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Abstract

Two particle correlations are studied in the reaction plane of peripheral rel-
ativistic heavy ion reactions where the initial state has substantial angu-
lar momentum. The earlier predicted rotation effect and Kelvin Helmholtz
Instability, leads to space-time momentum correlations among the emitted
particles. A specific combination of two particle correlation measurements is
proposed, which can sensitively detect the rotation of the emitting system.
Here the method is first presented in simple few source models where the
symmetries and the possibilities of the detection can be demonstrated in a
transparent way. We then look at the method and its result in a high resolu-
tion, realistic, computational fluid dynamics model, using the PIC method.
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Chapter 1

Introduction

Collective flow is one of the most dominant observable features in heavy ion
reactions up to the highest available energies, and its global symmetries as
well as its fluctuations are extensively studied. Especially at the highest en-
ergies for peripheral reaction the angular momentum of the initial state is
substantial, which leads to observable rotation according to fluid dynamical
estimates [1]. Furthermore the low viscosity quark-gluon fluid may lead to
to initial turbulent instabilities, like the Kelvin Helmholtz Instability (KHI),
according to numerical fluid dynamical estimates [2], which is also confirmed
in a simplified analytic model [3]. These turbulent phenomena further in-
crease the rotation of the system, which also leads to a large vorticity and
circulation of the participant zone. [4]. In ref. [2] it is estimated that the
increased rotation can be observable via the increased v1-flow, but the v1
signal at high energies is weak, so other observables of the rotation are also
needed.

The two particle correlation method is used to determine the space-time
size of the system emitting the observed particles, thus providing valuable
information on the exploding and expanding system at the freeze out stage
of a heavy ion collision. This method is based on the Hanbury Brown and
Twiss (HBT) method, originally used for the determination of the size of
distant stars [5]. In heavy ion collisions the HBT method was used first for
the same purpose, the determination of the system size [6], but later also
the ellipsoidal shape of the system and its tilt [7, 8]. It was also observed
relatively early that the expansion of the system modifies the size estimates
due to the collective radial flow velocity of the emitting system [9], while the
effect of flow on two particle correlations was also analysed in great detail
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[10]. Transport model studies have indicated that the HBT radius shows a
minimum at the phase transition threshold [11].

A detailed two particle correlation study of flow rotation was not per-
formed up to now [12]. This became actual now as at higher beam energies,
where the initial angular momentum of the participant system is increas-
ing in peripheral reactions, the system may rotate causing a significant and
detectable effect.

Different theoretical approaches were worked out up to now to evaluate
the two particle correlation functions in different reaction models. We here
picked one method, which is not used very frequently up to now, but it can be
generalized and used to fluid dynamical models with arbitrary flow patterns
well. With this method hereby we study simplified, idealized fluid dynamical
systems with different symmetry structures. These studies show how we can
detect rotation via two particle correlation functions and what effects may
cause difficulties in identifying rotation.

Based on these studies we also present a Differential Hanbury Brown
and Twiss (DHBT) method, which can sensitively determine the strength
(vorticity or circulation) of the rotating flow and the direction of this rotation.

The Differential HBT method is then used to analyse the fluid dynam-
ical model results of ultra-relativistic heavy ion reactions where the initial
state has substantial angular momentum. The rotation effect and Kelvin
Helmholtz Instability, leads to space-time momentum correlations among
the emitted particles, which can be detected by the method.

We will look at the Differential HBT method and its result in a high reso-
lution, realistic, computational fluid dynamics model, using the PIC method.
This model was used to predict the rotation in peripheral ultra-relativistic
reactions [1], and to point out the possibility of Kelvin Helmholtz Instabil-
ity [2]. The model was tested for its numerical viscosity and the resulting
entropy production [13], as well as, the vorticity of the flow was analysed in
the same model for different configurations [4].
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1.1 The Emission Function Introduction

1.1 The Emission Function

Following [14] the definition of a particle 4-current is:

Nµ =

∫
pµ
d3p

p0
f(x, p) , (1.1)

where f(x, p) is the invariant scalar phase space density distribution of the
emitted particles. The total flow of N nucleons across a space-time (ST)
hypersurface, with the surface element, dσµ is:

N =

∫
d3p

p0

∫
dσµ p

µf(x, p) . (1.2)

If we do not perform the integration over the momentum, p, then we get the
Cooper-Frye formula [15] for invariant momentum distribution:

E
dN

d3p
=

∫
dσµ p

µf(x, p) , (1.3)

where E = p0. This assumes that there is a 3-dimensional Freeze Out (FO)
hypersurface, which can also be generalized to become a layer, as we will
show. Using d3p = dp||dp⊥ = p0dydp⊥) we can write this in another form,
and we can extend it to a 4-volume integral of a 4-dimensional Source Func-
tion, S, as [16, 17]:

dN

dyd2p⊥
=

∫
dσµ(x) pµf(x, p) =

∫
d4xS(x,p) , (1.4)

where we assumed that the emission appears on a 3-dimensional hypersurface
with the outward pointing normal, dσµ. The emission function gives the dis-
tribution of the ST positions of momenta of emitted particles. The emission
function gives the number of the particles, ∆N , emitted in the phase-space
element ∆3x∆3p per unit time, ∆t. We get a Lorentz invariant scalar if we
also multiply it by the energy, p0, of the emitted particles:

S(x,p) = p0
∆N

∆t∆3x∆3p
. (1.5)

Along the lines of this introduction we can describe the emission over a
hypersurface also as a 4-volume integral. We still assume a ST hypersurface
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with an outward pointing normal vector, dσµ, but then the ST integral is
interpreted as a 4-volume integral with a delta function for the given surface,
δ(x′ − x) as:∫

S(x,p) d4x =

∫
d4x pµ σ̂µ(x′) δ(4)(x′ − x) f(x, p) , (1.6)

where the emission is constrained to a 3-dimensional hypersurface in the ST
and it is directed in a given direction characterized by the unit vector in
the source described by σ̂µ(x′) δ(4)(x′). Even if we assume that the source
is in a ST layer (which is not too thick, e.g. 2-3 fm), in this layer we can
have a maximum of the emission. This could even be idealized as a 3-dim
hypersurface in the 4-dim ST if the thickness of the layer is neglected. Thus,
σ̂µ, is the unit normal vector of this surface:

σ̂µσ̂µ = +1 for timelike hypersurface or layer ,

σ̂µσ̂µ = −1 for spacelike hypersurface or layer . (1.7)

The idealization of FO in a 3D hypersurface is not necessary, however
it makes the presentation more transparent. The more realistic emission
distribution must happen in a 4D ST surface layer, which can still can have
an effective space-like or time-like normal vector. See refs. [10, 18, 19, 20].
Although, one might naively believe that in case of a normal vector, σ̂µ =
(1, 0, 0, 0) the emission is uniform in all spatial directions, this is not true,
as the local flow velocity also influences the emission probability [10, 19].
When the flow velocity points in the direction of the detector (or the FO
normal) the probability for the emission into the σ̂µ-direction is bigger, so
that the emission probability should be proportional to (uµ · σ̂µ). This will
be important later on when the observability of rotation is discussed.

In addition even in case of time-like FO the deeper (or earlier) points of
the FO layer have a smaller emission probability because of the opacity of
QGP, indicated also by the strong jet quenching. This effect causes additional
asymmetries in the emission.
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1.2 Hydrodynamical Parameterization

Let us assume that at the points of the source the matter is still in local
equilibrium. Then we can describe the phase-space distribution of the parti-
cles, f(x, p) by a Jüttner distributions [14] or a relativistic Bose-Einstein or
Fermi-Dirac distribution. Furthermore, instead of the delta function we may
assume the emission distributed in a ST layer, which still has a preferred
direction of emission σ̂µ.

For our purposes the most suitable parametrization of the emission func-
tion is introduced in the special ”Buda-Lund” model, see section 8 of ref.
[21] . Here the emission function is parametrized as

S(x,p) d4x = pµ d4Σµ(x) f(x, p), (1.8)

where the emission probability and its dependence of the FO direction is
already included in the pµ d4Σµ(x) term. The 4-volume integral is directed
and yields a maximum for kµ which is closest to d4Σµ(x). In the Buda-Lund
model the FO direction points into the flow 4-velocity, d4Σµ(x) ∝ uµ. This
is also a frequent approximation in other fluid dynamical models, although,
in the general case it is not a valid approximation. Thus, this approach is
identical to the dynamical volume FO in a layer [18, 19, 20], discussed above.
We also assume that the FO layer depends parametrically on the proper time,
τ , (or distance sµ)) in the FO factor d4Σµ(x) ∝ σ̂µd4x. So, that the emission
probability is proportional to G(x)H(τ):

S(x,p)d4x = pµ σ̂µ(x) G(x)H(τ) dτd3x f(x, p) ,

where

H(τ) =
1

(2π(Θ)2)1/2
exp

[
−(τ − τ̄)2

2(Θ)2

]
, (1.9)

and that the width of the emitting sources do not change significantly during
the course of emission from a given source.

Then the emission function characterized with a locally thermalized volume-
emitting source is:

S(x,p) d4x =
g

(2π~)3
pµ σ̂µ(x)G(x)H(τ) dτd3x

exp
(
pµuµ(x)

T (x)
− µ(x)

T (x)

)
− 1

, (1.10)

where in place of f(x, p) we inserted the relativistic Bose-Einstein distribu-
tion. The factor g stands for the degeneracy, uµ(x) is the 4-velocity field, T (x)
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is the temperature field, µ(x) is the chemical potential and d4x = dτ dx dy dz.
G(x) is the ST emission density across the layer of the particles (e.g. pions).
This can be approximated with a ST hypersurface and then with Θ→ 0 we
obtain the Cooper-Frye FO description. [15]

For the phase space distribution we frequently use the Jüttner (relativistic
Boltzmann) distribution:

fJ(x, p) =
g

(2π~)3
exp

(
−p

µuµ(x)

T (x)
+
µ(x)

T (x)

)
, (1.11)

which is normalized to the invariant scalar density of particles

n(x) = Nµuµ = uµ

∫
d3p

p0
pµ f(x, p) =

geµ/T

(2π~)3
Cn, (1.12)

where Cn = 4πm2TK2(m/T ) and we use the c = k = 1 convention. Thus in
terms of the local invariant scalar particle density the Jüttner distribution is
[14]

fJ(x, p) =
n(x)

Cn
exp

(
−p

µuµ(x)

T (x)

)
. (1.13)

We can also define dσµ = dx dy dz σ̂µ (for a timelike surface or layer)
where the norm of dσµ is the 3-volume of the source element (like a fluid
cell), similarly to Refs. [18, 19, 20]

Our source function in this case, Eq. (1.13), similarly to Ref. [21] in the
frame where σ̂µ = (1, 0, 0, 0) is:

G(x) = NFD(x)/n(x), (1.14)

where NFD(x) is the density of particles arising from fluid-dynamical (FD)
evolution (or from other transport models). Then if the flow velocity does
not vanish in this frame:

NFD(x) = γn(x) , (1.15)

The H(τ) (or H(s)) freeze-out probability along the τ (or s) parameter,
across the layer can be integrated separately from the remaining three or-
thogonal coordinates.

Here we assume that the primary direction of the emission is σ̂µ. Thus,
in case of an explosively expanding system it points towards the detector, so
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σ̂µ ≈ k̂µ. The emission happens from the 4-volume of ST surface layer with
an effective normal direction σ̂µ, and not from a ST hypersurface.

In ref. [10] the correlation function was analyzed in detail in dependence
of the direction of the primary emission direction, kµ. A possibility of lon-
gitudinal momentum difference was considered in terms of the rapidity of
the two emitted particles, where the difference of the longitudinal momenta,
the width parameter, was studied in detail. While this analysis provides a
deeper insight into the features of the correlation function, in our studies we
concentrate to the rotation of the system and restrict ourself to a simplest
presentation of the correlation function, which can be realized experimentally
without much additional effort.

We can assume FO from a narrow layer at a proper time hyperbola τFO =
cons. like in the Buda-Lund model, see ref. [21]. This can be practical if
the CFD model uses proper time and rapidity coordinates. Recent studies
indicate that irrespective of the coordinate system choice, in the major part
of FO in high energy collisions the FO happens near to a constant proper
time hyperbola, although the origin of this FO-hyperbola is at an earlier
point of time than the intersection of the centers of the projectile and target
trajectories [22].

For the first test purpose we take an oversimplified model of 4 fluid ele-
ments, which may or may not expand or rotate. We assume that these are in
the reaction plane, [x− z]-plane, and will characterise parameters of a heavy
ion reaction based on CFD results. We assume that the system is stationary
so the time emission probability is a Gaussian (like) distribution in time.
Later on we intend to study and see that these methods can be applied for
realistic full scale FD calculations also.

