mean monthly diurnal temperature 

ranges (MMDTR). Temperatures were recorded at 2 hourly intervals by temperature 

loggers, installed 2 m above the ground.  
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DTR values can be averaged to give a monthly mean diurnal temperature range 

(hereafter MMDTR). The annual diurnal temperature range (hereafter ADTR) is an 

average of MMDTR. In this study, ADTR fluctuated between 7.9°C and 25.2°C for 

Lauribinayak north, between 3.4°C and 15.9°C for Lauribinayak south and between 

9.9°C and 15.1°C for Ngawal south (Fig. 3). MMDTR during winter and spring was 

larger than during summer on the south slopes in both areas (Appendix I, Fig. 3). A 

similar pattern was observed for the northern slope of Lauribinayak. Higher ADTR on 

the north slope suggests that the climate of this slope is more continental than the 

southern slope (Barry 1992). However, temperature amplitudes do not necessarily 

correlate with seasonal means, hence the area with a high diurnal range is not 

necessarily warmer than an area with a low diurnal range, or vice versa (Körner & 

Paulsen 2004).  

Sampling design

Dendrochronology (papers I & II) 
Dendrochronological techniques (Fritts 1976) were applied to address the research 

questions raised in papers I & II. Dendrochronology is a scientific method used for 

dating past events with the help of annual growth rings observed in cores extracted 

from tree trunks. In this technique, each annual ring is dated and its correlative feature 

with climate variables of the corresponding, or previous, year is analyzed (known as 

dendroclimatology).  

 Sufficient numbers of healthy and dominant trees were cored from three 

elevational locations (forest line, treeline, and krummholz (only in Lauribinayak)). 

After measuring the ring widths, five residual site chronologies were constructed from 

two study areas (one for each elevational location). Statistical software such as 

COFECHA (Holmes 1983) and ARSTAN (Cook 1985) were used during cross dating 

and chronology development processes (see Methods in paper I for details).  
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 Dendrochronological methods were also used to analyze age structure and tree 

establishment patterns (paper II). In each study area, three altitudinal transects were 

laid out which extended from the forest line up to the tree species line crossing the 

treeline. Age of each individual was estimated by counting annual rings and branch 

whorls (see Methods in paper II). All individuals of trees, saplings and seedlings were 

sampled for height and stem DBH (Diameter at Breast Height). Geographical 

coordinates and elevation were recorded for each individual (GPS). Each treeline tree 

was cored at two levels; 2 m and 0 m (Gamache & Payette 2005) and data were used 

for estimating treeline establishment period (see Methods in paper II).  

Vegetation sampling and analysis (papers III & IV) 
Paper III is based on data sampled in vertical and horizontal transects placed across 

forested and open landscape in Ngawal (see Methods in paper III). Each transect 

comprised eleven systematically sampled plots (quadrats). Five plots were placed on 

either side of a subjectively located central plot (representing transition from forest to 

open landscape) along elevation and canopy gradient. Each plot was divided into four 

sub plots, each of 5 x 5 m2. All vascular plant species were recorded from each sub-

plot and abundance of each species within a plot was estimated in terms of frequency 

on a scale of 0 to 4. Various environmental variables (canopy cover, altitude, aspect, 

slope, RRI and grazing) were recorded for each plot. The same sampling procedure 

was followed in paper IV, where sample plots were placed in six disturbance classes 

distinguished on the basis of percentage of canopy cover which represents the intensity 

of land-use.   
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Results and discussion 

Response to climatic and ecological attributes 
Among the four papers included in this thesis, climate change (variability in 

temperature and precipitation) effects are primarily discussed in papers I & II. Paper 

III also sheds light upon the role of temperature for understorey species distributions 

across the treeline ecotone. The effects of other ecological drivers and land-use 

systems are touched in paper II and extensively discussed in papers III & IV. 

Climate (Papers I, II & III) 
This thesis reveals clear climatic signals with noticeable spatial and temporal 

variability in both tree growth (paper I) and population structure (paper II) in two 

study areas. Primary climatic drivers include both growing-season as well as non-

growing-season factors, and they vary between the study areas, elevational locations, 

and analytical windows (whole time-periods vs. decadal periods). There is only limited 

consistency in terms of specific climatic factors or temporal patterns. Tree growth in 

two areas shows different response patterns with a strong response to winter climate in 

the dry area, and to spring climate in the mesic area, thus highlighting the importance 

of non-growing-season climate. The timing of the onset of the monsoon is important 

only in the mesic area.  