1.3 Pion Correlation Functions

The pion correlation function is defined as the inclusive two-particle distribu-
tion divided by the product of the inclusive one-particle distributions, such
that [17]:

C(p1, p2) =
P2(p1, p2)

P1(p1)P1(p2)
, (1.16)

where p1 and p2 are the 4-momenta of the pions.
We will assume pions are created at two points, x1 and x2, which are

distributed in space. The particle distribution is given by the reduced phase
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space source distribution:

S(x, p) = f(x, p) pµ σ̂µG(x)H(τ) . (1.17)

For two identical pions with momenta p1 and p2 the two-particle distribution
is:

P2(p1, p2) =

∫
d4x1d

4x2 S(x1, p1)S(x2, p2)|ψ12|2, (1.18)

where the wave equation ψ12 is given by:

ψ12 =
1√
2

(eip1·x1+ip2·x2 + eip1·x2+ip2·x1) (1.19)

We now introduce the center-of-mass momentum 1

k =
1

2
(p1 + p2), (1.20)

and the relative momentum

q = p1 − p2, (1.21)

where assuming the mass-shell constraint for the two particles and so we have
q · k = (p1 − p2) · (p1 + p2)/2 = (p21 − p22)/2 = (m2

π −m2
π)/2 = 0, which leads

to q0 = q · k/k0
With the relative and center-of-mass momentum we can write the wave

equation as:

ψ12 =
eik·(x1+x2)√

2

(
eiq·(x1−x2)/2 + e−iq·(x1−x2)/2

)
, (1.22)

and then

|ψ12|2 =

[
1 +

1

2

(
eiq·(x1−x2) + e−iq·(x1−x2)

)]
. (1.23)

We can then insert eq. (1.23) into eq. (1.18), and we obtain:

P2(p1, p2) =

∫
d4x1 d

4x2 S(x1, k + q/2)S(x2, k − q/2)

×
[
1 +

1

2

(
eiq·(x1−x2) + e−iq·(x1−x2)

)]
, (1.24)

1The vector k is the wavenumber vector, k = p/~ so for numerical calculations we have
to use that ~c = 197.327 MeV fm., The same applies to q.
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where the last term in the brackets is cos[q(x1 − x2)]. Similarly for the one
particle distribution we get:

P1(p) =

∫
d4x S(x, k) . (1.25)

We now use a method for moving sources presented in ref. [23]. Using eqs.
(1.24,1.25), together with the definition of the correlation function we have:

C(k, q) = 1 +
R(k, q)∣∣∫ d4xS(x, k)

∣∣2 , (1.26)

where

R(k, q) =

∫
d4x1 d

4x2 cos[q(x1 − x2)]S(x1, k + q/2)S(x2, k − q/2) . (1.27)

Here R(k, q) can be calculated [23] via the function

J(k, q) =

∫
d4x S(x, k + q/2) exp(iqx) =∫

d4x S(x, k + q/2) [cos(qx) + i sin(qx)] ,

(1.28)

and we obtain the R(k, q) function as

R(k, q) = Re [J(k, q) J(k,−q)] (1.29)

This can be verified, by using eq. (1.28), forming a double integral over
d4x1 d

4x2 from J(k, q) J(k,−q), yielding to a term exp[−iq(x1 − x2)]. Then
taking the real part of the double integral leads to a term cos[q(x1−x2)] and
this recovers eq. (1.27).

1.3.1 Source with local Jütner distribution

Let us take the S(x1, p1)S(x2, p2) term in eq. (1.24), and assume that the
single particle distributions, f(x, p), in the source functions are Jüttner dis-
tributions, which depend on the local velocity, uµ(x) , via the term

exp

(
−pµuµ(x)

T (x)

)
(1.30)
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as shown in eq. (1.13). Here the local flow velocity may be different in
different locations, x1 and x2, and this influences the correlations of the
observed momenta. Thus, the scalar products in terms of k and q become:

exp(−p1u1) exp(−p2u2) =

exp(−(k + q/2)u1) exp(−(k − q/2)u2) =

exp(−ku1) exp(−ku2) exp(−q(u1 − u2)/2)

(1.31)

where we used the notation u1 = u(x1) = uµ(x1). We assume that for a given
detector position the normal direction of the emission is approximately the
same, so for the two sources the term pµσ̂µ(x) is the same and it cancels in
the nominator and denominator.

Thus, the expression of the correlation function, eq. (1.27) will be modi-
fied to

R(k, q) =

∫
d4x1d

4x2 S(x1, k)S(x2, k) cos[q(x1−x2)]×

exp

[
−q

2

(
u(x1)

T (x1)
− u(x2)

T (x2)

)]
,

(1.32)

and the corresponding J(k, q) function will become

J(k, q) =

∫
d4x S(x, k) exp

[
−q

2

u(x)

T (x)

]
exp(iqx) , (1.33)

In eq. (1.32) the term including the momentum component q and the
flow velocity u becomes unity if the source has a uniform distribution of
u(x)/T (x), and in this case we may be able to use the so called smoothness
approximation: S(x, k+q/2)S(y, k−q/2) ≈ S(x, k)S(y, k), and the correla-
tion function, expression (1.26), takes the form

C(k, q) = 1 +

∣∣∫ d4x eiqxS(x, k)
∣∣2∣∣∫ d4xS(x, k)

∣∣2 , (1.34)
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Chapter 2

Symmetric Few Source Models

2.1 One Fluid Cell as Source

We now assume a source function, which is reduced to one Freeze Out (FO)
time moment. Thus the integration over the 4-volume of an emission layer is
reduced to the 3-volume of a FO hypersurface. For simplicity, we assume FO
at a constant coordinate time t, where we assume a local Jüttner distribution.
Thus, we have the source function as

S(x, k) = G(x)H(τ) exp

(
−kµu

µ(x)

T (x)

)
kµ σ̂µ , (2.1)

where kµσ̂µ is an invariant scalar, and for a single cell we use a simple
quadratic parametrization for n(x) as:

G(x) = γn(x) = γns exp

(
−x

2 + y2 + z2

2R2

)
. (2.2)

Here ns is the average density of the Gaussian source (or fluid cell) of mean
radius R.

2.1.1 Steady source

Let us start with a single source at rest. The invariant scalar kµuµ
can be calculated in the frame where the cell is at rest. We have then

uµ = (1, 0, 0, 0)⇒ −kµu
µ

T
= −k

0

T
= −Ek

T
, (2.3)
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In this simplest case we also assume that the FO direction is σ̂µ = (1, 0, 0, 0),
so the τ -coordinate coincides with the t-coordinate, and it is orthogonal to
the x, y, x− coordinates. Then we can make use of the following integral:∫ +∞

−∞
e−ax

2

d3x =

(√
π√
a

)3

, (2.4)

We can perform the integral along the t direction of H(t), which gives unity
and then the single particle distribution is∫

d4x S(x, k) =
ns
Cn

(kµσ̂µ) exp

(
−Ek
Ts

)
×∫ +∞

−∞
H(t)dt

∫ +∞

−∞
e−

x2

2R2 dx

∫ +∞

−∞
e−

y2

2R2 dy

∫ +∞

−∞
e−

z2

2R2 dz =

ns (kµσ̂µ) exp

(
−Ek
Ts

)
(2πR2)

3/2

Cn
,

(2.5)

where Ts is the temperature of the source, and Ek = k0 in the rest frame of
the fluid cell. Due to the normalization of H(t) the integral over the time t
is unity. The contribution to the nominator from Eq. (1.33) is

J(k, q) =

∫
d4x eiq·xe−q

0/(2Ts)S(x, k) =
ns (kµσ̂µ)

Cn
×

exp

[
−Ek+q

0/2

Ts

] ∫ +∞

−∞
H(t)eiq

0tdt

∫ +∞

−∞
e−

x2

2R2 e−iqxxdx ×∫ +∞

−∞
e−

y2

2R2 e−iqyydy

∫ +∞

−∞
e−

z2

2R2 e−iqzzdz =

ns(k
µσ̂µ)

Cn

(
2πR2

)3/2
exp

[
−Ek
Ts

]
exp

[
− q0

2Ts

]
×

exp

[
−R

2

2
q2
]

exp

[
−Θ2

2
(σ̂µqµ)2

]
,

(2.6)

where we used
∫∞
−∞ exp(−p2x2±qx)dx = (

√
π/p)×exp(q2/(4p2)) [24] 3.323/2.

In the time integral the present choice of σ̂µ would give (q0)2, but we wanted
to indicate that other choices are also possible and they would yield (σ̂µqµ)2.
In the J(k, q)J(k,−q) product the terms exp[±q0/(2Ts)] cancel each other.
Inserting these equations into (1.26) we get

C(k, q) = 1 + exp
(
−(Θ)2(σ̂µqµ)2 −R2q2

)
. (2.7)
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2.1 One Fluid Cell as Source Symmetric Few Source Models

If we have a source at a point in the FO layer, which is at a longer distance
from the external side of the FO layer than Θ, then the contribution of the
time integral from this point is reduced. In a few source model it is more
transparent to describe this reduction by assigning a smaller weight factor
to the contribution of the deeper lying source.

If we tend to an infinitely narrow FO layer, Θ → 0, i.e. to a FO hyper-
surface, then

C(k, q) = 1 + exp
(
−R2q2

)
. (2.8)

The k dependence thus drops out from the correlation function, C(k, q) as
the k dependent parts are separable. See Fig. 2.1. The size of the fluid cells
in a high resolution 3+1D fluid dynamical calculation is (0.3fm)3. With this
resolution the numerical viscosity of the fluid dynamcal calculation [13] is the
same as the estimated minimal viscosity of the QGP [25] which occurs at the
critical point of the phase transition [26]. As Fig. 2.1 shows the correlation for
such a cell size yields to an extended distribution in the relative momentum
q.

0 1 2 31 , 0
1 , 2
1 , 4
1 , 6
1 , 8
2 , 0

C(
k,q

)

q   ( 1 / f m )
Figure 2.1: (color online) The correlation function, C(k, q), for a single,
static, spherically symmetric, Gaussian source with different radii, R = 4, 1
and 0.25 fm, (blue-dotted, red-dashed, and full-black lines respectively), as
described by eq. (2.8).

For the study of the rotation of the system the thickness of the FO layer
is of secondary importance, especially if we discuss only a few fluid sources.
In this case the role of the depth of a source point within the layer is given
by its reduced contribution to the particle emission. This can be represented
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2.1 One Fluid Cell as Source Symmetric Few Source Models

much simpler with assigning emission weights to the small number of sources.
Thus, in the following discussion, we do not go into the details of the time
structure of the emission.

2.1.2 Moving source

Now for a moving source in the x-direction with a velocity vx we have,
uµs = γs(1, vx, 0, 0) the scalar product k · us/Ts = kµu

µ
s/Ts provides an ad-

ditional contribution to the correlation function. However, in the case of a
single fluid cell or a single source the velocity and the temperature do not
change within the cell, so the modifying term in eq. (1.32) becomes unity.
We use kµu

µ = γ(Ek − kxvx), and the source function becomes

S(x, k) =
n(x) (kµ σ̂µ)

Cn
exp

[
−k · us

Ts

]
, (2.9)

where [k · us/Ts] = [γs(Ek − kxvx)/Ts].
Within the source (or fluid element) the velocity us and temperature Ts

are assumed to be the same. The source of fluid element may have a density
profile, but this profile should be the same for all cells (although the average
density, ns is not the same for all cells. The spatial integrals can be performed
in the rest frame of the cell, giving the same integral result as above (2.5),
because the moving cellsize shrinks, but the apparent density increases, so
that the total number of particles in a cell remains the same as it is an
invariant scalar. Then the integral of the single particle contribution is

J(k, q) =

∫
d3x eiq·xS(x, k) exp

[
−q · us

2Ts

]
=ns(k

µσ̂µ) exp

[
−k · us

Ts

]
(2πR2)

3/2

Cn
.

(2.10)

Then the two particle distribution:

J(k, q) =

∫
d3x eiq·xS(x, k) exp

[
−q · us

2Ts

]
=

ns(k
µσ̂µ) exp

[
−k · us

Ts

]
exp

[
−q

2

us
Ts

]
(2πR2)

3/2

Cn
exp

(
−R

2

2
q2
)
.

(2.11)
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2.2 Two Fluid Cell Sources Symmetric Few Source Models

When calculatingR(k, q), in the J(k, q)J(k,−q) product the terms exp[±q·
us/(2Ts)] cancel each other. In the formulae the ~ = 1 convention is used
and k and q are considered as the wavenumber vectors.

We then insert these equations into equation (1.26) and we get for one
moving Gaussian source

C(k, q) = 1 + exp
(
−R2q2

)
. (2.12)

Again, this result does not depend on k, just as the previous single source at
rest, eq. (2.8).

2.2 Two Fluid Cell Sources

2.2.1 Two steady sources

For emission from two steady sources, two particle correlations were
studied in ref. [21]. Here we use the present method. We assume that the
two source system is symmetric both their positions are placed symmetrically
and also their FO normal vectors, σ̂µ, are the same. If the normal σ̂µ were
(1, 0, 0, 0), then the invariant scalar kµσ̂µ would be k0 = Ek, although we do
not need this additional requirement to illustrate the correlation function,
which would arise from an idealized symmetric system.

Z

X

Figure 2.2: (color online) Two steady sources in the reaction ([x− z]) plane
with a distance between them of 2d in the x−direction.

We also assume that the time distributions, H(τ) for the two sources are
identical, so these can be integrated simultaneously and yield unity. If we
have two sources then the source function is
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2.2 Two Fluid Cell Sources Symmetric Few Source Models

S(x, k) =
∑
s

Ss(x, k) = (kµσ̂µ)
∑
s

ns(x)

Cns
exp

[
−k · us

Ts

]
, (2.13)

while the J function in the Jüttner approximation is

J(k, q) =
∑
s

exp

[
−q

2

us
Ts

]
exp(iqxs)

∫
S

d4x Ss(x, k) exp(iqx) , (2.14)

where xs is the position of the center of the source, and the spatial integrals
run separately for each of the identical sources, i.e. we assume fluid cells with
identical density profiles, but with different densities, ns and temperatures,
Ts.

In case of steady sources us = (1, 0, 0, 0), and the spatial integral for one
source is the same as for a single source. Thus,∫

d3x S(x, k) =
∑
s

∫
S

d3x Ss(x, k) =

(
2πR2

)3/2
(kµσ̂µ)

∑
s

ns
Cns

exp

(
−Ek
Ts

) (2.15)

and

J(k, q) =
∑
s

exp

[
− q0

2Ts

]
exp(iqxs)

∫
S

d3x Ss(x, k) exp(iqx) =

(
2πR2

)3/2
(kµσ̂µ) exp

(
−R

2

2
q2
) ∑

s

ns
Cns
×

exp

(
−Ek
Ts

)
exp

[
− q0

2Ts

]
exp(iq0x0s) exp(−iqxs) .

(2.16)

In the J(k, q)J(k,−q) product the terms exp[±q0/(2Ts)] cancel each other.
Both J(k, q) and J(k,−q) includes a sum [exp(iqxs)+exp(−iqxs)], and their
product leads to a factor 2[1 + cos(2qxs)]. Here we assumed that the time-
like extent of the emission layer is negligible compared to the space-like size.
Consequently, if the two sources have the same parameters, just different
locations, x1 = −x2 (see Fig. 2.2) then

C(k, q) = 1 +
1

2
exp(−R2q2)[1 + cos(2qxs)] (2.17)
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Figure 2.3: (color online) The correlation function, C(k, q), for two spherical,
Gaussian sources at rest, shown in the direction of the displacement (here
qx) with different distances, d = 2.5, 1.25 and 0 fm, (dotted-blue, dashed-red,
and full-black lines respectively) and in the orthogonal direction, qy which is
identical with the d = 0 contribution (full-black line). For finite d the cosine
term results in a modification in the direction of the line joining the sources,
which becomes apparent if the distance between the sources becomes small
compared to the size of the spherical sources.

This result agrees with ref. [21], section 9.1 (p. 41), and in the limit
of xs = 0 it returns the single source result, eq. (2.8). See Fig. 2.3. If the
distance of the two sources is 2d, i.e. x1 = d and x2 = −d, then 2qxs = 2qx d,
thus the modification appears in the qx-direction only. In the other directions,
qy and qz, the single source result (2.8) is returned.

If the distance of the two sources, 2d, is comparable or smaller than the
radius of a single source, R, then the two source configuration leads to visible
zero points, C(k, q) = 0, on the qx-axis at 2qx d = ±(1 + 2n)π, where n =
0, 1, 2, 3, ... . In Fig. 2.3 for the d = 2.5fm case we see these zero points at
qx = π/(2d), 3π/(2d) , ... , while at the points qx = 2π/(2d), 4π/(2d) , ... the
distribution function, C(k, qx) touches (becomes tangent to) the distribution
function for d = 0 or the distribution function C(k, qy).

The appearance of the zero points is to a large extent an artifact of the
used very simplistic two source model. In case of other additional sources
these zero points would disappear. Nevertheless, this feature illustrates that
the correlation function can be more complex than a set of Gaussians of the
momentum difference q in different directions or at different rapidities.
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2.2 Two Fluid Cell Sources Symmetric Few Source Models

2.2.2 Two moving sources

For two moving sources, the same way as before but where the two
sources are moving in opposite directions, so us = u1 or u2 where uµ1 =
(γs, γsv1), u2 = ūµs = (γs, γs(−v1)), and us ≡ γs vs, so that u1 = −u2.
Similarly, xs = x1 or x2 where xµs = (ts,xs), x̄

µ
s = (ts,−xs), and x1 = −x2.

For now we also assume that FO happens at a t =const. FO hypersurface,
so dσ̂µ = (1, 0, 0, 0) and so t1 = t2.

Z

X

Figure 2.4: (color online) Two moving sources in the reaction ([x− z]) plane
with a distance between them of 2d in the x−direction. The sources are
moving in the directions indicated by the (red) arrows.

If we have several sources then the source function in Jüttner approxima-
tion is

S(x, k) =
∑
s

Ss(x, k) = (kµ σ̂µ)
∑
s

ns(x)

Cns
exp

[
−k · us

Ts

]
, (2.18)

while the J function is

J(k, q) =
∑
s

exp

[
−q

2

us
Ts

]
exp(iqxs)

∫
S

d4x Ss(x, k) exp(iqx) , (2.19)

where xs is the 4-position of the center of source s, and the spatial in-
tegrals run separately for each of the identical sources, i.e. we assume fluid
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2.2 Two Fluid Cell Sources Symmetric Few Source Models

cells with identical density profiles, but with different densities, ns, velocities,
us and temperatures, Ts.

The spatial integral for one source is the same as for a single source. Thus,

∫
d3x S(x, k) =

∑
s

∫
S

d3x Ss(x, k) =

(kµ σ̂µ)
(
2πR2

)3/2 ns
Cns

exp

(
−k

0γs
Ts

)[
exp

(
kus
Ts

)
+ exp

(
−kus
Ts

)]
.

(2.20)

This returns eq. (2.15) if us = (1, 0, 0, 0). The function J(k, q) becomes

J(k, q) =
∑
s

exp

[
−q · us

2Ts

]
exp(iqxs)

∫
S

d4x Ss(x, k) exp(iqx) =

(kµ σ̂µ)
(
2πR2

)3/2
exp

(
−R

2q2

2

)∑
s

ns
Cns

exp

[
−k · us

Ts

]
exp

[
−q · us

2Ts

]
exp(iqxs) =

(kµ σ̂µ)
(
2πR2

)3/2
exp

(
−R

2

2
q2
)

ns
Cns

exp

[
−k

0γs
Ts

]
exp

[
−q

0

2

γs
Ts

]
exp(iq0x0s)×[

exp

[
kus
Ts

]
exp

[
qus
2Ts

]
exp(−iqxs) + exp

[
−kus
Ts

]
exp

[
−qus

2Ts

]
exp(iqxs)

]
,

(2.21)

where the factor exp(iq0x0s) can be dropped if the FO time distribution
is simultaneous for the two sources, because then x0s = 0. This returns eq.
(2.16) if us = (1, 0, 0, 0).
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2.2 Two Fluid Cell Sources Symmetric Few Source Models

Now we can divide the two particle correlation with the square of the
single particle distribution

Re [J(k, q) J(k,−q)]∣∣∫ d4xS(x, k)
∣∣2 = exp(−R2q2)

Re
[
e

2kus
Ts + e−

2kus
Ts + e

qus
Ts ei2qxs + e−

qus
Ts e−i2qxs

]
(
e

kus
Ts + e−

kus
Ts

)2
= exp(−R2q2)×

Re
[
2 cosh

(
2kus
Ts

)
+ e

qus
Ts (cos(2qxs) + i sin(2qxs)) + e−

qus
Ts (cos(−2qxs) + i sin(−2qxs))

]
2
[
cosh

(
2kus
Ts

)
+ 1
]

= exp(−R2q2)
cosh

(
2kus
Ts

)
+ cosh

(
qus
Ts

)
cos(2qxs)

cosh
(

2kus
Ts

)
+ 1

(2.22)

Consequently, if the two sources have the same parameters, just oppo-
site locations with respect to the center, and opposite velocities, then the
correlation function is

C(k, q) = 1 + exp(−R2q2)
cosh

(
2kus
Ts

)
+ cosh

(
qus
Ts

)
cos(2qxs)

cosh
(

2kus
Ts

)
+ 1

. (2.23)

This returns eq. (2.17) if us = (1, 0, 0, 0), and C(k, q) = 2 if q = 0.

If we have two sources placed at x = ±dx, and with the velocity in the
±z-direction, ±vz, then the correlation function is for the different directions
becomes:

C(kx, qx) = 1 +
1

2
exp(−R2q2x) [1 + cos (2qxdx)] ,

C(kx, qy) = 1 + exp(−R2q2y) ,

C(kx, qz) = 1 +
exp(−R2q2z)

2

[
1 + cosh

(
γqzvz
Ts

)]
.

(2.24)
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C(ky, qx) = 1 +
1

2
exp(−R2q2x) [1 + cos (2qxdx)] ,

C(ky, qy) = 1 + exp(−R2q2y) ,

C(ky, qz) = 1 +
exp(−R2q2z)

2

[
1 + cosh

(
γqzvz
Ts

)]
.

(2.25)

0 1 2 31 , 0
1 , 2
1 , 4
1 , 6
1 , 8
2 , 0

C(
k,q

)

q   ( 1 / f m )
Figure 2.5: (color online) The correlation functions, C(k, q), for two moving
sources where the displacement of the sources is in the x-direction, and the
center-of-mass momentum, k, of emitted particles is in the x and y direction.
The solid black line is for the momentum difference, qz, the dashed red line
is for qy and dotted blue line is for qx. The radius of the sources is R = 1fm,
(same as in Fig. 2.3), the displacement is d = 1fm, and the source velocity is,
γvz/Ts = 1.0 fm. This can be satisfied e.g. by us = 0.6c and T = 0.12GeV.

C(kz, qx) = 1 + exp(−R2q2x)
cosh

(
2γkzvz
Ts

)
+ cos (2qxdx)

cosh
(

2γkzvz
Ts

)
+ 1

,

C(kz, qy) = 1 + exp(−R2q2y) ,

C(kz, qz) = 1 + exp(−R2q2z)
cosh

(
2γkzvz
Ts

)
+ cosh

(
γqzvz
Ts

)
cosh

(
2γkzvz
Ts

)
+ 1

.

(2.26)

Therefore only the correlation functions in the kz, qx-direction and in the
qz-directions are affected by the z-directed velocity of the source. In this
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direction, kz, unfortunately it is difficult to detect the two particle corre-
lations. For the kx and ky-directions the qx-distribution is affected by the
displacement of the two sources by ±dx. The qy-distribution is not effected
by either the displacement or the source velocities.
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Figure 2.6: (color online) The correlation functions, C(k, q) for two moving
sources where the displacement of the sources is in the x-direction, and the
center-of-mass momentum, k, of emitted particles is in the x-direction. The
dashed green lines are for the relative momentum, qx, the solid red line is
for qy and dotted blue lines are for qz. For large values of the center-of-
mass momentum kx the correlation functions C(kx, qx) and C(kx, qz) will
approach the correlation function C(kx, qy) (red line). For qz (blue lines) the
displacements are dx = 1, 0 fm, and for qx (green lines) the velocity is chosen
such that γvz/Ts = 1.0 fm. The values of kx are for the blue lines: 0.25, 0.5,
0.75, 1.0, 1.25 and 2.0 [fm]−1 and for the green lines: 0.25, 0.5, 0.75, 1.0 and
1.5 [fm]−1.

The correlation function for different source locations and velocities are
similar. The cosine term appears in the same direction as the axis at which
the sources are located and the hyperbolic cosine in the direction of the
velocity. See Figure 2.5. The zero points discussed for the two static sources
at Eq. (2.17), appear in the distributions C(kx, qx) and C(ky, qx). These
distributions do depend on the magnitude of the flow velocity, vz, but not on
its direction! This arises from the fact that the detectors are assumed to
be reached from both sides of the system with opposite velocities with equal
probability.

Unfortunately the dominant direction of flow (see Fig. 2.7) is the beam
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direction (z−direction), where we have no possibility to place high acceptance
detectors. At the same time the strongest effect of the flow appears in this
direction.

The rotation in the reaction plane can also be characterized with another
configuration of the two moving sources, when the displacement is in the
z-direction while the flow velocities are pointing into the x-direction, so that
the source at x1 = dz has a negative velocity, −vx while the source at x2 =
−dz has a positive velocity, vx. The detailed description of the correlation
functions from this configuration can be obtained in a straightforward way
similarly to the previous case, see Eq. (2.27). In this case the flow has the
most dominant effect in the kx-direction, which is accessible for detection.
The x-directed flow, however, is more sensitively dependent on secondary
effects, like the Kelvin-Helmholtz Instability [2].

In this configuration of the sources the magnitude of the flow velocity
makes visible change in C(k, q), in the (kx, qx)-direction also, which is de-
tectable by the usual detector configurations. Still the direction of the rota-
tion does not appear in the observables with the approach presented here.

This actually arises from the simplifying assumption, that the freeze out
is happening instantly at a timelike hypersurface with σµ = (1, 0, 0, 0), where
particles from all sides of the system can reach each detector with the same
probability. We will return to this problem after having discussed the more
complex source configurations.

C(kx, qx) = 1 + exp(−R2q2x)
cosh

(
2γkxvx
Ts

)
+ cosh

(
γqxvx
Ts

)
cosh

(
2γkxvx
Ts

)
+ 1

,

C(kx, qy) = 1 + exp(−R2q2y) ,

C(kx, qz) = 1 + exp(−R2q2z)
cosh

(
2γkxvx
Ts

)
+ cos (2qzdz)

cosh
(

2γkxvx
Ts

)
+ 1

.

(2.27)

For these two-particle correlation measurements it is necessary to identify
independently, event by event the global collective reaction plane azimuth,
ΨRP , experimentally and the corresponding event by event center of mass of
the system (e.g. with the method [27]). Knowing these we can identify the
kx-direction and the ky-direction also.
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In this section we derived a relatively simple formula for two sources
with opposite positions and opposite velocities. These kind of systems were
analysed earlier for radially expanding systems.
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X
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Target

Participants

spectators

spectators

Figure 2.7: (Color online) Typical orientation of the spatial axes in case
of an ultra-relativistic heavy ion reaction shortly after the impact. In the
configuration space the projectile and target appear to be flat due to the
Lorentz contraction.

Recently due to the angular momentum in peripheral heavy ion collisions
strong rotation [1] and turbulence (Kelvin-Helmholtz Instability) [2] were
predicted in fluid dynamical models arising from the symmetries, shear and
vorticity of the initial state.

In the simple two source example shown in the previous section the two
sources may describe a rotation if the sources are at a distance from the
center in the x-direction, x1 = (+d, 0, 0) and x2 = (−d, 0, 0), while these
have opposite velocities pointing into the z-direction, u1 = γ(1, 0, 0, vz) and
u2 = γ(1, 0, 0,−vz).