 Tree growth behaved differently with respect to summer temperature in the two 

study areas, with varying responses between the elevational locations and decadal 

periods (1985-1994; 1995-2005). For example, the radial growth of pine showed a 

significant positive response to summer temperature (June), but only at the forest line; 

while in the mesic Abies spectabilis area, tree growth showed a negative response to 

early summer temperature that is consistently observed across all analytical time 

periods (full and decadal) and at all elevations. Increased tree growth in the dry Pinus

area could be attributed to cold winters producing higher snow-fall and more persistent 

snow cover. Heavy accumulation of snow becomes a stable moisture source in such a 

dry area as it initiates an early onset of the growing season (Vaganov et al. 1999; 

Bekker 2005). However, there are inconsistencies in the relationship between growth 

and winter temperature across the two decades. The negative growth response to 



20

winter temperature is only detected in the later analytical period, when winter 

temperatures are more variable and generally warmer than in the earlier analytical 

period. Warm winter is associated with reduced snow-cover duration affecting 

moisture availability (Beniston 2005). Such climate conditions are restrictive not only 

to tree growth but also for survival of seedlings and hence might be responsible for the 

limited numbers of pine seedlings in the dry area. Furthermore, these conditions might 

be responsible for trees becoming established at lower elevations only during the latest 

analyzed decade (1990-1999). Poor growth years at the forest line were associated 

with high spring temperatures and low spring precipitation suggesting the possibility 

of spring drought as a growth-limiting factor.  

Reduced growth in warm summers in the mesic Abies spectabilis area, 

contradicts the commonly-observed positive growth response to summer temperature 

reported from many treeline ecotone regions world-wide, including the Himalaya 

(Esper et al. 2003; Wang et al. 2005; Wang et al. 2006; Dang et al. 2009; Shah et al.

2009). Growth reductions under above-average growing-season temperatures in 

temperature-limited systems (including many alpine and arctic treeline ecotones) have 

been observed elsewhere, and are often attributed to drought events or drought periods 

(Barber et al. 2000; Kirchhefer 2001; Lloyd & Fastie 2002; Wilmking et al. 2004). 

Such relationships could potentially explain the negative growth response to 

temperature in our Abies spectabilis area. Further, this negative growth response to 

temperature also implies that factors other than temperature per se might have driven 

the climate-growth relationship pattern in the area. For example, the date of cambial 

initiation, an important climate-linked process related to tree-ring growth, is known to 

be affected by date of snow melt, winter precipitation and soil warming (Worrall 1983; 

Kirdyanov et al. 2003). In the Himalaya, part of the early monsoon (May) precipitation 

may fall as snow which delays snowmelt and the onset of the growing season. During 

periods of high winter precipitation, the growth response is negative for the same 

reasons, i.e., delay of snowmelt and late onset of growing season (Peterson et al.

2002). 

A characteristic of the Himalayan climate is the sharply rising temperatures 

from March through May, with the monsoonal precipitation lagging behind by some 
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months, resulting in potential for spring water deficit (Sano et al. 2005). At the forest 

line of our mesic area, the potential importance of drought in explaining the negative 

relationship between tree growth and spring temperature is supported by a coincident 

positive relationship with spring precipitation, which is especially prominent during 

the earlier drier decade. In contrast, the relationship between tree growth and both 

winter and spring precipitation is negative in the later, wetter decade suggesting a shift 

in limiting factors for growth as that spring drought is not limiting tree growth at the 

higher elevations of the mesic area during this period. High precipitation implies 

increased cloudiness, leading to a significant reduction of soil temperature through 

reduced radiation input or high cloud albedo (Takahashi et al. 2005), which may delay 

soil-warming in spring and hence contribute to reduced tree growth.  

The role of temperature in the distribution of understorey species across a 

treeline ecotone is not well known. Paper III tests whether there is significant variation 

in species richness between an open alpine landscape and a forested landscape just 

below the forest line. Slightly higher species richness was found in the open alpine 

landscape, which may be attributed to greater solar radiation and large diurnal 

temperature fluctuations. These temperature attributes favour dwarf plant species such 

as herbs and cushion plants (Germino et al. 2002; Körner 2003). However, 

insignificant differences in species richness between two landscapes suggest that 

temperature does not have an overriding role in determining the local species richness 

(alpha-diversity) patterns in the area. 