It is important to mention that to detect rotation the accurate identifi-
cation of the reaction plane and its proper orientation is necessary. In the so
called ”cumulative” methods the reaction plane is identified but its projectile
and target sides are not. This makes it impossible to detect directed flow,
and odd components of the global collective flow. (All harmonic components
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of random fluctuations of course can be detected.) Furthermore, not only
the reaction plane with proper direction but also the event by event center
of mass (c.m.) should also be identified [27]. This hardly ever done! In
both cases the use of zero degree calorimeters are provide an adequate tool
as these are sensitive to the spectator residues.

The correlation function depends both on vectors k and q. To detect
rotation the choices should be correlated correctly with the beam and the
directed reaction plane as illustrated in Figure 2.7. The positive x-axis points
in the direction of the projectile, which moves in the positive direction along
the z-axis.

In eq. (2.23), in the above situation, kus = γkzvz, qus = γqzvz and
qxs = qxd. Thus, the Correlation function, apart of the single cell source
size, R, sensitivity, has a specific dependence on kz and qz, as well as on
qx. Unfortunately it is difficult to measure the particle momenta in the z-
direction as it coincides with the beam. The qx dependence would enable us
to estimate the distance of the two sources.

2.3 Four Fluid Cell Sources

2.3.1 Symmetric source configurations

Four sources as combination of two moving double source systems. We
use the same parameters as under paragraph e, where s1 and s2 will be the
two different pairs of sources with different locations and velocities. See
Figure 2.8.
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So we have

C(k, q) = exp(−R2q2)×[
cosh

(
2k · us1
Ts

)
+ cosh

(
q · us1
Ts

)
cos(2q · xs1)+

cosh

(
2k · us2
Ts

)
cosh

(
q · us2
Ts

)
cos(2q · xs2))+

2 cosh

(
k · (us1 − us2)

Ts

)
cosh

(
q · (us1 + us2)

2Ts

)
cos(q · (xs1 + xs2))+

2 cosh

(
k · (us1 + us2)

Ts

)
cosh

(
q · (us1 − us2)

2Ts

)
cos(q · (xs1 − xs2))

]
×[

cosh

(
2k · us1
Ts

)
+ cosh

(
2k · us2
Ts

)
+ 2 cosh

(
k · (us1 + us2)

Ts

)
+

2 cosh

(
k · (us1 − us2)

Ts

)
+ 2

]−1
(2.28)

If s1 = s2 then we recover eq. (2.23)
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Figure 2.8: (color online) Four moving sources in the reaction ([x−z]) plane,
one pair, s1, is separated in the x− directions and the other, s2, is in the z−
direction. The sources are moving in the directions indicated by the (red)
arrows, ±us1 for the 1st pair and ±us2 for the other.

In the case of a rotating but symmetric system the displacements and
velocities are of equal magnitude and are orthogonal to each other in the two
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pairs: xs1 ⊥ xs2 and us1 ⊥ us2 . Thus a simple sign change of the velocity for
one of the pairs or both does not change the result, and so the rotation can
be identified, but this evaluation does not provide sensitivity to the direction
of the rotation. The reason is in the simplified freeze out assumption as we
mentioned already at the end of paragraph 2.2.2.

If the two pairs are not completely identical, i.e. the magnitude of the
characteristic quantities of the two source pairs are not equal then a sensi-
tivity to the direction of the rotation may in principle occur. However, if we
change the direction of the velocities of the two source pairs simultaneously
(as it happens in changing the direction of rotation) the result still does not
change.

2.3.2 Four Sources with Flow Circulation

Recent fluid dynamical studies indicate [1, 2], that due to the initial shear
and angular momentum the early fluid dynamical development has significant
flow vorticity and circulation on the reaction plane. These were recently
evaluated [4]. At the present LHC Pb+Pb collision energy in the mentioned
fluid dynamical model calculation the maximum value of vorticity, ω, was
found exceeding 3 c/fm , and the circulation after 6 fm/c flow development
and expansion was still around 4-5 fm·c. This vorticity in the reaction plane
was more than an order of magnitude bigger than in the transverse plane
estimated from random fluctuations in the transverse plane in ref. [38].

In this section we will look at the four source correlation function with
similar circulation as in the above mentioned fluid dynamical model estimates
in the reaction plane. See Figure 2.8. We will simulate a circulation value
Γ = 5fm · c. We use eq. (2.28) where the center-of-mass momentum, k
points in the x− direction.
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Figure 2.9: (color online) The correlation functions, C(k, q), for 4 sources
where the displacement is such that there is one source pair on the x-axis
and one the z-axis, the center-of-mass momentum of the emitted particles,
k, is in the x-direction. The dotted blue lines are for the velocity v = 0.5c
and displacement dx = dz = 1.6fm. The dashed green lines are for the
velocity v = 0.8c and displacement dx = dz = 1.0fm. Ts = 0.20GeV. In
both cases the circulation is Γ = 5fm · c. The values of kx are for the
blue lines: 0.5, 1.5, 3.0 and 6.0 [fm]−1 and for the green lines: 0.5, 1.5
and 3.0 [fm]−1. The solid red line is the correlation function C(kx, qy). For
large values of the center-of-mass momentum kx the correlation functions
C(kx, qx) and C(kx, qz) will approach the correlation function C(kx, qy). The
larger displacement and smaller rotation velocity leads to stronger deviation
from the unaffected correlation function C(kx, qy).

Since the position and velocity are of the same value and because of
symmetry the correlation functions C(kx, qx) and C(kx, qz) provide the same
values. So we take the correlation function C(kx, qx) and we have after some
simplification

C(kx, qx) = 1 + exp(−R2q2)

[
1 + cos(2qxd) + cosh

(
2
kxγvx
Ts

)
+ cosh

(
qxγvx
Ts

)
+

4 cosh

(
kxγvx
Ts

)
cosh

(
qxγvx
2Ts

)
cos(qxd)

] [
cosh

(
2kxγvx
Ts

)
+ 4 cosh

(
kxγvx
Ts

)
+ 3

]−1
(2.29)
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Figure 2.10: (color online) The correlation functions, C(k, q), for 4 sources
where the displacement is such that there is one source pair on the x-axis
and one the z-axis, the center-of-mass momentum of the emitted particles,
k, is in the x-direction. The dotted blue lines are for the velocity v = 0.5c
and displacement dx = dz = 1.6fm (same as in the previous figure). The
dashed green lines are for the velocity v = 0.95c and displacement dx = dz =
0.84fm. Ts = 0.20GeV. The values of kx are for the blue lines: 0.5, 1.5,
3.0 and 6.0 [fm]−1 and for the green lines: 0.1, 0.25, 0.5 and 1.5 [fm]−1.
The solid red line is the correlation function C(kx, qy). For large values
of the center-of-mass momentum kx the correlation functions C(kx, qx) and
C(kx, qz) will approach the correlation function C(kx, qy). Now for the dashed
green lines with even higher velocity and smaller displacement, the deviation
is significantly in the positive direction.

For C(kx, qy) we have the same result as we had for the two moving
sources. Here the flow and displacement have no effect.

Let us look at comparisons for similar circulations and for similar dis-
placements.
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Figure 2.11: (color online) Same figure as the previous one, however the
circulation is not the same and the displacements are equal. The dotted
blue lines are for the velocity v = 0.5c and displacement dx = dz = 1.0fm.
The dashed green lines are for the velocity v = 0.95c and displacement
dx = dz = 1.0fm. Ts = 0.20GeV. The values of kx are for the blue lines: 0.5,
1.5, 3.0 and 6.0 [fm]−1 and for the green lines: 0.1, 0.25, 0.5 and 1.5 [fm]−1.
Here the displacement is the same but the ultra-relativistic velocities lead
still to the deviation in the positive direction.

By comparing Figures 2.10 and 2.11 we see that an increase in the dis-
placement of the sources gives a increase in the apparent size of the system
(narrower q−distribution. We also see that the measured size of the system
increases with decreasing velocity.

The correlation function is symmetric in all these cases as sources from
opposite sides of the system contribute equally. Thus the correlation function
is not sensitive to the direction of rotation.
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Chapter 3

Asymmetric Sources

We have seen in the previous few source model examples that a highly sym-
metric source may result in highly symmetric correlation functions, however,
this results were not sensitive to the direction of the rotation, which seems
to be unrealistic. We saw that this result is a consequence of the assump-
tion that both of the members of a symmetric pair contribute equally to
the correlation function even if one is at the side of the system facing the
detector and the other is on the opposite side. The dense and hot nuclear
matter or the Quark-gluon Plasma are strongly interacting, and for the most
of the observed particle types the detection of a particle from the side of
the system, – which is not facing the detector but points to the opposite
direction, – is significantly less probable. The reason is partly in the diverg-
ing velocities during the expansion and partly to the lower emission prob-
ability from earlier (deeper) layers of the source from the external edge of
the timelike (or spacelike) FO layer. This feature is recognized for a long
time and discussed in detail by now. This influences the particle emission
(or freeze out (FO)) process and modifies the post FO particle distribution.
This topic has an extended literature, and this feature destructs the sym-
metry of emission of from source pairs at the opposite sides of the system
[10, 18, 19, 20, 15, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37].

For the study of realistic systems where the emission is dominated by the
side of the system, which is facing the detector, we cannot use the assumption
of the symmetry among pairs or groups of the sources from opposite sides
of the system. Even if the FO layer has a time-like normal direction, σ̂µ the
(kµσ̂µ) factor yields a substantial emission difference between the opposite
sides of the system. Now we want to demonstrate this effect on few source
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examples, and we will demonstrate the consequences of the non-symmetric
emission.

3.1 The Emission Probability

It was first recognized that the freeze out with the Cooper-Fry description
[15], may lead to negative contributions for particles, which move towards
the center of the system and not in the direction out, towards the detectors.
The first proposal to remedy this problem came from Bugaev [29], which
led to the introduction of an improved post freeze out distribution in the
Cooper-Frye description, first with the Cut-Jüttner distribution [29, 31] and
then by the Cancelling-Jüttner distribution [35].

Subsequently it was realized that for the realistic treatment of the freeze
out process in transport theory one has to modify the Boltzmann transport
equation by replacing the local molecular chaos assumption with a non-local
one, where the point of origin is also included in the phase space distributions
of the colliding particles. This led to the Modified Boltzmann Transport
equation (MBT), and also the necessity to introduce an escape probability,
Pesc was pointed out.

The escape probability was then introduced and analysed in a series of
publications [18, 19, 20, 37], in transport theoretical approaches. It was
pointed out that even if the pre FO distribution is a locally equilibrated
isotropic distribution, the freeze out process and the escape probability will
provide a nonisotropic distribution which eliminates the earlier observed
problems. This developing anisotropy in the freeze out process occurs for
freeze out both in space-like and time-like directions.

The escape probability introduced in the works [18, 19, 20, 37], for a
space-time surface layer of the system of thickness L, pointing in the four
direction σ̂µ was given at a point xµ inside the freeze out layer as

Pesc(x) ∝
(

L

L− xµσ̂µ

)(
pµσ̂µ
pµuµ

)
Θ(pµσ̂µ) , (3.1)

where pµ is the momentum of the escaping particle, uµ(x) is the local flow
velocity and s = xµσ̂µ is the distance of the emission point from the in-
side boundary of the layer. The first multiplicative term describes higher
emission probability to the particles, which are emitted closer to the outside
boundary of the layer, the second multiplicative term describes the higher
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3.1 The Emission Probability Asymmetric Sources

emission probability for the particles, which move in the normal direction
of the surface, because these should cross less material in the layer. The
last term secures that only those particles can escape, which move outwards
through the layer.

The last two momentum dependent factors are important in transport
theoretical models, to determine the shape of the post FO momentum distri-
bution, e.g. [35], which would replace the Jüttner distribution. This shape
modification happens to the single and two particle distributions equally, and
it acts in all emission directions, k, equally, so this effect is secondary from
the point of view of the flow velocity dependence of the correlation function.

In order to describe the complete freeze out process for a reaction the
system had to be surrounded with a freeze out layer in the space-time, and
the phase space distribution of the escaping, frozen out particles can be
obtained by integrating over the whole 4-volume of the freeze out layer the
local (usually isotropic) phase space distribution with the escape probability
Pesc(x). This procedure would then play the role of function G(x) in the
source function in eq. (1.10) instead of the simplified assumptions, as e.g. in
eq. (1.14).

The correlation function, C(k, q) is always measured in a given direction of
the detector, k. Obviously only those particles can reach the detector, which
satisfy kµσ̂µ > 0. Thus in the calculation of C(k, q) for a given k̂- direction
we can exclude the parts of the freeze out layer where kµσ̂µ < 0 (see eq.
(10) of ref. [10] or ref. [29]). For time-like FO a simplest approximation for
the emission possibility is Pesc(x) ∝ kµuµ(x) [21].

In a model calculation we therefore have to define the freeze out layer
also, this realistically should not include the whole space-time volume of the
reaction. In case of calculating C(k, q) for a given k̂ we should select the
relevant part of the freeze out layer, which may contribute to emission in
the k direction. This should be a layer of 2-3 m.f.p facing the detector at
the direction k̂. This can eliminate the symmetric pairs of fluid cells in the
previous calculations of the correlation function, even if the emission normal
is timelike, because the FO particle from an earlier emission point in the ST
has to propagate through the plasma for some finite time, with considerable
quenching.

Therefore in the following models we should apply the escape probability
and we should define a k̂-dependent freeze out layer also! The most simple
approximation is to select an emission layer from the system for a given
k̂-direction with uniform emission probability from within this layer. The
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next to most simple approximation is to introduce an emission probability
within the layer, increasing towards the outside boundary of the layer. (Here
it is important to mention that the spatial emission probability should be
sufficiently smooth, so that one fluid cell and its contribution to C(k, q),
should not be effected by this emission probability.

When we have up to 4 sources we can always add k̂-dependent emission
weights to these sources. This still would qualitatively change the outcome.
As we discuss here up to four sources only a detailed formal evaluation of the
emission probability would be an exaggerated approach, by defining more
parameters than the outcome, so we just define the weights themselves here.
In a full 3+1D fluid dynamical model with 100000+ fluid cells of course we
have to apply a realistic and general evaluation of emission probability for
every point of the ST.

3.2 Emission probabilities for few sources

3.2.1 Two sources

The previous discussion included two sources (i) in the beam-, z−direction
and (ii) in the transverse direction in the reaction plane, x−direction. In
case (i) the emission could be different from the two sources if the detector is
in the z− direction, which is difficult to achieve, so we do not have to discuss
this possibility.

In configuration (ii) the observation can be in different k̂-directions. If
k̂ points into the ±y−direction, then the probabilities must be identical so
emission probabilities do not lead to any change.

If k̂ points into the ±x−direction, then one of the sources is closer to
the detector and may shadow the more distant one. Thus, we can just
introduce two positive weight factors so that wc is the weight for the cells
closer to the detector and ws is for the cells which are far from the detector
measuring the average momentum k. These weights are the same for the
calculation of the nominator and denominator of the correlation function, so
their normalization does not influence the correlation function.

As not all emitted particles reach a given detector the normalization is also
dependent on the direction of the detector. Thus, we evaluate the correlation
function this way. This immediately changes the earlier result (2.24), because
it breaks the symmetry between the two sources. We can simply repeat the
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Z

X

Figure 3.1: (color online) Two moving sources in the reaction ([x−z]) plane,
separated in the x− direction (case (ii) in the text. The sources are moving
in the directions indicated by the (red) arrows. The detector is in the positive
x−direction, thus the source on this side has more dominant emission into
this direction, and this is indicated by the bigger size of the source on this
side.

calculation for two moving sources in section 2.2.2, modifying the derivation
of eq. (2.22) and obtain the general result

C(k, q)

∣∣∣∣
+x

= 1+exp(−R2q2)
w2
ce

2kus
Ts + w2

se
− 2kus

Ts + 2wcws cosh
(

qus
Ts

)
cos(2qxs)

w2
ce

2kus
Ts + w2

se
− 2kus

Ts + 2wcws
.

(3.2)
Note that this result is valid for the case when k̂ points to the +x di-

rection, because the weights depend on this and wc > ws. See Figure 3.1.
The fact that the emission from the source, which is closer to the detector is
stronger makes the direction of the flow detectable.

If we introduce the notation wc = 1 + ε and ws = 1 − ε, the deviation
from the symmetric result will become apparent

C(k, q)

∣∣∣∣
+x

= 1 + exp(−R2q2)×

(1 + ε2) cosh
(

2kus
Ts

)
+ 2ε sinh

(
2kus
Ts

)
+ (1− ε2) cosh

(
qus
Ts

)
cos(2qxs)

(1 + ε2) cosh
(

2kus
Ts

)
+ 2ε sinh

(
2kus
Ts

)
+ (1− ε2)

.

(3.3)
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If ε→ 0, i.e. if wc = ws, we recover the earlier result, eq. (2.23).

Z

Xk- k+

Figure 3.2: (color online) Two moving sources in the reaction ([x−z]) plane,
separated in the x− direction. The sources are moving in the directions indi-
cated by the (red) arrows. The two ”tilted” detector directions are indicated
by the (blue) arrows labeled with k+ and k−.

If ε = 0 we have the symmetric situation where both sources have equal
contribution, the asymmetric terms vanish, and the result becomes to be
symmetric for the change of the direction of the flow velocity. If ε reaches
its maximal value, ε = 1 the contribution of the far side source is eliminated
(ws = 0, wc = 2), and only the single nearby source contributes to the
correlation function. In this case the asymmetric term in the nominator
vanishes, the remaining terms in the nominator and denominator are equal,
and we recover the single static source result.

This result has terms, which change sign if the flow velocity, us changes
sign. The result is valid only if the detector is in the k̂ = (1, 0, 0) direction.
For this direction, however, if the flow velocity points in the z-direction, i.e.
orthogonal to k the asymmetric term does not provide any contribution, so
it will not show up in C(kx,q). To circumvent this problem we should study
detector directions, which do not coincide with the primary axes of the given
event (where x is the direction of the impact parameter vector, b, pointing
to the projectile; y is the other transverse direction; and z is the direction of
the projectile beam).

3.2.2 Correlation in Tilted Directions

The form of the correlation function is the same if k is in the same plane,
the reaction plane, but it has a z component also, i.e. k = (kx, 0,±kz).

36



3.2 Emission probabilities for few sources Asymmetric Sources

This is possible for all LHC heavy ion experiments, ATLAS, CMS and even
ALICE, where the longitudinal acceptance range of the TPC (∆η < 0.8) is
the smallest.

Earlier for spherically or longitudinally expanding systems the depen-
dence of the correlation function on the tilt angle or width parameter was
analysed in detail in ref. [10]. We do not go into similar fine details, just
demonstrate the possibilities for an arbitrary configuration.

Depending on the detector acceptance we should chose a detector di-
rection where |kz| is as big as the detector acceptance allows it. For this
configuration the form of the correlation function is the same as (3.3)

C(k, q)

∣∣∣∣
+x,±z

= C(k, q)

∣∣∣∣
+x

, (3.4)

with keeping the different weights, wc, ws or ε so that the forward shifted and
backward shifted directions have the same weights. These weights are not
specified up to now anyway.

For detection of the correlation function we have to introduce here the
usual, k-dependent coordinate system to classify the direction of q. Thus if

k̂± = (a, 0,±b)fm−1, kx = a|k|, kz = ±b|k|, (3.5)

where a2 + b2 = 1. Then the difference vector, q, can be measured in the
directions

q̂out = (a, 0,±b), qx = a|q|, qz = ±b|q|
q̂side = (0, 1, 0), qy = |q|
q̂long = (∓b, 0, a), qx = ∓b|q|, qz = a|q|.

(3.6)
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This leads to the following correlation functions

C(k(±), qout) = 1 + exp(−R2q2)×

(1+ε2) cosh
(

2γkzvz
Ts

)
+ 2ε sinh

(
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+ (1−ε2) cosh

(
γqzvz
Ts

)
cos (qxdx)
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)
+ 2ε sinh

(
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)
+ (1−ε2)

,

C(k(±), qside) = 1 + exp(−R2q2) ,

C(k(±), qlong) = 1 + exp(−R2q2)×

(1+ε2) cosh
(

2γkzvz
Ts

)
+ 2ε sinh

(
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(
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)
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)
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.

(3.7)

Although, it seems that C(k(±), qout) and C(k(±), qlong) are the same, this
is in fact not the case, because the values of the components of the different
types of k and q are not the same as described in eqs. (3.5,3.6). In all cases,
the out-, side- and long- q = |q|. We will also use the notation k = |k| and
γvx = ux, γvy = uy, γvz = uz, so that us = (ux, uy, uz). For example for the
out component the difference of the forward and backward shifted correlation
functions is

∆(k±, qout) ≡ C(k+, qout)− C(k−, qout) =

4 exp(−R2q2) ε sinh
(

2uz bk
Ts

)
(1−ε2)

[
1− cosh

(
uz bq
Ts

)
cos (aqdx)

]
[
(1+ε2) cosh

(
2uz bk
Ts

)
+ (1−ε2)

]2
− 4ε2 sinh2

(
2uz bk
Ts

) .
(3.8)

As eq. (3.8) and Fig. 3.3 show, the Differential Correlation Function
(DCF), ∆(k±, qout), is sensitive to the speed and direction of the rotation,
and it is also sensitive to the amount of the tilt in the directions of the
detection, regulated by the parameters a and b. ∆(k±, qout) tends to zero
both if q → 0 and if q →∞. The structure of ∆(k±, qout) is determined by the
cosh (uzb q/Ts) cos (adx q) product. If in both arguments the coefficients of
q, uzb/Ts and adx are positive, smaller than one, and uzb/Ts ≤ adx, then the
DCF is positive. If the coefficient adx exceeds one the cos function changes
sign at high qout values (e.g. above q = 1 − 2fm−1), and the DCF becomes

38



3.2 Emission probabilities for few sources Asymmetric Sources

negative at high qout values. Note that the ratio of the two coefficients is
influenced be the choice of the tilting angle, i.e. by the parameters a and b.

If the parameter adx remains constant, about 1 fm, and then when uzb/Ts
becomes larger (than one) the Differential Correlation Function becomes neg-
ative at small q values.

If the parameter uzb/Ts remains constant, and about 1 fm, then when
adx becomes less (than one) the DCF becomes negative at small q values.

0 1 2 3

- 0 , 0 2

- 0 , 0 1

0 , 0 0

0 , 0 1

0 , 0 2

q   ( 1 / f m )

Co
rre

lat
ion

 fu
nc

tio
n d

iffe
ren

ce

Figure 3.3: (color online) Difference of the forward and backward shifted
correlation function, ∆(k±, qout), for the value ε = 0.50. The solid black lines
is for the velocity vz = 0.5c, dotted blue lines are for the velocity vz = 0.6c
and dashed red lines are for the velocity vz = 0.7c. Displacement dx = 1.0fm,
Ts = 0.139GeV and a = b = 1√

2
. The values of k are for the solid black lines:

0.25, 0.50, 2.00, 2.75 and 3.50 [fm]−1, the dotted blue lines: 0.25, 0.50, 1.00,
1.75 and 2.50 [fm]−1, and the dashed red lines: 0.25, 0.50, 0.75, 1.25 and
1.75 [fm]−1.

If we change the direction of rotation to the opposite the Differential
Correlation Function changes sign due to the sinh function in the nominator.
In this configuration with the change of the tilt of the detector directions
we can adjust the DCF, tot he threshold value where the ∆(k±, qout), is
still positive, which provides a sensitive estimate for the rotation velocity at
Freeze Out.

This very sensitive behaviour is rather special and it appears in this spe-
cial two source model this way. With an increased resolution and with more
source elements this strong and specific structure will be smoothed out to
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some extent.
The sinh(2uz bk/Ts) term changes sign in the nominator when uz changes

sign the difference of the two correlation functions, ∆(k±, qout) changes sign
also because all other terms are symmetric to the sign change of the velocity.

This is an important observation as we can detect the direction and mag-
nitude of the rotation in the reaction plane. This difference is also increasing
with the longitudinal shift, b, of the average momentum vector, k, so that
detectors with larger pseudorapidity acceptance can detect the rotation bet-
ter.

In order to perform this measurement, one has to determine the global
reaction plane (e.g. from spectator residues in the ZDCs), and determine
the projectile side of this plane. Furthermore the event by event center of
mass should also be identified (using e.g. the method shown in ref. [27]).
This will be the positive x-direction. Then the correlation function can be
measured for four different k-directions in the global reaction plane. These
four directions are shifted forward and backward from the center of mass
symmetrically on the projectile side, and there should be a symmetric pair
of detection points in the target side of the reaction plane too.

The k directions opposite to each other across the c.m. point give the
same result, while the difference, ∆(k±, qout), between the Forward (F) and
Backward (B) shifted contributions will characterize the speed and direction
of the rotation. This symmetry can be used to eliminate the contribution
from eventual random fluctuations. The observed F/B asymmetry depends
on the parameters ε, vz and dx, these can be estimated by measuring the
correlation functions at all possible moments k.

Figure 3.3 indicates that the differential correlation function has a larger
amplitude for smaller k values, and the zero points are sensitively dependent
on the rotation velocity.

The zero points come from the term

1− cosh

(
uzbq

Ts

)
cos(aqdx) = 0 (3.9)

and it is not dependent on k, so for the values used in Fig. 3.3 and
q = x fm−1 we have

cosh

(
0.197

0.139

vz/c√
1− v2z/c2

x√
2

)
cos

(
x√
2

)
= 1 . (3.10)
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Since the cosine term must be positive, there are no zero points for π/
√

2 ≤
x ≤ 3π/

√
2 or 2.23 ≤ x ≤ 6.66.

For x > 3π/
√

2 the exp(−R2x2) term will be small and there would be
no correlation difference. So we will look at the values 0 < x < π/

√
2

If vz is smaller than 0.57c then there will be no zero point for 0 < x <
π/
√

2. For vz larger than 0.58c there will be 1 zero point for 0 < x < π/
√

2.
The zero point for a given velocity can be found by solving equation

(3.10) numerically. For velocities v = 0.6c and v = 0.7c we have zero points
at q = 0.83 fm−1 and q = 1.69 fm−1 respectively.

This indicates the sensitivity of the method and the possibility to in-
fluence it by the choice of the detector directions (via the choice of a and
b).

3.3 Emission from four sources

With four sources we can illustrate the possibilities of differential HBT method
studies in different directions. The correlation functions can be calculated in
general for four sources and two detector positions. This can then be applied
to different detector configurations.

Two examples on different detector configurations are given in Figures
(3.4-3.5) and (3.6). We use the same equations as in the two source model,
eqs. (3.5) and (3.6).

Z

Xk- (a)

Figure 3.4: (color online) Four moving sources in the reaction ([x−z]) plane,
separated in the x− and z− directions. The sources are moving in the
directions indicated by the (red) arrows. The ”tilted” detector direction(s)
are indicated by the (blue) arrows.
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Z

X k+(b)

Figure 3.5: (color online) Four moving sources in the reaction ([x−z]) plane,
separated in the x− and z− directions. The sources are moving in the
directions indicated by the (red) arrows. The ”tilted” detector direction(s)
are indicated by the (blue) arrows.
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Figure 3.6: (color online) Four moving sources in the reaction ([x−z]) plane,
separated in the x− and z− directions. The sources are moving in the
directions indicated by the (red) arrows. The ”tilted” detector direction(s)
are indicated by the (blue) arrows.