Land-use (Papers II, III & IV) 
Papers II, III & IV discuss vegetation responses to land-use changes. In the Himalaya, 

the semi-natural environment near the upper treeline ecotone has been under human 

influence for millennia, exposed to land-use practices such as fire (burning of shrubs) 

and grazing (Paper III; Schmidt & Stubbendieck 1993; Schickhoff 2005). Changes in 

local people's occupation and livelihoods, and the implementation of conservation 

areas or national parks, has decreased the pressure upon these forests; significantly so 

during recent decades (Beug & Miehe 1999; Schickhoff 2005). Paper II discusses the 

influence of human and herbivore activities on treeline establishment and forest 

structure. For example, the larger numbers of trees and saplings in Ngawal suggests 
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that this area has a lower impact of human activities and herbivory, and fewer saplings 

at Lauribinayak indicate higher grazing pressure, which may be restricting upslope 

treeline advance in this area. The presence of bushes (viz. Rhododendron anthopogan 

in the mesic area and Juniperus spp. in the dry area) in both study areas provides some 

protection for seedlings and saplings from browsing.  

 Paper III reports slightly higher species richness in open alpine areas compared 

to the adjacent forested subalpine areas. Paper III also argues that the prostrate growth-

form of junipers, and a dominance of grasses and sedges (e.g. Stipa sp.; Carex sp.) 

indicates that the pine treeline is influenced by grazing (Kitayama 1992; Armand 

1992; Auerbach & Shmida 1993). This argument implies that the climatic / potential 

forest line in this area could be at a higher elevation (Miehe 1997) and this is 

supported by the presence of both alpine and forest species in our open area, such as 

the forest-specialist species that find a forest-like environment under krummholz-

formed junipers, which provide shelter and protection from browsing (Fuentes et al.

1984). Furthermore, higher species richness in the open area might be due to grazing 

which can facilitate the introduction of new species by creating small gaps and 

increasing environmental heterogeneity (Vandvik et al. 2005; Alados et al. 2007).  

 Paper IV highlights relationships between changes in species diversity and 

anthropogenic activities in the Middle Hill mountain forests. These forests are under 

serious threat because the economy in this area is heavily dependent upon timber, 

fodder and fuelwood available from these forests (Måren & Vetaas 2007). The study 

emphasizes the importance of moderate levels of disturbance in the forests, which 

allows enhancement of all measures of species diversity as well as sustains the 

livelihood of local farmers.  

Ecotone effect (Paper III) 
An ecotone is a transition zone between two adjacent ecological systems and hence 

possesses a mixture of floristic and faunistic characteristics from both of the 

community types (di Castri 1990; Holland et al. 1991; Risser 1995). Within the 

ecotone many species fall at the margin of their physiologically determined range 

(Curtis 1959). This is the reason why ecotones are sensitive to climate change (Gosz & 

Sharpe 1989). Any ecotone is a dynamic zone—a peak in species turnover is 
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assumed—and the ecotones created and maintained by human activities tend to be 

spatially abrupt.   

In Paper III, we hypothesised that species richness may be enhanced in the 

middle of the transects; i.e. at the border between forest and open landscape where 

species assemblages from the both forest and the open landscapes meet. This is a local 

edge effect and also termed the (forest) ecotone effect. The finding in this study is 

comparable to the results presented by Camarero et al. (2006) from a Pyrenean Pinus

forest where greater light availability was described as a probable cause of the upslope 

increase of plant richness. Grytnes (2003) and Grytnes et al. (2006) found a unimodal 

pattern in species richness across the sub-alpine forest ecotone. They used a 

considerably longer transects than ours which may explain why we found no 

significant pattern in richness with altitude across our forested to open landscapes. Our 

transects extended 120 m above the forest line, and if there was a local edge effect we 

would expect the highest plots to have lower richness compared to those around the 

centre of the transects. The distribution of the samples shown in the DCA diagram 

(Paper III) indicates a continuum of species along the transects from forest to open 

alpine landscapes.  