The details of the calculation are presented in Appendix B.
The out component of the four source correlation function with weight

factors ωa, ωb, ωc, ωd is given by
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C(k(±), qout) = 1 + exp(−R2q2) [2ωaωb + 2ωcωd+
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(3.11)

A source with a larger weight factor is closer to the detector, so that
ωa, ωb, ωc, ωd correspond to xs ≡ (rx, rz) = (dx, 0), (−dx, 0), (0, dz), (0,−dz)
respectively.

In case if the detector has a narrow pseudorapidity acceptance, then k±
is close to kx, i.e. b� a and then the weights are maximal for the source in
the x−direction, as indicated in Figure 3.6.

In case if the detector has a wide pseudorapidity acceptance, then k± can
deviate significantly from kx, i.e. b ≥ a and then the weights are maximal
for the two sources closest to k+ or k− as indicated in Figures 3.4 and 3.5.

Eq. (3.11) can be used to find the difference of the forward and backward
shifted correlation function. We will use that dx = dz, vx = vz and a = b.

Some examples for the differential correlation functions are shown in the
following Figures 3.7 - 3.8.
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Figure 3.7: (color online) Correlation function difference for the weight fac-
tors: ωa = 1.25, ωb = 0.75, ωc = ωd = 1.00 for sources placed at +x, −x,
+z and −z respectively. This weight distribution corresponds to the con-
figuration shown in Figure (3.6). The solid black lines are for the velocity
vz = 0.5c, and the dashed red lines are for the velocity vz = 0.7c. Displace-
ment dx = dz = 1.0fm, Ts = 0.139GeV and a = b = 1√

2
. The values of k

are for the solid black lines: 0.10, 0.50, 1.00, and 2.00 [fm]−1 and for the
dashed red lines: 0.10, 0.50, 1.00, and 2.00 [fm]−1. The difference is larger
for smaller values of k.

We can compare Fig. 3.7 with the previously shown two source model,
Fig. 3.3, and we see that the amplitudes are similar but the shapes are
different. First of all the sensitivity on the direction of rotation remained the
same as in the simpler two source model. The two extra sources, c and d
lead to higher amplitude for the Differential Correlation Function, while the
regular positions of the locations of the zero points are varying due to more
sources with different weight parameters.

This configuration can be applied in detectors where the pseudorapid-
ity acceptance range of the detector is not wide. Still the rotation is well
detectable. In this configuration the accurate determination of the reaction
plane and the participant center of mass momentum is more important.
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Figure 3.8: (color online) Correlation function difference for the weight fac-
tors: ωa = 1.25, ωb = 0.75, ωc = 1.50, ωd = 0.50 for sources placed at +x,
−x, +z and −z respectively (Fig. 3.5). And ωa = 1.25, ωb = 0.75, ωc = 0.50,
ωd = 1.50 for sources placed at +x, −x, +z and −z respectively (Fig. 3.4).
The solid black lines is for the velocity vz = 0.5c, and the dashed red lines are
for the velocity vz = 0.7c. Displacement dx = dz = 1.0fm, Ts = 0.139GeV
and a = b = 1√

2
. The values of k are for the solid black lines: 0.10, 0.50,

1.00, and 2.00 [fm]−1 and for the dashed red lines: 0.10, 0.50, 1.00, and 2.00
[fm]−1. The difference is larger for smaller values of k.

If the detector acceptance is wider, then the two detectors can be placed
at more different angles. This configuration makes the forward and back-
ward placed sources more accessible to the forward and backward detectors,
respectively. This is taken into account in the emission weights of our sources.
These weights are now different for the two components of the DCF!

The result shows the tendency that the DCF has a similar structure as the
two source model and the four source model in a resembling configuration.
Fig. 3.8 has the same shape as Fig. 3.7, but the amplitude is larger.

For a set of large number of sources, forming a system with close to
perfect rotational symmetry, a single correlation function would not depend
on the (polar) angle of the detection, and the DCF would vanish. Thus, the
DHBT method would not be applicable for highly symmetric systems, like
for a rotating star observed from within the plane of the rotation.

At the same time for a rotating binary star system the DHBT method
would work. Also the weighting of the sources should be different: If the
observer is in the plane of rotation, the distant star is shadowed by the
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front one at some periods, just like emission from a highly opaque plasma
(evidenced by jet quenching). If the observer is slightly out of the plane
of rotation then the two stars are visible all the time and then the (time
dependent) correlation function would change between the configurations of
Figs. 4 and 7. This also illustrates the role of symmetric and asymmetric
weightings.

The rotating and expanding final state of a relativistic heavy ion reaction
is of course does not look like a perfect wheel, so the four source model is a
more adequate approximation than a wheel would be.
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Chapter 4

Computational Fluid Dynamics

We have seen earlier that different one, two and four source systems were
tested with and without rotation, as well as, it was discussed in detail what
are the consequences if all sources may reach detector equally probable, or
if due to the opacity of the source, the fluid elements which are closer and
facing the detector have a larger probability to emit a particle towards the
detector.

Here we study only the second, realistic case where the emission is asym-
metric and dominated by the fluid elements facing the detector.

4.1 Flow Symmetries

In numerical fluid dynamical studies of symmetric (A+A) nuclear collision
the initial state is symmetric around the center of mass (c.m.) of the system,
and (if we do not consider random fluctuations) this symmetry is preserved
during the fluid dynamical evolution.

Let us consider the usual conventions, z is the beam axis, and the positive
z-direction is the direction of the projectile beam. The impact parameter
vector points into the positive x-direction, i.e. towards the projectile. Finally
the y-axis is orthogonal to both, so that the x, y, z system is right-handed.

Thus, the situation is similar to the previously discussed case, where on
the opposite side of the reaction plane there is a pair to each fluid cell at
the point (t,−x,−y,−z). We can conclude that the fluid dynamical system,
without fluctuations can be considered as a set of symmetric pairs of fluid
cells, assuming that our detector receives particles from each of the sources of

47



4.1 Flow Symmetries Computational Fluid Dynamics

a symmetric pair with equal probability. With this assumption our result will
only contain even functions of the flow velocities as in the earlier discussed
2-source and 4-source systems.

In the realistic asymmetric case the emission probability from the two
fluid cells of a source pair are are not equal, so the exponentials cannot be
reduced to cosh-functions because of the different weights.

If we have several sources, s, with Gaussian space and time profiles, then
the source function in Jüttner approximation is∫

d4xS(x, k) =
∑
s

∫
d3xs dts S(xs, k) =

(2πR2)3/2
∑
s

γsns(x) (kµ σ̂
µ
s )

Cs
exp

[
−k · us

Ts

]
,

(4.1)

where the spatial integral over a cell volume is, Vcell = (2πR2)3/2 while the
time integral is normalized to unity. Similarly the J-function is

J(k, q) =
∑
s

exp

[
−q · us

2Ts

]
exp(iqxs)

∫
S

d4x Ss(x, k) exp(iqx) . (4.2)

We then assume that the FO layer is relatively narrow compared to spatial
spread of the fluid cells, so that the peak emission time, ts, of all fluid cells
are the same. Then the exp(iq0ts) factor drops out from the J(k, q)J(k,−q)
product. (If the emission is happening through a layer with timelike normal,
but the peak is not at constant ts, but rather at constant τs, then we can
adapt the coordinate system accordingly, i.e. we can use the τ, η coordinates
instead of t, z, see e.g. [21]). This simplification is justified in case of rapid
and simultaneous hadronization and freeze out from the plasma, else for
dilute and transparent matter the correlations from the time dependence of
freeze out should be handled the same way as the spatial dependence.

Due to the symmetries of the pre-collision initial state the system is mirror
symmetric with respect to the [x, z], reaction plane. Thus, it is sufficient to
describe the cells on the positive side of the y-axis, because the other side is
the mirror image of the positive side. Then we can evaluate the correlation
function the same way as we have done earlier.
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Thus we define the quantities:

Qc =
(
2πR2

)3/2
exp

[
−R

2q2

2

]
,

Ps =
γsns
Cs

exp

[
−k

0 u0s
Ts

]
,

Qs = Ps exp

[
−q

0 u0s
2Ts

]
,

ws = (kµ σ̂
µ
s ) exp

[
−Θ2

s

2
(qµ σ̂

µ
s )2
]
,

(4.3)

where u0s = γs, the local 4-direction normal of the mean particle emission
from an ST point of the flow is σ̂µs (assumed to be time-like), R is the size
(radius) of the fluid cells, and Θs is the path length of the time integral
from the ST point of the source, s, while assuming a Gaussian emission time
profile.

We can reassign the summation for pairs, so that s = {i, j, k} will cor-
respond to a pair of cells: at {i, j, k} and its reflected pair across the c.m.
point at the same time at {i∗, j∗, k∗}. Then the function S(k, q) becomes∫

d4xS(x, k) =
(
2πR2

)3/2∑
s

Ps

[
ws exp

(
kus
Ts

)
+ w∗s exp

(
ku∗s
Ts

)]
, (4.4)

while, the function J(k, q) becomes

J(k, q) = Qc

∑
s

Qs

[
ws exp

[(
k+

q

2

)us
Ts

]
eiqxs + w∗s exp

[(
k+

q

2

)u∗s
Ts

]
eiqx

∗
s

]
(4.5)

Only the mirror symmetry across the reaction plane is assumed, which
is always true for globally symmetric, A+A, heavy ion collisions in a non-
fluctuating fluid dynamical model calculation. Then the correlation function
can be evaluated using eqs. (1.26) and (1.29). (See the APPENDIX for
further details.)

4.2 The Freeze-out Weights

While the flow symmetries discussed above depend on the initial collision
symmetries, the weights do not follow these. The ansatz used earlier leads
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the weights as given in Eq. (4.3). These weights depend on the local mean
emission direction σ̂µ, the flow velocity at the emission point and the opacity
along the integrated path of the propagation of the emitted particle along
this direction. The emission probability from different points of the space
time is discussed in more detail earlier which was based primarily on Refs.
[18, 19]. These considerations may be more involved than the ansatz taken
over from [21]. The determination of the FO surface normal or the mean
emission direction from the ST freeze-out layer and the emission profile in
this layer are the subjects of present theoretical research, see [39, 40, 41, 42].
Here we do not discuss the effect of opacity along the path of the emission.

The detector configuration is given by the two particles reaching a given
detector in the direction of k. Thus the emission weights depend on the
direction of the normal of the emission surface and of the emission, i.e. σ̂
and k̂. Furthermore, most monte-carlo cascade type of studies indicate [39,
40, 43], that the majority of particles freezes out in a layer along a constant
proper time hyperbola, with a dominant flow 4-velocity, which is normal to
this hyperbola: σ̂µ ≈ uµ. The origin of the hyperbola is at a ST point, which
at low beam energies precedes the impact of the Lorentz contracted nuclei
[39].

We assume in the actual numerical calculations that in the expression of
the weight, Eq. (4.3), Qs(q) is the same for all surface layer elements: Q

(q)
s =

Q(q) and Θs = Θ, so that ws = (kµ σ̂
µ
s ) exp(−Θ2q20/2) , where σ̂sµ = (σ0

s , σs),
so that kµ σ̂

µ
s = k0σ0

s + kσs . If emission path time-length, Θ, tends to zero,
then the time modifying factor becomes unity. With the choice σ̂µ = uµ,
the time-like FO normal is σ̂sµ = (γs,us). Then (kµσ̂

µ
s ) = γsk0+kus. So the

weight becomes
ws = (γsk0+kus) exp(−Θ2q20/2). (4.6)

This weight is explicitly different for the mirror image cell at x∗s → −xs,
where u∗s → −us and then w∗s = (γsk0−kus) exp(−Θ2q20/2) .

The weight factors appear both in the nominator and denominator of the
correlator, so its normalization is balanced. On the other hand the role of
the different factors in the weight have an effect to determine which cells
contribute more or less to the result. This is a fundamental problem of
the FO process, and in real situations it can get further convoluted if the
hadronization and FO coincide in a rapid expansion.
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4.3 Results

The sensitivity of the standard correlation function on the fluid cell velocities
decreases with decreasing distances among the cells. So, with a large number
of densely places fluid cells where all fluid cells contribute equally to the
correlation function, the sensitivity on the flow velocity becomes negligibly
weak.
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Figure 4.1: (color online) The dependence of the standard correlation func-
tion in the k+ direction from the collective flow, at the final time.

Thus, the emission probability from different ST regions of the system
is essential in the evaluation. This emission asymmetry due to the local
flow velocity occurs also when the FO surface or layer is isochronous or if it
happens at constant proper time.

We studied the fluid dynamical patterns of the calculations published
in Ref. [2], where the appearance of the KHI is discussed under different
conditions. We chose the configuration, where both the rotation [1], and the
KHI occurred, at b = 0.7bmax with high cell resolution and low numerical
viscosity at LHC energies, where the angular momentum is large, L ≈ 106~
[40].

We have used the Differential HBT method for simplified examples of a
few fluid cells. These examples were spatially symmetric, thus the standard
correlation function did not show any difference if it is measured at two
symmetric k and q-out angles, e.g. in the reaction, [x-z] plane at k+ =
(kx, 0,+kz) q+ = (qx, 0,+qz) and k− = (kx, 0,−kz) q− = (qx, 0,+q−). Here
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we have chosen two directions at η = ±0.76, that is at polar angles of 90±40
degrees. These are measurable with the ALICE TPC detector and at the
ATLAS and CMS detectors also.
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Figure 4.2: (color online) The differential correlation function ∆C(k, q) at
the initial and final times of flow development.

The standard correlation function is both influenced by the ST shape
of the emitting source as well as its velocity distribution. The correlation
function becomes narrower in q with increasing time primarily due to the
rapid expansion of the system. At the initial configuration the increase of
|k| leads to a small increase of the width of the correlation function

Nevertheless, in theoretical models we can switch of the flow, and analyse
how the flow influences the correlation function and especially the differential
correlation function, ∆C(k, q).

Fig. 4.1 compares the standard correlation functions with and without
the collective flow at the final time moment. Here we see that the flow causes
a decrease of the width in q for the distribution at high values of |k|.

The differential correlation function is more sensitive on the flow as it
is shown in the few source models. In Fig. 4.2 ∆C(k, q) is shown for the
initial and final times. Although the amplitude of the differential correlation
function is smaller the differences between the initial and final configurations
are significant. The dependence on |k| is especially large at the final time.

At the final time the flow dependence is again minimal at small momenta,
|k|, while at large momenta the flow leads to a change in the shape of the
differential correlation function, and leads to an increase of its amplitude,
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Figure 4.3: (color online) The flow velocity dependence of the differential
correlation function at the final time.

Fig. 4.3. Here the expansion and the flow interfere with each other and this
leads to a more complex behaviour.

These tests demonstrate that the differential correlation function is sen-
sitive to the flow and its rotation.

4.4 Differential HBT and Separation of Shape

effects

The original description was to measure C(k, qout) [or C(k, qlong)] in the re-
action, (x.z) plane at two different k directions around kx shifted symmet-
rically forward and backward in the z-direction: k+ and k−. Then if the
emitting object is symmetric for ±z, and the object does not rotate then
∆C ≡ C(k+, qout)−C(k−, qout) vanishes, but if there is a rotation then ∆C
does not vanish. This is also true if the flow velocity pattern is also symmetric
for ±z, e.g. for spherical expansion. But not for rotation!

In general the problem is that the emitting object is neither spherical
nor symmetric over ±z reflection in most realistic situations. In this case
the method becomes problematic because both the rotation and the shape
asymmetry over ±z, will lead to non-vanishing ∆C.

Therefore our aim is to separate the (i) rotation effect and (ii) the shape
and spherical flow effect on the two particle correlations.
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The symmetry axes, for the case (ii) were determined and analysed by
the azimuth-dependent HBT method in refs. [8], and it was found that
the source can be approximated well as a three axis ellipsoid, where two
of the axes are in the reaction plane and the third in the transverse plane.
The major axis in the reaction plane is correlated with the directed flow
with a well identified tilt-angle, while the dominant expansion happened in
the orthogonal direction, creating the ”anti-flow” or ”third flow component”
[44, 45]. If we perform a reflection of the source across one of these two axis
in the reaction plane, we get an almost identical mirror image configuration,
except that the rotation will be reversed. Let us denote the axis, which is
orthogonal to the major tilt-axis as the x′-axis. The polar angle of this axis
is the tilt-axis plus 90 degrees: Θs + π/2, i.e. 137, 127, 123 degrees for the
three cases at energies 2, 4, 6 GeV/nucl. respectively for the cases discussed
in ref. [8].

Thus, if the original source was

S(x, y, z) ,

and the reflected source is : REF{S(x, y, z)}, which is thus (almost) identical
except rotation, then the combination:

S0(x, y, z) ≡ [S(x, y, z) +REF{S(x, y, z)}]/2 ,

(a) will have (almost) identical shape and radial flow distribution as the
original source distribution, (b) will be exactly symmetric for reflection over
the x′-axis, (c) will have vanishing rotation, and (d) will have vanishing
∆C(kx′ , qout) for two shifted k+ and k− values with respect to the kx′-axis.

Comparing this ∆C(kx′ , qout) for the S0-distribution, with the ∆C(kx′ , qout)
for the original S-distribution will give a good and quite precise measure for
the average rotation of the original distribution.
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Chapter 5

Conclusions

In this work we attempted to study the possibility of detecting and evaluating
the rotation of a source by the specific use of the Hanbury Brown and Twiss
method for rotating systems. Our primary interest was the application for
ultra-relativistic heavy ions where in peripheral collisions at ultra-relativistic
energies the system can gain large angular momentum. Nevertheless, some
of the conclusions can be applied to macroscopic systems also, like for fast
rotating binary stars.

We selected one of the several methods to evaluate two particle corre-
lations, which was suitable to study collective fluid systems with significant
and well defined internal fluid dynamical motion. The obtained standard cor-
relation functions were showing the consequences of the flow, but for highly
symmetric sources the correlation functions gave symmetric results, which
were invariant for the change of the direction of rotation.

It turned out that it is important to take into account that the particles
reaching the detector cannot reach it with equal probability from the near
side and the far side of the emitting object. With this fact considered we
could obtain correlation functions, which reflected the properties and also
the direction of the flow. These results can be used rather generally.

The obtained results has shown that the correlation function is most
sensitive to the rotation if it is measured in the beam direction (or close
to it). This, unfortunately, is not possible in most heavy ion accelerator
experiments, so we introduced and investigated a Differential Hanbury Brown
and Twiss method, which made it possible to trace down the rotation in
relativistic heavy ion collisions by measuring the correlation functions in the
reaction plane at nearly transverse angles to the beam direction. The method
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is promising and can be performed in most heavy ion experiments without
difficulties, as well as it can be implemented in different reaction models, like
fluid dynamical models, microscopic transport models and hybrid models.
In full scale theoretical models, the emission probabilities from the FO layer
have to be considered. From the general formulas derived in the beginning
of the paper apparently these dependencies can be factorized.

The present initial studies verify the dependence of the differential cor-
relation function on the flow in general. At the same time it also shows
that in realistic model situations the effect of the spatial size and shape, the
flow expansion and the flow rotation all influence the differential correlation
function. In the Differential HBT analysis one can disentangle the effect of
rotation from the effects of shape and radial flow.

Exploiting the results of azimuth-dependent HBT analysis and the arising
symmetry axes provided by this analysis [8], one can generate, with a reflec-
tion of the source distribution, another source with almost identical shape,
that is exactly symmetric with respect to one of the given symmetry axes,
but which has no rotation. The source generated this way provides vanishing
∆C, and thus it provides a good quantitative measure for the rotation by
performing the differential HBT analysis in the same reference frame for the
original source distribution.

In addition theoretical model studies should be complemented with exper-
imental investigations. In this case it is important to determine the precise
Event by Event c.m. position of the participants [27], and minimize the effect
of fluctuations to be able to measure accurately the emission angles, which
are crucial in the present ∆C(k, q) studies.
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Chapter 6

APPENDIX

6.1 Appendix A - Four Symmetric Sources

Correlation function for a pair of two sources.
From equations (1.26) and (1.29) we can derive the correlation function

for a pair of two sources.
J(k, q) is defined in equation (1.28) so we have

J(k, q) = Ek
(
2πR2

)3/2
exp

(
−R

2q2

2

)∑
s

ns
Cs

exp

[
−k · us

Ts

]
exp

[
−q · us

2Ts

]
exp(iqxs) =

Ek
(
2πR2

)3/2
exp

(
−R

2

2
q2
)
ns
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exp
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0γs
Ts

]
exp

[
−q

0

2

γs
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exp(iq0x0s)×[

exp

[
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]
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[
q · us1

2Ts

]
exp(iq · xs1) + exp

[
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]
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[
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2Ts

]
exp(−iq · xs1)+
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[
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q · us2

2Ts

]
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]
(6.1)
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and for the denominator:

∫
d3x S(x, k) =

∑
s

∫
S

d4x Ss(x, k) = Ek
(
2πR2

)3/2∑
s

ns
Cs

exp

[
−k · us

Ts
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Ek
(
2πR2

)3/2 ns
Cs

exp

[
−k

0γs
Ts

]
×(

exp

[
k · us1
Ts

]
+ exp

[
−k · us1

Ts

]
+ exp

[
k · us2
Ts

]
+ exp

[
−k · us2

Ts

])
(6.2)

By using (1.26) and (1.29) we are left with only exponential functions.
We use the same result as in equation (2.22) for exponentials products with
only s1 or s2. The real value gives

Re[ exp (±iq · (xs1 ± xs2)] = cos (q · (xs1 ± xs2)) (6.3)

In the numerator we will have after taking the product J(k,q)J(k,-q) the
terms

[
exp

(
2k · us1 − q · us1 − 2k · us2 − q · us2

2Ts

)
+

exp

(
−2k · us1 + q · us1 + 2k · us2 + q · us2

2Ts

)]
cos(q · (xs1 + xs2))+[

exp

(
2k · us1 + q · us1 − 2k · us2 + q · us2

2Ts

)
+

exp

(
−2k · us1 − q · us1 + 2k · us2 − q · us2

2Ts

)]
cos(q · (xs1 + xs2))+[

exp

(
2k · us1 − q · us1 + 2k · us2 + q · us2

2Ts

)
+

exp

(
−2k · us1 + q · us1 − 2k · us2 − q · us2

2Ts

)]
cos(q · (xs1 − xs2))+[

exp

(
2k · us1 + q · us1 + 2k · us2 − q · us2

2Ts

)
+

exp

(
−2k · us1 − q · us1 − 2k · us2 + q · us2

2Ts

)]
cos(q · (xs1 − xs2)) .

(6.4)
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We will then use the following relation:

exp(a+b)+exp(a−b)+exp(−a+b)+exp(−a−b) = 4 cosh(a) cosh(b) (6.5)

This will give equation (2.28) after taking the square of the denominator
which is done similarly.

6.2 Appendix B - Four sources with asym-

metric emission

The out component of the four source correlation function with a = b, dx = dz
and vx = vz. We will use γvxa

Ts
= γvxb

Ts
= A and adx = bdz = B. So equation

(3.11) becomes

C(k(±), qout) = 1 + exp(−R2q2) [2ωaωb + 2ωcωd+

ω2
a exp (±2Ak) exp (±Ak) cos(2Bq) + ω2

b exp (∓2Ak) exp (∓Ak) cos(2Bq)+

ω2
c exp (2Ak) exp (Ak) cos(2Bq) + ω2

d exp (−2Ak) exp (−Ak) cos(2Bq)+

2ωaωc exp (±Ak) exp

(
±Ak

2

)
exp (Ak) exp

(
Ak

2

)
cos((B ±B)q)+

2ωbωd exp (∓Ak) exp

(
∓Ak

2

)
exp (−Ak) exp

(
−Ak

2

)
cos((B ±B)q)+

2ωaωd exp (±Ak) exp

(
±Ak

2

)
exp (−Ak) exp

(
−Ak

2

)
cos((B ∓B)q)+

2ωbωc exp (∓Ak) exp

(
∓Ak

2

)
exp (Ak) exp

(
Ak

2

)
cos((B ∓B)q)

]
×

[ωa exp (±Ak) + ωb exp (∓Ak) + ωc exp (Ak) + ωd exp (−Ak)]−2 .

(6.6)
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For the difference we then have

∆(k±, qout) ≡ C(k+, qout)− C(k−, qout) =

exp(−R2q2)× [2ωaωb + 2ωcωd + 2ωaωd + 2ωbωc+

(ω2
a + ω2

c + 2ωaωc) exp (2Ak) exp (Ak) cos(2Bq)+

(ω2
b + ω2

d + 2ωbωd) exp (−2Ak) exp (−Ak) cos(2Bq)
]

[(ωa + ωc) exp (Ak) + (ωb + ωd) exp (−Ak)]−1−

exp(−R2q2)×
[
2ω
′

aω
′

b + 2ω
′

cω
′

d + 2ω
′

aω
′

c + 2ω
′

bω
′

d+

(ω
′2
b + ω

′2
c + 2ω

′

bω
′

c) exp (2Ak) exp (Ak) cos(2Bq)+

(ω
′2
a + ω

′2
d + 2ω

′

aω
′

d) exp (−2Ak) exp (−Ak) cos(2Bq)
]

[
(ω
′

b + ω
′

c) exp (Ak) + (ω
′

a + ω
′

d) exp (−Ak)
]−1

(6.7)

where for figures (3.4) and (3.5) we would have ω
′
a = ωa, ω

′

b = ωb, ω
′
c =

ωd, ω
′

d = ωc

6.3 Appendix C - The CFD cell structure

The fluid cells are spatially cubic, the axes and the edges of the cubes are
parallel, and the axes are situated at the lines of the edges of the 1st row of
cells in every direction. Thus, the centers of the 1st layer of cells are at a
distance of 1

2
d, where d is the cell-size in each spatial direction.

Due to the symmetries of the pre-collision initial state the system is mirror
symmetric with respect to the [x, z], reaction plane. Thus, it is sufficient to
describe the cells on the positive side of the y-axis, because the other side is
the mirror image of the positive side. Cell are labeled with indexes i, j, k in
the x, y, z directions where the centers of a cell labeled by i, j, k are at the
points:

xijk =

(
(i−imid−

1

2
)d, (j−1

2
)d, (k−kmid−

1

2
)d

)
, (6.8)

where i = imin, imin+1, imin+2, ... imax, j = 1, 2, 3, ... jmax, and k =
kmin, kmin+1, kmin+2, ... kmax, so that we do not calculate and store the
cells at negative y-values, (j-values). The center of mass, as well as the
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center of our calculation frame at x = (0, 0, 0) is between the cells indexed
by (imid, imid+1) and (kmid, kmid+1), for x and z, while for y it is at the
side of the j = 1 cells. The choice is such that imin > 0 and kmin > 0.
Thus, in this counting there are no cells with zero or negative indexes. At
the same time these cells should be doubled and the negative y- side should
also be counted for the evaluation of measurable quantities like two particle
correlation characteristics. The cell parameters for the negative y-side cells,
for invariant scalar quantities, q, and for 4-vector components are given as

q(−x,−y,−z) = q(x, y, z)

γs(−x,−y,−z) = γs(x, y, z)

vx(−x,−y,−z) = −vx(x, y, z) (6.9)

vy(−x,−y,−z) = −vy(x, y, z)

vz(−x,−y,−z) = −vz(x, y, z)

where uµs = γs(1, vx, vy, vz) are the coordinates of the 4-velocity and vs =
(vx, vy, vz). In the x, y and z directions if we have a cell with indexes
(i, j, k) the corresponding mirror image cell has the indexes (i, j, k) −→
( 2imid−i+1, −j, 2kmid−k+1 ).