Mass effect (Paper III) 
Mass effect is the process of species establishment by propagules at sites where they 

cannot maintain viable populations due to a failure to reproduce (Shmida & Wilson 

1985). The mass effect can temporarily enhance species richness in a landscape by 

species migration from a source population. However, this effect does not create a 

self-maintaining population in sink locations. In this study (paper III), the higher 

species richness found in the open alpine areas can be attributed to an asymmetric 

mass effect as discussed by Grytnes (2003) to explain a peak in species richness 

observed in his study. According to this concept, seed dispersal from the forest to the 

open alpine landscape is possible, but reverse dispersal might be prohibited by the 

canopy cover. Thus, although higher species richness in the alpine landscape could 

indicate an asymmetric mass effect in my study (paper III), higher total species 

number in the forested patches obscure the possible imprints of mass effects on local 

species diversity patterns.   
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Concluding remarks 

This thesis aimed to shed light upon the vegetation responses to recent environmental 

changes, in climate-sensitive (treeline ecotone areas) and human-modified (disturbed 

Middle Hill forest) ecosystems in the Nepal Himalaya. Individualistic (paper I), 

population (paper II) and community (papers III & IV) level responses to the ambient 

environmental conditions were evaluated over various spatial and temporal scales.   

 An important finding from, is the contribution of non-growing season climate 

factors to variability in tree growth, and I argue that these factors operate mainly by 

altering growing season length. For example, in the dry environment, cold winters 

promote pine tree growth by causing a relatively early onset of the growing season 

through increased moisture facilitation from the melting snow in the pre-monsoon 

period, relative warmer winter years. In the mesic area, on the other hand, high snow 

accumulation during cold winters results in late melt-out and retards growth of fir tree 

species by limiting the growing period.  

 This thesis also highlights the contributions of site-specific factors in treeline 

structuring processes in both study areas. The low number of pine seedlings in the dry 

area could be due to climatic stress caused by the more variable climate with some 

very warm winters and some very cold summers of recent years. In the same area, a 

relatively high density of saplings and trees indicates low pressure of biotic activities 

and high potential for treeline advance. Fewer saplings and trees in the mesic area 

suggest high biotic pressures (herbivores) which may restrict the potential for treeline 

advance. The pattern of community composition across forest to open ecotone 

suggests that grazing pressure is sufficient to override the climate ecotone effect in the 

pine area. Small differences in alpha diversity and small turnover along altitude in 

species composition support this argument.  

 Finally, this thesis recommends allowing low intensity forest use by local 

people in the Middle Hills area as intermediate-level and spatially variable prescribed 

forest disturbances by enhancing all measures of species diversity and can thus 

mitigates biodiversity loss in these landscapes.   
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Future perspectives 

This study contributes to the under-represented central Himalayan treeline literature. 

In two treeline papers (papers I & II), I considered two tree species (Pinus and Abies) 

representing two contrasting environments (dry and mesic). This could be elaborated 

by adding more species sharing the same environments (Juniper in dry; Birch in 

mesic) in order to compare species-specific patterns of tree growth responses. 

Furthermore, by considering more than one locality or region, the study can be given a 

multi-scale approach. The study of growth response of a species with various growth-

forms in the same environment may also be very interesting. For example, the growth 

response of the climate-sensitive treeline shrub Cassiope fastigiata, which is regarded 

as an important indicator of vegetation-climate relationships.  

One of the main shortcomings for climate-growth studies from the Nepal 

Himalaya is the limitation of climate data: the longest available station data 

temperature and precipitation series are only 50 years (Kathmandu airport). The data 

of sufficient quality (i.e., time series covering both temperature and precipitation over 

ecologically interesting time periods, with few missing data points) from treeline 

elevations are nearly impossible to obtain. For more reliable climate-growth studies 

from high elevation areas of the Himalaya, resourceful and long-term plans for data 

collection and quality are necessary.  

 In paper II, I considered evaluating tree-establishment patterns at treeline 

elevations over the decades, but the small data set I have available makes it hard to 

assert anything about the treeline patterns of the study areas. However, contributions 

of climate vs. land-use have been discussed. Quantitative land-use and geo-

morphological data will give a stronger basis for saying something about treeline 

dynamics in the areas. Further, to examine patterns of land cover (specifically tree 

cover) and their changes across the sub-alpine transition zone, the use of spatial 

information technology (remote sensing and GIS) could be highly effective.  
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