6.4 Appendix D - Correlation function for 2

cells

Let us introduce the notation βs ≡ us/Ts, and consider one cell at j = 1
with its mirror image cell at j = −1. The two cells are bordered to the origo
at the corner of the cells. All scalar parameters are equal for the two cells.
The cell in the top layer (x > 0) have velocity parameter βs, while for the
bottom layer −βs. The positions of the cell centers are (±xs,±ys,±zs). The
weights are not necessarily the same: ws(j > 0) 6= w∗s(j < 0).

Then the function S(k, q) becomes∫
d4xS(x, k) =

(
2πR2

)3/2
Ps [ws exp (kβs) + w∗s exp (−kβs)] . (6.10)

The denominator is then∣∣∣∣∫ d4xS(x, k)

∣∣∣∣2 =
(
2πR2

)3
P 2
s

[
w2
s exp (2kβs) + (w∗s)

2 exp (−2kβs) + 2wsw
∗
s

]
.

(6.11)
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X

Z

Y

Figure 6.1: (color online) Two indicated fluid cells, placed symmetrically
around the origin of the Descartes coordinate system. The cells on the nega-
tive y-side of the coordinate space (further away from us) are reflected around
the point of origin (c.m.) and are not calculated explicitly in the fluid dy-
namical model. The velocity of the two cells point to the opposite directions.

Similarly the function J(k, q) becomes

J(k, q) = QcPsQ
q
s

[
wse

kβs eqβs/2eiqxs + w∗se
−kβs e−qβs/2e−iqxs

]
, (6.12)

where xs is the position of the center of the cell on the positive y side, while
the mirror image cell has −xs. Let us introduce the notations:

Σ(q) = eiqxs . (6.13)

Then in the above expression we can insert eiqxs = cos(qxs) + i sin(qxs),
so that

Σ(q) = cos qxs + i sin qxs. (6.14)

Notice that Re[Σ2(q)] = Re[Σ2(−q)] = C2
q − S2

q and Re[Σ(q)Σ(−q)] =
C2
q + S2

q , where Cq = cos qxs, and Sq = sin qxs.
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Using this substitution the Re[J(k, q)J(k,−q)] product becomes:

Re[J(k, q)J(k,−q)] =

(QcPs)
2Re

[(
wse

kβseqβs/2Σ(q) + w∗se
−kβse−qβs/2Σ(−q)

)
×(

wse
kβse−qβs/2Σ(−q) + w∗se

−kβseqβs/2Σ(q)
)]

=

(QcPs)
2Re

[
w2
se

kβseqβs/2 ekβse−qβs/2 Σ(q)Σ(−q) + wsw
∗
s e

kβseqβs/2 e−kβseqβs/2 Σ2(q)+

w∗s ws e
−kβse−qβs/2 ekβse−qβs/2 Σ2(−q) + (w∗s)

2e−kβse−qβs/2 e−kβseqβs/2 Σ(−q)Σ(q)
]

=

(QcPs)
2Re

[
w2
se

2kβs Σ(q)Σ(−q) + wsw
∗
s e

qβs Σ2(q)+

wsw
∗
s e
−qβs Σ2(−q) + (w∗s)

2 e−2kβs Σ(−q)Σ(q)
]

=

(QcPs)
2
[
2wsw

∗
s cosh(qβs) (C2

q − S2
q ) +

[
w2
se

2kβs + (w∗s)
2e−2kβs

]
(C2

q + S2
q )
]

Here we exploited the fact that in the product J(k, q) J(k,−q) the factor
Qq
sQ
−q
s reduces to unity.

Thus the correlation function becomes:

C(k, q) =1 + exp(−R2q2)×
2wsw

∗
s cosh(qβs) (C2

q − S2
q ) +

[
w2
se

2kβs + (w∗s)
2e−2kβs

]
(C2

q + S2
q )

w2
s exp (2kβs) + (w∗s)

2 exp (−2kβs) + 2wsw∗s
(6.15)

Due to the symmetric configuration the coefficients (C2
q +S2

q ) and (C2
q −S2

q )
could be simplified further.

6.5 Appendix E - Correlation function for 8

cells

Let us introduce the notation βs ≡ us/Ts, and consider 4 cells at j = 1 with 4
mirror image cells at j = −1. In this example we assume that all top/bottom-
layer cells have the same velocity and temperature, which is in general not
the case. The 8 cells form a tight cube enclosing the origo at the corner of the
inside cell boundaries. All scalar parameters are equal for all cells. All cells
of the top layer (x > 0) have the same velocity parameter β, while for the
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X

Z

Y

Figure 6.2: (color online) Eight fluid cells, placed symmetrically around the
origin of the Descartes coordinate system. The cells on the negative y-side
of the coordinate space (further away from us) are reflected around the point
of origin (c.m.) and are not calculated explicitly in the fluid dynamical
model. The top layer has uniform velocity pointing to the right (positive
z-direction), while the bottom layer has a uniform velocity to the opposite
direction. Random fluctuations would violate this exact symmetry.

bottom layer −β. The positions of the cell centers are (±x,±y,±z). Here
all weights, (ws and w∗s) are the same, which is also not true in general.

Then the function S(k, q) becomes

∫
d4xS(x, k) =

(
2πR2

)3/2 4∑
s=1

Psws [exp (kβ) + exp (−kβ)] =

4
(
2πR2

)3/2
Psws [exp (kβ) + exp (−kβ)] = 8

(
2πR2

)3/2
Psws cosh (kβ)

(6.16)

The denominator is then∣∣∣∣∫ d4xS(x, k)

∣∣∣∣2 = 64
(
2πR2

)3
P 2
sw

2
s cosh(2kβ) . (6.17)
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Similarly the function J(k, q) becomes

J(k, q) = Qc

4∑
s=1

Ps

[
Qq
sws exp

[(
k+

q

2

)us
Ts

]
eiqxsQq

sw
∗
s exp

[(
k+

q

2

)u∗s
Ts

]
eiqx

∗
s

]
=

QcPsQ
q
sws

{
ekβeqβ/2

[
eiqxa + eiqxb + eiqxc + eiqxd

]
+

e−kβe−qβ/2
[
e−iqxa + e−iqxb + e−iqxc + e−iqxd

]}
,

where xa, xb, xc, xd are the positions of the centers of the 4 cells in the top
layer, while the bottom layer has the mirror image cells. Let us introduce
the notations:

Σ(q) = eiqxa + eiqxb + eiqxc + eiqxd (6.18)

Then in the above expression we can insert for all 8 cells eiqxg = cos(qxg)+
i sin(qxg).

Σ(q) = cos qxa + cos qxb + cos qxc + cos qxd+

i [sin qxa + sin qxb + sin qxc + sin qxd] .
(6.19)

Notice that Re[Σ2(q)] = Re[Σ2(−q)] = C2
q − S2

q and
Re[Σ(q)Σ(−q)] = C2

q + S2
q , where

Cq = cos qxa + cos qxb + cos qxc + cos qxd, and
Sq = sin qxa + sin qxb + sin qxc + sin qxd.

Using this substitution the Re[J(k, q)J(k,−q)] product becomes:

Re[J(k, q)J(k,−q)] =

(QcPsws)
2Re

[(
ekβeqβ/2Σ(q) + e−kβe−qβ/2Σ(−q)

) (
ekβe−qβ/2Σ(−q) + e−kβeqβ/2Σ(q)

)]
=

(QcPsws)
2Re

[
ekβeqβ/2 ekβe−qβ/2 Σ(q)Σ(−q)+ ekβeqβ/2 e−kβeqβ/2 Σ2(q)+

e−kβe−qβ/2 ekβe−qβ/2 Σ2(−q) + e−kβe−qβ/2 e−kβeqβ/2 Σ(−q)Σ(q)
]

=

(QcPsws)
2Re

[
e2kβ Σ(q)Σ(−q) + eqβ Σ2(q) + e−qβ Σ2(−q) + e−2kβ Σ(−q)Σ(q)

]
=

2 (QcPsws)
2
[
cosh(2kβ)(C2

q + S2
q ) + cosh(qβ)(C2

q − S2
q )
]

(6.20)

Here we exploited the fact that in the product J(k, q) J(k,−q) the factor
Qq
sQ
−q
s reduces to unity.
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Thus the correlation function becomes:

C(k, q) = 1 + exp(−R2q2)

[
cosh(2kβ)(C2

q + S2
q ) + cosh(qβ)(C2

q − S2
q )
]

32 cosh(2kβ)
(6.21)

Due to the symmetric configuration the coefficients (C2
q + S2

q ) and (C2
q −

S2
q ) could be simplified further.

6.6 Appendix F - Correlation function for all

cell-pairs

This is the general situation, only the mirror symmetry around the c.m. point
of the participant assumed. This is generally true if we disregard random
fluctuations.

Then the function S(k, q) becomes∫
d4xS(x, k) =

(
2πR2

)3/2∑
s

PsKs , (6.22)

where

Ks ≡ [ws exp (kβs) + w∗s exp (−kβs)] . (6.23)

The denominator in the correlation function is then

∣∣∣∣∫ d4xS(x, k)

∣∣∣∣2 =
(
2πR2

)3 [∑
s

P 2
s K2

s + 2
∑
s>s′

PsPs′KsKs′
]

(6.24)

Similarly the function J(k, q) becomes

J(k, q) = Qc

∑
s

PsQ
(q)
s

[
wse

(k+q
2
)βs+iqxs+w∗se

−(k+q
2
)βs−iqxs

]
.

Then in the above expression we can perform the substitution: eiqxs =
cos(qxs) + i sin(qxs), so the function J(k, q) becomes
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J(k, q) = Qc

∑
s

PsQ
(q)
s

[
C(q)s + iS(q)

s

]
, (6.25)

where C(q)s =
[
wse

(k+q
2
)βs+w∗se

−(k+q
2
)βs
]

cos(qxs) and

S(q)
s =

[
wse

(k+q
2
)βs−w∗se−(k+

q
2
)βs
]

sin(qxs)
Using this substitution the Re[J(k, q)J(k,−q)] product becomes:

Re[J(k, q)J(k,−q)] =

Q2
c Re

[(∑
s

PsQ
(q)
s

[
C(q)s + iS(q)

s

])
×

(∑
s′

PsQ
(−q)
s′

[
C(−q)s′ + iS(−q)

s′

])]
=

Q2
c

(∑
s

P 2
s

[
C(q)s C(−q)s − S(q)

s S(−q)
s

]
+ 2

∑
s>s′

PsPs′Q
(q)
s Q

(−q)
s′

[
C(q)s C

(−q)
s′ − S(q)

s S
(−q)
s′

])
(6.26)

Here we exploited the fact that in the product J(k, q) J(k,−q) the factor
Qq
sQ
−q
s reduces to unity.

Thus the correlation function becomes:

C(k, q) =1 + exp(−R2q2)×∑
s P

2
s

[
C(q)s C(−q)s − S(q)

s S(−q)
s

]
+ 2

∑
s>s′ PsPs′Q

(q)
s Q

(−q)
s′

[
C(q)s C(−q)s′ − S(q)

s S(−q)
s′

]
∑

s P
2
s K2

s + 2
∑

s>s′ PsPs′KsKs′
(6.27)

For one pair of fluid cells this expression returned the correlations function
expression given in Eq. 2.17.

The method presented in this appendix exploits the global symmetry of
a Heavy Ion Collision across the c.m. point. This makes a factor of N2

cell

reduction in the summation, although the expressions become slightly more
complex. The formulae for the evaluation include double summations over
cell-pairs denoted by ”s”, nevertheless, the correlations between any of the
cells with any other cell are included in the summation.

Now we also have to evaluate the weight factor, ws for the fluid cells in
the hydro model, presented in Eq. (4.6).

This weight is is the same for all directions of k, so also for the mirror
image cells: w∗s = ws, if Θ2

s(xs) is the same for both. Nevertheless, the factors
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exp[ku/Ts] in the K, C(q)s , andS(q)
s -functions will give strong dominance for

the fluid cells, which move towards k.
In the case when the weights for the cells and the mirror image cells are

the same, w∗s = ws, thus the correlation function only includes cos and cosh
terms, see Eq. 2.29. So, the direction of the velocity, v, does not influence
the correlation function, it depends only on the magnitude of the velocities.
However, if the weights are not the same correlation function will contain
sinh terms also, as the mirror cells may contribute differently. This is shown
by Eq. 3.3.

Thus we choose the most frequently used choice is to have the FO layer
along a constant proper time hyperboloid. In this case we can choose the
time-like FO normal as σ̂sµ = (γs,us). Then (kµσ̂

µ
s ) = γsk0+kus. So the

weight becomes
ws = (γsk0+kus) exp(−Θ2q20/2) . (6.28)

This weight is explicitly different for the cell and its mirror image cell

w∗s = (γsk0−kus) exp(−Θ2q20/2) . (6.29)

This makes the correlation function asymmetric and sensitive to the direction
of the rotation of the flow.

Even more sophisticated parametrizations are discussed in Refs. [18,
19].
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Zs. Lázár, V. Magas and H. Stöcker, Phys. Rev. C59 (1999) 3309.

[32] V.K. Magas, Cs. Anderlik, L.P. Csernai, F. Grassi, W. Greiner Y. Hama,
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